Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Baeyens, Dieter
2017-01-01
Working memory, used to temporarily store and mentally manipulate information, is important for children's learning. It is therefore valuable to understand which (contextual) factors promote or hinder working memory performance. Recent research shows positive associations between positive parent-child and teacher-student interactions and working memory performance and development. However, no study has yet experimentally investigated how parents and teachers affect working memory performance. Based on attachment theory, the current study investigated the role of parent and teacher emotional support in promoting working memory performance by buffering the negative effect of social stress. Questionnaires and an experimental session were completed by 170 children from grade 1 to 2 ( M age = 7 years 6 months, SD = 7 months). Questionnaires were used to assess children's perceptions of the teacher-student and parent-child relationship. During an experimental session, working memory was measured with the Corsi task backward (Milner, 1971) in a pre- and post-test design. In-between the tests stress was induced in the children using the Cyberball paradigm (Williams et al., 2000). Emotional support was manipulated (between-subjects) through an audio message (either a weather report, a supportive message of a stranger, a supportive message of a parent, or a supportive message of a teacher). Results of repeated measures ANOVA showed no clear effect of the stress induction. Nevertheless, an effect of parent and teacher support was found and depended on the quality of the parent-child relationship. When children had a positive relationship with their parent, support of parents and teachers had little effect on working memory performance. When children had a negative relationship with their parent, a supportive message of that parent decreased working memory performance, while a supportive message from the teacher increased performance. In sum, the current study suggests that parents and teachers can support working memory performance by being supportive for the child. Teacher support is most effective when the child has a negative relationship with the parent. These insights can give direction to specific measures aimed at preventing and resolving working memory problems and related issues.
Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Baeyens, Dieter
2017-01-01
Working memory, used to temporarily store and mentally manipulate information, is important for children’s learning. It is therefore valuable to understand which (contextual) factors promote or hinder working memory performance. Recent research shows positive associations between positive parent–child and teacher–student interactions and working memory performance and development. However, no study has yet experimentally investigated how parents and teachers affect working memory performance. Based on attachment theory, the current study investigated the role of parent and teacher emotional support in promoting working memory performance by buffering the negative effect of social stress. Questionnaires and an experimental session were completed by 170 children from grade 1 to 2 (Mage = 7 years 6 months, SD = 7 months). Questionnaires were used to assess children’s perceptions of the teacher–student and parent–child relationship. During an experimental session, working memory was measured with the Corsi task backward (Milner, 1971) in a pre- and post-test design. In-between the tests stress was induced in the children using the Cyberball paradigm (Williams et al., 2000). Emotional support was manipulated (between-subjects) through an audio message (either a weather report, a supportive message of a stranger, a supportive message of a parent, or a supportive message of a teacher). Results of repeated measures ANOVA showed no clear effect of the stress induction. Nevertheless, an effect of parent and teacher support was found and depended on the quality of the parent–child relationship. When children had a positive relationship with their parent, support of parents and teachers had little effect on working memory performance. When children had a negative relationship with their parent, a supportive message of that parent decreased working memory performance, while a supportive message from the teacher increased performance. In sum, the current study suggests that parents and teachers can support working memory performance by being supportive for the child. Teacher support is most effective when the child has a negative relationship with the parent. These insights can give direction to specific measures aimed at preventing and resolving working memory problems and related issues. PMID:28421026
Effects of Working Memory Capacity and Domain Knowledge on Recall for Grocery Prices.
Bermingham, Douglas; Gardner, Michael K; Woltz, Dan J
2016-01-01
Hambrick and Engle (2002) proposed 3 models of how domain knowledge and working memory capacity may work together to influence episodic memory: a "rich-get-richer" model, a "building blocks" model, and a "compensatory" model. Their results supported the rich-get-richer model, although later work by Hambrick and Oswald (2005) found support for a building blocks model. We investigated the effects of domain knowledge and working memory on recall of studied grocery prices. Working memory was measured with 3 simple span tasks. A contrast of realistic versus fictitious foods in the episodic memory task served as our manipulation of domain knowledge, because participants could not have domain knowledge of fictitious food prices. There was a strong effect for domain knowledge (realistic food-price pairs were easier to remember) and a moderate effect for working memory capacity (higher working memory capacity produced better recall). Furthermore, the interaction between domain knowledge and working memory produced a small but significant interaction in 1 measure of price recall. This supported the compensatory model and stands in contrast to previous research.
Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu
2018-03-01
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus
2018-03-19
Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.
Sreenivasan, Kartik K; Jha, Amishi P
2007-01-01
Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.
Effects of Age and Environmental Support for Rehearsal on Visuospatial Working Memory
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2016-01-01
The present study investigated whether older adults’ visuospatial working memory shows effects of environmental support for rehearsal similar to those observed in young adults (Lilienthal, Hale, & Myerson, 2014). When the duration of inter-item intervals was 4 s and participants had sufficient time to rehearse, location memory spans were larger in both age groups when environmental support was present than when support was absent. Critically, however, the age-related difference in memory was actually larger when support was provided, suggesting that young and older adults may differ in their rehearsal of to-be-remembered locations. PMID:26950223
Effects of age and environmental support for rehearsal on visuospatial working memory.
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2016-05-01
The present study investigated whether older adults' visuospatial working memory shows effects of environmental support for rehearsal similar to those observed in young adults (Lilienthal, Hale, & Myerson, 2014). When the duration of interitem intervals was 4 s and participants had sufficient time to rehearse, location memory spans were larger in both age groups when environmental support was present than when support was absent. Critically, however, the age-related difference in memory was actually larger when support was provided, suggesting that young and older adults may differ in their rehearsal of to-be-remembered locations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Working Memory From the Psychological and Neurosciences Perspectives: A Review.
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.
Working Memory From the Psychological and Neurosciences Perspectives: A Review
Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin
2018-01-01
Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects. PMID:29636715
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Working Memory and Learning: A Practical Guide for Teachers
ERIC Educational Resources Information Center
Gathercole, Susan E.; Alloway, Tracy Packiam
2008-01-01
A good working memory is crucial to becoming a successful leaner, yet there is very little material available in an easy-to-use format that explains the concept and offers practitioners ways to support children with poor working memory in the classroom. This book provides a coherent overview of the role played by working memory in learning during…
Memory mechanisms supporting syntactic comprehension.
Caplan, David; Waters, Gloria
2013-04-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829-839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension--the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance-long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory.
Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.
Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S
2018-01-01
To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Training Planning and Working Memory in Third Graders
ERIC Educational Resources Information Center
Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano
2013-01-01
Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…
Relations between Working Memory and Emergent Writing among Preschool-Aged Children
ERIC Educational Resources Information Center
Hoskyn, Maureen; Tzoneva, Irina
2008-01-01
The authors examined the nature of the working memory system that underlies age differences of young, preschool-aged children. Measures of working memory, short-term memory, articulation speed, general intelligence, and writing were administered to 166 Canadian preschool-aged children aged 3 to 5 years. Findings generally support the hypothesis…
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278
Memory mechanisms supporting syntactic comprehension
Waters, Gloria
2013-01-01
Efforts to characterize the memory system that supports sentence comprehension have historically drawn extensively on short-term memory as a source of mechanisms that might apply to sentences. The focus of these efforts has changed significantly in the past decade. As a result of changes in models of short-term working memory (ST-WM) and developments in models of sentence comprehension, the effort to relate entire components of an ST-WM system, such as those in the model developed by Baddeley (Nature Reviews Neuroscience 4: 829–839, 2003) to sentence comprehension has largely been replaced by an effort to relate more specific mechanisms found in modern models of ST-WM to memory processes that support one aspect of sentence comprehension—the assignment of syntactic structure (parsing) and its use in determining sentence meaning (interpretation) during sentence comprehension. In this article, we present the historical background to recent studies of the memory mechanisms that support parsing and interpretation and review recent research into this relation. We argue that the results of this research do not converge on a set of mechanisms derived from ST-WM that apply to parsing and interpretation. We argue that the memory mechanisms supporting parsing and interpretation have features that characterize another memory system that has been postulated to account for skilled performance—long-term working memory. We propose a model of the relation of different aspects of parsing and interpretation to ST-WM and long-term working memory. PMID:23319178
Working memory, long-term memory, and medial temporal lobe function
Jeneson, Annette; Squire, Larry R.
2012-01-01
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053
Prospective memory, level of disability, and return to work in severe mental illness.
Burton, Cynthia Z; Vella, Lea; Twamley, Elizabeth W
2018-02-25
Prospective memory (the ability to remember to do things) has clear implications for everyday functioning, including employment, in people with severe mental illnesses (SMI). This study aimed to evaluate prospective memory performance and its relationship to real-world functional variables in an employment-seeking sample of people with SMI (Clinical Trial registration number NCT00895258). 153 individuals with DSM-IV diagnosis of depression (n = 58), bipolar disorder (n = 37), or schizophrenia (n = 58) who were receiving outpatient psychiatric care at a university clinic enrolled in a trial of supported employment and completed a baseline assessment. Prospective memory was measured with the Memory for Intentions Test (MIST); real-world functional status included work history variables, clinical history variables, baseline functional capacity (UCSD Performance-based Skills Assessment-Brief), and work outcomes (weeks worked and wages earned during two years of supported employment). Participants with schizophrenia performed worse on the MIST than did those with affective disorders. Independent of diagnosis, education, and estimated intellectual functioning, prospective memory significantly predicted variance in measures of disability and illness burden (disability benefits, hospitalization history, current functional capacity), and work outcomes over two years of supported employment (weeks worked). Worse prospective memory appears to be associated with greater illness burden and functional disability in SMI. Mental health clinicians and employment specialists may counsel clients to use compensatory prospective memory strategies to improve work performance and decrease functional disability associated with SMI.
Working memory involvement in stuttering: exploring the evidence and research implications.
Bajaj, Amit
2007-01-01
Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.
How Does Working Memory Work in the Classroom?
ERIC Educational Resources Information Center
Alloway, Tracy Packiam
2006-01-01
Working memory plays a key role in supporting children's learning over the school years, and beyond this into adulthood. It is proposed here that working memory is crucially required to store information while other material is being mentally manipulated during the classroom learning activities that form the foundations for the acquisition of…
Working memory training in older adults: Bayesian evidence supporting the absence of transfer.
Guye, Sabrina; von Bastian, Claudia C
2017-12-01
The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Beyond perceptual load and dilution: a review of the role of working memory in selective attention
de Fockert, Jan W.
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139
Beyond perceptual load and dilution: a review of the role of working memory in selective attention.
de Fockert, Jan W
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Neural bases of orthographic long-term memory and working memory in dysgraphia
Purcell, Jeremy; Hillis, Argye E.; Capasso, Rita; Miceli, Gabriele
2016-01-01
Spelling a word involves the retrieval of information about the word’s letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. PMID:26685156
Transfer after Working Memory Updating Training
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319
Transfer after Working Memory Updating Training.
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.
Memory function and supportive technology
Charness, Neil; Best, Ryan; Souders, Dustin
2013-01-01
Episodic and working memory processes show pronounced age-related decline, with other memory processes such as semantic, procedural, and metamemory less affected. Older adults tend to complain the most about prospective and retrospective memory failures. We introduce a framework for deciding how to mitigate memory decline using augmentation and substitution and discuss techniques that change the user, through mnemonics training, and change the tool or environment, by providing environmental support. We provide examples of low-tech and high-tech memory supports and discuss constraints on the utility of high-tech systems including effectiveness of devices, attitudes toward memory aids, and reliability of systems. PMID:24379752
Associations Between White Matter Microstructure and Infants’ Working Memory
Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.
2013-01-01
Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623
Perlow, Richard; Jattuso, Mia
2018-06-01
Researchers have operationalized working memory in different ways and although working memory-performance relationships are well documented, there has been relatively less attention devoted to determining whether seemingly similar measures yield comparable relations with performance outcomes. Our objective is to assess whether two working memory measures deploying the same processes but different item content yield different relations with two problem-solving criteria. Participants completed a computation-based working memory measure and a reading-based measure prior to performing a computerized simulation. Results reveal differential relations with one of the two criteria and support the notion that the two working memory measures tap working memory capacity and other cognitive abilities. One implication for theory development is that researchers should consider incorporating other cognitive abilities in their working memory models and that the selection of those abilities should correspond to the criterion of interest. One practical implication is that researchers and practitioners shouldn't automatically assume that different phonological loop-based working memory scales are interchangeable.
What is working memory capacity, and how can we measure it?
Wilhelm, Oliver; Hildebrandt, Andrea; Oberauer, Klaus
2013-01-01
A latent variable study examined whether different classes of working-memory tasks measure the same general construct of working-memory capacity (WMC). Data from 270 subjects were used to examine the relationship between Binding, Updating, Recall-N-back, and Complex Span tasks, and the relations of WMC with secondary memory measures, indicators of cognitive control from two response-conflict paradigms (Simon task and Eriksen flanker task), and fluid intelligence. Confirmatory factor analyses support the concept of a general WMC factor. Results from structural-equation modeling show negligible relations of WMC with response-conflict resolution, and very strong relations of WMC with secondary memory and fluid intelligence. The findings support the hypothesis that individual differences in WMC reflect the ability to build, maintain and update arbitrary bindings. PMID:23898309
Do transactive memory and participative teamwork improve nurses' quality of work life?
Brunault, Paul; Fouquereau, Evelyne; Colombat, Philippe; Gillet, Nicolas; El-Hage, Wissam; Camus, Vincent; Gaillard, Philippe
2014-03-01
Improvement in nurses' quality of work life (QWL) has become a major issue in health care organizations. We hypothesized that the level of transactive memory (defined as the way groups collectively encode, store, and retrieve knowledge) and participative teamwork (an organizational model of care based on vocational training, a specific service's care project, and regular interdisciplinary staffing) positively affect nurses' QWL. This cross-sectional study enrolled 84 ward-based psychiatric nurses. We assessed transactive memory, participative teamwork, perceived organizational justice, perceived organizational support, and QWL using psychometrically reliable and valid scales. Participative teamwork and transactive memory were positively associated with nurses' QWL. Perceived organizational support and organizational justice fully mediated the relationship between participative teamwork and QWL, but not between transactive memory and QWL. Improved transactive memory could directly improve nurses' QWL. Improved participative teamwork could improve nurses' QWL through better perceived organizational support and perceived organizational justice.
Functional Topography of the Cerebellum in Verbal Working Memory
Desmond, John E.
2010-01-01
Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894
Functional topography of the cerebellum in verbal working memory.
Marvel, Cherie L; Desmond, John E
2010-09-01
Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.
Dodds, Chris M; Clark, Luke; Dove, Anja; Regenthal, Ralf; Baumann, Frank; Bullmore, Ed; Robbins, Trevor W; Müller, Ulrich
2009-11-01
Dopamine (DA) plays an important role in working memory. However, the precise functions supported by different DA receptor subtypes in different neural regions remain unclear. The present study used pharmacological, event-related fMRI to test the hypothesis that striatal dopamine is important for the manipulation of information in working memory. Twenty healthy human subjects were scanned twice, once after placebo and once after sulpiride 400 mg, a selective DA D2 receptor antagonist, while performing a verbal working memory task requiring different levels of manipulation. Whilst there was no overall effect of sulpiride on task-dependent activation, individual variation in sulpiride plasma levels predicted the effect of working memory manipulation on activation in the putamen, suggesting a dose-dependent effect of DA antagonism on a striatally based manipulation process. These effects occurred in the context of a drug-induced improvement in performance on trials requiring the manipulation of information in working memory but not on simple retrieval trials. No significant drug effects were observed in the prefrontal cortex. These results support models of dopamine function that posit a 'gating' function for dopamine D2 receptors in the striatum, which enables the flexible updating and manipulation of information in working memory.
Working Memory in the Classroom: An Inside Look at the Central Executive.
Barker, Lauren A
2016-01-01
This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.
Low working memory capacity is only spuriously related to poor reading comprehension.
Van Dyke, Julie A; Johns, Clinton L; Kukona, Anuenue
2014-06-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order-but not simple verbal memory or working memory-were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. Copyright © 2014 Elsevier B.V. All rights reserved.
Mental Imagery and Visual Working Memory
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024
Mental imagery and visual working memory.
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.
Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E
2016-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.
Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain
Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.
2015-01-01
Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567
Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.
Pan, Yi; Luo, Qianying; Cheng, Min
2016-08-01
Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.
ERIC Educational Resources Information Center
Festini, Sara B.; Reuter-Lorenz, Patricia A.
2017-01-01
Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and…
The protective effects of brief mindfulness meditation training.
Banks, Jonathan B; Welhaf, Matthew S; Srour, Alexandra
2015-05-01
Mindfulness meditation has gained a great deal of attention in recent years due to the variety of physical and psychological benefits, including improved working memory, decreased mind wandering and reduced impact of stress on working memory. The current study examined a 1-week at home mindfulness meditation intervention compared to an active control intervention. Results suggest that mindfulness meditation does not increase working memory or decrease mind wandering but does prevent stress related working memory impairments. Mindfulness meditation appears to alter the factors that impair working memory such that the negative impact of mind wandering on working memory was only evident at higher levels of negative affect. The use of cognitive mechanism words in narratives of stressful events did not differ by condition but predicted poorer working memory in the control condition. The results support the use of an at home mindfulness meditation intervention for reducing stress-related impairments. Copyright © 2015 Elsevier Inc. All rights reserved.
Sullivan, Jessica R; Osman, Homira; Schafer, Erin C
2015-06-01
The objectives of the current study were to examine the effect of noise (-5 dB SNR) on auditory comprehension and to examine its relationship with working memory. It was hypothesized that noise has a negative impact on information processing, auditory working memory, and comprehension. Children with normal hearing between the ages of 8 and 10 years were administered working memory and comprehension tasks in quiet and noise. The comprehension measure comprised 5 domains: main idea, details, reasoning, vocabulary, and understanding messages. Performance on auditory working memory and comprehension tasks were significantly poorer in noise than in quiet. The reasoning, details, understanding, and vocabulary subtests were particularly affected in noise (p < .05). The relationship between auditory working memory and comprehension was stronger in noise than in quiet, suggesting an increased contribution of working memory. These data suggest that school-age children's auditory working memory and comprehension are negatively affected by noise. Performance on comprehension tasks in noise is strongly related to demands placed on working memory, supporting the theory that degrading listening conditions draws resources away from the primary task.
Neural bases of orthographic long-term memory and working memory in dysgraphia.
Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele
2016-02-01
Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Low working memory capacity is only spuriously related to poor reading comprehension
Van Dyke, Julie A.; Johns, Clinton L.; Kukona, Anuenue
2014-01-01
Accounts of comprehension failure, whether in the case of readers with poor skill or when syntactic complexity is high, have overwhelmingly implicated working memory capacity as the key causal factor. However, extant research suggests that this position is not well supported by evidence on the span of active memory during online sentence processing, nor is it well motivated by models that make explicit claims about the memory mechanisms that support language processing. The current study suggests that sensitivity to interference from similar items in memory may provide a better explanation of comprehension failure. Through administration of a comprehensive skill battery, we found that the previously observed association of working memory with comprehension is likely due to the collinearity of working memory with many other reading-related skills, especially IQ. In analyses which removed variance shared with IQ, we found that receptive vocabulary knowledge was the only significant predictor of comprehension performance in our task out of a battery of 24 skill measures. In addition, receptive vocabulary and non-verbal memory for serial order—but not simple verbal memory or working memory—were the only predictors of reading times in the region where interference had its primary affect. We interpret these results in light of a model that emphasizes retrieval interference and the quality of lexical representations as key determinants of successful comprehension. PMID:24657820
Working Memory in the Service of Executive Control Functions.
Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh
2015-01-01
Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.
Geiger, Lena S; Moessnang, Carolin; Schäfer, Axel; Zang, Zhenxiang; Zangl, Maria; Cao, Hengyi; van Raalten, Tamar R; Meyer-Lindenberg, Andreas; Tost, Heike
2018-05-11
The functional role of the basal ganglia (BG) in the gating of suitable motor responses to the cortex is well established. Growing evidence supports an analogous role of the BG during working memory encoding, a task phase in which the "input-gating" of relevant materials (or filtering of irrelevant information) is an important mechanism supporting cognitive capacity and the updating of working memory buffers. One important aspect of stimulus relevance is the novelty of working memory items, a quality that is understudied with respect to its effects on corticostriatal function and connectivity. To this end, we used functional magnetic resonance imaging (fMRI) in 74 healthy volunteers performing an established Sternberg working memory task with different task phases (encoding vs. retrieval) and degrees of stimulus familiarity (novel vs. previously trained). Activation analyses demonstrated a highly significant engagement of the anterior striatum, in particular during the encoding of novel working memory items. Dynamic causal modeling (DCM) of corticostriatal circuit connectivity identified a selective positive modulatory influence of novelty encoding on the connection from the dorsolateral prefrontal cortex (DLPFC) to the anterior striatum. These data extend prior research by further underscoring the relevance of the BG for human cognitive function and provide a mechanistic account of the DLPFC as a plausible top-down regulatory element of striatal function that may facilitate the "input-gating" of novel working memory materials.
Components of working memory and visual selective attention.
Burnham, Bryan R; Sabia, Matthew; Langan, Catherine
2014-02-01
Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Swanson, H Lee; Luxenberg, Diana
2009-05-01
The study explored the contribution of two component processes (phonological and executive) to blind children's memory performance. Children with blindness and sight were matched on gender, chronological age, and verbal intelligence and compared on measures of short-term memory (STM) and working memory (WM). Although the measures were highly correlated, the results from two experiments indicated that the blind children were superior to sighted children on measures of STM, but not on measures of WM. The results supported the notion that children with blindness have advantages on memory tasks that draw upon resources from the phonological loop. However, comparable performance between the ability groups on WM measures suggests there are domain specific aspects in the executive system.
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
Conscious and Unconscious Memory Systems
Squire, Larry R.; Dede, Adam J.O.
2015-01-01
The idea that memory is not a single mental faculty has a long and interesting history but became a topic of experimental and biologic inquiry only in the mid-20th century. It is now clear that there are different kinds of memory, which are supported by different brain systems. One major distinction can be drawn between working memory and long-term memory. Long-term memory can be separated into declarative (explicit) memory and a collection of nondeclarative (implicit) forms of memory that include habits, skills, priming, and simple forms of conditioning. These memory systems depend variously on the hippocampus and related structures in the parahippocampal gyrus, as well as on the amygdala, the striatum, cerebellum, and the neocortex. This work recounts the discovery of declarative and nondeclarative memory and then describes the nature of declarative memory, working memory, nondeclarative memory, and the relationship between memory systems. PMID:25731765
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Wood, Chelsey M.
2017-01-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive…
Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory
Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.
2013-01-01
Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773
Similarity to the self influences cortical recruitment during impression formation
Leshikar, Eric D.; Cassidy, Brittany S.; Gutchess, Angela H.
2015-01-01
Prior work has shown that whether or not someone is similar to the self influences person memory—a type of self-reference effect for others. In this study, we were interested in understanding the neural regions supporting the generation of impressions and subsequent memory for targets who vary in similarity to the self. Participants underwent fMRI scanning while forming positive or negative impressions of face-behavior pairs. We tested participants’ memory for their generated impressions, and then back-sorted the impression trials (encoding) into different levels of self-similarity (high, medium, low) using a self-similarity post-test that came after recognition. Extending prior behavioral work, our data confirmed our hypothesis that memory would be highest for self-similar others and lowest for self-dissimilar others. Dorsal anterior cingulate cortex (dACC) activity increased with self-similarity (high > medium > low) to targets, regardless of later memory for them. An analysis of regions supporting impression memory revealed a double dissociation within medial temporal lobe regions: for similar others, amygdala recruitment supported memory, whereas for dissimilar others, hippocampal activation supported memory. These results suggest that self-similarity influences evaluation and memory for targets, but also affects the underlying neural resources engaged when thinking about others who vary in self-similarity. PMID:26558615
Differences in brain morphology and working memory capacity across childhood.
Bathelt, Joe; Gathercole, Susan E; Johnson, Amy; Astle, Duncan E
2018-05-01
Working memory (WM) skills are closely associated with learning progress in key areas such as reading and mathematics across childhood. As yet, however, little is known about how the brain systems underpinning WM develop over this critical developmental period. The current study investigated whether and how structural brain correlates of components of the working memory system change over development. Verbal and visuospatial short-term and working memory were assessed in 153 children between 5.58 and 15.92 years, and latent components of the working memory system were derived. Fractional anisotropy and cortical thickness maps were derived from T1-weighted and diffusion-weighted MRI and processed using eigenanatomy decomposition. There was a greater involvement of the corpus callosum and posterior temporal white matter in younger children for performance associated with the executive part of the working memory system. For older children, this was more closely linked with the thickness of the occipitotemporal cortex. These findings suggest that increasing specialization leads to shifts in the contribution of neural substrates over childhood, moving from an early dependence on a distributed system supported by long-range connections to later reliance on specialized local circuitry. Our findings demonstrate that despite the component factor structure being stable across childhood, the underlying brain systems supporting working memory change. Taking the age of the child into account, and not just their overall score, is likely to be critical for understanding the nature of the limitations on their working memory capacity. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.
Nguyen, Tuong-Vi; Wu, Mia; Lew, Jimin; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Fonov, Vladimir S; Collins, D Louis; Campbell, Benjamin C; Booij, Linda; Herba, Catherine; Monnier, Patricia; Ducharme, Simon; McCracken, James T
2017-12-01
Existing studies suggest that dehydroepiandrosterone (DHEA) may be important for human brain development and cognition. For example, molecular studies have hinted at the critical role of DHEA in enhancing brain plasticity. Studies of human brain development also support the notion that DHEA is involved in preserving cortical plasticity. Further, some, though not all, studies show that DHEA administration may lead to improvements in working memory in adults. Yet these findings remain limited by an incomplete understanding of the specific neuroanatomical mechanisms through which DHEA may impact the CNS during development. Here we examined associations between DHEA, cortico-hippocampal structural covariance, and working memory (216 participants [female=123], age range 6-22 years old, mean age: 13.6 +/-3.6 years, each followed for a maximum of 3 visits over the course of 4 years). In addition to administering performance-based, spatial working memory tests to these children, we also collected ecological, parent ratings of working memory in everyday situations. We found that increasingly higher DHEA levels were associated with a shift toward positive insular-hippocampal and occipito-hippocampal structural covariance. In turn, DHEA-related insular-hippocampal covariance was associated with lower spatial working memory but higher overall working memory as measured by the ecological parent ratings. Taken together with previous research, these results support the hypothesis that DHEA may optimize cortical functions related to general attentional and working memory processes, but impair the development of bottom-up, hippocampal-to-cortical connections, resulting in impaired encoding of spatial cues. Copyright © 2017 Elsevier Ltd. All rights reserved.
How visual working memory contents influence priming of visual attention.
Carlisle, Nancy B; Kristjánsson, Árni
2017-04-12
Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
The Dynamic Multiprocess Framework: Evidence from Prospective Memory with Contextual Variability
Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill Talley
2013-01-01
The ability to remember to execute delayed intentions is referred to as prospective memory. Previous theoretical and empirical work has focused on isolating whether a particular prospective memory task is supported either by effortful monitoring processes or by cue-driven spontaneous processes. In the present work, we advance the Dynamic Multiprocess Framework, which contends that both monitoring and spontaneous retrieval may be utilized dynamically to support prospective remembering. To capture the dynamic interplay between monitoring and spontaneous retrieval we had participants perform many ongoing tasks and told them that their prospective memory cue may occur in any context. Following either a 20-min or a 12-hr retention interval, the prospective memory cues were presented infrequently across three separate ongoing tasks. The monitoring patterns (measured as ongoing task cost relative to a between-subjects control condition) were consistent and robust across the three contexts. There was no evidence for monitoring prior to the initial prospective memory cue; however, individuals who successfully spontaneously retrieved the prospective memory intention, thereby realizing that prospective memory cues could be expected within that context, subsequently monitored. These data support the Dynamic Multiprocess Framework, which contends that individuals will engage monitoring when prospective memory cues are expected, disengage monitoring when cues are not expected, and that when monitoring is disengaged, a probabilistic spontaneous retrieval mechanism can support prospective remembering. PMID:23916951
The effects of environmental support and secondary tasks on visuospatial working memory.
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2014-10-01
In the present experiments, we examined the effects of environmental support on participants' ability to rehearse locations and the role of such support in the effects of secondary tasks on memory span. In Experiment 1, the duration of interitem intervals and the presence of environmental support for visuospatial rehearsal (i.e., the array of possible memory locations) during the interitem intervals were both manipulated across four tasks. When support was provided, memory spans increased as the interitem interval durations increased, consistent with the hypothesis that environmental support facilitates rehearsal. In contrast, when environmental support was not provided, spans decreased as the duration of the interitem intervals increased, consistent with the hypothesis that visuospatial memory representations decay when rehearsal is impeded. In Experiment 2, the ratio of interitem interval duration to intertrial interval duration was kept the same on all four tasks, in order to hold temporal distinctiveness constant, yet forgetting was still observed in the absence of environmental support, consistent with the decay hypothesis. In Experiment 3, the effects of impeding rehearsal were compared to the effects of verbal and visuospatial secondary processing tasks. Forgetting of locations was greater when presentation of to-be-remembered locations alternated with the performance of a secondary task than when rehearsal was impeded by the absence of environmental support. The greatest forgetting occurred when a secondary task required the processing visuospatial information, suggesting that in addition to decay, both domain-specific and domain-general effects contribute to forgetting on visuospatial working memory tasks.
Lawlor-Savage, Linette; Goghari, Vina M.
2016-01-01
Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141
Architecture of fluid intelligence and working memory revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Paul, Erick J; Grafman, Jordan
2014-03-01
Although cognitive neuroscience has made valuable progress in understanding the role of the prefrontal cortex in human intelligence, the functional networks that support adaptive behavior and novel problem solving remain to be well characterized. Here, we studied 158 human brain lesion patients to investigate the cognitive and neural foundations of key competencies for fluid intelligence and working memory. We administered a battery of neuropsychological tests, including the Wechsler Adult Intelligence Scale (WAIS) and the N-Back task. Latent variable modeling was applied to obtain error-free scores of fluid intelligence and working memory, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. The observed latent variable modeling and lesion results support an integrative framework for understanding the architecture of fluid intelligence and working memory and make specific recommendations for the interpretation and application of the WAIS and N-Back task to the study of fluid intelligence in health and disease.
Content-Specific Working Memory Modulation of the Attentional Blink
Akyürek, Elkan G.; Abedian-Amiri, Ali; Ostermeier, Sonja M.
2011-01-01
Three experiments were conducted to investigate the effects of working memory content on temporal attention in a rapid serial visual presentation attentional blink paradigm. It was shown that categorical similarity between working memory content and the target stimuli pertaining to the attentional task (both digits) increased attentional blink magnitude compared to a condition in which this similarity was absent (colors and digits, respectively). This effect was only observed when the items in working memory were not presented as conjunctions of the involved categories (i.e., colored digits). This suggested that storage and retrieval from working memory was at least preferentially conjunctive in this case. It was furthermore shown that the content of working memory enhanced the identification rate of the second target, by means of repetition priming, when inter-target lag was short and the attentional blink was in effect. The results are incompatible with theories of temporal attention that assume working memory has no causal role in the attentional blink and support theories that do. PMID:21311753
Auditory short-term memory in the primate auditory cortex.
Scott, Brian H; Mishkin, Mortimer
2016-06-01
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.
Levels of processing and language modality specificity in working memory.
Rudner, Mary; Karlsson, Thomas; Gunnarsson, Johan; Rönnberg, Jerker
2013-03-01
Neural networks underpinning working memory demonstrate sign language specific components possibly related to differences in temporary storage mechanisms. A processing approach to memory systems suggests that the organisation of memory storage is related to type of memory processing as well. In the present study, we investigated for the first time semantic, phonological and orthographic processing in working memory for sign- and speech-based language. During fMRI we administered a picture-based 2-back working memory task with Semantic, Phonological, Orthographic and Baseline conditions to 11 deaf signers and 20 hearing non-signers. Behavioural data showed poorer and slower performance for both groups in Phonological and Orthographic conditions than in the Semantic condition, in line with depth-of-processing theory. An exclusive masking procedure revealed distinct sign-specific neural networks supporting working memory components at all three levels of processing. The overall pattern of sign-specific activations may reflect a relative intermodality difference in the relationship between phonology and semantics influencing working memory storage and processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hippocampal-prefrontal input supports spatial encoding in working memory.
Spellman, Timothy; Rigotti, Mattia; Ahmari, Susanne E; Fusi, Stefano; Gogos, Joseph A; Gordon, Joshua A
2015-06-18
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
The Effects of Environmental Support and Secondary Tasks on Visuospatial Working Memory
Lilienthal, Lindsey; Hale, Sandra; Myerson, Joel
2014-01-01
The present experiments examined the effects of environmental support on participants’ ability to rehearse locations and its role in the effects of secondary tasks on memory span. In Experiment 1, the duration of inter-item intervals and the presence of environmental support for visuospatial rehearsal (i.e., the array of possible memory locations) during the inter-item intervals were both manipulated across four tasks. When support was provided, memory spans increased as the inter-item interval durations increased, consistent with the hypothesis that environmental support facilitates rehearsal. In contrast, when environmental support was not provided, spans decreased as the duration of the inter-item intervals increased, consistent with the hypothesis that visuospatial memory representations decay when rehearsal is impeded. In Experiment 2, the ratio of inter-item interval duration to inter-trial interval duration was kept the same on all four tasks in order to hold temporal distinctiveness constant, yet forgetting was still observed in the absence of environmental support, consistent with the decay hypothesis. In Experiment 3, the effects of impeding rehearsal were compared to the effects of verbal and visuospatial secondary processing tasks. Forgetting of locations was greater when presentation of to-be-remembered locations alternated with performance of a secondary task than when rehearsal was impeded by the absence of environmental support. The greatest forgetting occurred when a secondary task required processing visuospatial information, suggesting that in addition to decay, both domain-specific and domain-general effects contribute to forgetting on visuospatial working memory tasks. PMID:24874509
Influence of affective valence on working memory processes.
Gotoh, Fumiko
2008-02-01
Recent research has revealed widespread effects of emotion on cognitive function and memory. However, the influence of affective valence on working or short-term memory remains largely unexplored. In two experiments, the present study examined the predictions that negative words would capture attention, that attention would be difficult to disengage from such negative words, and that the cost of attention switching would increase the time required to update information in working memory. Participants switched between two concurrent working memory tasks: word recognition and a working memory digit updating task. Experiment 1 showed substantial switching cost for negative words, relative to neutral words. Experiment 2 replicated the first experiment, using a self-report measure of anxiety to examine if switching cost is a function of an anxiety-related attention bias. Results did not support this hypothesis. In addition, Experiment 2 revealed switch costs for positive words without the effect of the attention bias from anxiety. The present study demonstrates the effect of affective valence on a specific component of working memory. Moreover, findings suggest why affective valence effects on working memory have not been found in previous research.
Where do we store the memory representations that guide attention?
Woodman, Geoffrey F.; Carlisle, Nancy B.; Reinhart, Robert M. G.
2013-01-01
During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item in working memory. Here we summarize the work indicating that the relationship between what representations are maintained in working memory and what perceptual inputs are selected is not so simple. First, it appears that attentional selection is also determined by high-level task goals that mediate the relationship between working memory storage and attentional selection. Second, much of the recent work from our laboratory has focused on the role of long-term memory in controlling attentional selection. We review recent evidence supporting the proposal that working memory representations are critical during the initial configuration of attentional control settings, but that after those settings are established long-term memory representations play an important role in controlling which perceptual inputs are selected by mechanisms of attention. PMID:23444390
Sweeney, Mary M.; Rass, Olga; Johnson, Patrick S.; Strain, Eric C.; Berry, Meredith S.; Vo, Hoa T.; Fishman, Marc J.; Munro, Cynthia A.; Rebok, George W.; Mintzer, Miriam Z.; Johnson, Matthew W.
2016-01-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 male; 9 female) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support development of this intervention as an adjunctive therapy for substance use disorders. PMID:27690506
Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W
2016-10-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Manginelli, Angela A; Baumgartner, Florian; Pollmann, Stefan
2013-02-15
Behavioral evidence suggests that the use of implicitly learned spatial contexts for improved visual search may depend on visual working memory resources. Working memory may be involved in contextual cueing in different ways: (1) for keeping implicitly learned working memory contents available during search or (2) for the capture of attention by contexts retrieved from memory. We mapped brain areas that were modulated by working memory capacity. Within these areas, activation was modulated by contextual cueing along the descending segment of the intraparietal sulcus, an area that has previously been related to maintenance of explicit memories. Increased activation for learned displays, but not modulated by the size of contextual cueing, was observed in the temporo-parietal junction area, previously associated with the capture of attention by explicitly retrieved memory items, and in the ventral visual cortex. This pattern of activation extends previous research on dorsal versus ventral stream functions in memory guidance of attention to the realm of attentional guidance by implicit memory. Copyright © 2012 Elsevier Inc. All rights reserved.
Yonelinas, Andrew P.
2013-01-01
It is well established that the hippocampus plays a critical role in our ability to recollect past events. A number of recent studies have indicated that the hippocampus may also play a critical role in working memory and perception, but these results have been highly controversial because other similar studies have failed to find evidence for hippocampal involvement. Thus, the precise role that the hippocampus plays in cognition is still debated. In the current paper, I propose that the hippocampus supports the generation and utilization of complex high-resolution bindings that link together the qualitative aspects that make up an event; these bindings are essential for recollection, and they can also contribute to performance across a variety of tasks including perception and working memory. An examination of the existing patient literature provides support for this proposal by showing that hippocampal damage leads to impairments on perception and working memory tasks that require complex high-resolution bindings. Conversely, hippocampal damage is much less likely to lead to impairments on tasks that require only low-resolution or simple associations/relations. The current proposal can be distinguished from earlier accounts of hippocampal function, and it generates a number of novel predictions that can be tested in future studies. PMID:23721964
Effects of verbal and nonverbal interference on spatial and object visual working memory.
Postle, Bradley R; Desposito, Mark; Corkin, Suzanne
2005-03-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the "what/where" organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function.
Effects of verbal and nonverbal interference on spatial and object visual working memory
POSTLE, BRADLEY R.; D’ESPOSITO, MARK; CORKIN, SUZANNE
2005-01-01
We tested the hypothesis that a verbal coding mechanism is necessarily engaged by object, but not spatial, visual working memory tasks. We employed a dual-task procedure that paired n-back working memory tasks with domain-specific distractor trials inserted into each interstimulus interval of the n-back tasks. In two experiments, object n-back performance demonstrated greater sensitivity to verbal distraction, whereas spatial n-back performance demonstrated greater sensitivity to motion distraction. Visual object and spatial working memory may differ fundamentally in that the mnemonic representation of featural characteristics of objects incorporates a verbal (perhaps semantic) code, whereas the mnemonic representation of the location of objects does not. Thus, the processes supporting working memory for these two types of information may differ in more ways than those dictated by the “what/where” organization of the visual system, a fact more easily reconciled with a component process than a memory systems account of working memory function. PMID:16028575
van Ede, Freek; Niklaus, Marcel; Nobre, Anna C
2017-01-11
Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.
Asymmetric Attention: Visualizing the Uncertain Threat
2010-03-01
memory . This is supportive of earlier research by Engle (2002) suggesting that executive attention and working memory capacity are...explored by Engle (2002). Engle’s findings suggest that attention or the executive function and working memory actually entail the same mental process ...recognition, and action. These skills orient and guide the Soldier in operational settings from the basic perceptual process at the attentiveness stage
Working, declarative and procedural memory in specific language impairment
Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.
2012-01-01
According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923
Chacko, A; Bedard, A-C V; Marks, D; Gopalan, G; Feirsen, N; Uderman, J; Chimiklis, A; Heber, E; Cornwell, M; Anderson, L; Zwilling, A; Ramon, M
2018-05-01
The present study examines the potential of sequencing a neurocognitive intervention with behavioral parent training (BPT) to improve executive functions (EFs), psychiatric symptoms, and multiple indices of functional impairment in school-age children aged 7 to 11 years who have been diagnosed with attention-deficit/hyperactivity disorder (ADHD). Specifically, in a randomized controlled trial design, 85 children were assigned to either Cogmed Working Memory Training (CWMT) followed by an empirically supported, manualized BPT intervention, or to a placebo version of CWMT followed by the same BPT intervention. Working memory maintenance (i.e., attention control/short-term memory), working memory processing and manipulation, ADHD and oppositional defiant disorder (ODD) symptoms, impairment in parent-child dynamics, familial impairment, and overall functional compromise were evaluated as outcomes. The results suggest specific effects of the combined CWMT and BPT program on verbal and nonverbal working memory storage and nonverbal working memory processing and manipulation but no incremental benefits in regard to ADHD symptoms, ODD symptoms, and functional outcomes. The present findings do not support the hypothesis regarding the complementary and augmentative benefits of sequenced neurocognitive and BPT interventions for the treatment of ADHD. These results, the study's limitations, and future directions for research are further discussed.
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious.
