DOT National Transportation Integrated Search
2010-08-31
This report presents the results of research activities conducted under Contract No. 519691-PIT 008 on Sensing Technology for : Damage Assessment of Sign Supports and Cantilever Poles between the University of Pittsburgh and the Pennsylvania De...
E-DECIDER Disaster Response and Decision Support Cyberinfrastructure: Technology and Challenges
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.
2014-12-01
Timely delivery of critical information to decision makers during a disaster is essential to response and damage assessment. Key issues to an efficient emergency response after a natural disaster include rapidly processing and delivering this critical information to emergency responders and reducing human intervention as much as possible. Essential elements of information necessary to achieve situational awareness are often generated by a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. A key challenge is the current state of practice does not easily support information sharing and technology interoperability. NASA E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) has worked with the California Earthquake Clearinghouse and its partners to address these issues and challenges by adopting the XChangeCore Web Service Data Orchestration technology and participating in several earthquake response exercises. The E-DECIDER decision support system provides rapid delivery of advanced situational awareness data products to operations centers and emergency responders in the field. Remote sensing and hazard data, model-based map products, information from simulations, damage detection, and crowdsourcing is integrated into a single geospatial view and delivered through a service oriented architecture for improved decision-making and then directly to mobile devices of responders. By adopting a Service Oriented Architecture based on Open Geospatial Consortium standards, the system provides an extensible, comprehensive framework for geospatial data processing and distribution on Cloud platforms and other distributed environments. While the Clearinghouse and its partners are not first responders, they do support the emergency response community by providing information about the damaging effects earthquakes. It is critical for decision makers to maintain a situational awareness that is knowledgeable of potential and current conditions, possible impacts on populations and infrastructure, and other key information. E-DECIDER and the Clearinghouse have worked together to address many of these issues and challenges to deliver interoperable, authoritative decision support products.
The Use of the STAGS Finite Element Code in Stitched Structures Development
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.
2014-01-01
In the last 30 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft more fuel-efficient and more affordable. The focus on the airframe has been to reduce weight, improve damage tolerance and better understand structural behavior under realistic flight and ground loading conditions. Stitched structure is a technology that can address the weight savings, cost reduction, and damage tolerance goals, but only if it is supported by accurate analytical techniques. Development of stitched technology began in the 1990's as a partnership between NASA and Boeing (McDonnell Douglas at the time) under the Advanced Composites Technology Program and has continued under various titles and programs and into the Environmentally Responsible Aviation Project today. These programs contained development efforts involving manufacturing development, design, detailed analysis, and testing. Each phase of development, from coupons to large aircraft components was supported by detailed analysis to prove that the behavior of these structures was well-understood and predictable. The Structural Analysis of General Shells (STAGS) computer code was a critical tool used in the development of many stitched structures. As a key developer of STAGS, Charles Rankin's contribution to the programs was quite significant. Key features of STAGS used in these analyses and discussed in this paper include its accurate nonlinear and post-buckling capabilities, its ability to predict damage growth, and the use of Lagrange constraints and follower forces.
30 CFR 816.181 - Support facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... issued for the mine or coal preparation operation to which it is incident or from which its operation... damage to public or private property; and (2) To the extent possible using the best technology currently...
30 CFR 816.181 - Support facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... issued for the mine or coal preparation operation to which it is incident or from which its operation... damage to public or private property; and (2) To the extent possible using the best technology currently...
30 CFR 816.181 - Support facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... issued for the mine or coal preparation operation to which it is incident or from which its operation... damage to public or private property; and (2) To the extent possible using the best technology currently...
30 CFR 816.181 - Support facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... issued for the mine or coal preparation operation to which it is incident or from which its operation... damage to public or private property; and (2) To the extent possible using the best technology currently...
30 CFR 816.181 - Support facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... issued for the mine or coal preparation operation to which it is incident or from which its operation... damage to public or private property; and (2) To the extent possible using the best technology currently...
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
Airfield Damage Repair (ADR); Polymer Repair of Airfields Summary of Research
2007-12-01
reported in section 4.3.1. Prior to mixing, the stainless steel bowl, paddle and molds were sprayed with an industrial silicone release agent, Zip-Slip...aggressive foaming and segregation problems. airfield damage repair, (ADR), polymer, concrete, polymer concrete, crater repair U U U UU 30 R. Craig...Polymer Technology for Agile Combat Support to develop a rapid crater repair using resin binders for indigenous materials. The research team consisted of
How should support for climate-friendly technologies be designed?
Fischer, Carolyn; Torvanger, Asbjørn; Shrivastava, Manish Kumar; Sterner, Thomas; Stigson, Peter
2012-01-01
Stabilizing global greenhouse gas concentrations at levels to avoid significant climate risks will require massive "decarbonization" of all the major economies over the next few decades, in addition to the reduced emissions from other GHGs and carbon sequestration. Achieving the necessary scale of emissions reductions will require a multifaceted policy effort to support a broad array of technological and behavioral changes. Change on this scale will require sound, well-thought-out strategies. In this article, we outline some core principles, drawn from recent social science research, for guiding the design of clean technology policies, with a focus on energy. The market should be encouraged to make good choices: pricing carbon emissions and other environmental damage, removing distorting subsidies and barriers to competition, and supporting RD&D broadly. More specific policies are required to address particular market failures and barriers. For those technologies identified as being particularly desirable, some narrower RD&D policies are available.
Megasonic cleaning strategy for sub-10nm photomasks
NASA Astrophysics Data System (ADS)
Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent
2016-10-01
One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.
Superfund: conscripting industry support for environmental cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulick, T.E.
The Superfund is notable in its attempt to charge the costs of environmental damage to those commercial interests that contributed to the damage. The approach should appeal to the Reagan administration's fiscal austerity program. It realizes the attendant costs to the benefits of our technologically productive society and recognizes that those costs must be paid either as environmental precautions or as cleanup costs, property damage, and disease. This article examines the major problems addressed by Superfund, describing the major provisions of the Act, discussing previously available remedies, and considering some of the problems that may arise with implementation. 126 references.
Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-suk
2016-04-01
Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea
NASA Technical Reports Server (NTRS)
2004-01-01
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.;
1997-01-01
Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.
NASA Astrophysics Data System (ADS)
Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei
2016-08-01
An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
Basic and Applied Algal Life Support System Research on Board the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Niederwieser, T.; Zea, L.; Anthony, J.; Stodieck, L.
2018-02-01
We study the effect of long-term preservation methods on DNA damage of algal cultures for BLSS applications. In a secondary step, the Deep Space Gateway serves as a technology demonstration platform for algal photobioreactors in intermittently occupied habitats.
2004-04-15
The Waterblast Research Cell supports development of automated systems that remove thermal protection materials and coatings from space flight hardware. These systems remove expended coatings without harsh chemicals or damaging underlying material. Potential applications of this technology include the removal of coatings from industrial machinery, aircraft, and other large structures. Use of the robot improves worker safety by reducing the exposure of persornel to high-pressure water. This technology is a proactive alternative to hazardous chemical strippers.
NASA Astrophysics Data System (ADS)
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key technologies.
Advanced composite fuselage technology
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.
1993-01-01
Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development.
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 1
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA conference on Fibrous Composites in structural Design. Presentations were made in the following areas of composite structural design: perspectives in composites; design methodology; design applications; design criteria; supporting technology; damage tolerance; and manufacturing.
Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario
2016-07-01
We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P < 0.0001) in electrocautery (1.3 [1.2-1.4]), laser (0.9 [0.6-0.9]) and harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P < 0.001) and resected lung surface (P < 0.001), radiological damage of tumour borders (P < 0.001) and resected lung surface (P < 0.001) and colour changes (P < 0.001) were statistically different between three study groups. Resections of in vivo pig lungs showed no bleeding; 2 of 7 cases of low air leaks were found; however, they ceased by sealing lung parenchyma with harmonic technology. Our experimental data support the resections performed with the use of harmonic technology. The lack of severe tissue alterations could favour healing of parenchyma, assure air tightness and preserve functional lung parenchyma. However, randomized controlled studies are needed in an in vivo model to corroborate our findings. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Subsurface defects of fused silica optics and laser induced damage at 351 nm.
Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng
2013-05-20
Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.
Computational mechanistic investigation of radiation damage of adenine induced by hydroxyl radicals
NASA Astrophysics Data System (ADS)
Tan, Rongri; Liu, Huixuan; Xun, Damao; Zong, Wenjun
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11564015 and 61404062), the Research Fund for the Doctoral Program of China (Grant No. 3000990110), and the Fund for Distinguished Young Scholars of Jiangxi Science & Technology Normal University (Grant Nos. 2015QNBJRC002 and 2016QNBJRC006).
2002-11-01
hand crack tip (point B) and with angular displacement from the x-axis. As the stress element is moved closer to the crack tip, the stresses are...on the methods of obtaining the required relationships are presented by Broek [1974]. The necessary relationships for Vσ, VF, Vp and Vst ...4.5.18. Geometrical and Displacement Parameters Relative to the Crack Tip 4.5.21 Vσ + VF + Vp = Vst (4.5.15) substituting the expressions 4.5.6
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 2
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.
Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design, volume 3
NASA Technical Reports Server (NTRS)
Soderquist, Joseph R. (Compiler); Neri, Lawrence M. (Compiler); Bohon, Herman L. (Compiler)
1992-01-01
This publication contains the proceedings of the Ninth DOD/NASA/FAA Conference on Fibrous Composites in Structural Design held at Lake Tahoe, Nevada, during 4-7 Nov. 1991. Presentations were made in the following areas of composite structural design: perspectives in composites, design methodology, design applications, design criteria, supporting technology, damage tolerance, and manufacturing.
Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure
NASA Technical Reports Server (NTRS)
Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.
2013-01-01
One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.
NASA Technical Reports Server (NTRS)
Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.
2002-01-01
This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Reducing Manpower for a Technologically Advanced Ship
2010-01-27
Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director
NASA Technical Reports Server (NTRS)
Gallis, Michael A.; LeBeau, Gerald J.; Boyles, Katie A.
2003-01-01
The Direct Simulation Monte Carlo method was used to provide 3-D simulations of the early entry phase of the Shuttle Orbiter. Undamaged and damaged scenarios were modeled to provide calibration points for engineering "bridging function" type of analysis. Currently the simulation technology (software and hardware) are mature enough to allow realistic simulations of three dimensional vehicles.
Translations on USSR Science and Technology, Biomedical Sciences, Number 5
1977-07-18
arteriovenous and arterial aneurysms. Methods have been further developed for conservative therapy of patients with ischemic cerebral damage...reanimation therapy , anesthesiological support for operations, etc. Soviet neurosurgery has vast experience at its disposal, experience acquired...tions , and physiotherapeutic methods, and work therapy all enter into it, and much else." Together with G. P. Kaplin I entered one of the hospital
A Selection of Composites Simulation Practices at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2007-01-01
One of the major areas of study at NASA Langley Research Center is the development of technologies that support the use of advanced composite materials in aerospace applications. Amongst the supporting technologies are analysis tools used to simulate the behavior of these materials. This presentation will discuss a number of examples of analysis tools and simulation practices conducted at NASA Langley. The presentation will include examples of damage tolerance analyses for both interlaminar and intralaminar failure modes. Tools for modeling interlaminar failure modes include fracture mechanics and cohesive methods, whilst tools for modeling intralaminar failure involve the development of various progressive failure analyses. Other examples of analyses developed at NASA Langley include a thermo-mechanical model of an orthotropic material and the simulation of delamination growth in z-pin reinforced laminates.
Life Aboard a Soviet Destroyer and a Soviet Submarine
1983-09-01
psychological, political, and technological), ship design and weaponry, habitability (living quarters, diet), fleet support, damage control, and repair ...training and written exams. We then asked to transfer to Vladivostok tc participate in a long -term deployment that would combine training with a...of ship functions, including exercise and even party-political 22 work. We resumed the morning workout with Borodin as the tapes played. "The
Launch Pad Coatings for Smart Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.
2010-01-01
Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.
Deep Learning for Image-Based Cassava Disease Detection.
Ramcharan, Amanda; Baranowski, Kelsee; McCloskey, Peter; Ahmed, Babuali; Legg, James; Hughes, David P
2017-01-01
Cassava is the third largest source of carbohydrates for human food in the world but is vulnerable to virus diseases, which threaten to destabilize food security in sub-Saharan Africa. Novel methods of cassava disease detection are needed to support improved control which will prevent this crisis. Image recognition offers both a cost effective and scalable technology for disease detection. New deep learning models offer an avenue for this technology to be easily deployed on mobile devices. Using a dataset of cassava disease images taken in the field in Tanzania, we applied transfer learning to train a deep convolutional neural network to identify three diseases and two types of pest damage (or lack thereof). The best trained model accuracies were 98% for brown leaf spot (BLS), 96% for red mite damage (RMD), 95% for green mite damage (GMD), 98% for cassava brown streak disease (CBSD), and 96% for cassava mosaic disease (CMD). The best model achieved an overall accuracy of 93% for data not used in the training process. Our results show that the transfer learning approach for image recognition of field images offers a fast, affordable, and easily deployable strategy for digital plant disease detection.
NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.
Spatial Differences and Costs of Emissions at U.S. Airport Hubs.
Nahlik, Matthew J; Chester, Mikhail V; Ryerson, Megan S; Fraser, Andrew M
2016-04-19
As local governments plan to expand airport infrastructure and build air service, monetized estimates of damages from air pollution are important for balancing environmental impacts. While it is well-known that aircraft emissions near airports directly affect nearby populations, it is less clear how the airport-specific aircraft operations and impacts result in monetized damages to human health and the environment. We model aircraft and ground support equipment emissions at major U.S. airports and estimate the monetized human health and environmental damages of near airport (within 60 miles) emissions. County-specific unit damage costs for PM, SOx, NOx, and VOCs and damage valuations for CO and CO2 are used along with aircraft emissions estimations at airports to determine impacts. We find that near-airport emissions at major U.S. airports caused a total of $1.9 billion in damages in 2013, with airports contributing between $720 thousand and $190 million each. These damages vary by airport from $1 to $9 per seat per one-way flight and costs per passenger are often greater than airport charges levied on airlines for infrastructure use. As the U.S. aviation system grows, it is possible to minimize human and environmental costs by shifting aircraft technologies and expanding service into airports where fewer impacts are likely to occur.
Modeling of Progressive Damage in Fiber-Reinforced Ceramic Matrix Composites
1996-03-01
ALAN V. LAIR , Committee Member Professor and Department Head Department of Mathematics and Statistics DAVID D. ROBERTSON, Committee Member Major...other committee members, Prof. Peter Torvik, Prof. Alan Lair , and, representing the dean, Prof. Kirk Mathews for their support and time spent in...34 Journal of Composites Technology and Research, In press (1996). 177. Sorensen B.F. and Talreja R. "Effects of Nonuniformity of Fiber Distribution On
Worldwide Report: Telecommunications Policy, Research and Development, No. 285.
1983-09-02
Computers and Automation Technology Earth Sciences Electronics and Electrical Engineering Engineering and Equipment Machine Tools and Metal ...the De - partment of Communications had said the project, was \\ViableL ^woüld ’ not ’require^ continuing" federal govern- ment support and would...34The second is that the satel- lite will offer genuine com- plementary services rather than seek to engage in de - structive and damaging com
2015-05-01
fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF
Jet Engines - The New Masters of Advanced Flight Control
NASA Astrophysics Data System (ADS)
Gal-Or, Benjamin
2018-05-01
ANTICIPATED UNITED STATES CONGRESS ACT should lead to reversing a neglected duty to the people by supporting FAA induced bill to civilize classified military air combat technology to maximize flight safety of airliners and cargo jet transports, in addition to FAA certifying pilots to master Jet-Engine Steering ("JES") as automatic or pilot recovery when Traditional Aerodynamic-only Flight Control ("TAFC") fails to prevent a crash and other related damages
Pallavicini, Federica; Pedroli, Elisa; Serino, Silvia; Dell'Isola, Andrea; Cipresso, Pietro; Cisari, Carlo; Riva, Giuseppe
2015-01-01
Unilateral Spatial Neglect, or neglect, is a common behavioral syndrome in patients following unilateral brain damage, such as stroke. In recent years, new technologies, such as computer-based tools and virtual reality have been used in order to solve some limitations of the traditional neglect evaluation. Within this perspective, also mobile devices such as tablets seems to be promising tools, being able to support interactive virtual environments and, at the same time, allowing to easily reproduce traditional paper-and-pencil test. In this context, the aim of our study was to investigate the potentiality of a new mobile application (Neglect App) designed and developed for tablet (iPad) for screening neglect symptoms. To address this objective, we divided a sample of 16 right-damaged patients according to the presence or absence of neglect and we administered assessment test in their traditional and Neglect App version. Results showed that the cancellation tests developed within Neglect App were equally effective to traditional paper-and-pencil tests (Line cancellation test and Star Cancellation test) in detecting neglect symptoms. Secondly, according to our results, the Neglect App Card Dealing task was more sensitive in detecting neglect symptoms than traditional functional task. Globally, results gives preliminary evidences supporting the feasibility of Neglect App for the screening of USN symptoms.
NASA Astrophysics Data System (ADS)
Li, Ping; Jin, Tan; Guo, Zongfu; Lu, Ange; Qu, Meina
2016-10-01
High efficiency machining of large precision optical surfaces is a challenging task for researchers and engineers worldwide. The higher form accuracy and lower subsurface damage helps to significantly reduce the cycle time for the following polishing process, save the cost of production, and provide a strong enabling technology to support the large telescope and laser energy fusion projects. In this paper, employing an Infeed Grinding (IG) mode with a rotary table and a cup wheel, a multi stage grinding process chain, as well as precision compensation technology, a Φ300mm diameter plano mirror is ground by the Schneider Surfacing Center SCG 600 that delivers a new level of quality and accuracy when grinding such large flats. Results show a PV form error of Pt<2 μm, the surface roughness Ra<30 nm and Rz<180 nm, with subsurface damage <20 μm, and a material removal rates of up to 383.2 mm3/s.
A new SMART sensing system for aerospace structures
NASA Astrophysics Data System (ADS)
Zhang, David C.; Yu, Pin; Beard, Shawn; Qing, Peter; Kumar, Amrita; Chang, Fu-Kuo
2007-04-01
It is essential to ensure the safety and reliability of in-service structures such as unmanned vehicles by detecting structural cracking, corrosion, delamination, material degradation and other types of damage in time. Utilization of an integrated sensor network system can enable automatic inspection of such damages ultimately. Using a built-in network of actuators and sensors, Acellent is providing tools for advanced structural diagnostics. Acellent's integrated structural health monitoring system consists of an actuator/sensor network, supporting signal generation and data acquisition hardware, and data processing, visualization and analysis software. This paper describes the various features of Acellent's latest SMART sensing system. The new system is USB-based and is ultra-portable using the state-of-the-art technology, while delivering many functions such as system self-diagnosis, sensor diagnosis, through-transmission mode and pulse-echo mode of operation and temperature measurement. Performance of the new system was evaluated for assessment of damage in composite structures.
Integrating Oil Debris and Vibration Gear Damage Detection Technologies Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spur gears was developed. Two different measurement technologies, wear debris analysis and vibration, were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Test Rig. Experimental data were collected during experiments performed in this test rig with and without pitting. Results show combining the two measurement technologies improves the detection of pitting damage on spur gears.
Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.
2002-01-01
A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.
Development of 3D microwave imaging technology for damage assessment of concrete bridge.
DOT National Transportation Integrated Search
2003-11-01
An innovative microwave 3-dimensional (3D) sub-surface imaging technology is developed for : detecting and quantitatively assessing internal damage of concrete structures. This technology is : based on reconstruction of dielectric profile (image) of ...
Lewis Structures Technology, 1988. Volume 2: Structural Mechanics
NASA Technical Reports Server (NTRS)
1988-01-01
Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Evaluation of Methylene Chloride Emission Control Technologies at Anniston Army Depot
2007-03-01
processes to paint stripping at ANAD. Substrate damage, residual compressive stresses , and the volume of hazardous waste should all be investigated...or supported on hooks , and lowered into the salt bath. After stripping, the items are removed and rinsed with water for cooling and removal of resid...ity to stress corrosion. b. 6000 series aluminum: Silicon and magnesium in approxi- mate proportions to form magnesium silicide, thus making them
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Quinlivan, John T.; Wilson, Robert D.; Smith, Peter J.; Johnson, Ronald W.
1984-01-01
Toppics addressed include: advanced composites on Boeing commercial aircraft; composite wing durability; damage tolerance technology development; heavily loaded wing panel design; and pressure containment and damage tolerance in fuselages.
NASA Astrophysics Data System (ADS)
Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu
2016-04-01
The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).
Prognostics for Ground Support Systems: Case Study on Pneumatic Valves
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai
2011-01-01
Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.
NASA Applied Sciences Disasters Program Support for the September 2017 Mexico Earthquakes
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Kirschbaum, D.; Torres-Perez, J. L.; Yun, S. H.; Owen, S. E.; Hua, H.; Fielding, E. J.; Liang, C.; Bekaert, D. P.; Osmanoglu, B.; Amini, R.; Green, D. S.; Murray, J. J.; Stough, T.; Struve, J. C.; Seepersad, J.; Thompson, V.
2017-12-01
The 8 September M 8.1 Tehuantepec and 19 September M 7.1 Puebla earthquakes were among the largest earthquakes recorded in Mexico. These two events caused widespread damage, affecting several million people and causing numerous casualties. A team of event coordinators in the NASA Applied Sciences Program activated soon after these devastating earthquakes in order to support decision makers in Mexico, using NASA modeling and international remote sensing capabilities to generate decision support products to aid in response and recovery. The NASA Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. For these two events, the Disasters Program worked with Mexico's space agency (Agencia Espacial Mexico, AEM) and the National Center for Prevention of Disasters (Centro Nacional de Prevención de Desastres, CENAPRED) to generate products to support response, decision-making, and recovery. Products were also provided to academic partners, technical institutions, and field responders to support response. In addition, the Program partnered with the US Geological Survey (USGS), Office of Foreign Disaster Assistance (OFDA), and other partners in order to provide information to federal and domestic agencies that were supporting event response. Leveraging the expertise of investigators at NASA Centers, products such as landslide susceptibility maps, precipitation models, and radar based damage assessments and surface deformation maps were generated and used by AEM, CENAPRED, and others during the event. These were used by AEM in collaboration with other government agencies in Mexico to make appropriate decisions for mapping damage, rescue and recovery, and informing the population regarding areas prone to potential risk. We will provide an overview of the response activities and data products generated in support of the earthquake response, partnerships with domestic and international partners, and preliminary feedback from end-user partners in Mexico during response efforts following these two earthquakes.
Molinos-Senante, M; Garrido-Baserba, M; Reif, R; Hernández-Sancho, F; Poch, M
2012-06-15
The preliminary design and economic assessment of small wastewater treatment plants (less than 2000 population equivalent) are issues of particular interest since wastewaters from most of these agglomerations are not covered yet. This work aims to assess nine different technologies set-up for the secondary treatment in such type of facilities embracing both economic and environmental parameters. The main novelty of this work is the combination of an innovative environmental decision support system (EDSS) with a pioneer approach based on the inclusion of the environmental benefits derived from wastewater treatment. The integration of methodologies based on cost-benefit analysis tools with the vast amount of knowledge from treatment technologies contained in the EDSS was applied in nine scenarios comprising different wastewater characteristics and reuse options. Hence, a useful economic feasibility indicator is obtained for each technology including internal and external costs and, for the first time, benefits associated with the environmental damage avoided. This new methodology proved to be crucial for supporting the decision process, contributing to improve the sustainability of new treatment facilities and allows the selection of the most feasible technologies of a wide set of possibilities. Copyright © 2012 Elsevier B.V. All rights reserved.
Contamination Control and Hardware Processing Solutions at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Burns, DeWitt H.; Hampton, Tammy; Huey, LaQuieta; Mitchell, Mark; Norwood, Joey; Lowrey, Nikki
2012-01-01
The Contamination Control Team of Marshall Space Flight Center's Materials and Processes Laboratory supports many Programs/ Projects that design, manufacture, and test a wide range of hardware types that are sensitive to contamination and foreign object damage (FOD). Examples where contamination/FOD concerns arise include sensitive structural bondline failure, critical orifice blockage, seal leakage, and reactive fluid compatibility (liquid oxygen, hydrazine) as well as performance degradation of sensitive instruments or spacecraft surfaces such as optical elements and thermal control systems. During the design phase, determination of the sensitivity of a hardware system to different types or levels of contamination/FOD is essential. A contamination control and FOD control plan must then be developed and implemented through all phases of ground processing, and, sometimes, on-orbit use, recovery, and refurbishment. Implementation of proper controls prevents cost and schedule impacts due to hardware damage or rework and helps assure mission success. Current capabilities are being used to support recent and on-going activities for multiple Mission Directorates / Programs such as International Space Station (ISS), James Webb Space Telescope (JWST), Space Launch System (SLS) elements (tanks, engines, booster), etc. The team also advances Green Technology initiatives and addresses materials obsolescence issues for NASA and external customers, most notably in the area of solvent replacement (e.g. aqueous cleaners containing hexavalent chrome, ozone depleting chemicals (CFC s and HCFC's), suspect carcinogens). The team evaluates new surface cleanliness inspection and cleaning technologies (e.g. plasma cleaning), and maintains databases for processing support materials as well as outgassing and optical compatibility test results for spaceflight environments.
Managing the natural disasters from space technology inputs
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Chandrasekhar, M. G.; Rao, U. R.
1997-01-01
Natural disasters, whether of meteorological origin such as Cyclones, Floods, Tornadoes and Droughts or of having geological nature such as earthquakes and volcanoes, are well known for their devastating impacts on human life, economy and environment. With tropical climate and unstable land forms, coupled with high population density, poverty, illiteracy and lack of infrastructure development, developing countries are more vulnerable to suffer from the damaging potential of such disasters. Though it is almost impossible to completely neutralise the damage due to these disasters, it is, however possible to (i) minimise the potential risks by developing disaster early warning strategies (ii) prepare developmental plans to provide resilience to such disasters, (iii) mobilize resources including communication and telemedicinal services and (iv) to help in rehabilitation and post-disaster reconstruction. Space borne platforms have demonstrated their capability in efficient disaster management. While communication satellites help in disaster warning, relief mobilisation and telemedicinal support, Earth observation satellites provide the basic support in pre-disaster preparedness programmes, in-disaster response and monitoring activities, and post-disaster reconstruction. The paper examines the information requirements for disaster risk management, assess developing country capabilities for building the necessary decision support systems, and evaluate the role of satellite remote sensing. It describes several examples of initiatives from developing countries in their attempt to evolve a suitable strategy for disaster preparedness and operational framework for the disaster management Using remote sensing data in conjunction with other collateral information. It concludes with suggestions and recommendations to establish a worldwide network of necessary space and ground segments towards strengthening the technological capabilities for disaster management and mitigation.
Detection of damaged supports under railway track based on frequency shift
NASA Astrophysics Data System (ADS)
Wang, Longqi; Zhang, Yao; Lie, Seng Tjhen
2017-03-01
In railway transportation systems, the tracks are usually fastened on sleepers which are supported by the ballast. A lot of research has been conducted to guarantee the safety of railway track because of its importance, and more concern is expressed about monitoring of track itself such as railway level and alignment. The ballast and fasteners which provide strong support to the railway track are important as well whereas the detection of loose or missing fasteners and damaged ballast mainly relies on visual inspection. Although it is reliable when the fastener is missing and the damaged ballast is on the surface, it provides less help if the fastener is only loose and the damaged ballast is under the sleepers, which are however frequently observed in practice. This paper proposes an approach based on frequency shift to identify the damaged supports including the loose or missing fasteners and damaged ballast. In this study, the rail-sleeper-ballast system is modeled as an Euler beam evenly supported by a series of springs, the stiffness of which are reduced when the fastener is loose or missing and the ballast under the sleepers is damaged. An auxiliary mass is utilized herein and when it is mounted on the beam, the natural frequencies of the whole system will change with respect to the location of the auxiliary mass. The auxiliary mass induced frequency shift is analyzed and it is found the natural frequencies change periodically when the supports are undamaged, whereas the periodicity will be broken due to damaged supports. In fact, the natural frequencies drop clearly when the auxiliary mass moves over the damaged support. A special damage index only using the information of the damaged states is proposed and both numerical and experimental examples are carried out to validate the proposed method.
2016-11-01
the spring of 2016. Four of these materials were commercially available. The remaining formulations were designed specifically to support this... designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC TR-16-16 iii...The Program Manager was Jeb S. Tingle, ERDC-GSL. This work was performed by the Airfields and Pavements Branch (GMA) of the Engineering Systems
Damage detection techniques for concrete applications.
DOT National Transportation Integrated Search
2016-08-01
New technological advances in nondestructive testing technology have created the opportunity to better utilize ultrasonic waves to aid in damage detection applications for concrete. This research utilizes an ultrasonic array device for nondestructive...
April 25, 2015, Gorkha Earthquake, Nepal and Sequence of Aftershocks: Key Lessons
NASA Astrophysics Data System (ADS)
Guragain, R.; Dixit, A. M.; Shrestha, S. N.
2015-12-01
The Gorkha Earthquake of M7.8 hit Nepal on April 25, 2015 at 11:56 am local time. The epicenter of this earthquake was Barpak, Gorkha, 80 km northwest of Kathmandu Valley. The main shock was followed by hundreds of aftershocks including M6.6 and M6.7 within 48 hours and M7.3 on May 12, 2015. According to the Government of Nepal, a total of 8,686 people lost their lives, 16,808 people injured, over 500,000 buildings completely collapsed and more than 250,000 building partially damaged. The National Society for Earthquake Technology - Nepal (NSET), a not-for-profit civil society organization that has been focused on earthquake risk reduction in Nepal for past 21 years, conducted various activities to support people and the government in responding to the earthquake disaster. The activities included: i) assisting people and critical facility institutions to conduct rapid visual building damage assessment including the training; ii) information campaign to provide proper information regarding earthquake safety; iii) support rescue organizations on search and rescue operations; and iv) provide technical support to common people on repair, retrofit of damaged houses. NSET is also involved in carrying out studies related to earthquake damage, geotechnical problems, and causes of building damages. Additionally, NSET has done post-earthquake detail damage assessment of buildings throughout the affected areas. Prior to the earthquake, NSET has been working with several institutions to improve seismic performance of school buildings, private residential houses, and other critical structures. Such activities implemented during the past decade have shown the effectiveness of risk reduction. Retrofitted school buildings performed very well during the earthquake. Preparedness activities implemented at community levels have helped communities to respond immediately and save lives. Higher level of earthquake awareness achieved including safe behavior, better understanding of building code, and improvement of skills towards safer construction, helped in saving lives and assets, and also helped to understand better the gaps and shortcomings for better defining the future course of action. This paper will discuss key achievements, lessons learned and optimal directions for future activities.
Damage Detection in Railway Prestressed Concrete Sleepers using Acoustic Emission
NASA Astrophysics Data System (ADS)
Clark, A.; Kaewunruen, S.; Janeliukstis, R.; Papaelias, M.
2017-10-01
Prestressed concrete sleepers (or railroad ties) are safety-critical elements in railway tracks that distribute the wheel loads from the rails to the track support system. Over a period of time, the concrete sleepers age and deteriorate in addition to experiencing various types of static and dynamic loading conditions, which are attributable to train operations. In many cases, structural cracks can develop within the sleepers due to high intensity impact loads or due to poor track maintenance. Often, cracks of sleepers develop and present at the midspan due to excessive negative bending. These cracks can cause broken sleepers and sometimes called ‘center bound’ problem in railway lines. This paper is the world first to present an application of non-destructive acoustic emission technology for damage detection in railway concrete sleepers. It presents experimental investigations in order to detect center-bound cracks in railway prestressed concrete sleepers. Experimental laboratory testing involves three-point bending tests of four concrete sleepers. Three-point bending tests correspond to a real failure mode, when the loads are not transferred uniformly to the ballast support. It is observed that AE sensing provides an accurate means for detecting the location and magnitude of cracks in sleepers. Sensor location criticality is also highlighted in the paper to demonstrate the reliability-based damage detection of the sleepers.
Decision Support Model for Selection Technologies in Processing of Palm Oil Industrial Liquid Waste
NASA Astrophysics Data System (ADS)
Ishak, Aulia; Ali, Amir Yazid bin
2017-12-01
The palm oil industry continues to grow from year to year. Processing of the palm oil industry into crude palm oil (CPO) and palm kernel oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. The purpose of this research is to develop a database of waste processing technology, looking for qualitative and quantitative criteria to select technology and develop Decision Support System (DSS) that can help make decisions. The method used to achieve the objective of this research is to develop a questionnaire to identify waste processing technology and develop the questionnaire to find appropriate database technology. Methods of data analysis performed on the system by using Analytic Hierarchy Process (AHP) and to build the model by using the MySQL Software that can be used as a tool in the evaluation and selection of palm oil mill processing technology.
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
NASA Astrophysics Data System (ADS)
Lee, Ju-hyoung; Kim, Hakman; Cho, Jin Woo
2017-04-01
When a building collapses in downtown due to a sudden external factor such as earthquake, gas explosion or terror, the rescue of a survivor in the buried area should be prioritized. When a collapse accident occurs in downtown, there is a difficulty of access to the surrounding area of the collapsed building site due to building debris and a risk of the second collapse, and it takes a lot of time to rescue any survivor in the top excavation method to rescue while removing building debris. Therefore, there is a method to rescue any survivor safely by installing the second lifeline after securing the first lifeline within 72 hours using inclined excavation near the site of collapsed building or horizontal excavation at the underground parking lot of an adjacent building and prolonging the life of any survivor. When a building collapses in downtown, the perforating operation is carried out at the existing structure in the process of establishing the first lifeline to the position of a survivor through the parking lot of an adjacent building or the external wall of the building, and the damage extent in case of carrying out such operation was confirmed in this study. In order to determine the stability of the damaged existing structure and the range of repair, the reinforced concrete wall was produced and the damage extent of the reinforced concrete for each perforating position was measured by installing a measuring instrument at a position separated by 150%˜200% from the perforating position. As a result, it was shown that the average damage area for each perforating position was influenced within approximately a 254% radius. Keywords: horizontal excavation, damage, reinforced roncrete, building collapses Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.
Hair cell recovery in mitotically blocked cultures of the bullfrog saccule
NASA Technical Reports Server (NTRS)
Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.
2000-01-01
Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.
Hair cell recovery in mitotically blocked cultures of the bullfrog saccule
Baird, Richard A.; Burton, Miriam D.; Fashena, David S.; Naeger, Rebecca A.
2000-01-01
Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event. PMID:11050201
Hair cell recovery in mitotically blocked cultures of the bullfrog saccule.
Baird, R A; Burton, M D; Lysakowski, A; Fashena, D S; Naeger, R A
2000-10-24
Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.
NASA Technical Reports Server (NTRS)
1984-01-01
This three day conference, sixth in a series that began in 1974, was held at the NASA Lewis Research Center on October 18-20, 1983. The conference provided a forum for the discussion of space photovoltaic systems, their research status, and program goals. Papers were presented and workshops were held in a variety of technology areas, including basic cell research, advanced blanket technology, and radiation damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1998-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
Politicizing NIH funding: a bridge to nowhere
Epstein, Jonathan A.
2011-01-01
We live in a time of increased spending, mounting debt, and few remedies for balancing the federal budget that have bipartisan support. Unfortunately, one recent target for decreased allocations of the federal budget is the NIH; the discussion of the awarded grants and the grant funding process has been skewed and altered to present medical research in an unfriendly light, and this can have very damaging repercussions. Politicizing this process could ultimately challenge human health, technology, and economic growth. PMID:21881213
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wein, G.; Rosier, B.
