Science.gov

Sample records for suppressed cpg-induced il-6

  1. Normal mitogen-induced suppression of the interleukin-6 (IL-6) response and its deficiency in systemic lupus erythematosus

    SciTech Connect

    Warrington, R.J.; Rutherford, W.J. )

    1990-01-01

    A low-frequency suppressor-cell population in normal peripheral blood inhibits the B-cell CESS response to IL-6, following pokeweed mitogen stimulation. The suppression of IL-6 responsiveness is radiation sensitive, directed against CESS targets and not mediated by inhibition of IL-6 production, and associated with nonspecific cytotoxic activity against CESS targets. The generation of these cytolytic cells is also radiation sensitive. A correlation was found between PWM-induced cytotoxicity against CESS and the suppression of IL-6-dependent IgG production. But cytotoxicity toward CESS targets is not responsible for this suppression because IL-2 induces equivalent or greater nonspecific cytotoxicity against CESS in the total absence of suppression of CESS-derived IgG production and suppression is also induced by mitogen-activated PBL separated from CESS targets by a cell-impermeable membrane. This suppression was not mediated by TNF alpha/beta or IFN-gamma. In systemic lupus erythematosus, suppression of IL-6-dependent IgG production is impaired in patients with active disease (29.2 +/- 13.7%) compared to patients with inactive disease (70 +/- 19.5%) or normal controls (82.8 +/- 9.2%). There is also a defect in mitogen-induced nonspecific cytotoxicity in active SLE (specific lysis 15.1 +/- 3.5%, compared to 34 +/- 4% in normals). Pokeweed mitogen-activated PBL can therefore normally induce suppression of B-cell IL-6 responses and this response is deficient in lupus.

  2. 15-Lipoxygenase-1 suppression of colitis-associated colon cancer through inhibition of the IL-6/STAT3 signaling pathway

    PubMed Central

    Mao, Fei; Xu, Min; Zuo, Xiangsheng; Yu, Jiang; Xu, Weiguo; Moussalli, Micheline J.; Elias, Elias; Li, Haiyan S.; Watowich, Stephanie S.; Shureiqi, Imad

    2015-01-01

    The IL-6/signal transducer and activator of transcription 3 (STAT3) pathway is a critical signaling pathway for colitis-associated colorectal cancer (CAC). Peroxisome proliferator-activated receptor (PPAR)-δ, a lipid nuclear receptor, up-regulates IL-6. 15-Lipoxygenase-1 (15-LOX-1), which is crucial to production of lipid signaling mediators to terminate inflammation, down-regulates PPAR-δ. 15-LOX-1 effects on IL-6/STAT3 signaling and CAC tumorigenesis have not been determined. We report that intestinally targeted transgenic 15-LOX-1 expression in mice inhibited azoxymethane- and dextran sodium sulfate–induced CAC, IL-6 expression, STAT3 phosphorylation, and IL-6/STAT3 downstream target (Notch3 and MUC1) expression. 15-LOX-1 down-regulation was associated with IL-6 up-regulation in human colon cancer mucosa. Reexpression of 15-LOX-1 in human colon cancer cells suppressed IL-6 mRNA expression, STAT3 phosphorylation, IL-6 promoter activity, and PPAR-δ mRNA and protein expression. PPAR-δ overexpression in colonic epithelial cells promoted CAC tumorigenesis in mice and increased IL-6 expression and STAT3 phosphorylation, whereas concomitant 15-LOX-1 expression in colonic epithelial cells (15-LOX-1-PPAR-δ-Gut mice) suppressed these effects: the number of tumors per mouse (mean ± sem) was 4.22 ± 0.68 in wild-type littermates, 6.67 ± 0.83 in PPAR-δ-Gut mice (P = 0.026), and 2.25 ± 0.25 in 15-LOX-1-PPAR-δ-Gut mice (P = 0.0006). Identification of 15-LOX-1 suppression of PPAR-δ to inhibit IL-6/STAT3 signaling-driven CAC tumorigenesis provides mechanistic insights that can be used to molecularly target CAC.—Mao, F., Xu, M., Zuo, X., Yu, J., Xu, W., Moussalli, M. J., Elias, E., Li, H. S., Watowich, S. S., Shureiqi, I. 15-Lipoxygenase-1 suppression of colitis-associated colon cancer through inhibition of the IL-6/STAT3 signaling pathway. PMID:25713055

  3. Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling.

    PubMed

    Ilamathi, M; Prabu, P C; Ayyappa, K Ashok; Sivaramakrishnan, V

    2016-08-01

    Activation of the IL-6 mediated JAK-STAT (Janus associated kinase-signal transducer and activator of transcription) oncogenic signalling plays a major role in hepatocellular carcinoma pathogenesis. The aim of this study is to assess the anti-tumour, anti-proliferative and apoptotic potential of artesunate and its capacity to modulate JAK-STAT pathway in a nitrosodiethylamine mediated experimental hepatocellular carcinoma model. Administration of nitrosodiethylamine (200mg/kg body weight by i.p. Injections) to rats resulted in alterations of liver pathophysiological parameters such as increased relative liver weight, and increased tumour nodule occurrence. It also increased the levels of serum marker enzymes (AST, ALT, ALP, LDH, and γGT) and tumour biomarker (AFP) levels suggestive of its capacity to cause liver tumourigenesis. Additionally, the immunohistochemistry of liver sections pertaining to nitrosodiethylamine administered animals showed increased detection of AgNOR, PCNA, and GST-Pi positive cells suggestive of its capacity to promote liver proliferation associated tumourigenesis. On the contrary, artesunate (25mg/kg bodyweight) supplementation to nitrosodiethylamine administered animals decreased all the above mentioned pathophysiological, biochemical, and immunohistochemistry parameters suggesting its anti-tumour and anti-proliferative potential. Furthermore, immunoblot analysis showed significant up-regulation of IL-6, GP130, JAK-2, STAT-3 (pY705), Bcl-xL, Bcl-2 and simultaneous down-regulation of Caspase-3, PARP and SOCS-3 in nitrosodiethylamine administered animals. Nevertheless, the immunoblot analysis revealed vice-versa on artesunate supplementation to nitrosodiethylamine administered animals, indicating promotion of the feedback loop inhibition mechanism through SOCS3 up-regulation thereby leading to suppression of JAK-STAT signalling. Overall all these findings substantiate that artesunate promotes anti-tumour, anti-proliferation and apoptosis