Sasaki, Takuya; Piatti, Verónica C; Hwaun, Ernie; Ahmadi, Siavash; Lisman, John E; Leutgeb, Stefan; Leutgeb, Jill K
2018-02-01
Complex spatial working memory tasks have been shown to require both hippocampal sharp-wave ripple (SWR) activity and dentate gyrus (DG) neuronal activity. We therefore asked whether DG inputs to CA3 contribute to spatial working memory by promoting SWR generation. Recordings from DG and CA3 while rats performed a dentate-dependent working memory task on an eight-arm radial maze revealed that the activity of dentate neurons and the incidence rate of SWRs both increased during reward consumption. We then found reduced reward-related CA3 SWR generation without direct input from dentate granule neurons. Furthermore, CA3 cells with place fields in not-yet-visited arms preferentially fired during SWRs at reward locations, and these prospective CA3 firing patterns were more pronounced for correct trials and were dentate-dependent. These results indicate that coordination of CA3 neuronal activity patterns by DG is necessary for the generation of neuronal firing patterns that support goal-directed behavior and memory.
A Brain System for Auditory Working Memory.
Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D
2016-04-20
The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
Brewer, Gene A; Knight, Justin B; Marsh, Richard L; Unsworth, Nash
2010-04-01
The multiprocess view proposes that different processes can be used to detect event-based prospective memory cues, depending in part on the specificity of the cue. According to this theory, attentional processes are not necessary to detect focal cues, whereas detection of nonfocal cues requires some form of controlled attention. This notion was tested using a design in which we compared performance on a focal and on a nonfocal prospective memory task by participants with high or low working memory capacity. An interaction was found, such that participants with high and low working memory performed equally well on the focal task, whereas the participants with high working memory performed significantly better on the nonfocal task than did their counterparts with low working memory. Thus, controlled attention was only necessary for detecting event-based prospective memory cues in the nonfocal task. These results have implications for theories of prospective memory, the processes necessary for cue detection, and the successful fulfillment of intentions.
Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.
2017-01-01
Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324
Does constraining memory maintenance reduce visual search efficiency?
Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R
2018-03-01
We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.
Spatial working memory capacity predicts bias in estimates of location.
Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A
2016-09-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Spatial Working Memory Capacity Predicts Bias in Estimates of Location
Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.
2016-01-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708
Hollingworth, Andrew; Hwang, Seongmin
2013-10-19
We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection.
Dopamine D1 signaling organizes network dynamics underlying working memory.
Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian
2016-06-01
Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.
Working memory involved in predicting future outcomes based on past experiences.
Dretsch, Michael N; Tipples, Jason
2008-02-01
Deficits in working memory have been shown to contribute to poor performance on the Iowa Gambling Task [IGT: Bechara, A., & Martin, E.M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18, 152-162]. Similarly, a secondary memory load task has been shown to impair task performance [Hinson, J., Jameson, T. & Whitney, P. (2002). Somatic markers, working memory, and decision making. Cognitive, Affective, & Behavioural Neuroscience, 2, 341-353]. In the present study, we investigate whether the latter findings were due to increased random responding [Franco-Watkins, A. M., Pashler, H., & Rickard, T. C. (2006). Does working memory load lead to greater impulsivity? Commentary on Hinson, Jameson, and Whitney's (2003). Journal of Experimental Psychology: Learning, Memory & Cognition, 32, 443-447]. Participants were tested under Low Working Memory (LWM; n=18) or High Working Memory (HWM; n=17) conditions while performing the Reversed IGT in which punishment was immediate and reward delayed [Bechara, A., Dolan, S., & Hindes, A. (2002). Decision making and addiction (part II): Myopia for the future or hypersensitivity to reward? Neuropsychologia, 40, 1690-1705]. In support of a role for working memory in emotional decision making, compared to the LWM condition, participants in the HWM condition made significantly greater number of disadvantageous selections than that predicted by chance. Performance by the HWM group could not be fully explained by random responding.
NIH Toolbox Cognition Battery (NIHTB-CB): list sorting test to measure working memory.
Tulsky, David S; Carlozzi, Noelle; Chiaravalloti, Nancy D; Beaumont, Jennifer L; Kisala, Pamela A; Mungas, Dan; Conway, Kevin; Gershon, Richard
2014-07-01
The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support for the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relationship between the List Sorting Test and general executive function has yet to be determined.
Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael
2016-01-01
Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411
NIH Toolbox Cognition Battery (NIHTB-CB): The List Sorting Test to Measure Working Memory
Tulsky, David S.; Carlozzi, Noelle; Chiaravalloti, Nancy D.; Beaumont, Jennifer L.; Kisala, Pamela A.; Mungas, Dan; Conway, Kevin; Gershon, Richard
2015-01-01
The List Sorting Working Memory Test was designed to assess working memory (WM) as part of the NIH Toolbox Cognition Battery. List Sorting is a sequencing task requiring children and adults to sort and sequence stimuli that are presented visually and auditorily. Validation data are presented for 268 participants ages 20 to 85 years. A subset of participants (N=89) was retested 7 to 21 days later. As expected, the List Sorting Test had moderately high correlations with other measures of working memory and executive functioning (convergent validity) but a low correlation with a test of receptive vocabulary (discriminant validity). Furthermore, List Sorting demonstrates expected changes over the age span and has excellent test-retest reliability. Collectively, these results provide initial support the construct validity of the List Sorting Working Memory Measure as a measure of working memory. However, the relation between the List Sorting Test and general executive function has yet to be determined. PMID:24959983
Marvel, Cherie L; Faulkner, Monica L; Strain, Eric C; Mintzer, Miriam Z; Desmond, John E
2012-03-01
Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging to examine brain activity associated with working memory in five opioid-dependent, methadone-maintained patients and five matched, healthy controls. An item recognition task was administered in two conditions: (1) a low working memory load "match" condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and (2) a high working memory load "manipulation" condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load ("manipulation" condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit and shed light on the neuroanatomical basis of working memory impairments in this population.
Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.
2011-01-01
Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700
Working Memory Updating as a Predictor of Academic Attainment
ERIC Educational Resources Information Center
Lechuga, M. Teresa; Pelegrina, Santiago; Pelaez, Jose L.; Martin-Puga, M. Eva; Justicia, M. Jose
2016-01-01
There is growing evidence supporting the importance of executive functions, and specifically working memory updating (WMU), for children's academic achievement. This study aimed to assess the specific contribution of updating to the prediction of academic performance. Two updating tasks, which included different updating components, were…
Individual differences in simultaneous color constancy are related to working memory.
Allen, Elizabeth C; Beilock, Sian L; Shevell, Steven K
2012-02-01
Few studies have investigated the possible role of higher-level cognitive mechanisms in color constancy. Following up on previous work with successive color constancy [J. Exper. Psychol. Learn. Mem. Cogn. 37, 1014 (2011)], the current study examined the relation between simultaneous color constancy and working memory-the ability to maintain a desired representation while suppressing irrelevant information. Higher working memory was associated with poorer simultaneous color constancy of a chromatically complex stimulus. Ways in which the executive attention mechanism of working memory may account for this are discussed. This finding supports a role for higher-level cognitive mechanisms in color constancy and is the first to demonstrate a relation between simultaneous color constancy and a complex cognitive ability. © 2012 Optical Society of America
How to Assess Gaming-Induced Benefits on Attention and Working Memory.
Mishra, Jyoti; Bavelier, Daphne; Gazzaley, Adam
2012-06-01
Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education.
How to Assess Gaming-Induced Benefits on Attention and Working Memory
Mishra, Jyoti; Bavelier, Daphne
2012-01-01
Abstract Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education. PMID:24761314
Defining the "D" in ISD. Part 1: Task-General Instructional Methods.
ERIC Educational Resources Information Center
Clark, Ruth Colvin
1986-01-01
The first of two articles designed to provide guidelines for the instructional development phase of instructional systems development focuses on general instructional methods supporting all instructional tasks. Teaching methods that support selective attention, processing in working memory, and connecting in long-term memory are described and…
Rusli, Yazmin Ahmad; Montgomery, James W
2017-10-17
The aim of this study was to determine whether extant language (lexical) knowledge or domain-general working memory is the better predictor of comprehension of object relative sentences for children with typical development. We hypothesized that extant language knowledge, not domain-general working memory, is the better predictor. Fifty-three children (ages 9-11 years) completed a word-level verbal working-memory task, indexing extant language (lexical) knowledge; an analog nonverbal working-memory task, representing domain-general working memory; and a hybrid sentence comprehension task incorporating elements of both agent selection and cross-modal picture-priming paradigms. Images of the agent and patient were displayed at the syntactic gap in the object relative sentences, and the children were asked to select the agent of the sentence. Results of general linear modeling revealed that extant language knowledge accounted for a unique 21.3% of variance in the children's object relative sentence comprehension over and above age (8.3%). Domain-general working memory accounted for a nonsignificant 1.6% of variance. We interpret the results to suggest that extant language knowledge and not domain-general working memory is a critically important contributor to children's object relative sentence comprehension. Results support a connectionist view of the association between working memory and object relative sentence comprehension. https://doi.org/10.23641/asha.5404573.
Lawlor-Savage, Linette; Goghari, Vina M.
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious. PMID:28558000
Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby
2015-10-01
The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.
Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J
2017-07-01
Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.
The Future of Memory: Remembering, Imagining, and the Brain
Schacter, Daniel L.; Addis, Donna Rose; Hassabis, Demis; Martin, Victoria C.; Spreng, R. Nathan; Szpunar, Karl K.
2013-01-01
During the past few years, there has been a dramatic increase in research examining the role of memory in imagination and future thinking. This work has revealed striking similarities between remembering the past and imagining or simulating the future, including the finding that a common brain network underlies both memory and imagination. Here we discuss a number of key points that have emerged during recent years, focusing in particular on the importance of distinguishing between temporal and non-temporal factors in analyses of memory and imagination, the nature of differences between remembering the past and imagining the future, the identification of component processes that comprise the default network supporting memory-based simulations, and the finding that this network can couple flexibly with other networks to support complex goal-directed simulations. This growing area of research has broadened our conception of memory by highlighting the many ways in which memory supports adaptive functioning. PMID:23177955
Working Memory Maturation: Can We Get at the Essence of Cognitive Growth?
Cowan, Nelson
2016-03-01
The theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem solving. In this article, I assess many possible reasons that working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult levels during infancy but then regresses during childhood. In place of that unlikely explanation, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared with adult-level tasks. Further development of working memory during the school years is also considered. Many investigators have come to suspect that working memory capacity may be constant after infancy because of various factors such as developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how these skills develop, and to pinpoint the nature of capacity and its development from infancy forward. © The Author(s) 2016.
Working Memory Maturation: Can We Get At the Essence of Cognitive Growth?
Cowan, Nelson
2015-01-01
Our theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem-solving. Here I assess many possible reasons why working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult-like levels during infancy but then regresses during childhood. In place of that unlikely surmise, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared to adult-like tasks. Further development of working memory during the school years is also considered. Various confounding factors have led many investigators to suspect that working memory capacity may be constant after infancy; the factors include developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how they develop, and to pinpoint the nature of capacity and its development from infancy on. PMID:26993277
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
Ekman, Matthias; Fiebach, Christian J; Melzer, Corina; Tittgemeyer, Marc; Derrfuss, Jan
2016-03-09
The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs considerably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. In contrast, in Study 2, where participants were required to maintain working memory items without updating, only the connectivity of the direct pathway was predictive of individual WMC. Our results suggest an important dissociation in the circuitry connecting frontal and parietal regions, where direct frontoparietal connections might support storage and maintenance, whereas subcortically mediated connections support the flexible updating of working memory content. Copyright © 2016 the authors 0270-6474/16/362894-10$15.00/0.
The Role of Working Memory in Metaphor Production and Comprehension
ERIC Educational Resources Information Center
Chiappe, Dan L.; Chiappe, Penny
2007-01-01
The following tested Kintsch's [Kintsch, W. (2000). "Metaphor comprehension: a computational theory." "Psychonomic Bulletin & Review," 7, 257-266 and Kintsch, W. (2001). "Predication." "Cognitive Science," 25, 173-202] Predication Model, which predicts that working memory capacity is an important factor in metaphor processing. In support of his…
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults.
Lippelt, D P; van der Kint, S; van Herk, K; Naber, M
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0-2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants.
No Acute Effects of Choline Bitartrate Food Supplements on Memory in Healthy, Young, Human Adults
Lippelt, D. P.; van der Kint, S.; van Herk, K.; Naber, M.
2016-01-01
Choline is a dietary component and precursor of acetylcholine, a crucial neurotransmitter for memory-related brain functions. In two double-blind, placebo-controlled cross-over experiments, we investigated whether the food supplement choline bitartrate improved declarative memory and working memory in healthy, young students one to two hours after supplementation. In experiment 1, 28 participants performed a visuospatial working memory task. In experiment 2, 26 participants performed a declarative picture memorization task. In experiment 3, 40 participants performed a verbal working memory task in addition to the visuospatial working memory and declarative picture task. All tasks were conducted approximately 60 minutes after the ingestion of 2.0–2.5g of either choline bitartrate or placebo. We found that choline did not significantly enhance memory performance during any of the tasks. The null hypothesis that choline does not improve memory performance as compared to placebo was strongly supported by Bayesian statistics. These results are in contrast with animal studies suggesting that choline supplementation boosts memory performance and learning. We conclude that choline likely has no acute effects on cholinergic memory functions in healthy human participants. PMID:27341028
Kelly, Michelle E; Duff, Hollie; Kelly, Sara; McHugh Power, Joanna E; Brennan, Sabina; Lawlor, Brian A; Loughrey, David G
2017-12-19
Social relationships, which are contingent on access to social networks, promote engagement in social activities and provide access to social support. These social factors have been shown to positively impact health outcomes. In the current systematic review, we offer a comprehensive overview of the impact of social activities, social networks and social support on the cognitive functioning of healthy older adults (50+) and examine the differential effects of aspects of social relationships on various cognitive domains. We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, and collated data from randomised controlled trials (RCTs), genetic and observational studies. Independent variables of interest included subjective measures of social activities, social networks, and social support, and composite measures of social relationships (CMSR). The primary outcome of interest was cognitive function divided into domains of episodic memory, semantic memory, overall memory ability, working memory, verbal fluency, reasoning, attention, processing speed, visuospatial abilities, overall executive functioning and global cognition. Thirty-nine studies were included in the review; three RCTs, 34 observational studies, and two genetic studies. Evidence suggests a relationship between (1) social activity and global cognition and overall executive functioning, working memory, visuospatial abilities and processing speed but not episodic memory, verbal fluency, reasoning or attention; (2) social networks and global cognition but not episodic memory, attention or processing speed; (3) social support and global cognition and episodic memory but not attention or processing speed; and (4) CMSR and episodic memory and verbal fluency but not global cognition. The results support prior conclusions that there is an association between social relationships and cognitive function but the exact nature of this association remains unclear. Implications of the findings are discussed and suggestions for future research provided. PROSPERO 2012: CRD42012003248 .
Trost, Sarah; Gruber, Oliver
2012-01-01
Recent functional neuroimaging studies have provided evidence that human verbal working memory is represented by two complementary neural systems, a left lateralized premotor-parietal network implementing articulatory rehearsal and a presumably phylogenetically older bilateral anterior-prefrontal/inferior-parietal network subserving non-articulatory maintenance of phonological information. In order to corroborate these findings from functional neuroimaging, we performed a targeted behavioural study in patients with very selective and circumscribed brain lesions to key regions suggested to support these different subcomponents of human verbal working memory. Within a sample of over 500 neurological patients assessed with high-resolution structural magnetic resonance imaging, we identified 2 patients with corresponding brain lesions, one with an isolated lesion to Broca's area and the other with a selective lesion bilaterally to the anterior middle frontal gyrus. These 2 patients as well as groups of age-matched healthy controls performed two circuit-specific verbal working memory tasks. In this way, we systematically assessed the hypothesized selective behavioural effects of these brain lesions on the different subcomponents of verbal working memory in terms of a double dissociation. Confirming prior findings, the lesion to Broca's area led to reduced performance under articulatory rehearsal, whereas the non-articulatory maintenance of phonological information was unimpaired. Conversely, the bifrontopolar brain lesion was associated with impaired non-articulatory phonological working memory, whereas performance under articulatory rehearsal was unaffected. The present experimental neuropsychological study in patients with specific and circumscribed brain lesions confirms the hypothesized double dissociation of two complementary brain systems underlying verbal working memory in humans. In particular, the results demonstrate the functional relevance of the anterior prefrontal cortex for non-articulatory maintenance of phonological information and, in this way, provide further support for the evolutionary-based functional-neuroanatomical model of human working memory. Copyright © 2012 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Blumenfeld, Robert S.; Parks, Colleen M.; Yonelinas, Andrew P.; Ranganath, Charan
2011-01-01
Results from fMRI have strongly supported the idea that the ventrolateral PFC (VLPFC) contributes to successful memory formation, but the role the dorsolateral PFC (DLPFC) in memory encoding is more controversial. Some findings suggest that the DLPFC is recruited when one is processing relationships between items in working memory, and this…
ERIC Educational Resources Information Center
Michell, Dee; Beddoe, Liz; Fraser, Heather; Jarldorn, Michele
2017-01-01
This paper reports on our use of a two-phased, feminist memory work in a project conducted with 11 women, social science students at an Australian university. We begin by describing government-led attempts to widen participation in Australian universities because 10 of the 11 women who participated in our project were from…
Does learning to read shape verbal working memory?
Demoulin, Catherine; Kolinsky, Régine
2016-06-01
Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.
Reactivation in Working Memory: An Attractor Network Model of Free Recall
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690
Reactivation in working memory: an attractor network model of free recall.
Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran
2013-01-01
The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.
Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.
Druzgal, T Jason; D'Esposito, Mark
2003-08-15
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Working memory capacity in social anxiety disorder: Revisiting prior conclusions.
Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E
2018-04-01
In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry
2015-01-01
Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.
Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook
2013-01-01
More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.
Gender differences in episodic memory and visual working memory including the effects of age.
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Analysing the relationship between gender and memory, and examining the effects of age on the overall memory-related functioning, are the ongoing goals of psychological research. The present study examined gender and age group differences in episodic memory with respect to the type of task. In addition, these subgroup differences were also analysed in visual working memory. A sample of 366 women and 330 men, aged between 16 and 69 years of age, participated in the current study. Results indicate that women outperformed men on auditory memory tasks, whereas male adolescents and older male adults showed higher level performances on visual episodic and visual working memory measures. However, the size of gender-linked effects varied somewhat across age groups. Furthermore, results partly support a declining performance on episodic memory and visual working memory measures with increasing age. Although age-related losses in episodic memory could not be explained by a decreasing verbal and visuospatial ability with age, women's advantage in auditory episodic memory could be explained by their advantage in verbal ability. Men's higher level visual episodic memory performance was found to result from their advantage in visuospatial ability. Finally, possible methodological, biological, and cognitive explanations for the current findings are discussed.
Memory and Processing Limits in Decision-Making.
ERIC Educational Resources Information Center
Klapp, Stuart T.
According to the classical working memory perspective, tasks such as command and control decision-making should be performed less effectively if extraneous material must be retained in short-term memory. Only marginal support for this prediction was obtained for a simulation involving scheduling trucking and transportation missions, although…
Twamley, Elizabeth W; Jak, Amy J; Delis, Dean C; Bondi, Mark W; Lohr, James B
2014-01-01
Traumatic brain injury (TBI) can result in cognitive impairments and persistent postconcussive symptoms that limit functional recovery, including return to work. We evaluated a 12 wk compensatory cognitive training intervention (Cognitive Symptom Management and Rehabilitation Therapy [CogSMART]) in the context of supported employment for Veterans with mild to moderate TBI. Participants were randomly assigned to receive 12 wk of supported employment plus CogSMART or enhanced supported employment that controlled for therapist attention (control). CogSMART sessions were delivered by the employment specialist and included psychoeducation regarding TBI; strategies to improve sleep, fatigue, headaches, and tension; and compensatory cognitive strategies in the domains of prospective memory, attention, learning and memory, and executive functioning. Compared with controls, those assigned to supported employment plus CogSMART demonstrated significant reductions in postconcussive symptoms (Cohen d = 0.97) and improvements in prospective memory functioning (Cohen d = 0.72). Effect sizes favoring CogSMART for posttraumatic stress disorder symptom severity, depressive symptom severity, and attainment of competitive work within 14 wk were in the small to medium range (Cohen d = 0.35-0.49). Those who received CogSMART rated the intervention highly. Results suggest that adding CogSMART to supported employment may improve postconcussive symptoms and prospective memory. These effects, as well as smaller effects on psychiatric symptoms and ability to return to work, warrant replication in a larger trial.
Working memory supports inference learning just like classification learning.
Craig, Stewart; Lewandowsky, Stephan
2013-08-01
Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.
Executive and Perceptual Distraction in Visual Working Memory
2017-01-01
The contents of visual working memory are likely to reflect the influence of both executive control resources and information present in the environment. We investigated whether executive attention is critical in the ability to exclude unwanted stimuli by introducing concurrent potentially distracting irrelevant items to a visual working memory paradigm, and manipulating executive load using simple or more demanding secondary verbal tasks. Across 7 experiments varying in presentation format, timing, stimulus set, and distractor number, we observed clear disruptive effects of executive load and visual distraction, but relatively minimal evidence supporting an interactive relationship between these factors. These findings are in line with recent evidence using delay-based interference, and suggest that different forms of attentional selection operate relatively independently in visual working memory. PMID:28414499
Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A
2017-04-01
The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.
Ge, Shaoqing; Wu, Bei; Bailey, Donald E; Dong, XinQi
2017-07-01
Limited research is available on the relationship between social support, social strain, and cognitive function among community-dwelling U.S. Chinese older adults. This study aims to examine the associations between social support/strain and cognitive outcomes. Data were drawn from the Population-Based Study of Chinese Elderly (N = 3,159). Cognitive function was measured by a battery of tests including the East Boston Memory Test, the Digit Span Backwards assessment, and the Symbol Digit Modalities Test. Social support and strain were measured by the scales drawn from the Health and Retirement study. Multiple regression analyses were conducted. Social support was significantly associated with global cognitive function (β = .11, SE = .02, p < .001), episodic memory (β = .11, SE = .03, p < .001), working memory (β = .18, SE = .08, p < .05), and executive function (β = 1.44, SE = .37, p < .001). Social strain was significantly associated with global cognitive function (β = .23, SE = .05, p < .001), episodic memory (β = .27, SE = .07, p < .001), working memory (β = .34, SE = .17, p < .05), and executive function (β = 2.75, SE = .85, p < .01). In terms of sources of social support/strain, higher support from friends was significantly associated with higher global cognitive function (β = .04, SE = .02, p < .05), higher episodic memory (β = .05, SE = .02, p < .05), and higher executive function (β = .71, SE = .29, p < .05). Higher strain from spouse was significantly associated with higher global cognitive function (β = .10, SE = .03, p < .01), higher episodic memory (β = .11, SE = .04, p < .01), and higher executive function (β = 1.28, SE = .49, p < .01). Higher strain from friends was significantly associated with higher executive function (β = 3.59, SE = 1.17, p < .01). Social support and strain were associated with cognitive outcomes. Future longitudinal studies should be conducted. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ERIC Educational Resources Information Center
Halloran, Roberta Kathryn
2011-01-01
Self-regulation, executive function and working memory are areas of cognitive processing that have been studied extensively. Although many studies have examined the constructs, there is limited empirical support suggesting a formal link between the three cognitive processes and their prediction of academic achievement. Thus, the present study…
No Role for Motor Affordances in Visual Working Memory
ERIC Educational Resources Information Center
Pecher, Diane
2013-01-01
Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…
Rudolph, Marc D; Graham, Alice M; Feczko, Eric; Miranda-Dominguez, Oscar; Rasmussen, Jerod M; Nardos, Rahel; Entringer, Sonja; Wadhwa, Pathik D; Buss, Claudia; Fair, Damien A
2018-05-01
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function.
Simmering, Vanessa R; Wood, Chelsey M
2017-08-01
Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Medial Temporal Lobe Memory in Childhood: Developmental Transitions
ERIC Educational Resources Information Center
Townsend, Elise L.; Richmond, Jenny L.; Vogel-Farley, Vanessa K.; Thomas, Kathleen
2010-01-01
The medial temporal lobes (MTL) support declarative memory and mature structurally and functionally during the postnatal years in humans. Although recent work has addressed the development of declarative memory in early childhood, less is known about continued development beyond this period of time. The purpose of this investigation was to explore…
Precision of working memory for visual motion sequences and transparent motion surfaces
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2012-01-01
Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (Zhang & Luck (2008) vs. Bays et al (2009)). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence, rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features. PMID:22135378
Bae, Gi-Yeul; Luck, Steven J
2018-01-10
In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.
Emotion and working memory: evidence for domain-specific processes for affective maintenance.
Mikels, Joseph A; Reuter-Lorenz, Patricia A; Beyer, Jonathan A; Fredrickson, Barbara L
2008-04-01
Working memory is comprised of separable subsystems for visual and verbal information, but what if the information is affective? Does the maintenance of affective information rely on the same processes that maintain nonaffective information? The authors address this question using a novel delayed-response task developed to investigate the short-term maintenance of affective memoranda. Using selective interference methods the authors find that a secondary emotion-regulation task impaired affect intensity maintenance, whereas secondary cognitive tasks disrupted brightness intensity maintenance, but facilitated affect maintenance. Additionally, performance on the affect maintenance task depends on the valence of the maintained feeling, further supporting the domain-specific nature of the task. The importance of affect maintenance per se is further supported by demonstrating that the observed valence effects depend on a memory delay and are not evident with simultaneous presentation of stimuli. These findings suggest that the working memory system may include domain-specific components that are specialized for the maintenance of affective memoranda. (Copyright) 2008 APA.
Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry
Chanraud, Sandra; Pitel, Anne-Lise; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2010-01-01
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics. PMID:20410871
Auditory short-term memory in the primate auditory cortex
Scott, Brian H.; Mishkin, Mortimer
2015-01-01
Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581
Hollingworth, Andrew; Hwang, Seongmin
2013-01-01
We examined the conditions under which a feature value in visual working memory (VWM) recruits visual attention to matching stimuli. Previous work has suggested that VWM supports two qualitatively different states of representation: an active state that interacts with perceptual selection and a passive (or accessory) state that does not. An alternative hypothesis is that VWM supports a single form of representation, with the precision of feature memory controlling whether or not the representation interacts with perceptual selection. The results of three experiments supported the dual-state hypothesis. We established conditions under which participants retained a relatively precise representation of a parcticular colour. If the colour was immediately task relevant, it reliably recruited attention to matching stimuli. However, if the colour was not immediately task relevant, it failed to interact with perceptual selection. Feature maintenance in VWM is not necessarily equivalent with feature-based attentional selection. PMID:24018723
Effects of Age, Acoustic Challenge, and Verbal Working Memory on Recall of Narrative Speech.
Ward, Caitlin M; Rogers, Chad S; Van Engen, Kristin J; Peelle, Jonathan E
2016-01-01
A common goal during speech comprehension is to remember what we have heard. Encoding speech into long-term memory frequently requires processes such as verbal working memory that may also be involved in processing degraded speech. Here the authors tested whether young and older adult listeners' memory for short stories was worse when the stories were acoustically degraded, or whether the additional contextual support provided by a narrative would protect against these effects. The authors tested 30 young adults (aged 18-28 years) and 30 older adults (aged 65-79 years) with good self-reported hearing. Participants heard short stories that were presented as normal (unprocessed) speech or acoustically degraded using a noise vocoding algorithm with 24 or 16 channels. The degraded stories were still fully intelligible. Following each story, participants were asked to repeat the story in as much detail as possible. Recall was scored using a modified idea unit scoring approach, which included separately scoring hierarchical levels of narrative detail. Memory for acoustically degraded stories was significantly worse than for normal stories at some levels of narrative detail. Older adults' memory for the stories was significantly worse overall, but there was no interaction between age and acoustic clarity or level of narrative detail. Verbal working memory (assessed by reading span) significantly correlated with recall accuracy for both young and older adults, whereas hearing ability (better ear pure tone average) did not. The present findings are consistent with a framework in which the additional cognitive demands caused by a degraded acoustic signal use resources that would otherwise be available for memory encoding for both young and older adults. Verbal working memory is a likely candidate for supporting both of these processes.
Age, gesture span, and dissociations among component subsystems of working memory.
Dolman, R; Roy, E A; Dimeck, P T; Hall, C R
2000-01-01
Working memory was examined in old and young adults using a series of span tasks, including the forward versions of the visual-spatial and digit span tasks from the Wechsler Memory Scale-Revised, and comparable hand gesture and visual design span tasks. The observation that the young participants performed significantly better on all the tasks except digit span suggested that aging has an impact on some component subsystems of working memory but not others. Analyses of intercorrelations in span performance supports the dissociation among three component subsystems, one for auditory verbal information (the articulatory loop), one for visual-spatial information (visual-spatial scratch-pad), and one for hand/body postural configuration.
Working memory training in survivors of pediatric cancer: a randomized pilot study.
Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J
2013-08-01
Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.
Goverover, Yael; Chiaravalloti, Nancy D; O'Brien, Amanda R; DeLuca, John
2018-02-01
To update the clinical recommendations for cognitive rehabilitation of people with multiple sclerosis (MS), based on a systematic review of the literature from 2007 through 2016. Searches of MEDLINE, PsycINFO, and CINAHL were conducted with a combination of the following terms: attention, awareness, cognition, cognitive, communication, executive, executive function, language, learning, memory, perception, problem solving, reasoning, rehabilitation, remediation, training, processing speed, and working memory. One hundred twenty-nine articles were identified and underwent initial screening. Fifty-nine articles were selected for inclusion after initial screening. Nineteen studies were excluded after further detailed review. Forty studies were fully reviewed and evaluated. Articles were assigned to 1 of 6 categories: attention, learning and memory, processing speed and working memory, executive functioning, metacognition, or nonspecified/combined cognitive domains. Articles were abstracted and levels of evidence were decided using specific criteria. The current review yielded 6 class I studies, 10 class II studies, and 24 class III studies. One intervention in the area of verbal learning and memory received support for a practice standard, 2 computer programs received support as practice guidelines (in the area of attention and multicognitive domains), and several studies provided support for 5 practice options in the domains of attention and learning and memory. Substantial progress has been made since our previous review regarding the identification of effective treatments for cognitive impairments in persons with MS. However, much work remains to be done to optimize rehabilitation potential by applying the most methodologically rigorous research designs to provide class I evidence in support of a given treatment strategy. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Attentive Tracking Disrupts Feature Binding in Visual Working Memory
Fougnie, Daryl; Marois, René
2009-01-01
One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460
Dopamine D1 signaling organizes network dynamics underlying working memory
Roffman, Joshua L.; Tanner, Alexandra S.; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J.; Ho, New Fei; Nitenson, Adam Z.; Chonde, Daniel B.; Greve, Douglas N.; Abi-Dargham, Anissa; Buckner, Randy L.; Manoach, Dara S.; Rosen, Bruce R.; Hooker, Jacob M.; Catana, Ciprian
2016-01-01
Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory–emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits. PMID:27386561
Nelwan, Michel; Kroesbergen, Evelyn H
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old ( N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training's lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.
Nelwan, Michel; Kroesbergen, Evelyn H.
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9–12 years old (N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development. PMID:27708595
Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.
Sapiurka, Maya; Squire, Larry R; Clark, Robert E
2016-12-01
In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Liu, Pei; Zhao, Fengqing; Zhang, Baoshan; Dang, Qingxiu
2017-10-03
Assuming that the principle of an active-self account holds true in real life, priming certain constructs could selectively activate a working self-concept, which in turn guides behavior. The current study involved two experiments that examined the relationships between stereotypic identity, working self-concept, and memory performance in older adults. Specifically, Study 1 tested whether a stereotype threat can affect older adults' working self-concept and memory performance. A modified Stroop color naming task and a separate recognition task showed that a stereotype threat prime altered the activation of the working self-concept and deteriorated the older adults' memory performance. Additionally, the working self-concept mediated the effect of stereotype threat on memory performance. Accordingly, we designed Study 2 to assess whether priming different identities can alter the working self-concept of the elderly and buffer the stereotype threat effect on memory performance. The results not only were the same as Study 1 but also revealed that activating multiple identities could mitigate the stereotype threat. These results support an active-self account and the efficacy of stereotype threat intervention. This intervention strategy may be able to be used in real situations to help the elderly alleviate stereotype threats and memory impairment.
Working memory training promotes general cognitive abilities in genetically heterogeneous mice.
Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Zagalsky, Ryan; Matzel, Louis D
2010-04-27
In both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]). Here, genetically heterogeneous mice were assessed on a battery of five learning tasks. Animals' aggregate performance across the tasks was used to estimate their general cognitive abilities, a trait that is in some respects analogous to intelligence [13, 14]. Working memory training promoted an increase in animals' selective attention and their aggregate performance on these tasks. This enhancement of general cognitive performance by working memory training was attenuated if its selective attention demands were reduced. These results provide evidence that the efficacy of working memory capacity and selective attention may be causally related to an animal's general cognitive performance and provide a framework for behavioral strategies to promote those abilities. Furthermore, the pattern of behavior reported here reflects a conservation of the processes that regulate general cognitive performance in humans and infrahuman animals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Working Memory and the Revision of Syntactic and Discourse Ambiguities
Evans, William S.; Caplan, David; Ostrowski, Adam; Michaud, Jennifer; Guarino, Anthony; Waters, Gloria
2015-01-01
Two hundred participants, 50 in each of four age ranges (19 – 29; 30 – 49, 50 – 69, 70 – 90) were tested for short term working memory, speed of processing and on-line processing of three types of sentences in which an initially assigned syntactic structure and/or semantic interpretation had to be revised. Self-paced reading times were longer for the segments which signaled the need for revision, and there were interactions of age and sentence type and of speed of processing and sentence type, but not of working memory and sentence type, on reading times for these segments. The results provide evidence that working memory does not support the processes that revise the structure and interpretation of sentences and discourse. PMID:25485458
Brain activity related to working memory for temporal order and object information.
Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan
2017-06-08
Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.
Conceptual short-term memory (CSTM) supports core claims of Christiansen and Chater.
Potter, Mary C
2016-01-01
Rapid serial visual presentation (RSVP) of words or pictured scenes provides evidence for a large-capacity conceptual short-term memory (CSTM) that momentarily provides rich associated material from long-term memory, permitting rapid chunking (Potter 1993; 2009; 2012). In perception of scenes as well as language comprehension, we make use of knowledge that briefly exceeds the supposed limits of working memory.
West, Robert; Braver, Todd
2009-01-01
Current theories are divided as to whether prospective memory (PM) involves primarily sustained processes such as strategic monitoring, or transient processes such as the retrieval of intentions from memory when a relevant cue is encountered. The current study examined the neural correlates of PM using a functional magnetic resonance imaging design that allows for the decomposition of brain activity into sustained and transient components. Performance of the PM task was primarily associated with sustained responses in a network including anterior prefrontal cortex (lateral Brodmann area 10), and these responses were dissociable from sustained responses associated with active maintenance in working memory. Additionally, the sustained responses in anterior prefrontal cortex correlated with faster response times for prospective responses. Prospective cues also elicited selective transient activity in a region of interest along the right middle temporal gyrus. The results support the conclusion that both sustained and transient processes contribute to efficient PM and provide novel constraints on the functional role of anterior PFC in higher-order cognition. PMID:18854581
ERIC Educational Resources Information Center
Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay
2012-01-01
In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…
ERIC Educational Resources Information Center
Corbalan, Gemma; Kester, Liesbeth; van Merrienboer, Jeroen J. G.
2008-01-01
Complex skill acquisition by performing authentic learning tasks is constrained by limited working memory capacity [Baddeley, A. D. (1992). Working memory. "Science, 255", 556-559]. To prevent cognitive overload, task difficulty and support of each newly selected learning task can be adapted to the learner's competence level and perceived task…
Using Explicit and Systematic Instruction to Support Working Memory
ERIC Educational Resources Information Center
Smith, Jean Louise M.; Sáez, Leilani; Doabler, Christian T.
2016-01-01
Students are frequently expected to complete multistep tasks within a range of academic or classroom routines and to do so independently. Students' ability to complete these tasks successfully may vary as a consequence of both their working-memory capacity and the conditions under which they are expected to learn. Crucial features in the design or…
Working Memory and Intelligence Are Highly Related Constructs, but Why?
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Quiroga, M. Angeles; Shih, Pei Chun; Flores-Mendoza, Carmen
2008-01-01
Working memory and the general factor of intelligence (g) are highly related constructs. However, we still don't know why. Some models support the central role of simple short-term storage, whereas others appeal to executive functions like the control of attention. Nevertheless, the available empirical evidence does not suffice to get an answer,…
ERIC Educational Resources Information Center
Meier, Matt E.; Smeekens, Bridget A.; Silvia, Paul J.; Kwapil, Thomas R.; Kane, Michael J.
2018-01-01
The association between working memory capacity (WMC) and the antisaccade task, which requires subjects to move their eyes and attention away from a strong visual cue, supports the claim that WMC is partially an attentional construct (Kane, Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, & Engle, 2004). Specifically, the…
Visual working memory capacity and the medial temporal lobe.
Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R
2012-03-07
Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.
The New ISD: Applying Cognitive Strategies to Instructional Design.
ERIC Educational Resources Information Center
Clark, Ruth Colvin
2002-01-01
Discusses cognitive models of instruction that can help develop new models of Instructional Systems Design (ISD) that include cognitive task analysis to identify mental models; constructive assumptions of learning; working memory and long-term memory; retrieval of new knowledge and skills from long-term memory; and support of metacognitive skills.…
Strategic trade-offs between quality and quantity in working memory
Fougnie, Daryl; Cormiea, Sarah M.; Kanabar, Anish; Alvarez, George A.
2016-01-01
Is working memory capacity determined by an immutable limit—e.g. four memory storage slots? The fact that performance is typically unaffected by task instructions has been taken as support for such structural models of memory. Here, we modified a standard working memory task to incentivize participants to remember more items. Participants were asked to remember a set of colors over a short retention interval. In one condition, participants reported a random item’s color using a color wheel. In the modified task, participants responded to all items and their response was only considered correct if all responses were on the correct half of the color wheel. We looked for a trade-off between quantity and quality—participants storing more items, but less precisely, when required to report them all. This trade-off was observed when tasks were blocked, when task-type was cued after encoding, but not when task-type was cued during the response, suggesting that task differences changed how items were actively encoded and maintained. This strategic control over the contents of working memory challenges models that assume inflexible limits on memory storage. PMID:26950383
Estradiol concentrations and working memory performance in women of reproductive age.
Hampson, Elizabeth; Morley, Erin E
2013-12-01
Estrogen has been proposed to exert a regulatory influence on the working memory system via actions in the female prefrontal cortex. Tests of this hypothesis have been limited almost exclusively to postmenopausal women and pharmacological interventions. We explored whether estradiol discernibly influences working memory within the natural range of variation in concentrations characteristic of the menstrual cycle. The performance of healthy women (n=39) not using hormonal contraceptives, and a control group of age- and education-matched men (n=31), was compared on a spatial working memory task. Cognitive testing was done blind to ovarian status. Women were retrospectively classified into low- or high-estradiol groups based on the results of radioimmunoassays of saliva collected immediately before and after the cognitive testing. Women with higher levels of circulating estradiol made significantly fewer errors on the working memory task than women tested under low estradiol. Pearson's correlations showed that the level of salivary estradiol but not progesterone was correlated inversely with the number of working memory errors produced. Women tested at high levels of circulating estradiol tended to be more accurate than men. Superior performance by the high estradiol group was seen on the working memory task but not on two control tasks, indicating selectivity of the effects. Consistent with previous studies of postmenopausal women, higher levels of circulating estradiol were associated with better working memory performance. These results add further support to the hypothesis that the working memory system is modulated by estradiol in women, and show that the effects can be observed under non-pharmacological conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Linda; Heckman, George; McKelvie, Robert; Jong, Philip; D'Elia, Teresa; Hillier, Loretta M
2015-03-01
To explore the barriers to and facilitators of adapting and expanding a primary care memory clinic model to integrate care of additional complex chronic geriatric conditions (heart failure, falls, chronic obstructive pulmonary disease, and frailty) into care processes with the goal of improving outcomes for seniors. Mixed-methods study using quantitative (questionnaires) and qualitative (interviews) methods. Ontario. Family physicians currently working in primary care memory clinic teams and supporting geriatric specialists. Family physicians currently working in memory clinic teams (n = 29) and supporting geriatric specialists(n = 9) were recruited as survey participants. Interviews were conducted with memory clinic lead physicians (n = 16).Statistical analysis was done to assess differences between family physician ratings and geriatric specialist ratings related to the capacity for managing complex chronic geriatric conditions, the role of interprofessional collaboration within primary care, and funding and staffing to support geriatric care. Results from both study methods were compared to identify common findings. Results indicate overall support for expanding the memory clinic model to integrate care for other complex conditions. However, the current primary care structure is challenged to support optimal management of patients with multiple comorbidities, particularly as related to limited funding and staffing resources. Structured training, interprofessional teams, and an active role of geriatric specialists within primary care were identified as important facilitators. The memory clinic model, as applied to other complex chronic geriatric conditions, has the potential to build capacity for high-quality primary care, improve health outcomes,promote efficient use of health care resources, and reduce healthcare costs.
Age differences and format effects in working memory.
