Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
NASA's New Thermal Management Systems Roadmap; Whats in it, What it Means
NASA Technical Reports Server (NTRS)
Swanson, Ted
2016-01-01
In July of 2015 NASA publically released a new set of Technology Area Roadmaps that will be used to help guide future NASA-funded technology development efforts. One of these was the Thermal Management Systems Roadmap, often identified as TA14. This Roadmap identifies the time sequencing and interdependencies of high priority, advanced thermal control technology for the next 5 to 20 years. Available funding limits the development of new technology. The Roadmaps are the first step in the process of prioritizing HQ-supported technology funding. The 2015 Roadmaps are focused on planned mission architectures and needs, as identified in the NRC-led science Decadals and HEOMD's Design Reference Missions. Additionally, the 2015 Roadmaps focus on "applied " R&D as opposed to more basic research. The NASA Mission Directorates were all closely involved in development of 2015 Roadmaps, and an extensive external review was also conducted. This talk will discuss the Technology Roadmaps in general, and then focus on the specific technologies identified for TA 14, Thermal Management Systems.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt;
2014-01-01
The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware and software technology roadmaps and investment recommendations center dot Continue monitoring foundational technologies upon which future avionics technologies will be dependent, e.g., RHBD and COTS semiconductor technologies
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad
2016-01-01
The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap
NASA Technical Reports Server (NTRS)
Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)
1998-01-01
Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)
Human Health and Support Systems Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Grounds, Dennis; Boehm, Al
2005-01-01
The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.
NASA's Deep Space Telecommunications Roadmap
NASA Technical Reports Server (NTRS)
Edwards, C., Jr.; Stelzried, C.; Deutsch, L.; Swanson, L.
1998-01-01
This paper will present this roadmap, describe how it will support an increasing mission set while also providing significantly increased science data return, summarize the current state of key Ka-band and optical communications technologies, and identify critical path items in terms of technology developments, demonstrations, and mission users.
National Algal Biofuels Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, John; Sarisky-Reed, Valerie
The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status ofmore » algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.« less
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Reeves, John D.; Williams-Byrd, Julie A.; Greenberg, Marc; Comstock, Doug; Olds, John R.; Wallace, Jon; DePasquale, Dominic; Schaffer, Mark
2013-01-01
NASA is investing in new technologies that include 14 primary technology roadmap areas, and aeronautics. Understanding the cost for research and development of these technologies and the time it takes to increase the maturity of the technology is important to the support of the ongoing and future NASA missions. Overall, technology estimating may help provide guidance to technology investment strategies to help improve evaluation of technology affordability, and aid in decision support. The research provides a summary of the framework development of a Technology Estimating process where four technology roadmap areas were selected to be studied. The framework includes definition of terms, discussion for narrowing the focus from 14 NASA Technology Roadmap areas to four, and further refinement to include technologies, TRL range of 2 to 6. Included in this paper is a discussion to address the evaluation of 20 unique technology parameters that were initially identified, evaluated and then subsequently reduced for use in characterizing these technologies. A discussion of data acquisition effort and criteria established for data quality are provided. The findings obtained during the research included gaps identified, and a description of a spreadsheet-based estimating tool initiated as a part of the Technology Estimating process.
NASA Astrophysics Data System (ADS)
Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2017-10-01
Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.
NASA Technical Reports Server (NTRS)
2012-01-01
Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.
Collaboration process for integrated social and health care strategy implementation.
Korpela, Jukka; Elfvengren, Kalle; Kaarna, Tanja; Tepponen, Merja; Tuominen, Markku
2012-01-01
To present a collaboration process for creating a roadmap for the implementation of a strategy for integrated health and social care. The developed collaboration process includes multiple phases and uses electronic group decision support system technology (GDSS). A case study done in the South Karelia District of Social and Health Services in Finland during 2010-2011. An expert panel of 13 participants was used in the planning process of the strategy implementation. The participants were interviewed and observed during the case study. As a practical result, a roadmap for integrated health and social care strategy implementation has been developed. The strategic roadmap includes detailed plans of several projects which are needed for successful integration strategy implementation. As an academic result, a collaboration process to create such a roadmap has been developed. The collaboration process and technology seem to suit the planning process well. The participants of the meetings were satisfied with the collaboration process and the GDSS technology. The strategic roadmap was accepted by the participants, which indicates satisfaction with the developed process.
Power Systems for Future Missions: Appendices A-L
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
Selection of power system technology for space applications is typically based on mass, readiness of a particular technology to meet specific mission requirements, and life cycle costs (LCC). The LCC is typically used as a discriminator between competing technologies for a single mission application. All other future applications for a given technology are usually ignored. As a result, development cost of a technology becomes a dominant factor in the LCC comparison. Therefore, it is common for technologies such as DIPS and LMR-CBC to be potentially applicable to a wide range of missions and still lose out in the initial LCC comparison due to high development costs. This collection of appendices (A through L) contains the following power systems technology plans: CBC DIPS Technology Roadmap; PEM PFC Technology Roadmap; NAS Battery Technology Roadmap; PV/RFC Power System Technology Roadmap; PV/NAS Battery Technology Roadmap; Thermionic Reactor Power System Technology Roadmap; SP-100 Power System Technology Roadmap; Dynamic SP-100 Power System Technology Roadmap; Near-Term Solar Dynamic Power System Technology Roadmap; Advanced Solar Dynamic Power System Technology Roadmap; Advanced Stirling Cycle Dynamic Isotope Power System Technology Roadmap; and the ESPPRS (Evolutionary Space Power and Propulsion Requirements System) User's Guide.
Research and Development Roadmaps for Liquid Metal Cooled Fast Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Grandy, C.; Natesan, K.
The United States Department of Energy (DOE) commissioned the development of technology roadmaps for advanced (non-light water reactor) reactor concepts to help focus research and development funding over the next five years. The roadmaps show the research and development needed to support demonstration of an advanced (non-LWR) concept by the early 2030s, consistent with DOE’s Vision and Strategy for the Development and Deployment of Advanced Reactors. The intent is only to convey the technical steps that would be required to achieve such a goal; the means by which DOE will determine whether to invest in specific tasks will be treatedmore » separately. The starting point for the roadmaps is the Technical Readiness Assessment performed as part of an Advanced Test and Demonstration Reactor study released in 2016. The roadmaps were developed based upon a review of technical reports and vendor literature summarizing the technical maturity of each concept and the outstanding research and development needs. Critical path tasks for specific systems were highlighted on the basis of time and resources needed to complete the tasks and the importance of the system to the performance of the reactor concept. The roadmaps are generic, i.e. not specific to a particular vendor’s design but vendor design information may have been used as representative of the concept family. In the event that both near-term and more advanced versions of a concept are being developed, either a single roadmap with multiple branches or separate roadmaps for each version were developed. In each case, roadmaps point to a demonstration reactor (engineering or commercial) and show the activities that must be completed in parallel to support that demonstration in the 2030-2035 window. This report provides the roadmaps for two fast reactor concepts, the Sodium-cooled Fast Reactor (SFR) and the Lead-cooled Fast Reactor (LFR). The SFR technology is mature enough for commercial demonstration by the early 2030s, and the remaining critical paths and R&D needs are generally related to the completion of qualification of fuel and structural materials, validation of reactor design codes and methods, and support of the licensing frameworks. The LFR’s technology is instead less-mature compared to the SFR’s, and will be at the engineering demonstration stage by the early 2030s. Key LFR technology development activities will focus on resolving remaining design challenges and demonstrating the viability of systems and components in the integral system, which will be done in parallel with addressing the gaps shared with SFR technology. The approach and timeline presented here assume that, for the first module demonstration, vendors would pursue a two-step licensing process based on 10CFR Part 50.« less
Development priorities for in-space propulsion technologies
NASA Astrophysics Data System (ADS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2013-02-01
During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.
Effective methodology to derive strategic decisions from ESA exploration technology roadmaps
NASA Astrophysics Data System (ADS)
Cresto Aleina, Sara; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2016-09-01
Top priorities in future international space exploration missions regard the achievement of the necessary maturation of enabling technologies, thereby allowing Europe to play a role commensurate with its industrial, operational and scientific capabilities. As part of the actions derived from this commitment, ESA Technology Roadmaps for Exploration represent a powerful tool to prioritise R&D activities in technologies for space exploration and support the preparation of a consistent procurement plan for space exploration technologies in Europe. The roadmaps illustrate not only the technology procurement (to TRL-8) paths for specific missions envisaged in the present timeframe, but also the achievement for Europe of technological milestones enabling operational capabilities and building blocks, essential for current and future Exploration missions. Coordination of requirements and funding sources among all European stakeholders (ESA, EU, National, and Industry) is one of the objectives of these roadmaps, that show also possible application of the technologies beyond space exploration, both at ESA and outside. The present paper describes the activity that supports the work on-going at ESA on the elaboration and update of these roadmaps and related tools, in order to criticise the followed approach and to suggest methodologies of assessment of the Roadmaps, and to derive strategic decision for the advancement of Space Exploration in Europe. After a review of Technology Areas, Missions/Programmes and related building blocks (architectures) and operational capabilities, technology applicability analyses are presented. The aim is to identify if a specific technology is required, applicable or potentially a demonstrator in the building blocks of the proposed mission concepts. In this way, for each technology it is possible to outline one or more specific plans to increase TRL up to the required level. In practice, this translates into two possible solutions: on the one hand, approved mission concepts will be complemented with the required technologies if the latter can be considered as applicable or demo; on the other, if they are neither applicable nor demo, new missions, i.e. technology demonstrators based on multidisciplinary grouping of key technologies, shall be evaluated, so as to proceed through incremental steps. Finally, techniques to determine priorities in technology procurement are identified, and methodologies to rank the required technologies are proposed. In addition, a tool that estimates the percentage of technologies required for the final destination that are implementable in each intermediate destination of the incremental approach is presented.
NASA Technical Reports Server (NTRS)
Crouch, Roger
2004-01-01
Viewgraphs on NASA's transition to its vision for space exploration is presented. The topics include: 1) Strategic Directives Guiding the Human Support Technology Program; 2) Progressive Capabilities; 3) A Journey to Inspire, Innovate, and Discover; 4) Risk Mitigation Status Technology Readiness Level (TRL) and Countermeasures Readiness Level (CRL); 5) Biological And Physical Research Enterprise Aligning With The Vision For U.S. Space Exploration; 6) Critical Path Roadmap Reference Missions; 7) Rating Risks; 8) Current Critical Path Roadmap (Draft) Rating Risks: Human Health; 9) Current Critical Path Roadmap (Draft) Rating Risks: System Performance/Efficiency; 10) Biological And Physical Research Enterprise Efforts to Align With Vision For U.S. Space Exploration; 11) Aligning with the Vision: Exploration Research Areas of Emphasis; 12) Code U Efforts To Align With The Vision For U.S. Space Exploration; 13) Types of Critical Path Roadmap Risks; and 14) ISS Human Support Systems Research, Development, and Demonstration. A summary discussing the vision for U.S. space exploration is also provided.
NASA Technology Area 07: Human Exploration Destination Systems Roadmap
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.
2011-01-01
This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth objects (NEOs), which > 95% are asteroidal bodies, Phobos, Deimos, Mars, and beyond. The HEDS technology roadmap will strategically guide NASA and other U.S. Government agency technology investments that will result in capabilities enabling human exploration missions to diverse destinations generating high returns on investments.
NASA Technical Reports Server (NTRS)
Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert
2011-01-01
At present, NASA has considered a number of future human space exploration mission concepts . Yet, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents a roadmap for development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed by NASA subject matter experts. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capabilities needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology investments for longer duration missions The final product of this paper is an agreed-to ECLSS roadmap detailing ground and flight testing to support the three mission scenarios previously mentioned. This information will also be used to develop the integrated NASA budget submit in January 2012.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.; Carrasquillo, Robyn L.; Metcalf, Jordan; Peterson, Laurie
2012-01-01
NASA is considering a number of future human space exploration mission concepts. Although detailed requirements and vehicle architectures remain mostly undefined, near-term technology investment decisions need to be guided by the anticipated capabilities needed to enable or enhance the mission concepts. This paper describes a roadmap that NASA has formulated to guide the development of Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) and enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro gravity mission; 2) a long duration transit microgravity mission; and 3) a long duration surface exploration mission. To organize the effort, ECLSS was categorized into three major functional groups (atmosphere, water, and solid waste management) with each broken down into sub-functions. The ability of existing, flight-proven state-of-the-art (SOA) technologies to meet the functional needs of each of the three mission types was then assessed. When SOA capabilities fell short of meeting the needs, those "gaps" were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The resulting list of enabling and enhancing capability gaps can be used to guide future ECLSS development. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies needed to enable and enhance exploration may be developed in a manner that synergistically benefits the ISS operational capability, supports Multi-Purpose Crew Vehicle (MPCV) development, and sustains long-term technology investments for longer duration missions. This paper summarizes NASA s ECLSS capability roadmap development process, findings, and recommendation
EV Charging Infrastructure Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, Donald; Garetson, Thomas; Francfort, Jim
2016-08-01
As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumesmore » that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge« less
Runaas, Lyndsey; Hanauer, David; Maher, Molly; Bischoff, Evan; Fauer, Alex; Hoang, Tiffany; Munaco, Anna; Sankaran, Roshun; Gupta, Rahael; Seyedsalehi, Sajjad; Cohn, Amy; An, Larry; Tewari, Muneesh; Choi, Sung Won
2017-05-01
Health information technology (HIT) has great potential for increasing patient engagement. Pediatric hematopoietic cell transplantation (HCT) is a setting ripe for using HIT but in which little research exists. "BMT Roadmap" is a web-based application that integrates patient-specific information and includes several domains: laboratory results, medications, clinical trial details, photos of the healthcare team, trajectory of transplant process, and discharge checklist. BMT Roadmap was provided to 10 caregivers of patients undergoing first-time HCT. Research assistants performed weekly qualitative interviews throughout the patient's hospitalization and at discharge and day 100 to assess the impact of BMT Roadmap. Rigorous thematic analysis revealed 5 recurrent themes: emotional impact of the HCT process itself; critical importance of communication among patients, caregivers, and healthcare providers; ways in which BMT Roadmap was helpful during inpatient setting; suggestions for improving BMT Roadmap; and other strategies for organization and management of complex healthcare needs that could be incorporated into BMT Roadmap. Caregivers found the tool useful and easy to use, leading them to want even greater access to information. BMT Roadmap was feasible, with no disruption to inpatient care. Although this initial study is limited by the small sample size and single-institution experience, these initial findings are encouraging and support further investigation. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
A Suggested Approach for Producing VAMS Air Transportation System Technology Roadmaps
NASA Technical Reports Server (NTRS)
Weathers, Del
2002-01-01
This viewgraph presentation provides an overview on the use of technology 'roadmaps' in order to facilitate the research development of VAMS (Virtual Airspace Modeling and Simulation). These roadmaps are to be produced by each concept team, updated annually, discussed at the technical interchange meetings (TIMs), shared among all VAMS participants, and made available electronically. These concept-specific technology roadmaps will be subsequently blended into an integrated catalog of roadmaps, technical discussions, and research recommendations. A historical example of ATM (Air Traffic Management) research and technology from 1940 to 1999 as shown in a series of 'roadmaps' is also included.
The technology roadmap for plant/crop-based renewable resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, J.
1999-02-22
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1999-02-01
The long-term well-being of the nation and maintenance of a sustainable leadership position in agriculture, forestry, and manufacturing, clearly depend on current and near-term support of multidisciplinary research for the development of a reliable renewable resource base. This document sets a roadmap and priorities for that research. America needs leadership that will continue to recognize, support, and move rapidly to meet the need to expand the use of sustainable renewable resources. This roadmap has highlighted potential ways for progress and has identified goals in specific components of the system. Achieving success with these goals will provide the opportunity to hitmore » the vision target of a fivefold increase in renewable resource use by 2020.« less
River Protection Project Technology and Innovation Roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, D. S.; Wooley, T. A.; Kelly, S. E.
The Technology and Innovation Roadmap is a planning tool for WRPS management, DOE ORP, DOE EM, and others to understand the risks and technology gaps associated with the RPP mission. The roadmap identifies and prioritizes technical areas that require technology solutions and underscores where timely and appropriate technology development can have the greatest impact to reduce those risks and uncertainties. The roadmap also serves as a tool for determining allocation of resources.
Patterning roadmap: 2017 prospects
NASA Astrophysics Data System (ADS)
Neisser, Mark
2017-06-01
Road mapping of semiconductor chips has been underway for over 20 years, first with the International Technology Roadmap for Semiconductors (ITRS) roadmap and now with the International Roadmap for Devices and Systems (IRDS) roadmap. The original roadmap was mostly driven bottom up and was developed to ensure that the large numbers of semiconductor producers and suppliers had good information to base their research and development on. The current roadmap is generated more top-down, where the customers of semiconductor chips anticipate what will be needed in the future and the roadmap projects what will be needed to fulfill that demand. The More Moore section of the roadmap projects that advanced logic will drive higher-resolution patterning, rather than memory chips. Potential solutions for patterning future logic nodes can be derived as extensions of `next-generation' patterning technologies currently under development. Advanced patterning has made great progress, and two `next-generation' patterning technologies, EUV and nanoimprint lithography, have potential to be in production as early as 2018. The potential adoption of two different next-generation patterning technologies suggests that patterning technology is becoming more specialized. This is good for the industry in that it lowers overall costs, but may lead to slower progress in extending any one patterning technology in the future.
NASA Capability Roadmaps Executive Summary
NASA Technical Reports Server (NTRS)
Willcoxon, Rita; Thronson, Harley; Varsi, Guilio; Mueller, Robert; Regenie, Victoria; Inman, Tom; Crooke, Julie; Coulter, Dan
2005-01-01
This document is the result of eight months of hard work and dedication from NASA, industry, other government agencies, and academic experts from across the nation. It provides a summary of the capabilities necessary to execute the Vision for Space Exploration and the key architecture decisions that drive the direction for those capabilities. This report is being provided to the Exploration Systems Architecture Study (ESAS) team for consideration in development of an architecture approach and investment strategy to support NASA future mission, programs and budget requests. In addition, it will be an excellent reference for NASA's strategic planning. A more detailed set of roadmaps at the technology and sub-capability levels are available on CD. These detailed products include key driving assumptions, capability maturation assessments, and technology and capability development roadmaps.
Environmental Control and Life Support (ECLS) Integrated Roadmap Development
NASA Technical Reports Server (NTRS)
Metcalf, Jordan L.; Carrasquillo, Robyn; Bagdigian, Bob; Peterson, Laurie
2011-01-01
This white paper documents a roadmap for development of Environmental Control and Life Support (ECLS) Systems (ECLSS) capabilities required to enable beyond-Low Earth Orbit (LEO) Exploration missions. In many cases, the execution of this Exploration-based roadmap will directly benefit International Space Station (ISS) operational capability by resolving known issues and/or improving overall system reliability. In addition, many of the resulting products will be applicable across multiple Exploration elements such as Multi-Purpose Crew Vehicle (MPCV), Multi-Mission Space Exploration Vehicle (MMSEV), Deep Space Habitat (DSH), and Landers. Within the ECLS community, this white paper will be a unifying tool that will improve coordination of resources, common hardware, and technologies. It will help to align efforts to focus on the highest priority needs that will produce life support systems for future human exploration missions that will simply run in the background, requiring minimal crew interaction.
NASA Technical Reports Server (NTRS)
Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert
2012-01-01
Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs will, in many cases, directly benefit the ISS operational capability, benefit the Multi-Purpose Crew Vehicle (MPCV), and guide long-term technology investments for longer duration missions.
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turteltaub, K W; Hartman-Siantar, C; Easterly, C
2005-10-03
A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus ofmore » gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology today, promising emerging technologies and references for further reading.« less
Space Assembly of Large Structural System Architectures (SALSSA)
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Watson, Judith J.
2016-01-01
Developing a robust capability for Space Assembly of Large Spacecraft Structural System Architectures (SALSSA) has the potential to drastically increase the capabilities and performance of future space missions and spacecraft while significantly reducing their cost. Currently, NASA architecture studies and space science decadal surveys identify new missions that would benefit from SALSSA capabilities, and the technologies that support SALSSA are interspersed throughout the fourteen NASA Technology Roadmaps. However, a major impediment to the strategic development of cross-cutting SALSSA technologies is the lack of an integrated and comprehensive compilation of the necessary information. This paper summarizes the results of a small study that used an integrated approach to formulate a SALSSA roadmap and associated plan for developing key SALSSA technologies.
NASA Technical Reports Server (NTRS)
Skelly, Darin M.
2005-01-01
Viewgraphs on the National Research Council's diaglog to assess progress on NASA's transformational spaceport and range technologies capability roadmap development is presented. The topics include: 1) Agency Goals and Objectives; 2) Strategic Planning Transformation; 3) Advanced Planning Organizational Roles; 4) Public Involvement in Strategic Planning; 5) Strategic Roadmaps; 6) Strategic Roadmaps Schedule; 7) Capability Roadmaps; 8) Capability Charter; 9) Process for Team Selection; 10) Capability Roadmap Development Schedule Overview; 11) Purpose of NRC Review; 12) Technology Readiness Levels; 13) Capability Readiness Levels; 14) Crosswalk Matrix Trans Spaceport & Range; 15) Example linkage to other roadmaps; 16) Capability Readiness Levels Defined; and 17) Crosswalk Matrix Ratings Work In-progress.
Book of Knowledge (BOK) for NASA Electronic Packaging Roadmap
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2015-01-01
The objective of this document is to update the NASA roadmap on packaging technologies (initially released in 2007) and to present the current trends toward further reducing size and increasing functionality. Due to the breadth of work being performed in the area of microelectronics packaging, this report presents only a number of key packaging technologies detailed in three industry roadmaps for conventional microelectronics and a more recently introduced roadmap for organic and printed electronics applications. The topics for each category were down-selected by reviewing the 2012 reports of the International Technology Roadmap for Semiconductor (ITRS), the 2013 roadmap reports of the International Electronics Manufacturing Initiative (iNEMI), the 2013 roadmap of association connecting electronics industry (IPC), the Organic Printed Electronics Association (OE-A). The report also summarizes the results of numerous articles and websites specifically discussing the trends in microelectronics packaging technologies.
Flight Avionics Hardware Roadmap
NASA Technical Reports Server (NTRS)
Hodson, Robert; McCabe, Mary; Paulick, Paul; Ruffner, Tim; Some, Rafi; Chen, Yuan; Vitalpur, Sharada; Hughes, Mark; Ling, Kuok; Redifer, Matt;
2013-01-01
As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces.
An Interim Report on NASA's Draft Space Technology Roadmaps
NASA Technical Reports Server (NTRS)
2011-01-01
NASA has developed a set of 14 draft roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist (OCT). Each of these roadmaps focuses on a particular technology area (TA). The roadmaps are intended to foster the development of advanced technologies and concepts that address NASA's needs and contribute to other aerospace and national needs. OCT requested that the National Research Council conduct a study to review the draft roadmaps, gather and assess relevant community input, and make recommendations and suggest priorities to inform NASA's decisions as it finalizes its roadmaps. The statement of task states that "based on the results of the community input and its own deliberations, the steering committee will prepare a brief interim report that addresses high-level issues associated with the roadmaps, such as the advisability of modifying the number or technical focus of the draft NASA roadmaps." This interim report, which does not include formal recommendations, addresses that one element of the study charge. NASA requested this interim report so that it would have the opportunity to make an early start in modifying the draft roadmaps based on feedback from the panels and steering committee. The final report will address all other tasks in the statement of task. In particular, the final report will include a prioritization of technologies, will describe in detail the prioritization process and criteria, and will include specific recommendations on a variety of topics, including many of the topics mentioned in this interim report. In developing both this interim report and the final report to come, the steering committee draws on the work of six study panels organized by technical area, loosely following the organization of the 14 roadmaps, as follows: A Panel 1: Propulsion and Power TA01 Launch Propulsion Systems TA02 In-Space Propulsion Technologies TA03 Space Power and Energy Storage Systems TA13 Ground and Launch Systems Processing B Panel 2: Robotics, Communications, and Navigation TA04 Robotics, TeleRobotics, and Autonomous Systems TA05 Communication and Navigation Systems C Panel 3: Instruments and Computing TA08 Science Instruments, Observatories, and Sensor Systems TA11 Modeling, Simulation, Information Technology, and Data Processing D Panel 4: Human Health and Surface Exploration TA06 Human Health, Life Support, and Habitation Systems TA07 Human Exploration Destination Systems E Panel 5: Materials Panel TA10 Nanotechnology TA12 Materials, Structures, Mechanical Systems, and Manufacturing TA14 Thermal Management Systems F Panel 6: Entry, Descent, and Landing Panel TA09 Entry, Descent, and Landing Systems In addition to drawing on the expertise represented on the steering committee and panels, the committee obtained input from each of 14 public workshops held on each of the 14 roadmaps. At these 1-day workshops, invited speakers, guests, and members of the public engaged in discussions on the different technology areas and their value to NASA. Broad community input was also solicited from a public website, where more than 240 public comments were received on the draft roadmaps in response to application of criteria (such as benefit, risk and reasonableness, and alignment with NASA and national goals) that the steering committee established. This interim report reflects the results of deliberations by the steering committee in light of these public inputs as well as additional inputs from the six panels. The steering committee's final report will be completed early in 2012. That report will prioritize the technologies that span the entire scope of the 14 roadmaps and provide additional guidance on crosscutting themes and other relevant topics.
Development of the INEEL Site Wide Vadose Zone Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonk, Alan Keith
2001-09-01
The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that themore » long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.« less
NASA Technical Reports Server (NTRS)
Sawin, Charles F.
1999-01-01
The product of the critical path roadmap project is an integrated strategy for mitigating the risks associated with human exploration class missions. It is an evolving process that will assure the ability to communicate the integrated critical path roadmap. Unlike previous reports, this one will not sit on a shelf - it has the full support of the JSC Space and Life Sciences Directorate (SA) and is already being used as a decision making tool (e.g., budget and investigation planning for Shuttle and Space Station mission). Utility of this product depends on many efforts, namely: providing the required information (completed risk data sheets, critical question information, technology data). It is essential to communicate the results of the critical path roadmap to the scientific community - this meeting is a good opportunity to do so. The web site envisioned for the critical path roadmap will provide the capability to communicate to a broader community and to track and update the system routinely.
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2009-01-01
The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.
Astrium Technological Roadmaps for the Next Generation of Launchers Challenges
NASA Astrophysics Data System (ADS)
Larnac, Guy
2014-06-01
Main requirement on Ariane 6 are robustness, overall ownership cost and environmental impacts. To be able to meet these requirements it's mandatory to modify our usual way of working and to think the development and qualification of technologies differently. Airbus Defence and Space in the domain of materials, technologies and structures proposes a vision which address these points declined at different level:- Selection of key metallic and composite technologies to reduce drastically the cost of manufacturing,- Implementation of robust and economical way of assembly, promoting adhesive bonding and innovative technologies- Introducing virtual testing approach coupled with advanced methods and process simulation- Introduction of in-line monitoring to reduce cost of control- Implementation of the design for environment methodology with life cycle analysis to support the choice of technologies and materials- Development of EADS common materials to get benefice of aeronautic supply chain and communalitiesTo be efficient it seems evident and mandatory to develop all these approaches in an integrated and coordinated way. Advanced technologies and methodologies are supported by a strong network of collaboration enabling the integration of upstream ideas and concepts. This network is not only focused on low TRL level. Within EADS divisions intensive collaboration is deployed in order to get synergies. On the other side it's also mandatory for reliability and obsolescence issues to take care and master the supply chain.Additive layer manufacturing and thermoplastic based composite are directly concerned by this problematic. We present how, in the domain of materials and structures, aeronautic materials are considered first and how the mechanism of common qualification shared within EADS is now developed.This vision is being implemented within Airbus Defence and Space, described and reported through roadmaps. These roadmaps are the core of Airbus defence and Space strategies for the incoming years.
The 2017 Plasma Roadmap: Low temperature plasma science and technology
NASA Astrophysics Data System (ADS)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; Bruggeman, P. J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J. G.; Favia, P.; Graves, D. B.; Hamaguchi, S.; Hieftje, G.; Hori, M.; Kaganovich, I. D.; Kortshagen, U.; Kushner, M. J.; Mason, N. J.; Mazouffre, S.; Mededovic Thagard, S.; Metelmann, H.-R.; Mizuno, A.; Moreau, E.; Murphy, A. B.; Niemira, B. A.; Oehrlein, G. S.; Petrovic, Z. Lj; Pitchford, L. C.; Pu, Y.-K.; Rauf, S.; Sakai, O.; Samukawa, S.; Starikovskaia, S.; Tennyson, J.; Terashima, K.; Turner, M. M.; van de Sanden, M. C. M.; Vardelle, A.
2017-08-01
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.
NASA's Launch Propulsion Systems Technology Roadmap
NASA Technical Reports Server (NTRS)
McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.
2012-01-01
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.
TA-13: Ground and Launch Systems, 2015 NASA Technology Roadmaps
NASA Technical Reports Server (NTRS)
Fox, Jack J.
2015-01-01
This presentation is a summary of new content contained in the 2015 update of Technology Area-13, Ground and Launch Systems technology roadmap beyond the content contained in the 2010 version. Also included are brief assessments of benefits, alignments, challenges, technical risk and reasonableness, sequencing and timing, and time and effort to achieve goals. This presentation is part of overall presentations of new content only for the 2015 update of the 15 NASA Technology Roadmaps that will be conducted in a public forum managed by the National Research Council on September 28-29, 2015. The 15 roadmaps have already been publically released via the STI process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stukel, Laura; Hoen, Ben; Adomatis, Sandra
Capturing the Sun: A Roadmap for Navigating Data-Access Challenges and Auto-Populating Solar Home Sales Listings supports a vision of solar photovoltaic (PV) advocates and real estate advocates evolving together to make information about solar homes more accessible to home buyers and sellers and to simplify the process when these homes are resold. The Roadmap is based on a concept in the real estate industry known as automatic population of fields. Auto-population (also called auto-pop in the industry) is the technology that allows data aggregated by an outside industry to be matched automatically with home sale listings in a multiple listingmore » service (MLS).« less
The OPTICON technology roadmap for optical and infrared astronomy
NASA Astrophysics Data System (ADS)
Cunningham, Colin; Melotte, David; Molster, Frank
2010-07-01
The Key Technology Network (KTN) within the OPTICON programme has been developing a roadmap for the technology needed to meet the challenges of optical and infrared astronomy over the next few years, with particular emphasis on the requirements of Extremely Large Telescopes. The process and methodology so far will be described, along with the most recent roadmap. The roadmap shows the expected progression of ground-based astronomy facilities and the technological developments which will be required to realise these new facilities. The roadmap highlights the key stages in the development of these technologies. In some areas, such as conventional optics, gradual developments in areas such as light-weighting of optics will slowly be adopted into future instruments. In other areas, such as large area IR detectors, more rapid progress can be expected as new processing techniques allow larger and faster arrays. Finally, other areas such as integrated photonics have the potential to revolutionise astronomical instrumentation. Future plans are outlined, in particular our intention to look at longer term development and disruptive technologies.
ILEWG technology roadmap for Moon exploration
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
2008-04-01
We discuss the charter and activities of the International Lunar Exploration Working Group (ILEWG), and give an update from the related ILEWG task groups. We discuss the different rationale and technology roadmap for Moon exploration, as debated in previous ILEWG conferences. The Technology rationale includes: 1) The advancement of instrumentation: 2) Technologies in robotic and human exploration 3) Moon-Mars Exploration can inspire solutions to global Earth sustained development. We finally discuss a possible roadmap for development of technologies necessary for Moon and Mars exploration.
NASA Technical Reports Server (NTRS)
Inman, Thomas
2005-01-01
General Background and Introduction of Capability Roadmaps: Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Technology and Capability Readiness Levels. Relationships Between Roadmaps. Purpose of NRC Review. Capability Roadmap Development (Team Progress to Date).
The 2017 Plasma Roadmap: Low temperature plasma science and technology
USDA-ARS?s Scientific Manuscript database
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic upd...
The 2017 Plasma Roadmap: Low temperature plasma science and technology
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.; ...
2017-07-14
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
The 2017 Plasma Roadmap: Low temperature plasma science and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, I.; Baalrud, S. D.; Bogaerts, A.
Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The currentmore » state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.« less
Cryogenic Fluid Management Technology Development Roadmaps
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Johnson, W. L.
2017-01-01
Advancement in Cryogenic Fluid Management (CFM) Technologies is essential for achieving NASA's future long duration missions. Propulsion systems utilizing cryogens are necessary to achieve mission success. Current State Of the Art (SOA) CFM technologies enable cryogenic propellants to be stored for several hours. However, some envisioned mission architectures require cryogens to be stored for two years or longer. The fundamental roles of CFM technologies are long term storage of cryogens, propellant tank pressure control and propellant delivery. In the presence of heat, the cryogens will "boil-off" over time resulting in excessive pressure buildup, off-nominal propellant conditions, and propellant loss. To achieve long term storage and tank pressure control, the CFM elements will intercept and/or remove any heat from the propulsion system. All functions are required to perform both with and without the presence of a gravitational field. Which CFM technologies are required is a function of the cryogens used, mission architecture, vehicle design and propellant tank size. To enable NASA's crewed mission to the Martian surface, a total of seventeen CFM technologies have been identified to support an In-Space Stage and a Lander/Ascent Vehicle. Recognizing that FY2020 includes a Decision Point regarding the In-Space Stage Architecture, a set of CFM Technology Development Roadmaps have been created identifying the current Technology Readiness Level (TRL) of each element, current technology "gaps", and existing technology development efforts. The roadmaps include a methodical approach and schedule to achieve a flight demonstration in FY2023, hence maturing CFM technologies to TRL 7 for infusion into the In-Space Stage Preliminary Design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Jarrod; Barr, Jonathan L.; Burtner, Edwin R.
A key challenge for research roadmapping in the crisis response and management domain is articulation of a shared vision that describes what the future can and should include. Visioning allows for far-reaching stakeholder engagement that can properly align research with stakeholders needs. Engagement includes feedback from researchers, policy makers, general public, and end-users on technical and non-technical factors. This work articulates a process and framework for the construction and maintenance of a stakeholder-centric research vision and roadmap in the emergency management domain. This novel roadmapping process integrates three pieces: analysis of the research and technology landscape, visioning, and stakeholder engagement.more » Our structured engagement process elicits research foci for the roadmap based on relevance to stakeholder mission, identifies collaborators, and builds consensus around the roadmap priorities. We find that the vision process and vision storyboard helps SMEs conceptualize and discuss a technology's strengths, weaknesses, and alignment with needs« less
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Forest Products Industry Technology Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
2010-04-01
This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.
Modeling and Simulation Roadmap to Enhance Electrical Energy Security of U.S. Naval Bases
2012-03-01
evaluating power system architectures and technologies and, therefore, can become a valuable tool for the implementation of the described plan for Navy...a well validated and consistent process for evaluating power system architectures and technologies and, therefore, can be a valuable tool for the...process for evaluating power system architectures and component technologies is needed to support the development and implementation of these new
Capabilities Roadmap Briefings to the National Research Council
NASA Technical Reports Server (NTRS)
2005-01-01
High energy power and propulsion capability roadmap - general background and introduction. Advanced telescopes and observatories and scientific instruments and sensors capability roadmaps - general background and introduction. Space communications capability roadmap interim review. Robotic access to planetary surface capability roadmap. Human health and support systems capability roadmap progress review.
NASA Technical Reports Server (NTRS)
McQuillen, John; Rame, Enrique; Kassemi, Mohammad; Singh, Bhim; Motil, Brian
2003-01-01
The Two-phase Flow, Fluid Stability and Dynamics Workshop was held on May 15, 2003 in Cleveland, Ohio to define a coherent scientific research plan and roadmap that addresses the multiphase fluid problems associated with NASA s technology development program. The workshop participants, from academia, industry and government, prioritized various multiphase issues and generated a research plan and roadmap to resolve them. This report presents a prioritization of the various multiphase flow and fluid stability phenomena related primarily to power, propulsion, fluid and thermal management and advanced life support; and a plan to address these issues in a logical and timely fashion using analysis, ground-based and space-flight experiments.
DOT National Transportation Integrated Search
2010-12-01
In support of the Federal Transit Administration (FTA) Electric Drive Strategic Plan (EDSP), this report assesses state-of-art advances in lithium-ion batteries, ultracapacitors, and related power management and control technologies for the rechargea...
5.0 Aerodynamic and Propulsive Decelerator Systems
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Powell, Richard; Masciarelli, James; Brown, Glenn; Witkowski, Al; Guernsey, Carl
2005-01-01
Contents include the following: Introduction. Capability Breakdown Structure. Decelerator Functions. Candidate Solutions. Performance and Technology. Capability State-of-the-Art. Performance Needs. Candidate Configurations. Possible Technology Roadmaps. Capability Roadmaps.
Technology Roadmaps for Compound Semiconductors
Bennett, Herbert S.
2000-01-01
The roles cited for compound semiconductors in public versions of existing technology roadmaps from the National Electronics Manufacturing Initiative, Inc., Optoelectronics Industry Development Association, Microelectronics Advanced Research Initiative on Optoelectronic Interconnects, and Optoelectronics Industry and Technology Development Association (OITDA) are discussed and compared within the context of trends in the Si CMOS industry. In particular, the extent to which these technology roadmaps treat compound semiconductors at the materials processing and device levels will be presented for specific applications. For example, OITDA’s Optical Communications Technology Roadmap directly connects the information demand of delivering 100 Mbit/s to the home to the requirement of producing 200 GHz heterojunction bipolar transistors with 30 nm bases and InP high electron mobility transistors with 100 nm gates. Some general actions for progress towards the proposed International Technology Roadmap for Compound Semiconductors (ITRCS) and methods for determining the value of an ITRCS will be suggested. But, in the final analysis, the value added by an ITRCS will depend on how industry leaders respond. The technical challenges and economic opportunities of delivering high quality digital video to consumers provide concrete examples of where the above actions and methods could be applied. PMID:27551615
Challenges of image placement and overlay at the 90-nm and 65-nm nodes
NASA Astrophysics Data System (ADS)
Trybula, Walter J.
2003-05-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor supplier community and the manufacturers. INTERNATIONAL SE-MATECH has been leading and supporting efforts to investigate the impact of the tech-nology introduction. This paper examines the issue of manufacturing tolerances available for image placement on adjacent critical levels (overlay) at the 90nm and 65nm technol-ogy nodes. The allowable values from the 2001 release of the ITRS Roadmap are 32nm for the 90nm node, and 23nm for the 65nm node. Even the 130nm node has overlay requirements of only 46nm. Employing tolerances that can be predicted, the impact of existing production/processing tolerance accumulation can provide an indication of the challenges facing the manufacturer in the production of 90nm and 65nm Node devices.
NASA Technology Area 1: Launch Propulsion Systems
NASA Technical Reports Server (NTRS)
McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.
2011-01-01
This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.
NASA Technical Reports Server (NTRS)
Van Dalsem, William; Krishnakumar, Kalmanje Srinivas
2016-01-01
This is a powerpoint presentation that highlights autonomy across the 15 NASA technology roadmaps, including specific examples of projects (past and present) at NASA Ames Research Center. The NASA technology roadmaps are located here: http:www.nasa.govofficesocthomeroadmapsindex.html
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Auslender, Aaron H.; Guy, R. Wayne; McClinton, Charles R.; Welch, Sharon S.