  4. Breaking a paradigm: IL-6/STAT3 signaling suppresses metastatic prostate cancer upon ARF expression.

    PubMed

    Culig, Zoran; Pencik, Jan; Merkel, Olaf; Kenner, Lukas

    2016-03-01

    Interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling is considered to have important oncogenic functions in prostate cancer (PCa). However, a recent study highlighted the central role of IL-6/STAT3 signaling in regulation of the ARF-MDM2-p53 senescence axis. This reversal of the postulated oncogenic properties of IL-6/STAT3 signaling in PCa has important therapeutic implications. PMID:27308625

  5. CCR5 Blockade Suppresses Melanoma Development Through Inhibition of IL-6-Stat3 Pathway via Upregulation of SOCS3.

    PubMed

    Tang, Qiu; Jiang, Jun; Liu, Jian

    2015-12-01

    In order to understand how tumor cells can escape immune surveillance mechanisms and thus develop antitumor therapies, it is critically important to investigate the mechanisms by which the immune system interacts with the tumor microenvironment. In our current study, we found that chemokine receptor 5 (CCR5) neutralization resulted in reduced melanoma tumor size, decreased percentage of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs), and increased proportion of cluster of differentiation (CD)3+ T cells in tumor tissues. Suppressive activity of MDSCs on CD4+ T cells and CD8+ T cell proliferation is significantly inhibited by anti-CCR5 antibody. CCR5 blockade also suppresses interleukin (IL)-6 induction, which in turn deactivates signal transducer and activator of transcription 3 (Stat3) in tumors. Furthermore, the suppressed B16 tumor growth induced by CCR5 blockade is abolished with additional administration of recombinant IL-6. CCR5 blockade also induces suppressor of cytokine signaling 3 (SOCS3) upregulations, and anti-CCR5 antibody fails to suppress expression of phospho-Stat3 (p-Stat3), matrix metallopeptidase 9 (MMP9), and IL-6 in cells transfected with SOCS3 short-interfering RNA (SiRNA). All these data suggest that CCR5 blockade suppresses melanoma development through inhibition of IL-6-Stat3 pathway via upregulation of SOCS3.

  6. SIGNR1-mediated phagocytosis, but not SIGNR1-mediated endocytosis or cell adhesion, suppresses LPS-induced secretion of IL-6 from murine macrophages.

    PubMed

    Kawauchi, Yoko; Takagi, Hideaki; Hanafusa, Kei; Kono, Mirei; Yamatani, Minami; Kojima, Naoya

    2015-01-01

    C-type lectin receptors (CLRs) serve as phagocytosis receptors for pathogens and also function as adhesion molecules and in the recognition and endocytosis of glycosylated self-antigens. In the present study, we demonstrated that phagocytosis mediated by a mouse mannose-binding CLR, SIGNR1 significantly suppressed the LPS-induced secretion of the specific pro-inflammatory cytokines from the resident peritoneal macrophages and the mouse macrophage-like cells that express SIGNR1 (RAW-SIGNR1). LPS-induced secretion of IL-6 from peritoneal macrophages suppressed in response to uptake of oligomannose-coated liposomes (OMLs), and the suppression was partly inhibited by treatment with an anti-SIGNR1 antibody. LPS-induced secretion of IL-6 from RAW-SIGNR1 cells was also clearly inhibited by treatment of the cells with OMLs >0.4μm in diameter, but treatment with OMLs <0.4μm in diameter did not affect the IL-6 secretion. In contrast, LPS-induced TNF-α secretion from the cells was not affected on treatment of the cells with OMLs. Suppression of the IL-6 secretion was not observed following treatment with oligomannose-containing soluble polymers or when cells were bound to an oligomannose-coated solid phase. Phagocytosis of oligomannose-coated liposomes did not interfere with the transcription of IL-6 mRNA, but did affect IL-6 mRNA stability, leading to suppression of IL-6 secretion. Interestingly, treatment of the cells with Ly290042, a PI3 kinase inhibitor, partly blocked the suppression of LPS-induced secretion of IL-6 by OML. Thus, we conclude that SIGNR1-mediated phagocytosis but not SIGNR1-mediated endocytosis and cell adhesion, suppresses the TLR4-mediated production of specific proinflammatory cytokines via PI3 kinase signaling.

  7. Loss of p53 Attenuates the Contribution of IL-6 Deletion on Suppressed Tumor Progression and Extended Survival in Kras-Driven Murine Lung Cancer

    PubMed Central

    Chen, Zhao; Zhang, Jishuai; Wang, Yanxiao; Chen, Jicheng; Li, Xiubin; Ye, Hui; Tang, Chuanhao; Cheng, Xuan; Hou, Ning; Yang, Xiao; Wong, Kwok-Kin

    2013-01-01

    Interleukin-6 (IL-6) is involved in lung cancer tumorigenesis, tumor progression, metastasis, and drug resistance. Previous studies show that blockade of IL-6 signaling can inhibit tumor growth and increase drug sensitivity in mouse models. Clinical trials in non-small cell lung cancer (NSCLC) reveal that IL-6 targeted therapy relieves NSCLC-related anemia and cachexia, although other clinical effects require further study. We crossed IL-6-/- mice with KrasG12D mutant mice, which develop lung tumors after activation of mutant KrasG12D, to investigate whether IL-6 inhibition contributes to tumor progression and survival time in vivo. KrasG12D; IL-6-/- mice exhibited increased tumorigenesis, but slower tumor growth and longer survival, than KrasG12D mice. Further, in order to investigate whether IL-6 deletion contributes to suppression of lung cancer metastasis, we generated KrasG12D; p53flox/flox; IL-6-/- mice, which developed lung cancer with a trend for reduced metastases and longer survival than KrasG12D; p53flox/flox mice. Tumors from KrasG12D; IL-6-/- mice showed increased expression of TNFα and decreased expression of CCL-19, CCL-20 and phosphorylated STAT3 (pSTAT3) than KrasG12D mice; however, these changes were not present between tumors from KrasG12D; p53flox/flox; IL-6-/- and KrasG12D; p53flox/flox mice. Upregulation of pSTAT3 and phosphorylated AKT (pAKT) were observed in KrasG12D tumors with p53 deletion. Taken together, these results indicate that IL-6 deletion accelerates tumorigenesis but delays tumor progression and prolongs survival time in a Kras-driven mouse model of lung cancer. However, these effects can be attenuated by p53 deletion. PMID:24260500