Foos, Paul W; Goolkasian, Paula
2010-07-01
Format effects refer to lower recall of printed words from working memory when compared to spoken words or pictures. These effects have been attributed to an attenuation of attention to printed words. The present experiment compares younger and older adults' recall of three or six items presented as pictures, spoken words, printed words, and alternating case WoRdS. The latter stimuli have been shown to increase attention to printed words and, thus, reduce format effects. The question of interest was whether these stimuli would also reduce format effects for older adults whose working memory capacity has fewer attentional resources to allocate. Results showed that older adults performed as well as younger adults with three items but less well with six and that format effects were reduced for both age groups, but more for young, when alternating case words were used. Other findings regarding executive control of working memory are discussed. The obtained differences support models of reduced capacity in older adult working memory.
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
The relation between working memory components and ADHD symptoms from a developmental perspective.
Tillman, Carin; Eninger, Lilianne; Forssman, Linda; Bohlin, Gunilla
2011-01-01
The objective was to examine the relations between attention deficit hyperactivity disorder (ADHD) symptoms and four working memory (WM) components (short-term memory and central executive in verbal and visuospatial domains) in 284 6-16-year-old children from the general population. The results showed that verbal and visuospatial short-term memory and verbal central executive uniquely contributed to inattention symptoms. Age interacted with verbal short-term memory in predicting inattention, with the relation being stronger in older children. These findings support the notion of ADHD as a developmental disorder, with changes in associated neuropsychological deficits across time. The results further indicate ADHD-related deficits in several specific WM components.
Working memory deficits in adults with ADHD: is there evidence for subtype differences?
Schweitzer, Julie B; Hanford, Russell B; Medoff, Deborah R
2006-01-01
Background Working memory performance is important for maintaining functioning in cognitive, academic and social activities. Previous research suggests there are prevalent working memory deficits in children with attention deficit hyperactivity disorder (ADHD). There is now a growing body of literature characterizing working memory functioning according to ADHD subtypes in children. The expression of working memory deficits in adults with ADHD and how they vary according to subtype, however, remains to be more fully documented. Methods This study assessed differences in working memory functioning between Normal Control (NC) adults (N = 18); patients with ADHD, Combined (ADHD-CT) Type ADHD (N = 17); and ADHD, Inattentive (ADHD-IA) Type (N = 16) using subtests from the Wechsler Adult Intelligence Scale-III and Wechsler Memory Scale-III and the Paced Auditory Serial Addition Task (PASAT). Results The ADHD groups displayed significant weaknesses in contrast to the NC group on working memory tests requiring rapid processing and active stimulus manipulation. This included the Letter-Number-Sequencing test of the Wechsler scales, PASAT omission errors and the longest sequence of consecutive correct answers on the PASAT. No overall ADHD group subtype differences emerged; however differences between the ADHD groups and the NC group varied depending on the measure and the gender of the participants. Gender differences in performance were evident on some measures of working memory, regardless of group, with males performing better than females. Conclusion In general, the data support a dimensional interpretation of working memory deficits experienced by the ADHD-CT and ADHD-IA subtypes, rather than an absolute difference between subtypes. Future studies should test the effects of processing speed and load on subtype performance and how those variables interact with gender in adults with ADHD. PMID:17173676
Salis, Christos; Kelly, Helen; Code, Chris
2015-01-01
Aphasia following stroke refers to impairments that affect the comprehension and expression of spoken and/or written language, and co-occurring cognitive deficits are common. In this paper we focus on short-term and working memory impairments that impact on the ability to retain and manipulate auditory-verbal information. Evidence from diverse paradigms (large group studies, case studies) report close links between short-term/working memory and language functioning in aphasia. This evidence leads to the hypothesis that treating such memory impairments would improve language functioning. This link has only recently been acknowledged in aphasia treatment but has not been embraced widely by clinicians. To examine the association between language, and short-term and working memory impairments in aphasia. To describe practical ways of assessing short-term and working memory functioning that could be used in clinical practice. To discuss and critically appraise treatments of short-term and working memory reported in the literature. Taking a translational research approach, this paper provides clinicians with current evidence from the literature and practical information on how to assess and treat short-term and working memory impairments in people with aphasia. Published treatments of short-term and/or working memory in post-stroke aphasia are discussed through a narrative review. This paper provides the following. A theoretical rationale for adopting short-term and working memory treatments in aphasia. It highlights issues in differentially diagnosing between short-term, working memory disorders and other concomitant impairments, e.g. apraxia of speech. It describes short-term and working memory assessments with practical considerations for use with people with aphasia. It also offers a description of published treatments in terms of participants, treatments and outcomes. Finally, it critically appraises the current evidence base relating to the treatment of short-term and working memory treatments. The links between short-term/working memory functioning and language in aphasia are generally acknowledged. These strongly indicate the need to incorporate assessment of short-term/working memory functioning for people with aphasia. While the supportive evidence for treatment is growing and appears to highlight the benefits of including short-term/working memory in aphasia treatment, the quality of the evidence in its current state is poor. However, because of the clinical needs of people with aphasia and the prevalence of short-term/working memory impairments, incorporating related treatments through practice-based evidence is advocated. © 2015 Royal College of Speech and Language Therapists.
Smeets, Monique A M; Dijs, M Willem; Pervan, Iva; Engelhard, Iris M; van den Hout, Marcel A
2012-01-01
The time-course of changes in vividness and emotionality of unpleasant autobiographical memories associated with making eye movements (eye movement desensitisation and reprocessing, EMDR) was investigated. Participants retrieved unpleasant autobiographical memories and rated their vividness and emotionality prior to and following 96 seconds of making eye movements (EM) or keeping eyes stationary (ES); at 2, 4, 6, and 10 seconds into the intervention; then followed by regular larger intervals throughout the 96-second intervention. Results revealed a significant drop compared to the ES group in emotionality after 74 seconds compared to a significant drop in vividness at only 2 seconds into the intervention. These results support that emotionality becomes reduced only after vividness has dropped. The results are discussed in light of working memory theory and visual imagery theory, following which the regular refreshment of the visual memory needed to maintain it in working memory is interfered with by eye movements that also tax working memory, which affects vividness first.
Episodic memories predict adaptive value-based decision-making
Murty, Vishnu; FeldmanHall, Oriel; Hunter, Lindsay E.; Phelps, Elizabeth A; Davachi, Lila
2016-01-01
Prior research illustrates that memory can guide value-based decision-making. For example, previous work has implicated both working memory and procedural memory (i.e., reinforcement learning) in guiding choice. However, other types of memories, such as episodic memory, may also influence decision-making. Here we test the role for episodic memory—specifically item versus associative memory—in supporting value-based choice. Participants completed a task where they first learned the value associated with trial unique lotteries. After a short delay, they completed a decision-making task where they could choose to re-engage with previously encountered lotteries, or new never before seen lotteries. Finally, participants completed a surprise memory test for the lotteries and their associated values. Results indicate that participants chose to re-engage more often with lotteries that resulted in high versus low rewards. Critically, participants not only formed detailed, associative memories for the reward values coupled with individual lotteries, but also exhibited adaptive decision-making only when they had intact associative memory. We further found that the relationship between adaptive choice and associative memory generalized to more complex, ecologically valid choice behavior, such as social decision-making. However, individuals more strongly encode experiences of social violations—such as being treated unfairly, suggesting a bias for how individuals form associative memories within social contexts. Together, these findings provide an important integration of episodic memory and decision-making literatures to better understand key mechanisms supporting adaptive behavior. PMID:26999046
Effects of levodopa on corticostriatal circuits supporting working memory in Parkinson's disease.
Simioni, Alison C; Dagher, Alain; Fellows, Lesley K
2017-08-01
Working memory dysfunction is common in Parkinson's disease, even in its early stages, but its neural basis is debated. Working memory performance likely reflects a balance between corticostriatal dysfunction and compensatory mechanisms. We tested this hypothesis by examining working memory performance with a letter n-back task in 19 patients with mild-moderate Parkinson's disease and 20 demographically matched healthy controls. Parkinson's disease patients were tested after an overnight washout of their usual dopamine replacement therapy, and again after a standard dose of levodopa. FMRI was used to assess task-related activation and resting state functional connectivity; changes in BOLD signal were related to performance to disentangle pathological and compensatory processes. Parkinson's disease patients off dopamine replacement therapy displayed significantly reduced spatial extent of task-related activation in left prefrontal and bilateral parietal cortex, and poorer working memory performance, compared to controls. Amongst the Parkinson's disease patients off dopamine replacement therapy, relatively better performance was associated with greater activation of right dorsolateral prefrontal cortex compared to controls, consistent with compensatory right hemisphere recruitment. Administration of levodopa remediated the working memory deficit in the Parkinson's disease group, and resulted in a different pattern of performance-correlated activity, with a shift to greater left ventrolateral prefrontal cortex activation in patients on, compared to off dopamine replacement therapy. Levodopa also significantly increased resting-state functional connectivity between caudate and right parietal cortex (within the right fronto-parietal attentional network). The strength of this connectivity contributed to better performance in patients and controls, suggesting a general compensatory mechanism. These findings argue that Parkinson's disease patients can recruit additional neural resources, here, the right fronto-parietal network, to optimize working memory performance despite impaired corticostriatal function. Levodopa seems to both boost engagement of a task-specific prefrontal region, and strengthen a putative compensatory caudate-cortical network to support this executive function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Precision of working memory for visual motion sequences and transparent motion surfaces.
Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud
2011-12-01
Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.
Rajji, Tarek K; Mulsant, Benoit H; Davies, Simon; Kalache, Sawsan M; Tsoutsoulas, Christopher; Pollock, Bruce G; Remington, Gary
2015-06-01
Clozapine's potent antagonism of muscarinic M1 receptors is thought to worsen working memory deficits associated with schizophrenia. In contrast, its major metabolite, N-desmethylclozapine (NDMC), is thought to enhance working memory via its M1 receptor agonist activity. The authors hypothesized that the ratio of serum clozapine and NDMC concentrations would be inversely associated with working memory performance in schizophrenia. Thirty patients with schizophrenia or schizoaffective disorder who were receiving clozapine monotherapy at bedtime completed the MATRICS Consensus Cognitive Battery (MCCB) on the day their blood was collected to assess concentrations of clozapine and NDMC as well as serum anticholinergic activity. The clozapine/NDMC ratio was significantly and negatively associated with working memory performance after controlling for age, gender, education, and symptom severity. No significant associations were found between individual clozapine and NDMC concentrations and working memory performance. Serum anticholinergic activity was significantly associated with clozapine concentration, but not with working memory performance or NDMC concentration. No significant associations were found between any pharmacological measure and performance on other MCCB cognitive domains. This hypothesis-driven study confirms that clozapine/NDMC ratio is a strong predictor of working memory performance in patients with schizophrenia. This finding suggests that manipulating the clozapine/NDMC ratio could enhance cognition in patients with schizophrenia treated with clozapine. It also supports the study of procholinergic agents, such as M1 receptor-positive allosteric modulators, to enhance cognition in schizophrenia.
Verbal Working Memory Is Related to the Acquisition of Cross-Linguistic Phonological Regularities.
Bosma, Evelyn; Heeringa, Wilbert; Hoekstra, Eric; Versloot, Arjen; Blom, Elma
2017-01-01
Closely related languages share cross-linguistic phonological regularities, such as Frisian -âld [ͻ:t] and Dutch -oud [ʱut], as in the cognate pairs kâld [kͻ:t] - koud [kʱut] 'cold' and wâld [wͻ:t] - woud [wʱut] 'forest'. Within Bybee's (1995, 2001, 2008, 2010) network model, these regularities are, just like grammatical rules within a language, generalizations that emerge from schemas of phonologically and semantically related words. Previous research has shown that verbal working memory is related to the acquisition of grammar, but not vocabulary. This suggests that verbal working memory supports the acquisition of linguistic regularities. In order to test this hypothesis we investigated whether verbal working memory is also related to the acquisition of cross-linguistic phonological regularities. For three consecutive years, 5- to 8-year-old Frisian-Dutch bilingual children ( n = 120) were tested annually on verbal working memory and a Frisian receptive vocabulary task that comprised four cognate categories: (1) identical cognates, (2) non-identical cognates that either do or (3) do not exhibit a phonological regularity between Frisian and Dutch, and (4) non-cognates. The results showed that verbal working memory had a significantly stronger effect on cognate category (2) than on the other three cognate categories. This suggests that verbal working memory is related to the acquisition of cross-linguistic phonological regularities. More generally, it confirms the hypothesis that verbal working memory plays a role in the acquisition of linguistic regularities.
Working Memory and Consciousness: The Current State of Play
Persuh, Marjan; LaRock, Eric; Berger, Jacob
2018-01-01
Working memory (WM), an important posit in cognitive science, allows one to temporarily store and manipulate information in the service of ongoing tasks. WM has been traditionally classified as an explicit memory system—that is, as operating on and maintaining only consciously perceived information. Recently, however, several studies have questioned this assumption, purporting to provide evidence for unconscious WM. In this article, we focus on visual working memory (VWM) and critically examine these studies as well as studies of unconscious perception that seem to provide indirect evidence for unconscious WM. Our analysis indicates that current evidence does not support an unconscious WM store, though we offer independent reasons to think that WM may operate on unconsciously perceived information. PMID:29551967
Park, Hae-Jeong; Chun, Ji-Won; Park, Bumhee; Park, Haeil; Kim, Joong Il; Lee, Jong Doo; Kim, Jae-Jin
2011-05-01
Although blind people heavily depend on working memory to manage daily life without visual information, it is not clear yet whether their working memory processing involves functional reorganization of the memory-related cortical network. To explore functional reorganization of the cortical network that supports various types of working memory processes in the early blind, we investigated activation differences between 2-back tasks and 0-back tasks using fMRI in 10 congenitally blind subjects and 10 sighted subjects. We used three types of stimulus sequences: words for a verbal task, pitches for a non-verbal task, and sound locations for a spatial task. When compared to the sighted, the blind showed additional activations in the occipital lobe for all types of stimulus sequences for working memory and more significant deactivation in the posterior cingulate cortex of the default mode network. The blind had increased effective connectivity from the default mode network to the left parieto-frontal network and from the occipital cortex to the right parieto-frontal network during the 2-back tasks than the 0-back tasks. These findings suggest not only cortical plasticity of the occipital cortex but also reorganization of the cortical network for the executive control of working memory.
Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo
2016-04-13
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.
Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa
2016-01-01
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432
Neuroimaging correlates of parent ratings of working memory in typically developing children
Mahone, E. Mark; Martin, Rebecca; Kates, Wendy R.; Hay, Trisha; Horská, Alena
2009-01-01
The purpose of the present study was to investigate construct validity of parent ratings of working memory in children, using a multi-trait/multi-method design including neuroimaging, rating scales, and performance-based measures. Thirty-five typically developing children completed performance-based tests of working memory and nonexecutive function (EF) skills, received volumetric MRI, and were rated by parents on both EF-specific and broad behavior rating scales. After controlling for total cerebral volume and age, parent ratings of working memory were significantly correlated with frontal gray, but not temporal, parietal, or occipital gray, or any lobar white matter volumes. Performance-based measures of working memory were also moderately correlated with frontal lobe gray matter volume; however, non-EF parent ratings and non-EF performance-based measures were not correlated with frontal lobe volumes. Results provide preliminary support for the convergent and discriminant validity of parent ratings of working memory, and emphasize their utility in exploring brain–behavior relationships in children. Rating scales that directly examine EF skills may potentially have ecological validity, not only for “everyday” function, but also as correlates of brain volume. PMID:19128526
Pak, Richard; McLaughlin, Anne Collins; Leidheiser, William; Rovira, Ericka
2017-04-01
A leading hypothesis to explain older adults' overdependence on automation is age-related declines in working memory. However, it has not been empirically examined. The purpose of the current experiment was to examine how working memory affected performance with different degrees of automation in older adults. In contrast to the well-supported idea that higher degrees of automation, when the automation is correct, benefits performance but higher degrees of automation, when the automation fails, increasingly harms performance, older adults benefited from higher degrees of automation when the automation was correct but were not differentially harmed by automation failures. Surprisingly, working memory did not interact with degree of automation but did interact with automation correctness or failure. When automation was correct, older adults with higher working memory ability had better performance than those with lower abilities. But when automation was incorrect, all older adults, regardless of working memory ability, performed poorly. Practitioner Summary: The design of automation intended for older adults should focus on ways of making the correctness of the automation apparent to the older user and suggest ways of helping them recover when it is malfunctioning.
Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.
Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T
2017-06-19
The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Executive control processes underlying multi-item working memory
Lara, Antonio H.; Wallis, Jonathan D.
2014-01-01
A dominant view of prefrontal cortex (PFC) function is that it stores task-relevant information in working memory. To examine this and determine how it applies when multiple pieces of information must be stored, we trained two macaque monkeys to perform a multi-item color change-detection task and recorded activity of neurons in PFC. Few neurons encoded the color of the items. Instead, the predominant encoding was spatial: a static signal reflecting the item's position and a dynamic signal reflecting the animal's covert attention. These findings challenge the notion that PFC stores task-relevant information. Instead, we suggest that the contribution of PFC is in controlling the allocation of resources to support working memory. In support of this, we found that increased power in the alpha and theta bands of PFC local field potentials, which are thought to reflect long-range communication with other brain areas, was correlated with more precise color representations. PMID:24747574
Method matters: Systematic effects of testing procedure on visual working memory sensitivity
Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.
2010-01-01
Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011
ERIC Educational Resources Information Center
Ekstrom, Arne D.; Bookheimer, Susan Y.
2007-01-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…
Pauls, Franz; Petermann, Franz; Lepach, Anja Christina
2013-01-01
Between-group comparisons are permissible and meaningfully interpretable only if diagnostic instruments are proved to measure the same latent dimensions across different groups. Addressing this issue, the present study was carried out to provide a rigorous test of measurement invariance. Confirmatory factor analyses were used to determine which model solution could best explain memory performance as measured by the Wechsler Memory Scale-Fourth Edition (WMS-IV) in a clinical depression sample and in healthy controls. Multigroup confirmatory factor analysis was conducted to evaluate the evidence for measurement invariance. A three-factor model solution including the dimensions of auditory memory, visual memory, and visual working memory was identified to best fit the data in both samples, and measurement invariance was partially satisfied. The results supported clinical utility of the WMS-IV--that is, auditory and visual memory performances of patients with depressive disorders are interpretable on the basis of the WMS-IV standardization data. However, possible differences in visual working memory functions between healthy and depressed individuals could restrict comparisons of the WMS-IV working memory index.
Knowledge Cannot Explain the Developmental Growth of Working Memory Capacity
Cowan, Nelson; Ricker, Timothy J.; Clark, Katherine M.; Hinrichs, Garrett A.; Glass, Bret A.
2014-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We document developmental increases in working memory for visual arrays of English letters versus unfamiliar characters. Although letter knowledge played a special role in development between the ages of 6 to 8 years, children with adequate letter knowledge showed practically the same developmental growth in normalized functions for letters and unfamiliar characters. The results contribute to a growing body of evidence that the developmental improvement in working memory does not wholly stem from supporting processes such as encoding, mnemonic strategies, and knowledge. PMID:24942111
The role of the episodic buffer in working memory for language processing.
Rudner, Mary; Rönnberg, Jerker
2008-03-01
A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.
Kerns, Kimberly A; Macoun, Sarah; MacSween, Jenny; Pei, Jacqueline; Hutchison, Marnie
2017-01-01
The current study investigated the efficacy of a game-based process specific intervention for improving attention and working memory in children with Fetal Alcohol Spectrum Disorders (FASD) and Autism Spectrum Disorders (ASD). The Caribbean Quest (CQ) is a 'serious game' that consists of five hierarchically structured tasks, delivered in an adaptive format, targeting different aspects of attention and/or working memory. In addition to game play, the intervention incorporates metacognitive strategies provided by trained educational assistants (EAs), to facilitate generalization and far transfer to academic and daily skills. EAs delivered the intervention to children (ages 6-13) during their regular school day, providing children with instruction in metacognitive strategies to improve game play, with participants completing approximately 12 hours of training over an 8 to 12 school week period. Pre- and post-test analyses revealed significant improvement on measures of working memory and attention, including reduced distractibility and improved divided attention skills. Additionally, children showed significant gains in performance on an academic measure of reading fluency, suggesting that training-related gains in attention and working memory transferred to classroom performance. Exit interviews with EAs revealed that the intervention was easily delivered within the school day, that children enjoyed the intervention, and that children transferred metacognitive strategies learned in game play into the classroom. Preliminary results support this game-based process specific intervention as a potentially effective treatment and useful tool for supporting cognitive improvements in children with FASD or ASD, when delivered as part of an overall treatment plan.
Inferential revision in narrative texts: An ERP study.
Pérez, Ana; Cain, Kate; Castellanos, María C; Bajo, Teresa
2015-11-01
We evaluated the process of inferential revision during text comprehension in adults. Participants with high or low working memory read short texts, in which the introduction supported two plausible concepts (e.g., 'guitar/violin'), although one was more probable ('guitar'). There were three possible continuations: a neutral sentence, which did not refer back to either concept; a no-revise sentence, which referred to a general property consistent with either concept (e.g., '…beautiful curved body'); and a revise sentence, which referred to a property that was consistent with only the less likely concept (e.g., '…matching bow'). Readers took longer to read the sentence in the revise condition, indicating that they were able to evaluate their comprehension and detect a mismatch. In a final sentence, a target noun referred to the alternative concept supported in the revise condition (e.g., 'violin'). ERPs indicated that both working memory groups were able to evaluate their comprehension of the text (P3a), but only high working memory readers were able to revise their initial incorrect interpretation (P3b) and integrate the new information (N400) when reading the revise sentence. Low working memory readers had difficulties inhibiting the no-longer-relevant interpretation and thus failed to revise their situation model, and they experienced problems integrating semantically related information into an accurate memory representation.
Zook, Nancy A; Davalos, Deana B; Delosh, Edward L; Davis, Hasker P
2004-12-01
The contributions of working memory, inhibition, and fluid intelligence to performance on the Tower of Hanoi (TOH) and Tower of London (TOL) were examined in 85 undergraduate participants. All three factors accounted for significant variance on the TOH, but only fluid intelligence accounted for significant variance on the TOL. When the contribution of fluid intelligence was accounted for, working memory and inhibition continued to account for significant variance on the TOH. These findings support argument that fluid intelligence contributes to executive functioning, but also show that the executive processes elicited by tasks vary according to task structure.
Lee, Linda; Heckman, George; McKelvie, Robert; Jong, Philip; D’Elia, Teresa; Hillier, Loretta M.
2015-01-01
Abstract Objective To explore the barriers to and facilitators of adapting and expanding a primary care memory clinic model to integrate care of additional complex chronic geriatric conditions (heart failure, falls, chronic obstructive pulmonary disease, and frailty) into care processes with the goal of improving outcomes for seniors. Design Mixed-methods study using quantitative (questionnaires) and qualitative (interviews) methods. Setting Ontario. Participants Family physicians currently working in primary care memory clinic teams and supporting geriatric specialists. Methods Family physicians currently working in memory clinic teams (n = 29) and supporting geriatric specialists (n = 9) were recruited as survey participants. Interviews were conducted with memory clinic lead physicians (n = 16). Statistical analysis was done to assess differences between family physician ratings and geriatric specialist ratings related to the capacity for managing complex chronic geriatric conditions, the role of interprofessional collaboration within primary care, and funding and staffing to support geriatric care. Results from both study methods were compared to identify common findings. Main findings Results indicate overall support for expanding the memory clinic model to integrate care for other complex conditions. However, the current primary care structure is challenged to support optimal management of patients with multiple comorbidities, particularly as related to limited funding and staffing resources. Structured training, interprofessional teams, and an active role of geriatric specialists within primary care were identified as important facilitators. Conclusion The memory clinic model, as applied to other complex chronic geriatric conditions, has the potential to build capacity for high-quality primary care, improve health outcomes, promote efficient use of health care resources, and reduce health care costs. PMID:25932482
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
fMRI characterization of visual working memory recognition.
Rahm, Benjamin; Kaiser, Jochen; Unterrainer, Josef M; Simon, Juliane; Bledowski, Christoph
2014-04-15
Encoding and maintenance of information in visual working memory have been extensively studied, highlighting the crucial and capacity-limiting role of fronto-parietal regions. In contrast, the neural basis of recognition in visual working memory has remained largely unspecified. Cognitive models suggest that recognition relies on a matching process that compares sensory information with the mental representations held in memory. To characterize the neural basis of recognition we varied both the need for recognition and the degree of similarity between the probe item and the memory contents, while independently manipulating memory load to produce load-related fronto-parietal activations. fMRI revealed a fractionation of working memory functions across four distributed networks. First, fronto-parietal regions were activated independent of the need for recognition. Second, anterior parts of load-related parietal regions contributed to recognition but their activations were independent of the difficulty of matching in terms of sample-probe similarity. These results argue against a key role of the fronto-parietal attention network in recognition. Rather the third group of regions including bilateral temporo-parietal junction, posterior cingulate cortex and superior frontal sulcus reflected demands on matching both in terms of sample-probe-similarity and the number of items to be compared. Also, fourth, bilateral motor regions and right superior parietal cortex showed higher activation when matching provided clear evidence for a decision. Together, the segregation between the well-known fronto-parietal activations attributed to attentional operations in working memory from those regions involved in matching supports the theoretical view of separable attentional and mnemonic contributions to working memory. Yet, the close theoretical and empirical correspondence to perceptual decision making may call for an explicit consideration of decision making mechanisms in conceptions of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Domain-specific and domain-general constraints on word and sequence learning.
Archibald, Lisa M D; Joanisse, Marc F
2013-02-01
The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.
Strategic trade-offs between quantity and quality in working memory.
Fougnie, Daryl; Cormiea, Sarah M; Kanabar, Anish; Alvarez, George A
2016-08-01
Is working memory capacity determined by an immutable limit-for example, 4 memory storage slots? The fact that performance is typically unaffected by task instructions has been taken as support for such structural models of memory. Here, we modified a standard working memory task to incentivize participants to remember more items. Participants were asked to remember a set of colors over a short retention interval. In 1 condition, participants reported a random item's color using a color wheel. In the modified task, participants responded to all items and their response was only considered correct if all responses were on the correct half of the color wheel. We looked for a trade-off between quantity and quality-participants storing more items, but less precisely, when required to report them all. This trade-off was observed when tasks were blocked and when task-type was cued after encoding, but not when task-type was cued during the response, suggesting that task differences changed how items were actively encoded and maintained. This strategic control over the contents of working memory challenges models that assume inflexible limits on memory storage. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
ERIC Educational Resources Information Center
Oztekin, Ilke; Curtis, Clayton E.; McElree, Brian
2009-01-01
During working memory retrieval, proactive interference (PI) can be induced by semantic similarity and episodic familiarity. Here, we used fMRI to test hypotheses about the role of the left inferior frontal gyrus (LIFG) and the medial temporal lobe (MTL) regions in successful resolution of PI. Participants studied six-word lists and responded to a…
Effect of tobacco craving cues on memory encoding and retrieval in smokers.
Heishman, Stephen J; Boas, Zachary P; Hager, Marguerite C; Taylor, Richard C; Singleton, Edward G; Moolchan, Eric T
2006-07-01
Previous studies have shown that cue-elicited tobacco craving disrupted performance on cognitive tasks; however, no study has examined directly the effect of cue-elicited craving on memory encoding and retrieval. A distinction between encoding and retireval has been reported such that memory is more impaired when attention is divided at encoding than at retrieval. This study tested the hypothesis that active imagery of smoking situations would impair encoding processes, but have little effect on retrieval. Imagery scripts (cigarette craving and neutral content) were presented either before presentation of a word list (encoding trials) or before word recall (retrieval trials). A working memory task at encoding and free recall of words were assessed. Results indicated that active imagery disrupted working memory on encoding trials, but not on retrieval trials. There was a trend toward impaired working memory following craving scripts compared with neutral scripts. These data support the hypothesis that the cognitive underpinnings of encoding and retrieval processes are distinct.
Behavioral decoding of working memory items inside and outside the focus of attention.
Mallett, Remington; Lewis-Peacock, Jarrod A
2018-03-31
How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority. © 2018 New York Academy of Sciences.
Spatial working memory function in twins with schizophrenia and bipolar disorder.
Pirkola, Tiia; Tuulio-Henriksson, Annamari; Glahn, David; Kieseppä, Tuula; Haukka, Jari; Kaprio, Jaakko; Lönnqvist, Jouko; Cannon, Tyrone D
2005-12-15
Family studies are in conflict as to whether schizophrenia and bipolar disorder have independent genetic etiologies. Given the relatively low prevalence (approximately 1%) of these disorders, the use of quantitative endophenotypic markers of genetic liability might provide a more sensitive strategy for evaluating their genetic overlap. We have previously demonstrated that spatial working memory deficits increase in a dose-dependent fashion with increasing genetic proximity to a proband among the unaffected co-twins of schizophrenic patients. Here, we evaluated whether such deficits might also mark genetic susceptibility to bipolar disorder. The Wechsler Memory Scale-Revised Visual Memory Span and Digit Span subtests were administered to 46 schizophrenic patients, 32 of their unaffected co-twins, 22 bipolar patients, 16 of their unaffected co-twins, and 100 control twins, representing unselectively nationwide twin samples. Schizophrenic patients and their unaffected co-twins performed significantly worse than control subjects on the spatial working memory task, whereas only the schizophrenic patients performed significantly below the control subjects on the verbal working memory task. Neither bipolar patients nor their unaffected co-twins differed from control subjects on these measures. Our findings support the hypothesis that impairment in spatial working memory might effectively reflect an expression of genetic liability to schizophrenia but less clearly to bipolar disorder.
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
Stevens, Benson W; DiBattista, Amanda M; William Rebeck, G; Green, Adam E
2014-08-01
Identifying pathways by which genetic Alzheimer׳s disease (AD) risk factors exert neurocognitive effects in young adults are essential for the effort to develop early interventions to forestall or prevent AD onset. Here, in a brain-imaging cohort of 59 young adults, we investigated effects of a variant within the clusterin (CLU) gene on working memory function and gray matter volume in cortical areas that support working memory. In addition, we investigated the extent to which effects of CLU genotype on working memory were independent of variation in the strongest AD risk factor gene apolipoprotein E (APOE). CLU is among the strongest genetic AD risk factors and, though it appears to share AD pathogenesis-related features with, APOE, it has been far less well studied. CLU genotype was associated with working memory performance in our study cohort. Notably, we found that variation in gray matter volume in a parietal region, previously implicated in maintenance of information for working memory, mediated the effect of CLU on working memory performance. APOE genotype did not affect working memory within our sample, and did not interact with CLU genotype. To our knowledge, this work represents the first evidence of a behavioral effect of CLU genotype in young people. In addition, this work identifies the first gene-brain-cognition mediation effect pathway for the transmission of the effect of an AD risk factor. Relative to conventional pairwise associations in cognitive neurogenetic research, gene-brain-cognition mediation modeling provides a more integrated understanding of how genetic effects transmit from gene to brain to cognitive function. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P
2014-02-01
Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.
Hargreaves, A; Dillon, R; Anderson-Schmidt, H; Corvin, A; Fitzmaurice, B; Castorina, M; Robertson, I H; Donohoe, G
2015-12-01
Cognitive deficits are a core feature of schizophrenia and related psychotic disorders and are associated with decreased levels of functioning. Behavioural interventions have shown success in remediating these deficits; determining how best to maximise this benefit while minimising the cost is an important next step in optimising this intervention for clinical use. To examine the effects of a novel working-memory focused cognitive remediation (CR) training on cognitive difficulties based on internet delivery of training and weekly telephone support. Participants with a diagnosis of psychosis (n=56) underwent either 8 weeks of CR (approximately 20 h) or 8 weeks of treatment as usual (TAU). General cognitive ability, working memory and episodic memory were measured both pre and post intervention for all participants. In addition to improvements on trained working memory tasks, CR training was associated with significant improvements in two tests of verbal episodic memory. No association between CR and changes in general cognitive ability was observed. Effect sizes for statistically significant changes in memory were comparable to those reported in the literature based primarily on 1:1 training. The cognitive benefits observed in this non-randomised preliminary study indicate that internet-based working memory training can be an effective cognitive remediation therapy. The successes and challenges of an internet-based treatment are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.
Katus, Tobias; Grubert, Anna; Eimer, Martin
2015-12-01
Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S
2017-03-01
Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Benefits of Working Memory Capacity on Attentional Control under Pressure.
Luo, Xiaoxiao; Zhang, Liwei; Wang, Jin
2017-01-01
The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experiments 1 and 2); (b) the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c) the interaction of SA and WMC was not significant (Experiments 1 and 2). This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control). And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed.
The removal of information from working memory.
Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus
2018-05-09
What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.
The Benefits of Working Memory Capacity on Attentional Control under Pressure
Luo, Xiaoxiao; Zhang, Liwei; Wang, Jin
2017-01-01
The present study aimed to examine the effects of working memory capacity (WMC) and state anxiety (SA) on attentional control. WMC was manipulated by (a) dividing participants into low- and high-WMC groups (Experiment 1), and (b) using working memory training to improve WMC (Experiment 2). SA was manipulated by creating low- and high-SA conditions. Attentional control was evaluated by using antisaccade task. Results demonstrated that (a) higher WMC indicated better attentional control (Experiments 1 and 2); (b) the effects of SA on attentional control were inconsistent because SA impaired attentional control in Experiment 1, but favored attentional control in Experiment 2; and (c) the interaction of SA and WMC was not significant (Experiments 1 and 2). This study directly manipulated WMC by working memory training, which provided more reliable evidence for controlled attention view of WMC and new supportive evidence for working memory training (i.e., far transfer effect on attentional control). And the refinement of the relationship between anxiety and attentional control proposed by Attentional Control Theory was also discussed. PMID:28740472
Hardman, Kyle; Cowan, Nelson
2014-01-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli which possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results, but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PMID:25089739
The Effects of Similarity on High-Level Visual Working Memory Processing.
Yang, Li; Mo, Lei
2017-01-01
Similarity has been observed to have opposite effects on visual working memory (VWM) for complex images. How can these discrepant results be reconciled? To answer this question, we used a change-detection paradigm to test visual working memory performance for multiple real-world objects. We found that working memory for moderate similarity items was worse than that for either high or low similarity items. This pattern was unaffected by manipulations of stimulus type (faces vs. scenes), encoding duration (limited vs. self-paced), and presentation format (simultaneous vs. sequential). We also found that the similarity effects differed in strength in different categories (scenes vs. faces). These results suggest that complex real-world objects are represented using a centre-surround inhibition organization . These results support the category-specific cortical resource theory and further suggest that centre-surround inhibition organization may differ by category.
Vrshek-Schallhorn, Suzanne; Velkoff, Elizabeth A; Zinbarg, Richard E
2018-04-06
Theoretical models of depression posit that, under stress, elevated trait rumination predicts more pronounced or prolonged negative affective and neuroendocrine responses, and that trait rumination hampers removing irrelevant negative information from working memory. We examined several gaps regarding these models in the context of lab-induced stress. Non-depressed undergraduates completed a rumination questionnaire and either a negative-evaluative Trier Social Stress Test (n = 55) or a non-evaluative control condition (n = 69), followed by a modified Sternberg affective working memory task assessing the extent to which irrelevant negative information can be emptied from working memory. We measured shame, negative and positive affect, and salivary cortisol four times. Multilevel growth curve models showed rumination and stress interactively predicted cortisol reactivity; however, opposite predictions, greater rumination was associated with blunted cortisol reactivity to stress. Elevated trait rumination interacted with stress to predict augmented shame reactivity. Rumination and stress did not significantly interact to predict working memory performance, but under control conditions, rumination predicted greater difficulty updating working memory. Results support a vulnerability-stress model of trait rumination with heightened shame reactivity and cortisol dysregulation rather than hyper-reactivity in non-depressed emerging adults, but we cannot provide evidence that working memory processes are critical immediately following acute stress.
The development of a short domain-general measure of working memory capacity.
Oswald, Frederick L; McAbee, Samuel T; Redick, Thomas S; Hambrick, David Z
2015-12-01
Working memory capacity is one of the most frequently measured individual difference constructs in cognitive psychology and related fields. However, implementation of complex span and other working memory measures is generally time-consuming for administrators and examinees alike. Because researchers often must manage the tension between limited testing time and measuring numerous constructs reliably, a short and effective measure of working memory capacity would often be a major practical benefit in future research efforts. The current study developed a shortened computerized domain-general measure of working memory capacity by representatively sampling items from three existing complex working memory span tasks: operation span, reading span, and symmetry span. Using a large archival data set (Study 1, N = 4,845), we developed and applied a principled strategy for developing the reduced measure, based on testing a series of confirmatory factor analysis models. Adequate fit indices from these models lent support to this strategy. The resulting shortened measure was then administered to a second independent sample (Study 2, N = 172), demonstrating that the new measure saves roughly 15 min (30%) of testing time on average, and even up to 25 min depending on the test-taker. On the basis of these initial promising findings, several directions for future research are discussed.
Failure of Working Memory Training to Enhance Cognition or Intelligence
Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.
2013-01-01
Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453
Parallel effects of memory set activation and search on timing and working memory capacity.
Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles
2014-01-01
Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.
Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory
Lee, Sue-Hyun; Baker, Chris I.
2016-01-01
The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997
Working memory impairment and cardiovascular hyperarousal in young primary insomniacs.
Cellini, Nicola; de Zambotti, Massimiliano; Covassin, Naima; Sarlo, Michela; Stegagno, Luciano
2014-02-01
We investigated memory performance and cardiovascular activity in 13 primary insomniacs (PI) compared to 13 good sleepers (GS). Cardiovascular and hemodynamic measures, including heart rate, pre-ejection period, and blood pressure, were continuously recorded at rest and during two memory tasks. PI showed working memory impairment under high cognitive load, but performed as well as GS in an easy memory task. In addition, PI exhibited markers of hyperarousal both at rest and during the execution of the two tasks. However, we failed to find a clear-cut relationship between cardiovascular hyperarousal and cognitive performance in insomniacs. Our data provide further evidence of both cognitive impairment and cardiovascular hyperarousal in primary insomnia, while not supporting the hypothesis of hyperarousal as a compensatory mechanism to overcome cognitive challenges.
Development of 3-Year Roadmap to Transform the Discipline of Systems Engineering
2010-03-31
quickly humans could physically construct them. Indeed, magnetic core memory was entirely constructed by human hands until it was superseded by...For their mainframe computers, IBM develops the applications, operating system, computer hardware and microprocessors (off the shelf standard memory ...processor developers work on potential computational and memory pipelines to support the required performance capabilities and use the available transistors
Relationship between relaxation by guided imagery and performance of working memory.
Hudetz, J A; Hudetz, A G; Klayman, J
2000-02-01
This study tested the hypothesis that relaxation by guided imagery improves working-memory performance of healthy participants. 30 volunteers (both sexes, ages 17-56 years) were randomly assigned to one of three groups and administered the WAIS-III Letter-Number Sequencing Test before and after 10-min. treatment with guided imagery or popular music. The control group received no treatment. Groups' test scores were not different before treatment. The mean increased after relaxation by guided imagery but not after music or no treatment. This result supports the hypothesis that working-memory scores on the test are enhanced by guided imagery and implies that human information processing may be enhanced by prior relaxation.
Easton, Alexander; Eacott, Madeline J
2010-12-31
In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.
Han, Feifei
2017-01-01
While some first language (L1) reading models suggest that inefficient word recognition and small working memory tend to inhibit higher-level comprehension processes; the Compensatory Encoding Model maintains that slow word recognition and small working memory do not normally hinder reading comprehension, as readers are able to operate metacognitive strategies to compensate for inefficient word recognition and working memory limitation as long as readers process a reading task without time constraint. Although empirical evidence is accumulated for support of the Compensatory Encoding Model in L1 reading, there is lack of research for testing of the Compensatory Encoding Model in foreign language (FL) reading. This research empirically tested the Compensatory Encoding Model in English reading among Chinese college English language learners (ELLs). Two studies were conducted. Study one focused on testing whether reading condition varying time affects the relationship between word recognition, working memory, and reading comprehension. Students were tested on a computerized English word recognition test, a computerized Operation Span task, and reading comprehension in time constraint and non-time constraint reading. The correlation and regression analyses showed that the strength of association was much stronger between word recognition, working memory, and reading comprehension in time constraint than that in non-time constraint reading condition. Study two examined whether FL readers were able to operate metacognitive reading strategies as a compensatory way of reading comprehension for inefficient word recognition and working memory limitation in non-time constraint reading. The participants were tested on the same computerized English word recognition test and Operation Span test. They were required to think aloud while reading and to complete the comprehension questions. The think-aloud protocols were coded for concurrent use of reading strategies, classified into language-oriented strategies, content-oriented strategies, re-reading, pausing, and meta-comment. The correlation analyses showed that while word recognition and working memory were only significantly related to frequency of language-oriented strategies, re-reading, and pausing, but not with reading comprehension. Jointly viewed, the results of the two studies, complimenting each other, supported the applicability of the Compensatory Encoding Model in FL reading with Chinese college ELLs. PMID:28522984
Han, Feifei
2017-01-01
While some first language (L1) reading models suggest that inefficient word recognition and small working memory tend to inhibit higher-level comprehension processes; the Compensatory Encoding Model maintains that slow word recognition and small working memory do not normally hinder reading comprehension, as readers are able to operate metacognitive strategies to compensate for inefficient word recognition and working memory limitation as long as readers process a reading task without time constraint. Although empirical evidence is accumulated for support of the Compensatory Encoding Model in L1 reading, there is lack of research for testing of the Compensatory Encoding Model in foreign language (FL) reading. This research empirically tested the Compensatory Encoding Model in English reading among Chinese college English language learners (ELLs). Two studies were conducted. Study one focused on testing whether reading condition varying time affects the relationship between word recognition, working memory, and reading comprehension. Students were tested on a computerized English word recognition test, a computerized Operation Span task, and reading comprehension in time constraint and non-time constraint reading. The correlation and regression analyses showed that the strength of association was much stronger between word recognition, working memory, and reading comprehension in time constraint than that in non-time constraint reading condition. Study two examined whether FL readers were able to operate metacognitive reading strategies as a compensatory way of reading comprehension for inefficient word recognition and working memory limitation in non-time constraint reading. The participants were tested on the same computerized English word recognition test and Operation Span test. They were required to think aloud while reading and to complete the comprehension questions. The think-aloud protocols were coded for concurrent use of reading strategies, classified into language-oriented strategies, content-oriented strategies, re-reading, pausing, and meta-comment. The correlation analyses showed that while word recognition and working memory were only significantly related to frequency of language-oriented strategies, re-reading, and pausing, but not with reading comprehension. Jointly viewed, the results of the two studies, complimenting each other, supported the applicability of the Compensatory Encoding Model in FL reading with Chinese college ELLs.