1997-12-31
This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.
NASA Astrophysics Data System (ADS)
Yang, Liu; Chang-Chun, Chai; Yin-Tang, Yang; Jing, Sun; Zhi-Peng, Li
2016-04-01
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AlGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).
Integrated knowledge-based tools for documenting and monitoring damages to built heritage
NASA Astrophysics Data System (ADS)
Cacciotti, R.
2015-08-01
The advancements of information technologies as applied to the most diverse fields of science define a breakthrough in the accessibility and processing of data for both expert and non-expert users. Nowadays it is possible to evidence an increasingly relevant research effort in the context of those domains, such as that of cultural heritage protection, in which knowledge mapping and sharing constitute critical prerequisites for accomplishing complex professional tasks. The aim of this paper is to outline the main results and outputs of the MONDIS research project. This project focusses on the development of integrated knowledge-based tools grounded on an ontological representation of the field of heritage conservation. The scope is to overcome the limitations of earlier databases by the application of modern semantic technologies able to integrate, organize and process useful information concerning damages to built heritage objects. In particular MONDIS addresses the need for supporting a diverse range of stakeholders (e.g. administrators, owners and professionals) in the documentation and monitoring of damages to historical constructions and in finding related remedies. The paper concentrates on the presentation of the following integrated knowledgebased components developed within the project: (I) MONDIS mobile application (plus desktop version), (II) MONDIS record explorer, (III) Ontomind profiles, (IV) knowledge matrix and (V) terminology editor. An example of practical application of the MONDIS integrated system is also provided and finally discussed.
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-Suk
2015-04-01
Due to rapid urbanization and climate change, the frequency of concentrated heavy rainfall has increased, causing urban floods that result in casualties and property damage. As a consequence of natural disasters that occur annually, the cost of damage in Korea is estimated to be over two billion US dollars per year. As interest in natural disasters increase, demands for a safe national territory and efficient emergency plans are on the rise. In addition to this, as a part of the measures to cope with the increase of inland flood damage, it is necessary to build a systematic city flood prevention system that uses technology to quantify flood risk as well as flood forecast based on both rivers and inland water bodies. Despite the investment and efforts to prevent landside flood damage, research and studies of landside-river combined hydro-system is at its initial stage in Korea. Therefore, the purpose of this research introduces the causes of flood damage in Seoul and shows a flood forecasting and warning system in urban streams of Seoul. This urban flood forecasting and warning system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area and also supports synthetic decision-making for prevention through real-time monitoring. Although we cannot prevent damage from typhoons or localized heavy rain, we can minimize that damage with accurate and timely forecast and a prevention system. To this end, we developed a flood forecasting and warning system, so in case of an emergency there is enough time for evacuation and disaster control. Keywords: urban flooding, flood risk, inland-river system, Korea Acknowledgments This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Advanced Optical Technologies for Defense Trauma and Critical Care
2017-03-12
biofilms, and the development of innovative technologies for the study of the response of nervous system cells to injury. 15. SUBJECT TERMS Hemorrhagic...approaches to accelerate nerve healing following traumatic brain injury (TBI) and traumatic injury to the peripheral nervous system . Fig. 3...Two key aspects of repair of traumatic nervous system damage are: (1) the ability of damaged neurons to heal (repair the damage), and (2) the
Self-Sensing TDR with Micro-Strip Line
2015-06-11
detect impact damage of a CFRP plate in the second year (Todoroki A, et al., Impact damage detection of a carbon- fibre -reinforced-polymer plate...inspection methods is self-sensing technology that uses carbon fibres as sensors [1]-[11]. The self-sensing technology applies electric current to the...Time Domain Reflectometry (TDR) for damage detection [15]-[17]. Authors have developed a self-sensing TDR for detection of fibre breakages using a
NASA Astrophysics Data System (ADS)
Shughrue, C. M.; Werner, B.; Nugnug, P. T.
2010-12-01
The catastrophic Deepwater Horizon oil spill highlights the risks for widespread environmental damage resulting from petroleum resource extraction. Possibilities for amelioration of these risks depend critically on understanding the dynamics and nonlinear interactions between various components of the coupled human-environmental resource extraction system. We use a complexity analysis to identify the levels of description and time scales at which these interactions are strongest, and then use the analysis as the basis for an agent-based numerical model with which decadal trends can be analyzed. Oil industry economic and technological activity and associated oil spills are components of a complex system that is coupled to natural environment, legislation, regulation, media, and resistance systems over annual to decadal time scales. In the model, oil spills are produced stochastically with a range of magnitudes depending on a reliability-engineering-based assessment of failure for the technology employed, human factors including compliance with operating procedures, and risks associated with the drilling environment. Oil industry agents determine drilling location and technological investment using a cost-benefit analysis relating projected revenue from added production to technology cost and government regulation. Media outlet agents reporting on the oil industry and environmental damage from oil spills assess the impacts of aggressively covering a story on circulation increases, advertiser concerns and potential loss of information sources. Environmental advocacy group agents increase public awareness of environmental damage (through media and public contact), solicit memberships and donations, and apply direct pressure on legislators for policy change. Heterogeneous general public agents adjust their desire for change in the level of regulation, contact their representatives or participate in resistance via protest by considering media sources, personal experiences with oil spills and individual predispositions toward the industry. Legislator agents pass legislation and influence regulator agents based on interaction with oil industry, media and general public agents. Regulator agents generate and enforce regulations by responding to pressure from legislator and oil industry agents. Oil spill impacts on the natural environment are related to number and magnitude of spills, drilling locations, and spill response methodology, determined collaboratively by government and oil company agents. Agents at the corporate and government levels use heterogeneous prediction models combined with a constant absolute risk aversion utility for wealth. This model simulates a nonlinear adaptive system with mechanisms to self-regulate oil industry activity, environmental damage and public response. A comparison of model output with historical oil industry development and environmental damage; the sensitivity of oil spill damage to economic, political and social factors; the potential for the emergence of new and possibly unstable behaviors; and opportunities for intervening in system dynamics to alter expected outcomes will be discussed. Supported by NSF: Geomorphology and Land Use Dynamics Program
NASA Technical Reports Server (NTRS)
1988-01-01
The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Quantifying Traces of Tool Use: A Novel Morphometric Analysis of Damage Patterns on Percussive Tools
Caruana, Matthew V.; Carvalho, Susana; Braun, David R.; Presnyakova, Darya; Haslam, Michael; Archer, Will; Bobe, Rene; Harris, John W. K.
2014-01-01
Percussive technology continues to play an increasingly important role in understanding the evolution of tool use. Comparing the archaeological record with extractive foraging behaviors in nonhuman primates has focused on percussive implements as a key to investigating the origins of lithic technology. Despite this, archaeological approaches towards percussive tools have been obscured by a lack of standardized methodologies. Central to this issue have been the use of qualitative, non-diagnostic techniques to identify percussive tools from archaeological contexts. Here we describe a new morphometric method for distinguishing anthropogenically-generated damage patterns on percussive tools from naturally damaged river cobbles. We employ a geomatic approach through the use of three-dimensional scanning and geographical information systems software to statistically quantify the identification process in percussive technology research. This will strengthen current technological analyses of percussive tools in archaeological frameworks and open new avenues for translating behavioral inferences of early hominins from percussive damage patterns. PMID:25415303
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors were baselined for Space Station Freedom (SSF) to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contact or subsystems include the plasma contact or unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities were developed, and existing facilities were augmented, to support characterizations and life testing of contactor components and systems. The magnitude, scope, and status of the plasma contactor hardware development program now underway and preliminary test results on system components are discussed.
Plasma contactor technology for Space Station Freedom
NASA Technical Reports Server (NTRS)
Patterson, Michael J.; Hamley, John A.; Sarver-Verhey, Timothy; Soulas, George C.; Parkes, James; Ohlinger, Wayne L.; Schaffner, Michael S.; Nelson, Amy
1993-01-01
Hollow cathode plasma contactors have been baselined for Space Station Freedom to control the electrical potentials of surfaces to eliminate/mitigate damaging interactions with the space environment. The system represents a dual-use technology which is a direct outgrowth of the NASA electric propulsion program and in particular the technology development effort on ion thruster systems. Specific efforts include optimizing the design and configuration of the contactor, validating its required lifetime, and characterizing the contactor plume and electromagnetic interference. The plasma contactor subsystems include the plasma contactor unit, a power electronics unit, and an expellant management unit. Under this program these will all be brought to breadboard and engineering model development status. New test facilities have been developed, and existing facilities have been augmented, to support characterizations and life testing of contactor components and systems. This paper discusses the magnitude, scope, and status of the plasma contactor hardware development program now under way and preliminary test results on system components.
Biomaterials for integration with 3-D bioprinting.
Skardal, Aleksander; Atala, Anthony
2015-03-01
Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.
Next Generation Life Support: High Performance EVA Glove
NASA Technical Reports Server (NTRS)
Walsh, Sarah K.
2015-01-01
The objectives of the High Performance EVA Glove task are to develop advanced EVA gloves for future human space exploration missions and generate corresponding standards by which progress may be quantitatively assessed. New technologies and manufacturing techniques will be incorporated into the new gloves to address finger and hand mobility, injury reduction and durability in nonpristine environments. Three prototypes will be developed, each focusing on different technological advances. A robotic assist glove will integrate a powered grasping system into the current EVA glove design to reduce astronaut hand fatigue and hand injuries. A mechanical counter pressure (MCP) glove will be developed to further explore the potential of MCP technology and assess its capability for countering the effects of vacuum or low pressure environments on the body by using compression fabrics or materials to apply the necessary pressure. A gas pressurized glove, incorporating new technologies, will be the most flight-like of the three prototypes. Advancements include the development and integration of aerogel insulation, damage sensing components, dust-repellant coatings, and dust tolerant bearings.
Advanced Technology Composite Fuselage-Structural Performance
NASA Technical Reports Server (NTRS)
Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.
1997-01-01
Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.
32 CFR 2400.10 - Presumption of damage.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 6 2011-07-01 2011-07-01 false Presumption of damage. 2400.10 Section 2400.10 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.10 - Presumption of damage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 6 2013-07-01 2013-07-01 false Presumption of damage. 2400.10 Section 2400.10 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.10 - Presumption of damage.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 6 2012-07-01 2012-07-01 false Presumption of damage. 2400.10 Section 2400.10 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.10 - Presumption of damage.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 6 2014-07-01 2014-07-01 false Presumption of damage. 2400.10 Section 2400.10 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
32 CFR 2400.10 - Presumption of damage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Presumption of damage. 2400.10 Section 2400.10 National Defense Other Regulations Relating to National Defense OFFICE OF SCIENCE AND TECHNOLOGY POLICY REGULATIONS TO IMPLEMENT E.O. 12356; OFFICE OF SCIENCE AND TECHNOLOGY POLICY INFORMATION SECURITY PROGRAM...
Transmission Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.
2004-01-01
A diagnostic tool was developed for detecting fatigue damage to rolling element bearings in an OH-58 main rotor transmission. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting bearing surface fatigue pitting damage. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from tests performed in the NASA Glenn 500 hp Helicopter Transmission Test Stand. Data was collected during experiments performed in this test rig when two unanticipated bearing failures occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears duplex ball bearings and spiral bevel pinion triplex ball bearings in a main rotor transmission.
NASA workshop on impact damage to composites
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1991-01-01
A compilation of slides presented at the NASA Workshop on Impact Damage to Composites held on March 19 and 20, 1991, at the Langley Research Center, Hampton, Virginia is given. The objective of the workshop was to review technology for evaluating impact damage tolerance of composite structures and identify deficiencies. Research, development, design methods, and design criteria were addressed. Actions to eliminate technology deficiencies were developed. A list of those actions and a list of attendees are also included.
Integrated remotely sensed datasets for disaster management
NASA Astrophysics Data System (ADS)
McCarthy, Timothy; Farrell, Ronan; Curtis, Andrew; Fotheringham, A. Stewart
2008-10-01
Video imagery can be acquired from aerial, terrestrial and marine based platforms and has been exploited for a range of remote sensing applications over the past two decades. Examples include coastal surveys using aerial video, routecorridor infrastructures surveys using vehicle mounted video cameras, aerial surveys over forestry and agriculture, underwater habitat mapping and disaster management. Many of these video systems are based on interlaced, television standards such as North America's NTSC and European SECAM and PAL television systems that are then recorded using various video formats. This technology has recently being employed as a front-line, remote sensing technology for damage assessment post-disaster. This paper traces the development of spatial video as a remote sensing tool from the early 1980s to the present day. The background to a new spatial-video research initiative based at National University of Ireland, Maynooth, (NUIM) is described. New improvements are proposed and include; low-cost encoders, easy to use software decoders, timing issues and interoperability. These developments will enable specialists and non-specialists collect, process and integrate these datasets within minimal support. This integrated approach will enable decision makers to access relevant remotely sensed datasets quickly and so, carry out rapid damage assessment during and post-disaster.
Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware
NASA Technical Reports Server (NTRS)
Weber, Thomas P., Jr.; Cox, Sarah B.
2018-01-01
The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.
NASA Astrophysics Data System (ADS)
Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi
2017-08-01
Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.
CAD-design, stress analysis and in vitro evaluation of three leaflet blood-pump valves.
Knierbein, B; Rosarius, N; Unger, A; Reul, H; Rau, G
1992-07-01
The computer-supported development of valves for cardiac-assist devices or artificial hearts is shown in relation to plastic technology. A CAD-system is used for the design development, whereas the dimensioning of the critical and highly stressed membranes is examined by FEM-analyses. Economic manufacture is permitted by the combined thermoforming-dip moulding technique; the blood-side components are made from biocompatible polyurethane to minimize blood damage. The first long-term results in the test set-up are compared to the FEM results.
Full-arch milled titanium implant bridge: technical report.
Peché, Wendy-Ann; Van Vuuren, Ludwig Jansen; Park, Chae
2011-09-01
The manufacturing of full-arch fixed implant-supported bridges with the use of the traditional lost wax technique remains a technical challenge. Distortion of the alloy during casting and subsequent heating cycles during porcelain build-up causes numerous problems. Fracturing of porcelain on large restorations is difficult and costly to restore. The fitting problems can be eliminated by utilising CAD/CAM technology in the manufacturing of long-span or full-arch titanium bridges. Repair of damaged porcelain can be simplified with the use of discrete, individually-removable crowns on the bridge.
Methodology for a GIS-based damage assessment for researchers following large scale disasters
NASA Astrophysics Data System (ADS)
Crawford, Patrick Shane
The 1990s were designated the International Decade for Natural Disaster Reduction by the United Nations General Assembly. This push for decrease of loss of life, property destruction, and social and economic disruption brought advancements in disaster management, including damage assessment. Damage assessment in the wake of natural and manmade disasters is a useful tool for government agencies, insurance companies, and researchers. As technologies evolve damage assessment processes constantly evolve as well. Alongside the advances in Geographic Information Systems (GIS), remote sensing, and Global Positioning System (GPS) technology, as well as the growing awareness of the needs of a standard operating procedure for GIS-based damage assessment and a need to make the damage assessment process as quick and accurate as possible, damage assessment procedures are becoming easier to execute and the results are becoming more accurate and robust. With these technological breakthroughs, multi-disciplinary damage assessment reconnaissance teams have become more efficient in their assessment methods through better organization and more robust through addition of new datasets. Damage assessment personnel are aided by software tools that offer high-level analysis and increasingly rapid damage assessment methods. GIS software has advanced the damage assessment methods of these teams by combining remotely sensed aerial imagery, GPS, and other technologies to expand the uses of the data. GIS allows researchers to use aerial imagery to show field collected data in the geographic location that it was collected so that information can be revisited, measurements can be taken, and data can be disseminated to other researchers and the public. The GIS-based data available to the reconnaissance team includes photographs of damage, worksheets, calculations, voice messages collected while studying the affected area, and many other datasets which are based on the type of disaster and the research field. Along with visually mapping the data, geometric calculations can be conducted on the data to give the viewer more information about the damage. In Chapter 4, a tornado damage contour for Moore, Oklahoma following the May 20, 2013 tornado is shown. This damage contour was created in GIS based on the Enhanced Fujita (EF) damage scale, and gives the viewer an easily understood picture of the extent and distribution of the tornado. This thesis aims to describe a foundational groundwork for activities that are performed in the GIS-based damage assessment procedure and provide uses for the damage assessment as well as research being conducted on how to use the data collected from these assessments. This will allow researchers to conduct a highly adaptable, rapid GIS-based damage assessment of their own.
Qiantori, Andri; Sutiono, Agung Budi; Hariyanto, Hadi; Suwa, Hirohiko; Ohta, Toshizumi
2012-02-01
A natural disaster is a consequence of a natural hazard, such as a tsunami, earthquake or volcanic eruption, affecting humans. In order to support emergency medical communication services in natural disaster areas where the telecommunications facility has been seriously damaged, an ad hoc communication network backbone should be build to support emergency medical services. Combinations of requirements need to be considered before deciding on the best option. In the present study we have proposed a Low Altitude Platform consisting of tethered balloons combined with Wireless Fidelity (WiFi) 802.11 technology. To confirm that the suggested network would satisfy the emergency medical service requirements, a communications experiment, including performance service measurement, was carried out.
Foreign Object Damage Behavior of a SiC/SiC Composite at Ambient and Elevated Temperatures
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Pereira, J. Michael; Gyekenyesi, John P.; Choi, Sung R.
2004-01-01
Foreign object damage (FOD) behavior of a gas-turbine grade SiC/SiC ceramic matrix composite (CMC) was determined at 25 and 1316 C, employing impact velocities from 115 to 440 meters per second by 1.59-mm diameter stell-ball projectiles. Two different types of specimen support were used at each temperature: fully supported and partially supported. For a given temperature, the degree of post-impact strength degradation increased with increasing impact velocity, and was greater in a partially supported configuration than in a fully supported one. The elevated-temperature FOD resistance of the composite, particularly under partially supported loading at higher impact velocities greater than or equal to 350 meters per second, was significantly less than the ambient-temperature counterpart, attributed to a weakening effect of the composite. For fully supported loading, frontal contact stress played a major role in generating composite damage; whereas, for partially supported loading, both frontal contact and backside bending stresses were combined sources of damage generation. The SiC/SiC composite was able to survive higher energy impacts without complete structural failure but suffered more strength affecting damage from low energy impacts than AS800 and SN282 silicon nitrides.
Global considerations for implementation of telemedicine
NASA Technical Reports Server (NTRS)
Lechat, M. F.
1991-01-01
In Dec. 1989, the United Nations proclaimed the Decade 1990-1999 as the International Decade for Natural Disasters Reduction (IDNDR). The Decade identified a number of research programs. IDNDR, provides a unique opportunity to explore the potential offered by the emerging technologies, and to promote, develop, and support those technologies deemed adequate to make the next century a safer one, especially in the poorest countries of the world. But all this improvement cannot be accomplished in a vacuum. We must begin now to eliminate pitfalls and illusions. A new attitude must emerge. In the scope of reducing human damages resulting from disasters, we must reconsider the cross-cultural understanding, and reach a real awareness which combines humility with a sense of relativeness. Promoting the right context is essential to the mandate of the Decade.
Explosion safety in industrial electrostatics
NASA Astrophysics Data System (ADS)
Szabó, S. V.; Kiss, I.; Berta, I.
2011-01-01
Complicated industrial systems are often endangered by electrostatic hazards, both from atmospheric (lightning phenomenon, primary and secondary lightning protection) and industrial (technological problems caused by static charging and fire and explosion hazards.) According to the classical approach protective methods have to be used in order to remove electrostatic charging and to avoid damages, however no attempt to compute the risk before and after applying the protective method is made, relying instead on well-educated and practiced expertise. The Budapest School of Electrostatics - in close cooperation with industrial partners - develops new suitable solutions for probability based decision support (Static Control Up-to-date Technology, SCOUT) using soft computing methods. This new approach can be used to assess and audit existing systems and - using the predictive power of the models - to design and plan activities in industrial electrostatics.
NASA Astrophysics Data System (ADS)
Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Meyer, P. J.; Burks, J.; Camp, P.; Angle, K.
2016-12-01
Following the occurrence of a suspected or known tornado, meteorologists with NOAA's National Weather Service are tasked with performing a detailed ground survey to map the impacts of the tornado, identify specific damage indicators, and link those damage indicators to the Enhanced Fujita scale as an estimate of the intensity of the tornado at various points along the damage path. Over the past few years, NOAA/NWS meteorologists have developed the NOAA/NWS Damage Assessment Toolkit (DAT), a smartphone and web based application to support the collection of damage information, editing of the damage survey, and final publication. This allows meteorologists in the field to sample the damage track, collect geotagged photos with notations of damage areas, and aggregation of the information to provide a more detailed survey whereas previous efforts may have been limited to start and end locations, maximum width, and maximum intensity. To support these damage assessment efforts, various Earth remote sensing data sets were incorporated into the DAT to support survey efforts, following preliminary activities using remote sensing to support select NOAA/NWS field offices following the widespread outbreak of tornadoes that occurred in the southeastern United States on April 27, 2011. These efforts included the collection of various products in collaboration with multiple federal agencies and commercial providers, with particular emphasis upon the USGS Hazards Data Distribution System, hosting and sharing of these products through geospatial platforms, partnerships with forecasters to better understand their needs, and the development and delivery of training materials. This presentation will provide an overview of the project along with strengths and weaknesses, opportunities for future work and improvements, and best practices learned during the "research to applications" process supported by the NASA Applied Sciences: Disasters program.
Advanced Life Support Systems: Opportunities for Technology Transfer
NASA Technical Reports Server (NTRS)
Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.
1994-01-01
NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.
On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective
NASA Technical Reports Server (NTRS)
Lewis, Kemper; Mistree, Farrokh
1995-01-01
In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
Radiation response issues for infrared detectors
NASA Technical Reports Server (NTRS)
Kalma, Arne H.
1990-01-01
Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de
The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture whichmore » leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.« less
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
Hail Disrometer Array for Launch Systems Support
NASA Technical Reports Server (NTRS)
Lane, John E.; Sharp, David W.; Kasparis, Takis C.; Doesken, Nolan J.
2008-01-01
Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a vehicle is on the launch pad, with special attention after any storm suspected of containing hail. If no hail is recorded by the HMS, the vehicle and pad inspection team has no need to conduct a thorough inspection of the vehicle immediately following a storm. On the afternoon of July 13, 2007, hail on the ground was reported by observers at the VAB, about three miles west of Pad 39A, as well as at several other locations around Kennedy Space Center. The HMS showed no impact detections, indicating that the shuttle had not been damaged by any of the numerous hail events which occurred that day.
NASA's Space Environments and Effects Program: Technology for the New Millennium
NASA Technical Reports Server (NTRS)
Hardage, Donna M.; Pearson, Steven D.
2000-01-01
Current trends in spacecraft development include the use of advanced technologies while maintaining the "faster, better, cheaper" philosophy. Spacecraft designers are continually designing with smaller and faster electronics as well as lighter and thinner materials providing better performance, lower weight, and ultimately lower costs. Given this technology trend, spacecraft will become increasingly susceptible to the harsh space environments, causing damaging or even disabling effects on space systems. NASA's Space Environments and Effects (SEE) Program defines the space environments and provides advanced technology development to support the design, development, and operation of spacecraft systems that will accommodate or mitigate effects due to the harsh space environments. This Program provides a comprehensive and focused approach to understanding the space environment, to define the best techniques for both flight and ground-based experimentation, to update the models which predict both the environments and the environmental effects on spacecraft, and finally to ensure that this multitudinous information is properly maintained and inserted into spacecraft design programs. A description of the SEE Program, its accomplishments, and future activities is provided.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage
Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...
2016-05-25
Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.
Lightfoot Visits Michoud on This Week @NASA – February 18, 2017
2017-02-18
NASA’s Acting Administrator Robert Lightfoot visited the agency’s Michoud Assembly Facility in New Orleans Feb. 13 to view damage from the Feb. 7 tornado strike, and to speak with employees about ongoing recovery efforts at the facility. The work at Michoud is critical to supporting the production, testing and final integration of the core stage of NASA’s Space Launch System deep space rocket, the largest rocket stage ever built. Also, Flight Control Technology Evaluated, Ochoa, Foale to be Inducted into Hall of Fame, NASA Employees Honored, and Exceptional Public Achievement Award!
Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.
2004-01-01
New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.
Study of utilization of advanced composites in fuselage structures of large transports
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Campion, M. C.; Pei, G.
1984-01-01
The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.
Progress with oocyte cryopreservation.
Porcu, Eleonora; Venturoli, Stefano
2006-06-01
This article reviews human oocyte cryopreservation, one of the most stimulating challenges of assisted reproduction technology. Since the first steps in assisted reproduction technology, researchers have pursued this goal, to greatly improve the management of infertility treatments. This present review depicts the present state of research and clinical applications of this methodology. Recent literature focuses on the possible mechanisms of oocyte damage caused by temperature and cryoprotectant injury and forecasts possible technological solutions. Several papers illustrate encouraging results in the increasing clinical application of this procedure. Findings give support to several indications of human female gamete cryostorage. Oocyte cryopreservation might replace embryo freezing. Egg freezing offers an alternative to women at risk of losing their reproductive function, caused by antineoplastic treatments, endometriosis, ovarian surgery or genetic premature ovarian failure. In addition, oocyte storage may contribute to an increase in in-vitro fertilization flexibility. Despite the early disappointing results, recent technical modifications have improved the clinical efficiency greatly, with the birth of several healthy children.
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks
NASA Astrophysics Data System (ADS)
Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.
Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.
Research progress on reconstruction of meniscus in tissue engineering.
Zhang, Yu; Li, Pengsong; Wang, Hai; Wang, Yiwei; Song, Kedong; Li, Tianqing
2017-05-01
Meniscus damages are most common in sports injuries and aged knees. One third of meniscus lesions are known as white-white zone or nonvascular zones, which are composed of chondrocyte and extracellular matrix composition only. Due to low vascularization the ability of regeneration in such zones is inherently limited, leading to impossible self-regeneration post damage. Meniscus tissue engineering is known for emerging techniques for treating meniscus damage, but there are questions that need to be answered, including an optimal and suitable cell source, the usability of growth factor, the selectivity of optimal biomaterial scaffolds as well as the technology for improving partial reconstruction of meniscus tears. This review focuses on current research on the in vitro reconstruction of the meniscus using tissue engineering methods with the expectation to develop a series of tissue engineering meniscus products for the benefit of sports injuries. With rapid growth of clinical demand, the key breakthrough of meniscus tissue engineering research foundation is enlarged to a great extent. This review discusses aspects of meniscus tissue engineering, which is relative to the clinical treatment of meniscus injuries for further support and establishment of fundamental and clinical studies.
Repairing casing at a gas storage field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollenbaugh, B.
1992-09-01
This paper reports on the Leyden gas storage field which is a 1.5-Bcf working volume underground gas storage facility locating at the northwest edge of the Denver, Colo., metropolitan area. The field is owned by Public Service Co. of Colorado and operated by its wholly owned subsidiary, Western Gas Supply Co. Logging technology was instrumental in locating casing damage at two wells, identifying the extent of the damage and ensuring a successful repair. The well casings were repaired by installing a liner between two packers, with one packer set above the damage and the other set below it. Special equipmentmore » and procedures were required for workover and drilling operations because of the complications associated with cavern storage. Logging technology can locate damaged casing and evaluate the type and extent of the damage, and also predict the probability of gas migration behind the casing.« less
Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Kerschbaum, M.; Küsters, K.
2014-05-01
The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.
NASA Astrophysics Data System (ADS)
Tani, Satyanarayana; Rechberger, Andreas; Süsser Rechberger, Barbara; Teschl, Reinhard; Paulitsch, Helmut
2017-04-01
Hail storm damage is a major concern to the farmers in the province of Styria, Austria. Each year severe hail storms are causing damages to crops, resulting in losses of millions of euros. High spatial and timely ground truth information of the hail event and crop damage measurements are essential for better hail risk assessment. Usually, hail pad networks and visual damage surveys are used to collect the hail data and corresponding damage information. However, these hail pad networks are expensive and need laborious maintenance. The traditional crop damage assessment approaches are very labour-intensive and time-consuming. The advancements in information and communication technology (ICT) and the power of citizen based crowdsourcing data, will help to overcome these problems and ultimately provide a platform for data collection. A user-friendly and bilingual web interface was developed to collect hail data and crop damage information in the province of Styria, Austria. The dynamic web interface was developed using HTML5, JavaScript, and PHP7 combined with a MySQL database back-end. OpenStreetMap was integrated into the web interface and tile server optimised for an easy identification of geolocation information. The user needs an internet connection to transfer the data through smartphone or computer. Crowdsourced data will be quality tested and evaluated with 3D single polarisation C-band weather radar data to remove potential false reports. Further, the relationship between the reported hail events and radar-based hail detection algorithms (Waldvogel and Auer) and derived hail signature information intended for crop hail risk assessment will be investigated. The details about the web interface tool, application and verification methods to collect, analyse, and integrate different data sets are given. Further, the high spatial risk assessment information is communicated to support risk management policy.
Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites
NASA Astrophysics Data System (ADS)
Kawakami, Hirohide
Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch-repaired CFRP plates were selected as structural elements likely to be susceptible to lightning event. This study forms a solid foundation for the understanding of lightning damage mechanism of CFRPs, and become an important first step toward building a practical damage prediction tool of lighting event.
Hartcher, K M; Hickey, K A; Hemsworth, P H; Cronin, G M; Wilkinson, S J; Singh, M
2016-05-01
Severe feather-pecking (SFP), a particularly injurious behaviour in laying hens (Gallus gallus domesticus), is thought to be negatively correlated with range use in free-range systems. In turn, range use is thought to be inversely associated with fearfulness, where fearful birds may be less likely to venture outside. However, very few experiments have investigated the proposed association between range use and fearfulness. This experiment investigated associations between range use (time spent outside), fearfulness, plumage damage, and BW. Two pens of 50 ISA Brown laying hens (n=100) were fitted with radio frequency identification (RFID) transponders (contained within silicone leg rings) at 26 weeks of age. Data were then collected over 13 days. A total of 95% of birds accessed the outdoor run more than once per day. Birds spent an average duration of 6.1 h outside each day over 11 visits per bird per day (51.5 min per visit). The top 15 and bottom 15 range users (n=30), as determined by the total time spent on the range over 13 days, were selected for study. These birds were tonic immobility (TI) tested at the end of the trial and were feather-scored and weighed after TI testing. Birds with longer TI durations spent less time outside (P=0.01). Plumage damage was not associated with range use (P=0.68). The small group sizes used in this experiment may have been conducive to the high numbers of birds utilising the outdoor range area. The RFID technology collected a large amount of data on range access in the tagged birds, and provides a potential means for quantitatively assessing range access in laying hens. The present findings indicate a negative association between fearfulness and range use. However, the proposed negative association between plumage damage and range use was not supported. The relationships between range use, fearfulness, and SFP warrant further research.
NASA Technical Reports Server (NTRS)
Russell, Richard; Wincheski, Russell; Jablonski, David; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil
2011-01-01
Composite Overwrapped Pressure Vessels (COPVs) are used in essentially all NASA spacecraft, launch. vehicles and payloads to contain high-pressure fluids for propulsion, life support systems and science experiments. Failure of any COPV either in flight or during ground processing would result in catastrophic damage to the spacecraft or payload, and could lead to loss of life. Therefore, NASA continues to investigate new methods to non-destructively inspect (NDE) COPVs for structural anomalies and to provide a means for in-situ structural health monitoring (SHM) during operational service. Partnering with JENTEK Sensors, engineers at NASA, Kennedy Space Center have successfully conducted a proof-of-concept study to develop Meandering Winding Magnetometer (MWM) eddy current sensors designed to make direct measurements of the stresses of the internal layers of a carbon fiber composite wrapped COPV. During this study three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed good correlation with actual surface strain gage measurements. MWM-Array technology for scanning COPVs can reliably be used to image and detect mechanical damage. To validate this conclusion, several COPVs were scanned to obtain a baseline, and then each COPV was impacted at varying energy levels and then rescanned. The baseline subtracted images were used to demonstrate damage detection. These scans were performed with two different MWM-Arrays. with different geometries for near-surface and deeper penetration imaging at multiple frequencies and in multiple orientations of the linear MWM drive. This presentation will include a review of micromechanical models that relate measured sensor responses to composite material constituent properties, validated by the proof of concept study, as the basis for SHM and NDE data analysis as well as potential improvements including design changes to miniaturize and make the sensors durable in the vacuum of space
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Kurtoglu, Tolga; Leone, Karen M.; Briggs, Jeffrey L.; Withrow, Colleen A.
2010-01-01
A survey of literature from academia, industry, and other Government agencies assessed the state of the art in current integrated vehicle health management (IVHM) aircraft technologies. These are the technologies that are used for assessing vehicle health at the system and subsystem level. This study reports on how these technologies are employed by major military and commercial platforms for detection, diagnosis, prognosis, and mitigation. Over 200 papers from five conferences from the time period of 2004 to 2009 were reviewed. Over 30 of these IVHM technologies are then mapped into the 17 different adverse event damage conditions identified in a previous study. This study illustrates existing gaps and opportunities for additional research by the NASA IVHM Project.
[Detection of Hawthorn Fruit Defects Using Hyperspectral Imaging].
Liu, De-hua; Zhang, Shu-juan; Wang, Bin; Yu, Ke-qiang; Zhao, Yan-ru; He, Yong
2015-11-01
Hyperspectral imaging technology covered the range of 380-1000 nm was employed to detect defects (bruise and insect damage) of hawthorn fruit. A total of 134 samples were collected, which included damage fruit of 46, pest fruit of 30, injure and pest fruit of 10 and intact fruit of 48. Because calyx · s⁻¹ tem-end and bruise/insect damage regions offered a similar appearance characteristic in RGB images, which could produce easily confusion between them. Hence, five types of defects including bruise, insect damage, sound, calyx, and stem-end were collected from 230 hawthorn fruits. After acquiring hyperspectral images of hawthorn fruits, the spectral data were extracted from region of interest (ROI). Then, several pretreatment methods of standard normalized variate (SNV), savitzky golay (SG), median filter (MF) and multiplicative scatter correction (MSC) were used and partial least squares method(PLS) model was carried out to obtain the better performance. Accordingly to their results, SNV pretreatment methods assessed by PLS was viewed as best pretreatment method. Lastly, SNV was chosen as the pretreatment method. Spectral features of five different regions were combined with Regression coefficients(RCs) of partial least squares-discriminant analysis (PLS-DA) model was used to identify the important wavelengths and ten wavebands at 483, 563, 645, 671, 686, 722, 777, 819, 837 and 942 nm were selected from all of the wavebands. Using Kennard-Stone algorithm, all kinds of samples were randomly divided into training set (173) and test set (57) according to the proportion of 3:1. And then, least squares-support vector machine (LS-SVM) discriminate model was established by using the selected wavebands. The results showed that the discriminate accuracy of the method was 91.23%. In the other hand, images at ten important wavebands were executed to Principal component analysis (PCA). Using "Sobel" operator and region growing algrorithm "Regiongrow", the edge and defect feature of 86 Hawthorn could be recognized. Lastly, the detect precision of bruised, insect damage and two-defect samples is 95.65%, 86.67% and 100%, respectively. This investigation demonstrated that hyperspectral imaging technology could detect the defects of bruise, insect damage, calyx, and stem-end in hawthorn fruit in qualitative analysis and feature detection which provided a theoretical reference for the defects nondestructive detection of hawthorn fruit.
NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel
2005-01-01
Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.
Experimental validation of a damage detection approach on a full-scale highway sign support truss
NASA Astrophysics Data System (ADS)
Yan, Guirong; Dyke, Shirley J.; Irfanoglu, Ayhan
2012-04-01
Highway sign support structures enhance traffic safety by allowing messages to be delivered to motorists related to directions and warning of hazards ahead, and facilitating the monitoring of traffic speed and flow. These structures are exposed to adverse environmental conditions while in service. Strong wind and vibration accelerate their deterioration. Typical damage to this type of structure includes local fatigue fractures and partial loosening of bolted connections. The occurrence of these types of damage can lead to a failure in large portions of the structure, jeopardizing the safety of passing traffic. Therefore, it is important to have effective damage detection approaches to ensure the integrity of these structures. In this study, an extension of the Angle-between-String-and-Horizon (ASH) flexibility-based approach [32] is applied to locate damage in sign support truss structures at bay level. Ambient excitations (e.g. wind) can be considered as a significant source of vibration in these structures. Considering that ambient excitation is immeasurable, a pseudo ASH flexibility matrix constructed from output-only derived operational deflection shapes is proposed. A damage detection method based on the use of pseudo flexibility matrices is proposed to address several of the challenges posed in real-world applications. Tests are conducted on a 17.5-m long full-scale sign support truss structure to validate the effectiveness of the proposed method. Damage cases associated with loosened bolts and weld failures are considered. These cases are realistic for this type of structure. The results successfully demonstrate the efficacy of the proposed method to locate the two common forms of damage on sign support truss structures instrumented with a few accelerometers.
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.
Mukherjee, Anirban; Vasquez, Karen M
2011-08-01
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
DART Support for Hurricane Matthew
2016-10-18
Siding damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Ceiling and furniture damage caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
NASA Astrophysics Data System (ADS)
Loginov, E. L.; Raikov, A. N.
2015-04-01
The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.
Radiation-hardened backside-illuminated 512 x 512 charge-coupled device
NASA Astrophysics Data System (ADS)
Bates, Philip A.; Levine, Peter A.; Sauer, Donald J.; Hsueh, Fu-Lung; Shallcross, Frank V.; Smeltzer, Ronald K.; Meray, Grazyna M.; Taylor, Gordon C.; Tower, John R.
1995-04-01
A four-port 512 X 512 charge coupled device (CCD) imager hardened against proton displacement damage and total dose degradation has been fabricated and tested. The device is based upon an established thinned, backside illuminated, triple polysilicon, buried channel CCD process technology. The technology includes buried blooming drains. A three step approach has been taken to hardening the device. The first phase addressed hardening against proton displacement damage. The second phase addressed hardening against both proton displacement damage and total dose degradation. The third phase addresses final optimization of the design. Test results from the first and second phase efforts are presented. Plans for the third phase are discussed.
Unique Sensor Plane Maps Invisible Toxins for First Responders
Kroutil, Robert; Thomas, Mark; Aten, Keith
2017-12-09
A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamos National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.
Pressure-relieving properties of a intra-operative warming device.
Baker, E A; Leaper, D J
2003-04-01
The primary objective of this study was to determine differences in interface pressure between four mattress combinations: a standard operating table mattress, a pressure-relieving gel pad and an under-patient warming device set at 38 degrees C (Pegasus Inditherm System) and at ambient temperature. The secondary objective was to determine whether the warming device remains stable in extreme surgical positions. Interface pressures obtained with all four combinations were measured in 10 healthy volunteers using force sensing array technology. The warming device demonstrated better or equivalent pressure relief when compared with the standard gel pad. There was no significant difference in subject position 'shift' between the mattress, the gel pad and the warming device for either the Trendelenberg or reverse Trendelenberg positions. Both pressure-relieving mattresses and warming reduce intra-operative pressure damage. A mattress with both properties may further reduce pressure damage postoperatively. The warming device used in this study appears stable--subject 'slippage' was minimal in extreme positions. Research needs to be conducted among real anaesthetised patients to support these conclusions.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.
77 FR 18833 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... mass spectra obtained and reproduced for food-borne pathogens. Unique DISI device with gas cylinder... With a Small Molecule CHK2 Inhibitor Description of Technology: DNA damage sensors such as Checkpoint... in response to DNA damage. It has been reported that these DNA damage sensors also play a key role in...
Hearing aids: indications, technology, adaptation, and quality control
Hoppe, Ulrich; Hesse, Gerhard
2017-01-01
Hearing loss can be caused by a number of different pathological conditions. Some of them can be successfully treated, mainly by surgery, depending on the individual’s disease process. However, the treatment of chronic sensorineural hearing loss with damaged cochlear structures usually needs hearing rehabilitation by means of technical amplification. During the last two decades tremendous improvements in hearing aid technology led to a higher quality of the hearing rehabilitation process. For example, due to sophisticated signal processing acoustic feedback could be reduced and hence open fitting options are available even for more subjects with higher degrees of hearing loss. In particular for high-frequency hearing loss, the use of open fitting is an option. Both the users’ acceptance and the perceived sound quality were significantly increased by open fittings. However, we are still faced with a low level of readiness in many hearing impaired subjects to accept acoustic amplification. Since ENT specialists play a key-role in hearing aid provision, they should promote early hearing aid rehabilitation and include this in the counselling even in subjects with mild and moderate hearing loss. Recent investigations demonstrated the benefit of early hearing aid use in this group of patients since this may help to reduce subsequent damages as auditory deprivation, social isolation, development of dementia, and cognitive decline. For subjects with tinnitus, hearing aids may also support masking by environmental sounds and enhance cortical inhibition. The present paper describes the latest developments of hearing aid technology and the current state of the art for amplification modalities. Implications for both hearing aid indication and provision are discussed. PMID:29279726
NASA Astrophysics Data System (ADS)
Li, Yang; Yi, Chengwu; Li, Jingjing; Yi, Rongjie; Wang, Huijuan
2016-02-01
The bactericidal effect on the representative type of Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis in drinking water was investigated in this paper by using dielectric barrier discharge (DBD) advanced oxidation technology. The sterilizing rates under different conditions of reaction time t, input voltage V, pH value, and initial concentration of bacteria C0 were investigated to figure out the optimum sterilization conditions. Our observations and comparisons of cell morphology alteration by scanning electron microscopy and transmission electron microscopy revealed the sterilization mechanisms. The results showed that the sterilizing rate increased obviously with the extension of reaction time t and the rise of input voltage V. The optimal sterilization effect was achieved when the pH value was 7.1. As the initial concentration of bacteria rose, the sterilizing rate decreased. When the input voltage was 2.2 kV and the initial concentration of bacteria was relatively low, the sterilizing rate almost reached 100% after a certain treatment time in neutral aqueous solution. The reasons for the great damage of cell structure and the killing of bacteria are the oxidation of O3, OH and the accumulation of active species produced by DBD. The article provides a certain theoretical and experimental basis for DBD application in water pollution treatment. supported by the Science and Technology Support Project Plan and Social Development of Jiangsu Province, China (No. BE2011732), the Science and Technology Support Project Plan and Social Development of Zhenjiang, Jiangsu Province, China (No. SH2012013)
The status of silicon ribbon growth technology for high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Ciszek, T. F.
1985-01-01
More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).
Use of Remote Sensing Data to Enhance the National Weather Service (NWS) Storm Damage Toolkit
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Molthan, Andrew; White, Kris; Burks, Jason; Stellman, Keith; Smith, Matthew
2012-01-01
SPoRT is improving the use of near real-time satellite data in response to severe weather events and other diasters. Supported through NASA s Applied Sciences Program. Planned interagency collaboration to support NOAA s Damage Assessment Toolkit, with spinoff opportunities to support other entities such as USGS and FEMA.
The research and development of damage tolerant carbon fiber composites
NASA Astrophysics Data System (ADS)
Miranda, John Armando
This record of study takes a first hand look at corporate research and development efforts to improve the damage tolerance of two unique composite materials used in high performance aerospace applications. The professional internship with The Dow Chemical Company---Dow/United Technologies joint venture describes the intern's involvement in developing patentable process technologies for interleave toughening of high temperature resins and their composites. The subsequent internship with Hexcel Corporation describes the intern's involvement in developing the damage tolerance of novel and existing honeycomb sandwich structure technologies. Through the Doctor of Engineering professional internship experience this student exercised fundamental academic understanding and methods toward accomplishing the corporate objectives of the internship sponsors in a resource efficient and cost-effective manner. Also, the student gained tremendous autonomy through exceptional training in working in focused team environments with highly trained engineers and scientists in achieving important corporate objectives.
Yaroshchuk, Andriy
2017-01-01
Osmosis is the movement of solvent across a membrane induced by a solute-concentration gradient. It is very important for cell biology. Recently, it has started finding technological applications in the emerging processes of Forward Osmosis and Pressure-Retarded Osmosis. They use ultrathin and dense membranes supported mechanically by much thicker porous layers. Until now, these processes have been modelled by assuming the membrane to be ideally-semipermeable. We show theoretically that allowing for even minor deviations from ideal semipermeability to solvent can give rise to a previously overlooked mode of “breakthrough” osmosis. Here the rate of osmosis is very large (compared to the conventional mode) and practically unaffected by the so-called Internal Concentration Polarization. In Pressure-Retarded Osmosis, the power densities can easily exceed the conventional mode by one order of magnitude. Much more robust support layers can be used, which is an important technical advantage (reduced membrane damage) in Pressure-Retarded Osmosis. PMID:28332607
NASA Astrophysics Data System (ADS)
Kulkarni, S.
1993-03-01
This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc., and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report, were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.
Full-Scale Test and Analysis of a PRSEUS Fuselage Panel to Assess Damage-Containment Features
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G.; Lovejoy, Andrew E.; Jegley, Dawn C.; Linton, Kim A.; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2011-01-01
Stitched composite technology has the potential to substantially decrease structural weight through enhanced damage containment capabilities. The most recent generation of stitched composite technology, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, has been shown to successfully arrest damage at the sub-component level through tension testing of a three stringer panel with damage in the form of a two-bay notch. In a joint effort undertaken by the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and the Boeing Company, further studies are being conducted to characterize the damage containment features of the PRSEUS concept. A full-scale residual strength test will be performed on a fuselage panel to determine if the load capacity will meet strength, deformation, and damage tolerance requirements. A curved panel was designed, fabricated, and prepared for residual strength testing. A pre-test Finite Element Model (FEM) was developed using design allowables from previous test programs to predict test panel deformation characteristics and margins of safety. Three phases of testing with increasing damage severity include: (1) as manufactured; (2) barely visible impact damage (BVID) and visible impact damage (VID); and (3) discrete source damage (DSD) where the panel will be loaded to catastrophic failure. This paper presents the background information, test plan, and experimental procedure. This paper is the first of several future articles reporting the test preparations, results, and analysis conducted in the test program.
Structural damage identification using damping: a compendium of uses and features
NASA Astrophysics Data System (ADS)
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.
11th International Conference of Radiation Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-07-18
Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less
NASA Technical Reports Server (NTRS)
1980-01-01
The application of silicon solar cells are discussed with respect to their importance in the exploration of space. Several aspects of the technology associated with the development of photovoltaic devices are reported.
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
Although ‘a substantial and serious technology transfer [to the Soviet Union] exists,’ open communication of federally funded research does not damage our national security, according to Dale R. Corson, president emeritus of Cornell University and chairman of the National Academy of Sciences' Panel on Scientific Communication and National Security. Corson characterized those technology transfers at a recent press conference on the panel's findings, which are summarized in their report, ‘Science Communications and National Security’ (Eos, October 5, p. 801).‘A net flow of products, processes, and ideas is continually moving from the United States and its allies to the Soviet Union, through both overt and covert means,’ Corson said. While some of this technology transfer has not compromised national security (‘in part because a technology in question had little or no military significance’), a ‘substantial portion of the transfer has been damaging to national security,’ Corson explained. The ‘damaging transfers’ occur through the ‘legal as well as illegal sale of products, through transfers via third countries, and through a highly organized espionage operation.’
Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading
NASA Astrophysics Data System (ADS)
Sun, Yuanxiang
Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).
Discussion on the Technology and Method of Computer Network Security Management
NASA Astrophysics Data System (ADS)
Zhou, Jianlei
2017-09-01
With the rapid development of information technology, the application of computer network technology has penetrated all aspects of society, changed people's way of life work to a certain extent, brought great convenience to people. But computer network technology is not a panacea, it can promote the function of social development, but also can cause damage to the community and the country. Due to computer network’ openness, easiness of sharing and other characteristics, it had a very negative impact on the computer network security, especially the loopholes in the technical aspects can cause damage on the network information. Based on this, this paper will do a brief analysis on the computer network security management problems and security measures.
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Operational Forecasting and Warning systems for Coastal hazards in Korea
NASA Astrophysics Data System (ADS)
Park, Kwang-Soon; Kwon, Jae-Il; Kim, Jin-Ah; Heo, Ki-Young; Jun, Kicheon
2017-04-01
Coastal hazards caused by both Mother Nature and humans cost tremendous social, economic and environmental damages. To mitigate these damages many countries have been running the operational forecasting or warning systems. Since 2009 Korea Operational Oceanographic System (KOOS) has been developed by the leading of Korea Institute of Ocean Science and Technology (KIOST) in Korea and KOOS has been operated in 2012. KOOS is consists of several operational modules of numerical models and real-time observations and produces the basic forecasting variables such as winds, tides, waves, currents, temperature and salinity and so on. In practical application systems include storm surges, oil spills, and search and rescue prediction models. In particular, abnormal high waves (swell-like high-height waves) have occurred in the East coast of Korea peninsula during winter season owing to the local meteorological condition over the East Sea, causing property damages and the loss of human lives. In order to improve wave forecast accuracy even very local wave characteristics, numerical wave modeling system using SWAN is established with data assimilation module using 4D-EnKF and sensitivity test has been conducted. During the typhoon period for the prediction of sever waves and the decision making support system for evacuation of the ships, a high-resolution wave forecasting system has been established and calibrated.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.
2016-01-01
The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a finite element analysis and the testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part II of the paper considers the final test to failure of the test article in the presence of an intentionally inflicted severe discrete source damage under the wing up-bending loading condition. Finite element analysis results are compared with measurements acquired during the test and demonstrate that the hybrid wing body test article was able to redistribute and support the required design loads in a severely damaged condition.
Space environmental effect on solar cells: LDEF and other flight tests
NASA Technical Reports Server (NTRS)
Gruenbaum, Peter; Dursch, Harry
1995-01-01
This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.
NASA Astrophysics Data System (ADS)
Shrestha, S.; Reina Ortiz, M.; Gutland, M.; Napolitano, R.; Morris, I. M.; Santana Quintero, M.; Erochko, J.; Kawan, S.; Shrestha, R. G.; Awal, P.; Suwal, S.; Duwal, S.; Maharjan, D. K.
2017-08-01
On 25 April 2015, the Gorkha earthquake of magnitude 7.8, severely damaged the cultural heritage sites of Nepal. In particular, the seven monument zones of the Kathmandu Valley World Heritage Site suffered extensive damage. Out of 195 surveyed monuments, 38 have completely collapsed and 157 partially damaged (DoA, 2015). In particular, the world historic city of Bhaktapur was heavily affected by the earthquake. There is, in general, a lack of knowledge regarding the traditional construction technology used in many of the most important temple monuments in Bhaktapur. To address this limitation and to assist in reconstruction and rehabilitation of the area, this study documents the existing condition of different historic structures in the Kathmandu Valley. In particular, the Nyatapola Temple is studied in detail. To record and document the condition of this temple, a combination of laser scanning and terrestrial and aerial photogrammetry are used. By also including evaluation of the temple and its supporting plinth structure using non-destructive evaluation techniques like geo-radar and micro-tremor dynamic analysis, this study will form the basis of a structural analysis study to assess the anticipated future seismic performance of the Nyatapola Temple.
Self-repairing composites for airplane components
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2008-03-01
Durability and damage tolerance criteria drives the design of most composite structures. Those criteria could be altered by developing structure that repairs itself from impact damage. This is a technology for increasing damage tolerance for impact damage. Repaired damage would enable continued function and prevent further degradation to catastrophic failure in the case of an aircraft application. Further, repaired damage would enable applications to be utilized without reduction in performance due to impacts. Self repairing structures are designed to incorporate hollow fibers, which will release a repairing agent when the structure is impacted, so that the repairing agent will fill delaminations, voids and cracks in les than one minute, thus healing matrix voids. The intent is to modify the durability and damage tolerance criteria by incorporation of self-healing technologies to reduce overall weight: The structure will actually remain lighter than current conventional design procedures allow. Research objective(s) were: Prove that damage can be repaired to within 80-90% of original flexural strength in less than one minute, in laminates that are processed at 300-350F typical for aircraft composites. These were successfully met. The main focus was on testing of elements in compression after impact and a larger component in shear at Natural Process Design, Inc. Based on these results the advantages purposes are assessed. The results show potential; with self repairing composites, compressive strength is maintained sufficiently so that less material can be used as per durability and damage tolerance, yielding a lighter structure.
Integrated smart structures wingbox
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1993-09-01
One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.
Tapered Roller Bearing Damage Detection Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Kreider, Gary; Fichter, Thomas
2006-01-01
A diagnostic tool was developed for detecting fatigue damage of tapered roller bearings. Tapered roller bearings are used in helicopter transmissions and have potential for use in high bypass advanced gas turbine aircraft engines. A diagnostic tool was developed and evaluated experimentally by collecting oil debris data from failure progression tests conducted using health monitoring hardware. Failure progression tests were performed with tapered roller bearings under simulated engine load conditions. Tests were performed on one healthy bearing and three pre-damaged bearings. During each test, data from an on-line, in-line, inductance type oil debris sensor and three accelerometers were monitored and recorded for the occurrence of bearing failure. The bearing was removed and inspected periodically for damage progression throughout testing. Using data fusion techniques, two different monitoring technologies, oil debris analysis and vibration, were integrated into a health monitoring system for detecting bearing surface fatigue pitting damage. The data fusion diagnostic tool was evaluated during bearing failure progression tests under simulated engine load conditions. This integrated system showed improved detection of fatigue damage and health assessment of the tapered roller bearings as compared to using individual health monitoring technologies.
Rapid building damage assessment system using mobile phone technology
NASA Astrophysics Data System (ADS)
Cimellaro, Gian Paolo; Scura, G.; Renschler, C. S.; Reinhorn, A. M.; Kim, H. U.
2014-09-01
One common scenario during disasters such as earthquakes is that the activity of damage field reconnaissance on site is not well-coordinated. For example in Italy the damage assessment of structures after an earthquake is managed from the Italian Emergency Authority, using printed forms (AeDES) which are filled by experts on site generating a lot of confusion in filling and transferring the forms to the Disaster Management Operative Center. Because of this, the paper explores the viability of using mobile communication technologies (smart phones) and the Web to develop response systems that would aid communities after a major disaster, providing channels for allowing residents and responders of uploading and distributing information, related to structural damages coordinating the damage field reconnaissance. A mobile application that can be run by residents on smart phones has been developed, to give an initial damage evaluation of the area, which is going to be very useful when resources (e.g. the number of experts is limited). The mobile application has been tested for the first time during 2012 Emilia earthquake to enhance the emergency response, showing the efficiency of the proposed method in statistical terms comparing the proposed procedure with the standard procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oggerino, J.; Rabinowitz, M.
1998-06-01
Natural and person-caused disasters are increasing in frequency and magnitude, and these disasters are taking an ever increasing economic and personal toll. This report identifies technologies that can help utilities, their customers, and their communities cope with disasters. Each year, 10,000 violent thunderstorms, 5,000 floods, and 1,000 tornadoes strike the US. These and other natural events have cost at least $8 billion per year over the last 30 years, and the annual costs are increasing rapidly. In 1996, the US experienced twice the yearly average of declared disasters than in the previous twenty years. Damage from Hurricane Andrew and themore » Northridge earthquake resulted in losses of $30 and $25 billion respectively. As a result of these and other costly disasters, utilities are losing business and commercial customers. In response, federal, state, and local organizations have steeped up efforts to deploy mitigation technologies and techniques and business recovery support. A task within the EPRI Disaster Planning and Mitigation Technologies (DP and MT) Target seeks to identify technologies that can help utilities and their customers prepare for and recover from natural disasters. This report provides concise and directed product information that can help member utilities and the communities they serve to plan for, mitigate, and recover quickly from natural and person-caused disasters. This will enable them to retain customers and reduce revenue losses.« less
Understanding the environmental implications of cured-in-place pipe rehabilitation technology.
DOT National Transportation Integrated Search
2008-01-01
Cured-in-place (CIPP) rehabilitation is a commonly used technology for pipe repair, and transportation agencies are using CIPP technology to repair damaged pipe culverts. In typical CIPP applications, a lining tube saturated with a thermosetting resi...
Design, testing, and damage tolerance study of bonded stiffened composite wing cover panels
NASA Technical Reports Server (NTRS)
Madan, Ram C.; Sutton, Jason O.
1988-01-01
Results are presented from the application of damage tolerance criteria for composite panels to multistringer composite wing cover panels developed under NASA's Composite Transport Wing Technology Development contract. This conceptual wing design integrated aeroelastic stiffness constraints with an enhanced damage tolerance material system, in order to yield optimized producibility and structural performance. Damage tolerance was demonstrated in a test program using full-sized cover panel subcomponents; panel skins were impacted at midbay between stiffeners, directly over a stiffener, and over the stiffener flange edge. None of the impacts produced visible damage. NASTRAN analyses were performed to simulate NDI-detected invisible damage.
Laser wafering for silicon solar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell
2011-03-01
Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurfacemore » damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.« less
Heat damage-free laser-microjet cutting achieves highest die fracture strength
NASA Astrophysics Data System (ADS)
Perrottet, Delphine; Housh, Roy; Richerzhagen, Bernold; Manley, John
2005-04-01
Unlike conventional laser-based technologies, the water jet guided laser does not generate heat damage and contamination is also very low. The negligible heat-affected zone is one reason why die fracture strength is higher than with sawing. This paper first presents the water jet guided laser technology and then explains how it differs from conventional dry laser cutting. Finally, it presents the results obtained by three recent studies conducted to determine die fracture strength after Laser-Microjet cutting.
Impact Characteristics of Candidate Materials for Single-Stage-to-Orbit (SSTO) Technology
NASA Technical Reports Server (NTRS)
Nettles, Alan
1995-01-01
Four fiber/resin systems were compared for resistance to damage and damage tolerance. One toughened epoxy and three toughened bismaleimide (BMI) resins were used., all with IM7 carbon fiber reinforcement. A statistical design of experiments technique was used to evaluate the effects of impact energy, specimen thickness and tup diameter on the damage area and residual compression-after-impact (CAI) strength. Results showed that two of the BMI systems sustained relatively large damage areas yet had an excellent retention of CAI strength.
The Clinical Test of Nano gold Cosmetic for Recovering Skin Damage Due to Chemicals: Special Case
NASA Astrophysics Data System (ADS)
Taufikurohmah, T.; Wardana, A. P.; Tjahjani, S.; Sanjaya, I. G. M.; Baktir, A.; Syahrani, A.
2018-01-01
Manufacturing of Nano gold cosmetics was done at PT. Gizi Indonesia. Clinical trials to cosmetics data supported that cosmetics are able to treat skin health which has been reported partially. For special cases, the recovery process of facial skin damage should also receive attention including cases of facial skin damage caused by chemicals such as phenol, HCl, aqua regia or other harsh chemicals. The problem determined whether the Nano gold is able to recover skin damage due to the harsh chemicals. This clinical trial data on the forms of early skin damage caused by phenol was delivered in the forms of facial photos patients. The recovery progress of facial skin condition was obtained every week for two months. The data included the forms of widespread wounds during the recovery process. This statement supported by anova statistical analysis of the widespread wound changing every week for 8 times. The conclusion is skin damage due to Phenol impregnation can be recovered with the use of Nano gold cosmetics for 8 weeks. This results support the manufacturing of Nano gold cosmetics for the needs of society. It also suggest that Nano gold material can be used for medicine manufacturing in the future.
On multi-site damage identification using single-site training data
NASA Astrophysics Data System (ADS)
Barthorpe, R. J.; Manson, G.; Worden, K.
2017-11-01
This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.
Three Essays on Information Technology Security Management in Organizations
ERIC Educational Resources Information Center
Gupta, Manish
2011-01-01
Increasing complexity and sophistication of ever evolving information technologies has spurred unique and unprecedented challenges for organizations to protect their information assets. Companies suffer significant financial and reputational damage due to ineffective information technology security management, which has extensively been shown to…
A Novel Approach to Rotorcraft Damage Tolerance
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Everett, Richard A.; Newman, John A.
2002-01-01
Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.
Flies, worms and the Free Radical Theory of ageing.
Clancy, David; Birdsall, John
2013-01-01
Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the Free Radical Theory of ageing, however the evidence has not been unequivocally supportive. Oxidative damage to DNA is probably not a major contributor, damage to lipids is assuming greater importance and damage to proteins probably the source of pathology. On balance the evidence does not support a primary role of oxidative damage in ageing in C. elegans, perhaps because of its particular energy metabolic and stress resistance profile. Evidence is more numerous, varied and consistent and hence more compelling for Drosophila, although not conclusive. However there is good evidence for a role of oxidative damage in later life pathology. Future work should: 1/ make more use of protein oxidative damage measurements; 2/ use inducible transgenic systems or pharmacotherapy to ensure genetic equivalence of controls and avoid confounding effects during development; 3/ to try to delay ageing, target interventions which reduce and/or repair protein oxidative damage. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Beryllium processing technology review for applications in plasma-facing components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castro, R.G.; Jacobson, L.A.; Stanek, P.W.
1993-07-01
Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itselfmore » and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.« less
DART Support for Hurricane Matthew
2016-10-18
A construction trailer damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
An ice dispenser damaged by Hurricane Matthew is seen in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Lightweight Materials for Vehicles: Needs, Goals, and Future Technologies
2010-08-01
during heating, cooling, and deformation - Developing an improved understanding of the kinetics and mechanisms for tranisition Friction Stir Welding ...technology worthiness - Identify new gaps and opportunities Pre- competitive Research Solicitations and Demonstrations - Identify technology gaps...or processing . Key Technology Gaps Active Research . Gap: Microstructural damage during welding limits potential usefulness - Many
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raboin, P J
1998-01-01
The Computational Mechanics thrust area is a vital and growing facet of the Mechanical Engineering Department at Lawrence Livermore National Laboratory (LLNL). This work supports the development of computational analysis tools in the areas of structural mechanics and heat transfer. Over 75 analysts depend on thrust area-supported software running on a variety of computing platforms to meet the demands of LLNL programs. Interactions with the Department of Defense (DOD) High Performance Computing and Modernization Program and the Defense Special Weapons Agency are of special importance as they support our ParaDyn project in its development of new parallel capabilities for DYNA3D.more » Working with DOD customers has been invaluable to driving this technology in directions mutually beneficial to the Department of Energy. Other projects associated with the Computational Mechanics thrust area include work with the Partnership for a New Generation Vehicle (PNGV) for ''Springback Predictability'' and with the Federal Aviation Administration (FAA) for the ''Development of Methodologies for Evaluating Containment and Mitigation of Uncontained Engine Debris.'' In this report for FY-97, there are five articles detailing three code development activities and two projects that synthesized new code capabilities with new analytic research in damage/failure and biomechanics. The article this year are: (1) Energy- and Momentum-Conserving Rigid-Body Contact for NIKE3D and DYNA3D; (2) Computational Modeling of Prosthetics: A New Approach to Implant Design; (3) Characterization of Laser-Induced Mechanical Failure Damage of Optical Components; (4) Parallel Algorithm Research for Solid Mechanics Applications Using Finite Element Analysis; and (5) An Accurate One-Step Elasto-Plasticity Algorithm for Shell Elements in DYNA3D.« less
Lotto, Lorella; Manfrinati, Andrea; Rigoni, Davide; Rumiati, Rino; Sartori, Giuseppe; Birbaumer, Niels
2012-01-01
People have fought for their civil rights, primarily the right to live in dignity. At present, the development of technology in medicine and healthcare led to an apparent paradox: many people are fighting for the right to die. This study was aimed at testing whether different moral principles are associated with different attitudes towards end-of-life decisions for patients with a severe brain damage. We focused on the ethical decisions about withdrawing life-sustaining treatments in patients with severe brain damage. 202 undergraduate students at the University of Padova were given one description drawn from four profiles describing different pathological states: the permanent vegetative state, the minimally conscious state, the locked-in syndrome, and the terminal illness. Participants were asked to evaluate how dead or how alive the patient was, and how appropriate it was to satisfy the patient's desire. We found that the moral principles in which people believe affect not only people's judgments concerning the appropriateness of the withdrawal of life support, but also the perception of the death status of patients with severe brain injury. In particular, we found that the supporters of the Free Choice (FC) principle perceived the death status of the patients with different pathologies differently: the more people believe in the FC, the more they perceived patients as dead in pathologies where conscious awareness is severely impaired. By contrast, participants who agree with the Sanctity of Life (SL) principle did not show differences across pathologies. These results may shed light on the complex aspects of moral consensus for supporting or rejecting end-of-life decisions.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Plante, I.; George, Kerry; Cornforth, M. N.; Loucas, B. D.; Wu, Honglu
2014-01-01
This presentation summarizes several years of research done by the co-authors developing the NASARTI (NASA Radiation Track Image) program and supporting it with scientific data. The goal of the program is to support NASA mission to achieve a safe space travel for humans despite the perils of space radiation. The program focuses on selected topics in radiation biology that were deemed important throughout this period of time, both for the NASA human space flight program and to academic radiation research. Besides scientific support to develop strategies protecting humans against an exposure to deep space radiation during space missions, and understanding health effects from space radiation on astronauts, other important ramifications of the ionizing radiation were studied with the applicability to greater human needs: understanding the origins of cancer, the impact on human genome, and the application of computer technology to biological research addressing the health of general population. The models under NASARTI project include: the general properties of ionizing radiation, such as particular track structure, the effects of radiation on human DNA, visualization and the statistical properties of DSBs (DNA double-strand breaks), DNA damage and repair pathways models and cell phenotypes, chromosomal aberrations, microscopy data analysis and the application to human tissue damage and cancer models. The development of the GUI and the interactive website, as deliverables to NASA operations teams and tools for a broader research community, is discussed. Most recent findings in the area of chromosomal aberrations and the application of the stochastic track structure are also presented.
WMA pavements in Oklahoma : moisture damage and performance issues.
DOT National Transportation Integrated Search
2013-08-01
This study explored the potential effects of using different Warm Mix Asphalt (WMA) technologies on the rut, fatigue and moisture-induced damage potential of WMA pavements. This task was pursued in two levels: (i) performance evaluation of WMA and co...
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
James, A. M.
1984-01-01
Topics addressed include: strength and hygrothermal response of L-1011 fin components; wing fuel containment and damage tolerance development; impact dynamics; acoustic transmission; fuselage structure; composite transport wing technology development; spar/assembly concepts.
Damage Control Technology - A Literature Review
2006-03-01
The Canadian Navy has identified the reduction of the total operating cost ( TOC ) of new ships as a priority. The major contributors to the TOC of a...Corporation, California, USA AC-CAS Group Co. Ltd., Bangkok, Thailand Apollo Fire Detectors, Hempshire, England, UK Compania Panamena de Sistemas ...National Defence DRDC Defence Research and Development Canada TOC Total Operating Cost BDCS Battle Damage Control System DC-ARM Damage Control
1989-11-01
the high risk of fuel cells damaging as a consequence of the unfolding and refolding operations. - Difficulties to perform acceptance inspection tests...corners sometimes present in the structures. (See FIG. 6, 7, 8). - Additional installation costs and risk of damaging due to fuel cells anchoring...performed manually by very complex tying operations. (See. FIG. 9). - Risk of damaging of the thicker reinforced zones of the flexible fuel cells where
A Computational Methodology to Support Reimbursement Requests Analysis Concerning Electrical Damages
NASA Astrophysics Data System (ADS)
Almeida Junior, Afonso Bernardino; Gondim, Isaque Nogueira; Rezende, Paulo Henrique Oliveira; Oliveira, José Carlos
2015-12-01
In light of the growing number of reimbursement requests processed from consumers for electrical damage to equipment, supposedly caused through the manifestation of anomalies on the power grid, there comes the need for reliable means for providing a decision on the issues highlighted herein. Through the recognition that in the current context, the procedures used are based on reviews, information and records of occurrences in the field, there has been significant inadequacy and fragility in the issuing of conclusive advice or opinions. In particular, the search for mechanisms grounded in classical principles and accepted in electrical engineering presents itself as an important challenge on which to base the decision making process in full awareness of its incumbent science and technology. Therefore, with the aim of meeting these assumptions, the study in question excels in its presentation of the principles that guided the software analysis, which intend above all else to correlate cause and effect. The elaborated strategy involves modelling stages as well as studies aimed at: distribution supply reproduction; characterization of the distribution network to the complainant consumer; representation of the diverse electro-electronic appliances and lastly, a proposal for correlating the disturbances impacting on equipment with their dielectric and thermal supportability requirements. For the purpose of illustrating the software process, an actual case study coupled with a loss and claim scenario is presented.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1991-01-01
NASA has initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging commercial transport fleet. The interdisciplinary program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-site damage (MSD) at riveted connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD has been completed. Also, a successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at riveted lap splice joints has been conducted. All long-term program elements have been initiated and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1990-01-01
NASA initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging of the commercial transport fleet. The program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-stage damage (MSD) at rivited connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD was completed. A successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at rivited lap splice joints was conducted. All long-term program elements were initiated, and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
NASA Technical Reports Server (NTRS)
Ahmad, Anees
1990-01-01
The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.
NASA Astrophysics Data System (ADS)
McFall, Steve
1994-03-01
With the increase in business automation and the widespread availability and low cost of computer systems, law enforcement agencies have seen a corresponding increase in criminal acts involving computers. The examination of computer evidence is a new field of forensic science with numerous opportunities for research and development. Research is needed to develop new software utilities to examine computer storage media, expert systems capable of finding criminal activity in large amounts of data, and to find methods of recovering data from chemically and physically damaged computer storage media. In addition, defeating encryption and password protection of computer files is also a topic requiring more research and development.
NASA Astrophysics Data System (ADS)
Dushyanth, N. D.; Suma, M. N.; Latte, Mrityanjaya V.
2016-03-01
Damage in the structure may raise a significant amount of maintenance cost and serious safety problems. Hence detection of the damage at its early stage is of prime importance. The main contribution pursued in this investigation is to propose a generic optimal methodology to improve the accuracy of positioning of the flaw in a structure. This novel approach involves a two-step process. The first step essentially aims at extracting the damage-sensitive features from the received signal, and these extracted features are often termed the damage index or damage indices, serving as an indicator to know whether the damage is present or not. In particular, a multilevel SVM (support vector machine) plays a vital role in the distinction of faulty and healthy structures. Formerly, when a structure is unveiled as a damaged structure, in the subsequent step, the position of the damage is identified using Hilbert-Huang transform. The proposed algorithm has been evaluated in both simulation and experimental tests on a 6061 aluminum plate with dimensions 300 mm × 300 mm × 5 mm which accordingly yield considerable improvement in the accuracy of estimating the position of the flaw.