  8. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    PubMed Central

    Woo, Sang-Mi; Park, Sunju; Shin, Yong Cheol; Ko, Seong-Gyu

    2014-01-01

    Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path. PMID:24976685

  9. miR-146b-5p mediates p16-dependent repression of IL-6 and suppresses paracrine procarcinogenic effects of breast stromal fibroblasts

    PubMed Central

    Al-Ansari, Mysoon M.; Aboussekhra, Abdelilah

    2015-01-01

    Increasing evidence support the critical roles of active stromal fibroblasts in breast cancer development and spread. However, the mediators and the mechanisms of regulation are still not well defined. We have shown here that the tumor suppressor p16INK4A protein inhibits the pro-carcinogenic effects of breast stromal fibroblasts through repressing the expression/secretion of IL-6. Indeed, p16INK4A suppresses IL-6 at the mRNA and protein levels. This effect is mediated trough miR-146b-5p, which inhibits IL-6 expression through a specific sequence at the IL-6 3′UTR. In addition, we present clear evidence that miR-146b-5p inhibition is sufficient to transactivate breast stromal fibroblasts, which promote epithelial-to-mesenchymal-transition in breast cancer cells in a paracrine manner. By contrast, ectopic expression of miR-146b-5p in active fibroblasts abrogated their pro-carcinogenic effects. The physiological importance of miR-146b-5p inhibition was revealed by showing that the levels of pre-miR-146b-5p as well as its mature form are reduced in cancer-associated fibroblasts as compared with their normal adjacent counterparts from cancer-free tissues isolated from the same patients. Interestingly, treatment of active breast stromal fibroblasts with curcumin increased the level of the p16INK4A coding CDKN2A mRNA and miR-146b-5p and suppressed IL-6, which confirms the repressive effect of these two tumor suppressor molecules on IL-6, and shows the possible “normalization” of cancer-related active fibroblasts. These results show that miR-146b-5p has non-cell-autonomous tumor suppressor function through inhibition of IL-6, suggesting that targeting this microRNA in breast stromal fibroblasts could be of great therapeutic value. PMID:26338965

  10. Effect of Rhizoma paridis total saponins on apoptosis of colorectal cancer cells and imbalance of the JAK/STAT3 molecular pathway induced by IL-6 suppression.

    PubMed

    Teng, W-J; Chen, P; Zhu, F-Y; Di, K; Zhou, C; Zhuang, J; Cao, X-J; Yang, J; Deng, L-J; Sun, C-G

    2015-01-01

    We observed the influence of different concentrations of Rhizoma paridis total saponins (RPTS) on the apoptosis of colorectal cancer cells and explored the internal mechanism involved. We determined whether RPTS influences the interleukin-6 (IL-6)/Janus kinase (JAK)-signal transducer and activator of transcription-3 (STAT3) apoptosis molecular pathway and looked for colon cancer-related signal transduction pathways or targets inducing apoptosis. We also cultured SW480 colorectal cancer cells using different concentrations of RPTS (10, 20, 40, and 80 μg/ mL), and observed the effect of RPTS on SW480 cell morphology under a fluorescence inverted microscope. We detected serum IL-6 using the polymerase chain reaction and the expression of JAK-STAT3 protein by western blot. After treating SW480 with RPTS and Hoechst 33258 dyeing, we found that the typical apoptosis morphology had changed. Secretion of IL-6 in the serum decreased significantly (P < 0.05), and STAT3 levels were reduced. RPTS can significantly promote apoptosis in SW480 colorectal cancer cells. The mechanism may be that it suppresses the secretion of IL-6 and inhibits the IL-6/JAK-STAT3 protein signaling pathway. PMID:26125778

  11. Maleylated-BSA suppresses lipopolysaccharide-induced IL-6 production by activating the ERK-signaling pathway in murine RAW264.7 cells.

    PubMed

    Tada, Rui; Koide, Yusuke; Yamamuro, Mitsuaki; Tanaka, Riki; Hidaka, Akira; Nagao, Koichiro; Aramaki, Yukihiko

    2014-03-01

    Macrophages are well known for their ability to induce diverse beneficial immune responses, especially in the defense against pathogens. However, an excessive activation of macrophages may cause harmful inflammation. In this context, the suppression of excessive macrophage activation would be a promising therapeutic strategy for treating inflammatory diseases. We have previously found that maleylated-bovine serum albumin (maleylated-BSA) suppresses the production of inflammatory mediators in murine macrophages. However, the immunosuppressive effects and underlying mechanism(s) of maleylated-BSA remain unclear. Here, we report that pretreatment with maleylated-BSA strongly inhibited the production of interleukin 6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in murine RAW264.7 cells. This inhibitory effect of maleylated-BSA on LPS-induced IL-6 production was eliminated by treatment with an extracellular signal-regulated kinase (ERK) inhibitor, U0126, indicating the involvement of ERK pathways. Taken together, we have shown that maleylated-BSA suppresses LPS-induced production of IL-6 via the activation of an ERK signaling pathway in murine macrophages. The findings of this study imply the possibility of a novel therapeutic strategy for inflammatory diseases.

  12. 12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid suppresses UV-induced IL-6 synthesis in keratinocytes, exerting an anti-inflammatory activity

    PubMed Central

    Lee, Jin-Wook; Ryu, Ho-Cheol; Ng, Yee Ching; Kim, Cheolmin; Wei, Jun-Dong; Sabaratnam, Vikineswary

    2012-01-01

    12(S)-Hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is an enzymatic product of prostaglandin H2 (PGH2) derived from cyclooxygenase (COX)-mediated arachidonic acid metabolism. Despite the high level of 12-HHT present in tissues and bodily fluids, its precise function remains largely unknown. In this study, we found that 12-HHT treatment in HaCaT cells remarkably down-regulated the ultraviolet B (UVB) irradiation-induced synthesis of interleukin-6 (IL-6), a pro-inflammatory cytokine associated with cutaneous inflammation. In an approach to identify the down-stream signaling mechanism by which 12-HHT down-regulates UVB-induced IL-6 synthesis in keratinocytes, we observed that 12-HHT inhibits the UVB-stimulated activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB). In addition, we found that 12-HHT markedly up-regulates MAPK phosphatase-1 (MKP-1), a critical negative regulator of p38 MAPK. When MKP-1 was suppressed by siRNA knock-down, the 12-HHT-mediated inhibitory effects on the UVB-stimulated activation of p38 MAPK and NF-κB, as well as the production of IL-6, were attenuated in HaCaT cells. Taken together, our results suggest that 12-HHT exerts anti-inflammatory effect via up-regulation of MKP-1, which negatively regulates p38 MAPK and NF-κB, thus attenuating IL-6 production in UVB-irradiated HaCaT cells. Considering the critical role of IL-6 in cutaneous inflammation, our findings provide the basis for the application of 12-HHT as a potential anti-inflammatory therapeutic agent in UV-induced skin diseases. PMID:22391335

  13. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice.