2002-01-01
Third-generation reusable launch vehicle (RLV) systems are envisioned that utilize airbreathing and combined-cycle propulsion to take advantage of potential performance benefits over conventional rocket propulsion and address goals of reducing the cost and enhancing the safety of systems to reach earth orbit. The dual-mode scramjet (DMSJ) forms the core of combined-cycle or combination-cycle propulsion systems for single-stage-to-orbit (SSTO) vehicles and provides most of the orbital ascent energy. These concepts are also relevant to two-stage-to-orbit (TSTO) systems with an airbreathing first or second stage. Foundation technology investments in scramjet propulsion are driven by the goal to develop efficient Mach 3-15 concepts with sufficient performance and operability to meet operational system goals. A brief historical review of NASA scramjet development is presented along with a summary of current technology efforts and a proposed roadmap. The technology addresses hydrogen-fueled combustor development, hypervelocity scramjets, multi-speed flowpath performance and operability, propulsion-airframe integration, and analysis and diagnostic tools.
An ESA roadmap for geobiology in space exploration
NASA Astrophysics Data System (ADS)
Cousins, Claire R.; Cockell, Charles S.
2016-01-01
Geobiology, and in particular mineral-microbe interactions, has a significant role to play in current and future space exploration. This includes the search for biosignatures in extraterrestrial environments, and the human exploration of space. Microorganisms can be exploited to advance such exploration, such as through biomining, maintenance of life-support systems, and testing of life-detection instrumentation. In view of these potential applications, a European Space Agency (ESA) Topical Team "Geobiology in Space Exploration" was developed to explore these applications, and identify research avenues to be investigated to support this endeavour. Through community workshops, a roadmap was produced, with which to define future research directions via a set of 15 recommendations spanning three key areas: Science, Technology, and Community. These roadmap recommendations identify the need for research into: (1) new terrestrial space-analogue environments; (2) community level microbial-mineral interactions; (3) response of biofilms to the space environment; (4) enzymatic and biochemical mineral interaction; (5) technical refinement of instrumentation for space-based microbiology experiments, including precursor flight tests; (6) integration of existing ground-based planetary simulation facilities; (7) integration of fieldsite biogeography with laboratory- and field-based research; (8) modification of existing planetary instruments for new geobiological investigations; (9) development of in situ sample preparation techniques; (10) miniaturisation of existing analytical methods, such as DNA sequencing technology; (11) new sensor technology to analyse chemical interaction in small volume samples; (12) development of reusable Lunar and Near Earth Object experimental platforms; (13) utility of Earth-based research to enable the realistic pursuit of extraterrestrial biosignatures; (14) terrestrial benefits and technological spin-off from existing and future space-based geobiology investigations; and (15) new communication avenues between space agencies and terrestrial research organisations to enable this impact to be developed.
NASA capabilities roadmap: advanced telescopes and observatories
NASA Technical Reports Server (NTRS)
Feinberg, Lee D.
2005-01-01
The NASA Advanced Telescopes and Observatories (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories collecting all electromagnetic bands, ranging from x-rays to millimeter waves, and including gravity-waves. It has derived capability priorities from current and developing Space Missions Directorate (SMD) strategic roadmaps and, where appropriate, has ensured their consistency with other NASA Strategic and Capability Roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Cyber S&T Priority Steering Council Research Roadmap
2011-11-08
Priority Steering Council Research Roadmap for the National Defense Industrial Association Disruptive Technologies Conference 8 November 2011...AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Disruptive Technologies Conference
Clean Energy Manufacturing Initiative Solid-State Lighting
Thomas, Sunil; Edmond, John; Krames, Michael; Rama
2018-05-30
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.
Review of the Semiconductor Industry and Technology Roadmap.
ERIC Educational Resources Information Center
Kumar, Sameer; Krenner, Nicole
2002-01-01
Points out that the semiconductor industry is extremely competitive and requires ongoing technological advances to improve performance while reducing costs to remain competitive and how essential it is to gain an understanding of important facets of the industry. Provides an overview of the initial and current semiconductor technology roadmap that…
Roadmap for In-Space Propulsion Technology
NASA Technical Reports Server (NTRS)
Meyer, Michael; Johnson, Les; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2012-01-01
NASA has created a roadmap for the development of advanced in-space propulsion technologies for the NASA Office of the Chief Technologist (OCT). This roadmap was drafted by a team of subject matter experts from within the Agency and then independently evaluated, integrated and prioritized by a National Research Council (NRC) panel. The roadmap describes a portfolio of in-space propulsion technologies that could meet future space science and exploration needs, and shows their traceability to potential future missions. Mission applications range from small satellites and robotic deep space exploration to space stations and human missions to Mars. Development of technologies within the area of in-space propulsion will result in technical solutions with improvements in thrust, specific impulse (Isp), power, specific mass (or specific power), volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability, durability, and of course, cost. These types of improvements will yield decreased transit times, increased payload mass, safer spacecraft, and decreased costs. In some instances, development of technologies within this area will result in mission-enabling breakthroughs that will revolutionize space exploration. There is no single propulsion technology that will benefit all missions or mission types. The requirements for in-space propulsion vary widely according to their intended application. This paper provides an updated summary of the In-Space Propulsion Systems technology area roadmap incorporating the recommendations of the NRC.
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
The HESI-led RISK21 effort has developed a framework supporting the use of twenty first century technology in obtaining and using information for chemical risk assessment. This framework represents a problem formulation-based, exposure-driven, tiered data acquisition approach tha...
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
NASA Astrophysics Technology Needs
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2012-01-01
July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA?s technology programs to meet NASA?s strategic goals. Science Instruments, Observatories and Sensor Systems(SIOSS) roadmap addresses technology needs to achieve NASA?s highest priority objectives -- not only for the Science Mission Directorate (SMD), but for all of NASA.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Phil; Feinberg, Lee
2006-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Summary of NASA Advanced Telescope and Observatory Capability Roadmap
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Feinberg, Lee
2007-01-01
The NASA Advanced Telescope and Observatory (ATO) Capability Roadmap addresses technologies necessary for NASA to enable future space telescopes and observatories operating in all electromagnetic bands, from x-rays to millimeter waves, and including gravity-waves. It lists capability priorities derived from current and developing Space Missions Directorate (SMD) strategic roadmaps. Technology topics include optics; wavefront sensing and control and interferometry; distributed and advanced spacecraft systems; cryogenic and thermal control systems; large precision structure for observatories; and the infrastructure essential to future space telescopes and observatories.
Clean Energy Manufacturing Initiative Solid-State Lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Sunil; Edmond, John; Krames, Michael
2014-09-23
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less
Clean Energy Manufacturing Initiative Solid-State Lighting Video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Sunil; Edmond, John; Krames, Michael
2014-09-23
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reducemore » risk, improve quality, increase yields, and lower costs.« less
Clean Energy Manufacturing Initiative Solid-State Lighting Video
Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar
2018-01-16
The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.
Concentrating Solar Power Gen3 Demonstration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehos, Mark; Turchi, Craig; Vidal, Judith
Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE hasmore » supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.« less
Technology Needs to Support Future Mars Exploration
NASA Technical Reports Server (NTRS)
Nilsen, Erik N.; Baker, John; Lillard, Randolph P.
2013-01-01
The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.
A white paper: NASA virtual environment research, applications, and technology
NASA Technical Reports Server (NTRS)
Null, Cynthia H. (Editor); Jenkins, James P. (Editor)
1993-01-01
Research support for Virtual Environment technology development has been a part of NASA's human factors research program since 1985. Under the auspices of the Office of Aeronautics and Space Technology (OAST), initial funding was provided to the Aerospace Human Factors Research Division, Ames Research Center, which resulted in the origination of this technology. Since 1985, other Centers have begun using and developing this technology. At each research and space flight center, NASA missions have been major drivers of the technology. This White Paper was the joint effort of all the Centers which have been involved in the development of technology and its applications to their unique missions. Appendix A is the list of those who have worked to prepare the document, directed by Dr. Cynthia H. Null, Ames Research Center, and Dr. James P. Jenkins, NASA Headquarters. This White Paper describes the technology and its applications in NASA Centers (Chapters 1, 2 and 3), the potential roles it can take in NASA (Chapters 4 and 5), and a roadmap of the next 5 years (FY 1994-1998). The audience for this White Paper consists of managers, engineers, scientists and the general public with an interest in Virtual Environment technology. Those who read the paper will determine whether this roadmap, or others, are to be followed.
Automated Cooperative Trajectories
NASA Technical Reports Server (NTRS)
Hanson, Curt; Pahle, Joseph; Brown, Nelson
2015-01-01
This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.
NASA Technical Reports Server (NTRS)
Schneider, Walter F.; Gatens, Robyn L.; Anderson, Molly S.; Broyan, James L.; MaCatangay, Ariel V.; Shull, Sarah A.; Perry, Jay L.; Toomarian, Nikzad
2016-01-01
Over the last year, the National Aeronautics and Space Administration (NASA) has continued to refine the understanding and prioritization of technology gaps that must be closed in order to achieve Evolvable Mars Campaign objectives and near term objectives in the cislunar proving ground. These efforts are reflected in updates to the technical area roadmaps released by NASA in 2015 and have guided technology development and maturation tasks that have been sponsored by various programs. This paper provides an overview of the refined Environmental Control and Life Support (ECLS) strategic planning, as well as a synopsis of key technology and maturation project tasks that occurred in 2014 and early 2015 to support the strategic needs. Plans for the remainder of 2015 and subsequent years are also described.
The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025
NASA Astrophysics Data System (ADS)
Fellous, Jean-Louis
2016-07-01
The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international cooperation.
NASA Technical Reports Server (NTRS)
2003-01-01
Contents include the following: About the roadmap. Summary of key elements. Science objectives. Mission roadmap. Technology. Research and analysis. Education and public outreach. Appendix - Road map framework.
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
NASA Technical Reports Server (NTRS)
McNeal, Curtis I., Jr.; Anderson, William
1999-01-01
NASA's current focus on technology roadmaps as a tool for guiding investment decisions leads naturally to a discussion of NASA's roadmap for peroxide propulsion system development. NASA's new Second Generation Space Transportation System roadmap calls for an integrated Reusable Upper-Stage (RUS) engine technology demonstration in the FY03/FY04 time period. Preceding this integrated demonstration are several years of component developments and subsystem technology demonstrations. NASA and the Air Force took the first steps at developing focused upper stage technologies with the initiation of the Upper Stage Flight Experiment with Orbital Sciences in December 1997. A review of this program's peroxide propulsion development is a useful first step in establishing the peroxide propulsion pathway that could lead to a RUS demonstration in 2004.
Weiss, Brian A.; Vogl, Gregory; Helu, Moneer; Qiao, Guixiu; Pellegrino, Joan; Justiniano, Mauricio; Raghunathan, Anand
2017-01-01
The National Institute of Standards and Technology (NIST) hosted the Roadmapping Workshop – Measurement Science for Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) in Fall 2014 to discuss the needs and priorities of stakeholders in the PHM4SMS technology area. The workshop brought together over 70 members of the PHM community. The attendees included representatives from small, medium, and large manufacturers; technology developers and integrators; academic researchers; government organizations; trade associations; and standards bodies. The attendees discussed the current and anticipated measurement science challenges to advance PHM methods and techniques for smart manufacturing systems; the associated research and development needed to implement condition monitoring, diagnostic, and prognostic technologies within manufacturing environments; and the priorities to meet the needs of PHM in manufacturing. This paper will summarize the key findings of this workshop, and present some of the critical measurement science challenges and corresponding roadmaps, i.e., suggested courses of action, to advance PHM for manufacturing. Milestones and targeted capabilities will be presented for each roadmap across three areas: PHM Manufacturing Process Techniques; PHM Performance Assessment; and PHM Infrastructure – Hardware, Software, and Integration. An analysis of these roadmaps and crosscutting themes seen across the breakout sessions is also discussed. PMID:28664163
Magnetic Recording Media Technology for the Tb/in2 Era"
Bertero, Gerardo [Western Digital
2017-12-09
Magnetic recording has been the technology of choice of massive storage of information. The hard-disk drive industry has recently undergone a major technological transition from longitudinal magnetic recording (LMR) to perpendicular magnetic recording (PMR). However, convention perpendicular recording can only support a few new product generations before facing insurmountable physical limits. In order to support sustained recording areal density growth, new technological paradigms, such as energy-assisted recording and bit-patterined media recording are being contemplated and planned. In this talk, we will briefly discuss the LMR-to-PMR transition, the extendibility of current PMR recording, and the nature and merits of new enabling technologies. We will also discuss a technology roadmap toward recording densities approaching 10 Tv/in2, approximately 40 times higher than in current disk drives.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Sampson, Michael J.
2015-01-01
This presentation is a NASA Electronic Parts and Packaging (NEPP) Program: Roadmap for FY15 and Beyond. This roadmap provides a snapshot for current plans and collaborations on testing and evaluation of electronics as well as a discussion of the technology selection approach.
2008-06-01
PAGE INTENTIONALLY LEFT BLANK xv ACKNOWLEDGMENTS We would like to thank Mr. Clint Swett (Director, Technology Services Organization, DFAS- KC ) and...Major Jeffrey Thiry (Deputy Director, Technology Services Organization, DFAS- KC ) for their help and support. Their guidance proved invaluable in... Teo (1996) define alignment as the “coordination between the business and IS planning functions and activities”. Luftman, Papp and Brier (1999
Space Communications Capability Roadmap Interim Review
NASA Technical Reports Server (NTRS)
Spearing, Robert; Regan, Michael
2005-01-01
Contents include the following: Identify the need for a robust communications and navigation architecture for the success of exploration and science missions. Describe an approach for specifying architecture alternatives and analyzing them. Establish a top level architecture based on a network of networks. Identify key enabling technologies. Synthesize capability, architecture and technology into an initial capability roadmap.
The Idaho National Engineering & Environmental Lab (INEEL) was charged by DOE EM to develop a complex-wide science and technology roadmap for the characterization, modeling and simulation of the fate and transport of contamination in the vadose zone. Various types of hazardous, r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werling, Eric
This report presents the Building America Research-to-Market Plan (Plan), including the integrated Building America Technology-to-Market Roadmaps (Roadmaps) that will guide Building America’s research, development, and deployment (RD&D) activities over the coming years. The Plan and Roadmaps will be updated as necessary to adapt to research findings and evolving stakeholder needs, and they will reflect input from DOE and stakeholders.
Technology Interdependency Roadmaps for Space Operations
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1995-01-01
The requirements for Space Technology are outlined in terms of NASA Strategic Plan. The national emphasis on economic revitalization is described along with the environmental changes needed for the new direction. Space Technology Interdependency (STI) is elaborated in terms of its impact on national priority on science, education, and economy. Some suggested approaches to strengthening STI are outlined. Finally, examples of Technology Roadmaps for Space Operations area are included to illustrate the value of STI for national cohesiveness and economic revitalization.
Innovative Technologies for Global Space Exploration
NASA Technical Reports Server (NTRS)
Hay, Jason; Gresham, Elaine; Mullins, Carie; Graham, Rachael; Williams-Byrd; Reeves, John D.
2012-01-01
Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.
Research & Development Roadmap for Next-Generation Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Sutherland, Timothy; Foley, Kevin
2012-03-01
Appliances present an attractive opportunity for near-term energy savings in existing building, because they are less expensive and replaced more regularly than heating, ventilation, and air-conditioning (HVAC) systems or building envelope components. This roadmap targets high-priority research and development (R&D), demonstration and commercialization activities that could significantly reduce residential appliance energy consumption. The main objective of the roadmap is to seek activities that accelerate the commercialization of high-efficiency appliance technologies while maintaining the competitiveness of American industry. The roadmap identified and evaluated potential technical innovations, defined research needs, created preliminary research and development roadmaps, and obtained stakeholder feedback on themore » proposed initiatives.« less
Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less
Industry Study Report 1992-1993
1993-01-01
The July 1992 DoD Science and Technology ( S & r ) program advocates many of these technologies. We support the S &T technical objective roadmaps established...the rate of growth in R &D spending has decreased from an average of 17% per year in the early 1980’ s to 7% in the last half of the 1980’ss. 2-11 Our...Defense LTC Bill R . Moore, USA . Car Earl A. Richardson, USN LTC Raymond L. Rodon, USA Mr. Morris S . Solomon, Defense Mapping Agency Lt Col Robert M
NASA Technical Reports Server (NTRS)
Chiaramonte, Fran
2003-01-01
This viewgraph presentation discusses the status and goals for the NASA OBPR Physical Science Research Program. The following text was used to summarize the presentation. The OBPR Physical Sciences Research program has been comprehensively reviewed and endorsed by National Research Council. The value and need for the research have been re-affirmed. The research program has been prioritized and resource re-allocations have been carried out through an OBPR-wide process. An increasing emphasis on strategic, mission-oriented research is planned. The program will strive to maintain a balance between strategic and fundamental research. A feasible ISS flight research program fitting within the budgetary and ISS resource envelopes has been formulated for the near term (2003-2007). The current ISS research program will be significantly strengthened starting 2005 by using discipline dedicated research facility racks. A research re-planning effort has been initiated and will include active participation from the research community in the next few months. The research re-planning effort will poise PSR to increase ISS research utilization for a potential enhancement beyond ISS IP Core Complete. The Physical Sciences research program readily integrates the cross-disciplinary requirements of the NASA and OBPR strategic objectives. Each fundamental research thrust will develop a roadmap through technical workshops and Discipline Working Groups (DWGs). Most fundamental research thrusts will involve cross-disciplinary efforts. A Technology Roadmap will guide the Strategic Research for Exploration thrust. The Research Plan will integrate and coordinate fundamental Research Thrusts Roadmaps with the Technology Roadmap. The Technology Roadmap will be developed in coordination with other OBPR programs as well as other Enterprise (R,S,M,N). International Partners will contribute to the roadmaps and through research coordination. The research plan will be vetted with the discipline working groups, the BPRAC subcommittees, and with the BPRAC. Recommendations from NRC past and current committees will be implemented whenever appropriate.Proposed theme element content will be "missionized" around planned content and potential new projects (facilities, modules, initiatives) on approximately a five-year horizon, with the approval of PSRD management. Center/science working group teams will develop descriptions of "mission" objectives, value, and requirements. Purpose is to create a competitive environment for concept development and to stimulate community ownership/advocacy. Proposed theme elements reviewed and approved by PSRD management. Strawman roadmaps for themes developed. Program budget and technology requirements verified. Theme elements are prioritized with the input of advisory groups. Integration into program themes (questions) and required technology investments are defined by science and technology roadmaps. Review and assessment by OBPR management.
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.
The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2more » Brayton Power Systems along the path to nuclear reactor applications. Document Control Version Creation Date Revisions Created By Release Date 1.0 2/29/2016 Preliminary Draft Mendez, C. 3/2/2016 2.0 7/29/2016 Preliminaty/Partial Report -- updated Focus Area structure, added commercial path forward Mendez, C. 8/10/16 3.0 5/1/2018 Updated Roadmap supports timeline changes and inclusion of grid qualification goals Mendez, C. 6/6/18« less
NASA Astrophysics Data System (ADS)
Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.
2016-11-01
A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.
NASA Strategic Roadmap Committees Final Roadmaps. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
2005-01-01
Volume 1 contains NASA strategic roadmaps for the following Advanced Planning and Integration Office (APIO) committees: Earth Science and Applications from Space; Sun - Solar System Connection. Volume 2 contains NASA strategic roadmaps for the following APIO committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-like Planets; Universe Exploration, as well as membership rosters and charters for all APIO committees, including those above and the following: Exploration Transportation System; Nuclear Systems; Robotic and Human Lunar Exploration; Aeronautical Technologies; Space Shuttle; International Space Station; Education.
Sol-Terra - AN Operational Space Weather Forecasting Model Framework
NASA Astrophysics Data System (ADS)
Bisi, M. M.; Lawrence, G.; Pidgeon, A.; Reid, S.; Hapgood, M. A.; Bogdanova, Y.; Byrne, J.; Marsh, M. S.; Jackson, D.; Gibbs, M.
2015-12-01
The SOL-TERRA project is a collaboration between RHEA Tech, the Met Office, and RAL Space funded by the UK Space Agency. The goal of the SOL-TERRA project is to produce a Roadmap for a future coupled Sun-to-Earth operational space weather forecasting system covering domains from the Sun down to the magnetosphere-ionosphere-thermosphere and neutral atmosphere. The first stage of SOL-TERRA is underway and involves reviewing current models that could potentially contribute to such a system. Within a given domain, the various space weather models will be assessed how they could contribute to such a coupled system. This will be done both by reviewing peer reviewed papers, and via direct input from the model developers to provide further insight. Once the models have been reviewed then the optimal set of models for use in support of forecast-based SWE modelling will be selected, and a Roadmap for the implementation of an operational forecast-based SWE modelling framework will be prepared. The Roadmap will address the current modelling capability, knowledge gaps and further work required, and also the implementation and maintenance of the overall architecture and environment that the models will operate within. The SOL-TERRA project will engage with external stakeholders in order to ensure independently that the project remains on track to meet its original objectives. A group of key external stakeholders have been invited to provide their domain-specific expertise in reviewing the SOL-TERRA project at critical stages of Roadmap preparation; namely at the Mid-Term Review, and prior to submission of the Final Report. This stakeholder input will ensure that the SOL-TERRA Roadmap will be enhanced directly through the input of modellers and end-users. The overall goal of the SOL-TERRA project is to develop a Roadmap for an operational forecast-based SWE modelling framework with can be implemented within a larger subsequent activity. The SOL-TERRA project is supported within the UK Space Agency's National Space Technology Programme under contract number RP10G0348A03.
Promising roadmap alternatives for the SpaceLiner
NASA Astrophysics Data System (ADS)
Sippel, Martin
2010-06-01
The paper describes the vision and potential roadmap alternatives of an ultrafast intercontinental passenger transport based on a rocket powered two-stage reusable vehicle. An operational scenario and the latest technical lay-out of the configuration's preliminary design including flight performance are described. The question of how the revolutionary ultrafast transport can be realized is addressed by an assessment of the different technological and programmatic roadmap alternatives.
MSFC's Advanced Space Propulsion Formulation Task
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Gerrish, Harold P.; Robinson, Joel W.; Taylor, Terry L.
2012-01-01
In NASA s Fiscal Year 2012, a small project was undertaken to provide additional substance, depth, and activity knowledge to the technology areas identified in the In-Space Propulsion Systems Roadmap, Technology Area 02 (TA-02), as created under the auspices of the NASA Office of the Chief Technologist (OCT). This roadmap was divided into four basic groups: (1) Chemical Propulsion, (2) Non-chemical Propulsion, (3) Advanced (TRL<3) Propulsion Technologies, and (4) Supporting Technologies. The first two were grouped according to the governing physics. The third group captured technologies and physic concepts that are at a lower TRL level. The fourth group identified pertinent technical areas that are strongly coupled with these related areas which could allow significant improvements in performance. There were a total of 45 technologies identified in TA-02, and 25 of these were studied in this formulation task. The goal of this task was to provide OCT with a knowledge-base for decisionmaking on advanced space propulsion technologies and not waste money by unintentionally repeating past projects or funding the technologies with minor impacts. This formulation task developed the next level of detail for technologies described and provides context to OCT where investments should be made. The presentation will begin with the list of technologies from TA-02, how they were prioritized for this study, and details on what additional data was captured for the technologies studied. Following this, some samples of the documentation will be provided, followed by plans on how the data will be made accessible.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Vangen, Scott; Abel, Phil; Agui, Juan; Buffington, Jesse; Calle, Carlos; Mary, Natalie; Smith, Jonathan Drew; Straka, Sharon; Mugnuolo, Raffaele;
2016-01-01
The International Space Exploration Coordination Group (ISECG) formed two Gap Assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Global Exploration Roadmap (GER) Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion, with this paper addressing the former. The ISECG approved the recommended Gap Assessment teams, and tasked the TWG to formulate the new teams with subject matter experts (SMEs) from the participating agencies. The participating agencies for the Dust Mitigation Gap Assessment Team were ASI, CSA, ESA, JAXA, and NASA. The team was asked to identify and make a presentation on technology gaps related to the GER2 mission scenario (including cislunar and lunar mission themes and long-lead items for human exploration of Mars) at the international level. In addition the team was tasked to produce a gap assessment in the form of a summary report and presentation identifying those GER Critical Technology Needs, including opportunities for international coordination and cooperation in closing the identified gaps. Dust is still a principal limiting factor in returning to the lunar surface for missions of any extended duration. However, viable technology solutions have been identified, but need maturation to be available to support both lunar and Mars missions.
Global industry status report and roadmap for high performance displays
NASA Astrophysics Data System (ADS)
Bardsley, J. Norman; Pinnel, M. Robert
2003-09-01
A summary is provided of a comprehensive industry status report and roadmap available from www.usdc.org. Continued improvements in LCD technology are being driven by home entertainment applications, leading to better color and video response. Competing technologies, such as PDP and OLED and electronic paper must either exploit inherent advantages for such applications or focus on other market niches that are not being addressed well by mainline LCD technology. Flexible displays provide an opportunity for innovative technologies and manufacturing methods, but appear to bring no killer applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Curtis L.; Kreyling, Sean J.
The goal of this report is to provide insight into the information technology needs of law enforcement based on first hand observations as an embedded and active participant over the course of two plus years. This report is intended as a preliminary roadmap for technology and project investment that will benefit the entire law enforcement community nationwide. Some recommendations are immediate and have more of an engineering flavor, while others are longer term and will require research and development to solve.
Carrying Out and Developing the Glass Industry Vision and Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Greenman
2007-06-14
In support of its obligations under the above-mentioned project, the GMIC performed the following tasks: (1) Provided two-way communications liaison services between the U.S. glass industry and the D.O.E. to ensure the needs and concerns of each party are effectively communicated to the other. (2) Updated and modified on a continuing basis and in response to evolving conditions within the glass industry, the goals and priorities outlined in the Glass Industry Vision and the Glass Technology Roadmap. (3) Established relationships with a wide variety of government and non-governmental organizations with interests in further improving the levels of technology, productivity andmore » environmental responsibility of the glass industry. (4) Canvassed the glass industry on an ongoing basis to determine overall and specific sector needs for technological development. (5) Fostered direct contacts between member companies and national laboratories to facilitate the development of individual company technology development. (6) Advised the DOE on the key elements of the solicitation process in support of the Glass Industry Vision and Technology Roadmap. In the course of this contract, the membership of the GMIC has grown to include over 70% of the glass industry. This gives it the ability to communicate persuasively with the vast majority of this energy intensive industry. One of the principal benefits of the existence of the GMIC is that, for the first time in this country, representative companies of all major sectors of the glass industry are now in regular communication with each other. Prior to the existence and activity of the GMIC, companies and individuals in the flat glass, container glass, fiber glass and specialty glass sectors rarely had contact with each other, in spite of the fact that they all face similar challenges and can benefit from pre-competitive research conducted to the benefit of the broad industry. The development of innovations in the industry under cost-shared DOE/industry research projects such as new melting technologies, sensors and controls, modeling programs, energy efficiency tools, etc. has led to substantial increases in energy efficiency in the industry. Increased energy efficiency results in increased job opportunities in the industry that has been negatively impacted by increases in energy costs, globalization and increased environmental controls.« less
NASA Technical Reports Server (NTRS)
Bhasin, Kul; Hayden, Jeffrey L.
2005-01-01
For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.
Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
NASA Astrophysics Data System (ADS)
Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'Ko, Vladimir; Novoselov, Konstantin S.; Roche, Stephan; Bøggild, Peter; Borini, Stefano; Koppens, Frank H. L.; Palermo, Vincenzo; Pugno, Nicola; Garrido, José A.; Sordan, Roman; Bianco, Alberto; Ballerini, Laura; Prato, Maurizio; Lidorikis, Elefterios; Kivioja, Jani; Marinelli, Claudio; Ryhänen, Tapani; Morpurgo, Alberto; Coleman, Jonathan N.; Nicolosi, Valeria; Colombo, Luigi; Fert, Albert; Garcia-Hernandez, Mar; Bachtold, Adrian; Schneider, Grégory F.; Guinea, Francisco; Dekker, Cees; Barbone, Matteo; Sun, Zhipei; Galiotis, Costas; Grigorenko, Alexander N.; Konstantatos, Gerasimos; Kis, Andras; Katsnelson, Mikhail; Vandersypen, Lieven; Loiseau, Annick; Morandi, Vittorio; Neumaier, Daniel; Treossi, Emanuele; Pellegrini, Vittorio; Polini, Marco; Tredicucci, Alessandro; Williams, Gareth M.; Hee Hong, Byung; Ahn, Jong-Hyun; Min Kim, Jong; Zirath, Herbert; van Wees, Bart J.; van der Zant, Herre; Occhipinti, Luigi; Di Matteo, Andrea; Kinloch, Ian A.; Seyller, Thomas; Quesnel, Etienne; Feng, Xinliang; Teo, Ken; Rupesinghe, Nalin; Hakonen, Pertti; Neil, Simon R. T.; Tannock, Quentin; Löfwander, Tomas; Kinaret, Jari
2015-03-01
We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.
NASA Technical Reports Server (NTRS)
Vickers, John; Fikes, John
2015-01-01
The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.
Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J. (Compiler)
2014-01-01
The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.
2011-01-01
ER D C TR -0 6- 10 , S up pl em en t 2 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM Implementation Plan for Military...release; distribution is unlimited. ERDC TR-06-10, Supplement 2 January 2011 Building Information Modeling ( BIM ) Roadmap Supplement 2 – BIM ...ERDC TR-06-10, Supplement 2 (January 2011) 2 Abstract: Building Information Modeling ( BIM ) technology provides the communities of practice in
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Whitley, Ryan; Klem, Mark D.; Johnson, Wesley; Alexander, Leslie; D'Aversa, Emanuela; Ruault, Jean-Marc; Manfletti, Chiara; Caruana, Jean-Noel; Ueno, Hiroshi;
2016-01-01
As part of the Global Exploration Roadmap (GER), the International Space Exploration Coordination Group (ISECG) formed two technology gap assessment teams to evaluate topic discipline areas that had not been worked at an international level to date. The participating agencies were ASI, CNES, DLR, ESA, JAXA, and NASA. Accordingly, the ISECG Technology Working Group (TWG) recommended two discipline areas based on Critical Technology Needs reflected within the GER Technology Development Map (GTDM): Dust Mitigation and LOX/Methane Propulsion. LOx/Methane propulsion systems are enabling for future human missions Mars by significantly reducing the landed mass of the Mars ascent stage through the use of in-situ propellant production, for improving common fluids for life support, power and propulion thus allowing for diverse redundancy, for eliminating the corrosive and toxic propellants thereby improving surface operations and resusabilty, and for inceasing the performance of propulsion systems. The goals and objectives of the international team are to determine the gaps in technology that must be closed for LOx/Methane to be used in human exploration missions in cis-lunar, lunar, and Mars mission applications. An emphasis is placed on near term lunar lander applications with extensibility to Mars. Each agency provided a status of the substantial amount of Lox/Methane propulsion system development to date and their inputs on the gaps in the technology that are remaining. The gaps, which are now opportunities for collaboration, are then discussed.
Earth Observations and the Role of UAVs: A Capabilities Assessment
NASA Technical Reports Server (NTRS)
Cox, Timothy H.
2006-01-01
This three-volume document, based on the draft document located on the website given on page 6, presents the findings of a NASA-led capabilities assessment of Uninhabited Aerial Vehicles (UAVs) for civil (defined as non-DoD) use in Earth observations. Volume 1 is the report that presents the overall assessment and summarizes the data. The second volume contains the appendices and references to address the technologies and capabilities required for viable UAV missions. The third volume is the living portion of this effort and contains the outputs from each of the Technology Working Groups (TWGs) along with the reviews conducted by the Universities Space Research Association (USRA). The focus of this report, intended to complement the Office of the Secretary of Defense UAV Roadmap, is four-fold: 1) To determine and document desired future Earth observation missions for all UAVs based on user-defined needs; 2) To determine and document the technologies necessary to support those missions; 3) To discuss the present state of the art platform capabilities and required technologies, including identifying those in progress, those planned, and those for which no current plans exist; 4) Provide the foundations for development of a comprehensive civil UAV roadmap. It is expected that the content of this report will be updated periodically and used to assess the feasibility of future missions. In addition, this report will provide the foundation to help influence funding decisions to develop those technologies that are considered enabling or necessary but are not contained within approved funding plans. This document is written such that each section will be supported by an Appendix that will give the reader a more detailed discussion of that section's topical materials.
Fleischhacker, Sheila E; Ballard, Rachel M; Starke-Reed, Pamela E; Galuska, Deborah A; Neuhouser, Marian L
2017-10-01
The Interagency Committee on Human Nutrition Research (ICHNR) is charged with improving the planning, coordination, and communication among federal agencies engaged in nutrition research and with facilitating the development and updating of plans for federal research programs to meet current and future domestic and international needs for nutrition. The ICHNR is co-chaired by the USDA Under Secretary for Research, Education, and Economics and Chief Scientist and the US Department of Health and Human Services Assistant Secretary for Health and is made up of >10 departments and agencies. Once the ICHNR was reassembled after a 10-y hiatus, the ICHNR recognized a need for a written roadmap to identify critical human nutrition research gaps and opportunities. This commentary provides an overview of the process the ICHNR undertook to develop a first-of-its-kind National Nutrition Research Roadmap, which was publicly released on 4 March 2016. The primary audience for the Roadmap is federal science agency leaders, along with relevant program and policy staff who rely on federally supported human nutrition research, in addition to the broader scientific community. The Roadmap is framed around the following 3 questions: 1 ) How can we better understand and define eating patterns to improve and sustain health? 2 ) What can be done to help people choose healthy eating patterns? 3 ) How can we develop and engage innovative methods and systems to accelerate discoveries in human nutrition? Within these 3 questions, 11 topical areas were identified on the basis of the following criteria: population impact, feasibility given current technological capacities, and emerging scientific opportunities. This commentary highlights initial federal and some professional research society efforts to address the Roadmap's research and resource priorities. We conclude by noting examples of early collaborations and partnerships to move human nutrition research forward in the 21st century. © 2017 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Rubinsztein-Dunlop, Halina; Forbes, Andrew; Berry, M. V.; Dennis, M. R.; Andrews, David L.; Mansuripur, Masud; Denz, Cornelia; Alpmann, Christina; Banzer, Peter; Bauer, Thomas; Karimi, Ebrahim; Marrucci, Lorenzo; Padgett, Miles; Ritsch-Marte, Monika; Litchinitser, Natalia M.; Bigelow, Nicholas P.; Rosales-Guzmán, C.; Belmonte, A.; Torres, J. P.; Neely, Tyler W.; Baker, Mark; Gordon, Reuven; Stilgoe, Alexander B.; Romero, Jacquiline; White, Andrew G.; Fickler, Robert; Willner, Alan E.; Xie, Guodong; McMorran, Benjamin; Weiner, Andrew M.
2017-01-01
Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized.
Overview of current capabilities and research and technology developments for planetary protection
NASA Astrophysics Data System (ADS)
Frick, Andreas; Mogul, Rakesh; Stabekis, Pericles; Conley, Catharine A.; Ehrenfreund, Pascale
2014-07-01
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.
Wallis, Lee; Hasselberg, Marie; Barkman, Catharina; Bogoch, Isaac; Broomhead, Sean; Dumont, Guy; Groenewald, Johann; Lundin, Johan; Norell Bergendahl, Johan; Nyasulu, Peter; Olofsson, Maud; Weinehall, Lars; Laflamme, Lucie
2017-06-01
Diagnostic support for clinicians is a domain of application of mHealth technologies with a slow uptake despite promising opportunities, such as image-based clinical support. The absence of a roadmap for the adoption and implementation of these types of applications is a further obstacle. This article provides the groundwork for a roadmap to implement image-based support for clinicians, focusing on how to overcome potential barriers affecting front-line users, the health-care organization and the technical system. A consensual approach was used during a two-day roundtable meeting gathering a convenience sample of stakeholders (n = 50) from clinical, research, policymaking and business fields and from different countries. A series of sessions was held including small group discussions followed by reports to the plenary. Session moderators synthesized the reports in a number of theme-specific strategies that were presented to the participants again at the end of the meeting for them to determine their individual priority. There were four to seven strategies derived from the thematic sessions. Once reviewed and prioritized by the participants some received greater priorities than others. As an example, of the seven strategies related to the front-line users, three received greater priority: the need for any system to significantly add value to the users; the usability of mHealth apps; and the goodness-of-fit into the work flow. Further, three aspects cut across the themes: ease of integration of the mHealth applications; solid ICT infrastructure and support network; and interoperability. Research and development in image-based diagnostic pave the way to making health care more accessible and more equitable. The successful implementation of those solutions will necessitate a seamless introduction into routines, adequate technical support and significant added value.
Community resources and technologies developed through the NIH Roadmap Epigenomics Program.
Satterlee, John S; Beckel-Mitchener, Andrea; McAllister, Kim; Procaccini, Dena C; Rutter, Joni L; Tyson, Frederick L; Chadwick, Lisa Helbling
2015-01-01
This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.
Relay Telecommunications for the Coming Decade of Mars Exploration
NASA Technical Reports Server (NTRS)
Edwards, C.; DePaula, R.
2010-01-01
Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.
NASA's Microgravity Fluid Physics Strategic Research Roadmap
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Singh, Bhim S.
2004-01-01
The Microgravity Fluid Physics Program at NASA has developed a substantial investigator base engaging a broad crosssection of the U.S. scientific community. As a result, it enjoys a rich history of many significant scientific achievements. The research supported by the program has produced many important findings that have been published in prestigious journals such as Science, Nature, Journal of Fluid Mechanics, Physics of Fluids, and many others. The focus of the program so far has primarily been on fundamental scientific studies. However, a recent shift in emphasis at NASA to develop advanced technologies to enable future exploration of space has provided motivation to add a strategic research component to the program. This has set into motion a year of intense planning within NASA including three workshops to solicit inputs from the external scientific community. The planning activities and the workshops have resulted in a prioritized list of strategic research issues along with a corresponding detailed roadmap specific to fluid physics. The results of these activities were provided to NASA s Office of Biological and Physical Research (OBPR) to support the development of the Enterprise Strategy document. This paper summarizes these results while showing how the planned research supports NASA s overall vision through OBPR s organizing questions.
Advanced Telescopes and Observatories Capability Roadmap Presentation to the NRC
NASA Technical Reports Server (NTRS)
2005-01-01
This viewgraph presentation provides an overview of the NASA Advanced Planning and Integration Office (APIO) roadmap for developing technological capabilities for telescopes and observatories in the following areas: Optics; Wavefront Sensing and Control and Interferometry; Distributed and Advanced Spacecraft; Large Precision Structures; Cryogenic and Thermal Control Systems; Infrastructure.
NASA Astrophysics Data System (ADS)
Sander, D.; Valenzuela, S. O.; Makarov, D.; Marrows, C. H.; Fullerton, E. E.; Fischer, P.; McCord, J.; Vavassori, P.; Mangin, S.; Pirro, P.; Hillebrands, B.; Kent, A. D.; Jungwirth, T.; Gutfleisch, O.; Kim, C. G.; Berger, A.