Experimental Validation of Normalized Uniform Load Surface Curvature Method for Damage Localization
Jung, Ho-Yeon; Sung, Seung-Hoon; Jung, Hyung-Jo
2015-01-01
In this study, we experimentally validated the normalized uniform load surface (NULS) curvature method, which has been developed recently to assess damage localization in beam-type structures. The normalization technique allows for the accurate assessment of damage localization with greater sensitivity irrespective of the damage location. In this study, damage to a simply supported beam was numerically and experimentally investigated on the basis of the changes in the NULS curvatures, which were estimated from the modal flexibility matrices obtained from the acceleration responses under an ambient excitation. Two damage scenarios were considered for the single damage case as well as the multiple damages case by reducing the bending stiffness (EI) of the affected element(s). Numerical simulations were performed using MATLAB as a preliminary step. During the validation experiments, a series of tests were performed. It was found that the damage locations could be identified successfully without any false-positive or false-negative detections using the proposed method. For comparison, the damage detection performances were compared with those of two other well-known methods based on the modal flexibility matrix, namely, the uniform load surface (ULS) method and the ULS curvature method. It was confirmed that the proposed method is more effective for investigating the damage locations of simply supported beams than the two conventional methods in terms of sensitivity to damage under measurement noise. PMID:26501286
NASA Astrophysics Data System (ADS)
Škoda, Václav; Vanda, Jan; Uxa, Štěpán
2017-11-01
Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.
Transplantation of Endothelial Cells to Mitigate Acute and Chronic Radiation Injury to Vital Organs.
Rafii, Shahin; Ginsberg, Michael; Scandura, Joseph; Butler, Jason M; Ding, Bi-Sen
2016-08-01
Current therapeutic approaches for treatment of exposure to radiation involve the use of antioxidants, chelating agents, recombinant growth factors and transplantation of stem cells (e.g., hematopoietic stem cell transplantation). However, exposure to high-dose radiation is associated with severe damage to the vasculature of vital organs, often leading to impaired healing, tissue necrosis, thrombosis and defective regeneration caused by aberrant fibrosis. It is very unlikely that infusion of protective chemicals will reverse severe damage to the vascular endothelial cells (ECs). The role of irradiated vasculature in mediating acute and chronic radiation syndromes has not been fully appreciated or well studied. New approaches are necessary to replace and reconstitute ECs in organs that are irreversibly damaged by radiation. We have set forth the novel concept that ECs provide paracrine signals, also known as angiocrine signals, which not only promote healing of irradiated tissue but also direct organ regeneration without provoking fibrosis. We have developed innovative technologies that enable manufacturing and banking of human GMP-grade ECs. These ECs can be transplanted intravenously to home to and engraft to injured tissues where they augment organ repair, while preventing maladaptive fibrosis. In the past, therapeutic transplantation of ECs was not possible due to a shortage of availability of suitable donor cell sources and preclinical models, a lack of understanding of the immune privilege of ECs, and inadequate methodologies for expansion and banking of engraftable ECs. Recent advances made by our group as well as other laboratories have breached the most significant of these obstacles with the development of technologies to manufacture clinical-scale quantities of GMP-grade and human ECs in culture, including genetically diverse reprogrammed human amniotic cells into vascular ECs (rAC-VECs) or human pluripotent stem cells into vascular ECs (iVECs). This approach provides a path to therapeutic EC transplantation that can be infused concomitantly or sequentially with hematopoietic stem cell transplantation more than 24 h after irradiation to support multi-organ regeneration, thereby improving immediate and long-term survival, while limiting long-term morbidity resulting from nonregenerative damage repair pathways.
NASA Technical Reports Server (NTRS)
Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.
2012-01-01
Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.
DOT National Transportation Integrated Search
2013-03-01
This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...
Structural fire risk of Portugal
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário
2017-04-01
Portugal is on the top of the European countries most affected by vegetation fires which underlines the importance of the existence of an updated and coherent fire risk map. This map represent a valuable supporting tool for forest and fire management decisions, focus prevention activities, improve the efficiency of fire detection systems, manage resources and actions of fire fighting with greater effectiveness. Therefore this study proposed a structural fire risk map of the vegetated area of Portugal using a deterministic approach based on the concept of fire risk currently accepted by the scientific community which consists in the combination of the fire hazard and the potential economic damage. The existing fire susceptibility map for Portugal based on the slope, land cover and fire probability, was adopted and updated by the use of a higher resolution digital terrain model, longer burnt area perimeter dataset (1975 - 2013) and the entire set of Corine land cover inventories. Five susceptibility classes were mapped to be in accordance with the Portuguese law and the results confirms the good performance of this model not only in terms of the favourability scores but also in the predictive values. Considering three different scenarios of (maximum, mean, and minimum annual) burnt area, fire hazard were estimate. The vulnerability scores and monetary values of species defined in the literature and by law were used to calculate the potential economic damage. The result was a fire risk map that identifies the areas more prone to be affected by fires in the future and provides an estimate of the economic damage of the fire which will be a valuable tool for forest and fire managers and to minimize the economic and environmental consequences of vegetation fires in Portugal. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF and ISA for providing the fire data.
Schoville, Benjamin J; Brown, Kyle S; Harris, Jacob A; Wilkins, Jayne
2016-01-01
The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages-Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.
Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold
Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...
2017-03-23
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less
Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less
Schoville, Benjamin J.; Brown, Kyle S.; Harris, Jacob A.; Wilkins, Jayne
2016-01-01
The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages—Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed. PMID:27736886
75 FR 21528 - Airworthiness Directives; McDonnell Douglas Corporation Model MD-90-30 Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... subsequently damage the hydraulic system and adversely affect the airplane's ability to make a safe landing... cylinder support fitting for the MLG failing during gear extension and subsequently damaging the hydraulic... the retract cylinder support fitting for the MLG, which could adversely affect the airplane's safe...
Hurricane Matthew Damage Survey
2016-10-08
A support building is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
The roof of the Operations Support Building I is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
The roof of the Operations Support Building II is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
The NASA TV Support Building at the NASA News Center is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
NASA Astrophysics Data System (ADS)
Yoo, Byungseok
2011-12-01
In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.
A Comparison of Vibration and Oil Debris Gear Damage Detection Methods Applied to Pitting Damage
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2000-01-01
Helicopter Health Usage Monitoring Systems (HUMS) must provide reliable, real-time performance monitoring of helicopter operating parameters to prevent damage of flight critical components. Helicopter transmission diagnostics are an important part of a helicopter HUMS. In order to improve the reliability of transmission diagnostics, many researchers propose combining two technologies, vibration and oil monitoring, using data fusion and intelligent systems. Some benefits of combining multiple sensors to make decisions include improved detection capabilities and increased probability the event is detected. However, if the sensors are inaccurate, or the features extracted from the sensors are poor predictors of transmission health, integration of these sensors will decrease the accuracy of damage prediction. For this reason, one must verify the individual integrity of vibration and oil analysis methods prior to integrating the two technologies. This research focuses on comparing the capability of two vibration algorithms, FM4 and NA4, and a commercially available on-line oil debris monitor to detect pitting damage on spur gears in the NASA Glenn Research Center Spur Gear Fatigue Test Rig. Results from this research indicate that the rate of change of debris mass measured by the oil debris monitor is comparable to the vibration algorithms in detecting gear pitting damage.
CVX Damage Control Information Technology Evolutionary Model
1999-03-01
technology -based learning generally) may be exciting technically, it does not automatically lead to better educational programs. Good instructional design...expected to act on the first Aircraft Carrier to attempt substantial manning reductions if nothing is learned from Smart Ship. Beyond the technologies ... technology of the day. Many of the lessons learned then are in use today. However, technology breakthroughs we are now experiencing invite us to
Unique Sensor Plane Maps Invisible Toxins for First Responders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroutil, Robert; Thomas, Mark; Aten, Keith
A unique airborne emergency response tool, ASPECT is a Los Alamos/U.S. Environmental Protection Agency project that can put chemical and radiological mapping tools in the air over an accident scene. The name ASPECT is an acronym for Airborne Spectral Photometric Environmental Collection Technology. Update, Sept. 19, 2008: Flying over storm-damaged refineries and chemical factories, a twin-engine plane carrying the ASPECT (Airborne Spectral Photometric Environmental Collection Technology) system has been on duty throughout the recent hurricanes that have swept the Florida and Gulf Coast areas. ASPECT is a project of the U.S. U.S. Environmental Protection Agencys National Decontamination Team. Los Alamosmore » National Laboratory leads a science and technology program supporting the EPA and the ASPECT aircraft. Casting about with a combination of airborne photography and infrared spectroscopy, the highly instrumented plane provides emergency responders on the ground with a clear concept of where danger lies, and the nature of the sometimes-invisible plumes that could otherwise kill them. ASPECT is the nations only 24/7 emergency response aircraft with chemical plume mapping capability. Bob Kroutil of Bioscience Division is the project leader, and while he said the team has put in long hours, both on the ground and in the air, its a worthwhile effort. The plane flew over 320 targeted sites in four days, he noted. Prior to the deployment to the Gulf Coast, the plane had been monitoring the Democratic National Convention in Denver, Colorado. Los Alamos National Laboratory Divisions that are supporting ASPECT include, in addition to B-Division, CTN-5: Networking Engineering and IRM-CAS: Communication, Arts, and Services. Leslie Mansell, CTN-5, and Marilyn Pruitt, IRM-CAS, were recognized the the U.S. EPA for their outstanding support to the hurricane response of Gustav in Louisiana and Ike in Texas. The information from the data collected in the most recent event, Hurricane Ike, was sent to the EPA Region 6 Rapid Needs Assessment and the State of Texas Joint Field Office in Austin, Texas. It appears that though there is considerable damage in Galveston and Texas City, there are fewer chemical leaks than during either hurricanes Katrina or Rita. Specific information gathered from the data was reported out to the U.S. Environmental Protection Agency Headquarters, the Federal Emergency Management Agency, the Department of Homeland Security, and the State of Texas Emergency Management Agency.« less
Inclement Weather Crater Repair Tool Kit
2017-11-30
Force’s Rapid Airfield Damage Repair (RADR) Program developed technologies to return bomb -damaged runways and taxiways to full operational sortie...ERDC/GSL TR-17-26 3 2 Inclement Weather Crater Repair Research This chapter gives an overview of the bomb -crater repair process and presents
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
DART Support for Hurricane Matthew
2016-10-18
A construction trailer damaged by Hurricane Matthew is seen in front of the Mobile Launcher within the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Advanced technology commercial fuselage structure
NASA Technical Reports Server (NTRS)
Ilcewicz, L. B.; Smith, P. J.; Walker, T. H.; Johnson, R. W.
1991-01-01
Boeing's program for Advanced Technology Composite Aircraft Structure (ATCAS) has focused on the manufacturing and performance issues associated with a wide body commercial transport fuselage. The primary goal of ATCAS is to demonstrate cost and weight savings over a 1995 aluminum benchmark. A 31 foot section of fuselage directly behind the wing to body intersection was selected for study purposes. This paper summarizes ATCAS contract plans and review progress to date. The six year ATCAS program will study technical issues for crown, side, and keel areas of the fuselage. All structural details in these areas will be included in design studies that incorporate a design build team (DBT) approach. Manufacturing technologies will be developed for concepts deemed by the DBT to have the greatest potential for cost and weight savings. Assembly issues for large, stiff, quadrant panels will receive special attention. Supporting technologies and mechanical tests will concentrate on the major issues identified for fuselage. These include damage tolerance, pressure containment, splices, load redistribution, post-buckled structure, and durability/life. Progress to date includes DBT selection of baseline fuselage concepts; cost and weight comparisons for crown panel designs; initial panel fabrication for manufacturing and structural mechanics research; and toughened material studies related to keel panels. Initial ATCAS studies have shown that NASA's Advanced Composite Technology program goals for cost and weight savings are attainable for composite fuselage.
Public understanding of solar radiation management
NASA Astrophysics Data System (ADS)
Mercer, A. M.; Keith, D. W.; Sharp, J. D.
2011-10-01
We report the results of the first large-scale international survey of public perception of geoengineering and solar radiation management (SRM). Our sample of 3105 individuals in the United States, Canada and the United Kingdom was recruited by survey firms that administer internet surveys to nationally representative population samples. Measured familiarity was higher than expected, with 8% and 45% of the population correctly defining the terms geoengineering and climate engineering respectively. There was strong support for allowing the study of SRM. Support decreased and uncertainty rose as subjects were asked about their support for using SRM immediately, or to stop a climate emergency. Support for SRM is associated with optimism about scientific research, a valuing of SRM's benefits and a stronger belief that SRM is natural, while opposition is associated with an attitude that nature should not be manipulated in this way. The potential risks of SRM are important drivers of public perception with the most salient being damage to the ozone layer and unknown risks. SRM is a new technology and public opinions are just forming; thus all reported results are sensitive to changes in framing, future information on risks and benefits, and changes to context.
Distributed collaborative environments for predictive battlespace awareness
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.
space technology and nigerian national challenges in disaster management
NASA Astrophysics Data System (ADS)
O. Akinyede, J., , Dr.; Abdullahi, R.
One of the sustainable development challenges of any nation is the nation s capacity and capabilities to manage its environment and disaster According to Abiodun 2002 the fundamental life support systems are air clean water and food or agricultural resources It also includes wholesome environment shelter and access to energy health and education All of these constitute the basic necessities of life whose provision and preservation should be a pre-occupation of the visionary leaders executive legislative and judiciary of any nation and its people in order to completely eradicate ignorance unemployment poverty and disease and also increase life expectancy Accordingly many societies around the globe including Nigeria are embarking on initiatives and developing agenda that could address redress the threats to the life supporting systems Disaster prevention management and reduction therefore present major challenges that require prompt attention locally nationally regionally and globally Responses to disasters vary from the application of space-derived data for disaster management to the disbursement of relief to the victims and the emplacement of recovery measures The role of space technology in particular in all the phases of disaster management planning against disaster disaster early warning risk reduction preparedness crises and damage assessment response and relief disbursement and recovery and reconstruction cannot be overemphasized Akinyede 2005 Therefore this paper seeks to focus on space
'Futureless persons': shifting life expectancies and the vicissitudes of progressive illness.
Gibson, Barbara E; Zitzelsberger, Hilde; McKeever, Patricia
2009-05-01
Medical technological advances can have profound effects on people's lives by extending the life course and creating uncertain futures. This is the case for a number of persons with 'diseases of childhood' who can now survive well into adulthood with technological support. This paper draws on a Canadian qualitative study of young men with Duchenne muscular dystrophy (DMD)which examined the effects of a shifting life expectancy on personal identities. Engaging with Pierre Bourdieu's central concept of habitus, we discuss the temporal dimensions of social exclusion and marginalised identities. Participants' narrative accounts revealed how their dispositions were orientated to a shortened lifespan that exerted damaging effects regardless of actual lifespan. Compounding their material, social and symbolic isolation was a temporal isolation whereby the men had lived every day anticipating that it could be their last for as much as a decade. The findings suggest a need to re-orient medical and social discourses to serve and include adults with DMD and other conditions previously limited to childhood in their communities.
Damage-Tolerant, Affordable Composite Engine Cases Designed and Fabricated
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Roberts, Gary D.; Pereira, J. Michael; Bowman, Cheryl L.
2005-01-01
An integrated team of NASA personnel, Government contractors, industry partners, and university staff have developed an innovative new technology for commercial fan cases that will substantially influence the safety and efficiency of future turbine engines. This effective team, under the direction of the NASA Glenn Research Center and with the support of the Federal Aviation Administration, has matured a new class of carbon/polymer composites and demonstrated a 30- to 50-percent improvement in specific containment capacity (blade fragment kinetic energy/containment system weight). As the heaviest engine component, the engine case/containment system greatly affects both the safety and efficiency of aircraft engines. The ballistic impact research team has developed unique test facilities and methods for screening numerous candidate material systems to replace the traditional heavy, metallic engine cases. This research has culminated in the selection of a polymer matrix composite reinforced with triaxially braided carbon fibers and technology demonstration through the fabrication of prototype engine cases for three major commercial engine manufacturing companies.
GREEN CHEMISTRY THROUGH CATALYSIS, ALTERNATIVE SOLVENTS AND NANOTECHNOLOGY
Researchers at the National Risk Management Research Laboratory, Sustainable Technology Division have been working on new scientific approaches to persistent technological problems: how to synthesize commercially important chemicals without depleting or damaging the environment. ...
NASA Technical Reports Server (NTRS)
Parker, Bradford H.
1992-01-01
An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.
Merritt, J H; Kiel, J L; Hurt, W D
1995-06-01
Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses.
75 FR 43945 - Convention on Supplementary Compensation for Nuclear Damage Contingent Cost Allocation
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... emitted by any source of radiation inside a nuclear installation, provided that such application does not... facilities, equipment, fuel, services, technology, or transport of nuclear materials related to any step... DEPARTMENT OF ENERGY Convention on Supplementary Compensation for Nuclear Damage Contingent Cost...
Structural damage detection using deep learning of ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.
2018-04-01
Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, J.W.
An aircraft battle-damage repair (BDR) program is described that provides for the assessment and repair of battle damage and the return of badly damaged aircraft to their home bases. The program methodology is based on the use of time-saving temporary repairs and associated training and materials provision. BDR is shown to require knowledge of damage mechanisms and specifications for the minimum effective requirements for BDR support, and the method can facilitate the return of 50 percent of damaged aircraft within 24 hours.
A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, R.E.; McKay, D.M.; Moses, V.
1995-12-31
A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.
Ionizing doses and displacement damage testing of COTS CMOS imagers
NASA Astrophysics Data System (ADS)
Bernard, Frédéric; Petit, Sophie; Courtade, Sophie
2017-11-01
CMOS sensors begin to be a credible alternative to CCD sensors in some space missions. However, technology evolution of CMOS sensors is much faster than CCD one's. So a continuous technology evaluation is needed for CMOS imagers. Many of commercial COTS (Components Off The Shelf) CMOS sensors use organic filters, micro-lenses and non rad-hard technologies. An evaluation of the possibilities offered by such technologies is interesting before any custom development. This can be obtained by testing commercial COTS imagers. This article will present electro-optical performances evolution of off the shelves CMOS imagers after Ionizing Doses until 50kRad(Si) and Displacement Damage environment tests (until 1011 p/cm2 at 50 MeV). Dark current level and non uniformity evolutions are compared and discussed. Relative spectral response measurement and associated evolution with irradiation will also be presented and discussed. Tests have been performed on CNES detection benches.
Acoustic-sensor-based detection of damage in composite aircraft structures
NASA Astrophysics Data System (ADS)
Foote, Peter; Martin, Tony; Read, Ian
2004-03-01
Acoustic emission detection is a well-established method of locating and monitoring crack development in metal structures. The technique has been adapted to test facilities for non-destructive testing applications. Deployment as an operational or on-line automated damage detection technology in vehicles is posing greater challenges. A clear requirement of potential end-users of such systems is a level of automation capable of delivering low-level diagnosis information. The output from the system is in the form of "go", "no-go" indications of structural integrity or immediate maintenance actions. This level of automation requires significant data reduction and processing. This paper describes recent trials of acoustic emission detection technology for the diagnosis of damage in composite aerospace structures. The technology comprises low profile detection sensors using piezo electric wafers encapsulated in polymer film ad optical sensors. Sensors are bonded to the structure"s surface and enable acoustic events from the loaded structure to be located by triangulation. Instrumentation has been enveloped to capture and parameterise the sensor data in a form suitable for low-bandwidth storage and transmission.
... support and help with the care of a child with hydrocephalus who has serious brain damage. ... such as meningitis or encephalitis Intellectual impairment Nerve damage (decrease in movement, sensation, function) Physical disabilities
DART Support for Hurricane Matthew
2016-10-13
Members of the Disaster Assessment and Recovery Team (DART) repair a section of roof atop the Operations Support Building II at NASA’s Kennedy Space Center in Florida. The effort is part of the spaceport’s ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-13
Tubing provides ventilation through boarded-up windows on the Operations Support Building II at NASA’s Kennedy Space Center in Florida. Members of the Disaster Assessment and Recovery Team (DART) are working on repairs to the facility following Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-13
Members of the Disaster Assessment and Recovery Team (DART) work on repairs to the Operations Support Building II at NASA’s Kennedy Space Center in Florida. The effort is part of the spaceport’s ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
NASA Astrophysics Data System (ADS)
Gao, Jingqun; Liu, Bin; Wang, Jun; Jin, Xudong; Jiang, Renzheng; Liu, Lijun; Wang, Baoxin; Xu, Yongnan
2010-11-01
The previous work proved that the bovine serum albumin (BSA) could be damaged under the combined action of ultrasonic irradiation and ZnO. In this work, the assisted sonocatalytic damage of BSA using metronidazole (MTZ) as a sensitizer was further investigated by means of UV-vis and fluorescence spectra. The results indicated that the adding of MTZ could obviously promote the sonocatalytic damage of BSA under ultrasonic irradiation in the presence of nano-sized ZnO powder. Furthermore, it was found that the damage degree of BSA was aggravated by some influencing factors except ionic kind and strength. In addition, the damage site of BSA was also studied with synchronous fluorescence technology. It was found that the damage site was mainly at tryptophan (Trp) residue.
[Vital pulp therapy of damaged dental pulp].
Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li
2017-08-01
The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.
Jones, Ian M; Koptur, Suzanne
2015-01-01
• Extrafloral nectar (EFN) mediates food for protection mutualisms between plants and defensive insects. Understanding sources of variation in EFN production is important because such variations may affect the number and identity of visitors and the effectiveness of plant defense. We investigated the influence of plant developmental stage, time of day, leaf age, and leaf damage on EFN production in Senna mexicana var. chapmanii. The observed patterns of variation in EFN production were compared with those predicted by optimal defense theory.• Greenhouse experiments with potted plants were conducted to determine how plant age, time of day, and leaf damage affected EFN production. A subsequent field study was conducted to determine how leaf damage, and the resulting increase in EFN production, affected ant visitation in S. chapmanii.• More nectar was produced at night and by older plants. Leaf damage resulted in increased EFN production, and the magnitude of the response was greater in plants damaged in the morning than those damaged at night. Damage to young leaves elicited a stronger defensive response than damage to older leaves, in line with optimal defense theory. Damage to the leaves of S. chapmanii also resulted in significantly higher ant visitation in the field.• Extrafloral nectar is an inducible defense in S. chapmanii. Developmental variations in its production support the growth differentiation balance hypothesis, while within-plant variations and damage responses support optimal defense theory. © 2015 Botanical Society of America, Inc.
Animal damage management handbook.
Hugh C. Black
1994-01-01
This handbook treats animal damage management (ADM) in the West in relation to forest, range, and recreation resources; predator management is not addressed. It provides a comprehensive reference of safe, effective, and practical methods for managing animal damage on National Forest System lands. Supporting information is included in references after each chapter and...
KSC Tech Transfer News, Volume 2, No. 2
NASA Technical Reports Server (NTRS)
Makufka, David (Editor); Dunn, Carol (Editor)
2009-01-01
This issue contains articles about: (1) the Innovative Partnerships Program (IPP) and the manager of the program, Alexis Hongamen, (2) New Technology Report (NTR) on a Monte Carlo Simulation to Estimate the Likelihood of Direct Lightning Strikes, (3) Kennedy Space Center's Applied Physics Lab, (4) a virtual ruler that is used for many applications, (5) a portable device that finds low-level leaks, (6) a sun-shield, that supports in-space cryogenic propellant storage, (7) lunar dust modeling software, (8) space based monitoring of radiation damage to DNA, (9) the use of light-emitting diode (LED) arrays vegetable production system, (10) Dust Tolerant Intelligent Electrical Connection Systems, (11) Ice Detection Camera System Upgrade, (12) Repair Techniques for Composite Structures, (13) Cryogenic Orbital Testbed, and (14) copyright protection.
Let a sewage plant running smart
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Out-dated technical equipment, occlusive information communication, inadequate sanitation, low management level and some irrational distribution structures in the existing sewage plants bring about lower sewage treatment efficiency and poorer water quality, thereby permanently harming human health and severely damaging the environment. With the rapid development of scientific-technological progress and the vigorous support of the entire international community, the existing sewage plants call for more and more intelligent operation and management in the future. This review for the first time proposes the novel concept of the “smart” sewage plant, and gives a through interpretation of its special functions and attributes. We envision that the future smart sewage plant will became an “ambient intelligence” in all aspects in the sewage plants.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
A damaged construction trailer and several pieces of associated debris, aftermath of Hurricane Matthew, are seen near the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
Damaged construction trailers and several pieces of associated debris, aftermath of Hurricane Matthew, are seen in front of the Mobile Launcher in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Near Real-Time Applications of Earth Remote Sensing for Response to Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2013-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
Near Real-Time Applications of Earth Remote Sensing for Response to Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2013-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged area. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. Other applications are being developed to refine light source detections with the VIIRS day-night band and to map hail during the growing season through combination of available satellite and radar imagery. The aforementioned products and support are not useful unless they are distributed in a timely manner and within an appropriate decision support system. This presentation will provide an update on ongoing activities to support inclusion of these data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
Damage Identification of Piles Based on Vibration Characteristics
Zhang, Xiaozhong; Yao, Wenjuan; Chen, Bo; Liu, Dewen
2014-01-01
A method of damage identification of piles was established by using vibration characteristics. The approach focused on the application of the element strain energy and sensitive modals. A damage identification equation of piles was deduced using the structural vibration equation. The equation contained three major factors: change rate of element modal strain energy, damage factor of pile, and sensitivity factor of modal damage. The sensitive modals of damage identification were selected by using sensitivity factor of modal damage firstly. Subsequently, the indexes for early-warning of pile damage were established by applying the change rate of strain energy. Then the technology of computational analysis of wavelet transform was used to damage identification for pile. The identification of small damage of pile was completely achieved, including the location of damage and the extent of damage. In the process of identifying the extent of damage of pile, the equation of damage identification was used in many times. Finally, a stadium project was used as an example to demonstrate the effectiveness of the proposed method of damage identification for piles. The correctness and practicability of the proposed method were verified by comparing the results of damage identification with that of low strain test. The research provided a new way for damage identification of piles. PMID:25506062
NASA Technical Reports Server (NTRS)
Smith, P. J.; Thomson, L. W.; Wilson, R. D.
1986-01-01
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.
ERIC Educational Resources Information Center
Beem, Kate
2002-01-01
Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)
Loss Estimations due to Earthquakes and Secondary Technological Hazards
NASA Astrophysics Data System (ADS)
Frolova, N.; Larionov, V.; Bonnin, J.
2009-04-01
Expected loss and damage assessment due to natural and technological disasters are of primary importance for emergency management just after the disaster, as well as for development and implementation of preventive measures plans. The paper addresses the procedures and simulation models for loss estimations due to strong earthquakes and secondary technological accidents. The mathematical models for shaking intensity distribution, damage to buildings and structures, debris volume, number of fatalities and injuries due to earthquakes and technological accidents at fire and chemical hazardous facilities are considered, which are used in geographical information systems assigned for these purposes. The criteria of technological accidents occurrence are developed on the basis of engineering analysis of past events' consequences. The paper is providing the results of scenario earthquakes consequences estimation and individual seismic risk assessment taking into account the secondary technological hazards at regional and urban levels. The individual risk is understood as the probability of death (or injuries) due to possible hazardous event within one year in a given territory. It is determined through mathematical expectation of social losses taking into account the number of inhabitants in the considered settlement and probability of natural and/or technological disaster.
SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 5: Human Support
NASA Technical Reports Server (NTRS)
1991-01-01
Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft integrated technology plan (ITP) on human support are included. Topics covered include: human support program; human factors; life support technology; fire safety; medical support technology; advanced refrigeration technology; EVA suit system; advanced PLSS technology; and ARC-EVA systems research program.
An Overview of NWS Weather Support for the XXVI Olympiad.
NASA Astrophysics Data System (ADS)
Rothfusz, Lans P.; McLaughlin, Melvin R.; Rinard, Stephen K.
1998-05-01
The 1996 Centennial Olympic Games in Atlanta, Georgia, received weather support from the National Weather Service (NWS). The mandate to provide this support gave the NWS an unprecedented opportunity to employ in an operational setting several tools and practices similar to those planned for the "modernized" era of the NWS. The project also provided a glimpse of technology and practices not planned for the NWS modernization, but that might be valuable in the future. The underlying purpose of the project was to protect the life and property of the two million spectators, athletes, volunteers, and officials visiting and/or participating in the games. While there is no way to accurately account for lives and property that were protected by the NWS support, the absence of weather-related deaths, significant injuries, and damaged property during the games despite an almost daily occurrence of thunderstorms, high temperatures, and/or rain indicates that the project was a success. In fact, popular perception held that weather had no effect on the games. The 2000+ weather bulletins issued during the 6-week support period suggest otherwise. The authors describe the many facets of this demanding and successful project, with special attention given to aspects related to operational forecasting. A postproject survey completed by the Olympics forecasters, feedback provided by weather support customers, and experiences of the management team provide the bases for project observations and recommendations for future operational forecasting activities.
Strength, functionality and beauty of university buildings in earthquake-prone countries
WADA, Akira
2018-01-01
Strength, functionality and beauty are the three qualities identifying well-designed architecture. For buildings in earthquake-prone countries such as Japan, emphasis on seismic safety frequently leads to the sacrifice of functionality and beauty. Therefore, it is important to develop new structural technologies that can ensure the seismic performance of a building without hampering the pursuit of functionality and beauty. The moment-resisting frame structures widely used for buildings in Japan are likely to experience weak-story collapse. Pin-supported walls, which can effectively enhance the structural story-by-story integrity of a building, were introduced to prevent such an unfavorable failure pattern in the seismic retrofit of an eleven-story building on a university campus in Tokyo, while also greatly aesthetically enhancing the façade of the building. The slight damage observed and monitoring records of the retrofitted building during the 2011 Tohoku earthquake in Japan demonstrate that the pin-supported walls worked as intended, protecting the building and guaranteeing the safety of its occupants during the earthquake. PMID:29434079
Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar
2016-11-01
In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2018-05-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
NASA Astrophysics Data System (ADS)
Beirau, Tobias; Nix, William D.; Pöllmann, Herbert; Ewing, Rodney C.
2017-11-01
Several different models are known to describe the structure-dependent radiation-induced damage accumulation process in materials (e.g. Gibbons Proc IEEE 60:1062-1096, 1972; Weber Nuc Instr Met Phys Res B 166-167:98-106, 2000). In the literature, two different models of damage accumulation due to α-decay events in natural ZrSiO4 (zircon) have been described. The direct impact damage accumulation model is based on amorphization occurring directly within the collision cascade. However, the double cascade-overlap damage accumulation model predicts that amorphization will only occur due to the overlap of disordered domains within the cascade. By analyzing the dose-dependent evolution of mechanical properties (i.e., Poisson's ratios, compliance constants, elastic modulus, and hardness) as a measure of the increasing amorphization, we provide support for the double cascade-overlap damage accumulation model. We found no evidence to support the direct impact damage accumulation model. Additionally, the amount of radiation damage could be related to an anisotropic-to-isotropic transition of the Poisson's ratio for stress along and perpendicular to the four-fold c-axis and of the related compliance constants of natural U- and Th-bearing zircon. The isotropification occurs in the dose range between 3.1 × and 6.3 × 1018 α-decays/g.
Size Effects in Impact Damage of Composite Sandwich Panels
NASA Technical Reports Server (NTRS)
Dobyns, Alan; Jackson, Wade
2003-01-01
Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.
NASA Technical Reports Server (NTRS)
Adams, Marc A.; Zwissler, James G.; Hayes, Charles; Fabensky, Beth; Cornelison, Charles; Alexander, Lesley; Bishop, Karen
2005-01-01
A new technology is being developed that can protect spacecraft and satellite components against damage from meteoroid strikes and control the thermal environment of the protected components. This technology, called Foam Core Shield (FCS) systems, has the potential to replace the multi-layer insulation blankets (MLI) that have been used on spacecraft for decades. In order to be an attractive candidate for replacing MLI, FCS systems should not only provide superior protection against meteoroid strikes but also provide an equal or superior ability to control the temperature of the protected component. Properly designed FCS systems can provide these principal functions, meteoroid strike protection and thermal control, with lower system mass and a smaller system envelope than ML.
A Numerical and Experimental Study of Damage Growth in a Composite Laminate
NASA Technical Reports Server (NTRS)
McElroy, Mark; Ratcliffe, James; Czabaj, Michael; Wang, John; Yuan, Fuh-Gwo
2014-01-01
The present study has three goals: (1) perform an experiment where a simple laminate damage process can be characterized in high detail; (2) evaluate the performance of existing commercially available laminate damage simulation tools by modeling the experiment; (3) observe and understand the underlying physics of damage in a composite honeycomb sandwich structure subjected to low-velocity impact. A quasi-static indentation experiment has been devised to provide detailed information about a simple mixed-mode damage growth process. The test specimens consist of an aluminum honeycomb core with a cross-ply laminate facesheet supported on a stiff uniform surface. When the sample is subjected to an indentation load, the honeycomb core provides support to the facesheet resulting in a gradual and stable damage growth process in the skin. This enables real time observation as a matrix crack forms, propagates through a ply, and then causes a delamination. Finite element analyses were conducted in ABAQUS/Explicit(TradeMark) 6.13 that used continuum and cohesive modeling techniques to simulate facesheet damage and a geometric and material nonlinear model to simulate core crushing. The high fidelity of the experimental data allows a detailed investigation and discussion of the accuracy of each numerical modeling approach.
Development of lightweight structural health monitoring systems for aerospace applications
NASA Astrophysics Data System (ADS)
Pearson, Matthew
This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..
Activity and task of the saveMLAK and aid for library
NASA Astrophysics Data System (ADS)
Okamoto, Makoto
We report the activities of saveMLAK, an organization dedicated to supporting museums, libraries, archives, and kominkans damaged by the Great East Japan Earthquake, focusing on the activities for libraries. saveMLAK provides a website using MediaWiki collaborative editing software for accumulating information regarding damage and support activities, offering information support, indirect support, and intermediary support. We also report the collaboration with Miyagi Prefectural Library based on the accumulated, shared information as an example of support for libraries in the disaster area. We describe the process of the activities of saveMLAK and problems emerging so far, and provide constructive criticism and proposals to other support activities for libraries. In conclusion, we suggest establishment of permanent organizations/functions to prepare for emergencies and to cope with disasters in the future.
Measurement of high-voltage and radiation-damage limitations to advanced solar array performance
NASA Technical Reports Server (NTRS)
Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.
1991-01-01
A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.
A Damage Resistance Comparison Between Candidate Polymer Matrix Composite Feedline Materials
NASA Technical Reports Server (NTRS)
Nettles, A. T
2000-01-01
As part of NASAs focused technology programs for future reusable launch vehicles, a task is underway to study the feasibility of using the polymer matrix composite feedlines instead of metal ones on propulsion systems. This is desirable to reduce weight and manufacturing costs. The task consists of comparing several prototype composite feedlines made by various methods. These methods are electron-beam curing, standard hand lay-up and autoclave cure, solvent assisted resin transfer molding, and thermoplastic tape laying. One of the critical technology drivers for composite components is resistance to foreign objects damage. This paper presents results of an experimental study of the damage resistance of the candidate materials that the prototype feedlines are manufactured from. The materials examined all have a 5-harness weave of IM7 as the fiber constituent (except for the thermoplastic, which is unidirectional tape laid up in a bidirectional configuration). The resin tested were 977-6, PR 520, SE-SA-1, RS-E3 (e-beam curable), Cycom 823 and PEEK. The results showed that the 977-6 and PEEK were the most damage resistant in all tested cases.
Robotic Technology Efforts at the NASA/Johnson Space Center
NASA Technical Reports Server (NTRS)
Diftler, Ron
2017-01-01
The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.
Robotic Technology Efforts at the NASA/Johnson Space Center
NASA Technical Reports Server (NTRS)
Diftler, Ron
2017-01-01
The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.