An electrophysiological signature for proactive interference resolution in working memory.
Du, Yingchun; Xiao, Zhuangwei; Song, Yan; Fan, Silu; Wu, Renhua; Zhang, John X
2008-08-01
We used event-related potentials (ERPs) to study the temporal dynamics of proactive interference in working memory. Participants performed a Sternberg item-recognition task to determine whether a probe was in a target memory set. Familiar negative probes were found to be more difficult to reject than less familiar ones. A fronto-central N2 component peaking around 300 ms post-probe-onset differentiated among target probes, familiar and less familiar non-target probes. The study identifies N2 as the ERP signature for proactive interference resolution. It also indicates that the resolution process occurs in the same time window as target/non-target discrimination and provides the first piece of electrophysiological evidence supporting a recent interference resolution model based on localization data [Jonides, J., Nee, D.E., 2006. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181-193].
Evidence for social working memory from a parametric functional MRI study.
Meyer, Meghan L; Spunt, Robert P; Berkman, Elliot T; Taylor, Shelley E; Lieberman, Matthew D
2012-02-07
Keeping track of various amounts of social cognitive information, including people's mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing ("social load"). We developed a social working memory paradigm to examine the brain networks sensitive to social load. Two networks showed linear increases in activation as a function of increasing social load: the medial frontoparietal regions implicated in social cognition and the lateral frontoparietal system implicated in nonsocial forms of working memory. Of these networks, only load-dependent medial frontoparietal activity was associated with individual differences in social cognitive ability (trait perspective-taking). Although past studies of nonsocial load have uniformly found medial frontoparietal activity decreases with increasing task demands, the current study demonstrates these regions do support increasing mental effort when such effort engages social cognition. Implications for the etiology of clinical disorders that implicate social functioning and potential interventions are discussed.
Memory profiles of Down, Williams, and fragile X syndromes: implications for reading development.
Conners, Frances A; Moore, Marie S; Loveall, Susan J; Merrill, Edward C
2011-06-01
The purpose of this review was to understand the types of memory impairments that are associated with intellectual disability (ID, formerly called mental retardation) and the implications of these impairments for reading development. Specifically, studies on working memory, delayed memory and learning, and semantic/conceptual memory in Down syndrome, Williams syndrome, and fragile X syndrome were examined. A distinct memory profile emerged for each of the 3 etiologies of ID. Memory profiles are discussed in relation to strengths and weaknesses in reading skills in these three etiologies. We suggest that reading instruction be designed to capitalize on relatively stronger memory skills while providing extra support for especially challenging aspects of reading.
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures. PMID:29311875
Grissmann, Sebastian; Faller, Josef; Scharinger, Christian; Spüler, Martin; Gerjets, Peter
2017-01-01
Most brain-based measures of the electroencephalogram (EEG) are used in highly controlled lab environments and only focus on narrow mental states (e.g., working memory load). However, we assume that outside the lab complex multidimensional mental states are evoked. This could potentially create interference between EEG signatures used for identification of specific mental states. In this study, we aimed to investigate more realistic conditions and therefore induced a combination of working memory load and affective valence to reveal potential interferences in EEG measures. To induce changes in working memory load and affective valence, we used a paradigm which combines an N-back task (for working memory load manipulation) with a standard method to induce affect (affective pictures taken from the International Affective Picture System (IAPS) database). Subjective ratings showed that the experimental task was successful in inducing working memory load as well as affective valence. Additionally, performance measures were analyzed and it was found that behavioral performance decreased with increasing workload as well as negative valence, showing that affective valence can have an effect on cognitive processing. These findings are supported by changes in frontal theta and parietal alpha power, parameters used for measuring of working memory load in the EEG. However, these EEG measures are influenced by the negative valence condition as well and thereby show that detection of working memory load is sensitive to affective contexts. Unexpectedly, we did not find any effects for EEG measures typically used for affective valence detection (Frontal Alpha Asymmetry (FAA)). Therefore we assume that the FAA measure might not be usable if cognitive workload is induced simultaneously. We conclude that future studies should account for potential context-specifity of EEG measures.
Selection within working memory based on a color retro-cue modulates alpha oscillations.
Poch, Claudia; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo
2017-11-01
Working Memory (WM) maintains flexible representations. Retrospective cueing studies indicate that selective attention can be directed to memory representations in WM improving performance. While most of the work has explored the neural substrates of orienting attention based on a spatial retro-cue, behavioral studies show that a feature other than location can also improve WM performance. In the present work we explored the oscillatory underpinnings of orienting attention to a relevant representation held in WM guided by a feature value. We recorded EEG data in a group of 36 healthy human subjects (20 females) performing a WM task in which they had to memorize the orientation of four rectangles of different colors. After a maintenance period, a cue was presented indicating the color of the relevant item. We showed that directing attention to a memory item based on its color resulted in a modulation of posterior alpha activity, which appears as more desynchronization in the contralateral than in the ipsilateral hemisphere. Alpha lateralization is considered a neurophysiological marker of external and internal spatial attention. We propose that current findings support the idea that selection of a memory item based on a non-location feature could be accomplished by a spatial attentional mechanism. Moreover, using a centrally presented color retro-cue allowed us to surpass the confounds inherent to the use of spatial retro-cues, supporting that the observed lateralized alpha results from an endogenous attentional mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feature bindings endure without attention: evidence from an explicit recall task.
Gajewski, Daniel A; Brockmole, James R
2006-08-01
Are integrated objects the unit of capacity of visual working memory, or is continued attention needed to maintain bindings between independently stored features? In a delayed recall task, participants reported the color and shape of a probed item from a memory array. During the delay, attention was manipulated with an exogenous cue. Recall was elevated at validly cued positions, indicating that the cue affected item memory. On invalid trials, participants most frequently recalled either both features (perfect object memory) or neither of the two features (no object memory); the frequency with which only one feature was recalled was significantly lower than predicted by feature independence as determined in a single-feature recall task. These data do not support the view that features are remembered independently when attention is withdrawn. Instead, integrated objects are stored in visual working memory without need for continued attention.
View-Based Organization and Interplay of Spatial Working and Long-Term Memories
Röhrich, Wolfgang G.; Hardiess, Gregor; Mallot, Hanspeter A.
2014-01-01
Space perception provides egocentric, oriented views of the environment from which working and long-term memories are constructed. “Allocentric” (i.e. position-independent) long-term memories may be organized as graphs of recognized places or views but the interaction of such cognitive graphs with egocentric working memories is unclear. Here we present a simple coherent model of view-based working and long-term memories, together with supporting evidence from behavioral experiments. The model predicts that within a given place, memories for some views may be more salient than others, that imagery of a target square should depend on the location where the recall takes place, and that recall favors views of the target square that would be obtained when approaching it from the current recall location. In two separate experiments in an outdoor urban environment, pedestrians were approached at various interview locations and asked to draw sketch maps of one of two well-known squares. Orientations of the sketch map productions depended significantly on distance and direction of the interview location from the target square, i.e. different views were recalled at different locations. Further analysis showed that location-dependent recall is related to the respective approach direction when imagining a walk from the interview location to the target square. The results are consistent with a view-based model of spatial long-term and working memories and their interplay. PMID:25409437
Working memory training shows immediate and long-term effects on cognitive performance in children
Pugin, Fiona; Metz, Andreas J.; Stauffer, Madlaina; Wolf, Martin; Jenni, Oskar G.; Huber, Reto
2014-01-01
Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training. PMID:25671082
Sentence processing and verbal working memory in a white-matter-disconnection patient.
Meyer, Lars; Cunitz, Katrin; Obleser, Jonas; Friederici, Angela D
2014-08-01
The Arcuate Fasciculus/Superior Longitudinal Fasciculus (AF/SLF) is the white-matter bundle that connects posterior superior temporal and inferior frontal cortex. Its causal functional role in sentence processing and verbal working memory is currently under debate. While impairments of sentence processing and verbal working memory often co-occur in patients suffering from AF/SLF damage, it is unclear whether these impairments result from shared white-matter damage to the verbal-working-memory network. The present study sought to specify the behavioral consequences of focal AF/SLF damage for sentence processing and verbal working memory, which were assessed in a single patient suffering from a cleft-like lesion spanning the deep left superior temporal gyrus, sparing most surrounding gray matter. While tractography suggests that the ventral fronto-temporal white-matter bundle is intact in this patient, the AF/SLF was not visible to tractography. In line with the hypothesis that the AF/SLF is causally involved in sentence processing, the patient׳s performance was selectively impaired on sentences that jointly involve both complex word orders and long word-storage intervals. However, the patient was unimpaired on sentences that only involved long word-storage intervals without involving complex word orders. On the contrary, the patient performed generally worse than a control group across standard verbal-working-memory tests. We conclude that the AF/SLF not only plays a causal role in sentence processing, linking regions of the left dorsal inferior frontal gyrus to the temporo-parietal region, but moreover plays a crucial role in verbal working memory, linking regions of the left ventral inferior frontal gyrus to the left temporo-parietal region. Together, the specific sentence-processing impairment and the more general verbal-working-memory impairment may imply that the AF/SLF subserves both sentence processing and verbal working memory, possibly pointing to the AF and SLF respectively supporting each. Copyright © 2014 Elsevier Ltd. All rights reserved.
Johnston, Kevin; Everling, Stefan
2009-05-01
Visuospatial working memory is one of the most extensively investigated functions of the dorsolateral prefrontal cortex (DLPFC). Theories of prefrontal cortical function have suggested that this area exerts cognitive control by modulating the activity of structures to which it is connected. Here, we used the oculomotor system as a model in which to characterize the output signals sent from the DLPFC to a target structure during a classical spatial working memory task. We recorded the activity of identified DLPFC-superior colliculus (SC) projection neurons while monkeys performed a memory-guided saccade task in which they were required to generate saccades toward remembered stimulus locations. DLPFC neurons sent signals related to all aspects of the task to the SC, some of which were spatially tuned. These data provide the first direct evidence that the DLPFC sends task-relevant information to the SC during a spatial working memory task, and further support a role for the DLPFC in the direct modulation of other brain areas.
Updating working memory in aircraft noise and speech noise causes different fMRI activations
Sætrevik, Bjørn; Sörqvist, Patrik
2015-01-01
The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between “substitution processes,” which involve adding new items to the working memory representation and suppressing old items, and “exclusion processes,” which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. PMID:25352319
Festini, Sara B; Reuter-Lorenz, Patricia A
2017-01-01
Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and attention-demanding secondary task, on directed forgetting efficacy, and by (b) assessing the ability of people to perform forgetting in the absence of to-be-remembered competitors to rehearse. In Experiment 1, articulatory suppression interfered with directed forgetting, increasing the proportion of false alarms to to-be-forgotten probes in the working memory phase and decreasing the magnitude of the directed forgetting effect as assessed by an incidental long-term memory recognition test. Experiment 2 replicated the effects of articulatory suppression and tested whether the simultaneous requirement to retain, and presumably rehearse, to-be-remembered items was necessary for successful forgetting. The long-term directed forgetting effect was equivalent whether or not participants had to-be-remembered items to rehearse during the working memory phase. Experiment 3 included an additional comparison condition and confirmed that articulatory suppression interfered with directed forgetting and that participants were as efficient at directed forgetting with and without competitors to remember. In combination, these experiments suggest that directed forgetting in working memory requires an active control process that is limited by articulatory suppression, and that the demand to remember a concurrent memory set is unnecessary for this control process to operate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Individualized Theory of Mind (iToM): When Memory Modulates Empathy
Ciaramelli, Elisa; Bernardi, Francesco; Moscovitch, Morris
2013-01-01
Functional neuroimaging studies have noted that brain regions supporting theory of mind (ToM) overlap remarkably with those underlying episodic memory, suggesting a link between the two processes. The present study shows that memory for others’ past experiences modulates significantly our appraisal of, and reaction to, what is happening to them currently. Participants read the life story of two characters; one had experienced a long series of love-related failures, the other a long series of work-related failures. In a later faux pas recognition task, participants reported more empathy for the character unlucky in love in love-related faux pas scenarios, and for the character unlucky at work in work-related faux pas scenarios. The memory-based modulation of empathy correlated with the number of details remembered from the characters’ life story. These results suggest that individuals use memory for other people’s past experiences to simulate how they feel in similar situations they are currently facing. The integration of ToM and memory processes allows adjusting mental state inferences to fit unique social targets, constructing an individualized ToM. PMID:23378839
Colom, Roberto; Burgaleta, Miguel; Román, Francisco J; Karama, Sherif; Alvarez-Linera, Juan; Abad, Francisco J; Martínez, Kenia; Quiroga, Ma Ángeles; Haier, Richard J
2013-05-15
Evidence from neuroimaging studies suggests that intelligence differences may be supported by a parieto-frontal network. Research shows that this network is also relevant for cognitive functions such as working memory and attention. However, previous studies have not explicitly analyzed the commonality of brain areas between a broad array of intelligence factors and cognitive functions tested in the same sample. Here fluid, crystallized, and spatial intelligence, along with working memory, executive updating, attention, and processing speed were each measured by three diverse tests or tasks. These twenty-one measures were completed by a group of one hundred and four healthy young adults. Three cortical measures (cortical gray matter volume, cortical surface area, and cortical thickness) were regressed against psychological latent scores obtained from a confirmatory factor analysis for removing test and task specific variance. For cortical gray matter volume and cortical surface area, the main overlapping clusters were observed in the middle frontal gyrus and involved fluid intelligence and working memory. Crystallized intelligence showed an overlapping cluster with fluid intelligence and working memory in the middle frontal gyrus. The inferior frontal gyrus showed overlap for crystallized intelligence, spatial intelligence, attention, and processing speed. The fusiform gyrus in temporal cortex showed overlap for spatial intelligence and attention. Parietal and occipital areas did not show any overlap across intelligence and cognitive factors. Taken together, these findings underscore that structural features of gray matter in the frontal lobes support those aspects of intelligence related to basic cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.
Do adults with mental retardation show pictorial superiority effects in recall and recognition?
Cherry, Katie E; Applegate, Heather; Reese, Celinda M
2002-01-01
We examined memory for pictures and words in adults with mental retardation and a control group of adults of normal intelligence. During acquisition, sets of simple line drawings and matching words were presented for study using an intentional learning procedure. The principle dependent measures were free recall and recognition. Measures of working memory span were also administered. Pictorial superiority effects occurred in free recall and recognition for both intelligence-level groups. Correlational analyses indicated that working memory span was primarily related to recall performance, irrespective of stimulus format. These data strongly suggest that persons with mental retardation can utilize nonverbal memory codes to support long-term retention as effectively as do adults of normal intelligence.
Sonuga-Barke, Edmund J S; Dalen, Lindy; Daley, Dave; Remington, Bob
2002-01-01
The association between executive function (EF; planning, working memory, and inhibition) and individual differences in symptoms of attention deficit hyperactivity disorder (ADHD) was explored in a sample of preschool children. One hundred sixty children (between the ages of 3 years, 0 months and 5 years, 6 months), selected so as to oversample high ADHD scorers, performed 3 tasks previously shown to measure planning (Tower of London), working memory (Noisy Book) and inhibition ("Puppet Says..."). EF measures were reliable (kappa > .77) and were correlated with IQ (rs > .38) and age (rs > .59). Once IQ and age were controlled, planning and working memory (r = .41) were correlated. Planning and working memory were not correlated with inhibition (rs < .20). There was no association between ADHD and working memory or planning (rs < .12). There was a significant negative association between ADHD and conduct problems and inhibition (r = -.30 and r = -.25, respectively). Only the link with ADHD persisted after the effects of other factors were controlled for in a multiple regression. Specific deficits in inhibitory control rather than general EF deficits are associated with ADHD in the preschool period. This association is linear in nature, supporting the idea that ADHD is better seen as a continuum rather than a discrete category. This association provides evidence for Barkley's (1997) view that ADHD is underpinned by inhibitory deficits in the preschool period.
Chan, Sam C C; Chan, Chetwyn C H; Derbie, Abiot Y; Hui, Irene; Tan, Davynn G H; Pang, Marco Y C; Lau, Stephen C L; Fong, Kenneth N K
2017-01-01
Nonpharmacological intervention for individuals with mild cognitive impairment (MCI) needs further investigation. Test efficacy of an eight-week Chinese calligraphy writing training course in improving attentional control and working memory. Ninety-nine participants with MCI were randomized into the eight-week calligraphy writing (n = 48) or control (tablet computer) training (n = 51). Outcomes of the interventions were attentional control, working memory, visual scan and processing speed. They were measured at baseline, post-training, and six-month follow-up. Calligraphy writing, when compared with control, significantly improved working memory as reflected from DST-Backward sequence (p = 0.009) and span scores (p = 0.002), and divided attention as reflected from CTT2 (p < 0.001), and at the post-training. The unique improvement in working memory (span: p < 0.001; sequence: p = 0.008) of the intervention group was also found at follow-up when comparing with those at baseline. Changes in the other outcome measures were not statistically significant. The findings provide support that Chinese calligraphy writing training for eight weeks using a cognitive approach would improve working memory and to a lesser extent attentional control functions of patients with early MCI. They also demonstrate the usefulness of using mind-and-body practice for improving specific cognitive functions.
Towards a Quantum Memory assisted MDI-QKD node
NASA Astrophysics Data System (ADS)
Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden
2017-04-01
The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.
Khurana, Atika; Romer, Daniel; Betancourt, Laura M.; Brodsky, Nancy L.; Giannetta, Joan M.; Hurt, Hallam
2013-01-01
Although deficits in working memory ability have been implicated in suboptimal decision making and risk taking among adolescents, its influence on early sexual initiation has so far not been examined. Analyzing 2 waves of panel data from a community sample of adolescents (N = 347; Mean age[baseline] = 13.4 years), assessed 1 year apart, the present study tested the hypothesis that weak working memory ability predicts early sexual initiation and explored whether this relationship is mediated by sensation seeking and 2 forms of impulsivity, namely acting-without-thinking and temporal discounting. The 2 forms of impulsivity were expected to be positively associated with early sexual initiation, whereas sensation seeking was hypothesized to be unrelated or to have a protective influence, due to its positive association with working memory. Results obtained from structural equation modeling procedures supported these predictions and in addition showed that the effects of 3 prominent risk factors (Black racial identity, low socioeconomic background, and early pubertal maturation) on early sexual initiation were entirely mediated by working memory and impulsivity. The findings are discussed in regard to their implications for preventing early sexual onset among adolescents. PMID:22369334
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Guild, Emma B; Vasquez, Brandon P; Maione, Andrea M; Mah, Linda; Ween, Jon; Anderson, Nicole D
2014-01-01
Previous studies have observed poorer working memory performance in individuals with amnestic mild cognitive impairment than in healthy older adults. It is unclear, however, whether these difficulties are true only of the multiple-domain clinical subtype in whom poorer executive functioning is common. The current study examined working memory, as measured by the self-ordered pointing task (SOPT) and an n-back task, in healthy older adults and adults with single-domain amnestic mild cognitive impairment (aMCI). Individuals with single-domain aMCI committed more errors and required longer to develop an organizational strategy on the SOPT. The single-domain aMCI group did not differ from healthy older adults on the 1-back or 2-back, but had poorer discrimination on the 3-back task. This is, to our knowledge, the first characterization of dynamic working memory performance in a single-domain aMCI group. These results lend support for the idea that clinical amnestic MCI subtypes may reflect different stages on a continuum of progression to dementia and question whether standardized measures of working memory (span tasks) are sensitive enough to capture subtle changes in performance.
Monks, Paul J; Thompson, Jill M; Bullmore, Edward T; Suckling, John; Brammer, Michael J; Williams, Steve C R; Simmons, Andrew; Giles, Nicola; Lloyd, Adrian J; Harrison, C Louise; Seal, Marc; Murray, Robin M; Ferrier, I Nicol; Young, Allan H; Curtis, Vivienne A
2004-12-01
Even when euthymic bipolar disorder patients can have persistent deficits in working memory, but the neural basis of this deficit remains unclear. We undertook an functional magnetic resonance imaging investigation of euthymic bipolar disorder patients performing two working memory paradigms; the two-back and Sternberg tasks, selected to examine the central executive and the phonological loop respectively. We hypothesized that neuronal dysfunction would be specific to the network underlying the executive rather than the phonological loop component of working memory. Twelve right-handed euthymic bipolar I males receiving lithium carbonate monotherapy were matched with 12 controls. The two-back task comprised a single working memory load contrasted with baseline vigilance condition. The Sternberg paradigm used a parametric design incorporating variable working memory load with fixed delay between presentation of an array of items to be remembered and a target item. Functional activation data were acquired during performance of the tasks and were analysed to produce brain activation maps representing significant group differences in activation (ANOVA). Load-response curves were derived from the Sternberg task data set. There were no significant between-group differences (t-test) in performance of the two-back task, or in 2 x 5 group by memory load ANOVA for the performance data from Sternberg task. In the two-back task, compared with controls bipolar disorder patients showed reductions in bilateral frontal, temporal and parietal activation, and increased activations with the left precentral, right medial frontal and left supramarginal gyri. No between-group differences were observed in the Sternberg task at any working memory load. Our findings support the notion that, in euthymic bipolar disorder, failure to engage fronto-executive function underpins the core neuropsychological deficits. Blackwell Munksgaard, 2004
The role of aging in intra-item and item-context binding processes in visual working memory.
Peterson, Dwight J; Naveh-Benjamin, Moshe
2016-11-01
Aging is accompanied by declines in both working memory and long-term episodic memory processes. Specifically, important age-related memory deficits are characterized by performance impairments exhibited by older relative to younger adults when binding distinct components into a single integrated representation, despite relatively intact memory for the individual components. While robust patterns of age-related binding deficits are prevalent in studies of long-term episodic memory, observations of such deficits in visual working memory (VWM) may depend on the specific type of binding process being examined. For instance, a number of studies indicate that processes involved in item-context binding of items to occupied spatial locations within visual working memory are impaired in older relative to younger adults. Other findings suggest that intra-item binding of visual surface features (e.g., color, shape), compared to memory for single features, within visual working memory, remains relatively intact. Here, we examined each of these binding processes in younger and older adults under both optimal conditions (i.e., no concurrent load) and concurrent load (e.g., articulatory suppression, backward counting). Experiment 1 revealed an age-related intra-item binding deficit for surface features under no concurrent load but not when articulatory suppression was required. In contrast, in Experiments 2 and 3, we observed an age-related item-context binding deficit regardless of the level of concurrent load. These findings reveal that the influence of concurrent load on distinct binding processes within VWM, potentially those supported by rehearsal, is an important factor mediating the presence or absence of age-related binding deficits within VWM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The irrelevant speech effect and working memory load.
Gisselgård, Jens; Petersson, Karl Magnus; Ingvar, Martin
2004-07-01
Irrelevant speech impairs the immediate serial recall of visually presented material. Previously, we have shown that the irrelevant speech effect (ISE) was associated with a relative decrease of regional blood flow in cortical regions subserving the verbal working memory, in particular the superior temporal cortex. In this extension of the previous study, the working memory load was increased and an increased activity as a response to irrelevant speech was noted in the dorsolateral prefrontal cortex. We suggest that the two studies together provide some basic insights as to the nature of the irrelevant speech effect. Firstly, no area in the brain can be ascribed as the single locus of the irrelevant speech effect. Instead, the functional neuroanatomical substrate to the effect can be characterized in terms of changes in networks of functionally interrelated areas. Secondly, the areas that are sensitive to the irrelevant speech effect are also generically activated by the verbal working memory task itself. Finally, the impact of irrelevant speech and related brain activity depends on working memory load as indicated by the differences between the present and the previous study. From a brain perspective, the irrelevant speech effect may represent a complex phenomenon that is a composite of several underlying mechanisms, which depending on the working memory load, include top-down inhibition as well as recruitment of compensatory support and control processes. We suggest that, in the low-load condition, a selection process by an inhibitory top-down modulation is sufficient, whereas in the high-load condition, at or above working memory span, auxiliary adaptive cognitive resources are recruited as compensation. Copyright 2004 Elsevier Inc.
Klekociuk, Shannon Z; Summers, Mathew J
2014-03-01
Research suggests that working memory and attention deficits may be present in mild cognitive impairment (MCI). However, the functional status of these domains within revised MCI subtypes remains unclear, particularly because previous studies have examined these cognitive domains with the same tests that were used to classify MCI subtypes. The aim of this study was to examine working memory and attention function in MCI subtypes on a battery of neuropsychological tests that were distinct from those used to classify MCI subtypes A total of 122 adults aged 60-90 years were classified at baseline as amnestic MCI, non-amnestic MCI, and multi-domain amnestic (a-MCI+). The attentional and working memory capacity of participants was examined using a battery of tests distinct from those used to classify MCI at screening. The a-MCI+ group demonstrated the poorest performance on all working memory tasks and specific sub-processes of attention. The non-amnestic MCI group had lowered performance on visual span and complex sustained attention only. There was no evidence of either attentional or working memory impairment in the amnestic MCI participants. When MCI cohorts are assessed on measures distinct from those used at classification, a-MCI+ subjects had the most compromised working memory and attention function. These results support previous findings that suggest a-MCI+ more closely resembles early stage Alzheimer's disease and those with a-MCI+ may be at increased rate of future cognitive decline compared to those with other MCI subtypes. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
The social regulation of emotion and updating negative contents of working memory.
Flores, Luis E; Berenbaum, Howard
2017-06-01
The social regulation of emotion reduces negative affect and may also help remove negative contents from working memory. The present studies investigated whether the social regulation of emotion (in the form of handholding) altered the ability to update negative contents from working memory and whether a person's level of desired emotional closeness moderated this effect. In each of 2 studies, an unselected sample of undergraduate students completed an emotional working memory task that measured the ability to remove irrelevant information from working memory and a self-report questionnaire measuring their level of desired emotional closeness. In Study 1 (N = 109), the task consisted only of negative images, and each participant performed half of the task while holding someone's hand and the other half while not holding someone's hand. Study 2 (N = 195) included a few changes (e.g., using both negative and neutral images, altering the control condition to consist of holding a stress ball, using a between-participants design, measuring comfort with handholding) to address a few potential alternative explanations. Overall, there appeared to be a better ability to update negative contents of working memory in the handholding condition of each study than the control condition among people with high desired emotional closeness but not among people with low desired emotional closeness. The present findings provide evidence that the social regulation of emotion can facilitate the removal of irrelevant negative contents of working memory. This process may be one way in which supportive relationships protect against psychological distress. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Goodman, Craig; Knoll, Gabriella; Isakov, Victoria; Silver, Henry
2005-03-01
A lack of insight into illness and negative attitudes towards medication are common among individuals with schizophrenia and impact clinical outcomes. This study aimed to examine the relationships between attitudes towards medication and cognitive function in schizophrenia patients. Thirty-five male forensic inpatients who were suffering from chronic schizophrenia participated in the study. A drug attitude inventory was used to evaluate the attitudes of the patients towards medication. Neuropsychological function was assessed with a comprehensive battery of tests. Patients with positive attitudes towards medication performed significantly better than those with negative attitudes on tests of verbal working memory (digit span forwards and backwards), inhibition and set shifting (Penn Inhibition test), delayed object memory and overall mental status (Mini Mental State Examination). There were no differences in age, education, hospitalizations or clinical symptoms between the groups. Our findings support an association between negative attitudes towards medication and poor cognitive performance, particularly of working memory.
Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N
2011-02-01
Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
Knowledge cannot explain the developmental growth of working memory capacity.
Cowan, Nelson; Ricker, Timothy J; Clark, Katherine M; Hinrichs, Garrett A; Glass, Bret A
2015-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We document developmental increases in working memory for visual arrays of English letters versus unfamiliar characters. Although letter knowledge played a special role in development between the ages of 6 and 8 years, children with adequate letter knowledge showed practically the same developmental growth in normalized functions for letters and unfamiliar characters. The results contribute to a growing body of evidence that the developmental improvement in working memory does not wholly stem from supporting processes such as encoding, mnemonic strategies, and knowledge. A video abstract is available at: https://www.youtube.com/watch?v=LJdqErLR2Hs&feature=youtu.be. © 2014 John Wiley & Sons Ltd.
Hardman, Kyle O; Cowan, Nelson
2015-03-01
Visual working memory stores stimuli from our environment as representations that can be accessed by high-level control processes. This study addresses a longstanding debate in the literature about whether storage limits in visual working memory include a limit to the complexity of discrete items. We examined the issue with a number of change-detection experiments that used complex stimuli that possessed multiple features per stimulus item. We manipulated the number of relevant features of the stimulus objects in order to vary feature load. In all of our experiments, we found that increased feature load led to a reduction in change-detection accuracy. However, we found that feature load alone could not account for the results but that a consideration of the number of relevant objects was also required. This study supports capacity limits for both feature and object storage in visual working memory. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Working memory predicts children's analogical reasoning.
Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E
2018-02-01
Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making.
Liu, Shuyan; Schad, Daniel J; Kuschpel, Maxim S; Rapp, Michael A; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes.
Alderson, R Matt; Hudec, Kristen L; Patros, Connor H G; Kasper, Lisa J
2013-05-01
The current study was the first to use a regression approach to examine the unique contributions of central executive (CE) and storage/rehearsal processes to working memory (WM) deficits in adults with ADHD. Thirty-seven adults (ADHD = 21, HC = 16) completed phonological (PH) and visuospatial (VS) working memory tasks. While both groups performed significantly better during the PH task relative to the VS task, adults with ADHD exhibited significant deficits across both working memory modalities. Further, the ADHD group recalled disproportionately fewer PH and VS stimuli as set-size demands increased. Overall, the CE and PH storage/rehearsal processes of adults with ADHD were both significantly impaired relative to those of the healthy control adults; however, the magnitude of the CE effect size was much smaller compared to previous studies of children with the disorder. Collectively, results provide support for a lifelong trajectory of WM deficits in ADHD. © 2013 American Psychological Association
Hippocampal-prefrontal theta-gamma coupling during performance of a spatial working memory task.
Tamura, Makoto; Spellman, Timothy J; Rosen, Andrew M; Gogos, Joseph A; Gordon, Joshua A
2017-12-19
Cross-frequency coupling supports the organization of brain rhythms and is present during a range of cognitive functions. However, little is known about whether and how long-range cross-frequency coupling across distant brain regions subserves working memory. Here we report that theta-slow gamma coupling between the hippocampus and medial prefrontal cortex (mPFC) is augmented in a genetic mouse model of cognitive dysfunction. This increased cross-frequency coupling is observed specifically when the mice successfully perform a spatial working memory task. In wild-type mice, increasing task difficulty by introducing a long delay or by optogenetically interfering with encoding, also increases theta-gamma coupling during correct trials. Finally, epochs of high hippocampal theta-prefrontal slow gamma coupling are associated with increased synchronization of neurons within the mPFC. These findings suggest that enhancement of theta-slow gamma coupling reflects a compensatory mechanism to maintain spatial working memory performance in the setting of increased difficulty.
Sturm, Alexandra; Rozenman, Michelle; Piacentini, John C; McGough, James J; Loo, Sandra K; McCracken, James T
2018-03-20
Predictors of math achievement in attention-deficit/hyperactivity disorder (ADHD) are not well-known. To address this gap in the literature, we examined individual differences in neurocognitive functioning domains on math computation in a cross-sectional sample of youth with ADHD. Gender and anxiety symptoms were explored as potential moderators. The sample consisted of 281 youth (aged 8-15 years) diagnosed with ADHD. Neurocognitive tasks assessed auditory-verbal working memory, visuospatial working memory, and processing speed. Auditory-verbal working memory speed significantly predicted math computation. A three-way interaction revealed that at low levels of anxious perfectionism, slower processing speed predicted poorer math computation for boys compared to girls. These findings indicate the uniquely predictive values of auditory-verbal working memory and processing speed on math computation, and their differential moderation. These findings provide preliminary support that gender and anxious perfectionism may influence the relationship between neurocognitive functioning and academic achievement.
Music and Video Gaming during Breaks: Influence on Habitual versus Goal-Directed Decision Making
Kuschpel, Maxim S.; Rapp, Michael A.; Heinz, Andreas
2016-01-01
Different systems for habitual versus goal-directed control are thought to underlie human decision-making. Working memory is known to shape these decision-making systems and their interplay, and is known to support goal-directed decision making even under stress. Here, we investigated if and how decision systems are differentially influenced by breaks filled with diverse everyday life activities known to modulate working memory performance. We used a within-subject design where young adults listened to music and played a video game during breaks interleaved with trials of a sequential two-step Markov decision task, designed to assess habitual as well as goal-directed decision making. Based on a neurocomputational model of task performance, we observed that for individuals with a rather limited working memory capacity video gaming as compared to music reduced reliance on the goal-directed decision-making system, while a rather large working memory capacity prevented such a decline. Our findings suggest differential effects of everyday activities on key decision-making processes. PMID:26982326
Entringer, Sonja; Buss, Claudia; Kumsta, Robert; Hellhammer, Dirk H; Wadhwa, Pathik D; Wüst, Stefan
2009-08-01
The aim of the present study was to examine the association between prenatal psychosocial stress exposure and subsequent prefrontal cortex-dependent working memory performance in human adults. Working memory performance was assessed using an item-recognition task under 10 mg hydrocortisone (cortisol) and placebo conditions in a sample of 32 healthy young women (mean age = 25 +/- 4.34 years) whose mothers experienced a major negative life event during their pregnancy (Prenatal Stress, PS group), and in a comparison group of 27 healthy young women (mean age = 24 +/- 3.4 years). The two groups did not differ in the placebo condition, however, subjects in the PS group showed longer reaction times after hydrocortisone administration compared with subjects in the comparison group (p = .02). These findings provide support for an association between prenatal stress exposure and the potential modulatory effect of cortisol on working memory performance in young adults, which may reflect compromised development of the prefrontal cortex in prenatal life. 2009 APA, all rights reserved
Working memory and the design of health materials: a cognitive factors perspective.
Wilson, Elizabeth A H; Wolf, Michael S
2009-03-01
Working memory and other supportive cognitive processes involved in learning are reviewed in the context of developing patient education materials. We specifically focus on the impact of certain design factors such as text format and syntax, the inclusion of images, and the choice of modality on individuals' ability to understand and remember health information. A selective review of relevant cognitive and learning theories is discussed with regard to their potential impact on the optimal design of health materials. Working memory is measured as an individual's capacity to hold and manipulate information in active consciousness. It is limited by necessity, and well-designed health materials can effectively minimize extraneous cognitive demands placed on individuals, making working memory resources more available to better process content-related information. Further research is needed to evaluate specific design principles and identify ideal uses of print versus video-based forms of communication for conveying information. The process of developing health materials should account for the cognitive demands that extrinsic factors such as modality place on patients.
Working memory training and transfer in older adults.
Richmond, Lauren L; Morrison, Alexandra B; Chein, Jason M; Olson, Ingrid R
2011-12-01
There has been a great deal of interest, both privately and commercially, in using working memory training exercises to improve general cognitive function. However, many of the laboratory findings for older adults, a group in which this training is of utmost interest, are discouraging due to the lack of transfer to other tasks and skills. Importantly, improvements in everyday functioning remain largely unexamined in relation to WM training. We trained working memory in older adults using a task that encourages transfer in young adults (Chein & Morrison, 2010). We tested transfer to measures of working memory (e.g., Reading Span), everyday cognitive functioning [the Test of Everyday Attention (TEA) and the California Verbal Learning Test (CVLT)], and other tasks of interest. Relative to controls, trained participants showed transfer improvements in Reading Span and the number of repetitions on the CVLT. Training group participants were also significantly more likely to self-report improvements in everyday attention. Our findings support the use of ecological tasks as a measure of transfer in an older adult population.
Hippocampal volume and memory performance in children with perinatal stroke.
Gold, Jeffrey J; Trauner, Doris A
2014-01-01
Pediatric neurologists and neonatologists often are asked to predict cognitive outcome after perinatal brain injury (including likely memory and learning outcomes). However, relatively few data exist on how accurate predictions can be made. Furthermore, although the consequences of brain injury on hippocampal volume and memory performance have been studied extensively in adults, little work has been done in children. We measured the volume of the hippocampus in 27 children with perinatal stroke and 19 controls, and measured their performance on standardized verbal and non-verbal memory tests. We discovered the following: (1) As a group, children with perinatal stroke had smaller left and right hippocampi compared with control children. (2) Individually, children with perinatal stroke demonstrated 1 of 3 findings: no hippocampal loss, unilateral hippocampal loss, or bilateral hippocampal volume loss compared with control children. (3) Hippocampal volume inversely correlated with memory test performance in the perinatal stroke group, with smaller left and right hippocampal volumes related to poorer verbal and non-verbal memory test performance, respectively. (4) Seizures played a significant role in determining memory deficit and extent of hippocampal volume reduction in patients with perinatal stroke. These findings support the view that, in the developing brain, the left and right hippocampi preferentially support verbal and nonverbal memory respectively, a consistent finding in the adult literature but a subject of debate in the pediatric literature. This is the first work to report that children with focal brain injury incurred from perinatal stroke have volume reduction in the hippocampus and impairments in certain aspects of declarative memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Working memory performance inversely predicts spontaneous delta and theta-band scaling relations.
Euler, Matthew J; Wiltshire, Travis J; Niermeyer, Madison A; Butner, Jonathan E
2016-04-15
Electrophysiological studies have strongly implicated theta-band activity in human working memory processes. Concurrently, work on spontaneous, non-task-related oscillations has revealed the presence of long-range temporal correlations (LRTCs) within sub-bands of the ongoing EEG, and has begun to demonstrate their functional significance. However, few studies have yet assessed the relation of LRTCs (also called scaling relations) to individual differences in cognitive abilities. The present study addressed the intersection of these two literatures by investigating the relation of narrow-band EEG scaling relations to individual differences in working memory ability, with a particular focus on the theta band. Fifty-four healthy adults completed standardized assessments of working memory and separate recordings of their spontaneous, non-task-related EEG. Scaling relations were quantified in each of the five classical EEG frequency bands via the estimation of the Hurst exponent obtained from detrended fluctuation analysis. A multilevel modeling framework was used to characterize the relation of working memory performance to scaling relations as a function of general scalp location in Cartesian space. Overall, results indicated an inverse relationship between both delta and theta scaling relations and working memory ability, which was most prominent at posterior sensors, and was independent of either spatial or individual variability in band-specific power. These findings add to the growing literature demonstrating the relevance of neural LRTCs for understanding brain functioning, and support a construct- and state-dependent view of their functional implications. Copyright © 2016 Elsevier B.V. All rights reserved.
Nikolaidis, Aki; Voss, Michelle W.; Lee, Hyunkyu; Vo, Loan T. K.; Kramer, Arthur F.
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research. PMID:24711792
Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
Ivanova, Maria V; Hallowell, Brooke
2014-01-01
Deficits in working memory (WM) are an important subset of cognitive processing deficits associated with aphasia. However, there are serious limitations to research on WM in aphasia largely due to the lack of an established valid measure of WM impairment for this population. The aim of the current study was to address shortcomings of previous measures by developing and empirically evaluating a novel WM task with a sentence-picture matching processing component designed to circumvent confounds inherent in existing measures of WM in aphasia. The novel WM task was presented to persons with (n=27) and without (n=33) aphasia. Results demonstrated high concurrent validity of a novel WM task. Individuals with aphasia performed significantly worse on all conditions of the WM task compared to individuals without aphasia. Different patterns of performance across conditions were observed for the two groups. Additionally, WM capacity was significantly related to auditory comprehension abilities in individuals with mild aphasia but not those with moderate aphasia. Strengths of the novel WM task are that it allows for differential control for length versus complexity of verbal stimuli and indexing of the relative influence of each, minimizes metalinguistic requirements, enables control for complexity of processing components, allows participants to respond with simple gestures or verbally, and eliminates reading requirements. Results support the feasibility and validity of using a novel task to assess WM in individuals with and without aphasia. Readers will be able to (1) discuss the limitations of current working memory measures for individuals with aphasia; (2) describe how task design features of a new working memory task for people with aphasia address shortcomings of existing measures; (3) summarize the evidence supporting the validity of the novel working memory task. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mallinckrodt, Brent
1991-01-01
Collected survey data from 102 client-counselor dyads with regard to client and counselor third-session working alliance ratings, quality of clients' current social relationships, and clients' representations of care and overprotection in memories of childhood emotional bonds with parents. Social support was significant predictor of client-rated…
Children's Speech Perception in Noise: Evidence for Dissociation From Language and Working Memory.