2017-09-01
Building upon the success and relevance of the 2014 Magnetism Roadmap, this 2017 Magnetism Roadmap edition follows a similar general layout, even if its focus is naturally shifted, and a different group of experts and, thus, viewpoints are being collected and presented. More importantly, key developments have changed the research landscape in very relevant ways, so that a novel view onto some of the most crucial developments is warranted, and thus, this 2017 Magnetism Roadmap article is a timely endeavour. The change in landscape is hereby not exclusively scientific, but also reflects the magnetism related industrial application portfolio. Specifically, Hard Disk Drive technology, which still dominates digital storage and will continue to do so for many years, if not decades, has now limited its footprint in the scientific and research community, whereas significantly growing interest in magnetism and magnetic materials in relation to energy applications is noticeable, and other technological fields are emerging as well. Also, more and more work is occurring in which complex topologies of magnetically ordered states are being explored, hereby aiming at a technological utilization of the very theoretical concepts that were recognised by the 2016 Nobel Prize in Physics. Given this somewhat shifted scenario, it seemed appropriate to select topics for this Roadmap article that represent the three core pillars of magnetism, namely magnetic materials, magnetic phenomena and associated characterization techniques, as well as applications of magnetism. While many of the contributions in this Roadmap have clearly overlapping relevance in all three fields, their relative focus is mostly associated to one of the three pillars. In this way, the interconnecting roles of having suitable magnetic materials, understanding (and being able to characterize) the underlying physics of their behaviour and utilizing them for applications and devices is well illustrated, thus giving an accurate snapshot of the world of magnetism in 2017. The article consists of 14 sections, each written by an expert in the field and addressing a specific subject on two pages. Evidently, the depth at which each contribution can describe the subject matter is limited and a full review of their statuses, advances, challenges and perspectives cannot be fully accomplished. Also, magnetism, as a vibrant research field, is too diverse, so that a number of areas will not be adequately represented here, leaving space for further Roadmap editions in the future. However, this 2017 Magnetism Roadmap article can provide a frame that will enable the reader to judge where each subject and magnetism research field stands overall today and which directions it might take in the foreseeable future. The first material focused pillar of the 2017 Magnetism Roadmap contains five articles, which address the questions of atomic scale confinement, 2D, curved and topological magnetic materials, as well as materials exhibiting unconventional magnetic phase transitions. The second pillar also has five contributions, which are devoted to advances in magnetic characterization, magneto-optics and magneto-plasmonics, ultrafast magnetization dynamics and magnonic transport. The final and application focused pillar has four contributions, which present non-volatile memory technology, antiferromagnetic spintronics, as well as magnet technology for energy and bio-related applications. As a whole, the 2017 Magnetism Roadmap article, just as with its 2014 predecessor, is intended to act as a reference point and guideline for emerging research directions in modern magnetism.
Optical Communications in Support of Science from the Moon, Mars, and Beyond
NASA Technical Reports Server (NTRS)
Edwards, Bernard L.
2005-01-01
Optical communications can provide high speed communications throughout the solar system. Enable new science missions and human exploration. The technology suitable for near-earth optical communications, including communications to and from the Moon, is different than for deep space optical. NASA could leverage DoD investments for near-earth applications, including the moon. NASA will have to develop its own technology for deep space. The Mars laser communication demonstration is a pathfinder. NASA,s science mission directorate, under the leadership of Dr. Barry Geldzahler, is developing a roadmap for the development of deep space optical communications.
Earth Observations and the Role of UAVs: A Capabilities Assessment. Version 1.1
NASA Technical Reports Server (NTRS)
Cox, Timothy H.; Somers, Ivan; Fratello, David J.
2006-01-01
This document provides an assessment of the civil UAV missions and technologies and is intended to parallel the Office of the Secretary of Defense UAV Roadmap. The intent of this document is four-fold: 1. Determine and document desired future missions of Earth observation UAVs based on user-defined needs 2. Determine and document the technologies necessary to support those missions 3. Discuss the present state of the platform capabilities and required technologies, identifying those in progress, those planned, and those for which no current plans exist 4. Provide the foundations for development of a comprehensive civil UAV roadmap to complement the Department of Defense (DoD) effort (http://www.acq.osd.mil/uas/). Two aspects of the President's Management Agenda (refer to the document located at: www.whitehouse.gov/omb/budget/fy2002/mgmt.pdf ) are supported by this undertaking. First, it is one that will engage multiple Agencies in the effort as stakeholders and benefactors of the systems. In that sense, the market will be driven by the user requirements and applications. The second aspect is one of supporting economic development in the commercial sector. Market forecasts for the civil use of UAVs have indicated an infant market stage at present with a sustained forecasted growth. There is some difficulty in quantifying the value of the market since the typical estimate excludes system components other than the aerial platforms. Section 2.4 addresses the civil UAV market forecast and lists several independent forecasts. One conclusion that can be drawn from these forecasts is that all show a sustained growth for the duration of each long-term forecast.
Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU)
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Romig, Kris A.; Larson, William E.; Johnson, Robert; Rapp, Don; Johnson, Ken R.; Sacksteder, Kurt; Linne, Diane; Curreri, Peter; Duke, Michael;
2005-01-01
On January 14, 2004, the President of the United States unveiled a new vision for robotic and human exploration of space entitled, "A Renewed Spirit of Discovery". As stated by the President in the Vision for Space Exploration (VSE), NASA must "... implement a sustained and affordable human and robotic program to explore the solar system and beyond " and ".. .develop new technologies and harness the moon's abundant resources to allow manned exploration of more challenging environments." A key to fulfilling the goal of sustained and affordable human and robotic exploration will be the ability to use resources that are available at the site of exploration to "live off the land" instead of bringing everything from Earth, known as In-Situ Resource Utilization (ISRU). ISRU can significantly reduce the mass, cost, and risk of exploration through capabilities such as: mission consumable production (propellants, fuel cell reagents, life support consumables, and feedstock for manufacturing & construction); surface construction (radiation shields, landing pads, walls, habitats, etc.); manufacturing and repair with in-situ resources (spare parts, wires, trusses, integrated systems etc.); and space utilities and power from space resources. On January 27th, 2004 the President's Commission on Implementation of U.S. Space Exploration Policy (Aldridge Committee) was created and its final report was released in June 2004. One of the report's recommendations was to establish special project teams to evaluate enabling technologies, of which "Planetary in situ resource utilization" was one of them. Based on the VSE and the commission's final report, NASA established fifteen Capability Roadmap teams, of which ISRU was one of the teams established. From Oct. 2004 to May 2005 the ISRU Capability Roadmap team examined the capabilities, benefits, architecture and mission implementation strategy, critical decisions, current state-of-the-art (SOA), challenges, technology gaps, and risks of ISRU for future human Moon and Mars exploration. This presentation will provide an overview of the ISRU capability, architecture, and implementation strategy examined by the ISRU Capability Roadmap team, along with a top-level review of ISRU benefits, resources and products of interest, and the current SOA in ISRU processes and systems. The presentation will also highlight the challenges of incorporating ISRU into future missions and the gaps in technologies and capabilities that need to be filled to enable ISRU.
Bioinformatics for Exploration
NASA Technical Reports Server (NTRS)
Johnson, Kathy A.
2006-01-01
For the purpose of this paper, bioinformatics is defined as the application of computer technology to the management of biological information. It can be thought of as the science of developing computer databases and algorithms to facilitate and expedite biological research. This is a crosscutting capability that supports nearly all human health areas ranging from computational modeling, to pharmacodynamics research projects, to decision support systems within autonomous medical care. Bioinformatics serves to increase the efficiency and effectiveness of the life sciences research program. It provides data, information, and knowledge capture which further supports management of the bioastronautics research roadmap - identifying gaps that still remain and enabling the determination of which risks have been addressed.
NASA Technical Reports Server (NTRS)
Ambur, Manjula Y.; Yagle, Jeremy J.; Reith, William; McLarney, Edward
2016-01-01
In 2014, a team of researchers, engineers and information technology specialists at NASA Langley Research Center developed a Big Data Analytics and Machine Intelligence Strategy and Roadmap as part of Langley's Comprehensive Digital Transformation Initiative, with the goal of identifying the goals, objectives, initiatives, and recommendations need to develop near-, mid- and long-term capabilities for data analytics and machine intelligence in aerospace domains. Since that time, significant progress has been made in developing pilots and projects in several research, engineering, and scientific domains by following the original strategy of collaboration between mission support organizations, mission organizations, and external partners from universities and industry. This report summarizes the work to date in Data Intensive Scientific Discovery, Deep Content Analytics, and Deep Q&A projects, as well as the progress made in collaboration, outreach, and education. Recommendations for continuing this success into future phases of the initiative are also made.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
Challenges for Product Roadmapping in Inter-company Collaboration
NASA Astrophysics Data System (ADS)
Suomalainen, Tanja; Tihinen, Maarit; Parviainen, Päivi
Product roadmapping is a critical activity in product development, as it provides a link between business aspects and requirements engineering and thus helps to manage a high-level view of the company’s products. Nowadays, inter-company collaboration, such as outsourcing, is a common way of developing software products, as through collaboration, organisations gain advantages, such as flexibility with in-house resources, savings in product development costs and gain a physical presence in important markets. The role of product roadmapping becomes even more critical in collaborative settings, since different companies need to align strategies and work together to create products. In order to support companies in improving their own product roadmapping processes, this paper first gives an overview of product roadmapping and then discusses in detail an empirical study of the current practices in industry. The presented results particularly focus on the most challenging and important activities of product roadmapping in collaboration.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Technology Development for NASA Mars Missions
NASA Technical Reports Server (NTRS)
Hayati, Samad
2005-01-01
A viewgraph presentation on technology development for NASA Mars Missions is shown. The topics include: 1) Mars mission roadmaps; 2) Focus and Base Technology programs; 3) Technology Infusion; and 4) Feed Forward to Future Missions.
The data distribution satellite system
NASA Technical Reports Server (NTRS)
Bruno, Ronald C.; Weinberg, Aaron
1991-01-01
The Data Distributed Satellite (DDS) will be capable of providing the space research community with inexpensive and easy access to space payloads and space data. Furthermore, the DDS is shown to be a natural outgrowth of advances and evolution in both NASA's Space Network and commercial satellite communications. The roadmap and timescale for this evolution is described along with key demonstrations, proof-of-concept models, and required technology development that will support the projected system evolution toward the DDS.
Photovoltaics Innovation Roadmap Request for Information Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
On June 28, 2017, the U.S. Department of Energy’s Solar Energy Technologies Office (SETO) released the Photovoltaics (PV) Innovation Roadmap Request for Information (RFI) for public response and comment. The RFI sought feedback from PV stakeholders, including research and commercial communities, about the most important research and development (R&D) pathways to improve PV cell and module technology to reach the SETO’s SunShot 2030 cost targets of $0.03/W for utility PV installations, $0.04/W for commercial scale installations, and $0.05/W for residential PV installations.
Rationale and Roadmap for Moon Exploration
NASA Astrophysics Data System (ADS)
Foing, B. H.; ILEWG Team
We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.
Biogas Opportunities Roadmap Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.
How to Access and Sample the Deep Subsurface of Mars
NASA Technical Reports Server (NTRS)
Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.
2000-01-01
We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.
NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2005-01-01
The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.
Scientific and technical challenges on the road towards fusion electricity
NASA Astrophysics Data System (ADS)
Donné, A. J. H.; Federici, G.; Litaudon, X.; McDonald, D. C.
2017-10-01
The goal of the European Fusion Roadmap is to deliver fusion electricity to the grid early in the second half of this century. It breaks the quest for fusion energy into eight missions, and for each of them it describes a research and development programme to address all the open technical gaps in physics and technology and estimates the required resources. It points out the needs to intensify industrial involvement and to seek all opportunities for collaboration outside Europe. The roadmap covers three periods: the short term, which runs parallel to the European Research Framework Programme Horizon 2020, the medium term and the long term. ITER is the key facility of the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. Thus, the vast majority of present resources are dedicated to ITER and its accompanying experiments. The medium term is focussed on taking ITER into operation and bringing it to full power, as well as on preparing the construction of a demonstration power plant DEMO, which will for the first time demonstrate fusion electricity to the grid around the middle of this century. Building and operating DEMO is the subject of the last roadmap phase: the long term. Clearly, the Fusion Roadmap is tightly connected to the ITER schedule. Three key milestones are the first operation of ITER, the start of the DT operation in ITER and reaching the full performance at which the thermal fusion power is 10 times the power put in to the plasma. The Engineering Design Activity of DEMO needs to start a few years after the first ITER plasma, while the start of the construction phase will be a few years after ITER reaches full performance. In this way ITER can give viable input to the design and development of DEMO. Because the neutron fluence in DEMO will be much higher than in ITER, it is important to develop and validate materials that can handle these very high neutron loads. For the testing of the materials, a dedicated 14 MeV neutron source is needed. This DEMO Oriented Neutron Source (DONES) is therefore an important facility to support the fusion roadmap.
The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering
NASA Technical Reports Server (NTRS)
Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen
2006-01-01
This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Space Transportation Technology Workshop: Propulsion Research and Technology
NASA Technical Reports Server (NTRS)
2000-01-01
This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.
Next Generation Life Support Project Status
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew;
2014-01-01
Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.
Canadian advanced life support capacities and future directions
NASA Astrophysics Data System (ADS)
Bamsey, M.; Graham, T.; Stasiak, M.; Berinstain, A.; Scott, A.; Vuk, T. Rondeau; Dixon, M.
2009-07-01
Canada began research on space-relevant biological life support systems in the early 1990s. Since that time Canadian capabilities have grown tremendously, placing Canada among the emerging leaders in biological life support systems. The rapid growth of Canadian expertise has been the result of several factors including a large and technically sophisticated greenhouse sector which successfully operates under challenging climatic conditions, well planned technology transfer strategies between the academic and industrial sectors, and a strong emphasis on international research collaborations. Recent activities such as Canada's contribution of the Higher Plant Compartment of the European Space Agency's MELiSSA Pilot Plant and the remote operation of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic continue to demonstrate Canadian capabilities with direct applicability to advanced life support systems. There is also a significant latent potential within Canadian institutions and organizations with respect to directly applicable advanced life support technologies. These directly applicable research interests include such areas as horticultural management strategies (for candidate crops), growth media, food processing, water management, atmosphere management, energy management, waste management, imaging, environment sensors, thermal control, lighting systems, robotics, command and data handling, communications systems, structures, in-situ resource utilization, space analogues and mission operations. With this background and in collaboration with the Canadian aerospace industry sector, a roadmap for future life support contributions is presented here. This roadmap targets an objective of at least 50% food closure by 2050 (providing greater closure in oxygen, water recycling and carbon dioxide uptake). The Canadian advanced life support community has chosen to focus on lunar surface infrastructure and not low Earth orbit or transit systems (i.e. microgravity applications). To advance the technical readiness for the proposed lunar missions, including a lunar plant growth lander, lunar "salad machine" (i.e. small scale plant production unit) and a full scale lunar plant production system, a suite of terrestrial developments and analogue systems are proposed. As has been successfully demonstrated by past Canadian advanced life support activities, terrestrial technology transfer and the development of highly qualified personnel will serve as key outputs for Canadian advanced life support system research programs. This approach is designed to serve the Canadian greenhouse industry by developing compliance measures for mitigating environmental impact, reducing labour and energy costs as well as improving Canadian food security, safety and benefit northern/remote communities.
Bridging the Gap from Networking Technologies to Applications: Workshop Report
NASA Technical Reports Server (NTRS)
Johnson, Marjory J.; desJardins, Richard
2000-01-01
The objective of the Next Generation Internet (NGI) Federal program is threefold, encompassing development of networking technologies, high-performance network testbeds, and revolutionary applications. There have been notable advances in emerging network technologies and several nationwide testbeds have been established, but the integration of emerging technologies into applications is lagging. To help bridge this gap between developers of NGI networking technologies and developers of NGI applications, the NASA Research and Education Network (NREN) project hosted a two-day workshop at NASA Ames Research Center in August 1999. This paper presents a summary of the results of this workshop and also describes some of the challenges NREN is facing while incorporating new technologies into HPCC and other NASA applications. The workshop focused on three technologies - Quality of Service (QoS), advanced multicast, and security-and five major NGI application areas - telemedicine, digital earth, digital video, distributed data-intensive applications, and computational infrastructure applications. Network technology experts, application developers, and NGI testbed representatives came together at the workshop to promote cross-fertilization between the groups. Presentations on the first day, including an overview of the three technologies, application case studies and testbed status reports, laid the foundation for discussions on the second day. The objective of these latter discussions, held within smaller breakout groups, was to establish a coherent picture of the current status of the various pieces of each of the three technologies, to create a roadmap outlining future technology development, and to offer technological guidance to application developers. In this paper we first present a brief overview of the NGI applications that were represented at the workshop, focusing on the identification of technological advances that have successfully been incorporated in each application and technological challenges that remain. Next we present the technology roadmaps that were created at the workshop, summarizing the status of various mechanisms that are currently under development and forecasting when various advances are likely to occur within the next one-to-three-year time span. Then we identify issues that were raised at the workshop that might hinder technology development or that might impede integration into NGI applications. We also report some specific guidelines that were offered at the workshop to enable application developers to integrate and effectively use emerging NGI technology building blocks. Finally, we describe NREN activities to incorporate emerging technologies into NASA applications. These activities include support for other NASA High-Performance Computing and Communications Program areas such as IPG (Information Power Grid), support for NASA science enterprises such as Earth science and Mars program prototyping activities, support for satellite/terrestrial networking applications such as the TransAtlantic and TransPacific demonstrations and the Interplanetary Internet, support for NASA telemedicine applications such as the Virtual Collaborative Clinic, and participation in NGI advanced technology testbed initiatives such as the QBone and the NTON/Supernet. For each activity we highlight the primary technological challenge that is associated with it.
NASA's RPS Design Reference Mission Set for Solar System Exploration
NASA Technical Reports Server (NTRS)
Balint, Tibor S.
2007-01-01
NASA's 2006 Solar System Exploration (SSE) Strategic Roadmap identified a set of proposed large Flagship, medium New Frontiers and small Discovery class missions, addressing key exploration objectives. These objectives respond to the recommendations by the National Research Council (NRC), reported in the SSE Decadal Survey. The SSE Roadmap is down-selected from an over-subscribed set of missions, called the SSE Design Reference Mission (DRM) set. Missions in the Flagship and New Frontiers classes can consider Radioisotope Power Systems (RPSs), while small Discovery class missions are not permitted to use them, due to cost constraints. In line with the SSE DRM set and the SSE Roadmap missions, the RPS DRM set represents a set of missions, which can be enabled or enhanced by RPS technologies. At present, NASA has proposed the development of two new types of RPSs. These are the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), with static power conversion; and the Stirling Radioisotope Generator (SRG), with dynamic conversion. Advanced RPSs, under consideration for possible development, aim to increase specific power levels. In effect, this would either increase electric power generation for the same amount of fuel, or reduce fuel requirements for the same power output, compared to the proposed MMRTG or SRG. Operating environments could also influence the design, such that an RPS on the proposed Titan Explorer would use smaller fins to minimize heat rejection in the extreme cold environment; while the Venus Mobile Explorer long-lived in-situ mission would require the development of a new RPS, in order to tolerate the extreme hot environment, and to simultaneously provide active cooling to the payload and other electric components. This paper discusses NASA's SSE RPS DRM set, in line with the SSE DRM set. It gives a qualitative assessment regarding the impact of various RPS technology and configuration options on potential mission architectures, which could support NASA's RPS technology development planning, and provide an understanding of fuel need trades over the next three decades.
Meaningful use: a roadmap for the advancement of health information exchange
2013-01-01
Frankel and colleagues have compared Israel and the U.S.’s experiences with health information exchange (HIE). They highlight the importance of institutional factors in fostering HIE development, notably the influence of local structures, experience and incentives. Historically, information infrastructure in the U.S. has been limited due to lack of standards, fragmented institutions and competition. The Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009 authorized billions of dollars for the adoption and “Meaningful Use” of electronic health records. HITECH programs and Meaningful Use incentives target the advancement of HIE through 1) building blocks, 2) local support and 3) payment incentives. Meaningful Use requirements create a roadmap to broader electronic exchange of health information among providers and with patients. Ultimately, successful HIE in the U.S. will depend on whether Meaningful Use can address institutional needs within local markets. This is a commentary on http://www.ijhpr.org/content/2/1/722 PMID:23880399
Science and Technology Test Mining: Disruptive Technology Roadmaps
2003-07-23
integrating breakthrough technologies to maintain the U.S.’s technological advantage and the role of naval engineers in fostering and managing innovation . It...highlights these. Loutfy, R, Belkhir, L, Managing innovation at Xerox, RESEARCH-TECHNOLOGY MANAGEMENT, 44:4, July-Aug 2001. The careful and painstaking
Leveraging Our Expertise To Inform International RE Roadmaps | Energy
energy targets to support Mexico's renewable energy goal. NREL and its Mexico partners developed the institutions need to take to determine how the electricity infrastructure and systems must change to accommodate high levels of renewables. The roadmap focuses on analysis methodologies-including grid expansion
Solar sail science mission applications and advancement
NASA Astrophysics Data System (ADS)
Macdonald, Malcolm; McInnes, Colin
2011-12-01
Solar sailing has long been envisaged as an enabling or disruptive technology. The promise of open-ended missions allows consideration of radically new trajectories and the delivery of spacecraft to previously unreachable or unsustainable observation outposts. A mission catalogue is presented of an extensive range of potential solar sail applications, allowing identification of the key features of missions which are enabled, or significantly enhance, through solar sail propulsion. Through these considerations a solar sail application-pull technology development roadmap is established, using each mission as a technology stepping-stone to the next. Having identified and developed a solar sail application-pull technology development roadmap, this is incorporated into a new vision for solar sailing. The development of new technologies, especially for space applications, is high-risk. The advancement difficulty of low technology readiness level research is typically underestimated due to a lack of recognition of the advancement degree of difficulty scale. Recognising the currently low technology readiness level of traditional solar sailing concepts, along with their high advancement degree of difficulty and a lack of near-term applications a new vision for solar sailing is presented which increases the technology readiness level and reduces the advancement degree of difficulty of solar sailing. Just as the basic principles of solar sailing are not new, they have also been long proven and utilised in spacecraft as a low-risk, high-return limited-capability propulsion system. It is therefore proposed that this significant heritage be used to enable rapid, near-term solar sail future advancement through coupling currently mature solar sail, and other, technologies with current solar sail technology developments. As such the near-term technology readiness level of traditional solar sailing is increased, while simultaneously reducing the advancement degree of difficulty along the solar sail application-pull technology development roadmap.
In the past five years, a multitude of new inspection technologies have emerged as viable sources of pipeline condition data. Furthermore, many of these new technologies provide quantitative (versus qualitative) data that can significantly improve diagnostic and predictive capab...
The 2017 terahertz science and technology roadmap
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; ...
2017-01-04
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and maymore » also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. Lastly, we also feel that this review should serve as a useful guide for government and funding agencies.« less
The 2017 terahertz science and technology roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and maymore » also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. Lastly, we also feel that this review should serve as a useful guide for government and funding agencies.« less
The 2017 terahertz science and technology roadmap
NASA Astrophysics Data System (ADS)
Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, Matthias C.; Booske, John; Paoloni, Claudio; Gensch, M.; Weightman, P.; Williams, G. P.; Castro-Camus, E.; Cumming, D. R. S.; Simoens, F.; Escorcia-Carranza, I.; Grant, J.; Lucyszyn, Stepan; Kuwata-Gonokami, Makoto; Konishi, Kuniaki; Koch, Martin; Schmuttenmaer, Charles A.; Cocker, Tyler L.; Huber, Rupert; Markelz, A. G.; Taylor, Z. D.; Wallace, Vincent P.; Axel Zeitler, J.; Sibik, Juraj; Korter, Timothy M.; Ellison, B.; Rea, S.; Goldsmith, P.; Cooper, Ken B.; Appleby, Roger; Pardo, D.; Huggard, P. G.; Krozer, V.; Shams, Haymen; Fice, Martyn; Renaud, Cyril; Seeds, Alwyn; Stöhr, Andreas; Naftaly, Mira; Ridler, Nick; Clarke, Roland; Cunningham, John E.; Johnston, Michael B.
2017-02-01
Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz-30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to ‘real world’ applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.
A Technology Development Roadmap for a Near-Term Probe-Class X-ray Astrophysics Mission
NASA Technical Reports Server (NTRS)
Daelemans, Gerard J.; Petre, Robert; Bookbinder, Jay; Ptak, Andrew; Smith, Randall
2013-01-01
This document presents a roadmap, including proposed budget and schedule, for maturing the instrumentation needed for an X-ray astrophysics Probe-class mission. The Physics of the Cosmos (PCOS) Program Office was directed to create this roadmap following the December 2012 NASA Astrophysics Implementation Plan (AIP). Definition of this mission is called for in the AIP, with the possibility of selection in 2015 for a start in 2017. The overall mission capabilities and instrument performance requirements were defined in the 2010 Astronomy and Astrophysics Decadal Survey report, New Worlds, New Horizons in Astronomy and Astrophysics (NWNH), in connection with the highly ranked International X-ray Observatory (IXO). In NWNH, recommendations were provided regarding the size of, and instrumentation needed by, the next large X-ray observatory. Specifically, the key instrumental capability would be an X-ray calorimeter spectrometer at the focus of a large mirror with angular resolution of 10 arc seconds (arcsec) or better. If possible, a grating spectrometer should also be incorporated into the instrument complement. In response to these recommendations, four instrumentation technologies are included in this roadmap. Three of these are critical for an X-ray mission designed to address NWNH questions: segmented X-ray mirrors, transition edge sensor calorimeters, and gratings. Two approaches are described for gratings, which represent the least mature technology and thus most in need of a parallel path for risk reduction. Also, while current CCD detectors would likely meet the mission needs for grating spectrum readout, specific improvements are included as an additional approach for achieving the grating system effective area requirement. The technical steps needed for these technologies to attain technology readiness levels (TRL) of 5 and 6 are described, as well as desirable modest risk reduction steps beyond TRL-6. All of the technology development efforts are currently funded through the NASA Physics of the Cosmos (PCOS) Strategic Astrophysics Technology (SAT) program; some through the end of FY13, others though FY14. These technology needs are those identified as critical for a near-term mission and briefly described in the 2012 NASA X-ray Mission Concepts Study. This Technology Development Roadmap (TDR) provides a more complete description of each, updates the status, and describes the steps to mature them. For each technology, a roadmap is presented for attaining TRL-6 by 2020 at the latest, and 2018 for most. The funding required for each technology to attain TRL-5 and TRL-6 is presented and justified through a description of the steps needing completion. The total funding required for these technologies to reach TRL-6 is relatively modest, and is consistent with the planned PCOS SAT funding over the next several years. The approximate annual cost through 2018 is $8M. The total cost for all technologies to be matured is $62M (including funding already awarded for FY13 and FY14). This can be contrasted to the $180M recommended by NWNH for technology development for IXO, primarily for the maturation of the mirror technology. The technology described in Section 3 of this document is exclusively that needed for a near-term Probe-class mission, to start in 2017, or for a mission that can be recommended by the next Decadal survey committee for an immediate start. It is important to note that there are other critical X-ray instrumentation technologies under development that are less mature than the ones discussed here, but are essential for a major X-ray mission that might start in the late 2020s. These technologies, described briefly in Section 4, are more appropriately funded through the Astronomy and Physics Research and Analysis (APRA) program.
ERA-MIN: The European network (ERA-NET) on non-energy raw materials
NASA Astrophysics Data System (ADS)
vidal, o.; christmann, p.; Bol, d.; Goffé, b.; Groth, m.; Kohler, e.; Persson Nelson, k.; Schumacher, k.
2012-04-01
Non-energy raw materials are vital for the EU's economy, and for the development of environmentally friendly technologies. The EU is the world's largest consumers of non-energy minerals, but it remains dependent on the importation of many metals, as its domestic production is limited to about 3% of world production. We will present the project ERA-MIN, which is an ERA-NET on the Industrial Handling of Raw Materials for European industries, financially supported by the European Commission. The main objectives of ERA-MIN are: 1) Mapping and Networking: interconnecting the members of the currently fragmented European mineral resources research area, to the aim of fostering convergence of public research programs, industry, research institutes, academia and the European Commission, 2) Coordinating: establishing a permanent mechanism for planning and coordination of the European non-energy mineral raw materials research community (ENERC). 3) Roadmapping: defining the most important scientific and technological challenges that should be supported by the EU and its state members, 4) Programming: designing a Joint European Research Programme model and implementating it into a call for proposals open to academic and industrial research. The topics of interest in ERA-MIN are the primary continental and marine resources, the secondary resources and their related technologies, substitution and material efficiency, along with transversal topics such as environmental impact, public policy support, mineral intelligence, and public education and teaching. Public scientific research is very central in the scope of the ERA-MIN activity, whose consortium is indeed lead by a public organisation of fundamental research. Thus, universities and public research organisations are warmly invited to play an active role in defining the scientific questions and challenges that shall determine the European Raw Materials Roadmap and should be addressed by joint programming at the European scale. The various levels of possible involvement in ERA-MIN for the interested stakeholders will be presented.
Waste Processing Research and Technology Development at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Fisher, John; Kliss, Mark
2004-01-01
The current "store and return" approach for handling waste products generated during low Earth orbit missions will not meet the requirements for future human missions identified in NASA s new Exploration vision. The objective is to develop appropriate reliable waste management systems that minimize maintenance and crew time, while maintaining crew health and safety, as well as providing protection of planetary surfaces. Solid waste management requirements for these missions include waste volume reduction, stabilization and storage, water recovery, and ultimately recovery of carbon dioxide, nutrients and other resources from a fully regenerative food production life support system. This paper identifies the key drivers for waste management technology development within NASA, and provides a roadmap for the developmental sequence and progression of technologies. Recent results of research and technology development activities at NASA Ames Research Center on candidate waste management technologies with emphasis on compaction, lyophilization, and incineration are discussed.
NASA Workshop on Technology for Human Robotic Exploration and Development of Space
NASA Technical Reports Server (NTRS)
Mankins, J. C.; Marzwell, N.; Mullins, C. A.; Christensen, C. B.; Howell, J. T.; O'Neil, D. A.
2004-01-01
Continued constrained budgets and growing interests in the industrialization and development of space requires NASA to seize every opportunity for assuring the maximum return on space infrastructure investments. This workshop provided an excellent forum for reviewing, evaluating, and updating pertinent strategic planning, identifying advanced concepts and high-risk/high-leverage research and technology requirements, developing strategies and roadmaps, and establishing approaches, methodologies, modeling, and tools for facilitating the commercial development of space and supporting diverse exploration and scientific missions. Also, the workshop addressed important topic areas including revolutionary space systems requiring investments in innovative advanced technologies; achieving transformational space operations through the insertion of new technologies; revolutionary science in space through advanced systems and new technologies enabling experiments to go anytime to any location; and, innovative and ambitious concepts and approaches essential for promoting advancements in space transportation. Details concerning the workshop process, structure, and results are contained in the ensuing report.
Autonomous RPOD Technology Challenges for the Coming Decade
NASA Technical Reports Server (NTRS)
Naasz, Bo J.; Moreau, Michael C.
2012-01-01
Rendezvous Proximity Operations and Docking (RPOD) technologies are important to a wide range of future space endeavors. This paper will review some of the recent and ongoing activities related to autonomous RPOD capabilities and summarize the current state of the art. Gaps are identified where future investments are necessary to successfully execute some of the missions likely to be conducted within the next ten years. A proposed RPOD technology roadmap that meets the broad needs of NASA's future missions will be outlined, and ongoing activities at OSFC in support of a future satellite servicing mission are presented. The case presented shows that an evolutionary, stair-step technology development program. including a robust campaign of coordinated ground tests and space-based system-level technology demonstration missions, will ultimately yield a multi-use main-stream autonomous RPOD capability suite with cross-cutting benefits across a wide range of future applications.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mike; Cipiti, Ben; Demuth, Scott Francis
2017-01-30
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study
NASA Technical Reports Server (NTRS)
Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.
2013-01-01
This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.
Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. Thesemore » tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.« less
Reliable, Practical Kilowatt-class Cryogenics for Superconducting Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spoor, Philip
2016-12-15
Following the successful development of a Flexibly-Attached Remote cryocooler for ~200W at 80K under a Phase II DOE grant, Clever Fellows Innovation Consortium, Inc. (dba CFIC-Qdrive; acquired by Chart Industries in 2012) was invited by the DOE to scale up this technology to ~1000W/80K in a Phase III program. This target is responsive to the “Cryogenics Roadmap” developed by the DOE to accelerate the development of cryogenic cooling necessary to support the emerging superconducting power applications. Mirroring the Roadmap, our proposal included a capacity target (1000W at 80K) and a cost target (<$40/watt, at 80K), but unlike the Roadmap, wemore » did not formally propose to meet a specific efficiency target. We achieved 75% of the capacity target, with a record-size coaxial “pulse-tube” coldfinger, but only by working on the project well beyond the original “period of performance” on unfunded extension. We believe 100% of the capacity target was within reach, but our own budget and time constraints forbade additional effort. We were less successful in meeting the cost targets. Ultimately, the specific configuration that was the subject of Phase III was not commercialized, largely because the market for superconducting devices has not been nearly as robust as was expected at the advent of the Roadmap.« less
U.S. Geological Survey Unmanned Aircraft Systems (UAS) Roadmap 2014
Cress, Jill J.; Hutt, Michael E.; Sloan, Jeff L.; Bauer, Mark A.; Feller, Mark R.; Goplen, Susan E.
2015-01-01
This Roadmap provides operational procedures and lessons learned from completed proof-of-concept UAS missions in areas such as wildlife management, resource monitoring, and public land inspections. This information provides not only an implementation framework but can also help increase the awareness by resource managers, scientists, and others of the ability of UAS technology to advance data quality, improve personnel safety, and reduce data acquisition costs.
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 2 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 2 – BIM ...39180 ERDC SR-12-2, Supplement 2 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac-
2012-11-01
Building Information Modeling ( BIM ...12-2, Supplement 1 November 2012 The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling ( BIM ) Supplement 1 – BIM ...ERDC SR-12-2, Supplement 1 (November 2012) ii Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout
Roadmap evolution: from NTRS to ITRS, from ITRS 2.0 to IRDS
NASA Astrophysics Data System (ADS)
Gargini, Paolo A.
2017-10-01
The semiconductor industry benefitted from roadmap guidance since the mid-60s. The roadmap anticipated and outlined the main needs of the semiconductor industry for years to come and identified future challenges and possible solutions. Making transistor smaller by means of advanced lithographic technologies enabled both increased integration levels and improved IC performance. The roadmap methodology allowed the removal of multiple "red brick walls". The NTRS and the ITRS constituted primarily a "bottom up" approach as standard microprocessors and memories where introduced at a blistering pace barely allowing time for system houses to integrate them in their products. The 1998 ITRS provided the vision that triggered research, development and manufacturing communities to develop a completely new transistor structure in addition to replacing aluminum interconnects with a more advanced technology. The advent of Foundries and Fabless companies transformed the electronics industry into a "top down" driven industry in the past 15 years. The ITRS adjusted to this new ecosystem and morphed into the International Roadmap for Devices and Systems (IRDS) sponsored by IEEE. The IRDS is addressing the requirements and needs of the renewed electronics industry. Furthermore, by the middle of the next decade the ability to layout integrated circuits in a 2D geometry grid will reach fundamental physical limits and the aggressive conversion to 3D architecture for integrated circuit must be pursued across the board as an avenue to continuously increasing transistor count and improving performance. EUV technology is finally approaching the manufacturing stage but with the advent of 3D monolithically integrated heterogeneous circuits approaching in the not-toodistant future should the semiconductor industry concentrate its resources on the next lithographic technology generation in order to enhance resolution or on providing a smooth transition to the new revolutionary 3D architecture of integrated circuits? It is essential for the whole semiconductor industry to come together and make fundamental choices leading to a cooperative and synchronized allocation of adequate resources to produce viable solutions that once introduced in a timely manner into manufacturing will enable the continuation of the growth of the electronic industry at a pace comparable or exceeding historical trends.
Solar Sail Roadmap Mission GN and C Challenges
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.
2005-01-01
The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trost, Alan L.
The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) has developed a research and development (R&D) roadmap for its research, development, and demonstration (RD&D) activities to ensure nuclear energy remains a compelling and viable energy option for the U.S. The roadmap defines NE RD&D activities and objectives that address the challenges to research, develop and demonstrate options to the current U.S commercial fuel cycle to enable the safe, secure, economic, and sustainable expansion of nuclear energy, while minimizing proliferation and terrorism risks expanding the use of nuclear power. The roadmap enables the development of technologies and other solutionsmore » that can improve the reliability, sustain the safety, and extend the life of current reactors. In addition, it will help to develop improvements in the affordability of the new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals.« less
Material Recovery and Waste Form Development FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry Allen; Braase, Lori Ann
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The FY 2015 Accomplishments Report provides a highlight of the results of the research and development (R&D) efforts performed within the MRWFD Campaign in FY-14. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during the fiscalmore » year. This report briefly outlines campaign management and integration activities, but primarily focuses on the many technical accomplishments made during FY-15. The campaign continued to utilize an engineering driven-science-based approach to maintain relevance and focus. There was increased emphasis on development of technologies that support near-term applications that are relevant to the current once-through fuel cycle.« less
VERAM, for a sustainable and competitive future for EU Raw Materials
NASA Astrophysics Data System (ADS)
Mobili, A.; Tittarelli, F.; Revel, G. M.; Wall, P.
2018-03-01
The project, VERAM “Vision and Roadmap for European Raw Materials”, aims to deliver a mapping of on-going initiatives on non-food, non-energy raw materials (including metals, industrial minerals, aggregates and wood) at European, Member State, and regional levels both from the Research and Innovation (R&I), industry, and policy perspectives. Moreover, based on a comprehensive gap analysis, VERAM will propose a common long term 2050 Vision and Roadmap in coordination and cooperation with all stakeholders across the value chain. For the first time, two European Technology Platforms (ETPs) together with their corresponding European Research Area Networks (ERA-NETs) are joining forces to develop a common roadmap.
Progress along the E-ELT instrumentation roadmap
NASA Astrophysics Data System (ADS)
Ramsay, Suzanne; Casali, Mark; Cirasuolo, Michele; Egner, Sebastian; Gray, Peter; Gonzáles Herrera, Juan Carlos; Hammersley, Peter; Haupt, Christoph; Ives, Derek; Jochum, Lieselotte; Kasper, Markus; Kerber, Florian; Lewis, Steffan; Mainieri, Vincenzo; Manescau, Antonio; Marchetti, Enrico; Oberti, Sylvain; Padovani, Paolo; Schmid, Christian; Schimpelsberger, Johannes; Siebenmorgen, Ralf; Szecsenyi, Orsolya; Tamai, Roberto; Vernet, Joël.
2016-08-01
A suite of seven instruments and associated AO systems have been planned as the "E-ELT Instrumentation Roadmap". Following the E-ELT project approval in December 2014, rapid progress has been made in organising and signing the agreements for construction with European universities and institutes. Three instruments (HARMONI, MICADO and METIS) and one MCAO module (MAORY) have now been approved for construction. In addition, Phase-A studies have begun for the next two instruments - a multi-object spectrograph and high-resolution spectrograph. Technology development is also ongoing in preparation for the final instrument in the roadmap, the planetary camera and spectrograph. We present a summary of the status and capabilities of this first set of instruments for the E-ELT.
NASA Strategic Roadmap Summary Report
NASA Technical Reports Server (NTRS)
Wilson, Scott; Bauer, Frank; Stetson, Doug; Robey, Judee; Smith, Eric P.; Capps, Rich; Gould, Dana; Tanner, Mike; Guerra, Lisa; Johnston, Gordon
2005-01-01
In response to the Vision, NASA commissioned strategic and capability roadmap teams to develop the pathways for turning the Vision into a reality. The strategic roadmaps were derived from the Vision for Space Exploration and the Aldrich Commission Report dated June 2004. NASA identified 12 strategic areas for roadmapping. The Agency added a thirteenth area on nuclear systems because the topic affects the entire program portfolio. To ensure long-term public visibility and engagement, NASA established a committee for each of the 13 areas. These committees - made up of prominent members of the scientific and aerospace industry communities and senior government personnel - worked under the Federal Advisory Committee Act. A committee was formed for each of the following program areas: 1) Robotic and Human Lunar Exploration; 2) Robotic and Human Exploration of Mars; 3) Solar System Exploration; 4) Search for Earth-Like Planets; 5) Exploration Transportation System; 6) International Space Station; 7) Space Shuttle; 8) Universe Exploration; 9) Earth Science and Applications from Space; 10) Sun-Solar System Connection; 11) Aeronautical Technologies; 12) Education; 13) Nuclear Systems. This document contains roadmap summaries for 10 of these 13 program areas; The International Space Station, Space Shuttle, and Education are excluded. The completed roadmaps for the following committees: Robotic and Human Exploration of Mars; Solar System Exploration; Search for Earth-Like Planets; Universe Exploration; Earth Science and Applications from Space; Sun-Solar System Connection are collected in a separate Strategic Roadmaps volume. This document contains memebership rosters and charters for all 13 committees.