Semiochemical-based technologies for fly management
USDA-ARS?s Scientific Manuscript database
Filth flies are important insect pests that have caused over billions of dollars damage in animal production, food contamination and disease transmitting. The present presentation reports our recent findings on the development of filth fly control using semiochemical-based technologies to reduce the...
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear
Campbell, Sean; Taylor, Ruth R.; Forge, Andrew; Hume, Clifford R.
2007-01-01
Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear. PMID:18157569
An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents.
Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan
2016-02-16
Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting.
An in Vitro Twist Fatigue Test of Fabric Stent-Grafts Supported by Z-Stents vs. Ringed Stents
Lin, Jing; Guidoin, Robert; Du, Jia; Wang, Lu; Douglas, Graeham; Zhu, Danjie; Nutley, Mark; Perron, Lygia; Zhang, Ze; Douville, Yvan
2016-01-01
Whereas buckling can cause type III endoleaks, long-term twisting of a stent-graft was investigated here as a mechanism leading to type V endoleak or endotension. Two experimental device designs supported with Z-stents having strut angles of 35° or 45° were compared to a ringed control under accelerated twisting. Damage to each device was assessed and compared after different durations of twisting, with focus on damage that may allow leakage. Stent-grafts with 35° Z-stents had the most severe distortion and damage to the graft fabric. The 45° Z-stents caused less fabric damage. However, consistent stretching was still seen around the holes for sutures, which attach the stents to the graft fabric. Larger holes may become channels for fluid percolation through the wall. The ringed stent-graft had the least damage observed. Stent apexes with sharp angles appear to be responsible for major damage to the fabrics. Device manufacturers should consider stent apex angle when designing stent-grafts, and ensure their devices are resistant to twisting. PMID:28787913
NASA Technical Reports Server (NTRS)
Carter, J. R., Jr.; Tada, H. Y.
1973-01-01
A method is presented for predicting the degradation of a solar array in a space radiation environment. Solar cell technology which emphasizes the cell parameters that degrade in a radiation environment, is discussed along with the experimental techniques used in the evaluation of radiation effects. Other topics discussed include: theoretical aspects of radiation damage, methods for developing relative damage coefficients, nature of the space radiation environment, method of calculating equivalent fluence from electron and proton energy spectrums and relative damage coefficients, and comparison of flight data with estimated degradation.
1991-12-21
itself. For example, in the case of turbine wheel /blade inspection, remotely obtained blade fatigue data coupled with a life prediction model and...Security, etc. C 2. T/C Assembly for Evidence of Coolant Passage Blockage C 3. HPFTP Turbine Wheel /Blades for Cracks, Fatigue and Damage C 4. HPOTP Turbine... Wheel /Blades for Cracks, Fatigue and Damage C 5. LPFTP Turbine Wheel /Blades for Cracks, Fatigue and Damage C 6. LPOTP Turbine Wheel /Blades for Cracks
NASA Astrophysics Data System (ADS)
Pimnoo, Ammarin
2016-07-01
Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.
Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe
2012-01-01
Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Randomized controlled clinical trial. National Institute of Sport, Expertise, and Performance (INSEP). Twenty-six healthy professional male soccer players. The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods.
... damage in animal models of elevated IOP. Nerve cell regeneration is another approach to repairing neuronal tissue damaged ... or injury. NIH-supported researchers recently provoked nerve cell regeneration in rodents by activating a nerve cell’s natural ...
Vibration-based health monitoring and model refinement of civil engineering structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, C.R.; Doebling, S.W.
1997-10-01
Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandiamore » National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.« less
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Shpargel, Tarah P.
2005-01-01
Advanced in-space repair technologies for reinforced carbon/carbon composite (RCC) thermal protection system (TPS) structures are critically needed for the space shuttle Return To Flight (RTF) efforts. These technologies are also critical for the repair and refurbishment of thermal protection system structures of future Crew Exploration Vehicles of space exploration programs. The Glenn Refractory Adhesive for Bonding and Exterior Repair (GRABER) material developed at the NASA Glenn Research Center has demonstrated capabilities for repair of small cracks and damage in RCC leading-edge material. The concept consists of preparing an adhesive paste of desired ceramic in a polymer/phenolic resin matrix with appropriate additives, such as surfactants, and then applying the paste into the damaged or cracked area of the RCC composite components with caulking guns. The adhesive paste cures at 100 to 120 C and transforms into a high-temperature ceramic during simulated vehicle reentry testing conditions.
Genetic doping and health damages.
Fallahi, Aa; Ravasi, Aa; Farhud, Dd
2011-01-01
Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as "the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ". The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack.
Analysis Methods for Progressive Damage of Composite Structures
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Davila, Carlos G.; Leone, Frank A.
2013-01-01
This document provides an overview of recent accomplishments and lessons learned in the development of general progressive damage analysis methods for predicting the residual strength and life of composite structures. These developments are described within their State-of-the-Art (SoA) context and the associated technology barriers. The emphasis of the authors is on developing these analysis tools for application at the structural level. Hence, modeling of damage progression is undertaken at the mesoscale, where the plies of a laminate are represented as a homogenous orthotropic continuum. The aim of the present effort is establish the ranges of validity of available models, to identify technology barriers, and to establish the foundations of the future investigation efforts. Such are the necessary steps towards accurate and robust simulations that can replace some of the expensive and time-consuming "building block" tests that are currently required for the design and certification of aerospace structures.
Genetic Doping and Health Damages
Fallahi, AA; Ravasi, AA; Farhud, DD
2011-01-01
Background: Use of genetic doping or gene transfer technology will be the newest and the lethal method of doping in future and have some unpleasant consequences for sports, athletes, and outcomes of competitions. The World Anti-Doping Agency (WADA) defines genetic doping as “the non-therapeutic use of genes, genetic elements, and/or cells that have the capacity to enhance athletic performance ”. The purpose of this review is to consider genetic doping, health damages and risks of new genes if delivered in athletes. Methods: This review, which is carried out by reviewing relevant publications, is primarily based on the journals available in GOOGLE, ELSEVIER, PUBMED in fields of genetic technology, and health using a combination of keywords (e.g., genetic doping, genes, exercise, performance, athletes) until July 2010. Conclusion: There are several genes related to sport performance and if they are used, they will have health risks and sever damages such as cancer, autoimmunization, and heart attack. PMID:23113049
One-carbon cycle support rescues sperm damage in experimentally induced varicocoele in rats.
Mohammadi, Parisa; Hassani-Bafrani, Hassan; Tavalaee, Marziyeh; Dattilo, Maurizio; Nasr-Esfahani, Mohammad H
2018-05-11
To investigate whether micronutrients in support of the one-carbon cycle and glutathione synthesis are effective in improving sperm damage after surgical varicocoele induction in rats and whether any effect is achieved without a rebound reductive stress as seen with oral antioxidants. Surgical varicocoele was induced in adult male Wistar rats and resulted in significant damage to the testis and sperm cells measured at 2 and 4 months after surgery. At 2 months after surgery, rats received a 2-month oral supplementation in support of the one-carbon cycle containing B vitamins (B2, B3, B6, folic acid and B12), N-acetyl-cysteine, zinc, small amounts of vitamin E, and a natural source of betalains and quercetine (Condensyl ® ; Parthenogen SAGL, Lugano, Switzerland and Nurilia SARL, Lyon, France). One-carbon cycle supplementation, compared to untreated controls, significantly improved the morphometric characteristics of testis (P < 0.05), sperm concentration, motility and abnormal morphology (P < 0.001), sperm chromatin condensation (aniline blue staining, P < 0.05), sperm DNA damage (acridine orange staining, P < 0.05) and sperm lipid peroxidation (BODIPY C11, P < 0.001). The improvement in both nuclear condensation and DNA damage and the lack of excessive inhibition of lipid peroxidation confirmed that no reductive stress had occurred. Micronutrients in support of the one-carbon cycle are effective in the treatment of surgically induced varicocoele in rats, probably by activating natural antioxidant defences and epigenetics. These results support the idea that essential micronutrients including B vitamins may also have a positive influence in clinical varicocoele, which should be tested in prospective clinical trials. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.
Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions
Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin
2013-01-01
Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material. PMID:28811444
Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions.
Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin
2013-08-12
Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.
DART Support for Hurricane Matthew
2016-10-18
Hurricane Matthew tore away a section of wall on a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
A broken window caused by Hurricane Matthew is seen inside a support building in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-26
Following Hurricane Matthew, repairs have been made to the roof of the Operations Support Building (OSB) II in the Launch Complex 39 area at NASA's Kennedy Space Center in Florida. Assessments and repairs continue on various structures and facilities across the spaceport, part of the ongoing recovery from the storm, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
NASA Technical Reports Server (NTRS)
Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil
2011-01-01
The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor array. In addition, this paper will outline recent efforts to produce sensors capable of making real-time measurements at temperatures up to 850 C, and discuss previous results demonstrating capability to monitor carbon fiber temperature changes within a composite material.
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang
2016-02-26
Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack propagation under changing structural boundary conditions can be monitored reliably. The method is not limited by the properties of the structure, and thus it is feasible to be applied to composite structure.
Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors
NASA Astrophysics Data System (ADS)
Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.
2015-12-01
NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.
Autonomous self-powered structural health monitoring system
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.
2010-03-01
Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.
NASA Astrophysics Data System (ADS)
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Wang, Jin
2012-12-01
Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA and EMTA-NLA in the Autodesk® Moldflow® packages. This report summarizes the recent results from Autodesk Simulation Moldlow Insight (ASMI) analyses using the EMTA models and EMTA-NLA/ABAQUS® analyses for further assessment of the EMTA-NLA models to support their implementation in Autodesk Moldflow Structural Alliance (AMSA). PNNL’s technical support to Autodesk, Inc. included (i) providing the theoretical property prediction models as described in published journal articles and reports, (ii) providing explanations of these models and computational procedure, (iii) providing the necessary LFT data for process simulations and property predictions, and (iv) performing ABAQUS/EMTA-NLA analyses to further assess and illustrate the models for selected LFT materials.« less
DOT National Transportation Integrated Search
2005-10-01
Trenchless technology offers methods by which underground utilities may be installed without damage to overlying pavement, if proper precautions are observed. In the past ten years, repeated improvements in technology, materials, and methods have adv...
Advanced technology gas-fired commercial clothes dryer. Final report, April 1985-December 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topping, R.F.
1991-04-01
The objective of this effort was to demonstrate the technical feasibility of an advanced technology commercial clothes dryer (ATD) which could provide improved fuel efficiency and reduced drying time without burning or otherwise damaging the clothes load.
NASA Technical Reports Server (NTRS)
Smith, Barry T.
1990-01-01
Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in a composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.
Seismic damage identification for steel structures using distributed fiber optics.
Hou, Shuang; Cai, C S; Ou, Jinping
2009-08-01
A distributed fiber optic monitoring methodology based on optic time domain reflectometry technology is developed for seismic damage identification of steel structures. Epoxy with a strength closely associated to a specified structure damage state is used for bonding zigzagged configured optic fibers on the surfaces of the structure. Sensing the local deformation of the structure, the epoxy modulates the signal change within the optic fiber in response to the damage state of the structure. A monotonic loading test is conducted on a steel specimen installed with the proposed sensing system using selected epoxy that will crack at the designated strain level, which indicates the damage of the steel structure. Then, using the selected epoxy, a varying degree of cyclic loading amplitudes, which is associated with different damage states, is applied on a second specimen. The test results show that the specimen's damage can be identified by the optic sensors, and its maximum local deformation can be recorded by the sensing system; moreover, the damage evolution can also be identified.
A developmental perspective on high power laser facility technology for ICF
NASA Astrophysics Data System (ADS)
Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi
2018-02-01
The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, Barmac K.
2009-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA's Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of "supportability", in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in a environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test & Verification, Maintenance & Repair, and Scavenging & Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program
A Lunar Surface System Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Taleghani, barmac K.
2011-01-01
This paper discusses the establishment of a Supportability Technology Development Roadmap as a guide for developing capabilities intended to allow NASA s Constellation program to enable a supportable, sustainable and affordable exploration of the Moon and Mars. Presented is a discussion of supportability, in terms of space facility maintenance, repair and related logistics and a comparison of how lunar outpost supportability differs from the International Space Station. Supportability lessons learned from NASA and Department of Defense experience and their impact on a future lunar outpost is discussed. A supportability concept for future missions to the Moon and Mars that involves a transition from a highly logistics dependent to a logistically independent operation is discussed. Lunar outpost supportability capability needs are summarized and a supportability technology development strategy is established. The resulting Lunar Surface Systems Supportability Strategy defines general criteria that will be used to select technologies that will enable future flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. This strategy also introduces the concept of exploiting flight hardware as a supportability resource. The technology roadmap involves development of three mutually supporting technology categories, Diagnostics Test and Verification, Maintenance and Repair, and Scavenging and Recycling. The technology roadmap establishes two distinct technology types, "Embedded" and "Process" technologies, with different implementation and thus different criteria and development approaches. The supportability technology roadmap addresses the technology readiness level, and estimated development schedule for technology groups that includes down-selection decision gates that correlate with the lunar program milestones. The resulting supportability technology roadmap is intended to develop a set of technologies with widest possible capability and utility with a minimum impact on crew time and training and remain within the time and cost constraints of the Constellation program.
DART Support for Hurricane Matthew
2016-10-18
Beach erosion caused by Hurricane Matthew is visible along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, Daniel Todd
2015-04-01
This final report is a compilation of resear ch efforts - funded by the US Department of Energy Wind and Water Power Technolog ies Office over a four-year period from FY11 through FY14. The goals of this re search program were to develop and evaluate technical innovati ons with promise for maxi mizing revenues and reducing levelized cost of energy (LCOE) for offs hore wind plants - more specifically the goals of the Structural H ealth and Prognostics Management (SHPM) program were to reduce O&M costs and increase energy capture through use of SHPM-based technologies. A technology roadmap was devemore » loped at the start of the project to guide the research efforts. This roadmap identified and outlined six major research thrust areas each having five stages of ma turity. Research was conducted in each of these thrust areas, as documented throughout this report, although a major focus was on development of damage detection strategi es for the most frequent blade damage conditions and damage mitigation and life-exte nsion strategies via changes in turbine operations (smart loads management). Th e work summarized in this compilation report is the product of the work of many researchers. A summary of the major findings, status of the SHPM Technology Ro admap and recommendations for future work are also provided.« less
NASA's Research in Aircraft Vulnerability Mitigation
NASA Technical Reports Server (NTRS)
Allen, Cheryl L.
2005-01-01
Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.
High-performance visible/UV CCD focal plane technology for spacebased applications
NASA Technical Reports Server (NTRS)
Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.
1993-01-01
We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.
NASA Astrophysics Data System (ADS)
Trapani, Davide; Zonta, Daniele; Molinari, Marco; Amditis, Angelos; Bimpas, Matthaios; Bertsch, Nicolas; Spiering, Vincent; Santana, Juan; Sterken, Tom; Torfs, Tom; Bairaktaris, Dimitris; Bairaktaris, Manos; Camarinopulos, Stefanos; Frondistou-Yannas, Mata; Ulieru, Dumitru
2012-04-01
This paper illustrates an experimental campaign conducted under laboratory conditions on a full-scale reinforced concrete three-dimensional frame instrumented with wireless sensors developed within the Memscon project. In particular it describes the assumptions which the experimental campaign was based on, the design of the structure, the laboratory setup and the results of the tests. The aim of the campaign was to validate the performance of Memscon sensing systems, consisting of wireless accelerometers and strain sensors, on a real concrete structure during construction and under an actual earthquake. Another aspect of interest was to assess the effectiveness of the full damage recognition procedure based on the data recorded by the sensors and the reliability of the Decision Support System (DSS) developed in order to provide the stakeholders recommendations for building rehabilitation and the costs of this. With these ends, a Eurocode 8 spectrum-compatible accelerogram with increasing amplitude was applied at the top of an instrumented concrete frame built in the laboratory. MEMSCON sensors were directly compared with wired instruments, based on devices available on the market and taken as references, during both construction and seismic simulation.
Guide to the Stand-Damage Model interface management system
George Racin; J. J. Colbert
1995-01-01
This programmer's support document describes the Gypsy Moth Stand-Damage Model interface management system. Management of stand-damage data made it necessary to define structures to store data and provide the mechanisms to manipulate these data. The software provides a user-friendly means to manipulate files, graph and manage outputs, and edit input data. The...
Ecological risk assessment to support fuels treatment project decisions
Jay O' Laughlin
2010-01-01
Risk is a combined statement of the probability that something of value will be damaged and some measure of the damageâs adverse effect. Wildfires burning in the uncharacteristic fuel conditions now typical throughout the Western United States can damage ecosystems and adversely affect environmental conditions. Wildfire behavior can be modified by prefire fuel...
Korsak, A V; Chaikovskii, Yu B
2015-10-01
Immunohistochemical analysis of changes in neuroma after surgical treatment of damaged peripheral nerve with the use of high frequency electrosurgical device for high frequency current welding of soft tissues was carried out. No adverse effects of this technology and the bipolar instrument on degeneration and regeneration of damaged nerve stem were detected.
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
24 CFR 3280.207 - Requirements for foam plastic thermal insulating materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... include intensity of cavity fire (temperature-time) and post-test damage. (iii) Post-test damage... Technology Research Institute (IIT) Report, “Development of Mobile Home Fire Test Methods to Judge the Fire... Project J-6461, 1979” or other full-scale fire tests accepted by HUD, and it is installed in a manner...
Smart Sensors Assess Structural Health
NASA Technical Reports Server (NTRS)
2010-01-01
NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.
Romanos, Georgios E; Belikov, Andrey V; Skrypnik, Alexei V; Feldchtein, Felix I; Smirnov, Michael Z; Altshuler, Gregory B
2015-07-01
Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°С and 9.5 ± 1.8°С, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering. © 2015 Wiley Periodicals, Inc.
Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenancemore » decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.« less
Energy efficient engine, high pressure turbine thermal barrier coating. Support technology report
NASA Technical Reports Server (NTRS)
Duderstadt, E. C.; Agarwal, P.
1983-01-01
This report describes the work performed on a thermal barrier coating support technology task of the Energy Efficient Engine Component Development Program. A thermal barrier coating (TBC) system consisting of a Ni-Cr-Al-Y bond cost layer and ZrO2-Y2O3 ceramic layer was selected from eight candidate coating systems on the basis of laboratory tests. The selection was based on coating microstructure, crystallographic phase composition, tensile bond and bend test results, erosion and impact test results, furnace exposure, thermal cycle, and high velocity dynamic oxidation test results. Procedures were developed for applying the selected TBC to CF6-50, high pressure turbine blades and vanes. Coated HPT components were tested in three kinds of tests. Stage 1 blades were tested in a cascade cyclic test rig, Stage 2 blades were component high cycle fatigue tested to qualify thermal barrier coated blades for engine testing, and Stage 2 blades and Stage 1 and 2 vanes were run in factory engine tests. After completion of the 1000 cycle engine test, the TBC on the blades was in excellent condition over all of the platform and airfoil except at the leading edge above midspan on the suction side of the airfoil. The coating damage appeared to be caused by particle impingement; adjacent blades without TBC also showed evidence of particle impingement.
Accessing resources for identity development by urban students and teachers: foregrounding context
NASA Astrophysics Data System (ADS)
Luehmann, April Lynn
2009-03-01
Many attempt to address the documented achievement gap between urban and suburban students by offering special programs to enrich urban students' academic experiences and proficiencies. Such was the case in the study described by DeGennaro and Brown in which urban students participated in an after-school technology course intended to address the "digital divide" by giving these youth supported experiences as technology users. However, also like the initial situation described in this study, instructional design that does not capitalize on what we know about urban education or informal learning contexts can actually further damage urban youths' identities as learners by positioning them as powerless and passive recipients instead of meaningful contributors to their own learning. The analysis presented in this forum is intended to further the conversation begun by DeGennaro and Brown by explicitly complexifying our consideration of context (activity structures and setting) so as to support the development of contexts that afford rich learning potential for both the urban students and their learning facilitators, positioned in the role of teachers. Carefully constructed contexts can afford participants as learners (urban students and teachers) opportunities to access rich identity resources (not typically available in traditional school contexts) including, but not limited to, the opportunity to exercise agency that allows participants to reorganize their learning context and enacted culture as needed.
Institutionalizing Emerging Technology Assessment Process into National Incident Response
2013-10-01
mechanical methods, devices, and products, including oil sensors, booms, skimmers, decontamination , and waste minimization technologies...handling). • Alternative Oil Spill Response Technologies (in situ burning , dispersants, etc.). • Oil Spill Damage Assessment and Restoration. The TETs...deaths of eleven crewmembers and a subsequent uncontrolled oil spill that tested the government’s ability to respond to a spill of this magnitude as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J; Menapace, J A; Schaffers, K I
Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less
Advanced life support technology development for the Space Exploration Initiative
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Voecks, Gerald E.; Seshan, P. K.
1990-01-01
An overview is presented of NASA's advanced life support technology development strategy for the Space Exploration Initiative. Three basic life support technology areas are discussed in detail: air revitalization, water reclamation, and solid waste management. It is projected that regenerative life support systems will become increasingly more complex as system closure is maximized. Advanced life support technology development will utilize three complementary elements, including the Research and Technology Program, the Regenerative Life Support Program, and the Technology Testbed Validations.
Lunar Surface Systems Supportability Technology Development Roadmap
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony;
2011-01-01
The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.
MatCon is a polymer modified asphalt material designed specifically for waste containment applications. The modifications to the material differentiate it from conventional paving asphalt by minimizing the damaging effects of environmental exposure that could detract from the de...
48 CFR 1816.405-274 - Award fee evaluation factors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... omission by the contractor that results in compromise of classified information, illegal technology... information technology services, equipment or property damage from vandalism greater than $250,000, or theft... negotiated estimated cost of the contract. This estimated cost may include the value of undefinitized change...
48 CFR 1816.405-274 - Award fee evaluation factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... omission by the contractor that results in compromise of classified information, illegal technology... information technology services, equipment or property damage from vandalism greater than $250,000, or theft... negotiated estimated cost of the contract. This estimated cost may include the value of undefinitized change...
48 CFR 1816.405-274 - Award fee evaluation factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... omission by the contractor that results in compromise of classified information, illegal technology... information technology services, equipment or property damage from vandalism greater than $250,000, or theft... negotiated estimated cost of the contract. This estimated cost may include the value of undefinitized change...
DOT National Transportation Integrated Search
2008-05-01
This Phase I report provides a comprehensive and in-depth review of the current status of in-line inspection technologies, including, but not limited to, Magnetic (Axial MFL, Circumferential MFL), Ultrasonic (UT), and Geometrical (Caliper) methods, i...
Nagel, Zachary D; Engelward, Bevin P; Brenner, David J; Begley, Thomas J; Sobol, Robert W; Bielas, Jason H; Stambrook, Peter J; Wei, Qingyi; Hu, Jennifer J; Terry, Mary Beth; Dilworth, Caroline; McAllister, Kimberly A; Reinlib, Les; Worth, Leroy; Shaughnessy, Daniel T
2017-08-01
The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Nagel, Zachary D.; Engelward, Bevin P.; Brenner, David J.; Begley, Thomas J.; Sobol, Robert W.; Bielas, Jason H.; Stambrook, Peter J.; Wei, Qingyi; Hu, Jennifer J.; Terry, Mary Beth; Dilworth, Caroline; McAllister, Kimberly A.; Reinlib, Les; Worth, Leroy; Shaughnessy, Daniel T.
2018-01-01
The rise of advanced technologies for characterizing human populations at the molecular level, from sequence to function, is shifting disease prevention paradigms toward personalized strategies. Because minimization of adverse outcomes is a key driver for treatment decisions for diseased populations, developing personalized therapy strategies represent an important dimension of both precision medicine and personalized prevention. In this commentary, we highlight recently developed enabling technologies in the field of DNA damage, DNA repair, and mutagenesis. We propose that omics approaches and functional assays can be integrated into population studies that fuse basic, translational and clinical research with commercial expertise in order to accelerate personalized prevention and treatment of cancer and other diseases linked to aberrant responses to DNA damage. This collaborative approach is generally applicable to efforts to develop data-driven, individualized prevention and treatment strategies for other diseases. We also recommend strategies for maximizing the use of biological samples for epidemiological studies, and for applying emerging technologies to clinical applications. PMID:28458064
Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation
NASA Astrophysics Data System (ADS)
Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.
2008-09-01
In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Morère, Jacobo; Royuela, Sergio; Asensio, Guillermo; Palomino, Pablo; Enciso, Eduardo; Pando, Concepción; Cabañas, Albertina
2015-12-28
The deposition of Ni nanoparticles into porous supports is very important in catalysis. In this paper, we explore the use of supercritical CO(2) (scCO(2)) as a green solvent to deposit Ni nanoparticles on mesoporous SiO2 SBA-15 and a carbon xerogel. The good transport properties of scCO(2) allowed the efficient penetration of metal precursors dissolved in scCO(2) within the pores of the support without damaging its structure. Nickel hexafluoroacetylacetonate hydrate, nickel acetylacetonate, bis(cyclopentadienyl)nickel, Ni(NO(3))2⋅6H(2)O and NiCl(2)⋅6H(2)O were tried as precursors. Different methodologies were used: impregnation in scCO(2) and reduction in H(2)/N(2) at 400°C and low pressure, reactive deposition using H(2) at 200-250°C in scCO(2) and reactive deposition using ethanol at 150-200°C in scCO(2). The effect of precursor and methodology on the nickel particle size and the material homogeneity (on the different substrates) was analysed. This technology offers many opportunities in the preparation of metal-nanostructured materials. © 2015 The Author(s).
Assessment of ecosystem productivity damage due to land use.
Kaenchan, Piyanon; Guinée, Jeroen; Gheewala, Shabbir H
2018-04-15
Land use can affect ecosystems on land and their services. Because land use has mainly local effects, damage to ecosystem productivity due to land use should be modelled spatially dependent. Unfortunately, even though land use of impacts are particular importance for countries whose economies are highly agriculture-based, ecosystem productivity damage due to land use has not yet been assessed in Thailand so far. This study presents the method for assessing the damage to ecosystem productivity due to land use (land occupation and land transformation) in Thailand. Ecosystem productivity damage is expressed through net primary production (NPP). To convert the damage into monetary units, this study performs an economic valuation of NPP using the production function approach. The results show that the value of marginal product of NPP is around 10-15 Thai baht (THB) (1 USD≈36 THB), per tonne dry weight biomass. The results are applied to the case of biodiesel production. The method presented in this paper could be a guideline for future land use impact assessment research. In addition, converting the NPP damage results into monetary units facilitates integration of impact assessment and economic analysis results for supporting decision support tools such as cost benefit analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Morey, Natalie J; Doetsch, Paul W; Jinks-Robertson, Sue
2003-06-01
Cellular metabolic processes constantly generate reactive species that damage DNA. To counteract this relentless assault, cells have developed multiple pathways to resist damage. The base excision repair (BER) and nucleotide excision repair (NER) pathways remove damage whereas the recombination (REC) and postreplication repair (PRR) pathways bypass the damage, allowing deferred removal. Genetic studies in yeast indicate that these pathways can process a common spontaneous lesion(s), with mutational inactivation of any pathway increasing the burden on the remaining pathways. In this study, we examine the consequences of simultaneously compromising three or more of these pathways. Although the presence of a functional BER pathway alone is able to support haploid growth, retention of the NER, REC, or PRR pathway alone is not, indicating that BER is the key damage resistance pathway in yeast and may be responsible for the removal of the majority of either spontaneous DNA damage or specifically those lesions that are potentially lethal. In the diploid state, functional BER, NER, or REC alone can support growth, while PRR alone is insufficient for growth. In diploids, the presence of PRR alone may confer a lethal mutation load or, alternatively, PRR alone may be insufficient to deal with potentially lethal, replication-blocking lesions.
Bibb, Jenny L; Cook, Donald; Catchot, Angus; Musser, Fred; Stewart, Scott D; Leonard, Billy Rogers; Buntin, G David; Kerns, David; Allen, Tom W; Gore, Jeffrey
2018-05-28
Corn earworm, Helicoverpa zea (Boddie), commonly infests field corn, Zea mays (L.). The combination of corn plant biology, corn earworm behavior in corn ecosystems, and field corn value renders corn earworm management with foliar insecticides noneconomical. Corn technologies containing Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) were introduced that exhibit substantial efficacy against corn earworm and may reduce mycotoxin contamination in grain. The first generation Bt traits in field corn demonstrated limited activity on corn earworm feeding on grain. The pyramided corn technologies have greater cumulative protein concentrations and higher expression throughout the plant, so these corn traits should provide effective management of this pest. Additionally, reduced kernel injury may affect physical grain quality. Experiments were conducted during 2011-2012 to investigate corn earworm impact on field corn yield and grain quality. Treatments included field corn hybrids expressing the Herculex, YieldGard, and Genuity VT Triple Pro technologies. Supplemental insecticide treatments were applied every 1-2 d from silk emergence until silk senescence to create a range of injured kernels for each technology. No significant relationship between the number of corn earworm damaged kernels and yield was observed for any technology/hybrid. In these studies, corn earworm larvae did not cause enough damage to impact yield. Additionally, no consistent relationship between corn earworm damage and aflatoxin contamination was observed. Based on these data, the economic value of pyramided Bt corn traits to corn producers, in the southern United States, appears to be from management of other lepidopteran insect pests including European and southwestern corn borer.
Lower cost offshore field development utilizing autonomous vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisbie, F.R.; Vie, K.J.; Welch, D.W.
1996-12-31
The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less
Telerobotic electronic materials processing experiment
NASA Technical Reports Server (NTRS)
Ollendorf, Stanford
1991-01-01
The Office of Commercial Programs (OCP), working in conjunction with NASA engineers at the Goddard Space Flight Center, is supporting research efforts in robot technology and microelectronics materials processing that will provide many spinoffs for science and industry. The Telerobotic Materials Processing Experiment (TRMPX) is a Shuttle-launched materials processing test payload using a Get Away Special can. The objectives of the project are to define, develop, and demonstrate an automated materials processing capability under realistic flight conditions. TRMPX will provide the capability to test the production processes that are dependent on microgravity. The processes proposed for testing include the annealing of amorphous silicon to increase grain size for more efficient solar cells, thin film deposition to demonstrate the potential of fabricating solar cells in orbit, and the annealing of radiation damaged solar cells.
Commercial Sensory Survey Radiation Testing Progress Report
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Dolphic, Michael D.; Thorbourn, Dennis O.; Alexander, James W.; Salomon, Phil M.
2008-01-01
The NASA Electronic Parts and Packaging (NEPP) Program Sensor Technology Commercial Sensor Survey task is geared toward benefiting future NASA space missions with low-cost, short-duty-cycle, visible imaging needs. Such applications could include imaging for educational outreach purposes or short surveys of spacecraft, planetary, or lunar surfaces. Under the task, inexpensive commercial grade CMOS sensors were surveyed in fiscal year 2007 (FY07) and three sensors were selected for total ionizing dose (TID) and displacement damage dose (DDD) tolerance testing. The selected sensors had to meet selection criteria chosen to support small, low-mass cameras that produce good resolution color images. These criteria are discussed in detail in [1]. This document discusses the progress of radiation testing on the Micron and OmniVision sensors selected in FY07 for radiation tolerance testing.
Lukianova-Hleb, Ekaterina Y.; Mutonga, Martin B. G.; Lapotko, Dmitri O.
2012-01-01
Current methods of cell processing for gene and cell therapies use several separate procedures for gene transfer and cell separation or elimination, because no current technology can offer simultaneous multi-functional processing of specific cell sub-sets in highly heterogeneous cell systems. Using the cell-specific generation of plasmonic nanobubbles of different sizes around cell-targeted gold nanoshells and nanospheres, we achieved simultaneous multifunctional cell-specific processing in a rapid single 70 ps laser pulse bulk treatment of heterogeneous cell suspension. This method supported the detection of cells, delivery of external molecular cargo to one type of cells and the concomitant destruction of another type of cells without damaging other cells in suspension, and real-time guidance of the two above cellular effects. PMID:23167546
NASA's Support to Flood Response
NASA Astrophysics Data System (ADS)
Green, D. S.; Murray, J. J.; Stough, T.
2016-12-01
The extent of flood and inundation, the impacts on people and infrastructure, and generally the situational awareness on all scales for decision making are areas where NASA is mobilizing scientific results, advanced sensing and technologies, experts and partnerships to support response. NASA has targeted mature application science and ready technology for flood and inundation monitoring and assessment. This includes supporting timely data management and product dissemination with users and partners. Requirements are captured in the form of science-area questions, while solutions measure readiness for use by considering standard tools and approaches that make information more accessible, interoperable, understandable and reliable. The program collaborates with capacity building and areas of education and outreach needed to create and leverage non-traditional partnerships in transdisciplinary areas including socio-economic practice, preparedness and resilience assessment, early warning and forecast response, and emergency management, relief and recovery. The program outcomes also seek alignment with and support to global and community priorities related to water resources and food security. This presentation will examine the achievements of individual projects and the challenges and opportunities of more comprehensive and collaborative teams behind NASA's response to global flooding. Examples from recent event mobilization will be reviewed including to the serious of domestic floods across the south and Midwest United States throughout 2015 and 2016. Progress on the combined use of optical, microwave and SAR remote sensing measurements, topographic and geodetic data and mapping, data sharing practices will be reviewed. Other response case studies will examine global flood events monitored, characterized and supported in various boundary regions and nations. Achievements and future plans will be described for capabilities including global flood modeling, near real time flood water mapping and damage mapping, observatories, missions and tools to assess surface water variability. Progress being made to establish a comprehensive global flood science team and coordinated response system will be highlighted.
Orbiter Return-To-Flight Entry Aeroheating
NASA Technical Reports Server (NTRS)
Campbell, Charles H.; Anderson, Brian; Bourland, Gary; Bouslog, Stan; Cassady, Amy; Horvath, Tom; Berry, Scott A.; Gnoffo, Peter; Wood, Bill; Reuther, James;
2006-01-01
The Columbia accident on February 1, 2003 began an unprecedented level of effort within the hypersonic aerothermodynamic community to support the Space Shuttle Program. During the approximately six month time frame of the primary Columbia Accident Investigation Board activity, many technical disciplines were involved in a concerted effort to reconstruct the last moments of the Columbia and her crew, and understand the critical events that led to that loss. Significant contributions to the CAIB activity were made by the hypersonic aerothermodynamic community(REF CAIB) in understanding the re-entry environments that led to the propagation of an ascent foam induced wing leading edge damage to a subsequent breech of the wing spar of Columbia, and the subsequent breakup of the vehicle. A core of the NASA hypersonic aerothermodynamics team that was involved in the CAIB investigation has been combined with the United Space Alliance and Boeing Orbiter engineering team in order to position the Space Shuttle Program with a process to perform in-flight Thermal Protection System damage assessments. This damage assessment process is now part of the baselined plan for Shuttle support, and is a direct out-growth of the Columbia accident and NASAs response. Multiple re-entry aeroheating tools are involved in this damage assessment process, many of which have been developed during the Return To Flight activity. In addition, because these aeroheating tools are part of an overall damage assessment process that also involves the thermal and stress analyses community, in addition to a much broader mission support team, an integrated process for performing the damage assessment activities has been developed by the Space Shuttle Program and the Orbiter engineering community. Several subsets of activity in the Orbiter aeroheating communities support to the Return To Flight effort have been described in previous publications (CFD?, Cavity Heating? Any BLT? Grid Generation?). This work will provide a description of the integrated process utilized to perform Orbiter tile damage assessment, and in particular will seek to provide a description of the integrated aeroheating tools utilized to perform these assessments. Individual aeroheating tools will be described which provide the nominal re-entry heating environment characterization for the Orbiter, the heating environments for tile damage, heating effects due to exposed Thermal Protection System substrates, the application of Computational Fluid Dynamics for the description of tile cavity heating, and boundary layer transition prediction. This paper is meant to provide an overall view of the integrated aeroheating assessment process for tile damage assessment as one of a sequence of papers on the development of the boundary layer transition prediction capability in support of Space Shuttle Return To Flight efforts.