Magimairaj, Beula M; Nagaraj, Naveen K; Benafield, Natalie J
2018-05-17
We examined the association between speech perception in noise (SPIN), language abilities, and working memory (WM) capacity in school-age children. Existing studies supporting the Ease of Language Understanding (ELU) model suggest that WM capacity plays a significant role in adverse listening situations. Eighty-three children between the ages of 7 to 11 years participated. The sample represented a continuum of individual differences in attention, memory, and language abilities. All children had normal-range hearing and normal-range nonverbal IQ. Children completed the Bamford-Kowal-Bench Speech-in-Noise Test (BKB-SIN; Etymotic Research, 2005), a selective auditory attention task, and multiple measures of language and WM. Partial correlations (controlling for age) showed significant positive associations among attention, memory, and language measures. However, BKB-SIN did not correlate significantly with any of the other measures. Principal component analysis revealed a distinct WM factor and a distinct language factor. BKB-SIN loaded robustly as a distinct 3rd factor with minimal secondary loading from sentence recall and short-term memory. Nonverbal IQ loaded as a 4th factor. Results did not support an association between SPIN and WM capacity in children. However, in this study, a single SPIN measure was used. Future studies using multiple SPIN measures are warranted. Evidence from the current study supports the use of BKB-SIN as clinical measure of speech perception ability because it was not influenced by variation in children's language and memory abilities. More large-scale studies in school-age children are needed to replicate the proposed role played by WM in adverse listening situations.
Sparse distributed memory overview
NASA Technical Reports Server (NTRS)
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
Some Surprising Findings on the Involvement of the Parietal Lobe in Human Memory
Olson, Ingrid R.; Berryhill, Marian
2009-01-01
The posterior parietal lobe is known to play some role in a far-flung list of mental processes: linking vision to action (saccadic eye movements, reaching, grasping), attending to visual space, numerical calculation, and mental rotation. Here we review findings from humans and monkeys that illuminate an untraditional function of this region: memory. Our review draws on neuroimaging findings that have repeatedly identified parietal lobe activations associated with short-term or working memory and episodic memory. We also discuss recent neuropsychological findings showing that individuals with parietal lobe damage exhibit both working memory and long-term memory deficits. These deficits are not ubiquitous; they are only evident under certain retrieval demands. Our review elaborates on these findings and evaluates various theories about the mechanistic role of the posterior parietal lobe in memory. The available data point towards the conclusion that the posterior parietal lobe plays an important role in memory retrieval irrespective of elapsed time. The two models that are best supported by existing data are the Attention to Memory Model and the Subjective Memory Model. We conclude by formalizing several open questions that are intended to encourage future research. PMID:18848635
Visual memory, the long and the short of it: A review of visual working memory and long-term memory.
Schurgin, Mark W
2018-04-23
The majority of research on visual memory has taken a compartmentalized approach, focusing exclusively on memory over shorter or longer durations, that is, visual working memory (VWM) or visual episodic long-term memory (VLTM), respectively. This tutorial provides a review spanning the two areas, with readers in mind who may only be familiar with one or the other. The review is divided into six sections. It starts by distinguishing VWM and VLTM from one another, in terms of how they are generally defined and their relative functions. This is followed by a review of the major theories and methods guiding VLTM and VWM research. The final section is devoted toward identifying points of overlap and distinction across the two literatures to provide a synthesis that will inform future research in both fields. By more intimately relating methods and theories from VWM and VLTM to one another, new advances can be made that may shed light on the kinds of representational content and structure supporting human visual memory.
The Hippocampus Supports Encoding of Between-Domain Associations within Working Memory
ERIC Educational Resources Information Center
Piekema, Carinne; Kessel, Roy P. C.; Rijpkema, Mark; Fernandez, Guillen
2009-01-01
It has been established that the medial temporal lobe, including the hippocampus, is crucial for associative memory. The aim of the current functional magnetic resonance imaging (fMRI) study was to investigate whether the hippocampus is differentially activated for associations between items processed in the same neocortical region (within-domain)…
Automatic and Controlled Processing in Sentence Recall: The Role of Long-Term and Working Memory
ERIC Educational Resources Information Center
Jefferies, E.; Lambon Ralph, M.A.; Baddeley, A.D.
2004-01-01
Immediate serial recall is better for sentences than word lists presumably because of the additional support that meaningful material receives from long-term memory. This may occur automatically, without the involvement of attention, or may require additional attentionally demanding processing. For example, the episodic buffer model (Baddeley,…
Expert system shell to reason on large amounts of data
NASA Technical Reports Server (NTRS)
Giuffrida, Gionanni
1994-01-01
The current data base management systems (DBMS's) do not provide a sophisticated environment to develop rule based expert systems applications. Some of the new DBMS's come with some sort of rule mechanism; these are active and deductive database systems. However, both of these are not featured enough to support full implementation based on rules. On the other hand, current expert system shells do not provide any link with external databases. That is, all the data are kept in the system working memory. Such working memory is maintained in main memory. For some applications the reduced size of the available working memory could represent a constraint for the development. Typically these are applications which require reasoning on huge amounts of data. All these data do not fit into the computer main memory. Moreover, in some cases these data can be already available in some database systems and continuously updated while the expert system is running. This paper proposes an architecture which employs knowledge discovering techniques to reduce the amount of data to be stored in the main memory; in this architecture a standard DBMS is coupled with a rule-based language. The data are stored into the DBMS. An interface between the two systems is responsible for inducing knowledge from the set of relations. Such induced knowledge is then transferred to the rule-based language working memory.
Liu, Qin; Ulloa, Antonio; Horwitz, Barry
2017-11-01
Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).
Distractor devaluation requires visual working memory.
Goolsby, Brian A; Shapiro, Kimron L; Raymond, Jane E
2009-02-01
Visual stimuli seen previously as distractors in a visual search task are subsequently evaluated more negatively than those seen as targets. An attentional inhibition account for this distractor-devaluation effect posits that associative links between attentional inhibition and to-be-ignored stimuli are established during search, stored, and then later reinstantiated, implying that distractor devaluation may require visual working memory (WM) resources. To assess this, we measured distractor devaluation with and without a concurrent visual WM load. Participants viewed a memory array, performed a simple search task, evaluated one of the search items (or a novel item), and then viewed a memory test array. Although distractor devaluation was observed with low (and no) WM load, it was absent when WM load was increased. This result supports the notions that active association of current attentional states with stimuli requires WM and that memory for these associations plays a role in affective response.
Loomes, Carly; Rasmussen, Carmen; Pei, Jacqueline; Manji, Shazeen; Andrew, Gail
2008-01-01
A key area of weakness in individuals with fetal alcohol spectrum disorder (FASD) is working memory, thus the goal of this study was to determine whether teaching children (aged 4-11) with FASD verbal rehearsal would increase their memory. Rehearsal training has been effective in other populations with working memory difficulties, so we hypothesized that children with FASD would also benefit from rehearsal training. Children were divided into an Experimental group, who received rehearsal training and a Control group, who did not receive training. All children were tested on digit span tasks over three sessions: a pretest (baseline) and then post-test 1 and post-test 2 (where only the Experimental group received rehearsal training). The Experimental group showed a significant increase in performance across session but the Control group did not. Children in the Experimental group performed significantly higher than the Control group on post-test 2 but not on the pretest or post-test 1. More children in the Experimental group showed behavioral evidence and self-report of rehearsal after training. Rehearsal training was successful at increasing the memory for numbers among children with FASD and may help to ameliorate working memory difficulties in FASD, ultimately supporting academic and developmental growth of children with FASD.
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model
Sporer, Siegfried L.
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the “cognitive load approach” as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley’s (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed. PMID:27092090
Pereira, Jacinto; Wang, Xiao-Jing
2015-01-01
Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy–flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. PMID:25253801
Deception and Cognitive Load: Expanding Our Horizon with a Working Memory Model.
Sporer, Siegfried L
2016-01-01
Recently, studies on deception and its detection have increased dramatically. Many of these studies rely on the "cognitive load approach" as the sole explanatory principle to understand deception. These studies have been exclusively on lies about negative actions (usually lies of suspects of [mock] crimes). Instead, we need to re-focus more generally on the cognitive processes involved in generating both lies and truths, not just on manipulations of cognitive load. Using Baddeley's (2000, 2007, 2012) working memory model, which integrates verbal and visual processes in working memory with retrieval from long-term memory and control of action, not only verbal content cues but also nonverbal, paraverbal, and linguistic cues can be investigated within a single framework. The proposed model considers long-term semantic, episodic and autobiographical memory and their connections with working memory and action. It also incorporates ironic processes of mental control (Wegner, 1994, 2009), the role of scripts and schemata and retrieval cues and retrieval processes. Specific predictions of the model are outlined and support from selective studies is presented. The model is applicable to different types of reports, particularly about lies and truths about complex events, and to different modes of production (oral, hand-written, typed). Predictions regarding several moderator variables and methods to investigate them are proposed.
Working memory and the strategic control of attention in older and younger adults.
Hayes, Melissa G; Kelly, Andrew J; Smith, Anderson D
2013-03-01
The objective of this study was to investigate the effects of aging on the strategic control of attention and the extent to which this relationship is mediated by working memory capacity (WMC). This study also sought to investigate boundary conditions wherein age differences in selectivity may occur. Across 2 studies, the value-directed remembering task used by Castel and colleagues (Castel, A. D., Balota, D. A., & McCabe, D. P. (2009). Memory efficiency and the strategic control of attention at encoding: Impairments of value-directed remembering in Alzheimer's Disease. Neuropsychology, 23, 297-306) was modified to include value-directed forgetting. Study 2 incorporated valence as an additional task demand, and age differences were predicted in both studies due to increased demands of controlled processing. Automated operation span and Stroop span were included as working memory measures, and working memory was predicted to mediate performance. Results confirmed these predictions, as older adults were less efficient in maximizing selectivity scores when high demands were placed on selectivity processes, and working memory was found to mediate performance on this task. When list length was increased from previous studies and participants were required to actively forget negative-value words, older adults were not able to selectively encode high-value information to the same degree as younger adults. Furthermore, WMC appears to support the ability to selectively encode information.
Modulation of learning and memory by the genetic disruption of circadian oscillator populations.
Snider, Kaitlin H; Obrietan, Karl
2018-06-23
While a rich literature has documented that the efficiency of learning and memory varies across circadian time, a close survey of that literature reveals extensive heterogeneity in the time of day (TOD) when peak cognitive performance occurs. Moreover, most previous experiments in rodents have not focused on the question of discriminating which memory processes (e.g., working memory, memory acquisition, or retrieval) are modulated by the TOD. Here, we use assays of contextual fear conditioning and spontaneous alternation in WT (C57Bl/6 J) mice to survey circadian modulation of hippocampal-dependent memory at multiple timescales - including working memory (seconds to a few minutes), intermediate-term memory (a delay of thirty minutes), and acquisition and retrieval of long-term memory (a delay of two days). Further, in order to test the relative contributions of circadian timing mechanisms to the modulation of memory, a parallel set of studies were performed in mice lacking clock timing mechanisms. These transgenic mice lacked the essential circadian gene Bmal1, either globally (Bmal1 null) or locally (floxed Bmal1 mice which lack Bmal1 in excitatory forebrain neurons, e.g. cortical and hippocampal neurons). Here, we show that in WT mice, retrieval (but not working memory, intermediate-term memory, or acquisition of long-term memory) is modulated by TOD. However, transgenic mouse models lacking Bmal1 - both globally, and only in forebrain excitatory neurons - show deficits regardless of the memory process tested (and lack circadian modulation of retrieval). These results provide new clarity regarding the impact of TOD on hippocampal-dependent memory and support the key role of hippocampal and cortical circadian oscillations in circadian gating of cognition. Copyright © 2018. Published by Elsevier Inc.
Selective interference reveals dissociation between memory for location and colour.
Vuontela, V; Rämä, P; Raninen, A; Aronen, H J; Carlson, S
1999-08-02
The aim was to study whether there is indication of a dissociation in processing of visuospatial and colour information in working memory in humans. Experimental subjects performed visuospatial and colour n-back tasks with and without visuospatial and colour distractive stimuli presented in the middle of the delay period to specifically affect mnemonic processing of task-related information. In the high memory-load condition, the visuospatial, but not the colour, task was selectively disrupted by visuospatial but not colour distractors. When subvocal rehearsal of the memoranda in the colour task was prevented by articulatory suppression; colour task performance was also selectively disrupted by distractors qualitatively similar to the memoranda. The results support the suggestion that visual working memory for location is processed separate from that for colour.
Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin
2016-02-01
Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.
Evidence for modality-independent order coding in working memory.
Depoorter, Ann; Vandierendonck, André
2009-03-01
The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.
Spatial serial order processing in schizophrenia.
Fraser, David; Park, Sohee; Clark, Gina; Yohanna, Daniel; Houk, James C
2004-10-01
The aim of this study was to examine serial order processing deficits in 21 schizophrenia patients and 16 age- and education-matched healthy controls. In a spatial serial order working memory task, one to four spatial targets were presented in a randomized sequence. Subjects were required to remember the locations and the order in which the targets were presented. Patients showed a marked deficit in ability to remember the sequences compared with controls. Increasing the number of targets within a sequence resulted in poorer memory performance for both control and schizophrenia subjects, but the effect was much more pronounced in the patients. Targets presented at the end of a long sequence were more vulnerable to memory error in schizophrenia patients. Performance deficits were not attributable to motor errors, but to errors in target choice. The results support the idea that the memory errors seen in schizophrenia patients may be due to saturating the working memory network at relatively low levels of memory load.
Object-based benefits without object-based representations.
Fougnie, Daryl; Cormiea, Sarah M; Alvarez, George A
2013-08-01
Influential theories of visual working memory have proposed that the basic units of memory are integrated object representations. Key support for this proposal is provided by the same object benefit: It is easier to remember multiple features of a single object than the same set of features distributed across multiple objects. Here, we replicate the object benefit but demonstrate that features are not stored as single, integrated representations. Specifically, participants could remember 10 features better when arranged in 5 objects compared to 10 objects, yet memory for one object feature was largely independent of memory for the other object feature. These results rule out the possibility that integrated representations drive the object benefit and require a revision of the concept of object-based memory representations. We propose that working memory is object-based in regard to the factors that enhance performance but feature based in regard to the level of representational failure. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Reinecke, Andrea; Becker, Eni S; Rinck, Mike
2009-12-01
Following cognitive models of anxiety, biases occur if threat processing is automatic versus strategic. Therefore, most of these models predict attentional bias, but not explicit memory bias. We suggest dividing memory into the highly automatic working memory (WM) component versus long-term memory when investigating bias in anxiety. WM for threat has rarely been investigated although its main function is stimulus monitoring, particularly important in anxiety. We investigated WM for spiders in spider fearfuls (SFs) versus non-anxious controls (NACs). In Experiment 1 (23 SFs/24 NACs), we replicated an earlier WM study, reducing strategic processing options. This led to stronger group differences and, thus, clearer WM threat biases. There were no group differences in Experiment 2 (18 SFs/19 NACs), using snakes instead of spiders to test whether WM biases are material-specific. This article supports cognitive models of anxiety in that biases are more likely to occur when reducing strategic processing. However, it contradicts the assumption that explicit memory biases are not characteristic of anxiety.
The focus of attention is similar to other memory systems rather than uniquely different
Beaudry, Olivia; Neath, Ian; Surprenant, Aimée M.; Tehan, Gerald
2014-01-01
According to some current theories, the focus of attention (FOA), part of working memory, represents items in a privileged state that is more accessible than items stored in other memory systems. One line of evidence supporting the distinction between the FOA and other memory systems is the finding that items in the FOA are immune to proactive interference (when something learned earlier impairs the ability to remember something learned more recently). The FOA, then, is held to be unique: it is the only memory system that is not susceptible to proactive interference. We review the literature used to support this claim, and although there are many studies in which proactive interference was not observed, we found more studies in which it was observed. We conclude that the FOA is not immune to proactive interference: items in the FOA are susceptible to proactive interference just like items in every other memory system. And, just as in all other memory systems, it is how the items are represented and processed that plays a critical role in determining whether proactive interference will be observed. PMID:24574996
Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span
Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.
2013-01-01
Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in the animal fluency task (Thurstone, 1938). The results indicate that people switch between global frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in dynamic search processes and the cluster-switching hypothesis that predicts reduced switching between retrieval cues, the results indicate that as people age, they tend to switch more often between local and global cues per item recalled, supporting the cue-maintenance hypothesis. Additional support for the cue-maintenance hypothesis is provided by a negative correlation between switching and digit span scores and between switching and total items recalled, which suggests that cognitive control may be involved in cue maintenance and the effective search of memory. Overall, the results are consistent with age-related decline in memory search being a consequence of reduced cognitive control, consistent with models suggesting that working memory is related to goal perseveration and the ability to inhibit distracting information. PMID:23586941
Effects of environmental support on overt and covert visuospatial rehearsal.
Lilienthal, Lindsey; Myerson, Joel; Abrams, Richard A; Hale, Sandra
2018-09-01
People can rehearse to-be-remembered locations either overtly, using eye movements, or covertly, using only shifts of spatial attention. The present study examined whether the effectiveness of these two strategies depends on environmental support for rehearsal. In Experiment 1, when environmental support (i.e., the array of possible locations) was present and participants could engage in overt rehearsal during retention intervals, longer intervals resulted in larger spans, whereas in Experiment 2, when support was present but participants could only engage in covert rehearsal, longer intervals resulted in smaller spans. When environmental support was absent, however, longer retention intervals resulted in smaller memory spans regardless of which rehearsal strategies were available. In Experiment 3, analyses of participants' eye movements revealed that the presence of support increased participants' fixations of to-be-remembered target locations more than fixations of non-targets, and that this was associated with better memory performance. Further, although the total time fixating targets increased, individual target fixations were actually briefer. Taken together, the present findings suggest that in the presence of environmental support, overt rehearsal is more effective than covert rehearsal at maintaining to-be-remembered locations in working memory, and that having more time for overt rehearsal can actually increase visuospatial memory spans.
Updating working memory in aircraft noise and speech noise causes different fMRI activations.
Saetrevik, Bjørn; Sörqvist, Patrik
2015-02-01
The present study used fMRI/BOLD neuroimaging to investigate how visual-verbal working memory is updated when exposed to three different background-noise conditions: speech noise, aircraft noise and silence. The number-updating task that was used can distinguish between "substitution processes," which involve adding new items to the working memory representation and suppressing old items, and "exclusion processes," which involve rejecting new items and maintaining an intact memory set. The current findings supported the findings of a previous study by showing that substitution activated the dorsolateral prefrontal cortex, the posterior medial frontal cortex and the parietal lobes, whereas exclusion activated the anterior medial frontal cortex. Moreover, the prefrontal cortex was activated more by substitution processes when exposed to background speech than when exposed to aircraft noise. These results indicate that (a) the prefrontal cortex plays a special role when task-irrelevant materials should be denied access to working memory and (b) that, when compensating for different types of noise, either different cognitive mechanisms are involved or those cognitive mechanisms that are involved are involved to different degrees. © 2014 The Authors. Scandinavian Journal of Psychology published by Scandinavian Psychological Associations and John Wiley & Sons Ltd.
A dual-trace model for visual sensory memory.
Cappiello, Marcus; Zhang, Weiwei
2016-11-01
Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Remembering the time: a continuous clock.
Lewis, Penelope A; Miall, R Chris
2006-09-01
The neural mechanisms for time measurement are currently a subject of much debate. This article argues that our brains can measure time using the same dorsolateral prefrontal cells that are known to be involved in working memory. Evidence for this is: (1) the dorsolateral prefrontal cortex is integral to both cognitive timing and working memory; (2) both behavioural processes are modulated by dopamine and disrupted by manipulation of dopaminergic projections to the dorsolateral prefrontal cortex; (3) the neurons in question ramp their activity in a temporally predictable way during both types of processing; and (4) this ramping activity is modulated by dopamine. The dual involvement of these prefrontal neurons in working memory and cognitive timing supports a view of the prefrontal cortex as a multipurpose processor recruited by a wide variety of tasks.
D’Esposito, Mark
2017-01-01
Recent work has established that visual working memory is subject to serial dependence: current information in memory blends with that from the recent past as a function of their similarity. This tuned temporal smoothing likely promotes the stability of memory in the face of noise and occlusion. Serial dependence accumulates over several seconds in memory and deteriorates with increased separation between trials. While this phenomenon has been extensively characterized in behavior, its neural mechanism is unknown. In the present study, we investigate the circuit-level origins of serial dependence in a biophysical model of cortex. We explore two distinct kinds of mechanisms: stable persistent activity during the memory delay period and dynamic “activity-silent” synaptic plasticity. We find that networks endowed with both strong reverberation to support persistent activity and dynamic synapses can closely reproduce behavioral serial dependence. Specifically, elevated activity drives synaptic augmentation, which biases activity on the subsequent trial, giving rise to a spatiotemporally tuned shift in the population response. Our hybrid neural model is a theoretical advance beyond abstract mathematical characterizations, offers testable hypotheses for physiological research, and demonstrates the power of biological insights to provide a quantitative explanation of human behavior. PMID:29244810
Bollmann, Steffen; Ghisleni, Carmen; Poil, Simon-Shlomo; Martin, Ernst; Ball, Juliane; Eich-Höchli, Dominique; Klaver, Peter; O'Gorman, Ruth L; Michels, Lars; Brandeis, Daniel
2017-06-01
Attention-deficit/hyperactivity disorder (ADHD) has been associated with spatial working memory as well as frontostriatal core deficits. However, it is still unclear how the link between these frontostriatal deficits and working memory function in ADHD differs in children and adults. This study examined spatial working memory in adults and children with ADHD, focussing on identifying regions demonstrating age-invariant or age-dependent abnormalities. We used functional magnetic resonance imaging to examine a group of 26 children and 35 adults to study load manipulated spatial working memory in patients and controls. In comparison to healthy controls, patients demonstrated reduced positive parietal and frontostriatal load effects, i.e., less increase in brain activity from low to high load, despite similar task performance. In addition, younger patients showed negative load effects, i.e., a decrease in brain activity from low to high load, in medial prefrontal regions. Load effect differences between ADHD and controls that differed between age groups were found predominantly in prefrontal regions. Age-invariant load effect differences occurred predominantly in frontostriatal regions. The age-dependent deviations support the role of prefrontal maturation and compensation in ADHD, while the age-invariant alterations observed in frontostriatal regions provide further evidence that these regions reflect a core pathophysiology in ADHD.
Working-Class Women Study Social Science Degrees: Remembering Enablers and Detractors
ERIC Educational Resources Information Center
Fraser, Heather; Michell, Dee; Beddoe, Liz; Jarldorn, Michele
2016-01-01
In this article, we report on a feminist memory work project conducted with 11 working-class women in Australia. Participants responded to the question: "what helps and hinders working-class women study social science degrees?" The women confirmed that to succeed at university, they needed opportunities, resources, support and…
Szűcs, D
2016-01-01
A large body of research suggests that mathematical learning disability (MLD) is related to working memory impairment. Here, I organize part of this literature through a meta-analysis of 36 studies with 665 MLD and 1049 control participants. I demonstrate that one subtype of MLD is associated with reading problems and weak verbal short-term and working memory. Another subtype of MLD does not have associated reading problems and is linked to weak visuospatial short-term and working memory. In order to better understand MLD we need to precisely define potentially modality-specific memory subprocesses and supporting executive functions, relevant for mathematical learning. This can be achieved by taking a multidimensional parametric approach systematically probing an extended network of cognitive functions. Rather than creating arbitrary subgroups and/or focus on a single factor, highly powered studies need to position individuals in a multidimensional parametric space. This will allow us to understand the multidimensional structure of cognitive functions and their relationship to mathematical performance. © 2016 Elsevier B.V. All rights reserved.
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Working Memory and Decision-Making in a Frontoparietal Circuit Model
2017-01-01
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071
Working Memory and Decision-Making in a Frontoparietal Circuit Model.
Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing
2017-12-13
Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.
Neurofeedback training of EEG alpha rhythm enhances episodic and working memory.
Hsueh, Jen-Jui; Chen, Tzu-Shan; Chen, Jia-Jin; Shaw, Fu-Zen
2016-07-01
Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working memory. Alpha rhythm of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, alpha NFT effects on memory performances were explored. Fifty healthy participants were recruited and randomly assigned into a group receiving a 8-12-Hz amplitude (Alpha) or a group receiving a random 4-Hz amplitude from the range of 7 to 20 Hz (Ctrl). Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digit span task and an operation span task, and episodic memory was assessed using a word pair task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. The current study provided supporting evidence for alpha trainability within a small session number compared with that of therapy. The findings suggested the enhancement of working and episodic memory through alpha NFT. Hum Brain Mapp 37:2662-2675, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
De Vito, David; Ferrey, Anne E; Fenske, Mark J; Al-Aidroos, Naseem
2018-06-01
Ignoring visual stimuli in the external environment leads to decreased liking of those items, a phenomenon attributed to the affective consequences of attentional inhibition. Here we investigated the generality of this "distractor devaluation" phenomenon by asking whether ignoring stimuli represented internally within visual working memory has the same affective consequences. In two experiments we presented participants with two or three visual stimuli and then, after the stimuli were no longer visible, provided an attentional cue indicating which item in memory was the target they would have to later recall, and which were task-irrelevant distractors. Participants subsequently judged how much they liked these stimuli. Previously-ignored distractors were consistently rated less favorably than targets, replicating prior findings of distractor devaluation. To gain converging evidence, in Experiment 2, we also examined the electrophysiological processes associated with devaluation by measuring individual differences in attention (N2pc) and working memory (CDA) event-related potentials following the attention cue. Larger amplitude of an N2pc-like component was associated with greater devaluation, suggesting that individuals displaying more effective selection of memory targets-an act aided by distractor inhibition-displayed greater levels of distractor devaluation. Individuals showing a larger post-cue CDA amplitude (but not pre-cue CDA amplitude) also showed greater distractor devaluation, supporting prior evidence that visual working-memory resources have a functional role in effecting devaluation. Together, these findings demonstrate that ignoring working-memory representations has affective consequences, and adds to the growing evidence that the contribution of selective-attention mechanisms to a wide range of human thoughts and behaviors leads to devaluation.
Online assessment of risk factors for dementia and cognitive function in healthy adults.
Huntley, J; Corbett, A; Wesnes, K; Brooker, H; Stenton, R; Hampshire, A; Ballard, C
2018-02-01
Several potentially modifiable risk factors for cognitive decline and dementia have been identified, including low educational attainment, smoking, diabetes, physical inactivity, hypertension, midlife obesity, depression, and perceived social isolation. Managing these risk factors in late midlife and older age may help reduce the risk of dementia; however, it is unclear whether these factors also relate to cognitive performance in older individuals without dementia. Data from 14 201 non-demented individuals aged >50 years who enrolled in the online PROTECT study were used to examine the relationship between cognitive function and known modifiable risk factors for dementia. Multivariate regression analyses were conducted on 4 cognitive outcomes assessing verbal and spatial working memory, visual episodic memory, and verbal reasoning. Increasing age was associated with reduced performance across all tasks. Higher educational achievement, the presence of a close confiding relationship, and moderate alcohol intake were associated with benefits across all 4 cognitive tasks, and exercise was associated with better performance on verbal reasoning and verbal working memory tasks. A diagnosis of depression was negatively associated with performance on visual episodic memory and working memory tasks, whereas being underweight negatively affected performance on all tasks apart from verbal working memory. A history of stroke was negatively associated with verbal reasoning and working memory performance. Known modifiable risk factors for dementia are associated with cognitive performance in non-demented individuals in late midlife and older age. This provides further support for public health interventions that seek to manage these risk factors across the lifespan. Copyright © 2017 John Wiley & Sons, Ltd.
Sleep and memory in healthy children and adolescents - a critical review.
Kopasz, Marta; Loessl, Barbara; Hornyak, Magdolna; Riemann, Dieter; Nissen, Christoph; Piosczyk, Hannah; Voderholzer, Ulrich
2010-06-01
There is mounting evidence that sleep is important for learning, memory and the underlying neural plasticity. This article aims to review published studies that evaluate the association between sleep, its distinct stages and memory systems in healthy children and adolescents. Furthermore it intends to suggest directions for future research. A computerised search of the literature for relevant articles published between 1966 and March 2008 was performed using the keywords "sleep", "memory", "learn", "child", "adolescents", "adolescence" and "teenager". Fifteen studies met the inclusion criteria. Published studies focused on the impact of sleep on working memory and memory consolidation. In summary, most studies support the hypothesis that sleep facilitates working memory as well as memory consolidation in children and adolescents. There is evidence that performance in abstract and complex tasks involving higher brain functions declines more strongly after sleep deprivation than the performance in simple memory tasks. Future studies are needed to better understand the impact of a variety of variables potentially modulating the interplay between sleep and memory, such as developmental stage, socioeconomic burden, circadian factors, or the level of post-learning sensory and motor activity (interference). This line of research can provide valuable input relevant to teaching, learning and public health policy. Copyright 2009 Elsevier Ltd. All rights reserved.
Weeks, Clinton S; Humphreys, Michael S; Cornwell, T Bettina
2018-02-01
Brands engaged in sponsorship of events commonly have objectives that depend on consumer memory for the sponsor-event relationship (e.g., sponsorship awareness). Consumers however, often misattribute sponsorships to nonsponsor competitor brands, indicating erroneous memory for these relationships. The current research uses an item and relational memory framework to reveal sponsor brands may inadvertently foster this misattribution when they communicate relational linkages to events. Effects can be explained via differential roles of communicating item information (information that supports processing item distinctiveness) versus relational information (information that supports processing relationships among items) in contributing to memory outcomes. Experiment 1 uses event-cued brand recall to show that correct memory retrieval is best supported by communicating relational information when sponsorship relationships are not obvious (low congruence). In contrast, correct retrieval is best supported by communicating item information when relationships are obvious (high congruence). Experiment 2 uses brand-cued event recall to show that, against conventional marketing recommendations, relational information increases misattribution, whereas item information guards against misattribution. Results suggest sponsor brands must distinguish between item and relational communications to enhance correct retrieval and limit misattribution. Methodologically, the work shows that choice of cueing direction is critical in differentially revealing patterns of correct and incorrect retrieval with pair relationships. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Contextually Mediated Spontaneous Retrieval Is Specific to the Hippocampus
Long, Nicole M.; Sperling, Michael R.; Worrell, Gregory A.; Davis, Kathryn A.; Gross, Robert E.; Lega, Bradley C.; Jobst, Barbara C.; Sheth, Sameer A.; Zaghloul, Kareem; Stein, Joel M.; Kahana, Michael J.
2018-01-01
SUMMARY Although it is now well established that the hippocampus supports memory encoding [1, 2], little is known about hippocampal activity during spontaneous memory retrieval. Recent intracranial electroencephalographic (iEEG) work has shown that hippocampal activity during encoding predicts subsequent temporal organization of memories [3], supporting a role in contextual binding. It is an open question, however, whether the hippocampus similarly supports contextually mediated processes during retrieval. Here, we analyzed iEEG recordings obtained from 215 epilepsy patients as they performed a free recall task. To identify neural activity specifically associated with contextual retrieval, we compared correct recalls, intrusions (incorrect recall of either items from prior lists or items not previously studied), and deliberations (matched periods during recall when no items came to mind). Neural signals that differentiate correct recalls from both other retrieval classes reflect contextual retrieval, as correct recalls alone arise from the correct context. We found that in the hippocampus, high-frequency activity (HFA, 44–100 Hz), a proxy for neural activation [4], was greater prior to correct recalls relative to the other retrieval classes, with no differentiation between intrusions and deliberations. This pattern was not observed in other memory-related cortical regions, including DLPFC, thus supporting a specific hippocampal contribution to contextually mediated memory retrieval. PMID:28343962
Semantic and Syntactic Interference in Sentence Comprehension: A Comparison of Working Memory Models
Tan, Yingying; Martin, Randi C.; Van Dyke, Julie A.
2017-01-01
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. PMID:28261133
Chevalier, Nicolas; James, Tiffany D; Wiebe, Sandra A; Nelson, Jennifer Mize; Espy, Kimberly Andrews
2014-07-01
The present study addressed whether developmental improvement in working memory span task performance relies upon a growing ability to proactively plan response sequences during childhood. Two hundred thirteen children completed a working memory span task in which they used a touchscreen to reproduce orally presented sequences of animal names. Children were assessed longitudinally at 7 time points between 3 and 10 years of age. Twenty-one young adults also completed the same task. Proactive response sequence planning was assessed by comparing recall durations for the 1st item (preparatory interval) and subsequent items. At preschool age, the preparatory interval was generally shorter than subsequent item recall durations, whereas it was systematically longer during elementary school and in adults. Although children mostly approached the task reactively at preschool, they proactively planned response sequences with increasing efficiency from age 7 on, like adults. These findings clarify the nature of the changes in executive control that support working memory performance with age. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Aging affects the interaction between attentional control and source memory: an fMRI study.
Dulas, Michael R; Duarte, Audrey
2014-12-01
Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.
Using warnings to reduce categorical false memories in younger and older adults.
Carmichael, Anna M; Gutchess, Angela H
2016-07-01
Warnings about memory errors can reduce their incidence, although past work has largely focused on associative memory errors. The current study sought to explore whether warnings could be tailored to specifically reduce false recall of categorical information in both younger and older populations. Before encoding word pairs designed to induce categorical false memories, half of the younger and older participants were warned to avoid committing these types of memory errors. Older adults who received a warning committed fewer categorical memory errors, as well as other types of semantic memory errors, than those who did not receive a warning. In contrast, young adults' memory errors did not differ for the warning versus no-warning groups. Our findings provide evidence for the effectiveness of warnings at reducing categorical memory errors in older adults, perhaps by supporting source monitoring, reduction in reliance on gist traces, or through effective metacognitive strategies.
Dockery, Colleen A; Wesierska, Malgorzata J
2010-08-30
We present a paradigm for assessing visuospatial working memory and skill learning in a rodent model, based on the place avoidance test. In our allothetic place avoidance alternation task (APAAT) the paradigm is comprised of minimal training sessions, tests various aspects of learning and memory and provides a rich set of parameters. A single working memory session consists of four conditions: habituation (no shock), two place avoidance training intervals (shock activated) and a retrieval test (shock inactivated). The location of the shock sector is alternated for each training day which initially requires extinction of previous representations and further working memory to achieve effective place avoidance across sessions. Visuospatial skill memory was evaluated by the shock/entrance ratio by tracking locomotor activity which is essential to execute a place avoidance strategy. For each day rats learned to avoid a new place with shock, as shown by a decreased number of entrances, and an increased time to the first entrance and maximum avoidance time. Skill learning improved according to the decreased number of shocks per entrance across conditions. These results indicate that complex cognitive functions are captured by this behavioral method. This APAAT paradigm expands and complements existing tools for studying hippocampal-prefrontal dependent functions to support development of treatment interventions. Copyright (c) 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard C.
2009-09-01
This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential ofmore » PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.« less
A 64Cycles/MB, Luma-Chroma Parallelized H.264/AVC Deblocking Filter for 4K × 2K Applications
NASA Astrophysics Data System (ADS)
Shen, Weiwei; Fan, Yibo; Zeng, Xiaoyang
In this paper, a high-throughput debloking filter is presented for H.264/AVC standard, catering video applications with 4K × 2K (4096 × 2304) ultra-definition resolution. In order to strengthen the parallelism without simply increasing the area, we propose a luma-chroma parallel method. Meanwhile, this work reduces the number of processing cycles, the amount of external memory traffic and the working frequency, by using triple four-stage pipeline filters and a luma-chroma interlaced sequence. Furthermore, it eliminates most unnecessary off-chip memory bandwidth with a highly reusable memory scheme, and adopts a “slide window” buffer scheme. As a result, our design can support 4K × 2K at 30fps applications at the working frequency of only 70.8MHz.
ERIC Educational Resources Information Center
Paas, Fred; Sweller, John
2012-01-01
Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…
Executive functioning and general cognitive ability in pregnant women and matched controls.
Onyper, Serge V; Searleman, Alan; Thacher, Pamela V; Maine, Emily E; Johnson, Alicia G
2010-11-01
The current study compared the performances of pregnant women with education- and age-matched controls on a variety of measures that assessed perceptual speed, short-term and working memory capacity, subjective memory complaints, sleep quality, level of fatigue, executive functioning, episodic and prospective memory, and crystallized and fluid intelligence. A primary purpose was to test the hypothesis of Henry and Rendell (2007) that pregnancy-related declines in cognitive functioning would be especially evident in tasks that place a high demand on executive processes. We also investigated a parallel hypothesis: that the pregnant women would experience a broad-based reduction in cognitive capability. Very limited support was found for the executive functioning hypothesis. Pregnant women scored lower only on the measure of verbal fluency (Controlled Oral Word Association Test, COWAT) but not on the Wisconsin Card Sorting Task or on any working memory measures. Furthermore, group differences in COWAT performance disappeared after controlling for verbal IQ (Shipley vocabulary). In addition, there was no support for the general decline hypothesis. We conclude that pregnancy-associated differences in performance observed in the current study were relatively mild and rarely reached either clinical or practical significance.
Gathmann, Bettina; Schiebener, Johannes; Wolf, Oliver T.; Brand, Matthias
2015-01-01
Performing two cognitively demanding tasks at the same time is known to decrease performance. The current study investigates the underlying executive functions of a dual-tasking situation involving the simultaneous performance of decision making under explicit risk and a working memory task. It is suggested that making a decision and performing a working memory task at the same time should particularly require monitoring—an executive control process supervising behavior and the state of processing on two tasks. To test the role of a supervisory/monitoring function in such a dual-tasking situation we investigated 122 participants with the Game of Dice Task plus 2-back task (GDT plus 2-back task). This dual task requires participants to make decisions under risk and to perform a 2-back working memory task at the same time. Furthermore, a task measuring a set of several executive functions gathered in the term concept formation (Modified Card Sorting Test, MCST) and the newly developed Balanced Switching Task (BST), measuring monitoring in particular, were used. The results demonstrate that concept formation and monitoring are involved in the simultaneous performance of decision making under risk and a working memory task. In particular, the mediation analysis revealed that BST performance partially mediates the influence of MCST performance on the GDT plus 2-back task. These findings suggest that monitoring is one important subfunction for superior performance in a dual-tasking situation including decision making under risk and a working memory task. PMID:25741308
Kruiper, Caitlyn; Fagerlund, Birgitte; Nielsen, Mette Ø.; Düring, Signe; Jensen, Maria H.; Ebdrup, Bjørn H.; Glenthøj, Birte Y.; Oranje, Bob
2017-01-01
Abstract Background: Deficits in attention and working memory are already present in early stages of schizophrenia. The P3a and b event related brain potentials (ERPs) are believed to underlie processes of attention and working memory, but, only limited research has been performed on the associations between these psychophysiological and cognitive deficits, particularly in the early stages of schizophrenia. We aimed to investigate associations between P3a and P3b amplitudes and measures of attention and working memory in a large cohort of antipsychotic-naive, first-episode schizophrenia patients (AN-FES) and age and sex-matched healthy controls (HC). Methods: Eighty-three AN-FES patients and 108 HC, matched for age and gender, were assessed for their P3a and b amplitude and latency with the selective attention paradigm from the Copenhagen Psychophysiological Test Battery (CPTB). In addition, the Spatial Working Memory (SWM) and Rapid Visual Information Processing test (RVP) from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess working memory and attention. Outcome measure for the SWM was Strategy, wherein a low score represents a more effective strategy. For the RVP, we used the A’ measure as outcome. This measure represents how well the participant is able to detect target sequences. Results: P3a and P3b amplitudes were significantly reduced in our AN-FES patients compared to HC. In addition, the P3a peak latency was earlier in the AN-FES patients than in HC, while P3b latency did not differ between the groups. Furthermore, AN-FES patients scored significantly lower on the SWM task and the RVP compared to HC. A positive association was found between RVP and P3b in our total group. However, this effect disappeared when split into the two subgroups. In contrast, SWM was positively associated with P3b in HC, while this effect was neither present in AN-FES nor in the total group. Conclusion: Our results provide evidence for P3a and P3b amplitude reductions as well as neurocognitive deficits in AN-FES patients compared to age and gender matched HC. This supports previous data that electrophysiological and neurocognitive deficits already exist in early stages of schizophrenia, and are not due to use of antipsychotics. Our data support significant yet rather weak associations between P3b amplitude and both working memory and attention, although the association between working memory and P3b was only found in HC and not in AN-FES.
Matthews, Brandy R.