The 2016 oxide electronic materials and oxide interfaces roadmap
NASA Astrophysics Data System (ADS)
Lorenz, M.; Ramachandra Rao, M. S.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; Shan, F. K.; Grundmann, M.; Boschker, H.; Mukherjee, J.; Priyadarshini, M.; DasGupta, N.; Rogers, D. J.; Teherani, F. H.; Sandana, E. V.; Bove, P.; Rietwyk, K.; Zaban, A.; Veziridis, A.; Weidenkaff, A.; Muralidhar, M.; Murakami, M.; Abel, S.; Fompeyrine, J.; Zuniga-Perez, J.; Ramesh, R.; Spaldin, N. A.; Ostanin, S.; Borisov, V.; Mertig, I.; Lazenka, V.; Srinivasan, G.; Prellier, W.; Uchida, M.; Kawasaki, M.; Pentcheva, R.; Gegenwart, P.; Miletto Granozio, F.; Fontcuberta, J.; Pryds, N.
2016-11-01
Oxide electronic materials provide a plethora of possible applications and offer ample opportunity for scientists to probe into some of the exciting and intriguing phenomena exhibited by oxide systems and oxide interfaces. In addition to the already diverse spectrum of properties, the nanoscale form of oxides provides a new dimension of hitherto unknown phenomena due to the increased surface-to-volume ratio. Oxide electronic materials are becoming increasingly important in a wide range of applications including transparent electronics, optoelectronics, magnetoelectronics, photonics, spintronics, thermoelectrics, piezoelectrics, power harvesting, hydrogen storage and environmental waste management. Synthesis and fabrication of these materials, as well as processing into particular device structures to suit a specific application is still a challenge. Further, characterization of these materials to understand the tunability of their properties and the novel properties that evolve due to their nanostructured nature is another facet of the challenge. The research related to the oxide electronic field is at an impressionable stage, and this has motivated us to contribute with a roadmap on ‘oxide electronic materials and oxide interfaces’. This roadmap envisages the potential applications of oxide materials in cutting edge technologies and focuses on the necessary advances required to implement these materials, including both conventional and novel techniques for the synthesis, characterization, processing and fabrication of nanostructured oxides and oxide-based devices. The contents of this roadmap will highlight the functional and correlated properties of oxides in bulk, nano, thin film, multilayer and heterostructure forms, as well as the theoretical considerations behind both present and future applications in many technologically important areas as pointed out by Venkatesan. The contributions in this roadmap span several thematic groups which are represented by the following authors: novel field effect transistors and bipolar devices by Fortunato, Grundmann, Boschker, Rao, and Rogers; energy conversion and saving by Zaban, Weidenkaff, and Murakami; new opportunities of photonics by Fompeyrine, and Zuniga-Perez; multiferroic materials including novel phenomena by Ramesh, Spaldin, Mertig, Lorenz, Srinivasan, and Prellier; and concepts for topological oxide electronics by Kawasaki, Pentcheva, and Gegenwart. Finally, Miletto Granozio presents the European action ‘towards oxide-based electronics’ which develops an oxide electronics roadmap with emphasis on future nonvolatile memories and the required technologies. In summary, we do hope that this oxide roadmap appears as an interesting up-to-date snapshot on one of the most exciting and active areas of solid state physics, materials science, and chemistry, which even after many years of very successful development shows in short intervals novel insights and achievements. Guest editors: M S Ramachandra Rao and Michael Lorenz
Small Aircraft Transportation System Concept and Technologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Durham, Michael H.; Tarry, Scott E.
2005-01-01
This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements.
A European Roadmap for Thermophysical Properties Metrology
NASA Astrophysics Data System (ADS)
Filtz, J.-R.; Wu, J.; Stacey, C.; Hollandt, J.; Monte, C.; Hay, B.; Hameury, J.; Villamañan, M. A.; Thurzo-Andras, E.; Sarge, S.
2015-03-01
A roadmap for thermophysical properties metrology was developed in spring 2011 by the Thermophysical Properties Working Group in the EURAMET Technical Committee in charge of Thermometry, Humidity and Moisture, and Thermophysical Properties metrology. This roadmapping process is part of the EURAMET (European Association of National Metrology Institutes) activities aiming to increase impact from national investment in European metrology R&D. The roadmap shows a shared vision of how the development of thermophysical properties metrology should be oriented over the next 15 years to meet future social and economic needs. Since thermophysical properties metrology is a very broad and varied field, the authors have limited this roadmap to the following families of properties: thermal transport properties (thermal conductivity, thermal diffusivity, etc.), radiative properties (emissivity, absorbance, reflectance, and transmittance), caloric quantities (specific heat, enthalpy, etc.), thermodynamic properties (PVT and phase equilibria properties), and temperature-dependent quantities (thermal expansion, compressibility, etc.). This roadmap identifies the main societal and economical triggers that drive developments in thermophysical properties metrology. The key topics considered are energy, environment, advanced manufacturing and processing, public safety, security, and health. Key targets that require improved thermophysical properties measurements are identified in order to address these triggers. Ways are also proposed for defining the necessary skills and the main useful means to be implemented. These proposals will have to be revised as needs and technologies evolve in the future.
Emerging Education Technologies and Research Directions
ERIC Educational Resources Information Center
Spector, J. Michael
2013-01-01
Two recent publications report the emerging technologies that are likely to have a significant impact on learning and instruction: (a) New Media Consortium's "2011 Horizon Report" (Johnson, Smith, Willis, Levine & Haywood, 2011), and (b) "A Roadmap for Education Technology" funded by the National Science Foundation in…
Hasse, J U; Weingaertner, D E
2016-01-01
As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.
A Roadmap for Thermal Metrology
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Fischer, J.; Machin, G.; Pavese, F.; Peruzzi, A.; Renaot, E.; Tegeler, E.
2009-02-01
A provisional roadmap for thermal metrology was developed in Spring 2006 as part of the EUROMET iMERA activity toward increasing impact from national investment in European metrology R&D. This consisted of two parts: one addressing the influence of thermal metrology on society, industry, and science, and the other specifying the requirements of enabling thermal metrology to serve future needs. The roadmap represents the shared vision of the EUROMET TC Therm committee as to how thermal metrology should develop to meet future requirements over the next 15 years. It is important to stress that these documents are a first attempt to roadmap the whole of thermal metrology and will certainly need regular review and revision to remain relevant and useful to the community they seek to serve. The first part of the roadmap, “Thermal metrology for society, industry, and science,” identifies the main social and economic triggers driving developments in thermal metrology—notably citizen safety and security, new production technologies, environment and global climate change, energy, and health. Stemming from these triggers, key targets are identified that require improved thermal measurements. The second part of the roadmap, “Enabling thermal metrology to serve future needs” identifies another set of triggers, like global trade and interoperability, future needs in transport, and the earth radiation budget. Stemming from these triggers, key targets are identified, such as improved realizations and dissemination of the SI unit the kelvin, anchoring the kelvin to the Boltzmann constant, k B, and calculating thermal properties from first principles. To facilitate these outcomes, the roadmap identifies the technical advances required in thermal measurement standards.
Roadmap on optical energy conversion
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; Yablonovitch, Eli; Beard, Matthew C.; Okada, Yoshitaka; Lany, Stephan; Gershon, Talia; Zakutayev, Andriy; Tahersima, Mohammad H.; Sorger, Volker J.; Naughton, Michael J.; Kempa, Krzysztof; Dagenais, Mario; Yao, Yuan; Xu, Lu; Sheng, Xing; Bronstein, Noah D.; Rogers, John A.; Alivisatos, A. Paul; Nuzzo, Ralph G.; Gordon, Jeffrey M.; Wu, Di M.; Wisser, Michael D.; Salleo, Alberto; Dionne, Jennifer; Bermel, Peter; Greffet, Jean-Jacques; Celanovic, Ivan; Soljacic, Marin; Manor, Assaf; Rotschild, Carmel; Raman, Aaswath; Zhu, Linxiao; Fan, Shanhui; Chen, Gang
2016-07-01
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in the optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. It is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.
ERIC Educational Resources Information Center
Data Quality Campaign, 2016
2016-01-01
Every state can create secure, robust linkages between early childhood and K-12 data systems, and effectively use the information from these linkages to implement initiatives to support programs and children, answer key policy questions, and be transparent about how the state's early childhood investments prepare students for success in school and…
NASA Technical Reports Server (NTRS)
Graves, Claude
2005-01-01
Some engineering topics: Some Initial Thoughts. Capability Description. Capability State-of-the-Art. Capability Requirements. Systems Engineering. Capability Roadmap. Capability Maturity. Candidate Technologies. Metrics.
X-43D Conceptual Design and Feasibility Study
NASA Technical Reports Server (NTRS)
Johnson, Donald B.; Robinson, Jeffrey S.
2005-01-01
NASA s Next Generation Launch Technology (NGLT) Program, in conjunction with the office of the Director of Defense Research and Engineering (DDR&E), developed an integrated hypersonic technology demonstration roadmap. This roadmap is an integral part of the National Aerospace Initiative (NAI), a multi-year, multi-agency cooperative effort to invest in and develop, among other things, hypersonic technologies. This roadmap contains key ground and flight demonstrations required along the path to developing a reusable hypersonic space access system. One of the key flight demonstrations required for systems that will operate in the high Mach number regime is the X-43D. As currently conceived, the X-43D is a Mach 15 flight test vehicle that incorporates a hydrogen-fueled scramjet engine. The purpose of the X-43D is to gather high Mach number flight environment and engine operability information which is difficult, if not impossible, to gather on the ground. During 2003, the NGLT Future Hypersonic Flight Demonstration Office initiated a feasibility study on the X-43D. The objective of the study was to develop a baseline conceptual design, assess its performance, and identify the key technical issues. The study also produced a baseline program plan, schedule, and cost, along with a list of key programmatic risks.
Science and Technology (S and T) Roadmap Collaboration between SMC, NASA, and Government Partners
NASA Technical Reports Server (NTRS)
Betser, Joseph; Ewart, Roberta; Chandler, Faith
2016-01-01
National Security Space (NSS) presents multi-faceted S and T challenges. We must continually innovate enterprise and information management; provide decision support; develop advanced materials; enhance sensor technology; transform communication technology; develop advanced propulsion and resilient space architectures and capabilities; and enhance multiple additional S and T domains. These challenges are best met by leveraging advanced S and T research and technology development from a number of DoD agencies and civil agencies such as NASA. The authors of this paper have engaged in these activities since 2006 and over the past decade developed multiple strategic S and T relationships. This paper highlights the Office of the Space Missile Systems Center (SMC) Chief Scientist (SMC/ST) collaboration with the NASA Office of Chief Technologist (NASA OCT), which has multiple S and T activities that are relevant to NSS. In particular we discuss the development of the Technology Roadmaps that benefit both Civil Space and NSS. Our collaboration with NASA OCT has been of mutual benefit to multiple participants. Some of the other DoD components include the Defense Advanced Research Projects agency (DARPA), Air Force Research Laboratory (AFRL), Naval Research Laboratory (NRL), The USAF Office of Chief Scientist, the USAF Science Advisory Board (SAB), Space and Naval Warfare Systems Command (SPAWAR), and a number of other services and agencies. In addition, the human talent is a key enabler of advanced S and T activities; it is absolutely critical to have a strong supply of talent in the fields of Science Technology, Engineering, and Mathematics (STEM). Consequently, we continually collaborate with the USAF Institute of Technology (AFIT), other service academies and graduate schools, and other universities and colleges. This paper highlights the benefits that result from such strategic S and T partnerships and recommends a way forward that will continually build upon these achievements into the future.
ERIC Educational Resources Information Center
Missouri School Boards Association, Columbia.
The strategic plan for educational technology was developed by the Missouri Technology Task Force to assist state and local authorities in the creative application and appropriate integration of all technologies to achieve the broad educational goals for elementary and secondary Missouri schools. The specific goals and objectives of the plan…
Improving Coalitions through S&T Cooperation
2008-12-01
Canada Potentially disruptive technologies that could provide decisive advantage for the CF • Quantum capabilities • Autonomous intelligent systems...the gaps in the CF Strategic Capability Roadmap • Position Defence to exploit emerging or disruptive technologies • Reduce the costs of defence
JPL Advanced Thermal Control Technology Roadmap - 2012
NASA Technical Reports Server (NTRS)
Birur, Gaj; Rodriguez, Jose I.
2012-01-01
NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.
The NASA Planetary Data System Roadmap Study for 2017 - 2026
NASA Astrophysics Data System (ADS)
McNutt, R. L., Jr.; Gaddis, L. R.; Law, E.; Beyer, R. A.; Crombie, M. K.; Ebel, D. S. S.; Ghosh, A.; Grayzeck, E.; Morgan, T. H.; Paganelli, F.; Raugh, A.; Stein, T.; Tiscareno, M. S.; Weber, R. C.; Banks, M.; Powell, K.
2017-12-01
NASA's Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has evolved into an online collection of digital data managed and served by a federation of six science discipline nodes and two technical support nodes. Several ad hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions. The recent Planetary Data System Roadmap Study for 2017 to 2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes the history of the PDS, its functions and characteristics, and how it has evolved to its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex, evolving, archive system, the PDS must constantly respond to new pressures and opportunities. The report provides details on the challenges now facing the PDS, 19 detailed findings, suggested remediations, and a summary of what the future may hold for planetary data archiving. The findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and measurements of physical samples. Finally, the report discusses the current structure and governance of the PDS and its impact on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge in the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.
An Overview of the Planetary Data System Roadmap Study for 2017 - 2026
NASA Astrophysics Data System (ADS)
Morgan, Thomas H.; McNutt, Ralph L.; Gaddis, Lisa; Law, Emily; Beyer, Ross A.; Crombie, Kate; Ebel, Denton; Ghosh, Amitahba; Grayzeck, Edwin J.; Paganelli, Flora; Raugh, Anne C.; Stein, Thomas; Tiscareno, Matthew S.; Weber, Renee; E Banks, Maria; Powell, Kathryn
2017-10-01
NASA’s Planetary Data System (PDS) is the formal archive of >1.2 petabytes of data from planetary exploration, science, and research. Initiated in 1989 to address an overall lack of attention to mission data documentation, access, and archiving, the PDS has since evolved into an online collection of digital data managed and served by a federation of 6 science discipline nodes and 2 technical support nodes. Several ad-hoc mission-oriented data nodes also provide complex data interfaces and access for the duration of their missions.The new PDS Roadmap Study for 2017-2026 involved 15 planetary science community members who collectively prepared a report summarizing the results of an intensive examination of the current state of the PDS and its organization, management, practices, and data holdings (https://pds.jpl.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). The report summarizes PDS history, its functions and characteristics, and its present form; also included are extensive references and documentary appendices. The report recognizes that as a complex evolving system, the PDS must respond to new pressures and opportunities. The report provides details on challenges now facing the PDS, 19 detailed findings and suggested remediations that could be used to respond to these findings, and a summary of the potential future of planetary data archiving. These findings cover topics such as user needs and expectations, data usability and discoverability (i.e., metadata, data access, documentation, and training), tools and file formats, use of current information technologies, and responses to increases in data volume, variety, complexity, and number of data providers. In addition, the study addresses the possibility of archiving software, laboratory data, and physical samples. Finally, the report discusses the current structure and governance of PDS and the impact of this on how archive growth, technology, and new developments are enabled and managed within the PDS. The report, with its findings, acknowledges the ongoing and expected challenges to be faced in the future, the need for maintaining an edge on the use of emerging technologies, and represents a guide for evolution of the PDS for the next decade.
2003-07-01
Centric Architecture Office ( NCAO ) should develop an RF communications/network management technology roadmap. The roadmap should serve two purposes: a...Centric Architecture Office ( NCAO ) chartered with integrating diverse DoD efforts to provide technical alternatives to the current form of radio...American people as a cornerstone of DoD’s leadership of the public trust in this area. The NCAO should be consolidated from ongoing NII, JTRS JPO and DDR
The WHF Roadmap for Reducing CV Morbidity and Mortality Through Prevention and Control of RHD.
Palafox, Benjamin; Mocumbi, Ana Olga; Kumar, R Krishna; Ali, Sulafa K M; Kennedy, Elizabeth; Haileamlak, Abraham; Watkins, David; Petricca, Kadia; Wyber, Rosemary; Timeon, Patrick; Mwangi, Jeremiah
2017-03-01
Rheumatic heart disease (RHD) is a preventable non-communicable condition that disproportionately affects the world's poorest and most vulnerable. The World Heart Federation Roadmap for improved RHD control is a resource designed to help a variety of stakeholders raise the profile of RHD nationally and globally, and provide a framework to guide and support the strengthening of national, regional and global RHD control efforts. The Roadmap identifies the barriers that limit access to and uptake of proven interventions for the prevention and control of RHD. It also highlights a variety of established and promising solutions that may be used to overcome these barriers. As a general guide, the Roadmap is meant to serve as the foundation for the development of tailored plans of action to improve RHD control in specific contexts. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
#2) Sensor Technology-State of the Science | Science ...
Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.
A Roadmap for Cybersecurity Research
2009-11-01
Compile and compare existing studies relating to the insider threat. (Detect) �� Develop data collection mechanisms and collect data. (Detect...for capturing provenance. The model aims to make it easier for provenance to be exchanged between systems, to support development of provenance... It is the opinion of those involved in creating this research roadmap that government-funded research and development (R&D) must play an increasing
Habitats and Surface Construction Technology and Development Roadmap
NASA Technical Reports Server (NTRS)
Cohen, Marc; Kennedy, Kriss J.
1997-01-01
The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.
National General Aviation Roadmap for a Small Aircraft Transportation System (SATS)
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2000-01-01
The National Aeronautics and Space Administration (NASA), Federal Aviation Administration, as well as state, industry, and academia partners have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This long-term strategic undertaking has a goal to bring next-generation technologies and improve air access to small communities. The envisioned outcome is to improve travel between remote communities and transportation centers in urban areas by utilizing a new generation of single-pilot light planes for personal and business transportation between the nation's 5,400 public use general aviation airports. Current NASA investments in aircraft technologies are enabling industry to bring affordable, safe, and easy-to-use features to the marketplace, including "Highway in the Sky" glass cockpit operating capabilities, affordable crash worthy composite airframes, more efficient IFR flight training, and revolutionary engines. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. State partnerships are proposed to coordinate research support in key public infrastructure areas. Ultimately, SATS may permit more than tripling aviation system throughput capacity by tapping the under-utilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.
van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B
2018-03-01
To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.
Europe Unveils 20-Year Plan for Brilliant Future in Astronomy
NASA Astrophysics Data System (ADS)
2008-11-01
Astronomy is enjoying a golden age of fundamental, exciting discoveries. Europe is at the forefront, thanks to 50 years of progress in cooperation. To remain ahead over the next two to three decades, Europe must prioritise and coordinate the investment of its financial and human resources even more closely. The ASTRONET network, backed by the entire European scientific community, supported by the European Commission, and coordinated by the CNRS, today presents its Roadmap for a brilliant future for European astronomy. ESO's European Extremely Large Telescope is ranked as one of two top-priority large ground-based projects. Astronet and the E-ELT ESO PR Photo 43a/08 The E-ELT Europe is a leader in astronomy today, with the world's most successful optical observatory, ESO's Very Large Telescope, and cutting-edge facilities in radio astronomy and in space. In an unprecedented effort demonstrating the potential of European scientific cooperation, all of European astronomy is now joining forces to define the scientific challenges for the future and construct a common plan to address them in a cost-effective manner. In 2007, a top-level Science Vision was prepared to assess the most burning scientific questions over the next quarter century, ranging from dark energy to life on other planets. European astronomy now presents its Infrastructure Roadmap, a comprehensive 20-year plan to coordinate national and community investments to meet these challenges in a cost-effective manner. The Roadmap not only prioritises the necessary new frontline research facilities from radio telescopes to planetary probes, in space and on the ground, but also considers such key issues as existing facilities, human resources, ICT infrastructure, education and outreach, and cost -- of operations as well as construction. This bold new initiative -- ASTRONET -- was created by the major European funding agencies with support from the European Commission and is coordinated by the National Institute for Earth Sciences and Astronomy (INSU) of the CNRS. To build consensus on priorities in a very diverse community, the Science Vision and Roadmap were developed in an open process involving intensive interaction with the community through large open meetings and feedback via e-mail and the web. The result is a plan now backed by astronomers in 28 Member and Associated States of the EU, with over 500 million inhabitants. Over 60 selected experts from across Europe contributed to the construction of the ASTRONET Roadmap, ensuring that European astronomy has the tools to compete successfully in answering the challenges of the Science Vision. They identified and prioritised a set of new facilities to observe the Universe from radio waves to gamma rays, to open up new ways of probing the cosmos, such as gravitational waves, and to advance in the exploration of our Solar System. In the process, they considered all the elements needed by a successful scientific enterprise, from global-scale cooperation on the largest mega-project to the need for training and recruiting skilled young scientists and engineers. One of two top-priority large ground-based projects is ESO's European Extremely Large Telescope. Its 42-metre diameter mirror will make the E-ELT the largest optical/near-infrared telescope in the world -- "the biggest eye on the sky". The science to be done with the E-ELT is extremely exciting and includes studies of exoplanets and discs, galaxy formation and dark energy. ESO Director General Tim de Zeeuw says: "The top ranking of the E-ELT in the Roadmap is a strong endorsement from the European astronomical community. This flagship project will indisputably raise the European scientific, technological and industrial profile". Among other recommendations, the Roadmap considers how to maximise the future scientific impact of existing facilities in a cost-effective manner. It also identifies a need for better access to state-of-the art computing and laboratory facilities, and for a stronger involvement of European high-tech industry in the development of future facilities. Moreover, success depends critically upon an adequate supply of qualified scientists, and of engineers in fields ranging from IT to optics. Finally, the Roadmap proposes a series of measures to enhance the public understanding of astronomy as a means to boost recruitment in science and technology in schools and universities across Europe. Europe currently spends approximately €2 billion a year on astronomy in the broadest sense. Implementing the ASTRONET Roadmap will require a funding increase of around 20% -- less than €1 per year per European citizen. Global cooperation will be needed -- and is being planned -- for several of the largest projects.
Advanced Life Support Project Plan
NASA Technical Reports Server (NTRS)
2002-01-01
Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Haan, Michiel W. de, E-mail: m.de.haan@mumc.nl; Graaf, Rick de, E-mail: r.de.graaf@mumc.nl
PurposeThis study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA).MethodsFusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusionmore » road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography.ResultsAverage time needed for image coregistration was 5 ± 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 ± 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 ± 1.96 standard deviation).ConclusionsFluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety.« less
Maher, Molly; Hanauer, David A; Kaziunas, Elizabeth; Ackerman, Mark S; Derry, Holly; Forringer, Rachel; Miller, Kristen; O'Reilly, Dennis; An, Lawrence; Tewari, Muneesh; Choi, Sung Won
2015-10-27
Pediatric hematopoietic cell transplantation (HCT), commonly referred to as blood and marrow transplantation (BMT), is an intense treatment modality that requires the involvement of engaged caregivers during the patient's (child's) prolonged hospitalization. The ubiquity of electronic health records (EHRs) and a trend toward patient-centered care could allow a novel health information technology (IT) system to increase parental engagement. The paucity of research on acute care, hospital-based (inpatient) health IT applications for patients or caregivers provides an opportunity for testing the feasibility of such applications. The pediatric BMT population represents an ideal patient group to conduct an evaluation due to the lengthy inpatient stays and a heightened need for patient activation. The primary objective of this study is to assess the feasibility of implementing the BMT Roadmap in caregivers as an intervention during their child's inpatient hospitalization. The BMT Roadmap is an inpatient portal prototype optimized for tablet with a user-centered design. It integrates patient-specific laboratory and medication data from the EHR in real-time and provides support in terms of discharge goals, home care education, and other components. Feasibility will be proven if (1) the BMT Roadmap functions and can be managed by the study team without unexpected effort, (2) the system is accessed by users at a defined minimum threshold, and (3) the qualitative and quantitative research conducted provides quality data that address the perceived usefulness of the BMT Roadmap and could inform a study in a larger sample size. This will be a single-arm, nonrandomized feasibility study. We aim to enroll 10 adult caregivers (age ≥ 18 years) of pediatric patients (aged 0-25 years) undergoing autologous (self-donor) or allogeneic (alternative donor) BMT. Assenting minors (aged 10-18) will also be invited to participate. Recruitment of study participants will take place in the outpatient pediatric BMT clinic. After signing an informed consent, the research study team will provide participants with the BMT Roadmap, available on an Apple iPad, which will used throughout the inpatient hospitalization. To measure the study outcomes, approximately 6-8 semistructured qualitative interviews will be conducted periodically from pre-BMT to 100 days post-BMT and an additional 15-20 semistructured interviews will be conducted among BMT health care providers to assess perceived usefulness and usability of the system, as well as any associated workflow impacts. Quantitative survey instruments will only be administered to adult participants (age ≥ 18 years). Recruitment will begin in September 2015, and preliminary findings are expected in 2016. This protocol offers a framework for the design and analysis of a personalized health IT system that has the potential to increase patient and caregiver engagement in acute care, hospital-based contexts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Frederick B.; Shalf, John; Mitchell, Alan
This report captures the initial conclusions of the DOE seven National Lab team collaborating on the “Solving the Information Technology Energy Challenge Beyond Moore’s Law” initiative from the DOE Big Idea Summit III held in April of 2016. The seven Labs held a workshop in Albuquerque, NM in late July 2016 and gathered 40 researchers into 5 working groups: 4 groups spanning the levels of the co-design framework shown below, and a 5th working group focused on extending and advancing manufacturing approaches and coupling their constraints to all of the framework levels. These working groups have identified unique capabilities withinmore » the Labs to support the key challenges of this Beyond Moore’s Law Computing (BMC) vision, as well as example first steps and potential roadmaps for technology development.« less
Second Wave of Biometric ID-documents in Europe: The Residence Permit for non-EU/EEA Nationals
NASA Astrophysics Data System (ADS)
Houdeau, Detlef
The first implementation of biometric documents, called biometric passports, based on a regulation is running, the second implementation since end of CY 2008 is coming to Europe. The focus is on persons staying for business, study or leisure for more than 3 months in Europe and coming from a state outside Europe and not being a member of the Visa-Waiver-Program of the EU. This second wave increases the demand for the security industry for certified security microcontroller chips, secure smart cards, readers and supporting infrastructure on top of the biometric Passport business. It underlines the continuing advance of contactless identification technology in the public sector. The article gives an overview on the application, the technology, the EU regulation, the EU roadmap and the implementations.
Establishment of the roadmap for chlorination process development for zirconium recovery and recycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, E.D.; Del Cul, G.D.; Spencer, B.B.
Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less
Psychological Operations within the Cyberspace Domain
2010-02-17
Year‖ 29 Fogg , Persuasive Technology, 5 30 Thomas, Cyber Silhouettes, 279 11 The cyber domain and persuasive technologies offers several...31 Fogg , Persuasive Technology, 7 32 Ibid., 7 33 Ibid., 8 34 Ibid., 8 35 Ibid., 8 36 Joint Publication 3-53, Psychological Operations...44 Smart, Metaverse Roadmap, 14 45 Fogg , Persuasive Technology, 196 46 Ibid., 197 47 Ibid., 197 15 principle of social
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2013-01-01
The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.
Towards G2G: Systems of Technology Database Systems
NASA Technical Reports Server (NTRS)
Maluf, David A.; Bell, David
2005-01-01
We present an approach and methodology for developing Government-to-Government (G2G) Systems of Technology Database Systems. G2G will deliver technologies for distributed and remote integration of technology data for internal use in analysis and planning as well as for external communications. G2G enables NASA managers, engineers, operational teams and information systems to "compose" technology roadmaps and plans by selecting, combining, extending, specializing and modifying components of technology database systems. G2G will interoperate information and knowledge that is distributed across organizational entities involved that is ideal for NASA future Exploration Enterprise. Key contributions of the G2G system will include the creation of an integrated approach to sustain effective management of technology investments that supports the ability of various technology database systems to be independently managed. The integration technology will comply with emerging open standards. Applications can thus be customized for local needs while enabling an integrated management of technology approach that serves the global needs of NASA. The G2G capabilities will use NASA s breakthrough in database "composition" and integration technology, will use and advance emerging open standards, and will use commercial information technologies to enable effective System of Technology Database systems.
2014-05-01
A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study... Drinking Water Utilities was supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre...after CBRN Event Involving Drinking Water Utilities Scoping Study Prepared by: Vladimir Blinov Konstantin Volchek Emergencies Science and
NASA Technical Reports Server (NTRS)
Des Marais, David J.; Allamandola, Louis J.; Benner, Steven A.; Boss, Alan P.; Deamer, David; Falkowski, Paul G.; Farmer, Jack D.; Hedges, S. Blair; Jakosky, Bruce M.; Knoll, Andrew H.;
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
The NASA Astrobiology Roadmap.
Des Marais, David J; Allamandola, Louis J; Benner, Steven A; Boss, Alan P; Deamer, David; Falkowski, Paul G; Farmer, Jack D; Hedges, S Blair; Jakosky, Bruce M; Knoll, Andrew H; Liskowsky, David R; Meadows, Victoria S; Meyer, Michael A; Pilcher, Carl B; Nealson, Kenneth H; Spormann, Alfred M; Trent, Jonathan D; Turner, William W; Woolf, Neville J; Yorke, Harold W
2003-01-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: How does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own solar system, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high-priority efforts for the next 3-5 years. These 18 objectives are being integrated with NASA strategic planning.
Carbon Dioxide Utilization (CO2U) ICEF Roadmap 2.0. Draft October 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandalow, David; Aines, Roger; Friedmann, Julio
Last year, experts from CO 2 Sciences, Columbia University and Valence Strategic came together to develop a roadmap. That document, Carbon Dioxide Utilization ICEF Roadmap 1.0, released at the UNFCCC Marrakesh Climate Change Conference in 2016, surveyed the commercial and technical landscape of CO 2 conversion and use. The document provided extensive background and analysis and has helped to provide a foundation for additional studies, including this one.This roadmap is meant to complement and expand upon the work of its predecessor. Based in part on a workshop at Columbia University’s Center on Global Energy Policy in July 2017, it exploresmore » three distinct categories of CO 2-based products, the technologies that can be harnessed to convert CO2 to these products, and the associated research and development needs. It also explores the complicated topic of life cycle analysis—critically important when considering the climate impacts of CO 2 conversion and use—as well as policy tools that could be used to promote CO 2-based products.« less
The NASA Astrobiology Roadmap.
Des Marais, David J; Nuth, Joseph A; Allamandola, Louis J; Boss, Alan P; Farmer, Jack D; Hoehler, Tori M; Jakosky, Bruce M; Meadows, Victoria S; Pohorille, Andrew; Runnegar, Bruce; Spormann, Alfred M
2008-08-01
The NASA Astrobiology Roadmap provides guidance for research and technology development across the NASA enterprises that encompass the space, Earth, and biological sciences. The ongoing development of astrobiology roadmaps embodies the contributions of diverse scientists and technologists from government, universities, and private institutions. The Roadmap addresses three basic questions: how does life begin and evolve, does life exist elsewhere in the universe, and what is the future of life on Earth and beyond? Seven Science Goals outline the following key domains of investigation: understanding the nature and distribution of habitable environments in the universe, exploring for habitable environments and life in our own Solar System, understanding the emergence of life, determining how early life on Earth interacted and evolved with its changing environment, understanding the evolutionary mechanisms and environmental limits of life, determining the principles that will shape life in the future, and recognizing signatures of life on other worlds and on early Earth. For each of these goals, Science Objectives outline more specific high priority efforts for the next three to five years. These eighteen objectives are being integrated with NASA strategic planning.
Comparative Effectiveness Research: A Roadmap for Physical Activity and Lifestyle
Jakicic, John M.; Sox, Harold; Blair, Steven N.; Bensink, Mark; Johnson, William G.; King, Abby C.; Lee, I-Min; Nahum-Shani, Inbal; Sallis, James F.; Sallis, Robert E.; Craft, Lynette; Whitehead, James R.; Ainsworth, Barbara E.
2017-01-01
Purpose Comparative Effectiveness Research (CER) is designed to support informed decision making at both the individual, population, and policy levels. The American College of Sports Medicine and partners convened a conference with the focus of building an agenda for CER within the context of physical activity and non-pharmacological lifestyle approaches in the prevention and treatment of chronic disease. This report summarizes the conference content and consensus recommendations that culminated in a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. Methods This conference focused on presentations and discussion around the following topic areas: 1) defining CER, 2) identifying the current funding climate to support CER, 3) summarizing methods for conducting CER, and 4) identifying CER opportunities for physical activity. Results This conference resulted in consensus recommendations to adopt a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. In general, this roadmap provides a systematic framework by which CER for physical activity can move from a planning phase, to a phase of engagement in CER related to lifestyle factors with particular emphasis on physical activity, to a societal change phase that results in changes in policy, practice, and health. Conclusions It is recommended that physical activity researchers and healthcare providers use the roadmap developed from this conference as a method to systematically engage in and apply CER to the promotion of physical activity as a key lifestyle behavior that can be effective at impacting a variety of health-related outcomes. PMID:25426735
JAXA's Space Exploration Scenario
NASA Astrophysics Data System (ADS)
Sato, N. S.
2018-04-01
Japan Aerospace Exploration Agency (JAXA) has been studying space exploration scenario, including human exploration for Japan since 2015, which encompasses goals, knowledge gap assessment, and architecture. assessment, and technology roadmap.
NASA Technical Reports Server (NTRS)
Wyrwas, Edward J.
2017-01-01
This presentation will include information about Double Data Rate (DDR) technology, NASA Electronic Parts and Packaging (NEPP) tasks and their purpose, collaborations, a roadmap, NEPP partners, results to date, and future plans.
The Cumbria Rural Health Forum: initiating change and moving forward with technology.
Ditchburn, Jae-Llane; Marshall, Alison
2016-01-01
The Cumbria Rural Health Forum was formed by a number of public, private and voluntary sector organisations to collaboratively work on rural health and social care in the county of Cumbria, England. The aim of the forum is to improve health and social care delivery for rural communities, and share practical ideas and evidence-based best practice that can be implemented in Cumbria. The forum currently consists of approximately 50 organisations interested in and responsible for delivery of health and social care in Cumbria. An exploration of digital technologies for health and care was recognised as an initial priority. This article describes a hands-on approach undertaken within the forum, including its current progress and development. The forum used a modified Delphi technique to facilitate its work on discussing ideas and reaching consensus to formulate the Cumbria Strategy for Digital Technologies in Health and Social Care. The group communication process took place over meetings and workshops held at various locations in the county. A roadmap for the implementation of digital technologies into health and social care was developed. The roadmap recommends the following: (i) to improve the health outcomes for targeted groups, within a unit, department or care pathway; (ii) to explain, clarify, share good (and bad) practice, assess impact and value through information sharing through conferences and events, influencing and advocacy for Cumbria; and (iii) to develop a digital-health-ready workforce where health and social care professionals can be supported to use digital technologies, and enhance recruitment and retention of staff. The forum experienced issues consistent with those in other Delphi studies, such as the repetition of ideas. Attendance was variable due to the unavailability of key people at times. Although the forum facilitated collective effort to address rural health issues, its power is limited to influencing and supporting implementation of change. Within the implementation phase, the forum has engaged in advising and facilitating policy change at all levels. Thus, the forum has become a voice to influence change towards the advancement of health and social care through digital technologies. The forum continues to serve as a think tank and influencer for change in rural health and social care issues in Cumbria. The forum has increased awareness of digital health and social care solutions, mapped best practice and developed a digital strategy for health and social care in Cumbria.
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Dennehy, Neil
2015-01-01
A retrospective consideration of two 15-year old Guidance, Navigation and Control (GN&C) technology 'vision' predictions will be the focus of this paper. A look back analysis and critique of these late 1990s technology roadmaps out-lining the future vision, for two then nascent, but rapidly emerging, GN&C technologies will be performed. Specifically, these two GN&C technologies were: 1) multi-spacecraft formation flying and 2) the spaceborne use and exploitation of global positioning system (GPS) signals to enable formation flying. This paper reprises the promise of formation flying and spaceborne GPS as depicted in the cited 1999 and 1998 papers. It will discuss what happened to cause that promise to be mostly unfulfilled and the reasons why the envisioned formation flying dream has yet to become a reality. The recent technology trends over the past few years will then be identified and a renewed government interest in spacecraft formation flying/cluster flight will be highlighted. The authors will conclude with a reality-tempered perspective, 15 years after the initial technology roadmaps were published, predicting a promising future of spacecraft formation flying technology development over the next decade.
Wireless Technology Use Case Requirement Analysis for Future Space Applications
NASA Technical Reports Server (NTRS)
Abedi, Ali; Wilkerson, DeLisa
2016-01-01
This report presents various use case scenarios for wireless technology -including radio frequency (RF), optical, and acoustic- and studies requirements and boundary conditions in each scenario. The results of this study can be used to prioritize technology evaluation and development and in the long run help in development of a roadmap for future use of wireless technology. The presented scenarios cover the following application areas: (i) Space Vehicles (manned/unmanned), (ii) Satellites and Payloads, (iii) Surface Explorations, (iv) Ground Systems, and (v) Habitats. The requirement analysis covers two parallel set of conditions. The first set includes the environmental conditions such as temperature, radiation, noise/interference, wireless channel characteristics and accessibility. The second set of requirements are dictated by the application and may include parameters such as latency, throughput (effective data rate), error tolerance, and reliability. This report provides a comprehensive overview of all requirements from both perspectives and details their effects on wireless system reliability and network design. Application area examples are based on 2015 NASA Technology roadmap with specific focus on technology areas: TA 2.4, 3.3, 5.2, 5.5, 6.4, 7.4, and 10.4 sections that might benefit from wireless technology.
A technology path to tactical agent-based modeling
NASA Astrophysics Data System (ADS)
James, Alex; Hanratty, Timothy P.
2017-05-01
Wargaming is a process of thinking through and visualizing events that could occur during a possible course of action. Over the past 200 years, wargaming has matured into a set of formalized processes. One area of growing interest is the application of agent-based modeling. Agent-based modeling and its additional supporting technologies has potential to introduce a third-generation wargaming capability to the Army, creating a positive overmatch decision-making capability. In its simplest form, agent-based modeling is a computational technique that helps the modeler understand and simulate how the "whole of a system" responds to change over time. It provides a decentralized method of looking at situations where individual agents are instantiated within an environment, interact with each other, and empowered to make their own decisions. However, this technology is not without its own risks and limitations. This paper explores a technology roadmap, identifying research topics that could realize agent-based modeling within a tactical wargaming context.
NASA Technical Reports Server (NTRS)
Critchfield, Anna R.; Zepp, Robert H.
2000-01-01
We propose that the user interact with the spacecraft as if the spacecraft were a file server, so that the user can select and receive data as files in standard formats (e.g., tables or images, such as jpeg) via the Internet. Internet technology will be used end-to-end from the spacecraft to authorized users, such as the flight operation team, and project scientists. The proposed solution includes a ground system and spacecraft architecture, mission operations scenarios, and an implementation roadmap showing migration from current practice to the future, where distributed users request and receive files of spacecraft data from archives or spacecraft with equal ease. This solution will provide ground support personnel and scientists easy, direct, secure access to their authorized data without cumbersome processing, and can be extended to support autonomous communications with the spacecraft.
Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James
2005-01-01
New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in some detail. The objectives of each effort were noted. Issues relative to code validation for injector design were discussed in some detail. The requirement for CFD support during the design of the experiment was noted and discussed in terms of instrumentation placement and experimental rig uncertainty. In conclusion, MSFC has made significant progress in the last two years in advancing CFD toward the goal of application to injector design. A parallel effort focused on program support and technology development via the SCIT Task have enabled the progress.
Autonomous Satellite Command and Control through the World Wide Web: Phase 3
NASA Technical Reports Server (NTRS)
Cantwell, Brian; Twiggs, Robert
1998-01-01
NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.
A technology roadmap of smart biosensors from conventional glucose monitoring systems.
Shende, Pravin; Sahu, Pratiksha; Gaud, Ram
2017-06-01
The objective of this review article is to focus on technology roadmap of smart biosensors from a conventional glucose monitoring system. The estimation of glucose with commercially available devices involves analysis of blood samples that are obtained by pricking finger or extracting blood from the forearm. Since pain and discomfort are associated with invasive methods, the non-invasive measurement techniques have been investigated. The non-invasive methods show advantages like non-exposure to sharp objects such as needles and syringes, due to which there is an increase in testing frequency, improved control of glucose concentration and absence of pain and biohazard materials. This review study is aimed to describe recent invasive techniques and major noninvasive techniques, viz. biosensors, optical techniques and sensor-embedded contact lenses for glucose estimation.
Roadmap on optical energy conversion
Boriskina, Svetlana V.; Green, Martin A.; Catchpole, Kylie; ...
2016-06-24
For decades, progress in the field of optical (including solar) energy conversion was dominated by advances in the conventional concentrating optics and materials design. In recent years, however, conceptual and technological breakthroughs in the fields of nanophotonics and plasmonics combined with a better understanding of the thermodynamics of the photon energy-conversion processes reshaped the landscape of energy-conversion schemes and devices. Nanostructured devices and materials that make use of size quantization effects to manipulate photon density of states offer a way to overcome the conventional light absorption limits. Novel optical spectrum splitting and photon-recycling schemes reduce the entropy production in themore » optical energy-conversion platforms and boost their efficiencies. Optical design concepts are rapidly expanding into the infrared energy band, offering new approaches to harvest waste heat, to reduce the thermal emission losses, and to achieve noncontact radiative cooling of solar cells as well as of optical and electronic circuitries. Light-matter interaction enabled by nanophotonics and plasmonics underlie the performance of the third- and fourth-generation energy-conversion devices, including up- and down-conversion of photon energy, near-field radiative energy transfer, and hot electron generation and harvesting. Finally, the increased market penetration of alternative solar energy-conversion technologies amplifies the role of cost-driven and environmental considerations. This roadmap on optical energy conversion provides a snapshot of the state of the art in optical energy conversion, remaining challenges, and most promising approaches to address these challenges. Leading experts authored 19 focused short sections of the roadmap where they share their vision on a specific aspect of this burgeoning research field. The roadmap opens up with a tutorial section, which introduces major concepts and terminology. As a result, it is our hope that the roadmap will serve as an important resource for the scientific community, new generations of researchers, funding agencies, industry experts, and investors.« less
High power density superconducting rotating machines—development status and technology roadmap
NASA Astrophysics Data System (ADS)
Haran, Kiruba S.; Kalsi, Swarn; Arndt, Tabea; Karmaker, Haran; Badcock, Rod; Buckley, Bob; Haugan, Timothy; Izumi, Mitsuru; Loder, David; Bray, James W.; Masson, Philippe; Stautner, Ernst Wolfgang
2017-12-01
Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.
Learning beyond the Science Classroom: A Roadmap to Success
ERIC Educational Resources Information Center
Starr, Laura; Minchella, Dennis
2016-01-01
Today's college graduates compete in a global market fueled by rapid innovation and constant technological advances. In order to be able to contribute to and advance in these highly demanding careers, workers not only require advanced scientific and technological knowledge but they also need to possess versatility, collaborative problem-solving…
Space Missions and Information Technology: Some Thoughts and Highlights
NASA Technical Reports Server (NTRS)
Doyle, Richard J.
2006-01-01
A viewgraph presentation about information technology and its role in space missions is shown. The topics include: 1) Where is the IT on Space Missions? 2) Winners of the NASA Software of the Year Award; 3) Space Networking Roadmap; and 4) 10 (7) -Year Vision for IT in Space.
NASA Technical Reports Server (NTRS)
Blusiu, Julian O.
1997-01-01
Many Future NASA missions will be designed to robotically explore planets, moons and asteroids by collecting soil samples and conducting in-situ analyses to establish ground composition and look for the presence of specific components.
This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...
A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace
NASA Technical Reports Server (NTRS)
Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David
2016-01-01
The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of equipment certification and operational approval of new procedures are addressed in a way that minimizes their impact on the transition by deferring a change in the assignment of separation responsibility until a large body of operational data is available to support the safety case for this change in the last roadmap step.This paper will relate the roadmap steps to ongoing activities to clarify the economics-based transition to these technologies for operational use.
Rep. Giffords, Gabrielle [D-AZ-8
2009-09-16
Senate - 12/08/2009 Committee on Energy and Natural Resources Subcommittee on Energy. Hearings held. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, Robert J.
2015-10-26
Under the auspices of the International Atomic Energy Agency (IAEA), nationally developed underground research laboratories (URLs) and associated research institutions are being offered for use by other nations. These facilities form an Underground Research Facilities (URF) Network for training in and demonstration of waste disposal technologies and the sharing of knowledge and experience related to geologic repository development, research, and engineering. In order to achieve its objectives, the URF Network regularly sponsors workshops and training events related to the knowledge base that is transferable between existing URL programs and to nations with an interest in developing a new URL. Thismore » report describes the role of URLs in the context of a general timeline for repository development. This description includes identification of key phases and activities that contribute to repository development as a repository program evolves from an early research and development phase to later phases such as construction, operations, and closure. This information is cast in the form of a matrix with the entries in this matrix forming the basis of the URF Network roadmap that will be used to identify and plan future workshops and training events.« less
Xu, Wei
2014-01-01
This paper first discusses the major inefficiencies faced in current human factors and ergonomics (HFE) approaches: (1) delivering an optimal end-to-end user experience (UX) to users of a solution across its solution lifecycle stages; (2) strategically influencing the product business and technology capability roadmaps from a UX perspective and (3) proactively identifying new market opportunities and influencing the platform architecture capabilities on which the UX of end products relies. In response to these challenges, three case studies are presented to demonstrate how enhanced ergonomics design approaches have effectively addressed the challenges faced in current HFE approaches. Then, the enhanced ergonomics design approaches are conceptualised by a user-experience ecosystem (UXE) framework, from a UX ecosystem perspective. Finally, evidence supporting the UXE, the advantage and the formalised process for executing UXE and methodological considerations are discussed. Practitioner Summary: This paper presents enhanced ergonomics approaches to product design via three case studies to effectively address current HFE challenges by leveraging a systematic end-to-end UX approach, UX roadmaps and emerging UX associated with prioritised user needs and usages. Thus, HFE professionals can be more strategic, creative and influential.
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David
2007-01-01
The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.
Roadmap for Testing and Validation of Electric Vehicle Communication Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan
Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work bymore » the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald D Dudenhoeffer; Burce P Hallbert
Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less
Engineered Resilient Systems (ERS) S&T Priority Description and Roadmap
2011-11-08
ERS PSC, NDIA Disruptive Technologies 8 November 2011 Page-1 Distribution Statement A: Approved for public release; distribution is unlimited...ODASD SE NDIA 8th Annual Disruptive Technologies Conference 8 November 2011 Report Documentation Page Form ApprovedOMB No. 0704-0188...release; distribution unlimited 13. SUPPLEMENTARY NOTES Presented at the NDIA Disruptive Technologies Conference, November 8,-9, 2011 Washington, DC 14
Space Solar Power Concepts: Demonstrations to Pilot Plants
NASA Technical Reports Server (NTRS)
Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)
2002-01-01
The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.
Power systems for future missions
NASA Technical Reports Server (NTRS)
Gill, S. P.; Frye, P. E.; Littman, Franklin D.; Meisl, C. J.
1994-01-01
A comprehensive scenario of future missions was developed and applicability of different power technologies to these missions was assessed. Detailed technology development roadmaps for selected power technologies were generated. A simple methodology to evaluate economic benefits of current and future power system technologies by comparing Life Cycle Costs of potential missions was developed. The methodology was demonstrated by comparing Life Cycle Costs for different implementation strategies of DIPS/CBC technology to a selected set of missions.
Comprehensive Smart Grid Planning in a Regulated Utility Environment
NASA Astrophysics Data System (ADS)
Turner, Matthew; Liao, Yuan; Du, Yan
2015-06-01
This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.
Material Recover and Waste Form Development--2016 Accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Terry A.; Vienna, John; Paviet, Patricia
The Material Recovery and Waste Form Development (MRWFD) Campaign under the U.S. Department of Energy (DOE) Fuel Cycle Technologies (FCT) Program is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress (April 2010). This MRWFD accomplishments report summarizes the results of the research and development (R&D) efforts performed within MRWFD in Fiscal Year (FY) 2016. Each section of the report contains an overview of the activities, results, technical point of contact, applicable references, and documents produced during the FY. Thismore » report briefly outlines campaign management and integration activities but primarily focuses on the many technical accomplishments of FY 2016. The campaign continued to use an engineering-driven, science-based approach to maintain relevance and focus.« less
2004-06-01
such as that represented in the know-how of the master craftsman), and cognitive (know why, perceptions, values, beliefs, and mental models).4... cognitive engineering, educational technology, industrial/organizational psychology, sociology, cultural anthropology, and computational...such as human-human interaction, interface design and evaluation methodology, cognitive models and user models, health and ergonomic studies, empirical
Medaglini, Donata; De Azero, Magdalena R; Leroy, Odile; Bietrix, Florence; Denoel, Philippe
2018-02-21
A clear vision for vaccines research and development (R&D) is needed if Europe is to continue to lead the discovery of next generation vaccines. Innovation Partnership for a Roadmap on Vaccines in Europe (IPROVE) is a collaboration between leading vaccine experts to develop a roadmap setting out how Europe can best invest in the science and technology essential for vaccines innovation. This FP7 project, started in December 2013, brought together more than 130 key public and private stakeholders from academia, public health institutes, regulators, industry and small and medium-sized enterprises to determine and prioritise the gaps and challenges to be addressed to bolster innovation in vaccines and vaccination in Europe. The IPROVE consultation process was structured around seven themes: vaccine R&D, manufacturing and quality control, infrastructure, therapeutic vaccines, needs of small and medium-sized enterprises, vaccines acceptance and training needs. More than 80 recommendations were made by the consultation groups, mainly focused on the need for a multidisciplinary research approach to stimulate innovation, accelerated translation of scientific knowledge into technological innovation, and fostering of real collaboration within the European vaccine ecosystem. The consultation also reinforced the fact that vaccines are only as good as their vaccine implementation programmes, and that more must be done to understand and address vaccination hesitancy of both the general public and healthcare professionals. Bringing together a wide range of stakeholders to work on the IPROVE roadmap has increased mutual understanding of their different perspectives, needs and priorities. IPROVE is a first attempt to develop such a comprehensive view of the vaccine sector. This prioritisation effort, aims to help policy-makers and funders identify those vaccine-related areas and technologies where key investment is needed for short and medium-long term success. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
NASA Astrophysics Data System (ADS)
Schrijver, Carolus; Kauristie, Kirsti
This single 90minute slot will follow on from the morning plenary presentation of the roadmap, providing an opportunity for further discussion of the panel’s findings with an invited panel of key stakeholders. --- As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark
2006-01-01
The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.
Sub-orbital Programs and their Influence upon Space Missions
NASA Technical Reports Server (NTRS)
Mather, John C.
2009-01-01
Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.
J. E. Winandy; R. S. Williams; A. W. Rudie; R. J. Ross
2008-01-01
This chapter describes 'integrated biomass technologies', a systematic approach for maximizing value, performance, resource sustainability, and profitability in the agriculture and forest products industries. The fundamental principles of integrated biomass technologies provide a global roadmap to a bio-based economy based on the systematic use of many less-...
Graphics Processor Units (GPUs)
NASA Technical Reports Server (NTRS)
Wyrwas, Edward J.
2017-01-01
This presentation will include information about Graphics Processor Units (GPUs) technology, NASA Electronic Parts and Packaging (NEPP) tasks, The test setup, test parameter considerations, lessons learned, collaborations, a roadmap, NEPP partners, results to date, and future plans.
Workshop report: Malaria vaccine development in Europe--preparing for the future.
Viebig, Nicola K; D'Alessio, Flavia; Draper, Simon J; Sim, B Kim Lee; Mordmüller, Benjamin; Bowyer, Paul W; Luty, Adrian J F; Jungbluth, Stefan; Chitnis, Chetan E; Hill, Adrian V S; Kremsner, Peter; Craig, Alister G; Kocken, Clemens H M; Leroy, Odile
2015-11-17
The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap. Copyright © 2015.
SMART SKINS - A Development Roadmap
NASA Astrophysics Data System (ADS)
Lochocki, Joseph M.
1990-02-01
The Air Force Project Forecast II identified a number of key technology initiatives for development. This paper addresses one such initiative, PT-16, Smart Skins. The concept of the Smart Skin is introduced by briefly highlighting its attributes and potential advantages over standard avionics packaging and maintenance, and then goes on to describe some of the key ingredients necessary for its development. Problem areas are brought out along with some of the required trades that must be made. Finally, a time phased development roadmap is introduced which shows Calspan's proposed sequence of technology development programs that can, in combination, lead to first functional Smart Skins implementations in narrowband form in the late 1990's and in wideband form in first decade of the twenty - first century. A Smart Skins implementation in integral aircraft skin structure form will take at least until 2010.
The ISECG* Global Exploration Roadmap as Context for Robotic and Human Exploration Operations
NASA Technical Reports Server (NTRS)
Lupisella, Mark
2015-01-01
The International Space Exploration Coordination Group (ISECG) Global Exploration Roadmap (GER) provides a broad international context for understanding how robotic missions and robotic assets can enable future human exploration of multiple destinations. This presentation will provide a brief high-level review of the GER with a focus on key robotic missions and robotic assets that can provide enabling technology advancements and that also raise interesting operational challenges in both the near-term and long-term. The GER presently features a variety of robotic missions and robotic assets that can provide important technology advancements as well as operational challenges and improvements, in areas ranging from: (a) leveraging the International Space Station, (b) planetary science robotic missions to potential human destinations, (c) micro-g body proximity operations (e.g. asteroids), (d) autonomous operations, (e) high and low-latency telerobotics, (f) human assisted sample return, and (g) contamination control. This presentation will highlight operational and technology challenges in these areas that have feed forward implications for human exploration.
Chorpita, Bruce F; Bernstein, Adam; Daleiden, Eric L
2008-03-01
This paper illustrates the application of design principles for tools that structure clinical decision-making. If the effort to implement evidence-based practices in community services organizations is to be effective, attention must be paid to the decision-making context in which such treatments are delivered. Clinical research trials commonly occur in an environment characterized by structured decision making and expert supports. Technology has great potential to serve mental health organizations by supporting these potentially important contextual features of the research environment, through organization and reporting of clinical data into interpretable information to support decisions and anchor decision-making procedures. This article describes one example of a behavioral health reporting system designed to facilitate clinical and administrative use of evidence-based practices. The design processes underlying this system-mapping of decision points and distillation of performance information at the individual, caseload, and organizational levels-can be implemented to support clinical practice in a wide variety of settings.
Adoption Space and the Idea-to-Market Process of Health Technologies.
Saranummi, Niilo; Beuscart, Regis; Black, Norman; Maglaveras, Nicos; Strano, Chiara; Karavidopoulou, Youla
2016-01-01
Although Europe 'produces' excellent science, it has not been equally successful in translating scientific results into commercially successful companies in spite of European and national efforts invested in supporting the translation process. The Idea-to-Market process is highly complex due to the large number of actors and stakeholders. ITECH was launched to propose recommendations which would accelerate the Idea-to-Market process of health technologies leading to improvements in the competitiveness of the European health technology industry in the global markets. The project went through the following steps: defining the Idea-to-Market process model; collection and analysis of funding opportunities; identification of 12 gaps and barriers in the Idea-to-Market process; a detailed analysis of these supported by interviews; a prioritization process to select the most important issues; construction of roadmaps for the prioritized issues; and finally generating recommendations and associated action plans. Seven issues were classified as in need of actions. Three of these are part of the ongoing Medical Device Directive Reform (MDR), namely health technology assessment, post-market surveillance and regulatory process, and therefore not within the scope of ITECH. Recommendations were made for eHealth taxonomy; Education and training; Clinical trials and Adoption space and Human Factors Engineering (HFE).
Lai, Byron; Young, Hui-Ju; Bickel, C Scott; Motl, Robert W; Rimmer, James H
2017-10-01
This review synthesized physical activity and exercise intervention literature for the past 10 yrs for people with physical and cognitive disabilities including intervention characteristics, behavior change strategies, and types of technologies used to improve targeted outcomes. Systematic searches yielded 132 eligible studies. The major disability groups were multiple sclerosis (41%), stroke (15%), and spinal cord injury (12%). Research designs primarily involved randomized controlled trials (61%) versus quasi-experimental designs (39%). Approximately 20% of the interventions used some form of the following technology: information and communication technology (48%), interactive technology (37%), or electronic gauges (30%). Eighteen percent of studies used intervention strategies based on behavioral theory, which was typically combined with technology to promote activity and increase adherence in generally larger study samples. The three prevailing theories included social cognitive theory (58%), supportive accountability theory (21%), and transtheoretical model (21%). Upon completing the intervention, studies reported primarily significant outcomes (80%). Exercise research for PWD has grown in both quantity and quality, but several gaps remain. Study findings provide a roadmap for future exercise trials on understudied populations and highlight technology and behavior change theory as drivers of future intervention research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, Rick; Moezzi, Mithra
Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing Rmore » and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.« less
Siontorou, Christina G; Batzias, Fragiskos A
2014-03-01
Biosensor technology began in the 1960s to revolutionize instrumentation and measurement. Despite the glucose sensor market success that revolutionized medical diagnostics, and artificial pancreas promise currently the approval stage, the industry is reluctant to capitalize on other relevant university-produced knowledge and innovation. On the other hand, the scientific literature is extensive and persisting, while the number of university-hosted biosensor groups is growing. Considering the limited marketability of biosensors compared to the available research output, the biosensor field has been used by the present authors as a suitable paradigm for developing a methodological combined framework for "roadmapping" university research output in this discipline. This framework adopts the basic principles of the Analytic Hierarchy Process (AHP), replacing the lower level of technology alternatives with internal barriers (drawbacks, limitations, disadvantages), modeled through fault tree analysis (FTA) relying on fuzzy reasoning to count for uncertainty. The proposed methodology is validated retrospectively using ion selective field effect transistor (ISFET) - based biosensors as a case example, and then implemented prospectively membrane biosensors, putting an emphasis on the manufacturability issues. The analysis performed the trajectory of membrane platforms differently than the available market roadmaps that, considering the vast industrial experience in tailoring and handling crystallic forms, suggest the technology path of biomimetic and synthetic materials. The results presented herein indicate that future trajectories lie along with nanotechnology, and especially nanofabrication and nano-bioinformatics, and focused, more on the science-path, that is, on controlling the natural process of self-assembly and the thermodynamics of bioelement-lipid interaction. This retained the nature-derived sensitivity of the biosensor platform, pointing out the differences between the scope of academic research and the market viewpoint.
In-Space Propulsion (ISP) Solar Sail Propulsion Technology Development
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV
2004-01-01
An overview of the rationale and content for Solar Sail Propulsion (SSP), the on-going project to advance solar technology from technology readiness level 3 to 6 will be provided. A descriptive summary of the major and minor component efforts underway will include identification of the technology providers and a listing of anticipated products Recent important results from major system ground demonstrators will be provided. Finally, a current status of all activities will provided along with the most recent roadmap for the SSP technology development program.
NASA Subsonic Rotary Wing Project-Multidisciplinary Analysis and Technology Development: Overview
NASA Technical Reports Server (NTRS)
Yamauchi, Gloria K.
2009-01-01
This slide presentation reviews the objectives of the Multidisciplinary Analysis and Technology Development (MDATD) in the Subsonic Rotary Wing project. The objectives are to integrate technologies and analyses to enable advanced rotorcraft and provide a roadmap to guide Level 1 and 2 research. The MDATD objectives will be met by conducting assessments of advanced technology benefits, developing new or enhanced design tools, and integrating Level 2 discipline technologies to develop and enable system-level analyses and demonstrations.
Advancing translational research with the Semantic Web.
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-05-09
A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.
Advancing translational research with the Semantic Web
Ruttenberg, Alan; Clark, Tim; Bug, William; Samwald, Matthias; Bodenreider, Olivier; Chen, Helen; Doherty, Donald; Forsberg, Kerstin; Gao, Yong; Kashyap, Vipul; Kinoshita, June; Luciano, Joanne; Marshall, M Scott; Ogbuji, Chimezie; Rees, Jonathan; Stephens, Susie; Wong, Gwendolyn T; Wu, Elizabeth; Zaccagnini, Davide; Hongsermeier, Tonya; Neumann, Eric; Herman, Ivan; Cheung, Kei-Hoi
2007-01-01
Background A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen Translational Research, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature. Results We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine. Conclusion Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work. PMID:17493285
Systems study of transport aircraft incorporating advanced aluminum alloys
NASA Technical Reports Server (NTRS)
Sakata, I. F.
1982-01-01
A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.
FY97 Geophysics Technology Area Plan.
1997-03-01
example, Seeker and Missile Simulations technology will be developed to make theater (DISAMS). This plan has been reviewed by all Air Force laboratory ...INDUSTRIAL RESEARCH AND Geophysics is a pervasive technology that directly DEVELOPMENT (IRAD): A comparison of the interacts with all of the other Air Force ...radiation belt models roadmaps that contain research programs underway has been halted. and planned by the Air Force and National Aeronau- 0 The design of
Unmanned Systems Roadmap 2007-2032
DOT National Transportation Integrated Search
2007-01-01
Today's military has seen an evolution in technology that is creating an entirely new capability to project power through the use of unmanned systems while reducing the risk to human life. The contributions of unmanned systems continue to increase. A...
Life Support and Environmental Monitoring International System Maturation Team Considerations.
NASA Technical Reports Server (NTRS)
Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes
2016-01-01
Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.
Life Support and Environmental Monitoring International System Maturation Team Considerations
NASA Technical Reports Server (NTRS)
Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes
2016-01-01
Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies. Different specific parameters may important to define or explore possible ranges depending on the system concepts. Early coordination between technology developers can create new possibilities for collaboration, and provide input to determine what combined options may provide the best overall system architecture.
Point-of-care technology: integration for improved delivery of care.
Gregory, Debbie; Buckner, Martha
2014-01-01
The growing complexity of technology, equipment, and devices involved in patient care delivery can be staggering and overwhelming. Technology is intended to be a tool to help clinicians, but it can also be a frustrating hindrance if not thoughtfully planned and strategically aligned. Critical care nurses are key partners in the collaborations needed to improve safety and quality through health information technology (IT). Nurses must advocate for systems that are interoperable and adapted to the context of care experiences. The involvement and collaboration between clinicians, information technology specialists, biomedical engineers, and vendors has never been more relevant and applicable. Working together strategically with a shared vision can effectively provide a seamless clinical workflow, maximize technology investments, and ultimately improve patient care delivery and outcomes. Developing a strategic integrated clinical and IT roadmap is a critical component of today's health care environment. How can technology strategy be aligned from the executive suite to the bedside caregiver? What is the model for using clinical workflows to drive technology adoption? How can the voice of the critical care nurse strengthen this process? How can success be assured from the initial assessment and selection of technology to a sustainable support model? What is the vendor's role as a strategic partner and "co-caregiver"?
NASA Astrophysics Data System (ADS)
Hertz, P.
2003-03-01
The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.
A roadmap towards advanced space weather science to protect society's technological infrastructure
NASA Astrophysics Data System (ADS)
Schrijver, Carolus
As mankind’s technological capabilities grow, society constructs a rapidly deepening insight into the workings of the universe at large, being guided by exploring space near to our home. But at the same time our societal dependence on technology increases and with that comes a growing appreciation of the challenges presented by the phenomena that occur in that space around our home planet: Magnetic explosions on the Sun and their counterparts in the geomagnetic field can in extreme cases endanger our all-pervasive electrical infrastructure. Powerful space storms occasionally lower the reliability of the globe-spanning satellite navigation systems and interrupt radio communications. Energetic particle storms lead to malfunctions and even failures in satellites that are critical to the flow of information in the globally connected economies. These and other Sun-driven effects on Earth’s environment, collectively known as space weather, resemble some other natural hazards in the sense that they pose a risk for the safe and efficient functioning of society that needs to be understood, quantified, and - ultimately - mitigated against. The complexity of the coupled Sun-Earth system, the sparseness by which it can be covered by remote-sensing and in-situ instrumentation, and the costs of the required observational and computational infrastructure warrant a well-planned and well-coordinated approach with cost-efficient solutions. Our team is tasked with the development of a roadmap with the goal of demonstrably improving our observational capabilities, scientific understanding, and the ability to forecast. This paper summarizes the accomplishments of the roadmap team in identifying the highest-priority challenges to achieve these goals.
Metrology needs for the semiconductor industry over the next decade
NASA Astrophysics Data System (ADS)
Melliar-Smith, Mark; Diebold, Alain C.
1998-11-01
Metrology will continue to be a key enabler for the development and manufacture of future generations of integrated circuits. During 1997, the Semiconductor Industry Association renewed the National Technology Roadmap for Semiconductors (NTRS) through the 50 nm technology generation and for the first time included a Metrology Roadmap (1). Meeting the needs described in the Metrology Roadmap will be both a technological and financial challenge. In an ideal world, metrology capability would be available at the start of process and tool development, and silicon suppliers would have 450 mm wafer capable metrology tools in time for development of that wafer size. Unfortunately, a majority of the metrology suppliers are small companies that typically can't afford the additional two to three year wait for return on R&D investment. Therefore, the success of the semiconductor industry demands that we expand cooperation between NIST, SEMATECH, the National Labs, SRC, and the entire community. In this paper, we will discuss several critical metrology topics including the role of sensor-based process control, in-line microscopy, focused measurements for transistor and interconnect fabrication, and development needs. Improvements in in-line microscopy must extend existing critical dimension measurements up to 100 nm generations and new methods may be required for sub 100 nm generations. Through development, existing metrology dielectric thickness and dopant dose and junction methods can be extended to 100 nm, but new and possibly in-situ methods are needed beyond 100 nm. Interconnect process control will undergo change before 100 nm due to the introduction of copper metallization, low dielectric constant interlevel dielectrics, and Damascene process flows.
Making ITS/CVO happen : Pennsylvania's ITS/CVO business plan
DOT National Transportation Integrated Search
1998-12-31
This business plan will be used to coordinate the deployment of CVO technologies in Pennsylvania. It provides a 'roadmap' for Pennsylvania's ITS/CVO program by defining broad goals and objectives, as well as specific projects, milestones, responsibil...
Development of Supersonic Retro-Propulsion for Future Mars Entry, Descent, and Landing Systems
NASA Technical Reports Server (NTRS)
Edquist, Karl T.; Dyakonov, Artem A.; Shidner, Jeremy D.; Studak, Joseph W.; Tiggers, Michael A.; Kipp, Devin M.; Prakash, Ravi; Trumble, Kerry A.; Dupzyk, Ian C.; Korzun, Ashley M.
2010-01-01
Recent studies have concluded that Viking-era entry system technologies are reaching their practical limits and must be succeeded by new methods capable of delivering large payloads (greater than 10 metric tons) required for human exploration of Mars. One such technology, termed Supersonic Retro-Propulsion, has been proposed as an enabling deceleration technique. However, in order to be considered for future NASA flight projects, this technology will require significant maturation beyond its current state. This paper proposes a roadmap for advancing the component technologies to a point where Supersonic Retro-Propulsion can be reliably used on future Mars missions to land much larger payloads than are currently possible using Viking-based systems. The development roadmap includes technology gates that are achieved through testing and/or analysis, culminating with subscale flight tests in Earth atmosphere that demonstrate stable and controlled flight. The component technologies requiring advancement include large engines capable of throttling, computational models for entry vehicle aerodynamic/propulsive force and moment interactions, aerothermodynamic environments modeling, entry vehicle stability and control methods, integrated systems engineering and analyses, and high-fidelity six degree-of-freedom trajectory simulations. Quantifiable metrics are also proposed as a means to gage the technical progress of Supersonic Retro-Propulsion. Finally, an aggressive schedule is proposed for advancing the technology through sub-scale flight tests at Earth by 2016.
Optoelectric Technology Roadmap: Conclusions and Recommendations
1994-05-01
Haitz Hughes Adrian Popa Robert Buckley IBM Maurizio Arienzo John Crow NYNEX Robert Lawrence Motorola Ron Nelson 3M Charles T. Walker OPTOELECTRONIC...Bellcore (1) Industrial Mark Chandler, Hewlett-Packard Military/Aerospace Richard Lind, Hughes Luis Figueroa , Boeing Computer John Crow, IBM...Bellcore William Womack AT&T Matt Goodman Bellcore Dwight Duston BMDO Paul Shumate Bellcore Luis Figueroa Boeing Richard Jones Broadband Technologies
Summary of the NASA Science Instrument, Observatory and Sensor System (SIOSS) Technology Assessment
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; McCleese, Dan; Singh, Upendra
2011-01-01
Technology advancement is required to enable NASA's high priority missions of the future. To prepare for those missions requires a roadmap of how to get from the current state of the art to where technology needs to be in 5, 10, 15 and 20 years. SIOSS identifies where substantial enhancements in mission capabilities are needed and provides strategic guidance for the agency's budget formulation and prioritization process.
New Directions in Space Operations Services in Support of Interplanetary Exploration
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2005-01-01
To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will be a key factor with onboard and distributed backup processing an absolutely necessary requirement. Current cluster processing/Grid technologies may provide the basis for providing these services. An overview of existing services, future services that will be required and the technologies and standards required to be developed will be presented. The purpose of this paper will be to initiate a technological roadmap, albeit at a high level, of current voice, video, data and network technologies and standards (which show promise for adaptation or evolution) to what technologies and standards need to be redefined, adjusted or areas where new ones require development. The roadmap should begin the differentiation between non manned and manned processes/services where applicable. The paper will be based in part on the activities of the CCSDS Monitor and Control working group which is beginning the process of standardization of the these processes. Another element of the paper will be based on an analysis of current technologies supporting space flight processes and services at JSC, MSFC, GSFC and to a lesser extent at KSC. Work being accomplished in areas such as Grid computing, data mining and network storage at ARC, IBM and the University of Alabama at Huntsville will be researched and analyzed.
Jenders, Robert A.; Osheroff, Jerome A.; Sittig, Dean F.; Pifer, Eric A.; Teich, Jonathan M
2007-01-01
Background: Ample evidence exists that clinical decision support (CDS) can improve clinician performance. Nevertheless, additional evidence demonstrates that clinicians still do not perform adequately in many instances. This suggests an ongoing need for implementation of CDS, in turn prompting development of a roadmap for national action regarding CDS. Objective: Develop practical advice to aid CDS implementation in order to improve clinician performance. Method: Structured group interview during a roundtable discussion by medical directors of information systems (N = 30), with subsequent review by participants and synthesis. Results: Participant consensus was that CDS should be comprehensive and should involve techniques such as order sets and facilitated documentation as well as alerts; should be subject to ongoing feedback; and should flow from and be governed by an organization’s clinical goals. Conclusion: A structured roundtable discussion of clinicians experienced in health information technology can yield practical, consensus advice for implementation of CDS. PMID:18693858
The WLCG Messaging Service and its Future
NASA Astrophysics Data System (ADS)
Cons, Lionel; Paladin, Massimo
2012-12-01
Enterprise messaging is seen as an attractive mechanism to simplify and extend several portions of the Grid middleware, from low level monitoring to experiments dashboards. The production messaging service currently used by WLCG includes four tightly coupled brokers operated by EGI (running Apache ActiveMQ and designed to host the Grid operational tools such as SAM) as well as two dedicated services for ATLAS-DDM and experiments dashboards (currently also running Apache ActiveMQ). In the future, this service is expected to grow in numbers of applications supported, brokers and technologies. The WLCG Messaging Roadmap identified three areas with room for improvement (security, scalability and availability/reliability) as well as ten practical recommendations to address them. This paper describes a messaging service architecture that is in line with these recommendations as well as a software architecture based on reusable components that ease interactions with the messaging service. These two architectures will support the growth of the WLCG messaging service.
Alharbi, Hulayel; Alkhateeb, Sultan; Murshid, Esam; Alotaibi, Mohammed; Abusamra, Ashraf; Rabah, Danny; Almansour, Mubarak; Alghamdi, Abdullah; Aljubran, Ali; Eltigani, Amin; Alkushi, Hussein; Ahmed, Imran; Alsharm, Abdullah; Bazarbashi, Shouki
2018-01-01
This is an update to the previously published Saudi guidelines for the evaluation and medical/surgical management of patients diagnosed with urothelial cell carcinoma of the urinary bladder. It is categorized according to the stage of the disease using the tumor node metastasis staging system, 7 th edition. The guidelines are presented with their accompanying supporting evidence level, which is based on comprehensive literature review, several internationally recognized guidelines, and the collective expertise of the guidelines committee members (authors) who were selected by the Saudi Oncology Society and Saudi Urological Association. Considerations to the local availability of drugs, technology, and expertise have been regarded. These guidelines should serve as a roadmap for the urologists, oncologists, general physicians, support groups, and health-care policymakers in the management of patients diagnosed with urothelial cell carcinoma of the urinary bladder.
NASA Technical Reports Server (NTRS)
Camp, Jordan; Conklin, John; Livas, Jeffrey; Klipstein, William; McKenzie, Kirk; Mueller, Guido; Mueller, Juergen; Thorpe, James Ira; Arsenovic, Peter; Baker, John;
2013-01-01
Humankind will detect the first gravitational wave (GW) signals from the Universe in the current decade using ground-based detectors. But the richest trove of astrophysical information lies at lower frequencies in the spectrum only accessible from space. Signals are expected from merging massive black holes throughout cosmic history, from compact stellar remnants orbiting central galactic engines from thousands of close contact binary systems in the Milky Way, and possibly from exotic sources, some not yet imagined. These signals carry essential information not available from electromagnetic observations, and which can be extracted with extraordinary accuracy. For 20 years, NASA, the European Space Agency (ESA), and an international research community have put considerable effort into developing concepts and technologies for a GW mission. Both the 2000 and 2010 decadal surveys endorsed the science and mission concept of the Laser Interferometer Space Antenna (LISA). A partnership of the two agencies defined and analyzed the concept for a decade. The agencies partnered on LISA Pathfinder (LPF), and ESA-led technology demonstration mission, now preparing for a 2015 launch. Extensive technology development has been carried out on the ground. Currently, the evolved Laser Interferometer Space Antenna (eLISA) concept, a LISA-like concept with only two measurement arms, is competing for ESA's L2 opportunity. NASA's Astrophysics Division seeks to be a junior partner if eLISA is selected. If eLISA is not selected, then a LISA-like mission will be a strong contender in the 2020 decadal survey. This Technology Development Roadmap (TDR) builds on the LISA concept development, the LPF technology development, and the U.S. and European ground-based technology development. The eLISA architecture and the architecture of the Mid-sized Space-based Gravitational-wave Observatory (SGO Mid)-a competitive design with three measurement arms from the recent design study for a NASA-led mission after 2020-both use the same technologies. Further, NASA participation in an ESA-led mission would likely augment the eLISA architecture with a third arm to become the SGO Mid architecture. For these reasons, this TDR for a future GW mission applies to both designs and both programmatic paths forward. It is adaptable to the different timelines and roles for an ESA-led or a NASA-led mission, and it is adaptable to available resources. Based on a mature understanding of the interaction between technology and risk, the authors of this TDR have chosen a set of objectives that are more expansive than is usual. The objectives for this roadmap are: (1) reduce technical and development risks and costs; (2) understand and, where possible, relieve system requirements and consequences; (3) increase technical insight into critical technologies; and (4) validate the design at the subsystem level. The emphasis on these objectives, particularly the latter two, is driven by outstanding programmatic decisions, namely whether a future GW mission is ESA-led or NASA-led, and availability of resources. The relative emphasis is best understood in the context of prioritization.
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
Mission Assurance Modeling and Simulation: A Cyber Security Roadmap
NASA Technical Reports Server (NTRS)
Gendron, Gerald; Roberts, David; Poole, Donold; Aquino, Anna
2012-01-01
This paper proposes a cyber security modeling and simulation roadmap to enhance mission assurance governance and establish risk reduction processes within constrained budgets. The term mission assurance stems from risk management work by Carnegie Mellon's Software Engineering Institute in the late 19905. By 2010, the Defense Information Systems Agency revised its cyber strategy and established the Program Executive Officer-Mission Assurance. This highlights a shift from simply protecting data to balancing risk and begins a necessary dialogue to establish a cyber security roadmap. The Military Operations Research Society has recommended a cyber community of practice, recognizing there are too few professionals having both cyber and analytic experience. The authors characterize the limited body of knowledge in this symbiotic relationship. This paper identifies operational and research requirements for mission assurance M&S supporting defense and homeland security. M&S techniques are needed for enterprise oversight of cyber investments, test and evaluation, policy, training, and analysis.
Crossing the chasm: information technology to biomedical informatics.
Fahy, Brenda G; Balke, C William; Umberger, Gloria H; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L; Conigliaro, Joseph
2011-06-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) "Roadmap for Medical Research." The Clinical and Translational Science Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH's translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology platforms of the enterprise clinical operations within academic health centers.This report details one academic health center's transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This article describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2009-01-15
This Report which was produced in partnership between Asia Society's Center on U.S.-China Relations and Pew Center on Global Climate Change, in collaboration with The Brookings Institution, Council on Foreign Relations, National Committee on U.S.-China Relations, and Environmental Defense Fund presents both a vision and a concrete Roadmap for such Sino-U.S. collaboration. With input from scores of experts and other stakeholders from the worlds of science, business, civil society, policy, and politics in both China and the United States, the Report, or 'Roadmap', explores the climate and energy challenges facing both nations and recommends a concrete program for sustained, high-level,more » bilateral engagement and on-the-ground action. The Report recommends that, as a first step in forging this new partnership, the leaders of the two countries should convene a leaders summit as soon as practically possible following the inauguration of Barack Obama to launch a 'U.S.-China Partnership on Energy and Climate Change'. This presidential summit should outline a major plan of joint-action and empower relevant officials in each country to take the necessary actions to ensure its implementation. Priority areas of collaboration include: deploying low-emissions coal technologies; improving energy efficiency and conservation; developing an advanced electric grid; promoting renewable energy; and quantifying emissions and financing low-carbon technologies. 5 figs., 1 tab., 2 apps.« less
Kawamoto, Kensaku; Lobach, David F
2007-01-01
Despite their demonstrated effectiveness, clinical decision support (CDS) systems are not widely used within the U.S. The Roadmap for National Action on Clinical Decision Support, published in June 2006 by the American Medical Informatics Association, identifies six strategic objectives for achieving widespread adoption of effective CDS capabilities. In this manuscript, we propose a Service-Oriented Architecture (SOA) for CDS that facilitates achievement of these six objectives. Within the proposed framework, CDS capabilities are implemented through the orchestration of independent software services whose interfaces are being standardized by Health Level 7 and the Object Management Group through their joint Healthcare Services Specification Project (HSSP). Core services within this framework include the HSSP Decision Support Service, the HSSP Common Terminology Service, and the HSSP Retrieve, Locate, and Update Service. Our experiences, and those of others, indicate that the proposed SOA approach to CDS could enable the widespread adoption of effective CDS within the U.S. health care system.