Emulsions Containing Perfluorocarbon Support Cell Cultures
NASA Technical Reports Server (NTRS)
Ju, Lu-Kwang; Lee, Jaw Fang; Armiger, William B.
1990-01-01
Addition of emulsion containing perfluorocarbon liquid to aqueous cell-culture medium increases capacity of medium to support mammalian cells. FC-40 Fluorinert (or equivalent) - increases average density of medium so approximately equal to that of cells. Cells stay suspended in medium without mechanical stirring, which damages them. Increases density enough to prevent cells from setting, and increases viscosity of medium so oxygen bubbled through it and nutrients stirred in with less damage to delicate cells.
DART Support for Hurricane Matthew
2016-10-18
Plant debris caused by Hurricane Matthew is strewn across the dune line along the Atlantic shoreline at NASA’s Kennedy Space Center in Florida. Although some sections of shoreline suffered erosion, recently restored portions of beach fared well. Hurricane Matthew, a Category 3 storm, passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion.
Structures and Materials Experimental Facilities and Capabilities Catalog
NASA Technical Reports Server (NTRS)
Horta, Lucas G. (Compiler); Kurtz-Husch, Jeanette D. (Compiler)
2000-01-01
The NASA Center of Excellent for Structures and Materials at Langley Research Center is responsible for conducting research and developing useable technology in the areas of advanced materials and processing technologies, durability, damage tolerance, structural concepts, advanced sensors, intelligent systems, aircraft ground operations, reliability, prediction tools, performance validation, aeroelastic response, and structural dynamics behavior for aerospace vehicles. Supporting the research activities is a complementary set of facilities and capabilities documented in this report. Because of the volume of information, the information collected was restricted in most cases to one page. Specific questions from potential customers or partners should be directed to the points of contacts provided with the various capabilities. Grouping of the equipment is by location as opposed to function. Geographical information of the various buildings housing the equipment is also provided. Since this is the first time that such an inventory is ever collected at Langley it is by no means complete. It is estimated that over 90 percent of the equipment capabilities at hand are included but equipment is continuously being updated and will be reported in the future.
Numerical and experimental investigations on cavitation erosion
NASA Astrophysics Data System (ADS)
Fortes Patella, R.; Archer, A.; Flageul, C.
2012-11-01
A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.
Tracking and Control of Gas Turbine Engine Component Damage/Life
NASA Technical Reports Server (NTRS)
Jaw, Link C.; Wu, Dong N.; Bryg, David J.
2003-01-01
This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.
DOT National Transportation Integrated Search
2011-04-01
The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt ...
NASA Technical Reports Server (NTRS)
1978-01-01
Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.
Pereira, G. F.; Mikkelsen, L. P.; McGugan, M.
2015-01-01
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model. PMID:26513653
High-power electro-optic switch technology based on novel transparent ceramic
NASA Astrophysics Data System (ADS)
Xue-Jiao, Zhang; Qing, Ye; Rong-Hui, Qu; Hai-wen, Cai
2016-03-01
A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structure Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their polarization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non-polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61137004, 61405218, and 61535014).
The use of bipolar technology in hysteroscopy.
Calabrese, Stefania; DE Alberti, Davide; Garuti, Giancarlo
2016-04-01
Bipolar technology was introduced in the hysteroscopic clinical use in 1999, by the design of both loop electrodes addressed to resectoscopic surgery and miniaturized electrodes adaptable to small-size hysteroscopes. The need of an electrolytic solution as distension medium and the spatial relationships between the active and return bipolar electrode avoid, by definition, the risks of severe electrolyte imbalance syndromes and unpredictable electrical burns, sometimes complicating monopolar surgery. The true revolution in the hysteroscopy care has achieved through the availability of mini-hysteroscopes not requiring cervical dilatation, thus limiting uterine wall damages and allowing surgeons to manage several endometrial pathologies by mini-invasive procedures using an effective electrosurgical bipolar instrumentation. Many surgical interventions, traditionally accomplished by the resectoscope in a surgical room theatre, can be now carried out in an outpatient setting without any support from anesthesia. The patients' avoidance of surgical room access and the quick return to daily activities lead to an obvious - but not fully demonstrated - improvement in the medical and social costs associated to outpatient operative hysteroscopy. In the field of resectoscopy, bipolar electrodes are clinically as effective as monopolar devices. Randomized trials showed that bipolar resectoscopic technology prevents the electrolyte imbalance observed after monopolar surgery. However, in daily clinical practice the assumedly safer profile of bipolar with respect to monopolar resectoscopy has not been demonstrated yet.
Southern California Disasters II
NASA Technical Reports Server (NTRS)
Nicholson, Heather; Todoroff, Amber L.; LeBoeuf, Madeline A.
2015-01-01
The USDA Forest Service (USFS) has multiple programs in place which primarily utilize Landsat imagery to produce burn severity indices for aiding wildfire damage assessment and mitigation. These indices provide widely-used wildfire damage assessment tools to decision makers. When the Hyperspectral Infrared Imager (HyspIRI) is launched in 2022, the sensor's hyperspectral resolution will support new methods for assessing natural disaster impacts on ecosystems, including wildfire damage to forests. This project used simulated HyspIRI data to study three southern California fires: Aspen, French, and King. Burn severity indices were calculated from the data and the results were quantitatively compared to the comparable USFS products currently in use. The final results from this project illustrate how HyspIRI data may be used in the future to enhance assessment of fire-damaged areas and provide additional monitoring tools for decision support to the USFS and other land management agencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
A new method to assess damage to RCMRFs from period elongation and Park-Ang damage index using IDA
NASA Astrophysics Data System (ADS)
Aghagholizadeh, Mehrdad; Massumi, Ali
2016-09-01
Despite a significant progress in loading and design codes of seismic resistant structures and technology improvements in building structures, the field of civil engineering is still facing critical challenges. An example of those challenges is the assessment of the state of damage that has been imposed to a structure after earthquakes of different intensities. To determine the operability of a structure and its resistance to probable future earthquakes, quick assessment of damages and determining the operability of a structure after an earthquake are crucial. Present methods to calculate damage to structures are time consuming and do not accurately provide the rate of damage. Damage estimation is important task in the fields of structural health monitoring and decision-making. This study examines the relationship between period elongation and the Park-Ang damage index. A dynamic non-linear analysis is employed with IDARC program to calculate the amount of damage and period of the current state. This new method is shown to be a quick and accurate technique for damage assessment. It is easy to calculate the period of an existing structure and changes in the period which reflects changes in the stiffness matrix.
4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy
Tomasovic, Sanja; Predojevic, Maja
2011-01-01
Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.
2014-08-01
The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.
Implications of climate change damage for agriculture: sectoral evidence from Pakistan.
Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem
2016-10-01
This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.
Online monitoring of seismic damage in water distribution systems
NASA Astrophysics Data System (ADS)
Liang, Jianwen; Xiao, Di; Zhao, Xinhua; Zhang, Hongwei
2004-07-01
It is shown that water distribution systems can be damaged by earthquakes, and the seismic damages cannot easily be located, especially immediately after the events. Earthquake experiences show that accurate and quick location of seismic damage is critical to emergency response of water distribution systems. This paper develops a methodology to locate seismic damage -- multiple breaks in a water distribution system by monitoring water pressure online at limited positions in the water distribution system. For the purpose of online monitoring, supervisory control and data acquisition (SCADA) technology can well be used. A neural network-based inverse analysis method is constructed for locating the seismic damage based on the variation of water pressure. The neural network is trained by using analytically simulated data from the water distribution system, and validated by using a set of data that have never been used in the training. It is found that the methodology provides an effective and practical way in which seismic damage in a water distribution system can be accurately and quickly located.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J H
2002-08-28
A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shownmore » that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.« less
Structural health monitoring of pipelines rehabilitated with lining technology
NASA Astrophysics Data System (ADS)
Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore
2014-03-01
Damage detection of pipeline systems is a tedious and time consuming job due to digging requirement, accessibility, interference with other facilities, and being extremely wide spread in metropolitans. Therefore, a real-time and automated monitoring system can pervasively reduce labor work, time, and expenditures. This paper presents the results of an experimental study aimed at monitoring the performance of full scale pipe lining systems, subjected to static and dynamic (seismic) loading, using Acoustic Emission (AE) technique and Guided Ultrasonic Waves (GUWs). Particularly, two damage mechanisms are investigated: 1) delamination between pipeline and liner as the early indicator of damage, and 2) onset of nonlinearity and incipient failure of the liner as critical damage state.
Investigation of Data Fusion Applied to Health Monitoring of Wind Turbine Drive train Components
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Sheng, Shuangwen
2011-01-01
The research described was performed on diagnostic tools used to detect damage to dynamic mechanical components in a wind turbine gearbox. Different monitoring technologies were evaluated by collecting vibration and oil debris data from tests performed on a "healthy" gearbox and a damaged gearbox in a dynamometer test stand located at the National Renewable Energy Laboratory. The damaged gearbox tested was removed from the field after experiencing component damage due to two losses of oil events and was retested under controlled conditions in the dynamometer test stand. Preliminary results indicate oil debris and vibration can be integrated to assess the health of the wind turbine gearbox.
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
... FEDERAL COMMUNICATIONS COMMISSION [PS Docket Nos. 11-60 and 10-92; ET Docket No. 06-119] Reliability and Continuity of Communications Networks, Including Broadband Technologies; Effects on Broadband Communications Networks of Damage or Failure of Network Equipment or Severe Overload; Independent Panel Reviewing...
Aging Systems in Aeronautics and Space Damage Tolerance in Helicopters
2000-04-01
stone-age man to ties having a technological superiority with re- acquire food , to cook it, to have better shelters, spect to other groups. whose...their quenching gave better manufacts . The about present times where we have a continu- Romans had a very efficient technology, in par- ous increase
Characterization of Depleted-Uranium Strength and Damage Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, III, George T.; Chen, Shuh-Rong; Bronkhorst, Curt A.
2012-12-17
The intent of this report is to document the status of our knowledge of the mechanical and damage behavior of Depleted Uranium(DU hereafter). This report briefly summaries the motivation of the experimental and modeling research conducted at Los Alamos National Laboratory(LANL) on DU since the early 1980’s and thereafter the current experimental data quantifying the strength and damage behavior of DU as a function of a number of experimental variables including processing, strain rate, temperature, stress state, and shock prestraining. The effect of shock prestraining on the structure-property response of DU is described and the effect on post-shock mechanical behaviormore » of DU is discussed. The constitutive experimental data utilized to support the derivation of two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, for both annealed and shock prestrained DU are detailed and the Taylor cylinder validation tests and finite-element modeling (FEM) utilized to validate these strength models is discussed. The similarities and differences in the PTW and MTS model descriptions for DU are discussed for both the annealed and shock prestrained conditions. Quasi-static tensile data as a function of triaxial constraint and spallation test data are described. An appendix additionally briefly describes low-pressure equation-of-state data for DU utilized to support the spallation experiments. The constitutive behavior of DU screw/bolt material is presented. The response of DU subjected to dynamic tensile extrusion testing as a function of temperature is also described. This integrated experimental technique is planned to provide an additional validation test in the future. The damage data as a function of triaxiality, tensile and spallation data, is thereafter utilized to support derivation of the Tensile Plasticity (TEPLA) damage model and simulations for comparison to the DU spallation data are presented. Finally, a discussion of future needs in the area of needed DU strength and damage research at LANL is presented to support the development of physically-based predictive strength and damage modeling capability.« less
Study of Earthquake Disaster Prediction System of Langfang city Based on GIS
NASA Astrophysics Data System (ADS)
Huang, Meng; Zhang, Dian; Li, Pan; Zhang, YunHui; Zhang, RuoFei
2017-07-01
In this paper, according to the status of China’s need to improve the ability of earthquake disaster prevention, this paper puts forward the implementation plan of earthquake disaster prediction system of Langfang city based on GIS. Based on the GIS spatial database, coordinate transformation technology, GIS spatial analysis technology and PHP development technology, the seismic damage factor algorithm is used to predict the damage of the city under different intensity earthquake disaster conditions. The earthquake disaster prediction system of Langfang city is based on the B / S system architecture. Degree and spatial distribution and two-dimensional visualization display, comprehensive query analysis and efficient auxiliary decision-making function to determine the weak earthquake in the city and rapid warning. The system has realized the transformation of the city’s earthquake disaster reduction work from static planning to dynamic management, and improved the city’s earthquake and disaster prevention capability.
DART Support for Hurricane Matthew
2016-10-13
Members of the Disaster Assessment and Recovery Team (DART) work on flooring repairs to the Beach House at NASA’s Kennedy Space Center in Florida. The effort is part of the spaceport’s ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
W. M. Keck Observatory primary mirror segment repair project: overview and status
NASA Astrophysics Data System (ADS)
Meeks, Robert L.; Doyle, Steve; Higginson, Jamie; Hudek, John S.; Irace, William; McBride, Dennis; Pollard, Mike; Tai, Kuochou; Von Boeckmann, Tod; Wold, Leslie; Wold, Truman
2016-07-01
The W. M. Keck Observatory Segment Repair Project is repairing stress-induced fractures near the support points in the primary mirror segments. The cracks are believed to result from deficiencies in the original design and implementation of the adhesive joints connecting the Invar support components to the ZERODUR mirror. Stresses caused by temperature cycling over 20 years of service drove cracks that developed at the glass-metal interfaces. Over the last few years the extent and cause of the cracks have been studied, and new supports have been designed. Repair of the damaged glass required development of specialized tools and procedures for: (1) transport of the segments; (2) pre-repair metrology to establish the initial condition; (3) removal of support hardware assemblies; (4) removal of the original supports; (5) grinding and re-surfacing the damaged glass areas; (6) etching to remove sub-surface damage; (7) bonding new supports; (8) re-installation of support assemblies; and (9) post-repair metrology. Repair of the first segment demonstrated the new tools and processes. On-sky measurements before and after repair verified compliance with the requirements. This paper summarizes the repair process, on-sky results, and transportation system, and also provides an update on the project status and schedule for repairing all 84 mirror segments. Strategies for maintaining quality and ensuring that repairs are done consistently are also presented.
Pain Medicines and Kidney Damage
... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive ...
NASA Technical Reports Server (NTRS)
Biaggi-Labiosa, Azlin
2016-01-01
Present an overview of the Nanotechnology Project at NASA's Game Changing Technology Industry Day. Mature and demonstrate flight readiness of CNT reinforced composites for future NASA mission applications?Sounding rocket test in a multiexperiment payload?Integrate into cold gas thruster system as propellant storage?The technology would provide the means for reduced COPV mass and improved damage tolerance and flight qualify CNT reinforced composites. PROBLEM/NEED BEING ADDRESSED:?Reduce weight and enhance the performance and damage tolerance of aerospace structuresGAME-CHANGING SOLUTION:?Improve mechanical properties of CNTs to eventually replace CFRP –lighter and stronger?First flight-testing of a CNT reinforced composite structural component as part of an operational flight systemUNIQUENESS:?CNT manufacturing methods developed?Flight qualify CNT reinforced composites
Lightning strike protection of composites
NASA Astrophysics Data System (ADS)
Gagné, Martin; Therriault, Daniel
2014-01-01
Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to lightning strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the lightning strike problematic, the regulations, the lightning damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight lightning strike protection technology.
NASA Astrophysics Data System (ADS)
Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya
2018-04-01
Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.
Assessment of infrastructure functional damages caused by natural-technological disasters
NASA Astrophysics Data System (ADS)
Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina
2013-04-01
The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline through Shkoder downtown. Goods entering in Albania from north pass through Shkoder, indeed a high traffic road that connects Albania with Montenegro and Kosovo crosses Shkoder downtown. We consider a truck overturned in downtown Shkoder during the flooding of January 2010; the gasoline transported by the truck is completely released and a pool fire develops damaging roads. We use the model CHESRM (Chemical Spill Risk Mapper) for identify the threat zones of the accident and as a basis for assessing the potential leads to functional damages to other elements of the considered system. The application of the methodology shows the potential use not only on real time emergency management or prevention but also during post-event management for the evaluation of the functional damage to the affected infrastructure (villages isolated from the rest of the network, villages unable to reach schools, hospitals or other services...) and to set a hierarchy in restoration activities, giving priority to the reconstruction of links between primary nodes.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Space shuttle solid rocket booster main parachute damage reduction team report
NASA Technical Reports Server (NTRS)
Watts, G.
1993-01-01
This report gives the findings of the space shuttle solid rocket booster main parachute damage reduction team. The purpose of the team was to investigate the causes of main parachute deployment damage and to recommend methods to eliminate or substantially reduce the damage. The team concluded that the two primary causes of significant damage during deployment are vent entanglement and contact of the parachutes with the main parachute support structure. As an inexpensive but effective step towards damage reduction, the team recommends modification of the parachute packing procedure to eliminate vent entanglement. As the most effective design change, the team recommends a pilot chute-deployed soft-pack system. Alternative concepts are also recommended that provide a major reduction in damage at a total cost lower than the pilot chute-deployed soft pack.
Reisig, Dominic D; Huseth, Anders S; Bacheler, Jack S; Aghaee, Mohammad-Amir; Braswell, Lewis; Burrack, Hannah J; Flanders, Kathy; Greene, Jeremy K; Herbert, D Ames; Jacobson, Alana; Paula-Moraes, Silvana V; Roberts, Phillip; Taylor, Sally V
2018-04-16
Evidence of practical resistance of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Bt cotton in the United States is debatable, supported with occasional reports of boll damage in the field. Our objective was to provide both empirical and long-term observational evidence of practical resistance by linking both in-season and end-of-season measurements of H. zea damage to pyramided Bt cotton bolls and to provide Cry1Ac diet-based bioassay data in support of these damage estimates. In-season boll damage from H. zea was highly correlated to end-of-season damaged bolls. Across North Carolina, Bt cotton fields with end-of-season bolls damaged by H. zea increased during 2016 compared to previous years. Elevated damage was coupled with an increase in field sprays targeting H. zea during 2016, but not related to an increase in H. zea abundance. Bioassay data indicated that there was a range of Cry1Ac susceptibility across the southeastern United States. Given the range of susceptibility to Cry1Ac across the southeastern United States, it is probable that resistant populations are common. Since H. zea is resistant to cotton expressing pyramided Cry toxins, the adoption of new cotton varieties expressing Vip3Aa will be rapid. Efforts should be made to delay resistance of H. zea to the Vip3Aa toxin to avoid foliar insecticide use.
Applications of Satellite Remote Sensing for Response to and Recovery from Meteorological Disasters
NASA Technical Reports Server (NTRS)
Molthan, Andrew I.; Burks, Jason E.; McGrath, Kevin M.; Bell, Jordan R.
2014-01-01
Numerous on-orbit satellites provide a wide range of spatial, spectral, and temporal resolutions supporting the use of their resulting imagery in assessments of disasters that are meteorological in nature. This presentation will provide an overview of recent use of Earth remote sensing by NASA's Short-term Prediction Research and Transition (SPoRT) Center in response to disaster activities in 2012 and 2013, along with case studies supporting ongoing research and development. The SPoRT Center, with support from NASA's Applied Sciences Program, has explored a variety of new applications of Earth-observing sensors to support disaster response. In May 2013, the SPoRT Center developed unique power outage composites representing the first clear sky view of damage inflicted upon Moore and Oklahoma City, Oklahoma following the devastating EF-5 tornado that occurred on May 20. Subsequent ASTER, MODIS, Landsat-7 and Landsat-8 imagery help to identify the damaged areas. Higher resolution imagery of Moore, Oklahoma were provided by commercial satellites and the recently available International Space Station (ISS) SERVIR Environmental Research and Visualization System (ISERV) instrument. New techniques are being explored by the SPoRT team in order to better identify damage visible in high resolution imagery, and to monitor ongoing recovery for Moore, Oklahoma. This presentation will provide an overview of near real-time data products developed for dissemination to SPoRT's partners in NOAA's National Weather Service, through collaboration with the USGS and other federal agencies. Specifically, it will focus on integration of various data sets within the NOAA National Weather Service Damage Assessment Toolkit, which allows meteorologists in the field to consult available satellite imagery while performing their damage assessment.
Integrated structural health monitoring
NASA Astrophysics Data System (ADS)
Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.
2001-07-01
Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, Robert; McConnell, Elizabeth
Machining methods across many industries generally require multiple operations to machine and process advanced materials, features with micron precision, and complex shapes. The resulting multiple machining platforms can significantly affect manufacturing cycle time and the precision of the final parts, with a resultant increase in cost and energy consumption. Ultrafast lasers represent a transformative and disruptive technology that removes material with micron precision and in a single step manufacturing process. Such precision results from athermal ablation without modification or damage to the remaining material which is the key differentiator between ultrafast laser technologies and traditional laser technologies or mechanical processes.more » Athermal ablation without modification or damage to the material eliminates post-processing or multiple manufacturing steps. Combined with the appropriate technology to control the motion of the work piece, ultrafast lasers are excellent candidates to provide breakthrough machining capability for difficult-to-machine materials. At the project onset in early 2012, the project team recognized that substantial effort was necessary to improve the application of ultrafast laser and precise motion control technologies (for micromachining difficult-to-machine materials) to further the aggregate throughput and yield improvements over conventional machining methods. The project described in this report advanced these leading-edge technologies thru the development and verification of two platforms: a hybrid enhanced laser chassis and a multi-application testbed.« less
A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission
2016-08-17
and Technology, ‡Department of Chemistry, ∥Department of Materials Science and Engineering, ⊥Department of Mechanical Science and Engineering, and...enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism ...delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties. Small (micrometer) scale damage in
NASA Astrophysics Data System (ADS)
Terasawa, Motoko
The Great East Japan Earthquake of March 11, 2011 caused extensive damage over a widespread area. Our hospital library, which is located in the affected area, was no exception. A large collection of books was lost, and some web content was inaccessible due to damage to the network environment. This greatly hindered our efforts to continue providing post-disaster medical information services. Information support, such as free access to databases, journals, and other online content related to the disaster areas, helped us immensely during this time. We were fortunate to have the cooperation of various medical employees and library members via social networks, such as twitter, during the process of attaining this information support.
Collocated Dataglyphs for large-message storage and retrieval
NASA Astrophysics Data System (ADS)
Motwani, Rakhi C.; Breidenbach, Jeff A.; Black, John R.
2004-06-01
In contrast to the security and integrity of electronic files, printed documents are vulnerable to damage and forgery due to their physical nature. Researchers at Palo Alto Research Center utilize DataGlyph technology to render digital characteristics to printed documents, which provides them with the facility of tamper-proof authentication and damage resistance. This DataGlyph document is known as GlyphSeal. Limited DataGlyph carrying capacity per printed page restricted the application of this technology to a domain of graphically simple and small-sized single-paged documents. In this paper the authors design a protocol motivated by techniques from the networking domain and back-up strategies, which extends the GlyphSeal technology to larger-sized, graphically complex, multi-page documents. This protocol provides fragmentation, sequencing and data loss recovery. The Collocated DataGlyph Protocol renders large glyph messages onto multiple printed pages and recovers the glyph data from rescanned versions of the multi-page documents, even when pages are missing, reordered or damaged. The novelty of this protocol is the application of ideas from RAID to the domain of DataGlyphs. The current revision of this protocol is capable of generating at most 255 pages, if page recovery is desired and does not provide enough data density to store highly detailed images in a reasonable amount of page space.
Damage tolerance certification of a fighter horizontal stabilizer
NASA Astrophysics Data System (ADS)
Huang, Jia-Yen; Tsai, Ming-Yang; Chen, Jong-Sheng; Ong, Ching-Long
1995-05-01
A review of the program for the damage tolerance certification test of a composite horizontal stabilizer (HS) of a fighter is presented. The object of this program is to certify that the fatigue life and damage tolerance strength of a damaged composite horizontal stabilizer meets the design requirements. According to the specification for damage tolerance certification, a test article should be subjected to two design lifetimes of flight-by-flight load spectra simulating the in-service fatigue loading condition for the aircraft. However, considering the effect of environmental change on the composite structure, one additional lifetime test was performed. In addition, to evaluate the possibilities for extending the service life of the structure, one more lifetime test was carried out with the spectrum increased by a factor of 1.4. To assess the feasibility and reliability of repair technology on a composite structure, two damaged areas were repaired after two lifetimes of damage tolerance test. On completion of four lifetimes of the damage tolerance test, the static residual strength was measured to check whether structural strength after repair met the requirements. Stiffness and static strength of the composite HS with and without damage were evaluated and compared.
Frequency Response Function Based Damage Identification for Aerospace Structures
NASA Astrophysics Data System (ADS)
Oliver, Joseph Acton
Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite sandwich plate model. Chapter 6 presents the final extension to experimental systems-including methods for initial baseline correlation and data reduction-and validates the algorithm on an experimental composite plate with impact damage. The final chapter deviates from development and validation of the primary algorithm to discuss development of an experimental scaled-wing test bed as part of a collaborative effort for developing structural health monitoring and prognosis technology. The dissertation concludes with an overview of technical conclusions and recommendations for future work.
Gap Junctional Coupling is Essential for Epithelial Repair in the Avian Cochlea
Nickel, Regina; Forge, Andrew
2014-01-01
The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration. PMID:25429127
Electrical Characterizations of Lightning Strike Protection Techniques for Composite Materials
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.
2009-01-01
The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from lightning strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating lightning damage on composite materials to support the development of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with lightning protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM lightning damage diagnosis research on composite materials at the NASA Langley Research Center.
Analysis of Ricefield Land Damage in Denpasar City, Bali, Indonesia
NASA Astrophysics Data System (ADS)
Suyarto, R.; Wiyanti; Dibia, I. N.
2018-02-01
Soil as a natural resource, living area, environmental media, and factors of production including biomass production that supports human life and other living beings must be preserved, on the other hand, uncontrolled biomass production activities can cause soil damage, ultimately can threaten the survival of humans and other living things. Therefore, in order to control soil damage, first must inventories the soil condition data and its damage which then visualised in soil damage potential and soil damage status. The activities of the study are the preparation of a map of the initial soil conditions and the delineation of potentially land degradation distribution. Mapping results are used as work maps for verification on the field to take soil samples and create soil damage status. In general, Denpasar City have soil damage potential at very low, low until medium rate. Soil damage status in Denpasar City generally is low damage of bulk volume, total porosity, soil permeability and electrolyte conductivity which beyond limitation thresholds.
DART Support for Hurricane Matthew
2016-10-13
Roofing materials, blown loose by Hurricane Matthew, are visible on the ground below the deck of the Beach House at NASA’s Kennedy Space Center in Florida. Members of the Disaster Assessment and Recovery Team (DART) are working on repairs to the facility following Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-13
Roofing materials, blown loose by Hurricane Matthew, lie on the ground behind the Beach House at NASA’s Kennedy Space Center in Florida. Members of the Disaster Assessment and Recovery Team (DART) are working on repairs to the facility following Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
NASA Astrophysics Data System (ADS)
Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.
2012-12-01
Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.
Method for the Preparation of Hazard Map in Urban Area Using Soil Depth and Groundwater Level
NASA Astrophysics Data System (ADS)
Kim, Sung-Wook; Choi, Eun-Kyeong; Cho, Jin Woo; Lee, Ju-Hyoung
2017-04-01
The hazard maps for predicting collapse on natural slopes consists of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as distance to drainage, drainage density, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of collapse of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual collapse points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage. Keywords: hazard map, urban area, soil depth, ground water level Acknowledgement This research was supported by a Grant from a Strategic Research Project (Horizontal Drilling and Stabilization Technologies for Urban Search and Rescue (US&R) Operation) funded by the Korea Institute of Civil Engineering and Building Technology.
Damage Detection Response Characteristics of Open Circuit Resonant (SansEC) Sensors
NASA Technical Reports Server (NTRS)
Dudley, Kenneth L.; Szatkowski, George N.; Smith, Laura J.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Wang, Chuantong; Ticatch, Larry A.; Mielnik, John J.
2013-01-01
The capability to assess the current or future state of the health of an aircraft to improve safety, availability, and reliability while reducing maintenance costs has been a continuous goal for decades. Many companies, commercial entities, and academic institutions have become interested in Integrated Vehicle Health Management (IVHM) and a growing effort of research into "smart" vehicle sensing systems has emerged. Methods to detect damage to aircraft materials and structures have historically relied on visual inspection during pre-flight or post-flight operations by flight and ground crews. More quantitative non-destructive investigations with various instruments and sensors have traditionally been performed when the aircraft is out of operational service during major scheduled maintenance. Through the use of reliable sensors coupled with data monitoring, data mining, and data analysis techniques, the health state of a vehicle can be detected in-situ. NASA Langley Research Center (LaRC) is developing a composite aircraft skin damage detection method and system based on open circuit SansEC (Sans Electric Connection) sensor technology. Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage structures, empennage structures, control surfaces and aircraft skins. SansEC sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect various types of damage in composite materials. The source cause of the in-service damage (lightning strike, impact damage, material fatigue, etc.) to the aircraft composite is not relevant. The sensor will detect damage independent of the cause. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. The unique electrical signatures (amplitude, frequency, bandwidth, and phase) are used for damage detection and diagnosis. An operational system and method would incorporate a SansEC sensor array on select areas of the aircraft exterior surfaces to form a "Smart skin" sensing surface. In this paper a new method and system for aircraft in-situ damage detection and diagnosis is presented. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. NASA LaRC has demonstrated with individual sensors that SansEC sensors can be effectively used for in-situ composite damage detection of delamination, voids, fractures, and rips. Keywords: Damage Detection, Composites, Integrated Vehicle Health Monitoring (IVHM), Aviation Safety, SansEC Sensors
An Integrated Urban Flood Analysis System in South Korea
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Min-Seok; Yoon, Tae-Hyung; Choi, Ji-Hyeok
2017-04-01
Due to climate change and the rapid growth of urbanization, the frequency of concentrated heavy rainfall has caused urban floods. As a result, we studied climate change in Korea and developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting in urban areas. This system supports synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information. As part of the measures to deal with the increase of inland flood damage, we have found it necessary to build a systematic city flood prevention system that systematizes technology to quantify flood risk as well as flood forecast, taking into consideration both inland and river water. This combined inland-river flood analysis system conducts prediction on flash rain or short-term rainfall by using radar and satellite information and performs prompt and accurate prediction on the inland flooded area. In addition, flood forecasts should be accurate and immediate. Accurate flood forecasts signify that the prediction of the watch, warning time and water level is precise. Immediate flood forecasts represent the forecasts lead time which is the time needed to evacuate. Therefore, in this study, in order to apply rainfall-runoff method to medium and small urban stream for flood forecasts, short-term rainfall forecasting using radar is applied to improve immediacy. Finally, it supports synthetic decision-making for prevention of flood disaster through real-time monitoring. Keywords: Urban Flood, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This research was supported by a grant (16AWMP-B066744-04) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.
2015-12-01
The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.
NASA Astrophysics Data System (ADS)
Wang, X.; Mauzerall, D.
2004-12-01
Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new air pollution controls implemented between 2000 and 2020, we predict health damages from air pollution exposure will quadruple and account for 8-16% of Zaozhuang's 2020 GDP. End-of-pipe controls could reduce the potential health damages from air pollution by 20% and a coal gasification polygeneration energy system could reduce it by 50% with only 24% penetration. Benefits to public health, of substantial monetary value, could be achieved in eastern China through the use of currently available end-of-pipe controls; with further development, benefits from the use of advanced coal technology could be even larger.
Lamb wave based damage detection using Matching Pursuit and Support Vector Machine classifier
NASA Astrophysics Data System (ADS)
Agarwal, Sushant; Mitra, Mira
2014-03-01
In this paper, the suitability of using Matching Pursuit (MP) and Support Vector Machine (SVM) for damage detection using Lamb wave response of thin aluminium plate is explored. Lamb wave response of thin aluminium plate with or without damage is simulated using finite element. Simulations are carried out at different frequencies for various kinds of damage. The procedure is divided into two parts - signal processing and machine learning. Firstly, MP is used for denoising and to maintain the sparsity of the dataset. In this study, MP is extended by using a combination of time-frequency functions as the dictionary and is deployed in two stages. Selection of a particular type of atoms lead to extraction of important features while maintaining the sparsity of the waveform. The resultant waveform is then passed as input data for SVM classifier. SVM is used to detect the location of the potential damage from the reduced data. The study demonstrates that SVM is a robust classifier in presence of noise and more efficient as compared to Artificial Neural Network (ANN). Out-of-sample data is used for the validation of the trained and tested classifier. Trained classifiers are found successful in detection of the damage with more than 95% detection rate.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
The Perfect Womb: Promoting Equality of (Fetal) Opportunity.
Kendal, Evie
2017-06-01
This paper aims to address how artificial gestation might affect equality of opportunity for the unborn and any resultant generation of "ectogenetic" babies. It will first explore the current legal obstacles preventing the development of ectogenesis, before looking at the benefits of allowing this technology to control fetal growth and development. This will open up a discussion of the treatment/enhancement divide regarding the use of reproductive technologies, a topic featured in various bioethical debates on the subject. Using current maternity practices in Western society as a comparator, this paper will conclude that neither naturally nor artificially gestated fetuses have interests that can conflict with those of potential parents who might want to use this technology to control fetal development. Such control may include selective implantation of embryos of a desired gender, deliberate choice of genetic traits, or maintenance of an ideal incubation environment to avoid fetal damage. Objections on the basis of disability as well as concerns regarding eugenics will be addressed. The paper will conclude that none of these objections are compelling grounds to prevent the development and use of ectogenesis technologies for the purpose of achieving specific reproductive goals, particularly when compared to current practices in pre-implantation genetic diagnosis and selective abortion on the grounds of undesired traits. As such, when deciding whether to support ectogenesis research, the enduring interests of parents must be the primary consideration, with societal concerns regarding potential misuse the only valid secondary consideration.
NASA Astrophysics Data System (ADS)
Wang, Junhua; Li, Dazhen; Wang, Bo; Yang, Jing; Yang, Houwen; Wang, Xiaoqian; Cheng, Wenyong
2017-11-01
In inertial confinement fusion, ultraviolet laser damage of the fused silica lens is an important limiting factor for load capability of the laser driver. To solve this problem, a new configuration of frequency tripling is proposed in this paper. The frequency tripling crystal is placed on downstream of the focusing lens, thus sum frequency generation of fundamental frequency light and doubling frequency light occurs in the beam convergence path. The focusing lens is only irradiated by fundamental light and doubling frequency lights. Thus, its damage threshold will increase. LiB3O5 (LBO) crystals are employed as frequency tripling crystals for its larger acceptance angle and higher damage threshold than KDP/DKDP crystals'. With the limitation of acceptance angle and crystal growth size are taken into account, the tiling scheme of LBO crystals is proposed and designed optimally to adopt to the total convergence angle of 36.0 mrad. Theoretical results indicate that 3 LBO crystals titling with different cutting angles in θ direction can meet the phase matching condition. Compared with frequency tripling of parallel beam using one LBO crystal, 83.8% (93.1% with 5 LBO crystals tiling) of the frequency tripling conversion efficiency can be obtained employing this new configuration. The results of a principle experiment also support this scheme. By employing this new design, not only the load capacity of a laser driver will be significantly improved, but also the fused silica lens can be changed to K9 glass lens which has the mature technology and low cost.