    PubMed

    Sun, Feng; Zhang, Zhi Wei; Tan, Ee Min; Lim, Z L Ryan; Li, Yu; Wang, Xiao Chong; Chua, Seok Eng; Li, Jun; Cheung, Edwin; Yong, Eu-Leong

    2016-07-01

    Neuroendocrine prostate cancer (NEPC) has a poor prognosis, with a median survival of less than 1 year after diagnosis. Following androgen deprivation therapy, prostate adenocarcinoma cells have been observed to develop an androgen receptor-negative, terminally differentiated and indolent neuroendocrine-like phenotype. However, several molecular events, including interleukin 6 (IL-6) stimulation, in the prostate microenvironment result in the appearance of aggressive, highly proliferative castrate-resistant NEPC. In this study, we examined the mechanistic effects of a natural prenylflavonoid, icaritin (ICT), on neuroendocrine differentiation in IL-6-induced LNCaP cells and NEPC development in the male transgenic adenocarcinoma of the mouse prostate (TRAMP) model. TRAMP mice received daily intraperitoneal injection of ICT or vehicle. ICT induced apoptosis in prostate tumor, suppressed NEPC development and, accordingly, improved overall survival in TRAMP mice. Expression of neuroendocrine markers (synaptophysin) and androgen receptor in TRAMP mice and neuroendocrine-like LNCaP cells were inhibited by ICT. Suppression of neuroendocrine and NEPC development by ICT was associated with dose-dependent inhibitory effects on abnormally elevated IL-6/STAT3 and Aurora kinase A in vitro and in vivo Since ICT demonstrated favorable pharmacokinetic and safety profiles with marked enrichment in prostate tissues, our study provides evidence for the development of prenylflavonoid as a multimodal therapeutic agent against NEPC. PMID:27207661

  14. [IL-6 blockade].

    PubMed

    Kaneko, Yuko; Takeuchi, Tsutomu

    2016-06-01

    Interleukin-6 (IL-6) plays an important role in the pathogenesis of rheumatoid arthritis (RA). Tocilizumab, anti-human IL-6 receptor monoclonal antibody developed in Japan, prevents IL-6 from binding to IL-6 receptor blocking IL-6 signal. The clinical and radiographic efficacy of tocilizumab has proved in many clinical studies. Tocilizumab monotherapy is superior to methotrexate, which has not proved in TNF inhibitors, although tocilizuab in combination with methotrexate is more effective than tocilizumab monotherapy in inducing remission. Hepatotoxicity and infection are adverse events to be careful about. PMID:27311186

  15. Suppressed Microglial E Prostanoid Receptor 1 Signaling Selectively Reduces TNFα and IL-6 Secretion from Toll-like Receptor 3 Activation

    PubMed Central

    Li, Xianwu; Cudaback, Eiron; Keene, C. Dirk; Breyer, Richard M.; Montine, Thomas J.

    2010-01-01

    Activation of innate immunity via Toll-like receptors (TLRs) is associated with neurodegenerative diseases, and some effectors, like tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6), directly contribute to neurodegeneration. We tested the hypothesis that prostaglandin (PG) E2 receptor subtype 1 (EP1) was necessary for induction of microglial cytokines following activation of innate immunity. Primary murine microglia had cytokine secretion by activators of TLR3 > TLR9 >TLR4 > TLR2. TLR3 activation induced early expression of cyclooxygenase 2 (COX2) and delayed expression of membranous PGE synthase and secretion of PGE2. Non-selective and COX2-selective inhibitors blocked TLR3 induction of TNFα and IL-6. Moreover, of the eight out of twenty cytokines and chemokines induced by TLR3 activation, only TNFα and IL-6 were significantly dependent on EP1 signaling as determined using microglia from mice homozygous deficient for EP1 gene or wild type (WT) microglia co-incubated with an EP1 antagonist. These results were confirmed by blocking intracellular Ca2+ release with 2-aminoethoxy-diphenyl borate (2-APB) or Xestospongin C (XC), inhibitors of IP3 receptors. Our results show that suppression of microglial EP1 signaling achieves much of the desired effect of COX inhibitors by selectively blocking TLR3-induced microglial secretion of two major effectors of paracrine neuron damage. In combination with the ability of EP1 suppression to ameliorate excitotoxicity, these data point to blockade of EP1 as an attractive candidate therapeutic for neurodegenerative diseases. PMID:21319223

  16. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway

    PubMed Central

    Li, Shu; Han, Ruiqin; Ying, Jianming; Zhu, Hai; Wang, Yuanyuan; Yin, Li; Han, Yuqing; Sun, Lingzhi; Wang, Zhaoyi; Lin, Qingcong; Bi, Xinyu; Jiao, Yuchen; Jia, Hongying; Zhao, Jianjun; Huang, Zhen; Li, Zhiyu; Zhou, Jianguo; Song, Wei; Meng, Kun; Cai, Jianqiang

    2015-01-01

    Tumor-initiating cell (TIC) is a subpopulation of cells in tumors that are responsible for tumor initiation and progression. Recent studies indicate that hepatocellular carcinoma-initiating cells (HCICs) confer the high malignancy, recurrence and multi-drug resistance in hepatocellular carcinoma (HCC). In this study, we found that Icaritin, a prenylflavonoid derivative from Epimedium Genus, inhibited malignant growth of HCICs. Icaritin decreased the proportion of EpCAM-positive (a HCICs marker) cells, suppressed tumorsphere formation in vitro and tumor formation in vivo. We also found that Icaritin reduced expression of Interleukin-6 Receptors (IL-6Rs), attenuated both constitutive and IL-6-induced phosphorylation of Janus-activated kinases 2 (Jak2) and Signal transducer and activator of transcription 3 (Stat3), and inhibited Stat3 downstream genes, such as Bmi-1 and Oct4. The inhibitory activity of Icaritin in HCICs was augmented by siRNA-mediated silencing of Stat3 but attenuated by constitutive activation of Stat3. Taken together, our results indicate that Icaritin is able to inhibit malignant growth of HCICs and suggest that Icaritin may be developed into a novel therapeutic agent for effective treatment of HCC. PMID:26376676

  17. Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis.