The Research Plan: Closing the ExMC Med02 "Pharmacy" Gap
NASA Technical Reports Server (NTRS)
Daniels, Vernie; Bayuse, Tina; Mulcahy, Robert; Shah, Ronak; Antonsen, Erik
2017-01-01
HRP Human Research Roadmap: Risk and Gap Risk of Adverse Health Outcomes and Decrements in Performance due to Inflight Medical Conditions. Med02 "Pharmacy" Gap: We do not have the capability to provide a safe and effective medication formulary for exploration missions delivering a recommendation for a chemically stable, safe, and effective medication formulary that will support the operational needs of exploration space missions research strategy evidence-based formulary and models innovative analytical tools and methodologies novel treatments and preventive measures Planned review by a panel of experts from the pharmaceutical industry, regulatory, and academic scientific communities Formulary Selection Formulary Potency and Shelf life Formulary Safety and Toxicity Novel Technology Proof-of-Concept Portable real-time chemical analysis Innovative drug development / design
NASA Technical Reports Server (NTRS)
Feingold, Harvey; ONeil, Dan (Technical Monitor)
2002-01-01
In response to a recommendation from OMB, NASA's Fiscal Year 2001 budget included a new program within the HEDS (Human Exploration and Development of Space) Enterprise called HEDS Technology/ Commercialization Initiative (HTCI). HTCI had three overarching goals: to support REDS analysis and planning for safe, affordable and effective future programs and projects that advance human exploration, scientific discovery, and the commercial development of space; to pursue research, development, and validation of breakthrough technologies and highly innovative systems concepts; and to advance die creation of strong partnerships within NASA, with U.S. industry and universities, and internationally. As part of its contracted effort, SAIC was to write a report contribution, describing die results of its task activities, to a final HTCI report prepared by MSFC. Unfortunately, government cancellation of the HTCI program in the summer of 2001 curtailed all efforts on the program including die Final HTCI report. In the absence of that report, SAIC has issued this final report in an attempt to document some of the technical material it produced. The report contains SAIC presentations for both HTCI workshops; a set of roadmap charts for the Systems Analysis, Integration and Modeling; and charts showing the evolution of the current TITAN modeling architecture.
Finding a roadmap to achieve large neuromorphic hardware systems
Hasler, Jennifer; Marr, Bo
2013-01-01
Neuromorphic systems are gaining increasing importance in an era where CMOS digital computing techniques are reaching physical limits. These silicon systems mimic extremely energy efficient neural computing structures, potentially both for solving engineering applications as well as understanding neural computation. Toward this end, the authors provide a glimpse at what the technology evolution roadmap looks like for these systems so that Neuromorphic engineers may gain the same benefit of anticipation and foresight that IC designers gained from Moore's law many years ago. Scaling of energy efficiency, performance, and size will be discussed as well as how the implementation and application space of Neuromorphic systems are expected to evolve over time. PMID:24058330
Space Solar Power Demonstrations: Challenges and Progress
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)
2002-01-01
The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).
Transformation of Marine Corps Artillery in Support of the 2015 Expeditionary Force
2008-01-01
artillery electronics maintenance, and meterological sections in support ofsubordinate elements. On order, the Regiment assumes the primary civil...order capability), engineer, counterbattery radar, artillery electronics maintenance, and meterological sections in support ofsubordinate elements...www.tecom.usmc.mil. (accessed December 15,2007). Training and Education Command. MOS Roadmap: 0847 - Field Artillery Meterological Crew Member. Quantico
NASA Astrophysics Data System (ADS)
Schlutz, Juergen; Hufenbach, Bernhard; Laurini, Kathy; Spiero, Francois
2016-07-01
Future space exploration goals call for sending humans and robots beyond low Earth orbit and establishing sustained access to destinations such as the Moon, asteroids and Mars. Space agencies participating in the International Space Exploration Coordination Group (ISECG) are discussing an international approach for achieving these goals, documented in ISECG's Global Exploration Roadmap (GER). The GER reference scenario reflects a step-wise evolution of critical capabilities from ISS to missions in the lunar vicinity in preparation for the journey of humans to Mars. As ISECG agencies advance their individual planning, they also advance the mission themes and reference architecture of the GER to consolidate common goals, near-term mission scenarios and initial opportunities for collaboration. In this context, particular focus has been given to the Better understanding and further refinement of cislunar infrastructure and potential lunar transportation architecture Interaction with international science communities to identify and articulate the scientific opportunities of the near-term exploration mission themes Coordination and consolidation of interest in lunar polar volatiles prospecting and potential for in-situ resource utilisation Identification and articulation of the benefits from exploration and the technology transfer activities The paper discusses the ongoing roadmapping activity of the ISECG agencies. It provides an insight into the status of the above activities and an outlook towards the evolution of the GER that is currently foreseen in the 2017 timeframe.
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
Extremely Large Telescope Project Selected in ESFRI Roadmap
NASA Astrophysics Data System (ADS)
2006-10-01
In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large Telescope at the Paranal Observatory. The draft Baseline Reference Design will be presented to the wider scientific community on 29 - 30 November 2006 at a dedicated ELT Workshop Meeting in Marseille (France) and will be further reiterated. The design is then to be presented to the ESO Council at the end of 2006. The goal is to start the detailed E-ELT design work by the first half of 2007. Launched in April 2002, the European Strategy Forum on Research Infrastructures was set-up following a recommendation of the European Union Council, with the role to support a coherent approach to policy-making on research infrastructures in Europe, and to act as an incubator for international negotiations about concrete initiatives. In particular, ESFRI has prepared a European Roadmap identifying new Research Infrastructure of pan-European interest corresponding to the long term needs of the European research communities, covering all scientific areas, regardless of possible location and likely to be realised in the next 10 to 20 years. The Roadmap was presented on 19 October. It is the result of an intensive two-year consultation and peer review process involving over 1000 high level European and international experts. The Roadmap identifies 35 large scale infrastructure projects, at various stages of development, in seven key research areas including Environmental Sciences; Energy; Materials Sciences; Astrophysics, Astronomy, Particle and Nuclear Physics; Biomedical and Life Sciences; Social Sciences and the Humanities; Computation and data Treatment.
Decision Support for Integrated Energy-Water Planning
NASA Astrophysics Data System (ADS)
Tidwell, V. C.; William, H.; Klise, G.; Kobos, P. H.; Malczynski, L. A.
2008-12-01
Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 40% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. To meet their demand for water, proposed power plants must often target waterways and aquifers prone to overdraft or which may be home to environmentally sensitive species. Acquisition of water rights, permits and public support may therefore be a formidable hurdle when licensing new power plants. Given these current difficulties, what does the future hold when projected growth in population and the economy may require a 30% increase in power generation capacity by 2025? Technology solutions can only take us so far, as noted by the National Energy-Water Roadmap Exercise. This roadmap identified the need for long-term and integrated resource planning supported with scientifically credible models as a leading issue. To address this need a decision support framework is being developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to help identify potential trade-offs, and "best" alternatives among an overwhelming number of energy/water options and objectives. The decision support tool is comprised of three basic elements: a system dynamics model coupling the physical and economic systems important to integrated energy-water planning and management; an optimization toolbox; and a software wrapper that integrates the aforementioned elements along with additional external energy/water models, databases, and visualization products. An interactive interface allows direct interaction with the model and access to real-time results organized according to a variety of reference systems, e.g., from a political, watershed, or electric power grid perspective. With this unique synthesis of various perspectives, the tool may help highlight looming changes where policy, technical, economic, and data collection options may alleviate stresses within the underlying water systems that support electricity generation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04- 94AL85000.
Superconducting Magnet Technology for Future High Energy Proton Colliders
NASA Astrophysics Data System (ADS)
Gourlay, Stephen
2017-01-01
Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.
In-Situ Resource Utilization for further exploration of the Moon
NASA Astrophysics Data System (ADS)
Thakore, B.; Pohajsky, S.
In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond
3min. poster presentations of B01
NASA Astrophysics Data System (ADS)
Foing, Bernard H.
We give a report on recommendations from ILEWG International conferences held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration. Priorities for scientific investigations include: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), historical records, astrobiology, survival of organics; past, present and future life. The ILEWG technology task group set priorities for the advancement of instrumenta-tion: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems. The ILEWG ExogeoLab pilot project was developed as support for instru-ments, landers, rovers,and preparation for cooperative robotic village. The ILEWG lunar base task group looked at minimal design concepts, technologies in robotic and human exploration with Tele control, telepresence, virtual reality; Man-Machine interface and performances. The ILEWG ExoHab pilot project has been started with support from agencies and partners. We discuss ILEWG terrestrial Moon-Mars campaigns for validation of technologies, research and human operations. We indicate how Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. Co-Authors: ILEWG Task Groups on: Science, Technology, Robotic village, Lunar Bases , Commercial and Societal aspects, Roadmap synergies with other programmes, Public en-gagemnet and Outreach, Young Lunar Explorers.
NASA Technical Reports Server (NTRS)
Mueller, Rob
2005-01-01
General Background and Introduction of Capability Roadmaps Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date)
CxP Wireless DFI Summary Presentation for OTI Flight Test Working Group
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo A.
2009-01-01
This slide presentation reviews the wireless instrumentation architecture needed for the Alatir Lunar Lander, Ares I, Ares V, and the Block II Orion Crew Exploration Vehicle (CEV). It includes information about the Wireless DFI system, mission planning, and the technology roadmap.
NASA Space Sciences Strategic Planning
NASA Technical Reports Server (NTRS)
Crane, Philippe
2004-01-01
The purpose of strategic planning roadmap is to:Fulfill the strategic planning requirements; Provide a guide to the science community in presenting research requests to NASA; Inform and inspire; Focus investments in technology and research for future missions; and Provide the scientific and technical justification for augmentation requests.
Bioastronautics Roadmap: A Risk Reduction Strategy for Human Space Exploration
NASA Technical Reports Server (NTRS)
2005-01-01
The Bioastronautics Critical Path Roadmap is the framework used to identify and assess the risks to crews exposed to the hazardous environments of space. It guides the implementation of research strategies to prevent or reduce those risks. Although the BCPR identifies steps that must be taken to reduce the risks to health and performance that are associated with human space flight, the BCPR is not a "critical path" analysis in the strict engineering sense. The BCPR will evolve to accommodate new information and technology development and will enable NASA to conduct a formal critical path analysis in the future. As a management tool, the BCPR provides information for making informed decisions about research priorities and resource allocation. The outcome-driven nature of the BCPR makes it amenable for assessing the focus, progress and success of the Bioastronautics research and technology program. The BCPR is also a tool for communicating program priorities and progress to the research community and NASA management.
Military research needs in biomedical informatics.
Reifman, Jaques; Gilbert, Gary R; Fagan, Lawrence; Satava, Richard
2002-01-01
The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klipstein, David H.; Robinson, Sharon
The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).
NASA Astrophysics Data System (ADS)
Sarni, W.
2017-12-01
Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.
NASA Astrophysics Data System (ADS)
Cardenas, Jesus Alvaro
An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.
University Prosperity Game. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyack, K.W.; Berman, M.
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the University Prosperity Game conducted under the sponsorship of the Anderson Schools of Management atmore » the University of New Mexico. This Prosperity Game was initially designed for the roadmap making effort of the National Electronics Manufacturing Initiative (NEMI) of the Electronics Subcommittee of the Civilian Industrial Technology Committee under the aegis of the National Science and Technology Council. The game was modified to support course material in MGT 508, Ethical, Political, and Social Environment of Business. Thirty-five students participated as role players. In this educational context the game`s main objectives were to: (1) introduce and teach global competitiveness and business cultures in an experiential classroom setting; (2) explore ethical, political, and social issues and address them in the context of global markets and competition; and (3) obtain non-government views regarding the technical and non-technical (i.e., policy) issues developed in the NEMI roadmap-making endeavor. The negotiations and agreements made during the game, along with the student journals detailing the players feelings and reactions to the gaming experience, provide valuable insight into the benefits of simulation as an advanced learning tool in higher education.« less
Status of Laser/Lidar Working Group Requirements
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Gentry, Bruce M.
2006-01-01
This viewgraph presentation reviews the status of the development of the requirements by the Laser/Lidar working group. Included in the presentation is another viewgraph report on the NASA Earth Science Technology Office (ESTO) Laser/Lidar working group, by the chairperson of the working group. Some of the uses of Laser and Lidar in earth sciences are reviewed and a roadmap for the future use of the technology is included.
Garnier-Laplace, J; Vandenhove, H; Beresford, N; Muikku, M; Real, A
2018-03-01
The ALLIANCE 6 Strategic Research Agenda (SRA) initiated by the STAR 7 Network of Excellence and integrated in the research strategy implemented by the COMET consortium, defines a long-term vision of the needs for, and implementation of, research in radioecology. This reference document, reflecting views from many stakeholders groups and researchers, serves as an input to those responsible for defining EU research call topics through the ALLIANCE SRA statement delivered each year to the EJP-CONCERT 8 (2015-2020). This statement highlights a focused number of priorities for funding. Research in radioecology and related sciences is justified by various drivers, such as policy changes, scientific advances and knowledge gaps, radiological risk perception by the public, and a growing awareness of interconnections between human and ecosystem health. The SRA is being complemented by topical roadmaps that have been initiated by the COMET 9 EC-funded project, with the help and endorsement of the ALLIANCE. The strategy underlying roadmap development is driven by the need for improved mechanistic understanding across radioecology. By meeting this need, we can provide fit-for-purpose human and environmental impact/risk assessments in support of the protection of man and the environment in interaction with society and for the three exposure situations defined by the ICRP (i.e., planned, existing and emergency). Within the framework of the EJP-CONCERT the development of a joint roadmap is under discussion among all the European research platforms and will highlight the major research needs for the whole radiation protection field and how these are likely to be addressed by 2030.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel Ohene Opare, Jr.; Charles V. Park
The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is authored by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype fourth generation nuclear reactor to meet the needs of the 21st Century. A section in this document proposes that the NGNP will provide heat for process heat applications. As with all large projects developing and deploying new technologies, the NGNP is expected to meet high performance and availability targets relative to current state of the art systems and technology. One requirement for the NGNP is to provide heatmore » for the generation of hydrogen for large scale productions and this process heat application is required to be at least 90% or more available relative to other technologies currently on the market. To reach this goal, a RAM Roadmap was developed highlighting the actions to be taken to ensure that various milestones in system development and maturation concurrently meet required availability requirements. Integral to the RAM Roadmap was the use of a RAM analytical/simulation tool which was used to estimate the availability of the system when deployed based on current design configuration and the maturation level of the system.« less
Magnetic levitation assisted aircraft take-off and landing (feasibility study - GABRIEL concept)
NASA Astrophysics Data System (ADS)
Rohacs, Daniel; Rohacs, Jozsef
2016-08-01
The Technology Roadmap 2013 developed by the International Air Transport Association envisions the option of flying without an undercarriage to be in operation by 2032. Preliminary investigations clearly indicate that magnetic levitation technology (MagLev) might be an appealing solution to assist the aircraft take-off and landing. The EU supported research project, abbreviated as GABRIEL, was dealing with (i) the concept development, (ii) the identification, evaluation and selection of the deployable magnetic levitation technology, (iii) the definition of the core system elements (including the required aircraft modifications, the ground-based system and airport elements, and the rendezvous control system), (iv) the analysis of the safety and security aspects, (v) the concept validation and (vi) the estimation of the proposed concept impact in terms of aircraft weight, noise, emission, cost-benefit). All results introduced here are compared to a medium size hypothetic passenger aircraft (identical with an Airbus A320). This paper gives a systematic overview of (i) the applied methods, (ii) the investigation of the possible use of magnetic levitation technology to assist the commercial aircraft take-off and landing processes and (iii) the demonstrations, validations showing the feasibility of the radically new concept. All major results are outlined.
Crossing the Chasm: Information Technology to Biomedical Informatics
Fahy, Brenda G.; Balke, C. William; Umberger, Gloria H.; Talbert, Jeffery; Canales, Denise Niles; Steltenkamp, Carol L.; Conigliaro, Joseph
2011-01-01
Accelerating the translation of new scientific discoveries to improve human health and disease management is the overall goal of a series of initiatives integrated in the National Institutes of Health (NIH) “Roadmap for Medical Research.” The Clinical and Translational Research Award (CTSA) program is, arguably, the most visible component of the NIH Roadmap providing resources to institutions to transform their clinical and translational research enterprises along the goals of the Roadmap. The CTSA program emphasizes biomedical informatics as a critical component for the accomplishment of the NIH’s translational objectives. To be optimally effective, emerging biomedical informatics programs must link with the information technology (IT) platforms of the enterprise clinical operations within academic health centers. This report details one academic health center’s transdisciplinary initiative to create an integrated academic discipline of biomedical informatics through the development of its infrastructure for clinical and translational science infrastructure and response to the CTSA mechanism. This approach required a detailed informatics strategy to accomplish these goals. This transdisciplinary initiative was the impetus for creation of a specialized biomedical informatics core, the Center for Biomedical Informatics (CBI). Development of the CBI codified the need to incorporate medical informatics including quality and safety informatics and enterprise clinical information systems within the CBI. This paper describes the steps taken to develop the biomedical informatics infrastructure, its integration with clinical systems at one academic health center, successes achieved, and barriers encountered during these efforts. PMID:21383632
AstRoMap European Astrobiology Roadmap
Horneck, Gerda; Westall, Frances; Grenfell, John Lee; Martin, William F.; Gomez, Felipe; Leuko, Stefan; Lee, Natuschka; Onofri, Silvano; Tsiganis, Kleomenis; Saladino, Raffaele; Pilat-Lohinger, Elke; Palomba, Ernesto; Harrison, Jesse; Rull, Fernando; Muller, Christian; Strazzulla, Giovanni; Brucato, John R.; Rettberg, Petra; Capria, Maria Teresa
2016-01-01
Abstract The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems• Research Topic 2: Origins of Organic Compounds in Space• Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life• Research Topic 4: Life and Habitability• Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system. Key Words: Astrobiology roadmap—Europe—Origin and evolution of life—Habitability—Life detection—Life in extreme environments. Astrobiology 16, 201–243. PMID:27003862
Transformation of Marine Corps Artillery in Support of the 2015 Expeditionary Force
2008-04-30
artillery electronics maintenance, and meterological sections in support ofsubordinate elements. On order, the Regiment assumes the primary civil...3rd order capability), engineer, counterbattery radar, artillery electronics maintenance, and meterological sections in support ofsubordinate elements...www.tecom.usmc.mil. (accessed December 15,2007). Training and Education Command. MOS Roadmap: 0847 - Field Artillery Meterological Crew Member. Quantico
The NASA ASTP Combined-Cycle Propulsion Database Project
NASA Technical Reports Server (NTRS)
Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)
2000-01-01
The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended to this paper as Appendix C. The purpose of this paper is to provide the reader with an understanding of the objectives of the CCPD and relate the progress that has been made toward meeting those objectives.
Mask strategy at International SEMATECH
NASA Astrophysics Data System (ADS)
Kimmel, Kurt R.
2002-08-01
International SEMATECH (ISMT) is a consortium consisting of 13 leading semiconductor manufacturers from around the globe. Its objective is to develop the infrastructure necessary for its member companies to realize the International Technology Roadmap for Semiconductors (ITRS) through efficiencies of shared development resources and knowledge. The largest area of effort is lithography, recognized as a crucial enabler for microelectronics technology progress. Within the Lithography Division, most of the efforts center on mask-related issues. The development strategy at International SEMATCH will be presented and the interlock of lithography projects clarified. Because of the limited size of the mask production equipment market, the business case is weak for aggressive investment commensurate with the pace of the International Technology Roadmap for Semiconductors. With masks becoming the overwhelming component of lithography cost, new ways of reducing or eliminating mask costs are being explored. Will mask technology survive without a strong business case? Will the mask industry limit the growth of the semiconductor industry? Are advanced masks worth their escalating cost? An analysis of mask cost from the perspective of mask value imparted to the user is presented with examples and generic formulas for the reader to apply independently. A key part to the success for both International SEMATECH and the industry globally will be partnerships on both the local level between mask-maker and mask-user, and the macro level where global collaborations will be necessary to resolve technology development cost challenges.
Linking Six Sigma to simulation: a new roadmap to improve the quality of patient care.
Celano, Giovanni; Costa, Antonio; Fichera, Sergio; Tringali, Giuseppe
2012-01-01
Improving the quality of patient care is a challenge that calls for a multidisciplinary approach, embedding a broad spectrum of knowledge and involving healthcare professionals from diverse backgrounds. The purpose of this paper is to present an innovative approach that implements discrete-event simulation (DES) as a decision-supporting tool in the management of Six Sigma quality improvement projects. A roadmap is designed to assist quality practitioners and health care professionals in the design and successful implementation of simulation models within the define-measure-analyse-design-verify (DMADV) or define-measure-analyse-improve-control (DMAIC) Six Sigma procedures. A case regarding the reorganisation of the flow of emergency patients affected by vertigo symptoms was developed in a large town hospital as a preliminary test of the roadmap. The positive feedback from professionals carrying out the project looks promising and encourages further roadmap testing in other clinical settings. The roadmap is a structured procedure that people involved in quality improvement can implement to manage projects based on the analysis and comparison of alternative scenarios. The role of Six Sigma philosophy in improvement of the quality of healthcare services is recognised both by researchers and by quality practitioners; discrete-event simulation models are commonly used to improve the key performance measures of patient care delivery. The two approaches are seldom referenced and implemented together; however, they could be successfully integrated to carry out quality improvement programs. This paper proposes an innovative approach to bridge the gap and enrich the Six Sigma toolbox of quality improvement procedures with DES.
A Roadmap for the Development of Alternative (Non-Animal) Methods for Systemic Toxicity Testing
Systemic toxicity testing forms the cornerstone for the safety evaluation of substances. Pressures to move from traditional animal models to novel technologies arise from various concerns, including: the need to evaluate large numbers of previously untested chemicals and new prod...
75 FR 64258 - Cloud Computing Forum & Workshop II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...
Desalination and Water Purification Technology Roadmap
2003-01-01
those contaminants to re-enter the water cycle in the near-term). Developing safe disposal options will require, among other activities, research on...destroyed. The global water cycle dictates that the water we use today has been used countless times before, and will be used countless times again
Integrating Asynchronous Digital Design Into the Computer Engineering Curriculum
ERIC Educational Resources Information Center
Smith, S. C.; Al-Assadi, W. K.; Di, J.
2010-01-01
As demand increases for circuits with higher performance, higher complexity, and decreased feature size, asynchronous (clockless) paradigms will become more widely used in the semiconductor industry, as evidenced by the International Technology Roadmap for Semiconductors' (ITRS) prediction of a likely shift from synchronous to asynchronous design…
NASA Technical Reports Server (NTRS)
O'Callaghan, Fred
2004-01-01
The primary focus of the workshop was NASA's new concentration on sending crewed missions to the Moon by 2020, and then on to Mars and beyond. Several speakers, including JPL s Fred O Callaghan and NASA's Mark Lee, broached the problem that there is now a serious reduction of capability to perform experiments in the ISS, or to fly significant mass in microgravity by other means. By 2010, the shuttle fleet will be discontinued and Russian craft will provide the only access to the ISS. O Callaghan stated that the Fundamental Physics budget is being reduced by 70%. LTMPF and LCAP are slated for termination. However, ground-based experiments are continuing to be funded at present, and it will be possible to compete for $80-90 million in new money from the Human Research Initiative (HRI). The new program thrust is for exploration, not fundamental physics. Fundamental, we were told by Lee, does not ring well in Washington these days. Investigators were advised to consider how their work can benefit missions to the Moon and Mars. Work such as that regarding atomic clocks is looked upon with favor, for example, because it is considered important to navigation and planetary GPS. Mark Lee stressed that physicists must convey to NASA senior management that they are able and willing to contribute to the new exploration research programs. The new mentality must be we deliver products, not do research. This program needs to be able to say that it is doing at least 50% exploration-related research. JPL s Ulf Israelsson discussed the implications to OBPR, which will deliver methods and technology to assure human health and performance in extraterrestrial settings. The enterprise will provide advanced life-support systems and technology that are reliable, capable, simpler, less massive, smaller, and energy-efficient, and it may offer other necessary expertise in areas such as low-gravity behavior. Like Dr. Lee, he stated that the focus must be on products, not research. While there is not yet a formal direction, he said, LTMPF and PARCS ISS flight projects are slated to terminate in October 2004. All flight investigations are being returned to ground programs and phased out by the end of FY07. Physics ground programs are intact for now, but to survive we must shift about 50% of research to supporting exploration. Basic research programs in other disciplines are being cancelled. Product lines will support human health, safety and life-support, including countermeasures against radiation and other hazards, as well as advances in time-keeping, navigation and communications technologies. Israelsson said that the new Fundamental Physics for Exploration Roadmap points to how fundamental physics research can and does support exploration. JPL will use the roadmap to argue for support for fundamental physics research under several codes. Nicholas Bigelow of the University of Rochester encouraged attendees not to become discouraged, but rather to embrace the opportunities presented by NASA's new direction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.
2012-09-14
The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineeringmore » Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.
2012-09-01
Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S.more » Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).« less
Lithography for enabling advances in integrated circuits and devices.
Garner, C Michael
2012-08-28
Because the transistor was fabricated in volume, lithography has enabled the increase in density of devices and integrated circuits. With the invention of the integrated circuit, lithography enabled the integration of higher densities of field-effect transistors through evolutionary applications of optical lithography. In 1994, the semiconductor industry determined that continuing the increase in density transistors was increasingly difficult and required coordinated development of lithography and process capabilities. It established the US National Technology Roadmap for Semiconductors and this was expanded in 1999 to the International Technology Roadmap for Semiconductors to align multiple industries to provide the complex capabilities to continue increasing the density of integrated circuits to nanometre scales. Since the 1960s, lithography has become increasingly complex with the evolution from contact printers, to steppers, pattern reduction technology at i-line, 248 nm and 193 nm wavelengths, which required dramatic improvements of mask-making technology, photolithography printing and alignment capabilities and photoresist capabilities. At the same time, pattern transfer has evolved from wet etching of features, to plasma etch and more complex etching capabilities to fabricate features that are currently 32 nm in high-volume production. To continue increasing the density of devices and interconnects, new pattern transfer technologies will be needed with options for the future including extreme ultraviolet lithography, imprint technology and directed self-assembly. While complementary metal oxide semiconductors will continue to be extended for many years, these advanced pattern transfer technologies may enable development of novel memory and logic technologies based on different physical phenomena in the future to enhance and extend information processing.
NASA Technical Reports Server (NTRS)
Poniatowski, Karen
2005-01-01
Contents include the following: Overview/Introduction. Roadmap Approach/Considerations. Roadmap Timeline/Spirals. Requirements Development. Spaceport/Range Capabilities. Mixed Range Architecture. User Requirements/Customer Considerations. Manifest Considerations. Emerging Launch User Requirements. Capability Breakdown Structure/Assessment. Roadmap Team Observations. Transformational Range Test Concept. Roadmap Team Conclusions. Next Steps.
NASA Technical Reports Server (NTRS)
Crooke, Julie A.
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps "Title." Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA's Space Launch System: One Vehicle, Many Destinations
NASA Technical Reports Server (NTRS)
May, Todd A.; Creech, Stephen D.
2013-01-01
The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of unprecedented human and robotic missions.
Calling Home in 2003: JPL Roadmap to Standardized TT&C Customer Support
NASA Technical Reports Server (NTRS)
Kurtik, S.; Berner, J.; Levesque, M.
2000-01-01
The telecommunications and Mission Operations Directorate (TMOD at the Jet Propulsion Laboratory (JPL) provides tracking, telemetry and command (TT&C) services for execution of a broad spectrum of deep space missions.
Regenerative medicine blueprint.
Terzic, Andre; Harper, C Michel; Gores, Gregory J; Pfenning, Michael A
2013-12-01
Regenerative medicine, a paragon of future healthcare, holds unprecedented potential in extending the reach of treatment modalities for individuals across diseases and lifespan. Emerging regenerative technologies, focused on structural repair and functional restoration, signal a radical transformation in medical and surgical practice. Regenerative medicine is poised to provide innovative solutions in addressing major unmet needs for patients, ranging from congenital disease and trauma to degenerative conditions. Realization of the regenerative model of care predicates a stringent interdisciplinary paradigm that will drive validated science into standardized clinical options. Designed as a catalyst in advancing rigorous new knowledge on disease causes and cures into informed delivery of quality care, the Mayo Clinic regenerative medicine blueprint offers a patient-centered, team-based strategy that optimizes the discovery-translation-application roadmap for the express purpose of science-supported practice advancement.
EADS Roadmap for Launch Vehicles
NASA Astrophysics Data System (ADS)
Eymar, Patrick; Grimard, Max
2002-01-01
still think about the future, especially at industry level in order to make the most judicious choices in technologies, vehicle types as well as human resources and facilities specialization (especially after recent merger moves). and production as prime contractor, industrial architect or stage provider have taken benefit of this expertise and especially of all the studies ran under national funding and own financing on reusable vehicles and ground/flight demonstrators have analyzed several scenarios. VEHICLES/ASTRIUM SI strategy w.r.t. launch vehicles for the two next decades. Among the main inputs taken into account of course visions of the market evolutions have been considered, but also enlargement of international cooperations and governments requests and supports (e.g. with the influence of large international ventures). 1 patrick.eymar@lanceurs.aeromatra.com 2
NASA Technical Reports Server (NTRS)
Aikins, Jan
2005-01-01
Contents include the following: General Background and Introduction of Capability Roadmaps. Agency Objective. Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
Nanotechnology for forest products. Part 2
Theodore Wegner; Phil Jones
2005-01-01
In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...
DOT National Transportation Integrated Search
2011-02-25
"Bridge scour refers to the removal of sediments from the bridge foundation by flood. It is the most detrimental cause for the majority of : bridge failures in the United States. In the National Bridge Registry, there are 484,546 highway bridges over...
Dilemmas of Blended Language Learning: Learner and Teacher Experiences
ERIC Educational Resources Information Center
Gleason, Jesse
2013-01-01
Rapidly advancing technology continues to change the landscape of blended foreign language education. Pinpointing the differences between blended language (BL) learning environments and understanding how stakeholders experience such spaces is complex. However, learner experiences can provide a roadmap for the design and development of BL courses.…
75 FR 33659 - ITS Joint Program Office; IntelliDriveSM
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... IntelliDrive\\SM\\ safety technical and policy research roadmaps. The workshop will be held on July 20-22... first day of the workshop will provide a detailed discussion of the technical research activities within... Workshop AGENCY: Research and Innovative Technology Administration, U.S. Department of Transportation...
Aerothermodynamics and Turbulence
2013-03-08
Surface Heat Transfer and Detailed Flow Structure Fuel Injection in a Scramjet Combustor Reduced Uncertainty in Complex Flows Addressing... hypersonic flight data to capture shock interaction unsteadiness National Hypersonic Foundational Research Plan Joint Technology Office... Hypersonics Basic Science Roadmap Assessment of SOA and Future Research Directions Ongoing Basic Research for Understanding and Controlling Noise
Assuring Quality in E-Learning Course Design: The Roadmap
ERIC Educational Resources Information Center
Vlachopoulos, Dimitrios
2016-01-01
Quality Assurance (QA) concepts and applications in Higher Education (HE) emerge from evolving meanings related to HE's dynamic relationship with social, economic, cultural, and technological developments. The latter has been redefined by the growth spurred by the forms distance and online education acquired during the last decades. Creating a…
Transforming care: medical practice design and information technology.
Kilo, Charles M
2005-01-01
The transformation of the medical practice is possible today because of the advancement of system design knowledge coupled with innovations in information technology (IT). Examples of such transformed care are present today, and they are creating a roadmap for others. Those efforts are also elucidating critical issues in the use of IT to advance health care quality. Connectivity, electronic integration, and knowledge management are the key functionalities emerging as levers to promote this transformation.
Communities of Interest: Collaborating on Technology Challenges
2015-04-01
Tech- nology, and Logistics Office of International Cooperation and the Assistant Secretary of Defense for Research and Evalua- tion ( ASD [R&E]). With...DoD R&E budgetary responsibilities: The R&E Executive Committee (R&E ExCom), the most senior- level group, is comprised of the ASD (R&E), Service...COIs can draw from many new resources to inform and populate their respective Technology Roadmaps. The ASD (R&E) hosts a COI Collaboration workspace on
Terrestrial Planet Finder Interferometer: 2007-2008 Progress and Plans
NASA Technical Reports Server (NTRS)
Lawson, P. R.; Lay, O. P.; Martin, S. R.; Peters, R. D.; Gappinger, R. O.; Ksendzov, A.; Scharf, D. P.; Booth, A. J.; Beichman, C. A.; Serabyn, E.;
2008-01-01
This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I). TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars. The overall technology roadmap is presented and progress with each of the testbeds is summarized. The current interferometer architecture, design trades, and the viability of possible reduced-scope mission concepts are also presented.
The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020
2005-01-01
field. Poultry Swine Cattle Feed for Livestock Export (grain) Export (food) Food and Industrial Ethanol High Fructose Corn Syrup In a similar manner...terrestrial nutrients. The United States has significant resources in good soils, extensive natural water distribution, and a technology base that allows...yield to provide a 2-fold (vs 98) increase in carbon output per unit input. Develop systems approaches to minimize impact on land, air, and water
Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program (ERDAP)
2005-06-01
l2O3:C OSL dosimeters . Overall design is based on similar systems described earlier by Justus et al. (1999) and Huston et al. (2001). Similar apparatus...Radioisotope Contamination 4. Pre-Positioned Physical Dosimeters C. Assessment of Emerging Dosimetry Technologies 1. Biological Measurements 2. Physico...architectures for radiation dose assessment tools. • Focus initial studies on defining the role of pre-positioned dosimeters , optimizing the size and
Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight
NASA Technical Reports Server (NTRS)
Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne
2014-01-01
Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.
ITS regional architecture for the Albuquerque metropolitan area (AMPA) : evaluation report.
DOT National Transportation Integrated Search
2009-08-11
The Albuquerque Metropolitan Planning Area (AMPA) Regional ITS Architecture is the : roadmap for transportation systems integration in the Albuquerque Metropolitan Area over the : next 20 years. This architecture was developed through a supportive ef...
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
AES Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
L-8: Docking Systems and Other Attachment/Release Mechanisms and Related Technologies
NASA Technical Reports Server (NTRS)
Lewis, James
2016-01-01
We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030s. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2011-01-01
In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology Assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assessed the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. This needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper summarizes the SIOSS findings and recommendations.
NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2011-01-01
This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.
Science-Driven Computing: NERSC's Plan for 2006-2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Horst D.; Kramer, William T.C.; Bailey, David H.
NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less
High Energy Power and Propulsion Capability Roadmap: General Background and Introduction
NASA Technical Reports Server (NTRS)
Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
L-8: In-Situ Resource Utilization Capabilities
NASA Technical Reports Server (NTRS)
Sanders, Jerry
2016-01-01
We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030's. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.
Performance Learning Roadmap A Network-Centric Approach for Engaged Learners
2005-01-01
Insurance Corporation Target Corporation Unilever Corporation United Nations Development Programme University of Wisconsin (UWSA)–Madison U.S. Coast Guard...performance support services, including consulting, coaching, mentoring, rapid 14 deployment training, targeted training, analysis , facilitation, and team...services include consulting, coaching, mentoring, rapid deployment training, targeted train- ing, analysis , facilitation, and team collaboration support
World Health Organization Public Health Model: A Roadmap for Palliative Care Development.
Callaway, Mary V; Connor, Stephen R; Foley, Kathleen M
2018-02-01
The Open Society Foundation's International Palliative Care Initiative (IPCI) began to support palliative care development in Central and Eastern Europe and the Former Soviet Union in 1999. Twenty-five country representatives were invited to discuss the need for palliative care in their countries and to identify key areas that should be addressed to improve the care of adults and children with life-limiting illnesses. As a public health concern, progress in palliative care requires integration into health policy, education and training of health care professionals, availability of essential pain relieving medications, and health care services. IPCI created the Palliative Care Roadmap to serve as a model for government and/or nongovernment organizations to use to frame the necessary elements and steps for palliative care integration. The roadmap includes the creation of multiple Ministry of Health-approved working groups to address: palliative care inclusion in national health policy, legislation, and finance; availability of essential palliative care medications, especially oral opioids; education and training of health care professionals; and the implementation of palliative care services at home or in inpatient settings for adults and children. Each working group is tasked with developing a pathway with multiple signposts as indicators of progress made. The roadmap may be entered at different signposts depending upon the state of palliative care development in the country. The progress of the working groups often takes place simultaneously but at variable rates. Based on our experience, the IPCI Roadmap is one possible framework for palliative care development in resource constrained countries but requires both health care professional engagement and political will for progress to be made. Copyright © 2017. Published by Elsevier Inc.
2013 Snapshot of NGSI Human Capital Development and Future Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholz, Melissa A; Poe, Sarah M; Dewji, Shaheen A
2013-01-01
Since its creation in 2008, the Human Capital Development (HCD) subprogram of NNSA s Next Generation Safeguards Initiative (NGSI) has been striving to develop sustainable academic and technical programs that support the recruitment, education, training, and retention of the next generation of international safeguards professionals. This effort endeavors to develop additional human resources to equip a new cadre of safeguards and nonproliferation experts to meet the needs of both the United States and the International Atomic Energy Agency (IAEA) for decades to come, specifically in response to data that indicates that 82% of the 2009 safeguards experts at U.S. Laboratoriesmore » will have left the workforce within 15 years. This paper provides an update on the status of the program since its last presentation at the INMM Annual Meeting in 2010, including strengthened and integrated efforts in the areas of graduate and post-doctoral fellowships, young and mid-career professional support, additional short safeguards coursework, and expanded university engagement. In particular, the paper will cover the NGSI Human Capital Roadmap currently being developed in safeguards and nonproliferation education, training, and knowledge retention. The NGSI Human Capital Roadmap aims to provide additional data points and metrics on where the human capital demand lies, which disciplines and skill sets are needed in the field, and how NGSI HCD can best address these issues to meet future demand.« less
Army Net Zero: Energy Roadmap and Program Summary, Fiscal Year 2013 (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The U.S. Army (Army) partnered with the National Renewable Energy Laboratory (NREL) and the U.S. Army Corps of Engineers to assess opportunities for increasing energy security through improved energy efficiency and optimized renewable energy strategies at nine installations across the Army's portfolio. Referred to as Net Zero Energy Installations (NZEIs), these projects demonstrate and validate energy efficiency and renewable energy technologies with approaches that can be replicated across DOD and other Federal agencies, setting the stage for broad market adoption. This report summarizes the results of the energy project roadmaps developed by NREL, shows the progress each installation could makemore » in achieving Net Zero Energy by 2020, and presents lessons learned and unique challenges from each installation.« less
HTA Implementation Roadmap in Central and Eastern European Countries
Gheorghe, Adrian; Huic, Mirjana; Csanádi, Marcell; Kristensen, Finn Boerlum
2016-01-01
Abstract The opportunity cost of inappropriate health policy decisions is greater in Central and Eastern European (CEE) compared with Western European (WE) countries because of poorer population health and more limited healthcare resources. Application of health technology assessment (HTA) prior to healthcare financing decisions can improve the allocative efficiency of scarce resources. However, few CEE countries have a clear roadmap for HTA implementation. Examples from high‐income countries may not be directly relevant, as CEE countries cannot allocate so much financial and human resources for substantiating policy decisions with evidence. Our objective was to describe the main HTA implementation scenarios in CEE countries and summarize the most important questions related to capacity building, financing HTA research, process and organizational structure for HTA, standardization of HTA methodology, use of local data, scope of mandatory HTA, decision criteria, and international collaboration in HTA. Although HTA implementation strategies from the region can be relevant examples for other CEE countries with similar cultural environment and economic status, HTA roadmaps are not still fully transferable without taking into account country‐specific aspects, such as country size, gross domestic product per capita, major social values, public health priorities, and fragmentation of healthcare financing. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26763688
Astrobiology: A Roadmap for Charting Life in the Universe
NASA Technical Reports Server (NTRS)
DesMarais, David J.; DeVincezi, D. (Technical Monitor)
2002-01-01
Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.