High Voltage Solar Array ARC Testing for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, T.; Vaughn, J.; Carruth, M. R.; Mikellides, I. G.; Jongeward, G. A.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.
2003-01-01
The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (112HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration "trigger" arcs as well as long duration "sustained" arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of vo!tage, (current and power. The data will be used to propose a new, high-voltage (>300 V) solar array design for which the likelihood of damage from arcing is minimal.
High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System
NASA Technical Reports Server (NTRS)
Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.
2004-01-01
The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.
The role of vision processing in prosthetic vision.
Barnes, Nick; He, Xuming; McCarthy, Chris; Horne, Lachlan; Kim, Junae; Scott, Adele; Lieby, Paulette
2012-01-01
Prosthetic vision provides vision which is reduced in resolution and dynamic range compared to normal human vision. This comes about both due to residual damage to the visual system from the condition that caused vision loss, and due to limitations of current technology. However, even with limitations, prosthetic vision may still be able to support functional performance which is sufficient for tasks which are key to restoring independent living and quality of life. Here vision processing can play a key role, ensuring that information which is critical to the performance of key tasks is available within the capability of the available prosthetic vision. In this paper, we frame vision processing for prosthetic vision, highlight some key areas which present problems in terms of quality of life, and present examples where vision processing can help achieve better outcomes.
Picosecond and femtosecond lasers for industrial material processing
NASA Astrophysics Data System (ADS)
Mayerhofer, R.; Serbin, J.; Deeg, F. W.
2016-03-01
Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.
NASA Astrophysics Data System (ADS)
Wang, Zhiqiu; Li, Ying; Wang, Jun; Zou, Mingming; Gao, Jingqun; Kong, Yumei; Li, Kai; Han, Guangxi
ZnO/hydroxylapatite (ZnO/HA) composite with HA molar content of 6.0% was prepared by the method of precipitation and heat-treated at 500 °C for 40 min and was characterized by powder X-ray diffraction (XRD). The sonocatalytic activities of ZnO/HA composite was carried out through the damage of bovine serum albumin (BSA) in aqueous solution. Furthermore, the effects of several factors on the damage of BSA molecules were evaluated by means of UV-vis and fluorescence spectra. Experimental results indicated that the damage degree of BSA aggravated with the increase of ultrasonic irradiation time, irradiation power and ZnO/HA addition amount, but weakened with the increase of solution acidity and ionic strength. In addition, the damage site to BSA was also studied by synchronous fluorescence technology and the damage site was mainly at tryptophan (Trp) residue. This paper provides a valuable reference for driving sonocatalytic method to treat tumor in clinic application.
Hashem, Joseph; Schneider, Erich; Pryor, Mitch; ...
2017-01-01
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
NASA Astrophysics Data System (ADS)
Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia
2018-04-01
The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashem, Joseph; Schneider, Erich; Pryor, Mitch
Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less
Develop an piezoelectric sensing based on SHM system for nuclear dry storage system
NASA Astrophysics Data System (ADS)
Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu
2016-04-01
In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.
3D Lasers Increase Efficiency, Safety of Moving Machines
NASA Technical Reports Server (NTRS)
2015-01-01
Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.
NASA Technical Reports Server (NTRS)
Taminger, Karen M.
2008-01-01
The technological inception and challenges, as well as current applications of the electron beam freeform fabrication (EBF3) process are outlined. The process was motivated by the need for a new metals technology that would be cost-effective, enable the production of new alloys and that would could be used for efficient, lightweight structures. EBF3 is a rapid metal fabrication, layer-additive process that uses no molds or tools and which yields properties equivalent to wrought. The benefits of EBF3 include it near-net shape which minimizes scrap and reduces part count; efficiency in design which allows for lighter weight and enhanced performance; and, its "green" manufacturing process which yields minimal waste products. EBF3 also has a high tensile strength, while a structural test comparison found that EBF3 panels performed 5% lower than machined panels. Technical challenges in the EBF3 process include a need for process control monitoring and an improvement in localized heat response. Currently, the EBF3 process can be used to add details onto forgings and to construct and form complex shapes. However, it has potential uses in a variety of industries including aerospace, automotive, sporting goods and medical implant devices. The novel structural design capabilities of EBF3 have the ability to yield curved stiffeners which may be optimized for performance, low weight, low noise and damage tolerance applications. EBF3 has also demonstrated its usefulness in 0-gravity environments for supportability in space applications.
Disaster Response Tools for Decision Support and Data Discovery - E-DECIDER and GeoGateway
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Donnellan, A.; Parker, J. W.; Granat, R. A.; Lyzenga, G. A.; Pierce, M. E.; Wang, J.; Grant Ludwig, L.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.
2015-12-01
Providing actionable data for situational awareness following an earthquake or other disaster is critical to decision makers in order to improve their ability to anticipate requirements and provide appropriate resources for response. E-DECIDER (Emergency Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response) is a decision support system producing remote sensing and geophysical modeling products that are relevant to the emergency preparedness and response communities and serves as a gateway to enable the delivery of actionable information to these communities. GeoGateway is a data product search and analysis gateway for scientific discovery, field use, and disaster response focused on NASA UAVSAR and GPS data that integrates with fault data, seismicity and models. Key information on the nature, magnitude and scope of damage, or Essential Elements of Information (EEI), necessary to achieve situational awareness are often generated from a wide array of organizations and disciplines, using any number of geospatial and non-geospatial technologies. We have worked in partnership with the California Earthquake Clearinghouse to develop actionable data products for use in their response efforts, particularly in regularly scheduled, statewide exercises like the recent May 2015 Capstone/SoCal NLE/Ardent Sentry Exercises and in the August 2014 South Napa earthquake activation. We also provided a number of products, services, and consultation to the NASA agency-wide response to the April 2015 Gorkha, Nepal earthquake. We will present perspectives on developing tools for decision support and data discovery in partnership with the Clearinghouse and for the Nepal earthquake. Products delivered included map layers as part of the common operational data plan for the Clearinghouse, delivered through XchangeCore Web Service Data Orchestration, enabling users to create merged datasets from multiple providers. For the Nepal response effort, products included models, damage and loss estimates, and aftershock forecasts that were posted to a NASA information site and delivered directly to end-users such as USAID, OFDA, World Bank, and UNICEF.
Li, Dongsheng; Ou, Jinping; Lan, Chengming; Li, Hui
2012-01-01
Cables play an important role in cable-stayed systems, but are vulnerable to corrosion and fatigue damage. There is a dearth of studies on the fatigue damage evolution of corroded cable. In the present study, the acoustic emission (AE) technology is adopted to monitor the fatigue damage evolution process. First, the relationship between stress and strain is determined through a tensile test for corroded and non-corroded steel wires. Results show that the mechanical performance of corroded cables is changed considerably. The AE characteristic parameters for fatigue damage are then established. AE energy cumulative parameters can accurately describe the fatigue damage evolution of corroded cables. The failure modes in each phase as well as the type of acoustic emission source are determined based on the results of scanning electron microscopy. The waveform characteristics, damage types, and frequency distribution of the corroded cable at different damage phases are collected. Finally, the number of broken wires and breakage time of the cables are determined according to the variation in the margin index. PMID:22666009
NASA Astrophysics Data System (ADS)
Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang
2015-01-01
Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.
Damage Detection Using Lamb Waves for Structural Health Monitoring
2007-03-01
experiments have been reported by Seth Kessler [8]. 2.2 Large Aluminum Plate The second experiment included a 2024-0 aluminum plate with dimensions of...Mechanical Engineering Congress , (IMECE2002- 39017) (17-22 November 2002). 6. Kessler , Seth S. Piezoelectric-Based In-Situ Damage Detection of...Composite Materials for Structural Health Monitoring Systems. Ph.D. thesis, Massachusetts Institute of Technology, January 2002. 7. Kessler , Seth S. “Metis
Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom
2011-09-01
other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic
Potential System Vulnerabilities of a Network Enabled Force
2004-09-01
of trust in information, loss of context and awareness of others’ needs and reduction of social cohesion . Science - (more specifically systems...and Technology Damaging Social Cohesion NCW champions the concept of dispersed forces as a means to generate effects through approaches other than...Mission Grouping Damaging Social Cohesion This is a slight variation on the vulnerability expressed in 3.9.6 above. If we have agility in mission
24 CFR 3280.603 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... to the weather, water, mud, and road hazard, and subject to damage therefrom, shall be painted, coated, wrapped, or otherwise protected from deterioration. (3) Road damage. Pipes, supports, drains... imperfections in materials shall not be concealed by welding, brazing, or soldering or by paint, wax, tar, or...
NASA Technical Reports Server (NTRS)
Bibb, Karen L.; Prabhu, Ramadas K.
2004-01-01
In support of the Columbia Accident Investigation, inviscid computations of the aerodynamic characteristics for various Shuttle Orbiter damage scenarios were performed using the FELISA unstructured CFD solver. Computed delta aerodynamics were compared with the reconstructed delta aerodynamics in order to postulate a progression of damage through the flight trajectory. By performing computations at hypervelocity flight and CF4 tunnel conditions, a bridge was provided between wind tunnel testing in Langley's 20-Inch CF4 facility and the flight environment experienced by Columbia during re-entry. The rapid modeling capability of the unstructured methodology allowed the computational effort to keep pace with the wind tunnel and, at times, guide the wind tunnel efforts. These computations provided a detailed view of the flowfield characteristics and the contribution of orbiter components (such as the vertical tail and wing) to aerodynamic forces and moments that were unavailable from wind tunnel testing. The damage scenarios are grouped into three categories. Initially, single and multiple missing full RCC panels were analyzed to determine the effect of damage location and magnitude on the aerodynamics. Next is a series of cases with progressive damage, increasing in severity, in the region of RCC panel 9. The final group is a set of wing leading edge and windward surface deformations that model possible structural deformation of the wing skin due to internal heating of the wing structure. By matching the aerodynamics from selected damage scenarios to the reconstructed flight aerodynamics, a progression of damage that is consistent with the flight data, debris forensics, and wind tunnel data is postulated.
NASA Astrophysics Data System (ADS)
Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.
2018-01-01
Large alpine rock slopes undergo long-term evolution in paraglacial to postglacial environments. Rock mass weakening and increased permeability associated with the progressive failure of deglaciated slopes promote the development of potentially catastrophic rockslides. We captured the entire life cycle of alpine slopes in one damage-based, time-dependent 2-D model of brittle creep, including deglaciation, damage-dependent fluid occurrence, and rock mass property upscaling. We applied the model to the Spriana rock slope (Central Alps), affected by long-term instability after Last Glacial Maximum and representing an active threat. We simulated the evolution of the slope from glaciated conditions to present day and calibrated the model using site investigation data and available temporal constraints. The model tracks the entire progressive failure path of the slope from deglaciation to rockslide development, without a priori assumptions on shear zone geometry and hydraulic conditions. Complete rockslide differentiation occurs through the transition from dilatant damage to a compacting basal shear zone, accounting for observed hydraulic barrier effects and perched aquifer formation. Our model investigates the mechanical role of deglaciation and damage-controlled fluid distribution in the development of alpine rockslides. The absolute simulated timing of rock slope instability development supports a very long "paraglacial" period of subcritical rock mass damage. After initial damage localization during the Lateglacial, rockslide nucleation initiates soon after the onset of Holocene, whereas full mechanical and hydraulic rockslide differentiation occurs during Mid-Holocene, supporting a key role of long-term damage in the reported occurrence of widespread rockslide clusters of these ages.
Built-in active sensing diagnostic system for civil infrastructure systems
NASA Astrophysics Data System (ADS)
Wu, Fan; Chang, Fu-Kuo
2001-07-01
A reliable, robust monitoring system can improve the maintenance of and provide safety protection for civil structures and therefore prolong their service lives. A built-in, active sensing diagnostic technique for civil structures has been under investigation. In this technique, piezoelectric materials are used as sensors/actuators to receive and generate signals. The transducers are embedded in reinforced concrete (RC) beams and are designed to detect damage, particularly debonding damage between the reinforcing bars and concrete. This paper presents preliminary results from a feasibility study of the technology. Laboratory experiments performed on RC beams, with piezo-electric sensors and actuators mounted on reinforced steel bars, have clearly demonstrated that the proposed technique could detect debonding damage. Analytical work, using a special purpose finite-element software, PZFlex, was also conducted to interpret the relationship between the measured data and actual debonding damage. Effectiveness of the proposed technique for detecting debonding damage in civil structures has been demonstrated.
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model
NASA Astrophysics Data System (ADS)
Wen, Y.; Chen, Z. H.; Zang, Y.
2013-11-01
In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.
Structural Health Monitoring of Large Structures
NASA Technical Reports Server (NTRS)
Kim, Hyoung M.; Bartkowicz, Theodore J.; Smith, Suzanne Weaver; Zimmerman, David C.
1994-01-01
This paper describes a damage detection and health monitoring method that was developed for large space structures using on-orbit modal identification. After evaluating several existing model refinement and model reduction/expansion techniques, a new approach was developed to identify the location and extent of structural damage with a limited number of measurements. A general area of structural damage is first identified and, subsequently, a specific damaged structural component is located. This approach takes advantage of two different model refinement methods (optimal-update and design sensitivity) and two different model size matching methods (model reduction and eigenvector expansion). Performance of the proposed damage detection approach was demonstrated with test data from two different laboratory truss structures. This space technology can also be applied to structural inspection of aircraft, offshore platforms, oil tankers, ridges, and buildings. In addition, its applications to model refinement will improve the design of structural systems such as automobiles and electronic packaging.
Strain Rate and Stress Triaxiality Effects on Ductile Damage of Additive Manufactured TI-6AL-4V
NASA Astrophysics Data System (ADS)
Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone
2017-06-01
In this work, the effects of strain rate and stress triaxiality on ductile damage of additive manufactured Ti-6Al-4V, also considering the build direction, were investigated. Raw material was manufactured by means of EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technology, and machined to obtain round notched bar and Rod-on-Rod (RoR) specimens. Tensile tests on round notched bar specimens were performed in a wide range of strain rates. The failure strains at different stress triaxiality were used to calibrate the Bonora Damage Model. In order to design the RoR tests, numerical simulations were performed for assessing velocities at which incipient and fully developed damage occur. Tests at selected velocities were carried out and soft-recovered specimens were sectioning and polishing to observe the developed damage. Nucleated voids maps were compared with numerical simulations results.
Operational flash flood forecasting platform based on grid technology
NASA Astrophysics Data System (ADS)
Thierion, V.; Ayral, P.-A.; Angelini, V.; Sauvagnargues-Lesage, S.; Nativi, S.; Payrastre, O.
2009-04-01
Flash flood events of south of France such as the 8th and 9th September 2002 in the Grand Delta territory caused important economic and human damages. Further to this catastrophic hydrological situation, a reform of flood warning services have been initiated (set in 2006). Thus, this political reform has transformed the 52 existing flood warning services (SAC) in 22 flood forecasting services (SPC), in assigning them territories more hydrological consistent and new effective hydrological forecasting mission. Furthermore, national central service (SCHAPI) has been created to ease this transformation and support local services in their new objectives. New functioning requirements have been identified: - SPC and SCHAPI carry the responsibility to clearly disseminate to public organisms, civil protection actors and population, crucial hydrologic information to better anticipate potential dramatic flood event, - a new effective hydrological forecasting mission to these flood forecasting services seems essential particularly for the flash floods phenomenon. Thus, models improvement and optimization was one of the most critical requirements. Initially dedicated to support forecaster in their monitoring mission, thanks to measuring stations and rainfall radar images analysis, hydrological models have to become more efficient in their capacity to anticipate hydrological situation. Understanding natural phenomenon occuring during flash floods mainly leads present hydrological research. Rather than trying to explain such complex processes, the presented research try to manage the well-known need of computational power and data storage capacities of these services. Since few years, Grid technology appears as a technological revolution in high performance computing (HPC) allowing large-scale resource sharing, computational power using and supporting collaboration across networks. Nowadays, EGEE (Enabling Grids for E-science in Europe) project represents the most important effort in term of grid technology development. This paper presents an operational flash flood forecasting platform which have been developed in the framework of CYCLOPS European project providing one of virtual organizations of EGEE project. This platform has been designed to enable multi-simulations processes to ease forecasting operations of several supervised watersheds on Grand Delta (SPC-GD) territory. Grid technology infrastructure, in providing multiple remote computing elements enables the processing of multiple rainfall scenarios, derived to the original meteorological forecasting transmitted by Meteo-France, and their respective hydrological simulations. First results show that from one forecasting scenario, this new presented approach can permit simulations of more than 200 different scenarios to support forecasters in their aforesaid mission and appears as an efficient hydrological decision-making tool. Although, this system seems operational, model validity has to be confirmed. So, further researches are necessary to improve models core to be more efficient in term of hydrological aspects. Finally, this platform could be an efficient tool for developing others modelling aspects as calibration or data assimilation in real time processing.
Atefi, Seyed Reza; Seoane, Fernando; Kamalian, Shervin; Rosenthal, Eric S.; Lev, Michael H.; Bonmassar, Giorgio
2016-01-01
Purpose: Current diagnostic neuroimaging for detection of intracranial hemorrhage (ICH) is limited to fixed scanners requiring patient transport and extensive infrastructure support. ICH diagnosis would therefore benefit from a portable diagnostic technology, such as electrical bioimpedance (EBI). Through simulations and patient observation, the authors assessed the influence of unilateral ICH hematomas on quasisymmetric scalp potential distributions in order to establish the feasibility of EBI technology as a potential tool for early diagnosis. Methods: Finite element method (FEM) simulations and experimental left–right hemispheric scalp potential differences of healthy and damaged brains were compared with respect to the asymmetry caused by ICH lesions on quasisymmetric scalp potential distributions. In numerical simulations, this asymmetry was measured at 25 kHz and visualized on the scalp as the normalized potential difference between the healthy and ICH damaged models. Proof-of-concept simulations were extended in a pilot study of experimental scalp potential measurements recorded between 0 and 50 kHz with the authors’ custom-made bioimpedance spectrometer. Mean left–right scalp potential differences recorded from the frontal, central, and parietal brain regions of ten healthy control and six patients suffering from acute/subacute ICH were compared. The observed differences were measured at the 5% level of significance using the two-sample Welch t-test. Results: The 3D-anatomically accurate FEM simulations showed that the normalized scalp potential difference between the damaged and healthy brain models is zero everywhere on the head surface, except in the vicinity of the lesion, where it can vary up to 5%. The authors’ preliminary experimental results also confirmed that the left–right scalp potential difference in patients with ICH (e.g., 64 mV) is significantly larger than in healthy subjects (e.g., 20.8 mV; P < 0.05). Conclusions: Realistic, proof-of-concept simulations confirmed that ICH affects quasisymmetric scalp potential distributions. Pilot clinical observations with the authors’ custom-made bioimpedance spectrometer also showed higher left–right potential differences in the presence of ICH, similar to those of their simulations, that may help to distinguish healthy subjects from ICH patients. Although these pilot clinical observations are in agreement with the computer simulations, the small sample size of this study lacks statistical power to exclude the influence of other possible confounders such as age, sex, and electrode positioning. The agreement with previously published simulation-based and clinical results, however, suggests that EBI technology may be potentially useful for ICH detection. PMID:26843231
Diamond, Richard D.; Clark, Robert A.
1982-01-01
Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative mechanisms in damage to hyphae. In contrast, neutrophils from one patient with hereditary myeloperoxidase deficiency damaged R. oryzae but not A. fumigatus hyphae. Cell-free, in vitro systems were then used to help determine the relative importance of several potentially fungicidal products of neutrophils. Both A. fumigatus and R. oryzae hyphae were damaged by the myeloperoxidase-hydrogen peroxide-halide system either with reagent hydrogen peroxide or enzymatic systems for generating hydrogen peroxide (glucose oxidase with glucose, or xanthine oxidase with either hypoxanthine or acetaldehyde). Iodide with or without chloride supported the reaction, but damage was less with chloride alone as the halide cofactor. Hydrogen peroxide alone damaged hyphae only in concentrations ≥1 mM, but 0.01 mM hypochlorous acid, a potential product of the myeloperoxidase system, significantly damaged R. oryzae hyphae (a 1 mM concentration was required for significant damage to A. fumigatus hyphae). Damage to hyphae by the myeloperoxidase system was inhibited by azide, cyanide, catalase, histidine, and tryptophan, but not by superoxide dismutase, dimethyl sulfoxide, or mannitol. Photoactivation of the dye rose bengal resulted in hyphal damage which was inhibited by histidine, tryptophan, and 1,4-diazobicyclo(2,2,2)octane. Lysates of neutrophils or separated neutrophil granules did not affect A. fumigatus hyphae, but did damage R. oryzae hyphae. Similarly, three preparations of cationic proteins purified from human neutrophil granules were more active in damaging R. oryzae than A. fumigatus hyphae. This damage, as with the separated granules and whole cell lysates, was inhibited by the polyanion heparin. Damage to R. oryzae hyphae by neutrophil cationic proteins was enhanced by activity of the complete myeloperoxidase system or by hydrogen peroxide alone in subinhibitory concentrations. These data support the importance of oxidative products in general and the myeloperoxidase system in particular in damage to hyphae by neutrophils. Cationic proteins may also contribute significantly to neutrophil-mediated damage to R. oryzae hyphae. PMID:6292103
Dong, Yibo; Xie, Yiyang; Xu, Chen; Fu, Yafei; Fan, Xing; Li, Xuejian; Wang, Le; Xiong, Fangzhu; Guo, Weiling; Pan, Guanzhong; Wang, Qiuhua; Qian, Fengsong; Sun, Jie
2018-06-14
Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO 2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
NASA Astrophysics Data System (ADS)
Ferreira, Nadja; Andrade, Jennifer; Mc Leod, Roger D.
2007-04-01
Youthful females and other disadvantaged minority members sometimes develop visual handicaps when educational and/or other stressors are present. Special methods already available, effective, and underutilized, can be marshaled towards correcting current technologic and academic systems demand-supply mismatches in the sciences. More efficient harvesting of intellectually advantaged youthful students may represent more-highly-productive global scientific output. RDM has found that it is possible to motivate, stimulate, teach, and foster increased science interest by interacting with students at the earliest possible academic moments. The same applied optics of burning paper with a magnifying glass, and prismatic dispersing of light, allows understanding how vision operates, and can be damaged. Providing information to all students that they safely can self-repair damaged vision could only increase their interest in physics and special work-study programs. ``Indians'' are the most poorly represented group at all levels of education and its support services. MOLLOCKET/MULLAH indicates extra-human/higher-power interactions. Why? Obvious survival value suggests possible information-transmission attempts like those accessed by ``Indians.'' To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.2
Textile composite fuselage structures development
NASA Technical Reports Server (NTRS)
Jackson, Anthony C.; Barrie, Ronald E.; Chu, Robert L.
1993-01-01
Phase 2 of the NASA ACT Contract (NAS1-18888), Advanced Composite Structural Concepts and Materials Technology for Transport Aircraft Structures, focuses on textile technology, with resin transfer molding or powder coated tows. The use of textiles has the potential for improving damage tolerance, reducing cost and saving weight. This program investigates resin transfer molding (RTM), as a maturing technology for high fiber volume primary structures and powder coated tows as an emerging technology with a high potential for significant cost savings and superior structural properties. Powder coated tow technology has promise for significantly improving the processibility of high temperature resins such as polyimides.
Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)
NASA Technical Reports Server (NTRS)
Ellis, Rod
2000-01-01
The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.
Guaranteeing robustness of structural condition monitoring to environmental variability
NASA Astrophysics Data System (ADS)
Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François
2017-01-01
Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28-2015, LA-UR-15-28442, unclassified.)
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams. PMID:22778590
Lan, Chunguang; Zhou, Zhi; Ou, Jinping
2012-01-01
For the safety of prestressed structures, prestress loss is a critical issue that will increase with structural damage, so it is necessary to investigate prestress loss of prestressed structures under different damage scenarios. Unfortunately, to date, no qualified techniques are available due to difficulty for sensors to survive in harsh construction environments of long service life and large span. In this paper, a novel smart steel strand based on the Brillouin optical time domain analysis (BOTDA) sensing technique was designed and manufactured, and then series of tests were used to characterize properties of the smart steel strands. Based on prestress loss principle analysis of damaged structures, laboratory tests of two similar beams with different damages were used to verify the concept of full-scale prestress loss monitoring of damaged reinforced concrete (RC) beams by using the smart steel strands. The prestress losses obtained from the Brillouin sensors are compared with that from conventional sensors, which provided the evolution law of prestress losses of damaged RC beams. The monitoring results from the proposed smart strand can reveal both spatial distribution and time history of prestress losses of damaged RC beams.
The United States should forego a damage-limitation capability against China
NASA Astrophysics Data System (ADS)
Glaser, Charles L.
2017-11-01
Bottom Lines • THE KEY STRATEGIC NUCLEAR CHOICE. Whether to attempt to preserve its damage-limitation capability against China is the key strategic nuclear choice facing the United States. The answer is much less clear-cut than when the United States faced the Soviet Union during the Cold War. • FEASIBILITY OF DAMAGE LIMITATION. Although technology has advanced significantly over the past three decades, future military competition between the U.S. and Chinese forces will favor large-scale nuclear retaliation over significant damage limitation. • BENEFITS AND RISKS OF A DAMAGE-LIMITATION CAPABILITY. The benefits provided by a modest damage-limitation capability would be small, because the United States can meet its most important regional deterrent requirements without one. In comparison, the risks, which include an increased probability of accidental and unauthorized Chinese attacks, as well as strained U.S.—China relations, would be large. • FOREGO DAMAGE LIMITATION. These twin findings—the poor prospects for prevailing in the military competition, and the small benefits and likely overall decrease in U.S. security—call for a U.S. policy that foregoes efforts to preserve or enhance its damage-limitation capability.
Luh, Jeanne; Royster, Sarah; Sebastian, Daniel; Ojomo, Edema; Bartram, Jamie
2017-08-15
We conducted an expert assessment to obtain expert opinions on the relative global resilience of ten drinking water and five sanitation technologies to the following six climate-related hazards: drought, decreased inter-annual precipitation, flood, superstorm flood, wind damage, and saline intrusion. Resilience scores ranged from 1.7 to 9.9 out of a maximum resilience of 10, with high scores corresponding to high resilience. We find that for some climate-related hazards, such as drought, technologies demonstrated a large range in resilience, indicating that the choice of water and sanitation technologies is important for areas prone to drought. On the other hand, the range of resilience scores for superstorm flooding was much smaller, particularly for sanitation technologies, suggesting that the choice of technology is less of a determinant of functionality for superstorm flooding as compared to other climate-related hazards. For drinking water technologies, only treated piped utility-managed systems that use surface water had resilience scores >6.0 for all hazards, while protected dug wells were found to be one of the least resilient technologies, consistently scoring <5.0 for all hazards except wind damage. In general, sanitation technologies were found to have low to medium resilience, suggesting that sanitation systems need to be adapted to ensure functionality during and after climate-related hazards. The results of the study can be used to help communities decide which technologies are best suited for the climate-related challenges they face and help in future adaptation planning. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
Accomplishments for the past quarter are presented for the following tasks: Chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; and novel technology. A list of available publication is also provided.
Aldiss, Susie; Baggott, Christina; Gibson, Faith; Mobbs, Sarah; Taylor, Rachel M
2015-01-01
Advances in technology have offered health professionals alternative mediums of providing support to patients with long-term conditions. This critical review evaluated and assessed the benefit of electronic media technologies in supporting children and young people with long-term conditions. Of 664 references identified, 40 met the inclusion criteria. Supportive technology tended to increase disease-related knowledge and improve aspects of psychosocial function. Supportive technology did not improve quality of life, reduce health service use or decrease school absences. The poor methodological quality of current evidence and lack of involvement of users in product development contribute to the uncertainty that supportive technology is beneficial. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei
2017-08-01
How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.
Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I
Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.
van der Kamp, Jonathan; Bachmann, Till M
2015-03-03
"Getting the prices right" through internalizing external costs is a guiding principle of environmental policy making, one recent example being the EU Clean Air Policy Package released at the end of 2013. It is supported by impact assessments, including monetary valuation of environmental and health damages. For over 20 years, related methodologies have been developed in Europe in the Externalities of Energy (ExternE) project series and follow-up activities. In this study, we aim at analyzing the main methodological developments over time from the 1990s until today with a focus on classical air pollution-induced human health damage costs. An up-to-date assessment including the latest European recommendations is also applied. Using a case from the energy sector, we identify major influencing parameters: differences in exposure modeling and related data lead to variations in damage costs of up to 21%; concerning risk assessment and monetary valuation, differences in assessing long-term exposure mortality risks together with assumptions on particle toxicity explain most of the observed changes in damage costs. These still debated influencing parameters deserve particular attention when damage costs are used to support environmental policy making.
NASA Astrophysics Data System (ADS)
Nezry, Edmond; Romeijn, Paul P.; Sarti, Francesco; Inglada, Jordi; Zagolski, Francis; Yakam-Simen, Francis
2002-01-01
On January 13th 2001, a very strong earthquake struck El-Salvador, causing almost 1000 deaths and huge destruction, leaving more than one million people homeless. As support to the rescue teams, a project was initiated to provide up-to date maps and to identify damages to housing and infrastructures, covering the whole country. Based on the analysis of SPOT Panchromatic satellite imagery, updated maps were delivered to the rescue teams within 72 hours after the earthquake. In addition, during the 10 days following the earthquake, high resolution mapping of the damages was carried out in cooperation and coordination with rescue teams and relief organizations. Some areas of particular interest were even processed and damage maps delivered through the Internet, three hours after the request. For the first time in the history of spaceborne Earth observation, identification and evaluation of the damages were delivered on-site, in real-time (during the interventions), to local authorities, rescue teams and humanitarian organizations. In this operation, operating 24 hours a day and technical ability were the keys for success and contributed to saving lives.
Hurricane Matthew Damage Survey
2016-10-08
Damage to a facility roof is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed
Hurricane Matthew Damage Survey
2016-10-08
Damaged power lines are seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
Hurricane Matthew Damage Survey
2016-10-08
Damage to a facility roof is seen during an aerial survey of NASA's Kennedy Space Center in Florida on Saturday. The survey was performed to identify structures and facilities that may have sustained damage from Hurricane Matthew as the storm passed to the east of Kennedy on Oct. 6 and 7, 2016. Officials determined that the center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected. NASA closed the center ahead of the storm’s onset and only a small team of specialists known as the Rideout Team was on the center as the storm approached and passed.
ERIC Educational Resources Information Center
Lee, K.; Tsai, P.-S.; Chai, C. S.; Koh, J. H. L.
2014-01-01
This study explored students' perceptions of self-directed learning (SDL) and collaborative learning (CL) with/without technology in an information and communications technology-supported classroom environment. The factors include SDL, CL, SDL supported by technology, and CL supported by technology. Based on the literature review, this study…
Opportunities to integrate new approaches in genetic toxicology: an ILSI-HESI workshop report.
Zeiger, Errol; Gollapudi, Bhaskar; Aardema, Marilyn J; Auerbach, Scott; Boverhof, Darrell; Custer, Laura; Dedon, Peter; Honma, Masamitsu; Ishida, Seiichi; Kasinski, Andrea L; Kim, James H; Manjanatha, Mugimane G; Marlowe, Jennifer; Pfuhler, Stefan; Pogribny, Igor; Slikker, William; Stankowski, Leon F; Tanir, Jennifer Y; Tice, Raymond; van Benthem, Jan; White, Paul; Witt, Kristine L; Thybaud, Véronique
2015-04-01
Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided. © 2014 Wiley Periodicals, Inc.
Svanberg, Jenny; Evans, Jonathan J
2014-01-01
This study aimed to investigate the impact of SenseCam, a wearable, automatic camera, on subjective mood and identity in a patient with severe memory impairment due to Korsakoff's syndrome. It was hypothesised that SenseCam would improve Ms A's mood and identity through enhancing recall of autobiographical memories of recent events, therefore supporting a coherent sense of self; the lack of which was contributing to Ms A's mood deterioration. An ABA single case experimental design investigated whether using SenseCam to record regular activities impacted on Ms A's mood and identity. Ms A experienced improved recall for events recorded using SenseCam, and showed improvement on subjective ratings of identity. However, a corresponding improvement in mood was not seen, and the study was ended early at Ms A's request. Qualitative information was gathered to explore Ms A's experience of the study, and investigate psychosocial factors that may have impacted on the use of SenseCam. SenseCam may be of significant use as a compensatory memory aid for people with Korsakoff's syndrome and other types of alcohol-related brain damage (ARBD), but acceptance of memory impairment and consistent support may be among the factors required to support the use of such assistive technologies in a community setting.
Design project: LONGBOW supersonic interceptor
NASA Technical Reports Server (NTRS)
Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark
1993-01-01
A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.
Economic analysis requirements in support of orbital debris regulatory policy
NASA Astrophysics Data System (ADS)
Greenberg, Joel S.
1996-10-01
As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.
Advancements in mechanical circulatory support for patients in acute and chronic heart failure
Csepe, Thomas A.
2017-01-01
Cardiogenic shock (CS) continues to have high mortality and morbidity despite advances in pharmacological, mechanical, and reperfusion approaches to treatment. When CS is refractory to medical therapy, percutaneous mechanical circulatory support (MCS) should be considered. Acute MCS devices, ranging from intra-aortic balloon pumps (IABPs) to percutaneous temporary ventricular assist devices (VAD) to extracorporeal membrane oxygenation (ECMO), can aid, restore, or maintain appropriate tissue perfusion before the development of irreversible end-organ damage. Technology has improved patient survival to recovery from CS, but in patients whom cardiac recovery does not occur, acute MCS can be effectively utilized as a bridge to long-term MCS devices and/or heart transplantation. Heart transplantation has been limited by donor heart availability, leading to a greater role of left ventricular assist device (LVAD) support. In patients with biventricular failure that are ineligible for LVAD implantation, further advancements in the total artificial heart (TAH) may allow for improved survival compared to medical therapy alone. In this review, we discuss the current state of acute and durable MCS, ongoing advances in LVADs and TAH devices, improved methods of durable MCS implantation and patient selection, and future MCS developments in this dynamic field that may allow for optimization of HF treatment. PMID:29268418
NASA Astrophysics Data System (ADS)
Yamazaki, Hiroshi; Koyama, Yuya; Watanabe, Kazuhiro
2014-05-01
Tactile sensing technology can measure a given property of an object through physical contact between a sensing element and the object. Various tactile sensing techniques have been developed for several applications such as intelligent robots, tactile interface, medical support and nursing care support. A desirable tactile sensing element for supporting human daily life can be embedded in the soft material with high sensitivity and accuracy in order to prevent from damaging to human or object physically. This report describes a new tactile sensing element. Hetero-core optical fibers have high sensitivity of macro-bending at local sensor portion and temperature independency, including advantages of optical fiber itself; thin size, light weight, flexible transmission line, and immunity to electro-magnetic interference. The proposed tactile sensing element could detect textures of touched objects through the optical loss caused by the force applied to the sensing element. The characteristics of the sensing element have been evaluated, in which the sensing element has the monotonic and non-linear sensitivity against the normal force ranged from 0 to 5 N with lower accuracy than 0.25 dB. Additionally, texture detection have been successfully demonstrated in which small surface figures of 0.1 mm in height were detected with spatial resolution of 0.4 mm.