2015-01-01
Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844
Sutherland, Robert J.; Sparks, Fraser; Lehmann, Hugo
2010-01-01
The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that hippocampal retrograde amnesia normally exhibits a temporal gradient, affecting recent, but sparing remote memories. Surprisingly, the evidence does not provide much support for the idea that there is a lengthy process of systems consolidation following a learning episode. Instead, recent and remote memories tend to be equally affected. The extent of damage to the hippocampus is a significant factor in this work since it is likely that spared hippocampal tissue can support at least partial memory retrieval. With extensive hippocampal damage gradients are flat or, in the case of memory tasks with flavour/odour retrieval cues, the retrograde amnesia covers a period of about 1 – 3 days. There is consistent evidence that at the time of learning the hippocampus interferes with or overshadows memory acquisition by other systems. This contributes to the breadth and severity of retrograde amnesia relative to anterograde amnesia in the rat. The fact that multiple, distributed learning episodes can overcome this overshadowing is consistent with a parallel dual-store theory or a Distributed Reinstatement Theory in which each learning episode triggers a short period of memory replay that provides a brief hippocampal-dependent systems consolidation. PMID:20430043
Fattore, Liana; Piva, Alessandro; Zanda, Mary Tresa; Fumagalli, Guido; Chiamulera, Cristiano
2018-02-01
Clinical data with 3,4-methylenedioxymethamphetamine (MDMA) in post-traumatic stress disorder (PTSD) patients recently stimulated interest on the potential therapeutic use of psychedelics in disorders characterized by maladaptive memories, including substance use disorders (SUD). The rationale for the use of MDMA in PTSD and SUD is being extended to a broader beneficial "psychedelic effect," which is supporting further clinical investigations, in spite of the lack of mechanistic hypothesis. Considering that the retrieval of emotional memories reactivates specific brain mechanisms vulnerable to inhibition, interference, or strengthening (i.e., the reconsolidation process), it was proposed that the ability to retrieve and change these maladaptive memories might be a novel intervention for PTSD and SUD. The mechanisms underlying MDMA effects indicate memory reconsolidation modulation as a hypothetical process underlying its efficacy. Mechanistic and clinical studies with other two classes of psychedelic substances, namely cannabinoids and ketamine, are providing data in support of a potential use in PTSD and SUD based on the modulation of traumatic and appetitive memory reconsolidation, respectively. Here, we review preclinical and clinical data on cannabinoids and ketamine effects on biobehavioral processes related to the reconsolidation of maladaptive memories. We report the findings supporting (or not) the working hypothesis linking the potential therapeutic effect of these substances to the underlying reconsolidation process. We also proposed possible approaches for testing the use of these two classes of drugs within the current paradigm of reconsolidation memory inhibition. Metaplasticity may be the process in common between cannabinoids and ketamine/ketamine-like substance effects on the mediation and potential manipulation of maladaptive memories.
Almeida, Rita; Barbosa, João; Compte, Albert
2015-09-01
The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. Copyright © 2015 the American Physiological Society.
Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin
2015-01-01
Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253
Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin
2015-05-01
Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.
Lew, Timothy F; Vul, Edward
2015-01-01
People seem to compute the ensemble statistics of objects and use this information to support the recall of individual objects in visual working memory. However, there are many different ways that hierarchical structure might be encoded. We examined the format of structured memories by asking subjects to recall the locations of objects arranged in different spatial clustering structures. Consistent with previous investigations of structured visual memory, subjects recalled objects biased toward the center of their clusters. Subjects also recalled locations more accurately when they were arranged in fewer clusters containing more objects, suggesting that subjects used the clustering structure of objects to aid recall. Furthermore, subjects had more difficulty recalling larger relative distances, consistent with subjects encoding the positions of objects relative to clusters and recalling them with magnitude-proportional (Weber) noise. Our results suggest that clustering improved the fidelity of recall by biasing the recall of locations toward cluster centers to compensate for uncertainty and by reducing the magnitude of encoded relative distances.
McCormick-Huhn, John M; Chen, Hui; Wyble, Bradley P; Dennis, Nancy A
2018-02-01
Previous work has shown mixed evidence regarding age-related deficits for binding in working memory. The current study used the newly developed attribute amnesia effect (H. Chen & Wyble, 2015a) to test the associative-deficit hypothesis during working memory and to probe whether hyper-binding extends to include binding of de-selected information. In studies of attribute amnesia, participants use target attributes (e.g., identity, color) to demonstrate near ceiling levels of reporting of a second target attribute (e.g., location) across a series of trials (H. Chen & Wyble, 2015a, 2016). Yet, despite having just processed the target-defining attribute, they have difficulty reporting it on a surprise trial. This effect provides several predictions for associative binding in aging. The associative-deficit hypothesis predicts age-related decline on the surprise trial, whereas an extension of hyper-binding predicts age-related increase in performance in older adults. In Experiment 1, when working memory load was low, older adults demonstrated attribute amnesia equal to that found in younger adults. When load increased in Experiment 2, older adults again demonstrated attribute amnesia as well as an age deficit for reporting target attributes. In lieu of spontaneous binding, results suggest that expectancy plays a critical role in older adults' propensity to encode and bind target attributes in working memory. Results further suggest that expectancy alone is not enough for older adults to form bound representations when task demands are high. Taken together results revealed a boundary condition of hyper-binding and further provided conditional support for the associative-deficit hypothesis in working memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Adalio, Christopher J; Owens, Elizabeth B; McBurnett, Keith; Hinshaw, Stephen P; Pfiffner, Linda J
2018-05-01
Neuropsychological functioning underlies behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Children with all forms of ADHD are vulnerable to working memory deficits and children presenting with the inattentive form of ADHD (ADHD-I) appear particularly vulnerable to processing speed deficits. As ADHD-I is the most common form of ADHD presented by children in community settings, it is important to consider how treatment interventions for children with ADHD-I may be affected by deficits in processing speed and working memory. We utilize data collected from 199 children with ADHD-I, aged 7 to 11 years, who participated in a randomized clinical trial of a psychosocial-behavioral intervention. Our aims are first to determine whether processing speed or working memory predict treatment outcomes in ADHD-I symptom severity, and second whether they moderate treatment effects on ADHD-I symptom severity. Results of linear regression analyses reveal that baseline processing speed significantly predicts posttreatment ADHD-I symptom severity when controlling for baseline ADHD-I symptom severity, such that better processing speed is associated with greater symptom improvement. However, predictive effects of working memory and moderation effects of both working memory and processing speed are not supported in the present study. We discuss study limitations and implications of the relation between processing speed and treatment benefits from psychosocial treatments for children with ADHD-I.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Raghubar, Kimberly P; Mahone, E Mark; Yeates, Keith Owen; Cecil, Kim M; Makola, Monwabisi; Ris, M Douglas
2017-08-01
Children are at risk for cognitive difficulties following the diagnosis and treatment of a brain tumor. Longitudinal studies have consistently demonstrated declines on measures of intellectual functioning, and recently it has been proposed that specific neurocognitive processes underlie these changes, including working memory, processing speed, and attention. However, a fine-grained examination of the affected neurocognitive processes is required to inform intervention efforts. Radiation therapy (RT) impacts white matter integrity, likely affecting those cognitive processes supported by distributed neural networks. This study examined working memory and attention in children during the early delayed stages of recovery following surgical resection and RT. The participants included 27 children diagnosed with pediatric brain tumor, treated with (n = 12) or without (n = 15) RT, who completed experimental and standardized measures of working memory and attention (n-back and digit span tasks). Children treated with radiation performed less well than those who did not receive radiation on the n-back measure, though performance at the 0-back level was considerably poorer than would be expected for both groups, perhaps suggesting difficulties with more basic processes such as vigilance. Along these lines, marginal differences were noted on digit span forward. The findings are discussed with respect to models of attention and working memory, and the interplay between the two.
Reading disabilities in children: A selective meta-analysis of the cognitive literature.
Kudo, Milagros F; Lussier, Cathy M; Swanson, H Lee
2015-05-01
This article synthesizes literature that compares the academic, cognitive, and behavioral performance of children with and without reading disabilities (RD). Forty-eight studies met the criteria for the meta-analysis, yielding 735 effect sizes (ESs) with an overall weighted ES of 0.98. Small to high ESs in favor of children without RD emerged on measures of cognition (rapid naming [ES = 0.89], phonological awareness [ES = 1.00], verbal working memory [ES = 0.79], short-term memory [ES = 0.56], visual-spatial memory [ES = 0.48], and executive processing [ES = 0.67]), academic achievement (pseudoword reading [ES = 1.85], math [ES = 1.20], vocabulary [ES = 0.83], spelling [ES = 1.25], and writing [ES = 1.20]), and behavior skills (ES = 0.80). Hierarchical linear modeling indicated that specific cognitive process measures (verbal working memory, visual-spatial memory, executive processing, and short-term memory) and intelligence measures (general and verbal intelligence) significantly moderated overall group effect size differences. Overall, the results supported the assumption that cognitive deficits in children with RD are persistent. Copyright © 2015. Published by Elsevier Ltd.
Attending to items in working memory: Evidence that refreshing and memory search are closely related
Vergauwe, Evie; Cowan, Nelson
2014-01-01
Refreshing refers to the use of attention to reactivate items in working memory (WM). The current study aims at testing the hypothesis that refreshing is closely related to memory search. The assumption is that refreshing and memory search both rely on a basic covert memory process that quickly retrieves the memory items into the focus of attention, thereby reactivating the information (Cowan, 1992; Vergauwe & Cowan, 2014). Consistent with the idea that people use their attention to prevent loss from WM, previous research has shown that increasing the proportion of time during which attention is occupied by concurrent processing, thereby preventing refreshing, results in poorer recall performance in complex span tasks (Barrouillet, Portrat, & Camos, 2011). Here, we tested whether recall performance is differentially affected by prolonged attentional capture caused by memory search. If memory search and refreshing both rely on retrieval from WM, then prolonged attentional capture caused by memory search should not lead to forgetting because memory items are assumed to be reactivated during memory search, in the same way as they would if that period of time were to be used for refreshing. Consistent with this idea, prolonged attentional capture had a disruptive effect when it was caused by the need to retrieve knowledge from long-term memory but not when it was caused by the need to search through the content of WM. The current results support the idea that refreshing operates through a process of retrieval of information into the focus of attention. PMID:25361821
Nosofsky, Robert M.; Denton, Stephen E.; Zaki, Safa R.; Murphy-Knudsen, Anne F.; Unverzagt, Frederick W.
2013-01-01
Studies of incidental category learning support the hypothesis of an implicit prototype-extraction system which is distinct from explicit memory (Smith, 2008). In those studies, patients with explicit-memory impairments due to damage to the medial-temporal lobe performed normally in implicit categorization tasks (Bozoki, Grossman, & Smith, 2006; Knowlton & Squire, 1993). However, alternative interpretations are that: i) even people with impairments to a single memory system have sufficient resources to succeed on the particular categorization tasks that have been tested (Nosofsky & Zaki, 1998; Zaki & Nosofsky, 2001); and ii) working memory can be used at time of test to learn the categories (Palmeri & Flanery, 1999). In the present experiments, patients with amnestic mild cognitive impairment or early Alzheimer’s disease were tested in prototype-extraction tasks to examine these possibilities. In a categorization task involving discrete-feature stimuli, the majority of subjects relied on memories for exceedingly few features, even when the task structure strongly encouraged reliance on broad-based prototypes. In a dot-pattern categorization task, even the memory-impaired patients were able to use working memory at time of test to extract the category structure (at least for the stimulus set used in past work). We argue that the results weaken the past case made in favor of a separate system of implicit-prototype extraction. PMID:22746953
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment☆
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9–10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. PMID:23890692
Oberauer, Klaus; Lewandowsky, Stephan
2016-11-01
The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.
Simmering, Vanessa R
2016-09-01
Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.
Striatal contributions to declarative memory retrieval
Scimeca, Jason M.; Badre, David
2012-01-01
Declarative memory is known to depend on the medial temporal lobe memory system. Recently, there has been renewed focus on the relationship between the basal ganglia and declarative memory, including the involvement of striatum. However, the contribution of striatum to declarative memory retrieval remains unknown. Here, we review neuroimaging and neuropsychological evidence for the involvement of the striatum in declarative memory retrieval. From this review, we propose that, along with the prefrontal cortex (PFC), the striatum primarily supports cognitive control of memory retrieval. We conclude by proposing three hypotheses for the specific role of striatum in retrieval: (1) Striatum modulates the re-encoding of retrieved items in accord with their expected utility (adaptive encoding), (2) striatum selectively admits information into working memory that is expected to increase the likelihood of successful retrieval (adaptive gating), and (3) striatum enacts adjustments in cognitive control based on the outcome of retrieval (reinforcement learning). PMID:22884322
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.
Stochastic memory: getting memory out of noise
NASA Astrophysics Data System (ADS)
Stotland, Alexander; di Ventra, Massimiliano
2011-03-01
Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.
Familiarity enhances visual working memory for faces.
Jackson, Margaret C; Raymond, Jane E
2008-06-01
Although it is intuitive that familiarity with complex visual objects should aid their preservation in visual working memory (WM), empirical evidence for this is lacking. This study used a conventional change-detection procedure to assess visual WM for unfamiliar and famous faces in healthy adults. Across experiments, faces were upright or inverted and a low- or high-load concurrent verbal WM task was administered to suppress contribution from verbal WM. Even with a high verbal memory load, visual WM performance was significantly better and capacity estimated as significantly greater for famous versus unfamiliar faces. Face inversion abolished this effect. Thus, neither strategic, explicit support from verbal WM nor low-level feature processing easily accounts for the observed benefit of high familiarity for visual WM. These results demonstrate that storage of items in visual WM can be enhanced if robust visual representations of them already exist in long-term memory.
Towse, John N; Cowan, Nelson; Hitch, Graham J; Horton, Neil J
2008-01-01
We describe and evaluate a recall reconstruction hypothesis for working memory (WM), according to which items can be recovered from multiple memory representations. Across four experiments, participants recalled memoranda that were either integrated with or independent of the sentence content. We found consistently longer pauses accompanying the correct recall of integrated compared with independent words, supporting the argument that sentence memory could scaffold the access of target items. Integrated words were also more likely to be recalled correctly, dependent on the details of the task. Experiment 1 investigated the chronometry of spoken recall for word span and reading span, with participants completing an unfinished sentence in the latter case. Experiments 2 and 3 confirm recall time differences without using word generation requirements, while Experiment 4 used an item and order response choice paradigm with nonspoken responses. Data emphasise the value of recall timing in constraining theories of WM functioning.
Visual working memory is more tolerant than visual long-term memory.
Schurgin, Mark W; Flombaum, Jonathan I
2018-05-07
Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales
Howard, Marc W.; Eichenbaum, Howard
2014-01-01
A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126
Memory for musical tones: the impact of tonality and the creation of false memories.
Vuvan, Dominique T; Podolak, Olivia M; Schmuckler, Mark A
2014-01-01
Although the relation between tonality and musical memory has been fairly well-studied, less is known regarding the contribution of tonal-schematic expectancies to this relation. Three experiments investigated the influence of tonal expectancies on memory for single tones in a tonal melodic context. In the first experiment, listener responses indicated superior recognition of both expected and unexpected targets in a major tonal context than for moderately expected targets. Importantly, and in support of previous work on false memories, listener responses also revealed a higher false alarm rate for expected than unexpected targets. These results indicate roles for tonal schematic congruency as well as distinctiveness in memory for melodic tones. The second experiment utilized minor melodies, which weakened tonal expectancies since the minor tonality can be represented in three forms simultaneously. Finally, tonal expectancies were abolished entirely in the third experiment through the use of atonal melodies. Accordingly, the expectancy-based results observed in the first experiment were disrupted in the second experiment, and disappeared in the third experiment. These results are discussed in light of schema theory, musical expectancy, and classic memory work on the availability and distinctiveness heuristics.
Memory for musical tones: the impact of tonality and the creation of false memories
Vuvan, Dominique T.; Podolak, Olivia M.; Schmuckler, Mark A.
2014-01-01
Although the relation between tonality and musical memory has been fairly well-studied, less is known regarding the contribution of tonal-schematic expectancies to this relation. Three experiments investigated the influence of tonal expectancies on memory for single tones in a tonal melodic context. In the first experiment, listener responses indicated superior recognition of both expected and unexpected targets in a major tonal context than for moderately expected targets. Importantly, and in support of previous work on false memories, listener responses also revealed a higher false alarm rate for expected than unexpected targets. These results indicate roles for tonal schematic congruency as well as distinctiveness in memory for melodic tones. The second experiment utilized minor melodies, which weakened tonal expectancies since the minor tonality can be represented in three forms simultaneously. Finally, tonal expectancies were abolished entirely in the third experiment through the use of atonal melodies. Accordingly, the expectancy-based results observed in the first experiment were disrupted in the second experiment, and disappeared in the third experiment. These results are discussed in light of schema theory, musical expectancy, and classic memory work on the availability and distinctiveness heuristics. PMID:24971071
Evaluation of a Memory Book intervention with orphaned children in South Africa.
Braband, Barbara J; Faris, Tamara; Wilson-Anderson, Kaye
2014-01-01
The purpose of this collaborative research study was to evaluate the use of the Memory Book intervention for orphaned children's grief and loss recovery. A qualitative phenomenological approach was implemented to evaluate the Memory Book intervention with orphaned children at two children's homes in South Africa. Study findings support the ability of children to work through loss and grief when they are assisted in preserving and telling their story. The Memory Book intervention assists children to chronicle their lives and demonstrates the potential to guide future interventions by care providers and nurses in this context. Copyright © 2014 Elsevier Inc. All rights reserved.
Visuo-spatial processing and executive functions in children with specific language impairment
Marton, Klara
2007-01-01
Background Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims The purpose of the study was to examine executive functions and visuo-spatial processing and working memory in children with SLI and in their typically developing peers (TLD). Experiment 1 included 40 children with SLI (age=5;3–6;10) and 40 children with TLD (age=5;3–6;7); Experiment 2 included 25 children with SLI (age=8;2–11;2) and 25 children with TLD (age=8;3–11;0). It was examined whether the difficulties that children with SLI show in verbal working memory tasks are also present in visuo-spatial working memory. Methods & Procedures In Experiment 1, children's performance was measured with three visuo-spatial processing tasks: space visualization, position in space, and design copying. The stimuli in Experiment 2 were two widely used neuropsychological tests: the Wisconsin Card Sorting Test — 64 (WCST-64) and the Tower of London test (TOL). Outcomes & Results In Experiment 1, children with SLI performed more poorly than their age-matched peers in all visuo-spatial working memory tasks. There was a subgroup within the SLI group that included children whose parents and teachers reported a weakness in the child's attention control. These children showed particular difficulties in the tasks of Experiment 1. The results support Engle's attention control theory: individuals need good attention control to perform well in visuo-spatial working memory tasks. In Experiment 2, the children with SLI produced more perseverative errors and more rule violations than their peers. Conclusions Executive functions have a great impact on SLI children's working memory performance, regardless of domain. Tasks that require an increased amount of attention control and executive functions are more difficult for the children with SLI than for their peers. Most children with SLI scored either below average or in the low average range on the neuropsychological tests that measured executive functions. PMID:17852522
Ganzer, Christine A; Insel, Kathleen C; Ritter, Leslie S
2012-10-01
Stroke remains a major cause of mortality and disability among older adults. Although early treatment after stroke is known to reduce both mortality and disability, the first step in seeking early treatment is dependent on the rapid recognition of the signs of stroke. Recall of the signs of stroke may be dependent on factors that exist before the stroke itself. Although it is known that both working memory and health literacy decline with advancing age, these factors have not been thoroughly examined with respect to recall of the signs of stroke. Therefore, the purpose of the current study was to investigate associations between working memory, health literacy, and recall of the signs of stroke among older adults. Community dwelling older adults (≥65 years of age) were recruited from two senior centers. Fifty-six participants meeting inclusion criteria provided demographic and health information and were asked to read a public service brochure listing the five warning signs of stroke. Working memory was then assessed using the Wechsler Adult Intelligence Scale 3rd Edition Working Memory Index. Health literacy was assessed by the Short Test of Functional Health Literacy in Adults. Participants' recall of the five warning signs of stroke was evaluated. The mean age was 80.4 years. The mean number of the signs of stroke recalled was 2.9 ± 1.33. Working memory and health literacy were positively correlated with recall of the signs of stroke (r = .38, p < 0.01; r = .44, p < 0.01). In a simultaneous regression, only health literacy remained a significant predictor of recall. There was no statistically significant interaction between working memory and health literacy. Findings from this study indicate that working memory and health literacy were associated with successful recall of the warning signs of stroke in older adults. Further studies are needed to determine if programs that include cognitive and literacy assessments could identify older adults who need additional support to learn and recall the signs of stroke.
An Evolutionary Perspective on Learning Disability in Mathematics
Geary, David C.
2015-01-01
A distinction between potentially evolved, or biologically-primary forms of cognition, and the culturally-specific, or biologically-secondary forms of cognition that are built from primary systems is used to explore mathematical learning disability (MLD). Using this model, MLD could result from deficits in the brain and cognitive systems that support biologically-primary mathematical competencies, or from the brain and cognitive systems that support the modification of primary systems for the creation of secondary knowledge and secondary cognitive competencies. The former include visuospatial long-term and working memory and the intraparietal sulcus, whereas the latter include the central executive component of working memory and the anterior cingulate cortex and lateral prefrontal cortex. Different forms of MLD are discussed as related to each of the cognitive and brain systems. PMID:17650991
Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martínez, Kenia; Hermel, David; Wang, Yalin; Álvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, MªÁngeles; Shih, Pei Chun; Thompson, Paul M.
2014-01-01
Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests corrected for multiple comparisons across vertices (p < .05) significant relationships were found for spatial intelligence, spatial working memory, and spatial executive control. Interactions with sex revealed significant relationships with the general factor of intelligence (g), along with abstract and spatial intelligence. These correlations were mainly positive for males but negative for females, which might support the efficiency hypothesis in women. Verbal intelligence, attention, and processing speed were not related to hippocampal structural differences. PMID:25632167
Memory and cognitive control in an integrated theory of language processing.
Slevc, L Robert; Novick, Jared M
2013-08-01
Pickering & Garrod's (P&G's) integrated model of production and comprehension includes no explicit role for nonlinguistic cognitive processes. Yet, how domain-general cognitive functions contribute to language processing has become clearer with well-specified theories and supporting data. We therefore believe that their account can benefit by incorporating functions like working memory and cognitive control into a unified model of language processing.
ERIC Educational Resources Information Center
Cartwright, Rosalind D.
2004-01-01
The group of papers on memory reactivation and consolidation during sleep included in this volume represents cutting edge work in both animals and humans. They support that the two types of sleep serve different necessary functions. The role of slow wave sleep (SWS) is reactivation of the hippocampal-neocortical circuits activated during a waking…
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex
Watanabe, Kei; Funahashi, Shintaro; Stokes, Mark G.
2017-01-01
Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding. PMID:28559375
Unsworth, Nash; McMillan, Brittany D
2014-07-01
The current study examined the extent to which task-unrelated thoughts represent both vulnerability to mind-wandering and susceptibility to external distraction from an individual difference perspective. Participants performed multiple measures of attention control, working memory capacity, and fluid intelligence. Task-unrelated thoughts were assessed using thought probes during the attention control tasks. Using latent variable techniques, the results suggested that mind-wandering and external distraction reflect distinct, yet correlated constructs, both of which are related to working memory capacity and fluid intelligence. Furthermore, the results suggest that the common variance shared by mind-wandering, external distraction, and attention control is what primarily accounts for their relation with working memory capacity and fluid intelligence. These results support the notion that lapses of attention are strongly related to cognitive abilities. Copyright © 2014 Elsevier B.V. All rights reserved.
Adult age differences in the storage of information in working memory.
Foos, P W; Wright, L
1992-01-01
The performance of 97 young and 91 old persons were compared to determine if a deficiency in working memory resources for processing, storage, or allocation could be detected. Persons simultaneously performed a storage and one of two processing tasks while instructed to allocate resources to processing, storage, or both tasks. The storage task involved remembering the names of one, three, or five persons. Processing tasks involved solving addition problems presented on flashcards or answering common knowledge questions. Results showed increased age differences on the storage task as demands for resources increased but no differences on processing tasks. Individuals seemed unable to allocate resources as instructed. A comparison of young-old and old-old groups showed the same results as those obtained comparing young and old groups and support the hypothesis of a deficiency of storage, but not processing, resources in working memory for old, especially old-old, adults.
Working memory capacity as controlled attention in tactical decision making.
Furley, Philip A; Memmert, Daniel
2012-06-01
The controlled attention theory of working memory capacity (WMC, Engle 2002) suggests that WMC represents a domain free limitation in the ability to control attention and is predictive of an individual's capability of staying focused, avoiding distraction and impulsive errors. In the present paper we test the predictive power of WMC in computer-based sport decision-making tasks. Experiment 1 demonstrated that high-WMC athletes were better able at focusing their attention on tactical decision making while blocking out irrelevant auditory distraction. Experiment 2 showed that high-WMC athletes were more successful at adapting their tactical decision making according to the situation instead of relying on prepotent inappropriate decisions. The present results provide additional but also unique support for the controlled attention theory of WMC by demonstrating that WMC is predictive of controlling attention in complex settings among different modalities and highlight the importance of working memory in tactical decision making.
Shifting Attention within Memory Representations Involves Early Visual Areas
Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan
2012-01-01
Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165
A general purpose subroutine for fast fourier transform on a distributed memory parallel machine
NASA Technical Reports Server (NTRS)
Dubey, A.; Zubair, M.; Grosch, C. E.
1992-01-01
One issue which is central in developing a general purpose Fast Fourier Transform (FFT) subroutine on a distributed memory parallel machine is the data distribution. It is possible that different users would like to use the FFT routine with different data distributions. Thus, there is a need to design FFT schemes on distributed memory parallel machines which can support a variety of data distributions. An FFT implementation on a distributed memory parallel machine which works for a number of data distributions commonly encountered in scientific applications is presented. The problem of rearranging the data after computing the FFT is also addressed. The performance of the implementation on a distributed memory parallel machine Intel iPSC/860 is evaluated.
Thermodynamic Model of Spatial Memory
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Allen, P.
1998-03-01
We develop and test a thermodynamic model of spatial memory. Our model is an application of statistical thermodynamics to cognitive science. It is related to applications of the statistical mechanics framework in parallel distributed processes research. Our macroscopic model allows us to evaluate an entropy associated with spatial memory tasks. We find that older adults exhibit higher levels of entropy than younger adults. Thurstone's Law of Categorical Judgment, according to which the discriminal processes along the psychological continuum produced by presentations of a single stimulus are normally distributed, is explained by using a Hooke spring model of spatial memory. We have also analyzed a nonlinear modification of the ideal spring model of spatial memory. This work is supported by NIH/NIA grant AG09282-06.
The impact of Eysenck's extraversion-introversion personality dimension on prospective memory.
Heffernan, T M; Ling, J
2001-09-01
Prospective memory (PM) is memory for future events. PM is a developing area of research (e.g., Brandimonte, Einstein & McDaniel, 1996) with recent work linking personality types and their utilisation of PM (Goschke & Kuhl, 1996; Searleman, 1996). The present study compared 28 extraverts and 28 introverts on their short- and long-term prospective memory using the Prospective Memory Scale developed by Hannon, Adams, Harrington, Fries-Dias & Gibson (1995). The main finding was that extraverts reported significantly fewer errors on short- and long-term PM than introverts, and this difference could not be explained in terms of the number of strategies used to support prospective remembering. These findings are discussed in relation to differences between the personality types.
Roussos, Panos; Giakoumaki, Stella G; Adamaki, Eva; Anastasios, Georgakopoulos; Nikos, Robakis K; Bitsios, Panos
2011-01-01
There is evidence supporting a role for the -amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n=530) of healthy, young male army conscripts (n=703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10 000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders. PMID:21471957
The Auditory-Visual Speech Benefit on Working Memory in Older Adults with Hearing Impairment
Frtusova, Jana B.; Phillips, Natalie A.
2016-01-01
This study examined the effect of auditory-visual (AV) speech stimuli on working memory in older adults with poorer-hearing (PH) in comparison to age- and education-matched older adults with better hearing (BH). Participants completed a working memory n-back task (0- to 2-back) in which sequences of digits were presented in visual-only (i.e., speech-reading), auditory-only (A-only), and AV conditions. Auditory event-related potentials (ERP) were collected to assess the relationship between perceptual and working memory processing. The behavioral results showed that both groups were faster in the AV condition in comparison to the unisensory conditions. The ERP data showed perceptual facilitation in the AV condition, in the form of reduced amplitudes and latencies of the auditory N1 and/or P1 components, in the PH group. Furthermore, a working memory ERP component, the P3, peaked earlier for both groups in the AV condition compared to the A-only condition. In general, the PH group showed a more robust AV benefit; however, the BH group showed a dose-response relationship between perceptual facilitation and working memory improvement, especially for facilitation of processing speed. Two measures, reaction time and P3 amplitude, suggested that the presence of visual speech cues may have helped the PH group to counteract the demanding auditory processing, to the level that no group differences were evident during the AV modality despite lower performance during the A-only condition. Overall, this study provides support for the theory of an integrated perceptual-cognitive system. The practical significance of these findings is also discussed. PMID:27148106
Wesley, Michael J; Lile, Joshua A; Fillmore, Mark T; Porrino, Linda J
2017-06-01
Determining the neurobehavioral profiles that differentiate heavy drinkers who are and are not alcohol dependent will inform treatment efforts. Working memory is linked to substance use disorders and can serve as a representation of the demand placed on the neurophysiology associated with cognitive control. Behavior and brain activity (via fMRI) were recorded during an N-Back working memory task in controls (CTRL), nondependent heavy drinkers (A-ND) and dependent heavy drinkers (A-D). Typical and novel step-wise analyses examined profiles of working memory load and increasing task demand, respectively. Performance was significantly decreased in A-D during high working memory load (2-Back), compared to CTRL and A-ND. Analysis of brain activity during high load (0-Back vs. 2- Back) showed greater responses in the dorsal lateral and medial prefrontal cortices of A-D than CTRL, suggesting increased but failed compensation. The step-wise analysis revealed that the transition to Low Demand (0-Back to 1-Back) was associated with robust increases and decreases in cognitive control and default-mode brain regions, respectively, in A-D and A-ND but not CTRL. The transition to High Demand (1-Back to 2-Back) resulted in additional engagement of these networks in A-ND and CTRL, but not A-D. Heavy drinkers engaged working memory neural networks at lower demand than controls. As demand increased, nondependent heavy drinkers maintained control performance but relied on additional neurophysiological resources, and dependent heavy drinkers did not display further resource engagement and had poorer performance. These results support targeting these brain areas for treatment interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Seidman, Larry J; Pousada-Casal, Andrea; Scala, Silvia; Meyer, Eric C; Stone, William S; Thermenos, Heidi W; Molokotos, Elena; Agnew-Blais, Jessica; Tsuang, Ming T; Faraone, Stephen V
2016-11-01
The degree of overlap between schizophrenia (SCZ) and affective psychosis (AFF) has been a recurring question since Kraepelin's subdivision of the major psychoses. Studying nonpsychotic relatives allows a comparison of disorder-associated phenotypes, without potential confounds that can obscure distinctive features of the disorder. Because attention and working memory have been proposed as potential endophenotypes for SCZ and AFF, we compared these cognitive features in individuals at familial high-risk (FHR) for the disorders. Young, unmedicated, first-degree relatives (ages, 13-25 years) at FHR-SCZ (n=41) and FHR-AFF (n=24) and community controls (CCs, n=54) were tested using attention and working memory versions of the Auditory Continuous Performance Test. To determine if schizotypal traits or current psychopathology accounted for cognitive deficits, we evaluated psychosis proneness using three Chapman Scales, Revised Physical Anhedonia, Perceptual Aberration, and Magical Ideation, and assessed psychopathology using the Hopkins Symptom Checklist -90 Revised. Compared to controls, the FHR-AFF sample was significantly impaired in auditory vigilance, while the FHR-SCZ sample was significantly worse in working memory. Both FHR groups showed significantly higher levels of physical anhedonia and some psychopathological dimensions than controls. Adjusting for physical anhedonia, phobic anxiety, depression, psychoticism, and obsessive-compulsive symptoms eliminated the FHR-AFF vigilance effects but not the working memory deficits in FHR-SCZ. The working memory deficit in FHR-SZ was the more robust of the cognitive impairments after accounting for psychopathological confounds and is supported as an endophenotype. Examination of larger samples of people at familial risk for different psychoses remains necessary to confirm these findings and to clarify the role of vigilance in FHR-AFF. (JINS, 2016, 22, 1026-1037).
Pereira, Jacinto; Wang, Xiao-Jing
2015-10-01
Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy-flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The effect of motivation on working memory: an fMRI and SEM study.
Szatkowska, Iwona; Bogorodzki, Piotr; Wolak, Tomasz; Marchewka, Artur; Szeszkowski, Wojciech
2008-09-01
This study investigated the effective connectivity between prefrontal regions of human brain supporting motivational influence on working memory. Functional magnetic resonance imaging (fMRI) and structural equation modeling (SEM) were used to examine the interaction between the lateral orbitofrontal (OFC), medial OFC, and dorsolateral prefrontal (DLPFC) regions in the left and right hemisphere during performance of the verbal 2-back working memory task under two reinforcement conditions. The "low-motivation" condition was not associated with monetary reinforcement, while the "high-motivation" condition involved the probability of winning a certain amount of money. In the "low-motivation" condition, the OFC regions in both hemispheres positively influenced the left DLPFC activity. In the "high-motivation" condition, the connectivity in the network including the right OFC regions and left DLPFC changed from positive to negative, whereas the positive connectivity in the network composed of the left OFC and left DLPFC became slightly enhanced compared with the "low-motivation" condition. However, only the connection between the right lateral OFC and left DLPFC showed a significant condition-dependent change in the strength of influence conveyed through the pathway. This change appears to be the functional correlate of motivational influence on verbal working memory.
Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan
2014-01-01
The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630
Ruiz-Contreras, Alejandra E; Román-López, Talía V; Caballero-Sánchez, Ulises; Rosas-Escobar, Cintia B; Ortega-Mora, E Ivett; Barrera-Tlapa, Miguel A; Romero-Hidalgo, Sandra; Carrillo-Sánchez, Karol; Hernández-Morales, Salvador; Vadillo-Ortega, Felipe; González-Barrios, Juan Antonio; Méndez-Díaz, Mónica; Prospéro-García, Oscar
2017-03-01
Individual differences in working memory ability are mainly revealed when a demanding challenge is imposed. Here, we have associated cannabinoid 1 (CB1) receptor genetic variation rs2180619 (AA, AG, GG), which is located in a potential CNR1 regulatory sequence, with performance in working memory. Two-hundred and nine Mexican-mestizo healthy young participants (89 women, 120 men, mean age: 23.26 years, SD = 2.85) were challenged to solve a medium (2-back) vs. a high (3-back) difficulty N-back tasks. All subjects responded as expected, performance was better with the medium than the high demand task version, but no differences were found among genotypes while performing each working memory (WM) task. However, the cost of the level of complexity in N-back paradigm was double for GG subjects than for AA subjects. It is noteworthy that an additive-dosage allele relation was found for G allele in terms of cost of level of complexity. These genetic variation results support that the endocannabinoid system, evaluated by rs2180619 polymorphism, is involved in WM ability in humans.
Shahar, Nitzan; Meiran, Nachshon
2015-01-01
Few studies have addressed action control training. In the current study, participants were trained over 19 days in an adaptive training task that demanded constant switching, maintenance and updating of novel action rules. Participants completed an executive functions battery before and after training that estimated processing speed, working memory updating, set-shifting, response inhibition and fluid intelligence. Participants in the training group showed greater improvement than a no-contact control group in processing speed, indicated by reduced reaction times in speeded classification tasks. No other systematic group differences were found across the different pre-post measurements. Ex-Gaussian fitting of the reaction-time distribution revealed that the reaction time reduction observed among trained participants was restricted to the right tail of the distribution, previously shown to be related to working memory. Furthermore, training effects were only found in classification tasks that required participants to maintain novel stimulus-response rules in mind, supporting the notion that the training improved working memory abilities. Training benefits were maintained in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that training improved action-related working memory abilities. PMID:25799443
Neural basis for generalized quantifier comprehension.
McMillan, Corey T; Clark, Robin; Moore, Peachie; Devita, Christian; Grossman, Murray
2005-01-01
Generalized quantifiers like "all cars" are semantically well understood, yet we know little about their neural representation. Our model of quantifier processing includes a numerosity device, operations that combine number elements and working memory. Semantic theory posits two types of quantifiers: first-order quantifiers identify a number state (e.g. "at least 3") and higher-order quantifiers additionally require maintaining a number state actively in working memory for comparison with another state (e.g. "less than half"). We used BOLD fMRI to test the hypothesis that all quantifiers recruit inferior parietal cortex associated with numerosity, while only higher-order quantifiers recruit prefrontal cortex associated with executive resources like working memory. Our findings showed that first-order and higher-order quantifiers both recruit right inferior parietal cortex, suggesting that a numerosity component contributes to quantifier comprehension. Moreover, only probes of higher-order quantifiers recruited right dorsolateral prefrontal cortex, suggesting involvement of executive resources like working memory. We also observed activation of thalamus and anterior cingulate that may be associated with selective attention. Our findings are consistent with a large-scale neural network centered in frontal and parietal cortex that supports comprehension of generalized quantifiers.
The Interplay between Uncertainty Monitoring and Working Memory: Can Metacognition Become Automatic?
Coutinho, Mariana V. C.; Redford, Joshua S.; Church, Barbara A.; Zakrzewski, Alexandria C.; Couchman, Justin J.; Smith, J. David
2016-01-01
The uncertainty response has grounded the study of metacognition in nonhuman animals. Recent research has explored the processes supporting uncertainty monitoring in monkeys. It revealed that uncertainty responding in contrast to perceptual responding depends on significant working memory resources. The aim of the present study was to expand this research by examining whether uncertainty monitoring is also working memory demanding in humans. To explore this issue, human participants were tested with or without a cognitive load on a psychophysical discrimination task including either an uncertainty response (allowing the decline of difficult trials) or a middle-perceptual response (labeling the same intermediate trial levels). The results demonstrated that cognitive load reduced uncertainty responding, but increased middle responding. However, this dissociation between uncertainty and middle responding was only observed when participants either lacked training or had very little training with the uncertainty response. If more training was provided, the effect of load was small. These results suggest that uncertainty responding is resource demanding, but with sufficient training, human participants can respond to uncertainty either by using minimal working memory resources or effectively sharing resources. These results are discussed in relation to the literature on animal and human metacognition. PMID:25971878
Goghari, Vina M; Lawlor-Savage, Linette
2017-01-01
Recent attention has focused on the benefits of cognitive training in healthy adults. Many commercial cognitive training programs are available given the attraction of not only bettering one's cognitive capacity, but also potentially preventing age-related declines, which is of particular interest to older adults. The issue of whether cognitive training can improve performance within cognitive domains not trained (i.e., far transfer) is controversial, with meta-analyses of cognitive training both supporting and falsifying this claim. More support is present for the near transfer (i.e., transfer in cognitive domain trained) of cognitive training; however, not in all studies. To date, no studies have compared working memory training to training higher-level processes themselves, namely logic and planning. We studied 97 healthy older adults above the age of 65. Healthy older adults completed either an 8-week web-based cognitive training program on working memory or logic and planning. An additional no-training control group completed two assessments 8-weeks apart. Participants were assessed on cognitive measures of near and far transfer, including working memory, planning, reasoning, processing speed, verbal fluency, cognitive flexibility, and creativity. Participants improved on the trained tasks from the first day to last day of training. Bayesian analyses demonstrated no near or far transfer effects after cognitive training. These results support the conclusion that performance-adaptive computerized cognitive training may not enhance cognition in healthy older adults. Our lack of findings could be due to a variety of reasons, including studying a cohort of healthy older adults that were performing near their cognitive ceiling, employing a training protocol that was not sufficient to produce a change, or that no true findings exist. Research suggests numerous study factors that can moderate the results. In addition, the role of psychological variables, such as expectations and motivation to train, are critical in understanding the effects of cognitive training.
Neonatal MRI is associated with future cognition and academic achievement in preterm children
Spencer-Smith, Megan; Thompson, Deanne K.; Doyle, Lex W.; Inder, Terrie E.; Anderson, Peter J.; Klingberg, Torkel
2015-01-01
School-age children born preterm are particularly at risk for low mathematical achievement, associated with reduced working memory and number skills. Early identification of preterm children at risk for future impairments using brain markers might assist in referral for early intervention. This study aimed to examine the use of neonatal magnetic resonance imaging measures derived from automated methods (Jacobian maps from deformation-based morphometry; fractional anisotropy maps from diffusion tensor images) to predict skills important for mathematical achievement (working memory, early mathematical skills) at 5 and 7 years in a cohort of preterm children using both univariable (general linear model) and multivariable models (support vector regression). Participants were preterm children born <30 weeks’ gestational age and healthy control children born ≥37 weeks’ gestational age at the Royal Women’s Hospital in Melbourne, Australia between July 2001 and December 2003 and recruited into a prospective longitudinal cohort study. At term-equivalent age ( ±2 weeks) 224 preterm and 46 control infants were recruited for magnetic resonance imaging. Working memory and early mathematics skills were assessed at 5 years (n = 195 preterm; n = 40 controls) and 7 years (n = 197 preterm; n = 43 controls). In the preterm group, results identified localized regions around the insula and putamen in the neonatal Jacobian map that were positively associated with early mathematics at 5 and 7 years (both P < 0.05), even after covarying for important perinatal clinical factors using general linear model but not support vector regression. The neonatal Jacobian map showed the same trend for association with working memory at 7 years (models ranging from P = 0.07 to P = 0.05). Neonatal fractional anisotropy was positively associated with working memory and early mathematics at 5 years (both P < 0.001) even after covarying for clinical factors using support vector regression but not general linear model. These significant relationships were not observed in the control group. In summary, we identified, in the preterm brain, regions around the insula and putamen using neonatal deformation-based morphometry, and brain microstructural organization using neonatal diffusion tensor imaging, associated with skills important for childhood mathematical achievement. Results contribute to the growing evidence for the clinical utility of neonatal magnetic resonance imaging for early identification of preterm infants at risk for childhood cognitive and academic impairment. PMID:26329284
Parvalbumin interneurons constrain the size of the lateral amygdala engram.