    PubMed

    Yang, Fan; Jove, Veronica; Buettner, Ralf; Xin, Hong; Wu, Jun; Wang, Yan; Nam, Sangkil; Xu, Yibing; Ara, Tasnim; DeClerck, Yves A; Seeger, Robert; Yu, Hua; Jove, Richard

    2012-05-01

    Neuroblastoma is the most common extracranial solid tumor in the pediatric population. Sorafenib (Nexavar), a multikinase inhibitor, blocks cell proliferation and induces apoptosis in certain types of cancers. Here, we tested antitumor effects of sorafenib (≤ 10 µM) on four human neuroblastoma cell lines, CHLA255, CHLA171, CHLA90 and SK-N-AS. Sorafenib inhibited cell proliferation and induced apoptosis of neuroblastoma tumor cells in a dose-dependent manner. Sorafenib inhibited phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) proteins at Tyr705 in these cells, associated with inhibition of phosphorylated JAK2, an upstream kinase that mediates STAT3 phosphorylation. Expression of a constitutively-activated STAT3 mutant (pSTAT3-C) partially blocked the antitumor effects of sorafenib on neuroblastoma cells. Sorafenib also inhibited the phosphorylation of STAT3 induced by IL-6 and sphingosine-1-phosphate (S1P), a recently identified regulator for STAT3, in these tumor cells. Moreover, sorafenib downregulated phosphorylation of MAPK (p44/42) in neuroblastoma cells, consistent with inhibition of their upstream regulators MEK1/2. Sorafenib inhibited expression of cyclin E, cyclin D1/D2/D3, key regulators for cell cycle, and the antiapoptotic proteins Mcl-1 and survivin. Finally, sorafenib suppressed the growth of human neuroblastoma cells in a mouse xenograft model. Taken together, these findings suggest the potential use of sorafenib for the treatment of pediatric neuroblastomas.

  18. Mangiferin suppresses CIA by suppressing the expression of TNF-α, IL-6, IL-1β, and RANKL through inhibiting the activation of NF-κB and ERK1/2.

    PubMed

    Tsubaki, Masanobu; Takeda, Tomoya; Kino, Toshiki; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzo; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2015-01-01

    Rheumatoid arthritis is a systemic autoimmune disease characterized by chronic inflammation of synovial joints, ultimately leading to a progressive and irreversible joint destruction. Activation of nuclear factor-kappa B (NF-κB) promotes production of proinflammatory cytokines in various inflammatory diseases including rheumatoid arthritis. Mangiferin, 1,3,6,7-tetrahydroxyxanthone-C2-β-D-glucoside (C-glucosyl xanthone), is a naturally occurring polyphenol. Our previous results showed that mangiferin suppressed NF-κB activation. However, it is unclear, whether mangiferin can prevent rheumatoid arthritis through suppression of NF-κB activation and expression of various cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6), which play a critical role in the pathogenesis of rheumatoid arthritis. In the present study, we found that mangiferin suppressed the progression and incidence of CIA in DBA1/J mice. In CIA mice, mangiferin inhibited the mRNA expression of cytokine genes in thymus and spleen of CIA mie and led to decreased serum levels of IL-1β, IL-6, TNF-α, and receptor activator NF-κB ligand (RANKL) via inhibition of NF-κB and activation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, mangiferin markedly inhibited not only developing but also clinically evident CIA. These findings suggest that mangiferin has potential clinical applications for the treatment of rheumatoid arthritis.

  19. FTY-720P Suppresses Osteoclast Formation by Regulating Expression of Interleukin-6 (IL-6), Interleukin-4 (IL-4), and Matrix Metalloproteinase 2 (MMP-2)

    PubMed Central

    Zhang, Dawei; Huang, Yongjun; Huang, Zongwen; Zhang, Rongkai; Wang, Honggang; Huang, Dong

    2016-01-01

    Background Osteoclast formation is closely related to the immune system. FTY720, a new immunosuppressive agent, has some functions in immune regulation. Its main active ingredients become FTY-720P in vivo by phosphorylation modification. The objective of this study was to determine the effects of FTY-720 with various concentrations on osteoclasts in vitro. Material/Methods RAW264.7 cells and bone marrow-derived mononuclear phagocytes (BMMs) were treated with RANKL to obtain osteoclasts in vitro. To investigate the role of FTY-720 in osteoclast formation, trap enzyme staining was performed and the number of osteoclasts was counted. Bone slices were stained with methylene blue, we counted the number of lacunae after bone slices were placed into dishes together with osteoclasts, and we observed the effect and function of FTY-720 in osteoclasts induced by RAW264.7 cells and BMMs. Then, we used a protein array kit to explore the effects of FTY-720P on osteoclasts. Results The results of enzyme trap staining and F-actin staining experiments show that, with the increasing concentration of FTY-720P, the number of osteoclast induced by RAW264.7 cells and BMMs gradually decreased (P<0.05), especially when the FTY-720P concentration reached 1000 ng/ml, and the number of osteoclasts formed was the lowest (P<0.05). With bone lacuna toluidine blue staining, the results also show that, with the increasing concentration of FTY-720P, the number of bone lacuna gradually decreased (P<0.05), and the number of lacunae is lowest when the concentration reached 800 ng/ml. Finally, protein array results showed that IL-4, IL-6, IL-12, MMP-2, VEGF-C, GFR, basic FGF, MIP-2, and insulin proteins were regulated after FTY-720P treatment. Conclusions FTY-720P can suppress osteoclast formation and function, and FTY-720P induces a series of cytokine changes. PMID:27344392

  20. RETRACTED: Blockade of TNF-α signaling suppresses the AREG-mediated IL-6 and IL-8 cytokines secretion induced by anti-Ro/SSA autoantibodies.