A Proposal to Integrate the Management of Electronic Waste into the Curriculum of Primary Schools
ERIC Educational Resources Information Center
de Jager, Thelma
2015-01-01
Today's children are growing up in an environmentally damaged and technology orientated world. The advent and advances of technology, has resulted in the production of millions of electronic devices, which eventually become waste when they reach their end-of-life. These devices contain toxic components that are not only polluting the environment…
SwiftLase: a new technology for char-free ablation in rectal surgery
NASA Astrophysics Data System (ADS)
Arnold, David A.
1995-05-01
We describe layer-by-layer char-free ablation of hemorrhoids and other rectal lesions at very low CO2 laser power levels with a miniature `SwiftLaser' optomechanical flashscanner. Increased speed with excellent control, very shallow thermal damage, and less postoperative pain are the main advantages of the flashscan technology in rectal surgery.
A Paper Chase: Technology Helps Library Save Its Collections on Paper.
ERIC Educational Resources Information Center
Dalrymple, Will
1997-01-01
Bookkeeper, a liquid-based mass deacidification technology, may help the Library of Congress win its war against acid damage in its paper collection. The process impregnates books with magnesium oxide particles that both neutralize the acid in paper and leave an alkaline buffer behind. Describes the problem of acidic degradation and the Bookkeeper…
NASA Astrophysics Data System (ADS)
Menapace, Joseph A.
2010-11-01
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm2 at 1053 nm), visible (>18 J/cm2 at 527 nm), and ultraviolet (>10 J/cm2 at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture largeaperture damage resistant optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A
2010-10-27
Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chainmore » or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.« less
Assessment of flood risk in Tokyo metropolitan area
NASA Astrophysics Data System (ADS)
Hirano, J.; Dairaku, K.
2013-12-01
Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments This study is conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA) and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan
Sandwich Structure Risk Reduction in Support of the Payload Adapter Fitting
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Jackson, J. R.; Guin, W. E.
2018-01-01
Reducing risk for utilizing honeycomb sandwich structure for the Space Launch System payload adapter fitting includes determining what parameters need to be tested for damage tolerance to ensure a safe structure. Specimen size and boundary conditions are the most practical parameters to use in damage tolerance inspection. The effect of impact over core splices and foreign object debris between the facesheet and core is assessed. Effects of enhanced damage tolerance by applying an outer layer of carbon fiber woven cloth is examined. A simple repair technique for barely visible impact damage that restores all compression strength is presented.
Singing ability after right and left sided brain damage. A research note.
Kinsella, G; Prior, M R; Murray, G
1988-03-01
Capacity to sing following brain damage was investigated in a series of 15 right sided and 15 left sided lesioned subjects and 15 normal control subjects. All subjects were asked to sing the same well-known song and performance was judged by independent expert musicians using criteria of ability to pitch the melody, accurately produce the rhythm, and overall quality of the production. There was a lack of support for differential effect of right and left cerebral damage on pitch and rhythm aspects of singing, but a generalized effect of brain damage was found.
Bieuzen, François; Pournot, Hervé; Roulland, Rémy; Hausswirth, Christophe
2012-01-01
Context Electric muscle stimulation has been suggested to enhance recovery after exhaustive exercise by inducing an increase in blood flow to the stimulated area. Previous studies have failed to support this hypothesis. We hypothesized that the lack of effect shown in previous studies could be attributed to the technique or device used. Objective To investigate the effectiveness of a recovery intervention using an electric blood-flow stimulator on anaerobic performance and muscle damage in professional soccer players after intermittent, exhaustive exercise. Design Randomized controlled clinical trial. Setting National Institute of Sport, Expertise, and Performance (INSEP). Patients or Other Participants Twenty-six healthy professional male soccer players. Intervention(s) The athletes performed an intermittent fatiguing exercise followed by a 1-hour recovery period, either passive or using an electric blood-flow stimulator (VEINOPLUS). Participants were randomly assigned to a group before the experiment started. Main Outcome Measures(s) Performances during a 30-second all-out exercise test, maximal vertical countermovement jump, and maximal voluntary contraction of the knee extensor muscles were measured at rest, immediately after the exercise, and 1 hour and 24 hours later. Muscle enzymes indicating muscle damage (creatine kinase, lactate dehydrogenase) and hematologic profiles were analyzed before and 1 hour and 24 hours after the intermittent fatigue exercise. Results The electric-stimulation group had better 30-second all-out performances at 1 hour after exercise (P = .03) in comparison with the passive-recovery group. However, no differences were observed in muscle damage markers, maximal vertical countermovement jump, or maximal voluntary contraction between groups (P > .05). Conclusions Compared with passive recovery, electric stimulation using this blood-flow stimulator improved anaerobic performance at 1 hour postintervention. No changes in muscle damage markers or maximal voluntary contraction were detected. These responses may be considered beneficial for athletes engaged in sports with successive rounds interspersed with short, passive recovery periods. PMID:23068586
Nerve Damage (Diabetic Neuropathies)
... Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Workshops Health Information Diabetes Digestive Diseases Kidney Disease Weight Management Liver Disease Urologic Diseases Endocrine Diseases Diet & Nutrition ...
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.
2012-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.
Damage Characterization Using the Extended Finite Element Method for Structural Health Management
NASA Technical Reports Server (NTRS)
Krishnamurthy, Thiagarajan; Gallegos, Adam M.
2011-01-01
The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign impact that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage/cracks in critical structural components is highly important in developing efficient structural health management systems.
The potential of technology for enhancing individual placement and support supported employment.
Lord, Sarah E; McGurk, Susan R; Nicholson, Joanne; Carpenter-Song, Elizabeth A; Tauscher, Justin S; Becker, Deborah R; Swanson, Sarah J; Drake, Robert E; Bond, Gary R
2014-06-01
The potential of technology to enhance delivery and outcomes of Individual Placement and Support (IPS) supported employment. IPS supported employment has demonstrated robust success for improving rates of competitive employment among individuals with psychiatric disabilities. Still, a majority of those with serious mental illnesses are not employed (Bond, Drake, & Becker, 2012). The need to promote awareness of IPS and expand services is urgent. In this study, we describe ways that technologies may enhance delivery of IPS supported employment across the care continuum and stakeholder groups. Directions for research are highlighted. published literature, clinical observations, IPS learning collaborative. Technology has the potential to enhance direct service as well as workflow in the IPS supported employment process, which may lead to improved fidelity and client outcomes. Mobile and cloud technologies open opportunities for collaboration, self-directed care, and ongoing support to help clients obtain and maintain meaningful employment. Research is needed to evaluate efficacy of technology-based approaches for promoting client employment outcomes, to identify provider and organization barriers to using technology for IPS delivery, and to determine effective strategies for implementing technology with IPS in different settings and with diverse client audiences.
The Potential of Technology for Enhancing Individual Placement and Support Supported Employment
Lord, Sarah E.; McGurk, Susan R.; Nicholson, Joanne; Carpenter-Song, Elizabeth A.; Tauscher, Justin S.; Becker, Deborah R.; Swanson, Sarah J.; Drake, Robert E.; Bond, Gary R.
2015-01-01
Topic The potential of technology to enhance delivery and outcomes of Individual Placement and Support (IPS) supported employment. Purpose IPS supported employment has demonstrated robust success for improving rates of competitive employment among individuals with psychiatric disabilities. Still, a majority of those with serious mental illnesses are not employed (Bond, Drake, & Becker, 2012). The need to promote awareness of IPS and expand services is urgent. In this study, we describe ways that technologies may enhance delivery of IPS supported employment across the care continuum and stakeholder groups. Directions for research are highlighted. Sources Used published literature, clinical observations, IPS learning collaborative. Conclusions and Implications for Practice Technology has the potential to enhance direct service as well as workflow in the IPS supported employment process, which may lead to improved fidelity and client outcomes. Mobile and cloud technologies open opportunities for collaboration, self-directed care, and ongoing support to help clients obtain and maintain meaningful employment. Research is needed to evaluate efficacy of technology-based approaches for promoting client employment outcomes, to identify provider and organization barriers to using technology for IPS delivery, and to determine effective strategies for implementing technology with IPS in different settings and with diverse client audiences. PMID:24912058
Support System for Solar Receivers
NASA Technical Reports Server (NTRS)
Kiceniuk, T.
1985-01-01
Hinged split-ring mounts insure safe support of heavy receivers. In addition to safer operation and damage-free mounting system provides more accurate focusing, and small incremental adjustments of ring more easily made.
DART Support for Hurricane Matthew
2016-10-18
A hole caused by Hurricane Matthew is visible in a section of door on the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
A small staircase, toppled and relocated by Hurricane Matthew, is seen in front of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
DART Support for Hurricane Matthew
2016-10-18
A construction helmet and staircase, both relocated by Hurricane Matthew, is seen in front of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Assessments and repairs are in progress at various structures and facilities across the spaceport, part of the ongoing recovery from Hurricane Matthew, which passed to the east of Kennedy on Oct. 6 and 7, 2016. The center received some isolated roof damage, damaged support buildings, a few downed power lines, and limited water intrusion. Beach erosion also occurred, although the storm surge was less than expected.
Effects of neurological damage on production of formulaic language
Sidtis, D.; Canterucci, G.; Katsnelson, D.
2014-01-01
Early studies reported preserved formulaic language in left hemisphere damaged subjects and reduced incidence of formulaic expressions in the conversational speech of stroke patients with right hemispheric damage. Clinical observations suggest a possible role also of subcortical nuclei. This study examined formulaic language in the spontaneous speech of stroke patients with left, right, or subcortical damage. Four subjects were interviewed and their speech samples compared to normal speakers. Raters classified formulaic expressions as speech formulae, fillers, sentence stems, and proper nouns. Results demonstrated that brain damage affected novel and formulaic language competence differently, with a significantly smaller proportion of formulaic expressions in subjects with right or subcortical damage compared to left hemisphere damaged or healthy speakers. These findings converge with previous studies that support the proposal of a right hemisphere/subcortical circuit in the management of formulaic expressions, based on a dual-process model of language incorporating novel and formulaic language use. PMID:19382014
Identifying Hail Signatures in Satellite Imagery from the 9-10 August 2011 Severe Weather Event
NASA Technical Reports Server (NTRS)
Dryden, Rachel L.; Molthan, Andrew L.; Cole, Tony A.; Bell, Jordan
2014-01-01
Severe thunderstorms can produce large hail that causes property damage, livestock fatalities, and crop failure. However, detailed storm surveys of hail damage conducted by the National Weather Service (NWS) are not required. Current gaps also exist between Storm Prediction Center (SPC) hail damage estimates and crop-insurance payouts. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra and Aqua satellites can be used to support NWS damage assessments, particularly to crops during the growing season. The two-day severe weather event across western Nebraska and central Kansas during 9-10 August 2011 offers a case study for investigating hail damage signatures by examining changes in Normalized Difference Vegetation Index (NDVI) derived from MODIS imagery. By analyzing hail damage swaths in satellite imagery, potential economic losses due to crop damage can be quantified and further improve the estimation of weather impacts on agriculture without significantly increasing manpower requirements.
NASA Glenn Research in Controls and Diagnostics for Intelligent Aerospace Propulsion Systems
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2007-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. This presentation describes the current CDB activities in support of the NASA Aeronautics Research Mission, with an emphasis on activities under the Integrated Vehicle Health Management (IVHM) and Integrated Resilient Aircraft Control (IRAC) projects of the Aviation Safety Program. Under IVHM, CDB focus is on developing advanced techniques for monitoring the health of the aircraft engine gas path with a focus on reliable and early detection of sensor, actuator and engine component faults. Under IRAC, CDB focus is on developing adaptive engine control technologies which will increase the probability of survival of aircraft in the presence of damage to flight control surfaces or to one or more engines. The technology development plans are described as well as results from recent research accomplishments.
ERIC Educational Resources Information Center
Schmidt, Constance R.
The Instructional Technology Support Center (ITSC) provides training and support for the use of instructional technology by K-12 teachers and Middle Tennessee State University (MTSU) faculty. The goals of the ITSC include: training pre-service and in-service teachers in the use of instructional technology; improving MTSU teaching through expanded…
NASA Astrophysics Data System (ADS)
Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki
2016-06-01
Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.
Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.
Hijikata, Wataru; Sobajima, Hideo; Shinshi, Tadahiko; Nagamine, Yasuyuki; Wada, Suguru; Takatani, Setsuo; Shimokohbe, Akira
2010-08-01
To enhance the durability and reduce the blood trauma of a conventional blood pump with a cone-shaped impeller, a magnetically levitated (MagLev) technology has been applied to the BioPump BPX-80 (Medtronic Biomedicus, Inc., Minneapolis, MN, USA), whose impeller is supported by a mechanical bearing. The MagLev BioPump (MagLev BP), which we have developed, has a cone-shaped impeller, the same as that used in the BPX-80. The suspension and driving system, which is comprised of two degrees of freedom, radial-controlled magnetic bearing, and a simply structured magnetic coupling, eliminates any physical contact between the impeller and the housing. To reduce both oscillation of the impeller and current in the coils, the magnetic bearing system utilizes repetitive and zero-power compensators. In this article, we present the design of the MagLev mechanism, measure the levitational accuracy of the impeller and pressure-flow curves (head-quantity [HQ] characteristics), and describe in vitro experiments designed to measure hemolysis. For the flow-induced hemolysis of the initial design to be reduced, the blood damage index was estimated by using computational fluid dynamics (CFD) analysis. Stable rotation of the impeller in a prototype MagLev BP from 0 to 2750 rpm was obtained, yielding a flow rate of 5 L/min against a head pressure in excess of 250 mm Hg. Because the impeller of the prototype MagLev BP is levitated without contact, the normalized index of hemolysis was 10% less than the equivalent value with the BPX-80. The results of the CFD analysis showed that the shape of the outlet and the width of the fluid clearances have a large effect on blood damage. The prototype MagLev BP satisfied the required HQ characteristics (5 L/min, 250 mm Hg) for extracorporeal circulation support with stable levitation of the impeller and showed an acceptable level of hemolysis. The simulation results of the CFD analysis indicated the possibility of further reducing the blood damage of the prototype MagLev BP.
Investigating extreme event loading on coastal bridges using wireless sensor technology
NASA Astrophysics Data System (ADS)
Gelineau, Douglas A.; Davis, Justin R.; Rice, Jennifer A.
2017-04-01
Coastal infrastructure, such as bridges, are susceptible to many forms of coastal hazards: particularly hurricane surge and wave loading. These two forms of loading can cause catastrophic damage to aging highway infrastructure. It is estimated that storm damage costs the United States about $50 Billion per year. In light of this, it is crucial that we understand the damaging forces placed on infrastructure during storm events so that we can develop safer and more resilient coastal structures. This paper presents the ongoing research to enable the efficient collection of extreme event loads acting on both the substructure and superstructure of low clearance, simple span, reinforced concrete bridges. Bridges of this type were commonly constructed during the 1950's and 60's and are particularly susceptible to deck unseating caused by hurricane surge and wave loading. The sensing technology used to capture this data must be ruggedized to survive in an extremely challenging environment, be designed to allow for redundancy in the event of sensors or other network components being lost in the storm, and be relatively low cost to allow for more bridges to be instrumented per storm event. The prototype system described in this paper includes wireless technology, rapid data transmission, and, for the sensors, self-contained power. While this specific application focuses on hurricane hazards, the framework can be extended to include other natural hazards.
Kashibe, Masayoshi; Matsumoto, Kengo; Hori, Yuichiro
2017-01-01
Controlled release is one of the key technologies for medical innovation, and many stimulus-responsive nanocarriers have been developed to utilize this technology. Enzyme activity is one of the most useful stimuli, because many enzymes are specifically activated in diseased tissues. However, controlled release stimulated by enzyme activity has not been frequently reported. One of the reasons for this is the lack of versatility of carriers. Most of the reported stimulus-responsive systems involve a sophisticated design and a complicated process for the synthesis of stimulus-responsive nanocarrier components. The purpose of this study was to develop versatile controlled release systems triggered by various stimuli, including enzyme activity, without modifying the nanocarrier components. We developed two controlled release systems, both of which comprised a liposome as the nanocarrier and a membrane-damaging peptide, temporin L (TL), and its derivatives as the release-controllers. One system utilized branched peptides for proteases, and the other utilized phosphopeptides for phosphatases. In our systems, the target enzymes converted the non-membrane-damaging TL derivatives into membrane-damaging peptides and released the liposome inclusion. We demonstrated the use of our antimicrobial peptide-based controlled release systems for different enzymes and showed the promise of this technology as a novel theranostic tool. PMID:28451373
Toward robot-assisted neurosurgical lasers.
Motkoski, Jason W; Yang, Fang Wei; Lwu, Shelly H H; Sutherland, Garnette R
2013-04-01
Despite the potential increase in precision and accuracy, laser technology is not widely used in neurological surgery. This in part relates to challenges associated with the early introduction of lasers into neurosurgery. Considerable advances in laser technology have occurred, which together with robotic technology could create an ideal platform for neurosurgical application. In this study, a 980-nm contact diode laser was integrated with neuroArm. Preclinical evaluation involved partial hepatectomy, bilateral nephrectomy, splenectomy, and bilateral submandibular gland excision in a Sprague-Dawley rat model (n = 50). Total surgical time, blood loss as weight of surgical gauze before and after the procedure, and the incidence of thermal, vascular, or lethal injury were recorded and converted to an overall performance score. Thermal damage was evaluated in the liver using tissue samples stained with hematoxylin and eosin. Clinical studies involved step-wise integration of the 980-nm laser system into four neurosurgical cases. Results demonstrate the successful integration of contact laser technology into microsurgery, with and without robotic assistance. In preclinical studies, the laser improved microsurgical performance and reduced thermal damage, while neuroArm decreased intra- and intersurgeon variability. Clinical studies demonstrate dutility in meningioma resection (n = 4). Together, laser and robotic technology offered a more consistent, expedient, and precise tool for microsurgery.
Natural-technological risk assessment and management
NASA Astrophysics Data System (ADS)
Burova, Valentina; Frolova, Nina
2016-04-01
EM-DAT statistical data on human impact and economic damages in the 1st semester 2015 are the highest since 2011: 41% of disasters were floods, responsible for 39% of economic damage and 7% of events were earthquakes responsible for 59% of total death toll. This suggests that disaster risk assessment and management still need to be improved and stay the principle issue in national and international related programs. The paper investigates the risk assessment and management practice in the Russian Federation at different levels. The method is proposed to identify the territories characterized by integrated natural-technological hazard. The maps of the Russian Federation zoning according to the integrated natural-technological hazard level are presented, as well as the procedure of updating the integrated hazard level taking into account the activity of separate processes. Special attention is paid to data bases on past natural and technological processes consequences, which are used for verification of current hazard estimation. The examples of natural-technological risk zoning for the country and some regions territory are presented. Different output risk indexes: both social and economic, are estimated taking into account requirements of end-users. In order to increase the safety of population of the Russian Federation the trans-boundaries hazards are also taken into account.
Benamrane, Y; Wybo, J-L; Armand, P
2013-12-01
The threat of a major accidental or deliberate event that would lead to hazardous materials emission in the atmosphere is a great cause of concern to societies. This is due to the potential large scale of casualties and damages that could result from the release of explosive, flammable or toxic gases from industrial plants or transport accidents, radioactive material from nuclear power plants (NPPs), and chemical, biological, radiological or nuclear (CBRN) terrorist attacks. In order to respond efficiently to such events, emergency services and authorities resort to appropriate planning and organizational patterns. This paper focuses on the use of atmospheric dispersion modeling (ADM) as a support tool for emergency planning and response, to assess the propagation of the hazardous cloud and thereby, take adequate counter measures. This paper intends to illustrate the noticeable evolution in the operational use of ADM tools over 25 y and especially in emergency situations. This study is based on data available in scientific publications and exemplified using the two most severe nuclear accidents: Chernobyl (1986) and Fukushima (2011). It appears that during the Chernobyl accident, ADM were used few days after the beginning of the accident mainly in a diagnosis approach trying to reconstruct what happened, whereas 25 y later, ADM was also used during the first days and weeks of the Fukushima accident to anticipate the potentially threatened areas. We argue that the recent developments in ADM tools play an increasing role in emergencies and crises management, by supporting stakeholders in anticipating, monitoring and assessing post-event damages. However, despite technological evolutions, its prognostic and diagnostic use in emergency situations still arise many issues. Copyright © 2013 Elsevier Ltd. All rights reserved.
Repair of Bonded Primary Structure
1978-06-01
of the body 2. Operational Items a. lard Landings * Damage to the wheel well area and in proximity of’ the lanuing gear beams b. Foreign Object...their main problems with the C-1 30 are to the ramp hinge support bulkhead and landing gear wheel well area. Lockheed has repair kits for each of these...MAC). The wheel well area is quite .ttsceptible to damage from hard landings. E’xcess runway water causes damage to the wheel well doors. Other
Pattern Separation Deficits Following Damage to the Hippocampus
ERIC Educational Resources Information Center
Kirwan, C. Brock; Hartshorn, Andrew; Stark, Shauna M.; Goodrich-Hunsaker, Naomi J.; Hopkins, Ramona O.; Stark, Craig E. L.
2012-01-01
Computational models of hippocampal function propose that the hippocampus is capable of rapidly storing distinct representations through a process known as pattern separation. This prediction is supported by electrophysiological data from rodents and neuroimaging data from humans. Here, we test the prediction that damage to the hippocampus would…
NASA Astrophysics Data System (ADS)
Darlow, Luke N.; Akhoury, Sharat S.; Connan, James
2015-02-01
Standard surface fingerprint scanners are vulnerable to counterfeiting attacks and also failure due to skin damage and distortion. Thus a high security and damage resistant means of fingerprint acquisition is needed, providing scope for new approaches and technologies. Optical Coherence Tomography (OCT) is a high resolution imaging technology that can be used to image the human fingertip and allow for the extraction of a subsurface fingerprint. Being robust toward spoofing and damage, the subsurface fingerprint is an attractive solution. However, the nature of the OCT scanning process induces speckle: a correlative and multiplicative noise. Six speckle reducing filters for the digital enhancement of OCT fingertip scans have been evaluated. The optimized Bayesian non-local means algorithm improved the structural similarity between processed and reference images by 34%, increased the signal-to-noise ratio, and yielded the most promising visual results. An adaptive wavelet approach, originally designed for ultrasound imaging, and a speckle reducing anisotropic diffusion approach also yielded promising results. A reformulation of these in future work, with an OCT-speckle specific model, may improve their performance.
NASA Astrophysics Data System (ADS)
Rosato, Vittorio; Hounjet, Micheline; Burzel, Andreas; Di Pietro, Antonio; Tofani, Alberto; Pollino, Maurizio; Giovinazzi, Sonia
2016-04-01
Natural hazard events can induce severe impacts on the built environment; they can hit wide and densely populated areas, where there is a large number of (inter)dependent technological systems whose damages could cause the failure or malfunctioning of further different services, spreading the impacts on wider geographical areas. The EU project CIPRNet (Critical Infrastructures Preparedness and Resilience Research Network) is realizing an unprecedented Decision Support System (DSS) which enables to operationally perform risk prediction on Critical Infrastructures (CI) by predicting the occurrence of natural events (from long term weather to short nowcast predictions, correlating intrinsic vulnerabilities of CI elements with the different events' manifestation strengths, and analysing the resulting Damage Scenario. The Damage Scenario is then transformed into an Impact Scenario, where punctual CI element damages are transformed into micro (local area) or meso (regional) scale Services Outages. At the smaller scale, the DSS simulates detailed city models (where CI dependencies are explicitly accounted for) that are of important input for crisis management organizations whereas, at the regional scale by using approximate System-of-Systems model describing systemic interactions, the focus is on raising awareness. The DSS has allowed to develop a novel simulation framework for predicting earthquakes shake maps originating from a given seismic event, considering the shock wave propagation in inhomogeneous media and the subsequent produced damages by estimating building vulnerabilities on the basis of a phenomenological model [1, 2]. Moreover, in presence of areas containing river basins, when abundant precipitations are expected, the DSS solves the hydrodynamic 1D/2D models of the river basins for predicting the flux runoff and the corresponding flood dynamics. This calculation allows the estimation of the Damage Scenario and triggers the evaluation of the Impact Scenario. The regional output of cascading effects can be used as an input model for more detailed analyses within urban areas for instance. The DSS weights the overall expected Crisis Scenario by also considering, through an appropriate Consequences Analysis, the number of citizens affected by the Service(s) outages, the expected economic losses of the major industrial activities hit by the unavailability of relevant Services (electricity, water, telecommunications etc.) and the influence of outages of the availability of Public Services (hospitals, schools, public offices etc.) [1] S.Giovinazzi, S. Lagomarsino: A macroseismic method for the vulnerability assessment of buildings. 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada (2004) [2] S. Lagomarsino, S.Giovinazzi: Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthquake Eng., 4:415-443 (2006)
Thorne, David; Larard, Sophie; Baxter, Andrew; Meredith, Clive; Gaҫa, Marianna
2017-01-04
DNA damage can be caused by a variety of external and internal factors and together with cellular responses, can establish genomic instability through multiple pathways. DNA damage therefore, is considered to play an important role in the aetiology and early stages of carcinogenesis. The DNA-damage inducing potential of tobacco smoke aerosols in vitro has been extensively investigated; however, the ability of e-cigarette aerosols to induce DNA damage has not been extensively investigated. E-cigarette use has grown globally in recent years and the health implications of long term e-cigarette use are still unclear. Therefore, this study has assessed the induction of double-strand DNA damage in vitro using human lung epithelial cells to e-cigarette aerosols from two different product variants (a "cigalike" and a closed "modular" system) and cigarette smoke. A Vitrocell ® VC 10 aerosol exposure system was used to generate and dilute cigarette smoke and e-cigarette aerosols, which were delivered to human bronchial epithelial cells (BEAS-2Bs) housed at the air-liquid-interface (ALI) for up to 120min exposure (diluting airflow, 0.25-1L/min). Following exposure, cells were immediately fixed, incubated with primary (0.1% γH2AX antibody in PBS) and secondary antibodies (DyLight™ 549 conjugated goat anti-mouse IgG) containing Hoechst dye DNA staining solution (0.2% secondary antibody and 0.01% Hoechst in PBS), and finally screened using the Cellomics Arrayscan VTI platform. The results from this study demonstrate a clear DNA damage-induced dose response with increasing smoke concentrations up to cytotoxic levels. In contrast, e-cigarette aerosols from two product variants did not induce DNA damage at equivalent to or greater than doses of cigarette smoke aerosol. In this study dosimetry approaches were used to contextualize exposure, define exposure conditions and facilitate comparisons between cigarette smoke and e-cigarette aerosols. Quartz crystal microbalance (QCM) technology and quantified nicotine delivery were both assessed at the exposure interface. Nicotine was eluted from the QCM surface to give a quantifiable measure of exposure to support deposited mass. Dose measured as deposited mass (μg/cm 2 ) and nicotine (ng/mL) demonstrated that in vitro e-cigarette exposures were conducted at doses up to 12-28 fold to that of cigarette smoke and demonstrated a consistent negative finding. Copyright © 2016 The Author(s). Published by Elsevier Ireland Ltd.. All rights reserved.
A Component-Based Approach for Securing Indoor Home Care Applications
Estévez, Elisabet
2017-01-01
eHealth systems have adopted recent advances on sensing technologies together with advances in information and communication technologies (ICT) in order to provide people-centered services that improve the quality of life of an increasingly elderly population. As these eHealth services are founded on the acquisition and processing of sensitive data (e.g., personal details, diagnosis, treatments and medical history), any security threat would damage the public’s confidence in them. This paper proposes a solution for the design and runtime management of indoor eHealth applications with security requirements. The proposal allows applications definition customized to patient particularities, including the early detection of health deterioration and suitable reaction (events) as well as security needs. At runtime, security support is twofold. A secured component-based platform supervises applications execution and provides events management, whilst the security of the communications among application components is also guaranteed. Additionally, the proposed event management scheme adopts the fog computing paradigm to enable local event related data storage and processing, thus saving communication bandwidth when communicating with the cloud. As a proof of concept, this proposal has been validated through the monitoring of the health status in diabetic patients at a nursing home. PMID:29278370
NASA Astrophysics Data System (ADS)
Keith, D. W.
2005-12-01
The post-war growth of the earth sciences has been fueled, in part, by a drive to quantify environmental insults in order to support arguments for their reduction, yet paradoxically the knowledge gained is grants us ever greater capability to deliberately engineer environmental processes on a planetary scale. Increased capability can arises though seemingly unconnected scientific advances. Improvements in numerical weather prediction such as the use of adjoint models in analysis/forecast systems, for example, means that weather modification can be accomplished with smaller control inputs. Purely technological constraints on our ability to engineer earth systems arise from our limited ability to measure and predict system responses and from limits on our ability to manage large engineering projects. Trends in all three constraints suggest a rapid growth in our ability to engineer the planet. What are the implications of our growing ability to geoengineer? Will we see a reemergence of proposals to engineer our way out of the climate problem? How can we avoid the moral hazard posed by the knowledge that geoengineering might provide a backstop to climate damages? I will speculate about these issues, and suggest some institutional factors that may provide a stronger constraint on the use of geoengineering than is provided by any purely technological limit.
Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin
2013-01-01
DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.
Floods in a changing climate: a review.
Hunt, J C R
2002-07-15
This paper begins with an analysis of flooding as a natural disaster for which the solutions to the environmental, social and economic problems are essentially those of identifying and overcoming hazards and vulnerability, reducing risk and damaging consequences. Long-term solutions to flooding problems, especially in a changing climate, should be sought in the wider context of developing more sustainable social organization, economics and technology. Then, developments are described of how scientific understanding, supported by practical modelling, is leading to predictions of how human-induced changes to climatic and geological conditions are likely to influence flooding over at least the next 300 years, through their influences on evaporation, precipitation, run-off, wind storm and sea-level rise. Some of the outstanding scientific questions raised by these problems are highlighted, such as the statistical and deterministic prediction of extreme events, the understanding and modelling of mechanisms that operate on varying length- and time-scales, and the complex interactions between biological, ecological and physical problems. Some options for reducing the impact of flooding by new technology include both improved prediction and monitoring with computer models, and remote sensing, flexible and focused warning systems, and permanent and temporary flood-reduction systems.
A Component-Based Approach for Securing Indoor Home Care Applications.
Agirre, Aitor; Armentia, Aintzane; Estévez, Elisabet; Marcos, Marga
2017-12-26
eHealth systems have adopted recent advances on sensing technologies together with advances in information and communication technologies (ICT) in order to provide people-centered services that improve the quality of life of an increasingly elderly population. As these eHealth services are founded on the acquisition and processing of sensitive data (e.g., personal details, diagnosis, treatments and medical history), any security threat would damage the public's confidence in them. This paper proposes a solution for the design and runtime management of indoor eHealth applications with security requirements. The proposal allows applications definition customized to patient particularities, including the early detection of health deterioration and suitable reaction (events) as well as security needs. At runtime, security support is twofold. A secured component-based platform supervises applications execution and provides events management, whilst the security of the communications among application components is also guaranteed. Additionally, the proposed event management scheme adopts the fog computing paradigm to enable local event related data storage and processing, thus saving communication bandwidth when communicating with the cloud. As a proof of concept, this proposal has been validated through the monitoring of the health status in diabetic patients at a nursing home.
Packaging of structural health monitoring components
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.
2004-07-01
Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.
NASA Technical Reports Server (NTRS)
Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.
1988-01-01
Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.
NASA Astrophysics Data System (ADS)
Calamaio, C. L.; Walker, J.; Beck, J. M.; Graves, S. J.; Johnson, C.
2017-12-01
Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are working closely with the Madison County Emergency Management Agency (EMA), GeoHuntsville's UAS Working Group, and the NOAA UAS Program Office, to conduct a series of practical demonstrations testing the use of small unmanned aerial systems (sUAS) for emergency response activities in Madison County, Alabama. These exercises demonstrate the use of UAS to detect and visualize hazards in affected areas via the delivery of aerial imagery and associated data products to law enforcement first responders in a variety of different scenarios, for example, search and rescue, tornado track mapping, damage assessment, and situational awareness/containment during active shooter incidents. In addition to showcasing the use of UAS as a tool for emergency services, these pilot exercises provide the opportunity to engage the appropriate stakeholders from several communities including first responders, geospatial intelligence, active members of the unmanned systems industry, and academia. This presentation will showcase the challenges associated with delivering quality data products for emergency services in a timely manner as well as the related challenges in integrating the technology into local emergency management.
Health benefits, ecological threats of low-carbon electricity
NASA Astrophysics Data System (ADS)
Gibon, Thomas; Hertwich, Edgar G.; Arvesen, Anders; Singh, Bhawna; Verones, Francesca
2017-03-01
Stabilizing global temperature will require a shift to renewable or nuclear power from fossil power and the large-scale deployment of CO2 capture and storage (CCS) for remaining fossil fuel use. Non-climate co-benefits of low-carbon energy technologies, especially reduced mortalities from air pollution and decreased ecosystem damage, have been important arguments for policies to reduce CO2 emissions. Taking into account a wide range of environmental mechanisms and the complex interactions of the supply chains of different technologies, we conducted the first life cycle assessment of potential human health and ecological impacts of a global low-carbon electricity scenario. Our assessment indicates strong human health benefits of low-carbon electricity. For ecosystem quality, there is a significant trade-off between reduced pollution and climate impacts and potentially significant ecological impacts from land use associated with increased biopower utilization. Other renewables, nuclear power and CCS show clear ecological benefits, so that the climate mitigation scenario with a relatively low share of biopower has lower ecosystem impacts than the baseline scenario. Energy policy can maximize co-benefits by supporting other renewable and nuclear power and developing biomass supply from sources with low biodiversity impact.
Agzenai, Yahya; Pozuelo, Javier; Sanz, Javier; Perez, Ignacio; Baselga, Juan
2015-01-01
In an effort to give a global view of this field of research, in this mini-review we highlight the most recent publications and patents focusing on modified asphalt pavements that contain certain reinforcing nanoparticles which impart desirable thermal, electrical and mechanical properties. In response to the increasing cost of asphalt binder and road maintenance, there is a need to look for alternative technologies and new asphalt composites, able to self-repair, for preserving and renewing the existing pavements. First, we will focus on the self-healing property of asphalt, the evidences that support that healing takes place immediately after the contact between the faces of a crack, and how the amount of healing can be measured in both the laboratory and the field. Next we review the hypothetical mechanisms of healing to understand the material behaviour and establish models to quantify the damage-healing process. Thereafter, we outline different technologies, nanotechnologies and methodologies used for self-healing paying particular attention to embedded micro-capsules, new nano-materials like carbon nanotubes and nano-fibres, ionomers, and microwave and induction heating processes.
NASA Astrophysics Data System (ADS)
Townsend, M.; Huckins-Gang, H.; Prothro, L.; Reed, D.
2012-12-01
The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE N1) test was conducted in May 2011, using 0.1 ton of explosives at the depth of 54.9 m in the U 15n source hole. SPE N2 was conducted in October 2011, using 1.0 ton of explosives at the depth of 45.7 m in the same source hole. The SPE N3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE N2, and at the same depth as SPE N2, within the damage zone created by the SPE N2 explosion to investigate damage effects on seismic wave propagation. Following the SPE N2 shot and prior to the SPE N3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE N2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE N2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a "fresh," mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
ERIC Educational Resources Information Center
Campbell, Todd; Longhurst, Max L.; Wang, Shiang-Kwei; Hsu, Hui-Yin; Coster, Dan C.
2015-01-01
While access to computers, other technologies, and cyber-enabled resources that could be leveraged for enhancing student learning in science is increasing, generally it has been found that teachers use technology more for administrative purposes or to support traditional instruction. This use of technology, especially to support traditional…