Morrison, Dano J; Rashid, Asim J; Yiu, Adelaide P; Yan, Chen; Frankland, Paul W; Josselyn, Sheena A
2016-11-01
Memories are thought to be represented by discrete physiological changes in the brain, collectively referred to as an engram, that allow patterns of activity present during learning to be reactivated in the future. During the formation of a conditioned fear memory, a subset of principal (excitatory) neurons in the lateral amygdala (LA) are allocated to a neuronal ensemble that encodes an association between an initially neutral stimulus and a threatening aversive stimulus. Previous experimental and computational work suggests that this subset consists of only a small proportion of all LA neurons, and that this proportion remains constant across different memories. Here we examine the mechanisms that contribute to the stability of the size of the LA component of an engram supporting a fear memory. Visualizing expression of the activity-dependent gene Arc following memory retrieval to identify neurons allocated to an engram, we first show that the overall size of the LA engram remains constant across conditions of different memory strength. That is, the strength of a memory was not correlated with the number of LA neurons allocated to the engram supporting that memory. We then examine potential mechanisms constraining the size of the LA engram by expressing inhibitory DREADDS (designer receptors exclusively activated by designer drugs) in parvalbumin-positive (PV + ) interneurons of the amygdala. We find that silencing PV + neurons during conditioning increases the size of the engram, especially in the dorsal subnucleus of the LA. These results confirm predictions from modeling studies regarding the role of inhibition in shaping the size of neuronal memory ensembles and provide additional support for the idea that neurons in the LA are sparsely allocated to the engram based on relative neuronal excitability. Copyright © 2016 Elsevier Inc. All rights reserved.
Schutte, Anne R.; Spencer, John P.
2009-01-01
This study tested a dynamic field theory (DFT) of spatial working memory and an associated spatial precision hypothesis (SPH). Between three and six years of age there is a qualitative shift in how children use reference axes to remember locations: 3-year-olds’ spatial recall responses are biased toward reference axes after short memory delays, whereas 6-year-olds’ responses are biased away from reference axes. According to the DFT and the SPH, quantitative improvements over development in the precision of excitatory and inhibitory working memory processes lead to this qualitative shift. Simulations of the DFT in Experiment 1 predict that improvements in precision should cause the spatial range of targets attracted toward a reference axis to narrow gradually over development with repulsion emerging and gradually increasing until responses to most targets show biases away from the axis. Results from Experiment 2 with 3- to 5-year-olds support these predictions. Simulations of the DFT in Experiment 3 quantitatively fit the empirical results and offer insights into the neural processes underlying this developmental change. PMID:19968430
The Impact of Affective Context on Autobiographical Recollection in Depression.
Hitchcock, Caitlin; Golden, Ann-Marie J; Werner-Seidler, Aliza; Kuyken, Willem; Dalgleish, Tim
2018-05-01
Across two studies we investigated the influence of contextual cues on autobiographical memory recall. In Study 1, participants ( N = 37) with major depressive disorder, in episode or in varying degrees of remission, were administered a Negative Autobiographical Memory Task (NAMT) that required them to retrieve negatively valenced memories in response to positive cue words (a positive context). We reasoned that increased depression symptom severity would be associated with a reduced ability to override priming from this disadvantageous context. Consequently, we hypothesized that increased depressive severity would counterintuitively be associated with reduced negativity ratings for retrieved personal memories to positive cues on the NAMT. This hypothesis was supported. Study 2, using a community sample ( N = 63), demonstrated that a similar reduction in memory negativity was observed in individuals with lower working memory capacity-an index of executive control. Implications for autobiographical memory and executive training paradigms for depression are discussed.
The Astrocentric Hypothesis: proposed role of astrocytes in consciousness and memory formation.
Robertson, James M
2002-01-01
Consciousness is self-awareness. This process is closely associated with attention and working memory, a special form of short-term memory, which is vital when solving explicit task. Edelman has equated consciousness as the "remembered present" to highlight the importance of this form of memory (G.M. Edelman, Bright Air, Brilliant Fire, Basic Books, New York, 1992). The majority of other memories are recollections of past events that are encoded, stored, and brought back into consciousness if appropriate for solving new problems. Encoding prior experiences into memories is based on the salience of each event (A.R. Damasio, Descartes' Error, G.P. Putnam's Sons, New York, 1994; G.M. Edelman, Bright Air, Brilliant Fire, Basic Books, New York, 1992). It is proposed that protoplasmic astrocytes bind attended sensory information into consciousness and store encoded memories. This conclusion is supported by research conducted by gliobiologist over the past 15 years. Copyright 2002 Elsevier Science Ltd.
Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation.
Tambini, Arielle; Nee, Derek Evan; D'Esposito, Mark
2018-06-19
The hippocampus plays a critical role in episodic memory, among other cognitive functions. However, few tools exist to causally manipulate hippocampal function in healthy human participants. Recent work has targeted hippocampal-cortical networks by performing TMS to a region interconnected with the hippocampus, posterior inferior parietal cortex (pIPC). Such hippocampal-targeted TMS enhances associative memory and influences hippocampal functional connectivity. However, it is currently unknown which stages of mnemonic processing (encoding or retrieval) are affected by hippocampal-targeted TMS. Here, we examined whether hippocampal-targeted TMS influences the initial encoding of associations (vs. items) into memory. To selectively influence encoding and not retrieval, we performed continuous theta-burst TMS before participants encoded object-location associations and assessed memory after the direct effect of stimulation dissipated. Relative to control TMS and baseline memory, pIPC TMS enhanced associative memory success and confidence. Item memory was unaffected, demonstrating a selective influence on associative versus item memory. The strength of hippocampal-pIPC functional connectivity predicted TMS-related memory benefits, which was mediated by parahippocampal and retrosplenial cortices. Our findings indicate that hippocampal-targeted TMS can specifically modulate the encoding of new associations into memory without directly influencing retrieval processes and suggest that the ability to influence associative memory may be related to the fidelity of hippocampal TMS targeting. Our results support the notion that pIPC TMS may serve as a potential tool for manipulating hippocampal function in healthy participants. Nonetheless, future work combining hippocampal-targeted continuous theta-burst TMS with neuroimaging is needed to better understand the neural basis of TMS-induced memory changes.
Measurement invariance of neuropsychological tests in diverse older persons.
Mungas, Dan; Widaman, Keith F; Reed, Bruce R; Tomaszewski Farias, Sarah
2011-03-01
Comparability of meaning of neuropsychological test results across ethnic, linguistic, and cultural groups is important for clinicians challenged with assessing increasing numbers of older ethnic minorities. We examined the dimensional structure of a neuropsychological test battery in linguistically and demographically diverse older adults. The Spanish and English Neuropsychological Assessment Scales (SENAS), developed to provide psychometrically sound measures of cognition for multiethnic and multilingual applications, was administered to a community dwelling sample of 760 Whites, 443 African Americans, 451 English-speaking Hispanics, and 882 Spanish-speaking Hispanics. Cognitive function spanned a broad range from normal to mildly impaired to demented. Multiple group confirmatory factor analysis was used to examine equivalence of the dimensional structure for the SENAS across the groups defined by language and ethnicity. Covariance among 16 SENAS tests was best explained by five cognitive dimensions corresponding to episodic memory, semantic memory/language, spatial ability, attention/working memory, and verbal fluency. Multiple Group confirmatory factor analysis supported a common dimensional structure in the diverse groups. Measures of episodic memory showed the most compelling evidence of measurement equivalence across groups. Measurement equivalence was observed for most but not all measures of semantic memory/language and spatial ability. Measures of attention/working memory defined a common dimension in the different groups, but results suggest that scores are not strictly comparable across groups. These results support the applicability of the SENAS for use with multiethnic and bilingual older adults, and more broadly, provide evidence of similar dimensions of cognition in the groups represented in the study. (c) 2011 APA, all rights reserved
Allott, Kelly A; Cotton, Susan M; Chinnery, Gina L; Baksheev, Gennady N; Massey, Jessica; Sun, Pamela; Collins, Zoe; Barlow, Emma; Broussard, Christina; Wahid, Tasha; Proffitt, Tina-Marie; Jackson, Henry J; Killackey, Eoin
2013-10-01
To examine whether baseline neurocognition and social cognition predict vocational outcomes over 6 months in patients with first-episode psychosis (FEP) enrolled in a randomised controlled trial of Individual Placement and Support (IPS) versus treatment as usual (TAU). 135 FEP participants (IPS n=69; TAU n=66) completed a comprehensive neurocognitive and social cognitive battery. Principal axis factor analysis using PROMAX rotation was used to determine the underlying cognitive structure of the battery. Setwise (hierarchical) logistic and multivariate linear regressions were used to examine predictors of: (a) enrolment in education and employment; and (b) hours of employment over 6 months. Neurocognition and social cognition factors were entered into the models after accounting for premorbid IQ, baseline functioning and treatment group. Six cognitive factors were extracted: (i) social cognition; (ii) information processing speed; (iii) verbal learning and memory; (iv) attention and working memory; (v) visual organisation and memory; and (vi) verbal comprehension. Enrolment in education over 6 months was predicted by enrolment in education at baseline (p=.002) and poorer visual organisation and memory (p=.024). Employment over 6 months was predicted by employment at baseline (p=.041) and receiving IPS (p=.020). Better visual organisation and memory predicted total hours of paid work over 6 months (p<.001). Visual organisation and memory predicted the enrolment in education and duration of employment, after accounting for premorbid IQ, baseline functioning and treatment. Social cognition did not contribute to the prediction of vocational outcomes. Neurocognitive interventions may enhance employment duration in FEP. © 2013 Elsevier B.V. All rights reserved.
How the amygdala affects emotional memory by altering brain network properties.
Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno
2014-07-01
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Burns, Matthew K.; Davidson, Katherine; Zaslofsky, Anne F.; Parker, David C.; Maki, Kathrin E.
2018-01-01
The amount of information that students successfully learn and later recall from each intervention session is limited and is called the acquisition rate (AR). Research has consistently supported the effects of modifying intervention set sizes with AR data, but research with AR is in its infancy. The current study compared the relationship between…
Final Report: Correctness Tools for Petascale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
2014-10-27
In the course of developing parallel programs for leadership computing systems, subtle programming errors often arise that are extremely difficult to diagnose without tools. To meet this challenge, University of Maryland, the University of Wisconsin—Madison, and Rice University worked to develop lightweight tools to help code developers pinpoint a variety of program correctness errors that plague parallel scientific codes. The aim of this project was to develop software tools that help diagnose program errors including memory leaks, memory access errors, round-off errors, and data races. Research at Rice University focused on developing algorithms and data structures to support efficient monitoringmore » of multithreaded programs for memory access errors and data races. This is a final report about research and development work at Rice University as part of this project.« less
Martínez-Vázquez, Pablo; Gail, Alexander
2018-01-01
Abstract Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM. PMID:29481586
Martínez-Vázquez, Pablo; Gail, Alexander
2018-05-01
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12-32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Statistical Mechanics Model of the Speed - Accuracy Tradeoff in Spatial and Lexical Memory
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Allen, Philip
2000-03-01
The molar neural network model of P. Allen, M. Kaufman, A. F. Smith, R. E. Popper, Psychology and Aging 13, 501 (1998) and Experimental Aging Research, 24, 307 (1998) is extended to incorporate reaction times. In our model the entropy associated with a particular task determines the reaction time. We use this molar neural model to directly analyze experimental data on episodic (spatial) memory and semantic (lexical) memory tasks. In particular we are interested in the effect of aging on the two types of memory. We find that there is no difference in performance levels for lexical memory tasks between younger and older adults. In the case spatial memory tasks we find that aging has a detrimental effect on the performance level. This work is supported by NIH/NIA grant AG09282-06.
The role of object categories in hybrid visual and memory search
Cunningham, Corbin A.; Wolfe, Jeremy M.
2014-01-01
In hybrid search, observers (Os) search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that responses times (RT) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g. this apple in this pose). Typical real world tasks involve more broadly defined sets of stimuli (e.g. any “apple” or, perhaps, “fruit”). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, Os searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches. PMID:24661054
Mandolesi, L; Leggio, M G; Graziano, A; Neri, P; Petrosini, L
2001-12-01
Spatial function is one of the cognitive functions altered in the presence of cerebellar lesions. We investigated the cerebellar contribution to the acquisition of spatial procedural and working memory components by means of a radial maze. To establish whether a cerebellar lesion would cause a deficit in solving the radial maze, a first experiment was carried out by using a full-baited maze procedure in different experimental groups, with or without cerebellar lesion and with or without pretraining. Non-pretrained hemicerebellectomized (HCbed) animals exhibited impaired performances in all (motor, spatial and procedural) task aspects. Pre-trained HCbed animals performed similarly to control animals in the task aspects linked to the processing of spatial and procedural factors. To distinguish procedural from working memory components, a forced-choice paradigm of the radial maze was used in the second experiment. Non-pretrained HCbed rats continued to make a lot of errors and show severe perseverative tendencies, already observed in the first experiment, supporting a specific cerebellar role in acquiring new behaviours and in modifying them in relation to the context. Interestingly, hindered from putting the acquired explorative patterns into action and compelled to use only working memory abilities, the pretrained HCbed group exhibited a dramatic worsening of performance. In conclusion, the present findings demonstrate that cerebellar damage induces a specific behaviour in radial maze tasks, characterized by an inflexible use of the procedures (if indeed any procedure was acquired before the lesion) and by a severe impairment in working memory processes.
Ng, Kenneth; Reichert, Chelsea P.
2017-01-01
Sustained and elevated activity during the working memory delay period has long been considered the primary neural correlate for maintaining information over short time intervals. This idea has recently been reinterpreted in light of findings generated from multiple neural recording modalities and levels of analysis. To further investigate the sustained or transient nature of activity, the temporal-spectral evolution (TSE) of delay period activity was examined in humans with high density EEG during performance of a Sternberg working memory paradigm with a relatively long six second delay and with novel scenes as stimuli. Multiple analyses were conducted using different trial window durations and different baseline periods for TSE computation. Sensor level analyses revealed transient rather than sustained activity during delay periods. Specifically, the consistent finding among the analyses was that high amplitude activity encompassing the theta range was found early in the first three seconds of the delay period. These increases in activity early in the delay period correlated positively with subsequent ability to distinguish new from old probe scenes. Source level signal estimation implicated a right parietal region of transient early delay activity that correlated positively with working memory ability. This pattern of results adds to recent evidence that transient rather than sustained delay period activity supports visual working memory performance. The findings are discussed in relation to synchronous and desynchronous intra- and inter-regional neural transmission, and choosing an optimal baseline for expressing temporal-spectral delay activity change. PMID:29016657
WAIS-IV subtest covariance structure: conceptual and statistical considerations.
Ward, L Charles; Bergman, Maria A; Hebert, Katina R
2012-06-01
D. Wechsler (2008b) reported confirmatory factor analyses (CFAs) with standardization data (ages 16-69 years) for 10 core and 5 supplemental subtests from the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV). Analyses of the 15 subtests supported 4 hypothesized oblique factors (Verbal Comprehension, Working Memory, Perceptual Reasoning, and Processing Speed) but also revealed unexplained covariance between Block Design and Visual Puzzles (Perceptual Reasoning subtests). That covariance was not included in the final models. Instead, a path was added from Working Memory to Figure Weights (Perceptual Reasoning subtest) to improve fit and achieve a desired factor pattern. The present research with the same data (N = 1,800) showed that the path from Working Memory to Figure Weights increases the association between Working Memory and Matrix Reasoning. Specifying both paths improves model fit and largely eliminates unexplained covariance between Block Design and Visual Puzzles but with the undesirable consequence that Figure Weights and Matrix Reasoning are equally determined by Perceptual Reasoning and Working Memory. An alternative 4-factor model was proposed that explained theory-implied covariance between Block Design and Visual Puzzles and between Arithmetic and Figure Weights while maintaining compatibility with WAIS-IV Index structure. The proposed model compared favorably with a 5-factor model based on Cattell-Horn-Carroll theory. The present findings emphasize that covariance model comparisons should involve considerations of conceptual coherence and theoretical adherence in addition to statistical fit. (c) 2012 APA, all rights reserved
Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment.
Szucs, Denes; Devine, Amy; Soltesz, Fruzsina; Nobes, Alison; Gabriel, Florence
2013-01-01
Developmental dyscalculia is thought to be a specific impairment of mathematics ability. Currently dominant cognitive neuroscience theories of developmental dyscalculia suggest that it originates from the impairment of the magnitude representation of the human brain, residing in the intraparietal sulcus, or from impaired connections between number symbols and the magnitude representation. However, behavioral research offers several alternative theories for developmental dyscalculia and neuro-imaging also suggests that impairments in developmental dyscalculia may be linked to disruptions of other functions of the intraparietal sulcus than the magnitude representation. Strikingly, the magnitude representation theory has never been explicitly contrasted with a range of alternatives in a systematic fashion. Here we have filled this gap by directly contrasting five alternative theories (magnitude representation, working memory, inhibition, attention and spatial processing) of developmental dyscalculia in 9-10-year-old primary school children. Participants were selected from a pool of 1004 children and took part in 16 tests and nine experiments. The dominant features of developmental dyscalculia are visuo-spatial working memory, visuo-spatial short-term memory and inhibitory function (interference suppression) impairment. We hypothesize that inhibition impairment is related to the disruption of central executive memory function. Potential problems of visuo-spatial processing and attentional function in developmental dyscalculia probably depend on short-term memory/working memory and inhibition impairments. The magnitude representation theory of developmental dyscalculia was not supported. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tas, A. Caglar; Luck, Steven J.; Hollingworth, Andrew
2016-01-01
There is substantial debate over whether visual working memory (VWM) and visual attention constitute a single system for the selection of task-relevant perceptual information or whether they are distinct systems that can be dissociated when their representational demands diverge. In the present study, we focused on the relationship between visual attention and the encoding of objects into visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a secondary object, irrelevant to the memory task, was presented. Participants were instructed either to execute an overt shift of gaze to this object (Experiments 1–3) or to attend it covertly (Experiments 4 and 5). Our goal was to determine whether these overt and covert shifts of attention disrupted the information held in VWM. We hypothesized that saccades, which typically introduce a memorial demand to bridge perceptual disruption, would lead to automatic encoding of the secondary object. However, purely covert shifts of attention, which introduce no such demand, would not result in automatic memory encoding. The results supported these predictions. Saccades to the secondary object produced substantial interference with VWM performance, but covert shifts of attention to this object produced no interference with VWM performance. These results challenge prevailing theories that consider attention and VWM to reflect a common mechanism. In addition, they indicate that the relationship between attention and VWM is dependent on the memorial demands of the orienting behavior. PMID:26854532
Long-Term Memory and the Control of Attentional Control
Mayr, Ulrich; Kuhns, David; Hubbard, Jason
2014-01-01
Task-switch costs and in particular the switch-cost asymmetry (i.e., the larger costs of switching to a dominant than a non-dominant task) are usually explained in terms of trial-to-trial carry-over of task-specific control settings. Here we argue that task switches are just one example of situations that trigger a transition from working-memory maintenance to updating, thereby opening working memory to interference from long-term memory. We used a new paradigm that requires selecting a spatial location either on the basis of a central cue (i.e., endogenous control of attention) or a peripheral, sudden onset (i.e., exogenous control of attention). We found a strong cost asymmetry that occurred even after short interruptions of otherwise single-task blocks (Exp. 1-3), but that was much stronger when participants had experienced the competing task under conditions of conflict (Exp. 1-2). Experiment 3 showed that the asymmetric costs were due to interruptions per se, rather than to associative interference tied to specific interruption activities. Experiment 4 generalized the basic pattern across interruptions varying in length or control demands and Experiment 5 across primary tasks with response-selection conflict rather than attentional conflict. Combined, the results support a model in which costs of selecting control settings arise when (a) potentially interfering memory traces have been encoded in long-term memory and (b) working-memory is forced from a maintenance mode into an updating mode (e.g., through task interruptions), thereby allowing unwanted retrieval of the encoded memory traces. PMID:24650696
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
Does autophagy work in synaptic plasticity and memory?
Shehata, Mohammad; Inokuchi, Kaoru
2014-01-01
Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.
To what extent do neurobiological sleep-waking processes support psychoanalysis?
Gottesmann, Claude
2010-01-01
Sigmund Freud's thesis was that there is a censorship during waking that prevents memory of events, drives, wishes, and feelings from entering the consciousness because they would induce anxiety due to their emotional or ethical unacceptability. During dreaming, because the efficiency of censorship is decreased, latent thought contents can, after dream-work involving condensation and displacement, enter the dreamer's consciousness under the figurative form of manifest content. The quasi-closed dogma of psychoanalytic theory as related to unconscious processes is beginning to find neurobiological confirmation during waking. Indeed, there are active processes that suppress (repress) unwanted memories from entering consciousness. In contrast, it is more difficult to find neurobiological evidence supporting an organized dream-work that would induce meaningful symbolic content, since dream mentation most often only shows psychotic-like activities. Copyright © 2010 Elsevier Inc. All rights reserved.
Johnsen, Bjørn Helge; Hansen, Anita L; Murison, Robert; Eid, Jarle; Thayer, Julian F
2012-01-01
The aim of the paper was to study the relationship between heart rate variability (HRV) and cortisol release during cognitive challenging tasks. Forty-nine male naval cadets from the Royal Norwegian Naval Academy were administered computerised versions of attentional and working memory tests. The results from this study support the hypothesis of a negative correlation between HRV and cortisol secretion during cognitive tasks. Confirmation of the hypothesis with the low HRV group scoring higher on cortisol only during performance of cognitive tasks and recovery was also found. Furthermore, a replication of the previous findings of a negative association between cortisol levels and performance were supported when using uncorrected comparisons. None of the correlations survived Bonferonin corrections. The findings are discussed in relation to factors increasing HRV, thus improving tolerance to cognitive stress in onboard environments.
Working memory retrieval as a decision process
Pearson, Benjamin; Raškevičius, Julius; Bays, Paul M.; Pertzov, Yoni; Husain, Masud
2014-01-01
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation. PMID:24492597
Working memory retrieval as a decision process.
Pearson, Benjamin; Raskevicius, Julius; Bays, Paul M; Pertzov, Yoni; Husain, Masud
2014-02-03
Working memory (WM) is a core cognitive process fundamental to human behavior, yet the mechanisms underlying it remain highly controversial. Here we provide a new framework for understanding retrieval of information from WM, conceptualizing it as a decision based on the quality of internal evidence. Recent findings have demonstrated that precision of WM decreases with memory load. If WM retrieval uses a decision process that depends on memory quality, systematic changes in response time distribution should occur as a function of WM precision. We asked participants to view sample arrays and, after a delay, report the direction of change in location or orientation of a probe. As WM precision deteriorated with increasing memory load, retrieval time increased systematically. Crucially, the shape of reaction time distributions was consistent with a linear accumulator decision process. Varying either task relevance of items or maintenance duration influenced memory precision, with corresponding shifts in retrieval time. These results provide strong support for a decision-making account of WM retrieval based on noisy storage of items. Furthermore, they show that encoding, maintenance, and retrieval in WM need not be considered as separate processes, but may instead be conceptually unified as operations on the same noise-limited, neural representation.
Weighted integration of short-term memory and sensory signals in the oculomotor system.
Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe
2018-05-01
Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.
Nyberg, Lars; Karalija, Nina; Salami, Alireza; Andersson, Micael; Wåhlin, Anders; Kaboovand, Neda; Köhncke, Ylva; Axelsson, Jan; Rieckmann, Anna; Papenberg, Goran; Garrett, Douglas D.; Riklund, Katrine; Lövdén, Martin; Bäckman, Lars
2016-01-01
D1 and D2 dopamine receptors (D1DRs and D2DRs) may contribute differently to various aspects of memory and cognition. The D1DR system has been linked to functions supported by the prefrontal cortex. By contrast, the role of the D2DR system is less clear, although it has been hypothesized that D2DRs make a specific contribution to hippocampus-based cognitive functions. Here we present results from 181 healthy adults between 64 and 68 y of age who underwent comprehensive assessment of episodic memory, working memory, and processing speed, along with MRI and D2DR assessment with [11C]raclopride and PET. Caudate D2DR availability was positively associated with episodic memory but not with working memory or speed. Whole-brain analyses further revealed a relation between hippocampal D2DR availability and episodic memory. Hippocampal and caudate D2DR availability were interrelated, and functional MRI-based resting-state functional connectivity between the ventral caudate and medial temporal cortex increased as a function of caudate D2DR availability. Collectively, these findings indicate that D2DRs make a specific contribution to hippocampus-based cognition by influencing striatal and hippocampal regions, and their interactions. PMID:27339132
[The consolidation of memory, one century on].
Prado-Alcala, R A; Quirarte, G L
The theory of memory consolidation, based on the work published by Georg Elias Muller and Alfons Pilzecker over a century ago, continues to guide research into the neurobiology of memory, either directly or indirectly. In their classic monographic work, they concluded that fixing memory requires the passage of time (consolidation) and that memory is vulnerable during this period of consolidation, as symptoms of amnesia appear when brain functioning is interfered with before the consolidation process is completed. Most of the experimental data concerning this phenomenon strongly support the theory. In this article we present a review of experiments that have made it possible to put forward a model that explains the amnesia produced in conventional learning conditions, as well as another model related to the protection of memory when the same instances of learning are submitted to a situation involving intensive training. Findings from relatively recent studies have shown that treatments that typically produce amnesia when they are administered immediately after a learning experience (during the period in which the memory would be consolidating itself) no longer have any effect when the instances of learning involve a relatively large number of trials or training sessions, or relatively high intensity aversive events. These results are not congruent with the prevailing theories about consolidation.
Vandierendonck, André
2016-01-01
Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.
Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J
2014-01-01
Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915
Effects of Individual Differences in Working Memory on Plan Presentational Choices
Tintarev, Nava; Masthoff, Judith
2016-01-01
This paper addresses research questions that are central to the area of visualization interfaces for decision support: (RQ1) whether individual user differences in working memory should be considered when choosing how to present visualizations; (RQ2) how to present the visualization to support effective decision making and processing; and (RQ3) how to evaluate the effectiveness of presentational choices. These questions are addressed in the context of presenting plans, or sequences of actions, to users. The experiments are conducted in several domains, and the findings are relevant to applications such as semi-autonomous systems in logistics. That is, scenarios that require the attention of humans who are likely to be interrupted, and require good performance but are not time critical. Following a literature review of different types of individual differences in users that have been found to affect the effectiveness of presentational choices, we consider specifically the influence of individuals' working memory (RQ1). The review also considers metrics used to evaluate presentational choices, and types of presentational choices considered. As for presentational choices (RQ2), we consider a number of variants including interactivity, aggregation, layout, and emphasis. Finally, to evaluate the effectiveness of plan presentational choices (RQ3) we adopt a layered-evaluation approach and measure performance in a dual task paradigm, involving both task interleaving and evaluation of situational awareness. This novel methodology for evaluating visualizations is employed in a series of experiments investigating presentational choices for a plan. A key finding is that emphasizing steps (by highlighting borders) can improve effectiveness on a primary task, but only when controlling for individual variation in working memory. PMID:27899905
Effects of Individual Differences in Working Memory on Plan Presentational Choices.
Tintarev, Nava; Masthoff, Judith
2016-01-01
This paper addresses research questions that are central to the area of visualization interfaces for decision support: (RQ1) whether individual user differences in working memory should be considered when choosing how to present visualizations; (RQ2) how to present the visualization to support effective decision making and processing; and (RQ3) how to evaluate the effectiveness of presentational choices. These questions are addressed in the context of presenting plans, or sequences of actions, to users. The experiments are conducted in several domains, and the findings are relevant to applications such as semi-autonomous systems in logistics. That is, scenarios that require the attention of humans who are likely to be interrupted, and require good performance but are not time critical. Following a literature review of different types of individual differences in users that have been found to affect the effectiveness of presentational choices, we consider specifically the influence of individuals' working memory (RQ1). The review also considers metrics used to evaluate presentational choices, and types of presentational choices considered. As for presentational choices (RQ2), we consider a number of variants including interactivity, aggregation, layout, and emphasis. Finally, to evaluate the effectiveness of plan presentational choices (RQ3) we adopt a layered-evaluation approach and measure performance in a dual task paradigm, involving both task interleaving and evaluation of situational awareness. This novel methodology for evaluating visualizations is employed in a series of experiments investigating presentational choices for a plan. A key finding is that emphasizing steps (by highlighting borders) can improve effectiveness on a primary task, but only when controlling for individual variation in working memory.
Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier
2012-07-01
Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (P<0.03); (ii) with a deficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency and the negative results of group studies. Finally, the frontal dysexecutive syndrome cannot be attributed to central executive impairment, although it may contribute to some dysexecutive disorders.
Lumping, Splitting and the Integration of Museum Studies with LIS
ERIC Educational Resources Information Center
Latham, Kiersten F.
2015-01-01
This paper is an attempt to support and promote education programs that cover the entire cultural heritage landscape (libraries, archives, museums) as an integrated, larger meta-discipline. By taking a larger picture approach, professionals who do the work of memory institutions can be more effective in their work, in the promotion of that…
Improving Outcome for Mental Disorders by Enhancing Memory for Treatment
Harvey, Allison G.; Lee, Jason; Smith, Rita L.; Gumport, Nicole B.; Hollon, Steven D.; Rabe-Hesketh, Sophia; Hein, Kerrie; Dolsen, Michael R.; Hamen, Kristen; Kanady, Jennifer C.; Thompson, Monique A.; Abrons, Deidre
2017-01-01
Summary Patients exhibit poor memory for treatment. A novel Memory Support Intervention, derived from basic science in cognitive psychology and education, is tested with the goal of improving patient memory for treatment and treatment outcome. Adults with major depressive disorder (MDD) were randomized to 14 sessions of cognitive therapy (CT)+Memory Support (n = 25) or CT-as-usual (CTMS; n = 23). Outcomes were assessed at baseline, post-treatment and 6 months later. Memory support was greater in CT+Memory Support compared to the CT-as-usual. Compared to CT-as-usual, small to medium effect sizes were observed for recall of treatment points at post-treatment. There was no difference between the treatment arms on depression severity (primary outcome). However, the odds of meeting criteria for ‘response’ and ‘remission’ were higher in CT+Memory Support compared with CT-as-usual. CT+Memory Support also showed an advantage on functional impairment. While some decline was observed, the advantage of CT+Memory Support was evident through 6-month follow-up. Patients with less than 16 years of education experience greater benefits from memory support than those with 16 or more years of education. Memory support can be manipulated, may improve patient memory for treatment and may be associated with an improved outcome. PMID:27089159
Larsson, Maria; Hedner, Margareta; Papenberg, Goran; Seubert, Janina; Bäckman, Lars; Laukka, Erika J
2016-02-01
The neuroanatomical organization that underlies olfactory memory is different from that of other memory types. The present work examines olfactory memory in an elderly population-based sample (Swedish National Study on Aging and Care in Kungsholmen) aged 60-100 years (n = 2280). We used structural equation modeling to investigate whether olfactory memory in old age is best conceptualized as a distinct category, differentiated from episodic and semantic memory. Further, potential olfactory dedifferentiation and genetic associations (APOE) to olfactory function in late senescence were investigated. Results are in support of a 3-factor solution where olfactory memory, as indexed by episodic odor recognition and odor identification, is modeled separately from episodic and semantic memory for visual and verbal information. Increasing age was associated with poorer olfactory memory performance, and observed age-related deficits were further exacerbated for carriers of the APOE ε4 allele; these effects tended to be larger for olfactory memory compared to episodic and semantic memory pertaining to other sensory systems (vision, auditory). Finally, stronger correlations between olfactory and episodic memory, indicating dedifferentiation, were observed in the older age groups. Copyright © 2016 Elsevier Inc. All rights reserved.
Schaffer, Yael; Geva, Ronny
2016-01-01
Given the primary role of memory in children's learning and well-being, the aim of this review was to examine the outcomes of memory remediation interventions in children with neurological deficits as a function of the affected memory system and intervention method. Fifty-seven studies that evaluated the outcome of memory interventions in children were identified. Thirty-four studies met the inclusion criteria, and were included in a systematic review. Diverse rehabilitation methods for improving explicit and implicit memory in children were reviewed. The analysis indicates that teaching restoration strategies may improve, and result in the generalisation of, semantic memory and working memory performance in children older than 7 years with mild to moderate memory deficits. Factors such as longer protocols, emotional support, and personal feedback contribute to intervention efficacy. In addition, the use of compensation aids seems to be highly effective in prospective memory tasks. Finally, the review unveiled a lack of studies with young children and the absence of group interventions. These findings point to the importance of future evidence-based intervention protocols in these areas.
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults.
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. www.chictr.org.cn, identifier ChiCTR-OON-16007793.
Selective attention, working memory, and animal intelligence.
Matzel, Louis D; Kolata, Stefan
2010-01-01
Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals' performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate "intelligence" and provides a framework for promoting these abilities in both young and old animals.
Selective Attention, Working Memory, and Animal Intelligence
Matzel, Louis D.; Kolata, Stefan
2009-01-01
Accumulating evidence indicates that the storage and processing capabilities of the human working memory system co-vary with individuals’ performance on a wide range of cognitive tasks. The ubiquitous nature of this relationship suggests that variations in these processes may underlie individual differences in intelligence. Here we briefly review relevant data which supports this view. Furthermore, we emphasize an emerging literature describing a trait in genetically heterogeneous mice that is quantitatively and qualitatively analogous to general intelligence (g) in humans. As in humans, this animal analog of g co-varies with individual differences in both storage and processing components of the working memory system. Absent some of the complications associated with work with human subjects (e.g., phonological processing), this work with laboratory animals has provided an opportunity to assess otherwise intractable hypotheses. For instance, it has been possible in animals to manipulate individual aspects of the working memory system (e.g., selective attention), and to observe causal relationships between these variables and the expression of general cognitive abilities. This work with laboratory animals has coincided with human imaging studies (briefly reviewed here) which suggest that common brain structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the performance of individuals on intelligence test batteries. In total, this evidence suggests an evolutionary conservation of the processes that co-vary with and/or regulate “intelligence” and provides a framework for promoting these abilities in both young and old animals. PMID:19607858
Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W
2004-06-01
A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)
Memory assisted free space quantum communication
NASA Astrophysics Data System (ADS)
Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden
2016-05-01
A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.
Swanson, H Lee; Jerman, Olga
2007-04-01
This 3-year longitudinal study determined whether (a) subgroups of children with reading disabilities (RD) (children with RD only, children with both reading and arithmetic deficits, and low verbal IQ readers) and skilled readers varied in working memory (WM) and short-term memory (STM) growth and (b) whether growth in an executive system and/or a phonological storage system mediated growth in reading performance. A battery of memory and reading measures was administered to 84 children (11-17 years of age) across three testing waves spaced 1 year apart. The results showed that skilled readers yielded higher WM growth estimates than did the RD groups. No significant differentiation among subgroups of children with RD on growth measures emerged. Hierarchical linear modeling showed that WM (controlled attention), rather than STM (phonological loop), was related to growth in reading comprehension and reading fluency. The results support the notion that deficient growth in the executive component of WM underlies RD.
Consciousness and working memory: Current trends and research perspectives.
Velichkovsky, Boris B
2017-10-01
Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2007-01-01
Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…
Andersen, Per Normann; Hovik, Kjell Tore; Skogli, Erik Winther; Egeland, Jens; Oie, Merete
2013-01-01
Symptoms similar to those found in Attention-Deficit/Hyperactivity Disorder (ADHD) often occur in children with Autism Spectrum Disorders (ASD). The objective of the current study was to compare verbal working memory, acquisition and delayed recall in children with High-Functioning Autism (HFA) to children with ADHD and typically developing children (TDC). Thirty-eight children with HFA, 79 with ADHD and 50 TDC (age 8-17) were assessed with a letter/number sequencing task and a verbal list-learning task. To investigate the possible influence of attention problems in children with HFA, we divided the HFA group into children with (HFA+) or without (HFA-) "attention problems" according to the Child Behaviour Checklist 6-18. The children with HFA+ displayed significant impairment compared to TDC on all three neurocognitive measures, while the children with HFA- were significantly impaired compared to TDC only on the working memory and acquisition measures. In addition, the HFA+ group scored significantly below the HFA- group and the ADHD group on the verbal working memory and delayed recall measures. The results support the proposition that children with HFA+, HFA-, and ADHD differ not only on a clinical level but also on a neurocognitive level which may have implications for treatment.
Shields, Grant S; Bonner, Joseph C; Moons, Wesley G
2015-08-01
The hormone cortisol is often believed to play a pivotal role in the effects of stress on human cognition. This meta-analysis is an attempt to determine the effects of acute cortisol administration on core executive functions. Drawing on both rodent and stress literatures, we hypothesized that acute cortisol administration would impair working memory and set-shifting but enhance inhibition. Additionally, because cortisol is thought to exert different nongenomic (rapid) and genomic (slow) effects, we further hypothesized that the effects of cortisol would differ as a function of the delay between cortisol administration and cognitive testing. Although the overall analyses were nonsignificant, after separating the rapid, nongenomic effects of cortisol from the slower, genomic effects of cortisol, the rapid effects of cortisol enhanced response inhibition, g+ = 0.113, p=.016, but impaired working memory, g+ = -0.315, p=.008, although these effects reversed over time. Contrary to our hypotheses, there was no effect of cortisol administration on set-shifting. Thus, although we did not find support for the idea that increases in cortisol influence set-shifting, we found that acute increases in cortisol exert differential effects on working memory and inhibition over time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.
2014-01-01
To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
Bisby, James A; King, John A; Brewin, Chris R; Burgess, Neil; Curran, H Valerie
2010-08-01
A dual representation model of intrusive memory proposes that personally experienced events give rise to two types of representation: an image-based, egocentric representation based on sensory-perceptual features; and a more abstract, allocentric representation that incorporates spatiotemporal context. The model proposes that intrusions reflect involuntary reactivation of egocentric representations in the absence of a corresponding allocentric representation. We tested the model by investigating the effect of alcohol on intrusive memories and, concurrently, on egocentric and allocentric spatial memory. With a double-blind independent group design participants were administered alcohol (.4 or .8 g/kg) or placebo. A virtual environment was used to present objects and test recognition memory from the same viewpoint as presentation (tapping egocentric memory) or a shifted viewpoint (tapping allocentric memory). Participants were also exposed to a trauma video and required to detail intrusive memories for 7 days, after which explicit memory was assessed. There was a selective impairment of shifted-view recognition after the low dose of alcohol, whereas the high dose induced a global impairment in same-view and shifted-view conditions. Alcohol showed a dose-dependent inverted "U"-shaped effect on intrusions, with only the low dose increasing the number of intrusions, replicating previous work. When same-view recognition was intact, decrements in shifted-view recognition were associated with increases in intrusions. The differential effect of alcohol on intrusive memories and on same/shifted-view recognition support a dual representation model in which intrusions might reflect an imbalance between two types of memory representation. These findings highlight important clinical implications, given alcohol's involvement in real-life trauma. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.
Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas
2015-12-09
Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory paradigm and using model-based electroencephalography analyses in humans, we thus bridge this gap and reveal behavioral and neural signatures of increased, attention-mediated working memory precision. We further show that the extent of alpha power modulation predicts the degree to which individuals' memory performance benefits from selective attention. Copyright © 2015 the authors 0270-6474/15/3516094-11$15.00/0.
Contrasting single and multi-component working-memory systems in dual tasking.
Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels
2016-05-01
Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.
The contributions of handedness and working memory to episodic memory.
Sahu, Aparna; Christman, Stephen D; Propper, Ruth E
2016-11-01
Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.
An Exploratory Study Investigating the Effects of Barefoot Running on Working Memory.
Alloway, Ross G; Alloway, Tracy Packiam; Magyari, Peter M; Floyd, Shelley
2016-04-01
The aim of the present study was to compare the potential cognitive benefits of running barefoot compared to shod. Young adults (N = 72, M age = 24.4 years, SD = 5.5) ran both barefoot and shod on a running track while stepping on targets (poker chips) and when not stepping on targets. The main finding was that participants performed better on a working memory test when running barefoot compared to shod, but only when they had to step on targets. These results supported the idea that additional attention is needed when running barefoot to avoid stepping on objects that could potentially injure the foot. Significant increases in participant's heart rate were also found in the barefoot condition. No significant differences were found in participants' speed across conditions. These findings suggested that working memory may be enhanced after at least 16 minutes of barefoot running if the individual has to focus attention on the ground. © The Author(s) 2016.
Does adult ADHD interact with COMT val (158) met genotype to influence working memory performance?