    PubMed

    Sisto, Margherita; Lisi, Sabrina; Lofrumento, Dario Domenico; Cucci, Liana; Mitolo, Vincenzo; D'Amore, Massimo

    2010-09-20

    The aim of this study was to analyze the Furin-TNF-α-converting enzyme (TACE)-amphiregulin (AREG)-IL-6/IL-8 secretion pathway in non-neoplastic human salivary gland epithelial cells (SGECs) stimulated with anti-Ro/SSA autoantibodies (Abs). We examined whether anti-Ro/SSA Abs-mediated TACE activation is responsible for AREG activation. As recent studies have demonstrated that AREG could induce proinflammatory cytokines secretion in epithelial cells, we discuss how TACE-mediated AREG shedding, caused by anti-Ro/SSA Abs treatment, could have a critical role in TNF-α-induced IL-6 and IL-8 secretion by SGEC. Furthermore, the effects of TNF-α blockade on AREG expression and TNF-α-AREG-mediated IL-6 and IL-8 secretion were evaluated. We have discovered that the upregulation of AREG occurs through TNF-α produced after anti-Ro/SSA Abs uptake via Fcγ receptors. Biological drug adalimumab and the gene silencing technique were used to study the AREG-IL-6/IL-8 secretion pathway, demonstrating that (i) adalimumab-mediated TNF-α blocking and TNF-α gene silencing provoke a significant decrease of proinflammatory cytokines production and AREG expression in anti-Ro/SSA Abs-treated SGEC; (ii) AREG gene silencing has a potent inhibitory effect on TNF-α-induced IL-6 and IL-8 secretion in SGEC treated with anti-Ro/SSA Abs; (iii) an inspection of the kinetics of cytokine production after exogeni TNF-α and AREG addition, and the use of cycloheximide in the presence of exogenous TNF-α as stimulant, clarified that TNF-α induces IL-6 and IL-8 secretion through AREG.Laboratory Investigation advance online publication, 20 September 2010; doi:10.1038/labinvest.2010.168.

  1. IL-6 mediated isotype specific suppression of hapten specific IgE in serum of BPO-KLH sensitized mice: role of IFN alpha in maintainance of hapten specific IgE responses.

    PubMed

    Auci, D L; Miller, H; Chice, S M; Durkin, H G

    1994-04-01

    The ability of IL-6 or IFN alpha or antibodies to these cytokines to regulate serum levels of hapten specific immunoglobulins (IgM, IgG1, IgE, IgA) was studied in BPO-KLH (benzylpenicilloyl-keyhole limpet hemocyanin) sensitized BALB/c mice at the peak of a hapten specific IgE antibody forming cell (AFC) response. To induce peak IgE responses, mice were injected intraperitonealy (i.p.) with BPO-KLH (10 micrograms) in aluminum hydroxide gel (alum) on days 0, 21, and 42. On day 44, mice were injected s.c. with IL-6 (100-1000 U), IFN alpha (1000-10,000 U), anti-IL-6 (100-1000 neutralizing units [NU]), or anti-IFN alpha (1000-10,000 NU). On day 46, levels of BPO specific IgM, IgG1, IgE and IgA in serum were determined (ELISA). Data are expressed as micrograms/ml. IL-6 suppressed BPO specific IgE in serum in isotype specific fashion (to > 90%), increasing IgA (approximately 3 fold), and leaving IgM and IgG1 unchanged. Since removal of endogenous IL-6 with anti-IL-6 increased serum IgE, and suppressed IgG1 (approximately 50%), with IgM and IgA unchanged, this suggests that IL-6 is an isotype specific suppressor of peak IgE responses and as such may be useful in the therapeutic management of atopic disease. IFN alpha treatment increased serum IgE levels (60%), and potentiated IgA responses (> 30 fold), with IgM and IgG1 unchanged. Since removal of endogenous IFN alpha with anti-IFN alpha decreased IgE levels (approximately 50%), increasing IgA, with IgM and IgG1 unchanged, this suggests a role for IFN alpha as an isotype specific helper of peak IgE responses and in maintenance of IgA responses.

  2. Fulgidic Acid Isolated from the Rhizomes of Cyperus rotundus Suppresses LPS-Induced iNOS, COX-2, TNF-α, and IL-6 Expression by AP-1 Inactivation in RAW264.7 Macrophages.

    PubMed

    Shin, Ji-Sun; Hong, Yujin; Lee, Hwi-Ho; Ryu, Byeol; Cho, Young-Wuk; Kim, Nam-Jung; Jang, Dae Sik; Lee, Kyung-Tae

    2015-01-01

    To identify bioactive natural products possessing anti-inflammatory activity, the potential of fulgidic acid from the rhizomes of Cyperus rotundus and the underlying mechanisms involved in its anti-inflammatory activity were evaluated in this study. Fulgidic acid reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Consistent with these findings, fulgidic acid suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein level, as well as iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Fulgidic acid suppressed the LPS-induced transcriptional activity of activator protein-1 (AP-1) as well as the phosphorylation of c-Fos and c-Jun. On the other hand, fulgidic acid did not show any effect on LPS-induced nuclear factor κB (NF-κB) activity. Taken together, these results suggest that the anti-inflammatory effect of fulgidic acid is associated with the suppression of iNOS, COX-2, TNF-α, and IL-6 expression through down-regulating AP-1 activation in LPS-induced RAW264.7 macrophages. PMID:26133719

  3. Nelumbo Nucifera leaf protects against UVB-induced wrinkle formation and loss of subcutaneous fat through suppression of MCP3, IL-6 and IL-8 expression.