NASA Technical Reports Server (NTRS)
Coulter, Dan; Bankston, Perry
2005-01-01
Agency objective are: Strategic Planning Transformation. Advanced Planning Organizational Roles. Public Involvement in Strategic Planning. Strategic Roadmaps and Schedule. Capability Roadmaps and Schedule. Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel Todd
2015-04-01
This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was devemore » loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.« less
Ares Project Technology Assessment: Approach and Tools
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Tyson, Richard
2010-01-01
Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan; Campola, Michael; Ladbury, Raymond; Label, Kenneth; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson
2017-01-01
Recent work for the NASA Electronic Parts and Packaging Program Power MOSFET task is presented. The Task technology focus, roadmap, and partners are given. Recent single-event effect test results on commercial, automotive, and radiation hardened trench power MOSFETs are summarized with an emphasis on risk of using commercial and automotive trench-gate power MOSFETs in space applications.
Learning Analytics in Higher Education Development: A Roadmap
ERIC Educational Resources Information Center
Adejo, Olugbenga; Connolly, Thomas
2017-01-01
The increase in education data and advance in technology are bringing about enhanced teaching and learning methodology. The emerging field of Learning Analytics (LA) continues to seek ways to improve the different methods of gathering, analysing, managing and presenting learners' data with the sole aim of using it to improve the student learning…
Roadmap for a Departmental Web Site
ERIC Educational Resources Information Center
Zhang, Guo-Qiang; White, Lee; Hesse, Christopher; Buchner, Marc; Mehregany, Mehran
2005-01-01
Virtually every academic department in an institute of higher education requires Web presence as a critical component of its information technology strategy. The problem of how to leverage the World Wide Web and build effective and useful departmental Web sites seems to have long been solved. Yet browsing academic Web sites from around the world…
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation
NASA Technical Reports Server (NTRS)
Abel, Tom; Allen, Ron; Benford, Dominic; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal; Fischer, Jackie
2004-01-01
A viewgraph presentation describing the Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) mission is shown. The topics include: 1) Context: community planning and study status; 2) Science goals; 3) Mission requirements; 4) Mission concepts for SPIRIT and SPECS; and 5) Tethered formation flying, a key enabling technology.
Methods to Account for Accelerated Semi-Conductor Device Wearout in Longlife Aerospace Applications
2003-01-01
Vasi, “Device scalling effects on hot-carrier induced interface and oxide-trappoing charge distributions in MOSFETs,” IEEE Transactions on Electron...Symposium Proceedings, pp. 248–254, 2002. [104] S. I. A. ( SIA ), “International technology roadmap for semiconductors.” <www.semichips.org>, 1999. 113
2007-03-01
features Federated Search (providing services to find and aggregate information across GIG enterprise data sources); Enterprise Catalog (providing...Content Discovery Federated Search Portlet Users Guide v0.4.3 M16 25-Apr-05 NCES Mediation Core Enterprise Services SDK v0.5.0 M17 25-Apr-05 NCES
2012-01-24
Kersey et. al., 1997). There are other types of fiber optic sensors that can be multiplexed such as extrinsic Fabry -Perot interferometers (EFPI), but...census bureau, and outbreak monitoring by the US Centers for Disease Control (CDC). • One approach to data management is replacing conventional
Biomedical technology prosperity game{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; Boyack, K.W.; Wesenberg, D.L.
1996-07-01
Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defensemore » Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.« less
RTS,S: Toward a first landmark on the Malaria Vaccine Technology Roadmap.
Kaslow, David C; Biernaux, Sophie
2015-12-22
The Malaria Vaccine Technology Roadmap calls for a 2015 landmark goal of a first-generation malaria vaccine that has protective efficacy against severe disease and death, lasting longer than one year. This review focuses on product development efforts over the last five years of RTS,S, a pre-erythrocytic, recombinant subunit, adjuvanted, candidate malaria vaccine designed with this goal of a first-generation malaria vaccine in mind. RTS,S recently completed a successful pivotal Phase III safety, efficacy and immunogenicity study. Although vaccine efficacy was found to be modest, a substantial number of cases of clinical malaria were averted over a 3-4 years period, particularly in settings of significant disease burden. European regulators have subsequently adopted a positive opinion under the Article 58 procedure for an indication of active immunization of children aged 6 weeks up to 17 months against malaria caused by Plasmodium falciparum and against hepatitis B. Further evaluations of the benefit, risk, feasibility and cost-effectiveness of RTS,S are now anticipated through policy and financing reviews at the global and national levels. Copyright © 2015. Published by Elsevier Ltd.
Analysis of the Capability Portfolio Review (CPR)
2014-06-01
facilitated by the MRM feature. PAT allows the analyst to quickly change how summary depictions are generated. Choices include; simple linear...database with supporting software that documents relationships between warfighting activities, the UJTL, systems, ACTDs, roadmaps, and capability areas. It
National Rocket Propulsion Materials Plan: A NASA, Department of Defense, and Industry Partnership
NASA Technical Reports Server (NTRS)
Clinton, Raymond G., Jr.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA, Department of Defense, and rocket propulsion industry representatives are working together to create a national rocket propulsion materials development roadmap. This "living document" will facilitate collaboration among the partners, leveraging of resources, and will be a highly effective tool for technology development planning. The structuring of the roadmap, and development plan, which will combine the significant efforts of the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Program, and NASA's Integrated Space Transportation Plan (ISTP), is being lead by the IHPRPT Materials Working Group (IMWG). The IHPRPT Program is a joint DoD, NASA, and industry effort to dramatically improve the nation's rocket propulsion capabilities. This phased program is structured with increasingly challenging goals focused on performance, reliability, and cost to effectively double rocket propulsion capabilities by 2010. The IHPRPT program is focused on three propulsion application areas: Boost and Orbit Transfer (both liquid rocket engines and solid rocket motors), Tactical, and Spacecraft. Critical to the success of this initiative is the development and application of advanced materials, processes, and manufacturing technologies. NASA's ISTP is a comprehensive strategy focusing on the aggressive safety, reliability, and affordability goals for future space transportation systems established by the agency. Key elements of this plan are the 2 nd and 3 d Generation Reusable Launch Vehicles (RLV). The affordability and safety goals of these generational systems are, respectively, 10X cheaper and 100X safer by 2010, and 100X cheaper and 10,000X safer by 2025. Accomplishment of these goals requires dramatic and sustained breakthroughs, particularly in the development and the application of advanced material systems. The presentation will provide an overview of the IHPRPT materials initiatives, NASA's 2nd and 3 rd Generation RLV propulsion materials projects, and the approach for the development of the national rocket propulsion materials roadmap.
SPECS: the kilometer-baseline far-IR interferometer in NASA's space science roadmap
NASA Astrophysics Data System (ADS)
Leisawitz, David T.; Abel, Tom; Allen, Ronald J.; Benford, Dominic J.; Blain, Andrew; Bombardelli, Claudio; Calzetti, Daniela; DiPirro, Michael J.; Ehrenfreund, Pascale; Evans, Neal J., II; Fischer, Jacqueline; Harwit, Martin; Hyde, Tristram T.; Kuchner, Marc J.; Leitner, Jesse A.; Lorenzini, Enrico C.; Mather, John C.; Menten, Karl M.; Moseley, Samuel H., Jr.; Mundy, Lee G.; Nakagawa, Takao; Neufeld, David A.; Pearson, John C.; Rinehart, Stephen A.; Roman, Juan; Satyapal, Shobita; Silverberg, Robert F.; Stahl, H. Philip; Swain, Mark R.; Swanson, Theodore D.; Traub, Wesley A.; Wright, Edward L.; Yorke, Harold W.
2004-10-01
Ultimately, after the Single Aperture Far-IR (SAFIR) telescope, astrophysicists will need a far-IR observatory that provides angular resolution comparable to that of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and theoretical models for galaxy, star, and planet formation and evolution can be subjected to important observational tests. This paper updates information provided in a 2000 SPIE paper on the scientific motivation and design concepts for interferometric missions SPIRIT (the Space Infrared Interferometric Telescope) and SPECS (the Submillimeter Probe of the Evolution of Cosmic Structure). SPECS is a kilometer baseline far-IR/submillimeter imaging and spectral interferometer that depends on formation flying, and SPIRIT is a highly-capable pathfinder interferometer on a boom with a maximum baseline in the 30 - 50 m range. We describe recent community planning activities, remind readers of the scientific rationale for space-based far-infrared imaging interferometry, present updated design concepts for the SPIRIT and SPECS missions, and describe the main issues currently under study. The engineering and technology requirements for SPIRIT and SPECS, additional design details, recent technology developments, and technology roadmaps are given in a companion paper in the Proceedings of the conference on New Frontiers in Stellar Interferometry.
BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less
Separations and Waste Forms Research and Development FY 2013 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Separations and Waste Form Campaign (SWFC) under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Program (FCRD) is responsible for developing advanced separation and waste form technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year (FY) 2013 accomplishments report provides a highlight of the results of the research and development (R&D) efforts performed within SWFC in FY 2013. Each section contains a high-level overview of the activities, results, technical point of contact, applicable references, and documents produced during themore » fiscal year. This report briefly outlines campaign management and integration activities, but the intent of the report is to highlight the many technical accomplishments made during FY 2013.« less
NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies
NASA Technical Reports Server (NTRS)
Mueller, Rob P.
2012-01-01
NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).
The EuroPhysiome, STEP and a roadmap for the virtual physiological human.
Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M
2008-09-13
Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.
NASA's 3D Flight Computer for Space Applications
NASA Technical Reports Server (NTRS)
Alkalai, Leon
2000-01-01
The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).
Exploration Blueprint: Data Book
NASA Technical Reports Server (NTRS)
Drake, Bret G. (Editor)
2007-01-01
The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.
Exploration Blueprint: Data Book
NASA Astrophysics Data System (ADS)
Drake, Bret G.
2007-02-01
The material contained in this report was compiled to capture the work performed by the National Aeronautics and Space Administration's (NASA's) Exploration study team in the late 2002 timeframe. The "Exploration Blueprint Data Book" documents the analyses and findings of the 90-day Agency-wide study conducted from September - November 2002. During the summer of 2002, the NASA Deputy Administrator requested that a study be performed with the following objectives: (1) Develop the rationale for exploration beyond low-Earth orbit (2) Develop roadmaps for how to accomplish the first steps through humans to Mars (3) Develop design reference missions as a basis for the roadmaps 4) Make recommendations on what can be done now to effect this future This planning team, termed the Exploration Blueprint, performed architecture analyses to develop roadmaps for how to accomplish the first steps beyond LEO through the human exploration of Mars. The previous NASA Exploration Team activities laid the foundation and framework for development of NASA's Integrated Space Plan. The reference missions resulting from the analysis performed by the Exploration Blueprint team formed the basis for requirement definition, systems development, technology roadmapping, and risk assessments for future human exploration beyond low-Earth orbit. Emphasis was placed on developing recommendations on what could be done now to effect future exploration activities. The Exploration Blueprint team embraced the "Stepping Stone" approach to exploration where human and robotic activities are conducted through progressive expansion outward beyond low-Earth orbit. Results from this study produced a long-term strategy for exploration with near-term implementation plans, program recommendations, and technology investments. Specific results included the development of a common exploration crew vehicle concept, a unified space nuclear strategy, focused bioastronautics research objectives, and an integrated human and robotic exploration strategy. Recommendations from the Exploration Blueprint included the endorsement of the Nuclear Systems Initiative, augmentation of the bioastronautics research, a focused space transportation program including heavy-lift launch and a common exploration vehicle design for ISS and exploration missions, as well as an integrated human and robotic exploration strategy for Mars.
Enterprise application architecture development based on DoDAF and TOGAF
NASA Astrophysics Data System (ADS)
Tao, Zhi-Gang; Luo, Yun-Feng; Chen, Chang-Xin; Wang, Ming-Zhe; Ni, Feng
2017-05-01
For the purpose of supporting the design and analysis of enterprise application architecture, here, we report a tailored enterprise application architecture description framework and its corresponding design method. The presented framework can effectively support service-oriented architecting and cloud computing by creating the metadata model based on architecture content framework (ACF), DoDAF metamodel (DM2) and Cloud Computing Modelling Notation (CCMN). The framework also makes an effort to extend and improve the mapping between The Open Group Architecture Framework (TOGAF) application architectural inputs/outputs, deliverables and Department of Defence Architecture Framework (DoDAF)-described models. The roadmap of 52 DoDAF-described models is constructed by creating the metamodels of these described models and analysing the constraint relationship among metamodels. By combining the tailored framework and the roadmap, this article proposes a service-oriented enterprise application architecture development process. Finally, a case study is presented to illustrate the results of implementing the tailored framework in the Southern Base Management Support and Information Platform construction project using the development process proposed by the paper.
Wolff, Silje A; Coelho, Liz H; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-05-05
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space.
Wolff, Silje A.; Coelho, Liz H.; Karoliussen, Irene; Jost, Ann-Iren Kittang
2014-01-01
Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, atmosphere revitalization, and clean water for humans. Plants can adapt to extreme environments on Earth, and model plants have been shown to grow and develop through a full life cycle in microgravity. However, more knowledge about the long term effects of the extraterrestrial environment on plant growth and development is necessary. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plant processes, with continuous recycling of resources. In this context, a literature review to analyze the impact of the space environments on higher plants, with focus on gravity levels, magnetic fields and radiation, has been performed. This communication presents a roadmap giving directions for future scientific activities within space plant cultivation. The roadmap aims to identify the research activities required before higher plants can be included in regenerative life support systems in space. PMID:25370192
NASA Technical Reports Server (NTRS)
Regenie, Victoria
2005-01-01
Contents include the following: General Background and Introduction of Capability. Roadmaps for Systems Engineering Cost/Risk Analysis. Agency Objectives. Strategic Planning Transformation. Review Capability Roadmaps and Schedule. Review Purpose of NRC Review. Capability Roadmap Development (Progress to Date).
NASA Technical Reports Server (NTRS)
Davidoff, Larry D.; Reichert, Jack M.
1999-01-01
NASA continues to focus on improving safety and reliability while reducing the annual cost of meeting human space flight and unique ISS and exploration needs. NASA's Space Transportation Architecture Study (STAS) Phase 2 in early 1998 focused on space transportation options. Subsequently, NASA directed parallel industry and government teams to conduct the Integrated Space Transportation Plan effort (STAS Phase 3). The objective of ISTP was to develop technology requirements, roadmaps, and risk reduction portfolio that considered expanded definition of "clean-sheet" and Shuttle-derived second generation ETO transportation systems in support of a 2005 RLV competition for NASA missions beginning 2010. NASA provided top-level requirements for improvements in safety, reliability, and cost and a set of design reference missions representing NASA ISS, human exploration, commercial, and other civil and government needs. This paper addresses the challenges of meeting NASA's objectives while servicing the varied market segments represented in the ISTP design reference missions and provides a summary of technology development needs and candidate system concepts. A comparison of driving requirements, architectures and technology needs is discussed and descriptions of viable Shuttle-derived and next generation systems to meet the market needs are presented.
A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.
2011-01-01
Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery-based measurement capability to support cross cutting applications that span the Agency mission directorates as well as meeting potential needs of the commercial sector and national interests of the Intelligence, Surveillance and Reconnaissance community are explored. A recommendation is made for an assessment study to baseline current imaging technology including the identification of future mission requirements. Development of requirements fostered by the applications suggested in this paper would be used to identify technology gaps and direct roadmapping for implementation of an affordable and sustainable next generation sensor/platform system.
Wolf, Douglas C.; Bachman, Ammie; Barrett, Gordon; Bellin, Cheryl; Goodman, Jay I.; Jensen, Elke; Moretto, Angelo; McMullin, Tami; Pastoor, Timothy P.; Schoeny, Rita; Slezak, Brian; Wend, Korinna; Embry, Michelle R.
2016-01-01
ABSTRACT The HESI-led RISK21 effort has developed a framework supporting the use of twenty-first century technology in obtaining and using information for chemical risk assessment. This framework represents a problem formulation-based, exposure-driven, tiered data acquisition approach that leads to an informed decision on human health safety to be made when sufficient evidence is available. It provides a transparent and consistent approach to evaluate information in order to maximize the ability of assessments to inform decisions and to optimize the use of resources. To demonstrate the application of the framework’s roadmap and matrix, this case study evaluates a large number of chemicals that could be present in drinking water. The focus is to prioritize which of these should be considered for human health risk as individual contaminants. The example evaluates 20 potential drinking water contaminants, using the tiered RISK21 approach in combination with graphical representation of information at each step, using the RISK21 matrix. Utilizing the framework, 11 of the 20 chemicals were assigned low priority based on available exposure data alone, which demonstrated that exposure was extremely low. The remaining nine chemicals were further evaluated, using refined estimates of toxicity based on readily available data, with three deemed high priority for further evaluation. In the present case study, it was determined that the greatest value of additional information would be from improved exposure models and not from additional hazard characterization. PMID:26451723
Wolf, Douglas C; Bachman, Ammie; Barrett, Gordon; Bellin, Cheryl; Goodman, Jay I; Jensen, Elke; Moretto, Angelo; McMullin, Tami; Pastoor, Timothy P; Schoeny, Rita; Slezak, Brian; Wend, Korinna; Embry, Michelle R
2016-01-01
The HESI-led RISK21 effort has developed a framework supporting the use of twenty-first century technology in obtaining and using information for chemical risk assessment. This framework represents a problem formulation-based, exposure-driven, tiered data acquisition approach that leads to an informed decision on human health safety to be made when sufficient evidence is available. It provides a transparent and consistent approach to evaluate information in order to maximize the ability of assessments to inform decisions and to optimize the use of resources. To demonstrate the application of the framework's roadmap and matrix, this case study evaluates a large number of chemicals that could be present in drinking water. The focus is to prioritize which of these should be considered for human health risk as individual contaminants. The example evaluates 20 potential drinking water contaminants, using the tiered RISK21 approach in combination with graphical representation of information at each step, using the RISK21 matrix. Utilizing the framework, 11 of the 20 chemicals were assigned low priority based on available exposure data alone, which demonstrated that exposure was extremely low. The remaining nine chemicals were further evaluated, using refined estimates of toxicity based on readily available data, with three deemed high priority for further evaluation. In the present case study, it was determined that the greatest value of additional information would be from improved exposure models and not from additional hazard characterization.
Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review
NASA Technical Reports Server (NTRS)
Manning, Rob; Schmitt, Harrison H.; Graves, Claude
2005-01-01
Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.
Improving collaboration between Primary Care Research Networks using Access Grid technology.
Nagykaldi, Zsolt; Fox, Chester; Gallo, Steve; Stone, Joseph; Fontaine, Patricia; Peterson, Kevin; Arvanitis, Theodoros
2008-01-01
Access Grid (AG) is an Internet2-driven, high performance audio-visual conferencing technology used worldwide by academic and government organisations to enhance communication, human interaction and group collaboration. AG technology is particularly promising for improving academic multi-centre research collaborations. This manuscript describes how the AG technology was utilised by the electronic Primary Care Research Network (ePCRN) that is part of the National Institutes of Health (NIH) Roadmap initiative to improve primary care research and collaboration among practice-based research networks (PBRNs) in the USA. It discusses the design, installation and use of AG implementations, potential future applications, barriers to adoption, and suggested solutions.
Fundamentals of Microgravity Vibration Isolation
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2000-01-01
In view of the utility of space vehicles as orbiting science laboratories, the need for vibration isolation systems for acceleration sensitive experiments has gained increasing visibility. This presentation provides a tutorial discussion of microgravity vibration isolation technology with the objective of elaborating on the relative merits of passive and active isolation approaches. The concepts of control bandwidth, isolation performance, and robustness will be addressed with illustrative examples. Concluding the presentation will be a suggested roadmap for future technology development activities to enhance the acceleration environment for microgravity science experiments.
The NASA/MSFC Coherent Lidar Technology Advisory Team
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.
1999-01-01
The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
NASA Astrophysics Data System (ADS)
Horneck, G.; Humex Team
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to pro-pose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as test-beds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. Two scenarios for a Mars mission were selected: (i) with a 30 days stay on Mars, and (ii) with about 500 days stay on Mars. The impact on human health, perform-ance and well being has been investigated from the view point of (i) the effects of microgravity (during space travel), reduced gravity (on Mars) and abrupt gravity changes (during launch and landing), (ii) the effects of cosmic radiation including solar particle events, (iii) psychological issues as well as general health care. Coun-termeasures as well as necessary research using ground-based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was emphasized. Advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential especially for the long-term Mars scenario. The considerations have been incorpo-rated into a roadmap for a future European strategy in human health issues for a potential European participation in a cooperative international exploration of our solar system by humans. Ref. Horneck et al, 2003, HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP 1264
HUMEX, a study on the survivability and adaptation of humans to long- duration exploratory missions
NASA Astrophysics Data System (ADS)
Horneck, G.
ESA has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis was laid on human health and performance care as well as Advanced Life Support Developments including Bioregenerative Life Support Systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the Life Sciences and Life Support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of Advanced Life Support Developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and ISS campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. A lunar base at the south pole where constant sunlight and potential water ice deposits could be assumed was selected as the moon scenario. the impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground- based testbeds and/or the ISS have been defined. The need for highly intelligent autonomous diagnostic and therapy systems was considered as a driver also for terrestrial applications. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnistic systems become essential especially for the long-term Mars scenario. A roadmap for a future European strategy leading to a potential European participation in a cooperative human exploratory mission, either to the Moon or to Mars, was produced. Ref. Horneck et al. HUMEX, study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP (in press)
Psychedelics and connectedness.
Carhart-Harris, R L; Erritzoe, D; Haijen, E; Kaelen, M; Watts, R
2018-02-01
Psychedelic drugs are creating ripples in psychiatry as evidence accumulates of their therapeutic potential. An important question remains unresolved however: how are psychedelics effective? We propose that a sense of connectedness is key, provide some preliminary evidence to support this, and suggest a roadmap for testing it further.
The decline in vitamin research funding: a missed opportunity?
USDA-ARS?s Scientific Manuscript database
Background: The National Nutrition Research Roadmap has called for support of greater collaborative, interdisciplinary research for multiple areas of nutrition research. However, a substantial reduction in federal funding makes responding to these calls challenging. The objective of this study was t...
Preparing the optics technology to observe the hot universe
NASA Astrophysics Data System (ADS)
Bavdaz, Marcos; Wille, Eric; Wallace, Kotska; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Ackermann, Marcelo; Vacanti, Giuseppe; Guenther, Ramses; Haneveld, Jeroen; Riekerink, Mark Olde; van Baren, Coen; Kampf, Dirk; Zuknik, Karl-Heinz; Christensen, Finn; Della Monica Ferreira, Desiree; Jakobsen, Anders Clemen; Krumrey, Michael; Müller, Peter; Burwitz, Vadim; Pareschi, Giovanni; Ghigo, Mauro
2014-07-01
With the selection of "The hot and energetic Universe" as science theme for ESA's second large class mission (L2) in the Cosmic Vision programme, work is focusing on the technology preparation for an advanced X-ray observatory. The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO) [1 to 23], a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry. The paper provides an overview of the programmatic background, the status of SPO technology and gives an outline of the development roadmap and activities undertaken and planned by ESA on optics, coatings [24 to 30] and test facilities [31, 33].
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
...-01] NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Draft... draft version of the NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0... Roadmap for Smart Grid Interoperability Standards, Release 2.0 (Release 2.0) (Draft) for public review and...
Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results
NASA Technical Reports Server (NTRS)
DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.
2010-01-01
NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.
L-8: Non-Venting Thermal Control Systems for Space Vehicles: Boilerplate
NASA Technical Reports Server (NTRS)
Smith, Fred; Massina, Chris
2016-01-01
We are sharpening our focus on Human Space Flight (HSF) Exploration Beyond Low Earth Orbit. We want to ensure that HSF technologies are ready to take Humans to Mars in the 2030's. Various Roadmaps define the needed technologies. We are attempting to define our activities and dependencies. Our Goal: Get within 8 years of launching humans to Mars (L-8) by 2025. Develop and Mature the technologies and systems needed. Develop and Mature the personnel needed. We need collaborators to make it happen, and we think they can benefit by working with us.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Constellation Overview: Ares V Solar System Science Workshop
NASA Technical Reports Server (NTRS)
Horack, John M.
2008-01-01
Presentation topics include: what is NASA's mission, why the Moon next, options for Moon landings, NASA's exploration roadmap, building on a foundation of proven technologies - launch vehicle comparisons, Ares nationwide team, Ares I elements, vehicle integration accomplishments, Aires I-X test flight, Ares I-X accomplishments, Orion crew exploration vehicle, Altair lunar lander, and Ares V elements.
Organizing Blended Learning for Students on the Basis of Learning Roadmaps
ERIC Educational Resources Information Center
Andreeva, Nadezhda M.; Artyukhov, Ivan P.; Myagkova, Elena G.; Pak, Nikolay I.; Akkasynova, Zhamilya K.
2018-01-01
The relevance of the problem of organizing blended learning for students is related to the sharpening contradiction between the high potential of this educational technology and the poor methodological elaboration of its use in actual learning practice. With regard to this, the paper is aimed at providing grounds for the methodological system of…
Condition and trends of ecological and economic systems
Harold Bergman; Sidney Draggan
2006-01-01
This Monitoring Science and Technology Symposium was designed to âput it all togetherâ for the achievement of sustainability-related goals. It brought together senior policy makers, resource managers and scientists from many organizations and a wide range of disciplines to design a roadmap for addressing critical needs for unifying monitoring strategies, information...
Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System
2016-12-01
FPA). A fast 5 steering mirror is used to move the FOV within the FOR so that the spacecraft does not need to physically move to a new target as...technology review and development roadmap,” Astro2010: The Astronomy and Astrophysics Decadal Survey, 2009, vol. 2010, p. 23. [8] D. Baiocchi, “Design and
SPAWAR Strategic Plan Execution Year 2017
2017-01-11
the PEO C4I domain. Completed C4I Baseline implementation activities including product roadmap system reviews, realignment of product fielding within...preloading applications in the CANES production facility to reduce installation timelines • Implemented Installation Management Office alignment and...software update process • For candidate technologies (endeavors) in the innovation pipeline, identified key attributes and acceleration factors that
Big data and the industrialization of neuroscience: A safe roadmap for understanding the brain?
Frégnac, Yves
2017-10-27
New technologies in neuroscience generate reams of data at an exponentially increasing rate, spurring the design of very-large-scale data-mining initiatives. Several supranational ventures are contemplating the possibility of achieving, within the next decade(s), full simulation of the human brain. Copyright © 2017, American Association for the Advancement of Science.
Open Technology Development: Roadmap Plan
2006-04-01
65 RECOMMENDATION 1: APPROVE AND FUND AN OTD STRIKE TEAM................. 67 Senior Leadership...negotiated, rather than an innate property of the product. Software’s replicability also means it can be incorporated into other software systems without...to leverage an open code development model, DoD would provide the market incentives to increase the agility and competitiveness of the industrial
Nanotechnology for the forest products industry: vision and technology roadmap
Inc. Atlanta Prepared by Energetics
2005-01-01
Nanotechnology is defined as the manipulation of materials measuring 100 nanometers or less in at least one dimension. Nanotechnology is expected to be a critical driver of global economic growth and development in this century. Already, this broad multi-disciplinary field is providing glimpses of exciting new capabilities, enabling materials, devices, and systems that...
The US Army Corps of Engineers Roadmap for Life-Cycle Building Information Modeling (BIM)
2012-11-01
Building Information Modeling ( BIM ) En gi ne er R es ea rc h an...Abstract Building Information Modeling ( BIM ) technology has rapidly gained ac- ceptance throughout the planning, architecture, engineering...the Industry Foundation Class (IFC) definitions to create vendor-neutral data exchanges for use in BIM software tools. Building Information Modeling
Convertino, Victor A; Cooke, William H
2005-09-01
Occurrence of serious cardiac dysrhythmias and diminished cardiac and vascular function are the primary cardiovascular risks of spaceflight identified in the 2005 NASA Bioastronautics Critical Path Roadmap. A review of the literature was conducted on experimental results and observational data obtained from spaceflight and relevant ground simulation studies that addressed occurrence of cardiac dysrhythmias, cardiac contractile and vascular function, manifestation of asymptomatic cardiovascular disease, orthostatic intolerance, and response to exercise stress. Based on data from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of cardiac dysrhythmias, manifestation of asymptomatic cardiovascular disease, or reduction in myocardial contractile function. Although there are post-spaceflight data that demonstrate lower peripheral resistance in astronauts who become presyncopal compared with non-presyncopal astronauts, it is not clear that these differences are the result of decreased vascular function. However, the evidence of postflight orthostatic intolerance and reduced exercise capacity is well substantiated by both spaceflight and ground experiments. Although attenuation of baroreflex function(s) may contribute to postflight orthostatic instability, a primary mechanism of orthostatic intolerance and reduced exercise capacity is reduced end-diastolic and stroke volume associated with lower blood volumes and consequent cardiac remodeling. Data from the literature on the current population of astronauts support the notion that the primary cardiovascular risks of spaceflight are compromised hemodynamic responses to central hypovolemia resulting in reduced orthostatic tolerance and exercise capacity rather than occurrence of cardiac dysrhythmias, reduced cardiac contractile and vascular function, or manifestation of asymptomatic cardiovascular disease. These observations warrant a critical review and revision of the 2005 Bioastronautics Critical Path Roadmap.
Mission Architecture and Technology Options for a Flagship Class Venus In Situ Mission
NASA Technical Reports Server (NTRS)
Balint, Tibor S.; Kwok, Johnny H.; Kolawa, Elizabeth A.; Cutts, James A.; Senske, David A.
2008-01-01
Venus, as part of the inner triad with Earth and Mars, represents an important exploration target if we want to learn more about solar system formation and evolution. Comparative planetology could also elucidate the differences between the past, present, and future of these three planets, and can help with the characterization of potential habitable zones in our solar system and, by extension, extrasolar systems. A long lived in situ Venus mission concept, called the Venus Mobile Explorer, was prominently featured in NASA's 2006 SSE Roadmap and supported in the community White Paper by the Venus Exploration Analysis Group (VEXAG). Long-lived in situ missions are expected to belong to the largest (Flagship) mission class, which would require both enabling and enhancing technologies beside mission architecture options. Furthermore, extreme environment mitigation technologies for Venus are considered long lead development items and are expected to require technology development through a dedicated program. To better understand programmatic and technology needs and the motivating science behind them, in this fiscal year (FY08) NASA is funding a Venus Flaghip class mission study, based on key science and technology drivers identified by a NASA appointed Venus Science and Technology Definition Team (STDT). These mission drivers are then assembled around a suitable mission architecture to further refine technology and cost elements. In this paper we will discuss the connection between the final mission architecture and the connected technology drivers from this NASA funded study, which - if funded - could enable a future Flagship class Venus mission and potentially drive a proposed Venus technology development program.
Scientific Assessment of NASA's Solar System Exploration Roadmap
NASA Technical Reports Server (NTRS)
1996-01-01
At its June 24-28, 1996, meeting, the Space Studies Board's Committee on Planetary and Lunar Exploration (COMPLEX), chaired by Ronald Greeley of Arizona State University, conducted an assessment of NASA's Mission to the Solar System Roadmap report. This assessment was made at the specific request of Dr. Jurgen Rahe, NASA's science program director for solar system exploration. The assessment includes consideration of the process by which the Roadmap was developed, comparison of the goals and objectives of the Roadmap with published National Research Council (NRC) recommendations, and suggestions for improving the Roadmap.
Maher, Molly; Kaziunas, Elizabeth; Ackerman, Mark; Derry, Holly; Forringer, Rachel; Miller, Kristen; O'Reilly, Dennis; An, Larry C; Tewari, Muneesh; Hanauer, David A; Choi, Sung Won
2016-02-01
Health information technology (IT) has opened exciting avenues for capturing, delivering and sharing data, and offers the potential to develop cost-effective, patient-focused applications. In recent years, there has been a proliferation of health IT applications such as outpatient portals. Rigorous evaluation is fundamental to ensure effectiveness and sustainability, as resistance to more widespread adoption of outpatient portals may be due to lack of user friendliness. Health IT applications that integrate with the existing electronic health record and present information in a condensed, user-friendly format could improve coordination of care and communication. Importantly, these applications should be developed systematically with appropriate methodological design and testing to ensure usefulness, adoption, and sustainability. Based on our prior work that identified numerous information needs and challenges of HCT, we developed an experimental prototype of a health IT tool, the BMT Roadmap. Our goal was to develop a tool that could be used in the real-world, daily practice of HCT patients and caregivers (users) in the inpatient setting. Herein, we examined the views, needs, and wants of users in the design and development process of the BMT Roadmap through user-centered Design Groups. Three important themes emerged: 1) perception of core features as beneficial (views), 2) alerting the design team to potential issues with the user interface (needs); and 3) providing a deeper understanding of the user experience in terms of wider psychosocial requirements (wants). These findings resulted in changes that led to an improved, functional BMT Roadmap product, which will be tested as an intervention in the pediatric HCT population in the fall of 2015 (ClinicalTrials.govNCT02409121). Copyright © 2016 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA aviation safety program aircraft engine health management data mining tools roadmap
DOT National Transportation Integrated Search
2000-04-01
Aircraft Engine Health Management Data Mining Tools is a project led by NASA Glenn Research Center in support of the NASA Aviation Safety Program's Aviation System Monitoring and Modeling Thrust. The objective of the Glenn-led effort is to develop en...
Davison, Sara N; Levin, Adeera; Moss, Alvin H; Jha, Vivekanand; Brown, Edwina A; Brennan, Frank; Murtagh, Fliss E M; Naicker, Saraladevi; Germain, Michael J; O'Donoghue, Donal J; Morton, Rachael L; Obrador, Gregorio T
2015-09-01
Patients with advanced chronic kidney disease (CKD) have a high burden of physical and psychosocial symptoms, poor outcomes, and high costs of care. Current paradigms of care for this highly vulnerable population are variable, prognostic and assessment tools are limited, and quality of care, particularly regarding conservative and palliative care, is suboptimal. The KDIGO Controversies Conference on Supportive Care in CKD reviewed the current state of knowledge in order to define a roadmap to guide clinical and research activities focused on improving the outcomes of people living with advanced CKD, including those on dialysis. An international group of multidisciplinary experts in CKD, palliative care, methodology, economics, and education identified the key issues related to palliative care in this population. The conference led to a working plan to address outstanding issues in this arena, and this executive summary serves as an output to guide future work, including the development of globally applicable guidelines.
Rapid Cost Assessment of Space Mission Concepts through Application of Complexity Indices
NASA Technical Reports Server (NTRS)
Peterson, Craig; Cutts, James; Balint, Tibor; Hall, James B.
2008-01-01
In 2005, the Solar System Exploration Strategic Roadmap Conmrittee (chartered by NASA to develop the roadmap for Solar System Exploration Missions for the coming decades) found itself posed with the difficult problem of sorting through several mission concepts and determining their relative costs. While detailed mission studies are the normal approach to costing, neither the budget nor schedule allotted to the conmrittee could support such studies. Members of the Jet Propulsion Laboratory (JPL) supporting the conmrittee were given the challenge of developing a semi-quantitative approach that could provide the relative costs of these missions, without requiring an in depth study of the missions. In response to this challenge, a rapid cost assessment methodology based on a set of mission cost/complexity indexes was developed. This methodology also underwent two separate validations, one comparing its results when applied to historical missions, and another comparing its estimates against those of veteran space mission managers. Remarkably good agreement was achieved, suggesting that this approach provides an effective early indication of space mission costs.
HTA Implementation Roadmap in Central and Eastern European Countries.
Kaló, Zoltán; Gheorghe, Adrian; Huic, Mirjana; Csanádi, Marcell; Kristensen, Finn Boerlum
2016-02-01
The opportunity cost of inappropriate health policy decisions is greater in Central and Eastern European (CEE) compared with Western European (WE) countries because of poorer population health and more limited healthcare resources. Application of health technology assessment (HTA) prior to healthcare financing decisions can improve the allocative efficiency of scarce resources. However, few CEE countries have a clear roadmap for HTA implementation. Examples from high-income countries may not be directly relevant, as CEE countries cannot allocate so much financial and human resources for substantiating policy decisions with evidence. Our objective was to describe the main HTA implementation scenarios in CEE countries and summarize the most important questions related to capacity building, financing HTA research, process and organizational structure for HTA, standardization of HTA methodology, use of local data, scope of mandatory HTA, decision criteria, and international collaboration in HTA. Although HTA implementation strategies from the region can be relevant examples for other CEE countries with similar cultural environment and economic status, HTA roadmaps are not still fully transferable without taking into account country-specific aspects, such as country size, gross domestic product per capita, major social values, public health priorities, and fragmentation of healthcare financing. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.
Integrating MPI and deduplication engines: a software architecture roadmap.
Baksi, Dibyendu
2009-03-01
The objective of this paper is to clarify the major concepts related to architecture and design of patient identity management software systems so that an implementor looking to solve a specific integration problem in the context of a Master Patient Index (MPI) and a deduplication engine can address the relevant issues. The ideas presented are illustrated in the context of a reference use case from Integrating the Health Enterprise Patient Identifier Cross-referencing (IHE PIX) profile. Sound software engineering principles using the latest design paradigm of model driven architecture (MDA) are applied to define different views of the architecture. The main contribution of the paper is a clear software architecture roadmap for implementors of patient identity management systems. Conceptual design in terms of static and dynamic views of the interfaces is provided as an example of platform independent model. This makes the roadmap applicable to any specific solutions of MPI, deduplication library or software platform. Stakeholders in need of integration of MPIs and deduplication engines can evaluate vendor specific solutions and software platform technologies in terms of fundamental concepts and can make informed decisions that preserve investment. This also allows freedom from vendor lock-in and the ability to kick-start integration efforts based on a solid architecture.
NASA Net Zero Energy Buildings Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pless, S.; Scheib, J.; Torcellini, P.
In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategicmore » approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.« less
ERIC Educational Resources Information Center
Washington Student Achievement Council, 2016
2016-01-01
Education is the catalyst for families, communities, and businesses to thrive. While Washington's employers report a growing need for a more educated workforce in order to stay competitive, many individuals need higher levels of education to obtain work that can support themselves and their families. Washington's Roadmap goals identify the…
Unmanned Aerial Vehicles Roadmap 2000-2025
2001-04-01
Develop and mature enabling materials technologies such as gamma titanium aluminides , refractory intermetallic alloys, ceramic matrix composites, higher...percent (see Figure 4.1.2-1). For UAV use, these goals may partially be met by deleting turbine blade containment rings and redundant controls, as well...and Barium Strontium Titanium (BST) used in uncooled LWIR detectors, and fabrication techniques of thin pixels will enable improved thermal
ERIC Educational Resources Information Center
Ojo, Michael A.