Biehl, Stefanie C; Gschwendtner, Kathrin M; Guhn, Anne; Müller, Laura D; Reichert, Susanne; Heupel, Julia; Reif, Andreas; Deckert, Jürgen; Herrmann, Martin J; Jacob, Christian P
2015-03-01
Both attention-deficit/hyperactivity disorder (ADHD) and catechol-O-methyltransferase (COMT) genotype have been linked to altered dopaminergic transmission and possible impairment in frontal lobe functioning. This study offers an investigation of a possible interaction between ADHD diagnosis and COMT genotype on measures of working memory and executive function. Thirty-five adults with ADHD, who were recruited from the ADHD outpatient clinic at the Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, and thirty-five matched healthy controls completed the Digit Span test and the Stroop Color Word Test. While there were no main effects of ADHD or COMT, the two factors interacted on both Digit Span subtests with the two groups' met/met carriers showing significantly different performance on the Digit Span Forward subtest and the val/val carriers showing significantly different performance on the Digit Span Backward subtest. Findings provide preliminary support for a differential impact of COMT genotype on working memory measures in adult patients with ADHD compared to healthy controls.
Draheim, Christopher; Hicks, Kenny L; Engle, Randall W
2016-01-01
It is generally agreed upon that the mechanisms underlying task switching heavily depend on working memory, yet numerous studies have failed to show a strong relationship between working memory capacity (WMC) and task-switching ability. We argue that this relationship does indeed exist but that the dependent variable used to measure task switching is problematic. To support our claim, we reanalyzed data from two studies with a new scoring procedure that combines reaction time (RT) and accuracy into a single score. The reanalysis revealed a strong relationship between task switching and WMC that was not present when RT-based switch costs were used as the dependent variable. We discuss the theoretical implications of this finding along with the potential uses and limitations of the scoring procedure we used. More broadly, we emphasize the importance of using measures that incorporate speed and accuracy in other areas of research, particularly in comparisons of subjects differing in cognitive and developmental levels. © The Author(s) 2015.
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
The influence of time on task on mind wandering and visual working memory.
Krimsky, Marissa; Forster, Daniel E; Llabre, Maria M; Jha, Amishi P
2017-12-01
Working memory relies on executive resources for successful task performance, with higher demands necessitating greater resource engagement. In addition to mnemonic demands, prior studies suggest that internal sources of distraction, such as mind wandering (i.e., having off-task thoughts) and greater time on task, may tax executive resources. Herein, the consequences of mnemonic demand, mind wandering, and time on task were investigated during a visual working memory task. Participants (N=143) completed a delayed-recognition visual working memory task, with mnemonic load for visual objects manipulated across trials (1 item=low load; 2 items=high load) and subjective mind wandering assessed intermittently throughout the experiment using a self-report Likert-type scale (1=on-task, 6=off-task). Task performance (correct/incorrect response) and self-reported mind wandering data were evaluated by hierarchical linear modeling to track trial-by-trial fluctuations. Performance declined with greater time on task, and the rate of decline was steeper for high vs low load trials. Self-reported mind wandering increased over time, and significantly varied asa function of both load and time on task. Participants reported greater mind wandering at the beginning of the experiment for low vs. high load trials; however, with greater time on task, more mind wandering was reported during high vs. low load trials. These results suggest that the availability of executive resources in support of working memory maintenance processes fluctuates in a demand-sensitive manner with time on task, and may be commandeered by mind wandering. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Catherine J.; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K.; Chen, Jiang-Fan
2011-01-01
The adenosine A2A receptor (A2AR) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A2AR inactivation can be pro-cognitive, analyses of A2AR's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A2ARs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A2ARs. Specifically, we evaluated the cognitive impacts of conditional A2AR deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A2AR KO) or to striatum alone (st-A2AR KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A2AR-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility—enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A2ARs as they were captured by A2AR deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D1, D2, or A1 receptor expression was found. This study provides the first direct demonstration that targeting striatal A2ARs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions. PMID:21693634
Wei, Catherine J; Singer, Philipp; Coelho, Joana; Boison, Detlev; Feldon, Joram; Yee, Benjamin K; Chen, Jiang-Fan
2011-01-01
The adenosine A(2A) receptor (A(2A)R) is highly enriched in the striatum where it is uniquely positioned to integrate dopaminergic, glutamatergic, and other signals to modulate cognition. Although previous studies support the hypothesis that A(2A)R inactivation can be pro-cognitive, analyses of A(2A)R's effects on cognitive functions have been restricted to a small subset of cognitive domains. Furthermore, the relative contribution of A(2A)Rs in distinct brain regions remains largely unknown. Here, we studied the regulation of multiple memory processes by brain region-specific populations of A(2A)Rs. Specifically, we evaluated the cognitive impacts of conditional A(2A)R deletion restricted to either the entire forebrain (i.e., cerebral cortex, hippocampus, and striatum, fb-A(2A)R KO) or to striatum alone (st-A(2A)R KO) in recognition memory, working memory, reference memory, and reversal learning. This comprehensive, comparative analysis showed for the first time that depletion of A(2A)R-dependent signaling in either the entire forebrain or striatum alone is associated with two specific phenotypes indicative of cognitive flexibility-enhanced working memory and enhanced reversal learning. These selective pro-cognitive phenotypes seemed largely attributed to inactivation of striatal A(2A)Rs as they were captured by A(2A)R deletion restricted to striatal neurons. Neither spatial reference memory acquisition nor spatial recognition memory were grossly affected, and no evidence for compensatory changes in striatal or cortical D(1), D(2), or A(1) receptor expression was found. This study provides the first direct demonstration that targeting striatal A(2A)Rs may be an effective, novel strategy to facilitate cognitive flexibility under normal and pathologic conditions.
Levinson, Daniel B; Smallwood, Jonathan; Davidson, Richard J
2012-04-01
Tasks that tax working memory (WM) have consistently been found to decrease mind wandering. These findings may indicate that maintenance of mind wandering requires WM resources, such that mind wandering cannot persist when WM resources are being consumed by a task. An alternative explanation for these findings, however, is that mind wandering persists without the support of WM but is nonetheless decreased during any demanding task because good task performance requires that attention be restricted from task-unrelated thought (TUT). The present study tested these two competing theories by investigating whether individuals with greater WM resources mind-wander more during an undemanding task, as would be predicted only by the theory that WM supports TUT. We found that individuals with higher WM capacity reported more TUT in undemanding tasks, which suggests that WM enables the maintenance of mind wandering.
Mohamad, Najibah; Hoare, Derek J; Hall, Deborah A
2016-02-01
People with tinnitus report anecdotal difficulties in mental concentration and psychological treatments for tinnitus advise on concentration difficulties and how to manage them. Yet the literature lacks any coherent discussion about what precise theoretical cognitive constructs might be mediating reported concentration problems. This review addresses this gap by describing and critically appraising the behavioural evidence for the effects of tinnitus on cognitive performance (namely working memory and attention). Empirical evidence is somewhat limited, but there is some support that tinnitus interferes with executive attention, and mixed support that it impairs working memory and selective attention. We highlight a number of methodological considerations to help drive the field forward and we propose a putative model of the complex inter-relationships between tinnitus, cognition and confounding factors. This model provides a basis for hypothesis testing. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Battini, R; Chieffo, D; Bulgheroni, S; Piccini, G; Pecini, C; Lucibello, S; Lenzi, S; Moriconi, F; Pane, M; Astrea, G; Baranello, G; Alfieri, P; Vicari, S; Riva, D; Cioni, G; Mercuri, E
2018-02-01
The aim of our prospective observational study was to assess profiles of cognitive function and a possible impairment of executive functions in a cohort of boys with Duchenne muscular dystrophy without intellectual and behavior disability. Forty Duchenne boys (range of age: 6 years to 11 years and 6 months) were assessed by Wechsler Intelligence scale and battery of tests including tasks assessing working memory and executive functions (inhibition and switching, problem solving and planning). In our cohort some aspects of cognitive function were often impaired. These included multitasking, problem solving, inhibition and working memory necessary to plan and direct goal oriented behavior. Our results support the suggestion that aspects of cognitive function could be impaired even in boys without intellectual disability and support the hypothesis that executive functions may play an important role in specific aspects of cognitive impairment in Duchenne muscular dystrophy. Copyright © 2017 Elsevier B.V. All rights reserved.
Fisher, Derek J; Knobelsdorf, Amy; Jaworska, Natalia; Daniels, Richelle; Knott, Verner J
2013-01-01
Research in smokers has shown that nicotine may have the ability to improve certain aspects of cognitive performance, including working memory and attention, processes which implicate frontal and frontal-parietal brain networks. There is limited research on the cognitive effects of nicotine and their associated neural underpinnings in non-smokers. This study examined the effects of acute nicotine on a working memory task alone or combined with a visual detection task (single- and dual-task conditions) using electroencephalographic (EEG) recordings and behavioural performance measures. Twenty non-smokers (13 females; 7 males) received nicotine gum (6 mg) in a double-blind, randomized, placebo-controlled, repeated measures design. Spectral EEG, together with response speed and accuracy measures, were obtained while participants completed a series of N-Back tasks under single- and dual-task conditions. Nicotine failed to exert any significant effects on performance measures, however, EEG changes were observed, primarily in frontal recordings, which varied with memory load, task condition and hemisphere. These findings, discussed in relation to previous studies in smokers, support the notion that nicotine may modulate central executive systems and contribute to smoking behaviour. Copyright © 2012 Elsevier Inc. All rights reserved.
Frontal lobe function in temporal lobe epilepsy
Stretton, J.; Thompson, P.J.
2012-01-01
Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further. PMID:22100147
Buchsbaum, Bradley R.; Baldo, Juliana; Okada, Kayoko; Berman, Karen F.; Dronkers, Nina; D’Esposito, Mark; Hickok, Gregory
2011-01-01
Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways, recent advances in lesions reconstruction methodology applied to groups of patients have implicated left temporoparietal zones. Parallel work using functional magnetic resonance imaging (fMRI) has pinpointed a region in the posterior most portion of the left planum temporale, area Spt, which is critical for phonological working memory. Here we show that the region of maximal lesion overlap in a sample of 14 patients with conduction aphasia perfectly circumscribes area Spt, as defined in an aggregate fMRI analysis of 105 subjects performing a phonological working memory task. We provide a review of the evidence supporting the idea that Spt is an interface site for the integration of sensory and vocal tract-related motor representations of complex sound sequences, such as speech and music and show how the symptoms of conduction aphasia can be explained by damage to this system. PMID:21256582
Buchsbaum, Bradley R; Baldo, Juliana; Okada, Kayoko; Berman, Karen F; Dronkers, Nina; D'Esposito, Mark; Hickok, Gregory
2011-12-01
Conduction aphasia is a language disorder characterized by frequent speech errors, impaired verbatim repetition, a deficit in phonological short-term memory, and naming difficulties in the presence of otherwise fluent and grammatical speech output. While traditional models of conduction aphasia have typically implicated white matter pathways, recent advances in lesions reconstruction methodology applied to groups of patients have implicated left temporoparietal zones. Parallel work using functional magnetic resonance imaging (fMRI) has pinpointed a region in the posterior most portion of the left planum temporale, area Spt, which is critical for phonological working memory. Here we show that the region of maximal lesion overlap in a sample of 14 patients with conduction aphasia perfectly circumscribes area Spt, as defined in an aggregate fMRI analysis of 105 subjects performing a phonological working memory task. We provide a review of the evidence supporting the idea that Spt is an interface site for the integration of sensory and vocal tract-related motor representations of complex sound sequences, such as speech and music and show how the symptoms of conduction aphasia can be explained by damage to this system. 2011 Elsevier Inc. All rights reserved.
Nikolin, Stevan; Loo, Colleen K; Bai, Siwei; Dokos, Socrates; Martin, Donel M
2015-08-15
Declarative verbal learning and memory are known to be lateralised to the dominant hemisphere and to be subserved by a network of structures, including those located in frontal and temporal regions. These structures support critical components of verbal memory, including working memory, encoding, and retrieval. Their relative functional importance in facilitating declarative verbal learning and memory, however, remains unclear. To investigate the different functional roles of these structures in subserving declarative verbal learning and memory performance by applying a more focal form of transcranial direct current stimulation, "High Definition tDCS" (HD-tDCS). Additionally, we sought to examine HD-tDCS effects and electrical field intensity distributions using computer modelling. HD-tDCS was administered to the left dorsolateral prefrontal cortex (LDLPFC), planum temporale (PT), and left medial temporal lobe (LMTL) to stimulate the hippocampus, during learning on a declarative verbal memory task. Sixteen healthy participants completed a single blind, intra-individual cross-over, sham-controlled study which used a Latin Square experimental design. Cognitive effects on working memory and sustained attention were additionally examined. HD-tDCS to the LDLPFC significantly improved the rate of verbal learning (p=0.03, η(2)=0.29) and speed of responding during working memory performance (p=0.02, η(2)=0.35), but not accuracy (p=0.12, η(2)=0.16). No effect of tDCS on verbal learning, retention, or retrieval was found for stimulation targeted to the LMTL or the PT. Secondary analyses revealed that LMTL stimulation resulted in increased recency (p=0.02, η(2)=0.31) and reduced mid-list learning effects (p=0.01, η(2)=0.39), suggesting an inhibitory effect on learning. HD-tDCS to the LDLPFC facilitates the rate of verbal learning and improved efficiency of working memory may underlie performance effects. This focal method of administrating tDCS has potential for probing and enhancing cognitive functioning. Copyright © 2015 Elsevier Inc. All rights reserved.
Constructing Memory, Imagination, and Empathy: A Cognitive Neuroscience Perspective
Gaesser, Brendan
2012-01-01
Studies on memory, imagination, and empathy have largely progressed in isolation. Consequently, humans’ empathic tendencies to care about and help other people are considered independent of our ability to remember and imagine events. Despite this theoretical autonomy, work from across psychology, and neuroscience suggests that these cognitive abilities may be linked. In the present paper, I tentatively propose that humans’ ability to vividly imagine specific events (as supported by constructive memory) may facilitate prosocial intentions and behavior. Evidence of a relationship between memory, imagination, and empathy comes from research that shows imagination influences the perceived and actual likelihood an event occurs, improves intergroup relations, and shares a neural basis with memory and empathy. Although many questions remain, this paper outlines a new direction for research that investigates the role of imagination in promoting empathy and prosocial behavior. PMID:23440064
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
Bouman, Zita; Elhorst, Didi; Hendriks, Marc P H; Kessels, Roy P C; Aldenkamp, Albert P
2016-02-01
The Wechsler Memory Scale (WMS) is one of the most widely used test batteries to assess memory functions in patients with brain dysfunctions of different etiologies. This study examined the clinical validation of the Dutch Wechsler Memory Scale - Fourth Edition (WMS-IV-NL) in patients with temporal lobe epilepsy (TLE). The sample consisted of 75 patients with intractable TLE, who were eligible for epilepsy surgery, and 77 demographically matched healthy controls. All participants were examined with the WMS-IV-NL. Patients with TLE performed significantly worse than healthy controls on all WMS-IV-NL indices and subtests (p<.01), with the exception of the Visual Working Memory Index including its contributing subtests, as well as the subtests Logical Memory I, Verbal Paired Associates I, and Designs II. In addition, patients with mesiotemporal abnormalities performed significantly worse than patients with lateral temporal abnormalities on the subtests Logical Memory I and Designs II and all the indices (p<.05), with the exception of the Auditory Memory Index and Visual Working Memory Index. Patients with either a left or a right temporal focus performed equally on all WMS-IV-NL indices and subtests (F(15, 50)=.70, p=.78), as well as the Auditory-Visual discrepancy score (t(64)=-1.40, p=.17). The WMS-IV-NL is capable of detecting memory problems in patients with TLE, indicating that it is a sufficiently valid memory battery. Furthermore, the findings support previous research showing that the WMS-IV has limited value in identifying material-specific memory deficits in presurgical patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect
Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto
2013-01-01
Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search). PMID:23607935
Greater loss of object than spatial mnemonic discrimination in aged adults.
Reagh, Zachariah M; Ho, Huy D; Leal, Stephanie L; Noche, Jessica A; Chun, Amanda; Murray, Elizabeth A; Yassa, Michael A
2016-04-01
Previous studies across species have established that the aging process adversely affects certain memory-related brain regions earlier than others. Behavioral tasks targeted at the function of vulnerable regions can provide noninvasive methods for assessing the integrity of particular components of memory throughout the lifespan. The present study modified a previous task designed to separately but concurrently test detailed memory for object identity and spatial location. Memory for objects or items is thought to rely on perirhinal and lateral entorhinal cortices, among the first targets of Alzheimer's related neurodegeneration. In line with prior work, we split an aged adult sample into "impaired" and "unimpaired" groups on the basis of a standardized word-learning task. The "impaired" group showed widespread difficulty with memory discrimination, whereas the "unimpaired" group showed difficulty with object, but not spatial memory discrimination. These findings support the hypothesized greater age-related impacts on memory for objects or items in older adults, perhaps even with healthy aging. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Visual working memory buffers information retrieved from visual long-term memory.
Fukuda, Keisuke; Woodman, Geoffrey F
2017-05-16
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.
Visual working memory buffers information retrieved from visual long-term memory
Fukuda, Keisuke; Woodman, Geoffrey F.
2017-01-01
Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479
Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Memory systems interaction in the pigeon: working and reference memory.
Roberts, William A; Strang, Caroline; Macpherson, Krista
2015-04-01
Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Schwaighofer, Matthias; Vogel, Freydis; Kollar, Ingo; Ufer, Stefan; Strohmaier, Anselm; Terwedow, Ilka; Ottinger, Sarah; Reiss, Kristina; Fischer, Frank
2017-01-01
Mathematical argumentation skills (MAS) are considered an important outcome of mathematics learning, particularly in secondary and tertiary education. As MAS are complex, an effective way of supporting their acquisition may require combining different scaffolds. However, how to combine different scaffolds is a delicate issue, as providing learners…
Integration of Simulation into Pre-Laboratory Chemical Course: Computer Cluster versus WebCT
ERIC Educational Resources Information Center
Limniou, Maria; Papadopoulos, Nikos; Whitehead, Christopher
2009-01-01
Pre-laboratory activities have been known to improve students' preparation before their practical work as they assist students to make available more working memory capacity for actual learning during the laboratory. The aim of this investigation was to compare two different teaching approaches which supported a pre-laboratory session by using the…
Vergauwe, Evie
2018-04-23
Refreshing is one of the mechanisms proposed to maintain information in human working memory. The mechanism is assumed to operate serially, boosting the items of a memory list one after the other. In the current study, we test the most straightforward implementation of serial refreshing, by which refreshing spontaneously reproduces the order of presentation, starting with the first memory item and cycling through the list in a forward fashion, to support short-term memory of a list. Therefore, we examined verbal serial recall performance under different instructed-refreshing schedules that varied in their similarity to cumulative, forward-order refreshing. This was done by manipulating whether instructed refreshing started with the first memory item, and whether instructed refreshing proceeded in forward order through the list. We expected recall performance to be poorer as participants were required to think of the list items in a way that was more dissimilar to what they would have done spontaneously. However, across four experiments, we observed that recall performance was not drastically affected by the nature of instructed refreshing and thus, we did not find any evidence that cumulative, forward-order refreshing supports serial verbal WM performance. © 2018 New York Academy of Sciences.
Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.
Koshino, Hideya; Olid, Pilar
2015-01-01
The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.
Working-memory performance is related to spatial breadth of attention.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2015-11-01
Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.
Mackenzie, Michael J.; Zuniga, Krystle E.; Raine, Lauren B.; Awick, Elizabeth A.; Hillman, Charles H.; Kramer, Arthur F.
2016-01-01
Abstract Background: This study examined the effects of cardiorespiratory fitness, heart rate recovery, and physical activity on working memory in breast cancer survivors and age-matched controls. Method: Using a case-control design, 32 women who had received a breast cancer diagnosis and completed primary treatment within the past 36-months (11 radiation only; 21 chemotherapy) and 30 age-matched women with no previous cancer diagnosis completed a n-back continuous performance task commonly used as an assessment of working memory. In addition, cardiorespiratory fitness and heart rate recovery were measured during a submaximal graded exercise test and physical activity was measured using 7-days of accelerometer monitoring. Results: Breast cancer survivors who had received chemotherapy had poorer heart rate recovery (p = .010) and engaged in less physical activity than women who had received radiation only (p = .004) or non-cancer controls (p = .029). Cancer treatment (radiation; chemotherapy) predicted differences in reaction times on the 1-back working memory task (p = .029). However, more rapid heart rate recovery predicted shorter reaction times on the 1-back task in the age-matched control group (p = .002). All participants with greater cardiorespiratory fitness displayed greater accuracy independent of disease status on the 1-back task (p = .017). No significant group differences in reaction times were observed for 2-back target trials between breast cancer survivors and controls. However, greater total physical activity predicted shorter reaction times in breast cancer survivors (radiation, chemotherapy) on the 2-back task (p = .014). In addition, all participants who exhibited more rapid heart rate recovery demonstrated better greater accuracy regardless of disease status (p = .013). Conclusion: These findings support differences in physical activty participation, heart rate recovery, and 1- and 2-back working memory reaction times between breast cancer survivors and age-matched controls. Greater cardiorespiratory fitness, heart rate recovery, and physical activity were positively associated with better working memory performance across conditions. PMID:26418463
Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective.
Vilberg, Kaia L; Rugg, Michael D
2008-01-01
Although regions of the parietal cortex have been consistently implicated in episodic memory retrieval, the functional roles of these regions remain poorly understood. The present review presents a meta-analysis of findings from event-related fMRI studies reporting the loci of retrieval effects associated with familiarity- and recollection-related recognition judgments. The results of this analysis support previous suggestions that retrieval-related activity in lateral parietal cortex dissociates between superior regions, where activity likely reflects the task relevance of different classes of recognition test items, and more inferior regions where retrieval-related activity appears closely linked to successful recollection. It is proposed that inferior lateral parietal cortex forms part of a neural network supporting the 'episodic buffer' [Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417-423].
Bragdon, Laura B; Gibb, Brandon E; Coles, Meredith E
2018-06-19
Investigations of neuropsychological functioning in obsessive-compulsive disorder (OCD) have produced mixed results for deficits in executive functioning (EF), attention, and memory. One potential explanation for varied findings may relate to the heterogeneity of symptom presentations, and different clinical or neurobiological characteristics may underlie these different symptoms. We investigated differences in neuropsychological functioning between two symptoms groups, obsessing/checking (O/C) and symmetry/ordering (S/O), based on data suggesting an association with different motivations: harm avoidance and incompleteness, respectively. Ten studies (with 628 patients) were included and each investigation assessed at least one of 14 neuropsychological domains. The S/O domain demonstrated small, negative correlations with overall neuropsychological functioning, performance in EF, memory, visuospatial ability, cognitive flexibility, and verbal working memory. O/C symptoms demonstrated small, negative correlations with memory and verbal memory performance. A comparison of functioning between symptom groups identified large effect sizes showing that the S/O dimension was more strongly related to poorer neuropsychological performance overall, and in the domains of attention, visuospatial ability, and the subdomain of verbal working memory. Findings support existing evidence suggesting that different OCD symptoms, and their associated core motivations, relate to unique patterns of neuropsychological functioning, and, potentially dysfunction in different neural circuits. © 2018 Wiley Periodicals, Inc.
Feasibility of self-correcting quantum memory and thermal stability of topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Beni, E-mail: rouge@mit.edu
2011-10-15
Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less
A steady state visually evoked potential investigation of memory and ageing.
Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard
2009-04-01
Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and latency associated with memory performance. Participants were 15 older (59-67 years) and 14 younger (20-30 years) adults who performed an object working memory (OWM) task and a contextual recognition memory (CRM) task, whilst the SSVEP was recorded from 64 electrode sites. Retention of a single object in the low demand OWM task was characterised by smaller frontal SSVEP amplitude and latency differences in older adults than in younger adults, indicative of an age-associated reduction in neural processes. Recognition of visual images in the more difficult CRM task was accompanied by larger, more sustained SSVEP amplitude and latency decreases over temporal parietal regions in older adults. In contrast, the more transient, frontally mediated pattern of activity demonstrated by younger adults suggests that younger and older adults utilize different neural resources to perform recognition judgements. The results provide support for compensatory processes in the aging brain; at lower task demands, older adults demonstrate reduced neural activity, whereas at greater task demands neural activity is increased.
Object-based Encoding in Visual Working Memory: Evidence from Memory-driven Attentional Capture.
Gao, Zaifeng; Yu, Shixian; Zhu, Chengfeng; Shui, Rende; Weng, Xuchu; Li, Peng; Shen, Mowei
2016-03-09
Visual working memory (VWM) adopts a specific manner of object-based encoding (OBE) to extract perceptual information: Whenever one feature-dimension is selected for entry into VWM, the others are also extracted. Currently most studies revealing OBE probed an 'irrelevant-change distracting effect', where changes of irrelevant-features dramatically affected the performance of the target feature. However, the existence of irrelevant-feature change may affect participants' processing manner, leading to a false-positive result. The current study conducted a strict examination of OBE in VWM, by probing whether irrelevant-features guided the deployment of attention in visual search. The participants memorized an object's colour yet ignored shape and concurrently performed a visual-search task. They searched for a target line among distractor lines, each embedded within a different object. One object in the search display could match the shape, colour, or both dimensions of the memory item, but this object never contained the target line. Relative to a neutral baseline, where there was no match between the memory and search displays, search time was significantly prolonged in all match conditions, regardless of whether the memory item was displayed for 100 or 1000 ms. These results suggest that task-irrelevant shape was extracted into VWM, supporting OBE in VWM.
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.
Efficacy of a short cognitive training program in patients with multiple sclerosis
Pérez-Martín, María Yaiza; González-Platas, Montserrat; Eguía-del Río, Pablo; Croissier-Elías, Cristina; Jiménez Sosa, Alejandro
2017-01-01
Background Cognitive impairment is a common feature in multiple sclerosis (MS) and may have a substantial impact on quality of life. Evidence about the effectiveness of neuropsychological rehabilitation is still limited, but current data suggest that computer-assisted cognitive training improves cognitive performance. Objective The objective of this study was to evaluate the efficacy of combined computer-assisted training supported by home-based neuropsychological training to improve attention, processing speed, memory and executive functions during 3 consecutive months. Methods In this randomized controlled study blinded for the evaluators, 62 MS patients with clinically stable disease and mild-to-moderate levels of cognitive impairment were randomized to receive a computer-assisted neuropsychological training program (n=30) or no intervention (control group [CG]; n=32). The cognitive assessment included the Brief Repeatable Battery of Neuropsychological Test. Other secondary measures included subjective cognitive impairment, anxiety and depression, fatigue and quality of life measures. Results The treatment group (TG) showed significant improvements in measures of verbal memory, working memory and phonetic fluency after intervention, and repeated measures analysis of covariance revealed a positive effect in most of the functions. The control group (CG) did not show changes. The TG showed a significant reduction in anxiety symptoms and significant improvement in quality of life. There were no improvements in fatigue levels and depressive symptoms. Conclusion Cognitive intervention with a computer-assisted training supported by home training between face-to-face sessions is a useful tool to treat patients with MS and improve functions such as verbal memory, working memory and phonetic fluency. PMID:28223806
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes -with no effects on perceptual processes- and a posterior to anterior shift in the recruitment of neural resources. PMID:26569113
Meiron, Oded; Lavidor, Michal
2013-05-01
Recent studies revealed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may improve verbal working memory (WM) performance in humans. In the present study, we evaluated executive attention, which is the core of WM capacity, considered to be significantly involved in tasks that require active maintenance of memory representations in interference-rich conditions, and is highly dependent on DLPFC function. We investigated verbal WM accuracy using a WM task that is highly sensitive to executive attention function. We were interested in how verbal WM accuracy may be affected by WM load, unilateral DLPFC stimulation, and gender, as previous studies showed gender-dependent brain activation during verbal WM tasks. We utilized a modified verbal n-Back task hypothesized to increase demands on executive attention. We examined "online" WM performance while participants received transcranial direct current stimulation (tDCS), and implicit learning performance in a post-stimulation WM task. Significant lateralized "online" stimulation effects were found only in the highest WM load condition revealing that males benefit from left DLPFC stimulation, while females benefit from right DLPFC stimulation. High WM load performance in the left DLPFC stimulation was significantly related to post-stimulation recall performance. Our findings support the idea that lateralized stimulation effects in high verbal WM load may be gender-dependent. Further, our post-stimulation results support the idea that increased left hemisphere activity may be important for encoding verbal information into episodic memory as well as for facilitating retrieval of context-specific targets from semantic memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A
2015-12-01
A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering. (c) 2015 APA, all rights reserved).
Visuospatial and verbal memory in mental arithmetic.
Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes
2017-09-01
Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.
Song and speech: examining the link between singing talent and speech imitation ability.
Christiner, Markus; Reiterer, Susanne M
2013-01-01
In previous research on speech imitation, musicality, and an ability to sing were isolated as the strongest indicators of good pronunciation skills in foreign languages. We, therefore, wanted to take a closer look at the nature of the ability to sing, which shares a common ground with the ability to imitate speech. This study focuses on whether good singing performance predicts good speech imitation. Forty-one singers of different levels of proficiency were selected for the study and their ability to sing, to imitate speech, their musical talent and working memory were tested. Results indicated that singing performance is a better indicator of the ability to imitate speech than the playing of a musical instrument. A multiple regression revealed that 64% of the speech imitation score variance could be explained by working memory together with educational background and singing performance. A second multiple regression showed that 66% of the speech imitation variance of completely unintelligible and unfamiliar language stimuli (Hindi) could be explained by working memory together with a singer's sense of rhythm and quality of voice. This supports the idea that both vocal behaviors have a common grounding in terms of vocal and motor flexibility, ontogenetic and phylogenetic development, neural orchestration and auditory memory with singing fitting better into the category of "speech" on the productive level and "music" on the acoustic level. As a result, good singers benefit from vocal and motor flexibility, productively and cognitively, in three ways. (1) Motor flexibility and the ability to sing improve language and musical function. (2) Good singers retain a certain plasticity and are open to new and unusual sound combinations during adulthood both perceptually and productively. (3) The ability to sing improves the memory span of the auditory working memory.
Song and speech: examining the link between singing talent and speech imitation ability
Christiner, Markus; Reiterer, Susanne M.
2013-01-01
In previous research on speech imitation, musicality, and an ability to sing were isolated as the strongest indicators of good pronunciation skills in foreign languages. We, therefore, wanted to take a closer look at the nature of the ability to sing, which shares a common ground with the ability to imitate speech. This study focuses on whether good singing performance predicts good speech imitation. Forty-one singers of different levels of proficiency were selected for the study and their ability to sing, to imitate speech, their musical talent and working memory were tested. Results indicated that singing performance is a better indicator of the ability to imitate speech than the playing of a musical instrument. A multiple regression revealed that 64% of the speech imitation score variance could be explained by working memory together with educational background and singing performance. A second multiple regression showed that 66% of the speech imitation variance of completely unintelligible and unfamiliar language stimuli (Hindi) could be explained by working memory together with a singer's sense of rhythm and quality of voice. This supports the idea that both vocal behaviors have a common grounding in terms of vocal and motor flexibility, ontogenetic and phylogenetic development, neural orchestration and auditory memory with singing fitting better into the category of “speech” on the productive level and “music” on the acoustic level. As a result, good singers benefit from vocal and motor flexibility, productively and cognitively, in three ways. (1) Motor flexibility and the ability to sing improve language and musical function. (2) Good singers retain a certain plasticity and are open to new and unusual sound combinations during adulthood both perceptually and productively. (3) The ability to sing improves the memory span of the auditory working memory. PMID:24319438
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. Clinical Trial Registration: www.chictr.org.cn, identifier ChiCTR-OON-16007793. PMID:27375521
Influence of early attentional modulation on working memory
Gazzaley, Adam
2011-01-01
It is now established that attention influences working memory (WM) at multiple processing stages. This liaison between attention and WM poses several interesting empirical questions. Notably, does attention impact WM via its influences on early perceptual processing? If so, what are the critical factors at play in this attention-perception-WM interaction. I review recent data from our laboratory utilizing a variety of techniques (electroencephalography (EEG), functional MRI (fMRI) and transcranial magnetic stimulation (TMS)), stimuli (features and complex objects), novel experimental paradigms, and research populations (younger and older adults), which converge to support the conclusion that top-down modulation of visual cortical activity at early perceptual processing stages (100–200 ms after stimulus onset) impacts subsequent WM performance. Factors that affect attentional control at this stage include cognitive load, task practice, perceptual training, and aging. These developments highlight the complex and dynamic relationships among perception, attention, and memory. PMID:21184764
Refreshing memory traces: thinking of an item improves retrieval from visual working memory.
Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus
2015-03-01
This article provides evidence that refreshing, a hypothetical attention-based process operating in working memory (WM), improves the accessibility of visual representations for recall. "Thinking of", one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition. © 2014 New York Academy of Sciences.
Memory skills mediating superior memory in a world-class memorist.
Ericsson, K Anders; Cheng, Xiaojun; Pan, Yafeng; Ku, Yixuan; Ge, Yi; Hu, Yi
2017-10-01
Laboratory studies have investigated how individuals with normal memory spans attained digit spans over 80 digits after hundreds of hours of practice. Experimental analyses of their memory skills suggested that their attained memory spans were constrained by the encoding time, for the time needed will increase if the length of digit sequences to be memorised becomes longer. These constraints seemed to be violated by a world-class memorist, Feng Wang (FW), who won the World Memory Championship by recalling 300 digits presented at 1 digit/s. In several studies we examined FW's memory skills underlying his exceptional performance. First FW reproduced his superior memory span of 200 digits under laboratory condition, and we obtained his retrospective reports describing his encoding/retrieval processes (Experiment 1). Further experiments used self-paced memorisation to identify temporal characteristics of encoding of digits in 4-digit clusters (Experiment 2), and explored memory encoding at presentation speeds much faster than 1 digit/s (Experiment 3). FW's superiority over previous digit span experts is explained by his acquisition of well-known mnemonic techniques and his training that focused on rapid memorisation. His memory performance supports the feasibility of acquiring memory skills for improved working memory based on storage in long-term memory.
ERIC Educational Resources Information Center
Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew
2010-01-01
Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…
Saidel-Goley, Isaac N; Albiero, Erin E; Flannery, Kathleen A
2012-02-01
Dissociation is a mental process resulting in the disruption of memory, perception, and sometimes identity. At a nonclinical level, only mild dissociative experiences occur. The nature of nonclinical dissociation is disputed in the literature, with some asserting that it is a beneficial information processing style and others positing that it is a psychopathological phenomenon. The purpose of this study was to further the understanding of nonclinical dissociation with respect to memory and attention, by including a more ecologically valid virtual reality (VR) memory task along with standard neuropsychological tasks. Forty-five undergraduate students from a small liberal arts college in the northeast participated for course credit. The participants completed a battery of tasks including two standard memory tasks, a standard attention task, and an experimental VR memory task; the VR task included immersion in a virtual apartment, followed by incidental object-location recall for objects in the virtual apartment. Support for the theoretical model portraying nonclinical dissociation as a beneficial information processing style was found in this study. Dissociation scores were positively correlated with working memory scores and attentional processing scores on the standard neuropsychological tasks. In terms of the VR task, dissociation scores were positively correlated with more false positive memories that could be the result of a tendency of nonclinical highly dissociative individuals to create more elaborative schemas. This study also demonstrates that VR paradigms add to the prediction of cognitive functioning in testing protocols using standard neuropsychological tests, while simultaneously increasing ecological validity.
Berg, Derek H
2008-04-01
The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.
Mélan, Claudine; Cascino, Nadine
2014-01-01
The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
Giesbrecht, Barry; Sy, Jocelyn L.; Guerin, Scott A.
2012-01-01
Environmental context learned without awareness can facilitate visual processing of goal-relevant information. According to one view, the benefit of implicitly learned context relies on the neural systems involved in spatial attention and hippocampus-mediated memory. While this view has received empirical support, it contradicts traditional models of hippocampal function. The purpose of the present work was to clarify the influence of spatial context on visual search performance and on brain structures involved memory and attention. Event-related functional magnetic resonance imaging revealed that activity in the hippocampus as well as in visual and parietal cortex was modulated by learned visual context even though participants’ subjective reports and performance on a post-experiment recognition task indicated no explicit knowledge of the learned context. Moreover, the magnitude of the initial selective hippocampus response predicted the magnitude of the behavioral benefit due to context observed at the end of the experiment. The results suggest that implicit contextual learning is mediated by attention and memory and that these systems interact to support search of our environment. PMID:23099047
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Nicolaou, E; Quach, J; Lum, J; Roberts, G; Spencer-Smith, M; Gathercole, S; Anderson, P J; Mensah, F K; Wake, M
2018-05-01
Adaptive working memory training is being implemented without an adequate understanding of developmental trajectories of working memory. We aimed to quantify from Grade 1 to Grade 3 of primary school (1) changes in verbal and visuospatial working memory and (2) whether low verbal and visuospatial working memory in Grade 1 predicts low working memory in Grade 3. The study design includes a population-based longitudinal study of 1,802 children (66% uptake from all 2,747 Grade 1 students) at 44 randomly selected primary schools in Melbourne, Australia. Backwards Digit Recall (verbal working memory) and Mister X (visuospatial working memory) screening measures from the Automated Working Memory Assessment (M = 100; SD = 15) were used to assess Grades 1 and 3 (ages 6-7 and 8-9 years) students. Low working memory was defined as ≥1 standard deviation below the standard score mean. Descriptive statistics addressed Aim 1, and predictive parameters addressed Aim 2. One thousand seventy (59%) of 1802 Grade 1 participants were reassessed in Grade 3. As expected for typically developing children, group mean standard scores were similar in Grades 1 and 3 for verbal, visuospatial, and overall working memory, but group mean raw scores increased markedly. Compared to "not low" children, those classified as having low working memory in Grade 1 showed much larger increases in both standard and raw scores across verbal, visuospatial, and overall working memory. Sensitivity was very low for Grade 1 low working memory predicting Grade 3 low classifications. Although mean changes in working memory standard scores between Grades 1 and 3 were minimal, we found that individual development varied widely, with marked natural resolution by Grade 3 in children who initially had low working memory. This may render brain-training interventions ineffective in the early school year ages, particularly if (as population-based programmes usually mandate) selection occurs within a screening paradigm. © 2017 John Wiley & Sons Ltd.
Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing
2014-01-01
To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.
ERIC Educational Resources Information Center
Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.
2013-01-01
Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…
Working-memory training improves developmental dyslexia in Chinese children.
Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu
2013-02-15
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized.
Haut, Kristen M; Karlsgodt, Katherine H; Bilder, Robert M; Congdon, Eliza; Freimer, Nelson B; London, Edythe D; Sabb, Fred W; Ventura, Joseph; Cannon, Tyrone D
2015-10-01
Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects' distributional positions across memory domains was measured. Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual's task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. Copyright © 2015 Elsevier B.V. All rights reserved.
Memory systems in schizophrenia: Modularity is preserved but deficits are generalized
Haut, Kristen M.; Karlsgodt, Katherine H.; Bilder, Robert M.; Congdon, Eliza; Freimer, Nelson; London, Edythe D.; Sabb, Fred W.; Ventura, Joseph; Cannon, Tyrone D.
2015-01-01
Objective Schizophrenia patients exhibit impaired working and episodic memory, but this may represent generalized impairment across memory modalities or performance deficits restricted to particular memory systems in subgroups of patients. Furthermore, it is unclear whether deficits are unique from those associated with other disorders. Method Healthy controls (n=1101) and patients with schizophrenia (n=58), bipolar disorder (n=49) and attention-deficit-hyperactivity-disorder (n=46) performed 18 tasks addressing primarily verbal and spatial episodic and working memory. Effect sizes for group contrasts were compared across tasks and the consistency of subjects’ distributional positions across memory domains was measured. Results Schizophrenia patients performed poorly relative to the other groups on every test. While low to moderate correlation was found between memory domains (r=.320), supporting modularity of these systems, there was limited agreement between measures regarding each individual’s task performance (ICC=.292) and in identifying those individuals falling into the lowest quintile (kappa=0.259). A general ability factor accounted for nearly all of the group differences in performance and agreement across measures in classifying low performers. Conclusions Pathophysiological processes involved in schizophrenia appear to act primarily on general abilities required in all tasks rather than on specific abilities within different memory domains and modalities. These effects represent a general shift in the overall distribution of general ability (i.e., each case functioning at a lower level than they would have if not for the illness), rather than presence of a generally low-performing subgroup of patients. There is little evidence that memory impairments in schizophrenia are shared with bipolar disorder and ADHD. PMID:26299707
Brown, Franklin C; Roth, Robert M; Katz, Lynda J
2015-08-30
Attention Deficit Hyperactivity Disorder (ADHD) has often been conceptualized as arising executive dysfunctions (e.g., inattention, defective inhibition). However, recent studies suggested that cognitive inefficiency may underlie many ADHD symptoms, according to reaction time and processing speed abnormalities. This study explored whether a non-timed measure of cognitive inefficiency would also be abnormal. A sample of 23 ADHD subjects was compared to 23 controls on a test that included both egocentric and allocentric visual memory subtests. A factor analysis was used to determine which cognitive variables contributed to allocentric visual memory. The ADHD sample performed significantly lower on the allocentric but not egocentric conditions. Allocentric visual memory was not associated with timed, working memory, visual perception, or mental rotation variables. This paper concluded by discussing how these results supported a cognitive inefficiency explanation for some ADHD symptoms, and discussed future research directions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.