    PubMed

    Park, Ki Moon; Yoo, Young Ji; Ryu, Sujin; Lee, Seung Ho

    2016-08-01

    Nelumbo nucifera has long been used in traditional medicine in East Asian countries such as China and Korea. In this study, we report the different property of several Nelumbo nucifera leaf (NNL) extracts on adipocyte differentiation. Adipogenesis was stimulated by administration of dichloromethyl (DCM) or n-hexan extract of NNL but attenuated by that of water extract. We also show that topical administration of DCM extract of NNL attenuated ultraviolet-B (UVB)-mediated wrinkle formation and reduction of subcutaneous (SC) fat in vivo. Interestingly, UVB-induced blood contents of triglyceride (TG) were attenuated significantly by topical administration of the DCM extract. In addition, we found that UVB-induced expression of cytokines (interleukin-6; IL-6, interleukin-8; IL-8, and monocyte chemotactic protein-3; MCP3), which were reported as regulators in SC fat metabolism, was attenuated in mouse skin fibroblast cells upon administration of the DCM extract. Collectively, our data suggest that topical administration of DCM extract of NNL, which plays a regulatory role in adipogenesis, could attenuate UVB-induced wrinkle formation and the metabolism of blood lipids by regulating the expression of cytokines such as IL-6, IL-8, and MCP3 in skin fibroblast cells. Our findings support further development of DCM extract of NNL as a potential therapeutic agent for prevention of photoaging-related disorders. PMID:27262853

  4. Recent advances in neutralizing the IL-6 pathway in arthritis

    PubMed Central

    Malemud, Charles J

    2009-01-01

    Recent advances in understanding the mechanism(s) of how IL-6 trans-signaling regulates immune cell function and promotes inflammation in autoimmune arthritis are critically reviewed. Serum and/or synovial fluid (SF) IL-6 is markedly elevated in adult and juvenile rheumatoid arthritis (RA), psoriatic arthritis (PsA), ankylosing spondylitis (AS) and osteoarthritis (OA). IL-6, in concert with IL-17, determines the fate of CD4+ lymphocytes and therefore TH17 cell differentiation. IL-6 also plays a critical role in modulating B-lymphocyte activity. The recognition that IL-6 trans-signaling regulates inflammation resulted in the development of tocilizumab, a fully humanized monoclonal antibody that neutralizes the biological activity of the IL-6-receptor (IL-6R). Significant clinical benefit was demonstrated as well as reduced serum IL-6 levels with suppression of X-ray progression of disease in several clinical trials in which juvenile or adult RA patients were treated with tocilizumab monotherapy or tocilizumab plus methotrexate. However, levels of serum and/or SF IL-6 cytokine protein superfamily members, adiponectin, oncostatin M, pre-B-cell colony enhancing factor/visfatin and leukemia inhibitory factor are also elevated in RA. Additional studies will be required to determine if anti-IL-6 trans-signaling inhibition strategies with tocilizumab or recombinant soluble IL-6R reduce the level of these cytokines.

  5. Brain IL-6 and autism.

    PubMed

    Wei, H; Alberts, I; Li, X

    2013-11-12

    Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. Emerging evidence suggests that aberrant neuroimmune responses may contribute to phenotypic deficits and could be appropriate targets for pharmacologic intervention. Interleukin (IL)-6, one of the most important neuroimmune factors, has been shown to be involved in physiological brain development and in several neurological disorders. For instance, findings from postmortem and animal studies suggest that brain IL-6 is an important mediator of autism-like behaviors. In this review, a possible pathological mechanism behind autism is proposed, which suggests that IL-6 elevation in the brain, caused by the activated glia and/or maternal immune activation, could be an important inflammatory cytokine response involved in the mediation of autism-like behaviors through impairments of neuroanatomical structures and neuronal plasticity. Further studies to investigate whether IL-6 could be used for therapeutic interventions in autism would be of great significance.

  6. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130.

    PubMed

    Hong, Soon-Sun; Choi, Jung Ho; Lee, Sung Yoon; Park, Yeon-Hwa; Park, Kyung-Yeon; Lee, Joo Young; Kim, Juyoung; Gajulapati, Veeraswamy; Goo, Ja-Il; Singh, Sarbjit; Lee, Kyeong; Kim, Young-Kook; Im, So Hee; Ahn, Sung-Hoon; Rose-John, Stefan; Heo, Tae-Hwe; Choi, Yongseok

    2015-07-01

    IL-6 is a major causative factor of inflammatory disease. Although IL-6 and its signaling pathways are promising targets, orally available small-molecule drugs specific for IL-6 have not been developed. To discover IL-6 antagonists, we screened our in-house chemical library and identified LMT-28, a novel synthetic compound, as a candidate IL-6 blocker. The activity, mechanism of action, and direct molecular target of LMT-28 were investigated. A reporter gene assay showed that LMT-28 suppressed activation of STAT3 induced by IL-6, but not activation induced by leukemia inhibitory factor. In addition, LMT-28 downregulated IL-6-stimulated phosphorylation of STAT3, gp130, and JAK2 protein and substantially inhibited IL-6-dependent TF-1 cell proliferation. LMT-28 antagonized IL-6-induced TNF-α production in vivo. In pathologic models, oral administration of LMT-28 alleviated collagen-induced arthritis and acute pancreatitis in mice. Based on the observation of upstream IL-6 signal inhibition by LMT-28, we hypothesized IL-6, IL-6Rα, or gp130 to be putative molecular targets. We subsequently demonstrated direct interaction of LMT-28 with gp130 and specific reduction of IL-6/IL-6Rα complex binding to gp130 in the presence of LMT-28, which was measured by surface plasmon resonance analysis. Taken together, our data suggest that LMT-28 is a novel synthetic IL-6 inhibitor that functions through direct binding to gp130. PMID:26026064

  7. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice

    PubMed Central

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats. PMID:27333268

  8. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice.

    PubMed

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando; Baixeras, Elena

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats. PMID:27333268

  9. Chronic IL-6 Administration Desensitizes IL-6 Response in Liver, Causes Hyperleptinemia and Aggravates Steatosis in Diet-Induced-Obese Mice.