2017-01-01
The roadmap towards the commercialization of goods and services has been continually enhanced and modified to accommodate a more digital landscape. Businesses are building more robust websites and point-of-service opportunities that do not require human intervention. In turn, consumer shopping patterns and behaviors have shifted in response to…
Advanced Interconnect Roadmap for Space Applications
NASA Technical Reports Server (NTRS)
Galbraith, Lissa
1999-01-01
This paper presents the NASA electronic parts and packaging program for space applications. The topics include: 1) Forecasts; 2) Technology Challenges; 3) Research Directions; 4) Research Directions for Chip on Board (COB); 5) Research Directions for HDPs: Multichip Modules (MCMs); 6) Research Directions for Microelectromechanical systems (MEMS); 7) Research Directions for Photonics; and 8) Research Directions for Materials. This paper is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Bavdaz, Marcos; Wille, Eric; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alexei; Vervest, Mark; Haneveld, Jeroen; van Baren, Coen; Zuknik, Karl-Heinz; Christensen, Finn; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Valsecchi, Giuseppe
2015-09-01
The Advanced Telescope for High ENergy Astrophysics (Athena) was selected in 2014 as the second large class mission (L2) of the ESA Cosmic Vision Science Programme within the Directorate of Science and Robotic Exploration. The mission development is proceeding via the implementation of the system studies and in parallel a comprehensive series of technology preparation activities. [1-3]. The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO), a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry [4-31]. This paper provides an overview of the programmatic background, the status of SPO technology and give an outline of the development roadmap and activities undertaken and planned by ESA.
Extra-terrestrial life in the European Space Agency's Cosmic Vision plan and beyond.
Fridlund, Malcolm
2011-02-13
Our exciting time allows us to contemplate the moment in the not-too-distant future when we can detect the presence of life on worlds orbiting stars other than our Sun. It will not be easy and will require the development and use of the very latest technologies. It also very probably demands deployment in space of relevant instrumentation in order to carry out these investigations. The European Space Agency has been involved in the studies and development of the required technologies for more than a decade and is currently formulating a roadmap for how to achieve the ultimate detection of signs of life as we know it on terrestrial exoplanets. The major elements of the roadmap consist of the following. First, the search for and detection of terrestrial exoplanets. Here, some progress has been made recently and is reported in this paper. Second, the more and more detailed study of the physical characteristics of such exoplanets. Finally, the search for biomarkers--indicators of biological activity--that can be observed at interstellar distances. The last is probably one of the most difficult problems ever contemplated by observational astronomy.
Dubé, Laurette; Jha, Srivardhini; Faber, Aida; Struben, Jeroen; London, Ted; Mohapatra, Archisman; Drager, Nick; Lannon, Chris; Joshi, P K; McDermott, John
2014-12-01
This paper introduces convergent innovation (CI) as a form of meta-innovation-an innovation in the way we innovate. CI integrates human and economic development outcomes, through behavioral and ecosystem transformation at scale, for sustainable prosperity and affordable universal health care within a whole-of-society paradigm. To this end, CI combines technological and social innovation (including organizational, social process, financial, and institutional), with a special focus on the most underserved populations. CI takes a modular approach that convenes around roadmaps for real world change-a portfolio of loosely coupled complementary partners from the business community, civil society, and the public sector. Roadmaps serve as collaborative platforms for focused, achievable, and time-bound projects to provide scalable, sustainable, and resilient solutions to complex challenges, with benefits both to participating partners and to society. In this paper, we first briefly review the literature on technological innovation that sets the foundations of CI and motivates its feasibility. We then describe CI, its building blocks, and enabling conditions for deployment and scaling up, illustrating its operational forms through examples of existing CI-sensitive innovation. © 2014 The New York Academy of Sciences.
Understanding BIM Adoption in the AEC Industry: The Case of Jordan
NASA Astrophysics Data System (ADS)
Btoush, M.; Haron, AT
2017-11-01
Building information modelling (BIM) is a new and powerful technology implemented by many countries. The construction industry in Jordan plays a vital role and contributes immensely to the economic growth and development. In order to boost the industry and the economy, many industry players including engineers and contractors have recommended the implementation of BIM in Jordan. However, research demonstrates that successful BIM implementation is possible through the awareness of the different levels of BIM, which is a basic precondition for BIM implementation. Without a clear understanding of BIM, many companies would be unable to fully achieve BIM potentials or implement BIM in their building lifecycle. The objective of this study is to assess the current awareness of BIM technology in the Jordanian construction industry. A field interviews were conducted and 15 responses were collected and. The findings indicate that a significant proportion of respondents have little or no understanding of the concept of BIM. Also, the usage was found to be very low. Based on the results, a holistic roadmap was developed to spread the BIM adoption through the Jordanian construction industry. It is expected that this roadmap would lead to a better understanding and enable the industry towards more extensive implementation of BIM.
Does technology acceleration equate to mask cost acceleration?
NASA Astrophysics Data System (ADS)
Trybula, Walter J.; Grenon, Brian J.
2003-06-01
The technology acceleration of the ITRS Roadmap has many implications on both the semiconductor sup-plier community and the manufacturers. INTERNATIONAL SEMATECH has revaluated the projected cost of advanced technology masks. Building on the methodology developed in 1996 for mask costs, this work provided a critical review of mask yields and factors relating to the manufacture of photolithography masks. The impact of the yields provided insight into the learning curve for leading edge mask manufac-turing. The projected mask set cost was surprising, and the ability to provide first and second year cost estimates provided additional information on technology introduction. From this information, the impact of technology acceleration can be added to the projected yields to evaluate the impact on mask costs.
The USET Tribal-FERST Roadmap was developed by the United South and Eastern Tribes (USET), in collaboration with the EPA, as a general roadmap for other tribes to follow and modify as needed fortheir unique applications.
Prosperity game for the national electronics manufacturing initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, M.; VanDevender, J.P.; Berry, I.
1995-05-01
Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the Prosperity Game conducted under the sponsorship of the Electronics Subcommittee of the Civilian Industrialmore » Technology Committee (under the National Science and Technology Council), and the Electronics Partnership Project. Players were drawn from the electronics industry, from government, national laboratories, and universities, and from Japan and Austria. The primary objectives of this game were: To connect the technical and non-technical (i.e., policy) issues that were developed in the roadmap-making endeavor of the National Electronics Manufacturing Initiative (NENI);to provide energy, enthusiasm and people to help the roadmap succeed; and to provide insight into high-leverage public and private investments. The deliberations and recommendations of these teams provide valuable insights as to the views of this diverse group of decision makers concerning policy changes, foreign competition, the robustness of strategic thinking and planning, and the development, delivery and commercialization of new technologies.« less
NASA Astrophysics Data System (ADS)
Risch, Lothar
2001-10-01
Scaling of CMOS technology made possible the key appliances of our information technology society, like the PC, mobile communication, and the internet. Reduction of feature sizes for semiconductor devices continued according to Moore's law for the last 25 years in order to achieve higher integration densities, higher speed, lower power consumption, and lower costs. But now, as we approach the sub 100 nm regime, several roadblocks have been predicted for the next generations down to 35 nm. The latest ITRS roadmap 99 describes in detail the challenges which have to be addressed for the future CMOS technology nodes, regarding lithography, metallization, power dissipation, and circuit design. Also for the MOSFET, performance degradation is a big issue. Because this is not a limitation from basic physical laws, novel architectures for MOSFETs will be needed to improve again the electrical characteristics and thus pave the way to much smaller transistors than expected in the past. 25 nm CMOS seems to be feasible using very thin silicon substrates on insulator. Further improvements down to 10 nm are very likely with two gates for the control of the charge carriers. So, it is very likely that CMOS will not end with today's roadmap at 35 nm or even before, but may continue with non bulk devices and fully depleted channels. Finally, tunnelling from source to drain will set an end to the reduction of channel length, which is estimated to be below 5 nm.
Quantum internet: the certifiable road ahead
NASA Astrophysics Data System (ADS)
Elkouss, David; Lipinska, Victoria; Goodenough, Kenneth; Rozpedek, Filip; Kalb, Norbert; van Dam, Suzanne; Le Phuc, Thinh; Murta, Glaucia; Humphreys, Peter; Taminiau, Tim; Hanson, Ronald; Wehner, Stephanie
A future quantum internet enables quantum communication between any two points on earth in order to solve problems which are provably impossible using classical communication. The most well-known application of quantum communication is quantum key distribution, which allows two users to establish an encryption key. However, many other applications are known ranging from protocols for clock synchronization, extending the baselines of telescopes to exponential savings in communication. Due to recent technological progress, we are now on the verge of seeing the first small-scale quantum communication networks being realized. Here, we present a roadmap towards the ultimate form of a quantum internet. Specifically, we identify stages of development that are distinguished by an ever increasing amount of functionality. Each stage supports a certain class of quantum protocols and is interesting in its own right. What's more, we propose a series of simple tests to certify that an experimental implementation has achieved a certain stage. Jointly, the stages and the certification tests will allow us to track and benchmark experimental progress in the years to come. This work is supported by STW, NWO VIDI and ERC Starting Grant.
Energy Efficiency Roadmap for Uganda, Making Energy Efficiency Count. Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Rue du Can, Stephane; Pudleiner, David; Jones, David
Like many countries in Sub-Saharan Africa, Uganda has focused its energy sector investments largely on increasing energy access by increasing energy supply. The links between energy efficiency and energy access, the importance of energy efficiency in new energy supply, and the multiple benefits of energy efficiency for the level and quality of energy available, have been largely overlooked. Implementing energy efficiency in parallel with expanding both the electricity grid and new clean energy generation reduces electricity demand and helps optimize the power supply so that it can serve more customers reliably at minimum cost. Ensuring efficient appliances are incorporated intomore » energy access efforts provides improved energy services to customers. Energy efficiency is an important contributor to access to modern energy. This Energy Efficiency Roadmap for Uganda (Roadmap) is a response to the important role that electrical energy efficiency can play in meeting Uganda’s energy goals. Power Africa and the United Nations Sustainable Energy for All (SEforALL) initiatives collaborated with more than 24 stakeholders in Uganda to develop this document. The document estimates that if the most efficient technologies on the market were adopted, 2,224 gigawatt hours could be saved in 2030 across all sectors, representing 31% of the projected load. This translates into 341 megawatts of peak demand reductions, energy access to an additional 6 million rural customers and reduction of carbon dioxide emissions by 10.6 million tonnes in 2030. The Roadmap also finds that 91% of this technical potential is cost-effective, and 47% is achievable under conservative assumptions. The Roadmap prioritizes recommendations for implementing energy efficiency and maximizing benefits to meet the goals and priorities established in Uganda’s 2015 SEforALL Action Agenda. One important step is to create and increase demand for efficiency through long-term enabling policies and financial incentives combined with development of technical expertise in the labor force to allow for the promotion of new business models, such as energy service companies. A combination of enabling policies, financial schemes, regulations, enforcement, and skill development are needed to open the energy efficiency market.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovel, Harold; Prettyman, Kevin
A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques
Dugas, Chad M; Schussler, Jeffrey M
2016-07-01
Several specific new technologies [high-resolution CT coronary imaging with fractional flow reserve (CTCA-FFR), virtual reality (VR), vascular robotic systems (VRS), and three-dimensional printing] are poised to improve the treatment of patients with cardiovascular disease and at the same time the safety of the physicians who care for them. This article focuses on the potential clinical impact each of these modalities will have, as well as speculating on synergies that use of them together may achieve. Copyright © 2016 Elsevier Inc. All rights reserved.
EPAct 2005: A Roadmap for Open Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Jay A.
After nine years of negotiation characterized by significant philosophical swings, Congress came together in the middle to support a moderate vision of open access intended primarily to enable load-serving entities to obtain the transmission service they need to meet the long-term needs of their consumers reliably and economically.
Finding Funds to Move Summer Learning Forward
ERIC Educational Resources Information Center
Seidel, Bob
2015-01-01
Summer learning loss creates a permanent drag on the US education system. With the generous support of the Charles Stewart Mott Foundation, the National Summer Learning Association (NSLA) developed "Moving Summer Learning Forward: A Strategic Roadmap for Funding in Tough Times" to provide out-of-school time programs, school districts,…
NextGen UAS Research, Development and Demonstration Roadmap. Version 1.0
2012-03-15
Ministry of Defense, Ben Gurion University of the Negev , and Synergy LTD. Proposed Joint Agency Collaborations Human-Centered Integrated Ground... radiation . Other activities include two SIERRA missions and an Arctic mission with the IKHANA. SMD also supports a full-time staff position with the FAA
Forward Thinking. Progress Report, 2010
ERIC Educational Resources Information Center
Colorado Department of Education, 2010
2010-01-01
Since 2007, "Forward Thinking" has provided the roadmap for the department's work. These goals have served the department well in aligning and focusing the work at hand. The goals are: (1) Provide guidance and support to meet school and district needs; (2) Enhance professional development involving best practices; (3) Develop tools to…
Dualisms in Higher Education: A Critique of Their Influence and Effect
ERIC Educational Resources Information Center
Macfarlane, Bruce
2015-01-01
Dualisms pervade the language of higher education research providing an over-simplified roadmap to the field. However, the lazy logic of their popular appeal supports the perpetuation of erroneous and often outdated assumptions about the nature of modern higher education. This paper explores nine commonly occurring dualisms:…
NASA Technical Reports Server (NTRS)
Kilbourne, C. A.; Boriese, W. B.
2010-01-01
The primary purpose of this document is to present the technology development plan for the XMS detector system. It covers the current status (including assessment of the Technology Readiness Level, TRL, and a justification of the level assigned), the roadmap to progress to a level between TRL 5 and TRL 6 by the middle of 2012, and an assessment of the associated cost. A secondary purpose of this document is to address the Action Items raised at the XMS Phase-A Study Mid-Term Review that pertain to the detector system (AI #4, #8, and #9).
Medicaid information technology architecture: an overview.
Friedman, Richard H
2006-01-01
The Medicaid Information Technology Architecture (MITA) is a roadmap and tool-kit for States to transform their Medicaid Management Information System (MMIS) into an enterprise-wide, beneficiary-centric system. MITA will enable State Medicaid agencies to align their information technology (IT) opportunities with their evolving business needs. It also addresses long-standing issues of interoperability, adaptability, and data sharing, including clinical data, across organizational boundaries by creating models based on nationally accepted technical standards. Perhaps most significantly, MITA allows State Medicaid Programs to actively participate in the DHHS Secretary's vision of a transparent health care market that utilizes electronic health records (EHRs), ePrescribing and personal health records (PHRs).
Contreras-Vidal, Jose L.; Grossman, Robert G.
2013-01-01
In this communication, a translational clinical brain-machine interface (BMI) roadmap for an EEG-based BMI to a robotic exoskeleton (NeuroRex) is presented. This multi-faceted project addresses important engineering and clinical challenges: It addresses the validation of an intelligent, self-balancing, robotic lower-body and trunk exoskeleton (Rex) augmented with EEG-based BMI capabilities to interpret user intent to assist a mobility-impaired person to walk independently. The goal is to improve the quality of life and health status of wheelchair-bounded persons by enabling standing and sitting, walking and backing, turning, ascending and descending stairs/curbs, and navigating sloping surfaces in a variety of conditions without the need for additional support or crutches. PMID:24110003
Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa
Mabhaudhi, Tafadzwanashe; Chimonyo, Vimbayi G. P.; Chibarabada, Tendai P.; Modi, Albert T.
2017-01-01
Reports of neglected and underutilized crops' (NUS) potential remain mostly anecdotal with limited and often incoherent research available to support them. This has been attributed to lack of clear research goals, limited funding directed at NUS and journal apathy toward publishing work on NUS. The latter points also explain the lack of interest from emerging and established researchers. Additionally, the NUS community's inability to articulate a roadmap for NUS' promotion may have unintentionally contributed to this. The current study is a sequel to an initial study that assessed the status of NUS in South Africa. The objective of this follow-up study was then to (i) identify priority NUS, and (ii) articulate a strategy and actionable recommendations for promoting NUS in South Africa. The study identified 13 priority NUS, categorized into cereals, legumes, root, and tuber crops and leafy vegetables based on drought and heat stress tolerance and nutritional value. It is recommended that the available limited resources should be targeted on improving these priority NUS as they offer the best prospects for success. Focus should be on developing value chains for the priority NUS. This should be underpinned by science to provide evidence-based outcomes. This would assist to attract more funding for NUS research, development and innovation in South Africa. It is envisaged that through this roadmap, NUS could be transformed from the peripheries into mainstream agriculture. This study provides a template for developing a roadmap for promoting NUS that could be transposed and replicated among the 14 other southern African states. PMID:29312397
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.
2016-08-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.
Facing the future: a call for higher education in sleep technology.
Linley, Laura A
2017-12-01
The American Association of Sleep Technologists (AAST) is the national membership organization representing sleep technologists. The Board of Directors of the AAST recognizes that changes in the workforce will result in an increased need for technologists with a higher level of education. In order to meet the needs of members, the AAST has: (1) convened a summit of stakeholders to discuss the changing landscape for sleep technologists; (2) hosted an educational task force to provide ongoing communication and support; and (3) commissioned a survey of members, educators and employers to better define educational gaps and opportunities for sleep technologists. This report summarizes the results of the survey and provides a roadmap for future educational development. Demographic information highlights the diversity of those in the field of sleep technology. The majority of respondents agree that new technical skills will be needed to achieve competence in sleep technology in the near future, but also that clinical and communication skills will be critical in expanding the role of the sleep technologist in the sleep center. These findings led the AAST leadership to propose new directions for the AAST in serving the needs of its members and the field of sleep technology. This will include a continued focus on education, both basic and advanced, and development of diverse pathways for senior sleep technologists as well as those just entering the field. Copyright © 2017 Elsevier B.V. All rights reserved.
New experimental models of the blood-brain barrier for CNS drug discovery
Kaisar, Mohammad A.; Sajja, Ravi K.; Prasad, Shikha; Abhyankar, Vinay V.; Liles, Taylor; Cucullo, Luca
2017-01-01
Introduction The blood-brain barrier (BBB) is a dynamic biological interface which actively controls the passage of substances between the blood and the central nervous system (CNS). From a biological and functional standpoint, the BBB plays a crucial role in maintaining brain homeostasis inasmuch that deterioration of BBB functions are prodromal to many CNS disorders. Conversely, the BBB hinders the delivery of drugs targeting the brain to treat a variety of neurological diseases. Area covered This article reviews recent technological improvements and innovation in the field of BBB modeling including static and dynamic cell-based platforms, microfluidic systems and the use of stem cells and 3D printing technologies. Additionally, the authors laid out a roadmap for the integration of microfluidics and stem cell biology as a holistic approach for the development of novel in vitro BBB platforms. Expert opinion Development of effective CNS drugs has been hindered by the lack of reliable strategies to mimic the BBB and cerebrovascular impairments in vitro. Technological advancements in BBB modeling have fostered the development of highly integrative and quasi- physiological in vitro platforms to support the process of drug discovery. These advanced in vitro tools are likely to further current understanding of the cerebrovascular modulatory mechanisms. PMID:27782770
Hermans, Andre; Abend, Andreas M; Kesisoglou, Filippos; Flanagan, Talia; Cohen, Michael J; Diaz, Dorys A; Mao, Y; Zhang, Limin; Webster, Gregory K; Lin, Yiqing; Hahn, David A; Coutant, Carrie A; Grady, Haiyan
2017-11-01
This manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data. Two case studies present potential outcomes of following the CRS roadmap and setting dissolution specifications. These cases reveal some benefits and challenges of pursuing CRS with additional PK data, in light of current regulatory positions, including that of the US Food and Drug Administration (FDA), who generally favor this approach, but with the understanding that both industry and regulatory agency perspectives are still evolving in this relatively new field. The CRS roadmap discussed in this manuscript also describes a way to develop clinically relevant dissolution specifications based primarily on dissolution data for batches used in pivotal clinical studies, acknowledging that not all IR product development efforts need to be supported by additional PK studies, albeit with the associated risk of potentially unnecessarily tight manufacturing controls. Recommendations are provided on what stages during the life cycle investment into in vivo studies may be valuable. Finally, the opportunities for CRS within the context of post-approval changes, Modeling and Simulation (M&S), and the application of biowaivers, are briefly discussed.
NASA Astrophysics Data System (ADS)
Schrijver, K.; Knoelker, M.
1999-05-01
The NASA Sun-Earth Connections Program is currently revising its Roadmap, the long-range plan for science goals, technology development, and missions between 2000 and 2040. From the interior dynamics of the Sun, to the interactions of plasma, fields, and radiation in the photosphere and solar atmosphere, to the heating and structure of the corona, to the acceleration, structure, and evolution of the solar wind, to the interactions of the heliosphere with the interstellar medium, to the processes of solar, stellar, and solar system evolution - progress in each of these domains will help us understand how the Sun impacts our home in space. The Roadmap Committee is seeking to refine and extend the SEC's vision and identify the milestone missions for the future. During this session, an outline of the current draft Roadmap will be presented, and further community involvement will be solicited to ensure the strongest possible concensus on the revised Roadmap. The National Academy of Sciences' Space Science Board has appointed a committee to perform a Decadal Survey of Astronomy and Astrophysics, which is surveying the field of space- and ground-based astronomy and astrophysics, recommending priorities for the most important new initiatives of the decade 2000-2010. The prioritization delivered by the earlier Decadal Surveys has played an important role in guiding the funding agencies in setting their priorities for astronomy and astrophysics. Therefore it will be of crucial importance for solar physics to contribute a strong case for its own set of future projects to be incorpoprated into the survey. The solar physics of the next decade will be characterized by its increasing societal relevance in the context of the National Space Weather Program and related issues, as well as its classical importance as a ``base" for many astrophysical questions. The presentation and subsequent discussion at the Chicago meeting is intended to solicit further community input, to achieve optimal representation for solar physics in the Decadal Survey. The Roadmap Committee and the Decadal Survey's solar panel encourage the whole solar physics community to contact them prior to the meeting. The list of the committee/panel members and their e-mail addresses, as well as related information, can be accessed via their websites at http://www.lmsal.com/sec/ and http://www.nas.edu/bpa/projects/astrosurvey/solar/ , respectively.
Next Generation Integrated Power System: NGIPS Technology Development Roadmap
2007-11-30
under transient conditions ( regenerative braking for example). A Power Load may exchange control and information signals with System Control...Ship applications for NGIPS requirement categories 3 Table 2: Power Architectures for NGIPS Requirement Categories 5 Table 3: MVAC Largest Generator...different ship types that comprise the U.S. Navy fall into the different NGIPS requirement categories . Figure 3 shows the NGIPS insertion timelines for the
Roadmap for Biomass Technologies in the United States
2002-12-01
landfill gases, anaerobic digestion of animal manure and food/feed/grain products and by-products, use of wastewater treatment digestion gas, sludge...include ethanol, biodiesel, and methanol. Biogas : A methane-bearing gas from the digestion of biomass. Biomass: Any organic matter that is available...Research pathways and milestones to improving the understanding of plant biochemis- try and enzyme production are provided in Exhibit 4. Objective Two
FY2011 Annual Progress Report for Vehicle and Systems Simulation and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-15
The VSST team's mission is to evaluate the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context. These evaluations address light-, medium-, and heavy-duty vehicle platforms. This work is directed toward evaluating and verifying the targets of the VTP R&D teams and to providing guidance in establishing roadmaps for achievement of these goals.
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.; Spann, James; Cyr, O. C.; Cummings, Alan; Heelis, Roderick; Hill, Frank; Immel, Thomas; Kasper, Justin; Kistler, Lynn; Kuhn, Jeffrey;
2009-01-01
Our planet is immersed in a seemingly invisible yet exotic and inherently dangerous environment. Above the protective cocoon of Earth's lower atmosphere is a plasma soup composed of electrified and magnetized matter entwined with penetrating radiation and energetic particles. The Earth's magnetic field interacts with the Sun's outer atmosphere to create this extraordinary environment.
High Productivity Computing Systems and Competitiveness Initiative
2007-07-01
planning committee for the annual, international Supercomputing Conference in 2004 and 2005. This is the leading HPC industry conference in the world. It...sector partnerships. Partnerships will form a key part of discussions at the 2nd High Performance Computing Users Conference, planned for July 13, 2005...other things an interagency roadmap for high-end computing core technologies and an accessibility improvement plan . Improving HPC Education and
2009 Ground Robotics Capabilities Conference and Exhibition
2009-03-26
adaptability to varying social cues and context – ARL via the Robotics Collaborative Technology Alliance program • Autonomy is “conditional” … largely...roadmaps, alliances and robotics organizations have been established to synchronize development efforts • Many emerging robotics capabilities can...Crossing Plan ( B2B ) 1. Target Customer 2. Compelling Reason to Buy 3. Whole Product 4. Partners & Allies 5. Distribution 6. Pricing 7. Competition 8
U.S. Army unmanned aircraft systems roadmap 2010-2035
DOT National Transportation Integrated Search
2010-01-01
The Unmanned Aircraft System (UAS) Roadmap outlines how the U.S. Army will develop, organize, and employ UAS from 2010 to 2035 across full spectrum operations. The Army UAS Roadmap is nested with the Unmanned Systems (UMS) Initial Capabilities Docume...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less
PACFEST : enabling technologies in the war on terrorism in the Pacific region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Judy Hennessey; Whitley, John B.; Sugimura, Tak
2003-12-01
On October 22-24, 2003, about 40 experts involved in various aspects of homeland security from the United States and four other Pacific region countries meet in Kihei, Hawaii to engage in a free-wheeling discussion and brainstorm (a 'fest') of the role that technology could play in winning the war on terrorism in the Pacific region. The result of this exercise is a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrators of advanced technological solutions tomore » these issues. In this approach, the participants were asked to view the problem and their potential solutions from multiple perspectives, and then to identify barriers (especially social and policy barriers) to any proposed technological solution. The final step was to create a roadmap for further action. This roadmap includes plans to: (1) create a conceptual monitoring and tracking system for people and things moving around the region that would be 'scale free', and develop a simple concept demonstrator; (2) pursue the development of a system to improve local terrorism context information, perhaps through the creation of an information clearinghouse for Pacific law enforcement; (3) explore the implementation of a Hawaii based pilot system to explore hypothetical terrorist scenarios and the development of fusion and analysis tools to work with this data (Sandia); and (4) share information concerning the numerous activities ongoing at various organizations around the understanding and modeling of terrorist behavior.« less
Leveraging Federal Funding for Longitudinal Data Systems: A Roadmap for States. Fiscal Year 2011
ERIC Educational Resources Information Center
Data Quality Campaign, 2011
2011-01-01
States should use this roadmap to identify and leverage federal funding sources for data-related activities. This roadmap presents such opportunities for FY 2011, and provides guidance on some of the ways the funds may be used.
Idaho National Engineering Laboratory Waste Management Operations Roadmap Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, M.
1992-04-01
At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.
NASA Technical Reports Server (NTRS)
Linne, Diane L.; Sanders, Gerald B.; Taminger, Karen M.
2015-01-01
The capability for living off the land, commonly called in-situ resource utilization, is finally gaining traction in space exploration architectures. Production of oxygen from the Martian atmosphere is called an enabling technology for human return from Mars, and a flight demonstration to be flown on the Mars 2020 robotic lander is in development. However, many of the individual components still require technical improvements, and system-level trades will be required to identify the best combination of technology options. Based largely on work performed for two recent roadmap activities, this paper defines the capability and technology requirements that will need to be achieved before this game-changing capability can reach its full potential.
2006-06-01
systems. Cyberspace is the electronic medium of net-centric operations, communications systems, and computers, in which horizontal integration and online...will be interoperable, more robust, responsive, and able to support faster spacecraft initialization times. This Intergrated Satellite Control... horizontally and vertically integrated information through machine-to-machine conversations enabled by a peer-based network of sensors, command
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronnebro, Ewa
PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale thatmore » is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.« less
Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study
NASA Technical Reports Server (NTRS)
Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David
2016-01-01
The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
In-Situ Resource Utilization (ISRU) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Sanders, Gerald B.; Duke, Michael
2005-01-01
A progress review on In-Situ Resource Utilization (ISRU) capability is presented. The topics include: 1) In-Situ Resource Utilization (ISRU) Capability Roadmap: Level 1; 2) ISRU Emphasized Architecture Overview; 3) ISRU Capability Elements: Level 2 and below; and 4) ISRU Capability Roadmap Wrap-up.
The European Research Infrastructure for Heritage Science (erihs)
NASA Astrophysics Data System (ADS)
Striova, J.; Pezzati, L.
2017-08-01
The European Research Infrastructure for Heritage Science (E-RIHS) entered the European strategic roadmap for research infrastructures (ESFRI Roadmap [1]) in 2016, as one of its six new projects. E-RIHS supports research on heritage interpretation, preservation, documentation and management. Both cultural and natural heritage are addressed: collections, artworks, buildings, monuments and archaeological sites. E-RIHS aims to become a distributed research infrastructure with a multi-level star-structure: facilities from single Countries will be organized in national nodes, coordinated by National Hubs. The E-RIHS Central Hub will provide the unique access point to all E-RIHS services through coordination of National Hubs. E-RIHS activities already started in some of its national nodes. In Italy the access to some E-RIHS services started in 2015. A case study concerning the diagnostic of a hypogea cave is presented.
The NASA Astrophysics Data System: Capabilities and Roadmap for the 2020s
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; ADS Team
2018-06-01
The NASA Astrophysics Data System (ADS) is used daily by researchers and curators as a discovery platform for the Astronomy literature. Over the past several years, the ADS has been adding to the breadth and depth of its contents. Scholarly astronomy articles are now indexed as full-text documents, allowing for complete and accurate literature searches. High-level data products, data links, and software used in refereed astronomy papers are now also being ingested and indexed in our database. All the search functionality exposed in the new ADS interface is also available via its API, which we are continuing to develop and enhance. In this talk I will describe the current system, our current roadmap, and solicit input from the community regarding what additional data, services, and discovery capabilities the ADS should support.
Hoefsmit, Nicole; Boumans, Nicolle; Houkes, Inge; Nijhuis, Frans
2016-11-22
This is a process evaluation of an intervention to improve Cooperation regarding return-to-work (RTW) between sick-listed employees and their supervisors (COSS, which consists of a conversation roadmap, monitoring of cooperation using questionnaires and, if necessary, extra support by an occupational physician (OP). Objectives were to study (1) the adoption of COSS by a banking organization and (2) its implementation among individual employees, supervisors and OPs. We used quantitative data (online questionnaire, project administration, conversation minutes, emails) and qualitative data (semi-structured interviews). We analyzed quantitative data descriptively (by calculating sum scores, percentages, mean scores and standard deviations). The coding system to analyze the qualitative data was data-driven. The organization's representatives reported positively (e.g. fit with existing policy) and negatively (e.g. high intensity) about COSS. At least one OP (out of five) used the monitoring information. Project administration data show a modest reach of COSS among employees and supervisors. The roadmap was used by a minority (35% of the employees and 25% of the supervisors). Relatively many (40% of the employees and 100% of the supervisors who used COSS to evaluate conversations) were satisfied with COSS as a tool to evaluate conversations with the employee/supervisor afterwards. Interview results indicate that the roadmap was considered useful in specific situations (e.g. psychological complaints). All employees and supervisors participated in the monitoring. The majority of the responding employees and supervisors received OP support and was satisfied about this support. Despite the good adoption of COSS by the organisation, it was only partially implemented by professionals, employees and supervisors. We hypothesize that our implementation approach did not fit completely with the culture at the bank. Also, the results illustrate the need for other intervention methods for improving cooperation between employees and supervisors and a more specific target population.
The Textbook of the Future: What Will It Look Like?
NASA Astrophysics Data System (ADS)
Shipman, Harry L.; Finkelstein, N.; McCray, D.; Mac Low, M.; Zollman, D.
2006-12-01
In May 2006, a group of scientists, publishers, technology gurus, National Science Foundation officers, and other interested parties met for a few days to think collectively about the future of the textbook. We met because: -The Web and search engines like Google change the relationship between students and information. If the textbook no longer needs to be encyclopedic, then what is its role? --Knowing information is not enough. Our students, whether they follow academic or other careers, will need to know how to get information, evaluate it, and use it to solve real world problems. How can a textbook help students in these environments? --The static, comprehensive narrative of a textbook does not always lend itself well to inquiry learning, which is strongly encouraged by science education research and by national science k-12 education standards. How can textbooks support active, student-centered learning and support new faculty as they adopt it? The workshop generated partial and uncertain answers to these questions, providing some ideas for the future, though not a complete roadmap. A metaphor that generated considerable support among the group was the idea of a textbook as a compact travel guide, like the Lonely Planet guides. It should be adaptable, and thus web-based, but it might still exist in paper form. The participants discussed barriers on the path ahead. How will peer review, which many workshop participants value, be incorporated? What incentives could motivate textbook authors and publishers to produce truly innovative products? How will new technologies such as computer simulations & animations, electronic readers, and widely accessible databases reshape the role of the textbook in education? Many workshop participants including this paper’s authors acknowledge support from the NSF Distinguished Teaching Scholars Program and the NSF CAREER awards program.
NIRPS - Solutions Facilitator Team Overview and Accomplishments
NASA Technical Reports Server (NTRS)
Brown, Thomas M., III; Childress, Rhonda
2013-01-01
National Institute for Rocket Propulsion Systems (NIRPS) purpose is to help preserve and align government and private rocket propulsion capabilities to meet present and future US commercial, civil, and defense needs, while providing authoritative insight and recommendations to National decisional authorities. Stewardship: Monitor and analyze the state of the industry in order to formulate and recommend National Policy options and strategies that promote a healthy industrial base and ensure best-value for the American taxpayer. Technology: Identify technology needs and recommend technology insertions by leading roadmap assessments and actively participating in program formulation activities. Solutions Facilitator/Provider: Maintain relationships and awareness across the Government, industry and academia, to align available capacity with emerging demand.
2013-02-25
Directive 5160.41E, Defense Language Program . 10GAO-11-456. Page 5 GAO-13-251R Defense Contracting types of foreign language support that DOD has acquired...Language Transformation Roadmap, (January 2005), and Department of Defense Directive 5160.41E, Defense Language Program . Page 15 GAO-13-251R Defense...examines the use of public funds; evaluates federal programs and policies; and provides analyses, recommendations, and other assistance to help
A Roadmap for using Agile Development in a Traditional System
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas
2006-01-01
I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.
UAS Integration into the NAS Project
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2010-01-01
The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments
Initial benchmarking of a new electron-beam raster pattern generator for 130-100 nm maskmaking
NASA Astrophysics Data System (ADS)
Sauer, Charles A.; Abboud, Frank E.; Babin, Sergey V.; Chakarian, Varoujan; Ghanbari, Abe; Innes, Robert; Trost, David; Raymond, Frederick, III
2000-07-01
The decision by the Semiconductor Industry Association (SIA) to accelerate the continuing evolution to smaller linewidths is consistent with the commitment by Etec Systems, Inc. to rapidly develop new technologies for pattern generation systems with improved resolution, critical dimension (CD) uniformity, positional accuracy, and throughput. Current pattern generation designs are inadequate to meet the more advanced requirements for masks, particularly at or below the 100 nm node. Major changes to all pattern generation tools will be essential to meet future market requirements. An electron-beam (e-beam) system that is designed to meet the challenges for 130 - 100 nm device generation with extendibility to the 70-nm range will be discussed. This system has an architecture that includes a graybeam writing strategy, a new state system, and improved thermal management. Detailed changes include a pulse width modulated blanking system, per-pixel deflection, retrograde scanning multipass writing, and a column with a 50 kV accelerating voltage that supports a dose of up to 45 (mu) C/cm2 with minimal amounts of resist heating. This paper examines current issues, our approach to meeting International Technology Roadmap for Semiconductors (ITRS) requirements, and some preliminary results from a new pattern generator.
Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV),
2017-2030 | Solar Research | NREL Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030 This report Office (SETO) residential 2030 photovoltaics (PV) cost target of $0.05 per kilowatt-hour by identifying
Unmanned Systems Roadmap 2007-2032
2007-01-01
Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE...unmanned systems technology to ensure an effective return on the Department’s investment. 1 . Reconnaissance and Surveillance. Some form of reconnaissance
Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project
2011-10-01
promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI
OhioView: Distribution of Remote Sensing Data Across Geographically Distributed Environments
NASA Technical Reports Server (NTRS)
Ramos, Calvin T.
1998-01-01
Various issues associated with the distribution of remote sensing data across geographically distributed environments are presented in viewgraph form. Specific topics include: 1) NASA education program background; 2) High level architectures, technologies and applications; 3) LeRC internal architecture and role; 4) Potential GIBN interconnect; 5) Potential areas of network investigation and research; 6) Draft of OhioView data model; and 7) the LeRC strategy and roadmap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ainsworth, Nathan; Heaps, Colton; Symko-Davies, Martha
The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.
Focused Logistics, Joint Vision 2010: A Joint Logistics Roadmap
2010-01-01
AIS). AIT devices include bar codes for individual items, optical memory cards for multipacks and containers, radio frequency tags for containers and...Fortezza Card and Firewall technologies are being developed to prevent unau- thorized access. As for infrastructure, DISA has already made significant in...radio frequency tags and optical memory cards , to continuously update the JTAV database. By September 1998, DSS will be deployed in all wholesale
AF Cr(VI) Minimize Roadmap: Phase 1 Results
2010-12-01
Environmental Technology Technical Symposium & Workshop, 30 Nov ? 2 Dec 2010, Washington, DC. Sponsored by SERDP and ESTCP. 14. ABSTRACT Hexavalent chromium ...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Minimizing Hexavalent Chromium Use in DoD...Operations Technical Session No. 2B C-40 CURRENT STATE OF AIR FORCE HEXAVALENT CHROMIUM REDUCTION EFFORTS MR. CARL PERAZZOLA Air Force Corrosion
2016-02-09
Impact of Human Systems Community of Interest D O T M L P F $450M COI Budget Has Broad Impact in Several DOTMLPF Areas Decision Making Selection...and fit to a military career. • 26 personality dimensions such as optimism, excitement seeking, and non- delinquency • Applicant chooses from...Adaptive Collaborative Control Technologies ( IMPACT ) architecture designed • IMPACT “DoD Virtual Lab” established (Year 1) • 1 operator x 6 vehicles
Rapid Prototyping of Application Specific Signal Processors (RASSP) program - Study Phase
1992-10-12
in the quantitative evaluaion of desip ltenatlves. To make sysmms such as IDAS mor effective for...steps, and should invest in the standardization of data models that meet these needs. PDES and CFI are likely to offer the most payoff for such an...provides a bigger picture of the ATR roadmap. It attempts to lay out the projected progress of the ATR technologies and applications, both in the
Fundamental Scaling Laws in Nanophotonics
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.
2016-01-01
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors. PMID:27869159
The Critical Path Roadmap Project: Biomedical Risk Reduction for Extended Spaceflight
NASA Technical Reports Server (NTRS)
Charles, John B.; Leveton, Lauren B.
2000-01-01
Human exploration of space requires an understanding of the risks to which crews will be exposed during such missions, and the mitigation of those risks to the fullest extent practical. This becomes a greater imperative as we prepare for interplanetary expeditions involving long periods in weightlessness in transit to and then from the destination (a planet, such as Mars, or perhaps a point in space, such as the Lagrangian point L2), and exposure to the unique environment of the destination itself. We need to know, more definitively, what the risks are to human health, safety, and performance, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate and the National Space Biomedical Research Institute (NSBRI) have implemented an effort to identify the most critical risks confronting humans on such mission and the types of research and technology efforts required to mitigate and otherwise reduce the probability and severity of those risks. This paper describes the "Critical Path Roadmap Project" to define, assess and prioritize the risks and present the results of the assessment with an emphasis on the research and technology priorities to meet the challenge of long duration human spaceflight mission.
Fundamental Scaling Laws in Nanophotonics.
Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J
2016-11-21
The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.