    PubMed

    Gavito, Ana Luisa; Bautista, Dolores; Suarez, Juan; Badran, Samir; Arco, Rocío; Pavón, Francisco Javier; Serrano, Antonia; Rivera, Patricia; Decara, Juan; Cuesta, Antonio Luis; Rodríguez-de-Fonseca, Fernando; Baixeras, Elena

    2016-01-01

    High-fat diet-induced obesity (DIO) is associated with fatty liver and elevated IL-6 circulating levels. IL-6 administration in rodents has yielded contradictory results regarding its effects on steatosis progression. In some models of fatty liver disease, high doses of human IL-6 ameliorate the liver steatosis, whereas restoration of IL-6 in DIO IL-6-/- mice up-regulates hepatic lipogenic enzymes and aggravates steatosis. We further examined the effects of chronic low doses of murine IL-6 on hepatic lipid metabolism in WT mice in DIO. IL-6 was delivered twice daily in C57BL/6J DIO mice for 15 days. The status and expression of IL-6-signalling mediators and targets were investigated in relation to the steatosis and lipid content in blood and in liver. IL-6 administration in DIO mice markedly raised circulating levels of lipids, glucose and leptin, elevated fat liver content and aggravated steatosis. Under IL-6 treatment there was hepatic Stat3 activation and increased gene expression of Socs3 and Tnf-alpha whereas the gene expression of endogenous IL-6, IL-6-receptor, Stat3, Cpt1 and the enzymes involved in lipogenesis was suppressed. These data further implicate IL-6 in fatty liver disease modulation in the context of DIO, and indicate that continuous stimulation with IL-6 attenuates the IL-6-receptor response, which is associated with high serum levels of leptin, glucose and lipids, the lowering levels of lipogenic and Cpt1 hepatic enzymes and with increased Tnf-alpha hepatic expression, a scenario evoking that observed in IL-6-/- mice exposed to DIO and in obese Zucker rats.

  10. Cadmium inhibits IL-6 production and IL-6 mRNA expression in a human monocytic cell line, THP-1

    SciTech Connect

    Funkhouser, S.W.; Vredevoe, D.L.; Martinez-Maza, O. )

    1994-07-01

    Cadmium is a known immunotoxic agent in animal studies. Cells of the mononuclear phagocytic system are strategically located at portals of entry in humans and therefore may be particularly at risk for cadmium exposure through contaminated air, food, and drinking water. The purpose of this study was to determine whether there were changes in interleukin-6 (IL-6) production, a pleiotropic cytokine, when an activated human monocytic cell line was exposed to cadmium. Results suggest that there were statistically significant lower levels of IL-6 at 0.06 mM cadmium (P < 0.05), and 0.8 and 0.1 mM cadmium (P < 0.01), determined via the ELISA method. IL-6 messenger RNA (mRNA) levels were also decreased at these cadmium concentrations. The addition of a chelating agent, EDTA, to the cultures prevented the suppression of IL-6 secretion. 33 refs., 4 figs.

  11. Revisiting IL-6 antagonism in multiple myeloma.

    PubMed

    Matthes, Thomas; Manfroi, Benoit; Huard, Bertrand

    2016-09-01

    IL-6, a cytokine with broad functions in inflammation and immunity, has been extensively studied for its role on normal antibody-producing plasma cells. In addition, IL-6 is recognized as a proliferative factor for multiple myeloma (MM), a malignant plasma cell tumor developing in the bone marrow. Blocking IL-6 signaling was thus developed into a therapeutic approach for MM already early after its discovery, in 1991. Unfortunately, the first clinical trials did not demonstrate a clear benefit, but despite this apparent failure hopes on IL-6 antagonism are still high and trials ongoing. The cellular source of IL-6 has long been a matter of debate. IL-6 was first recognized as an autocrine factor produced by the malignant plasma cells themselves, but later reports clearly showed that IL-6 was a paracrine factor, produced by the microenvironment, mostly by cells from the myeloid lineage. Recently, we have confirmed that IL-6 originates from myeloid lineage cells, mainly from myeloid precursors. We have also demonstrated that IL-6 amplifies the pool of myeloid cells producing a second key factor for MM, a proliferation inducing ligand (APRIL). These findings form a new rationale for IL-6 inhibition in MM and for new ways to use IL-6 blocking in the clinics. PMID:27497026

  12. Chikusetsusaponin IVa Butyl Ester (CS-IVa-Be), a Novel IL6R Antagonist, Inhibits IL6/STAT3 Signaling Pathway and Induces Cancer Cell Apoptosis.

    PubMed

    Yang, Jie; Qian, Shihui; Cai, Xueting; Lu, Wuguang; Hu, Chunping; Sun, Xiaoyan; Yang, Yang; Yu, Qiang; Gao, S Paul; Cao, Peng

    2016-06-01

    The activation of IL6/STAT3 signaling is associated with the pathogenesis of many cancers. Agents that suppress IL6/STAT3 signaling have cancer-therapeutic potential. In this study, we found that chikusetsusaponin IVa butyl ester (CS-IVa-Be), a triterpenoid saponin extracted from Acanthopanas gracilistylus W.W.Smith, induced cancer cell apoptosis. CS-IVa-Be inhibited constitutive and IL6-induced STAT3 activation, repressed STAT3 DNA-binding activity, STAT3 nuclear translocation, IL6-induced STAT3 luciferase reporter activity, IL6-induced STAT3-regulated antiapoptosis gene expression in MDA-MB-231 cells, and IL6-induced TF-1 cell proliferation. Surprisingly, CS-IVa-Be inhibited IL6 family cytokines rather than other cytokines induced STAT3 activation. Further studies indicated that CS-IVa-Be is an antagonist of IL6 receptor via directly binding to the IL6Rα with a Kd of 663 ± 74 nmol/L and the GP130 (IL6Rβ) with a Kd of 1,660 ± 243 nmol/L, interfering with the binding of IL6 to IL6R (IL6Rα and GP130) in vitro and in cancer cells. The inhibitory effect of CS-IVa-Be on the IL6-IL6Rα-GP130 interaction was relatively specific as CS-IVa-Be showed higher affinity to IL6Rα than to LIFR (Kd: 4,910 ± 1,240 nmol/L) and LeptinR (Kd: 4,990 ± 915 nmol/L). We next demonstrated that CS-IVa-Be not only directly induced cancer cell apoptosis but also sensitized MDA-MB-231 cells to TRAIL-induced apoptosis via upregulating DR5. Our findings suggest that CS-IVa-Be as a novel IL6R antagonist inhibits IL6/STAT3 signaling pathway and sensitizes the MDA-MB-231 cells to TRAIL-induced cell death. Mol Cancer Ther; 15(6); 1190-200. ©2016 AACR.

  13. Comparative analysis of IL6 and IL6 receptor gene polymorphisms in mastocytosis.

    PubMed

    Rausz, Eszter; Szilágyi, Agnes; Nedoszytko, Boguslaw; Lange, Magdalena; Niedoszytko, Marek; Lautner-Csorba, Orsolya; Falus, András; Aladzsity, István; Kokai, Márta; Valent, Peter; Marschalko, Márta; Hidvégi, Bernadett; Szakonyi, József; Csomor, Judit; Várkonyi, Judit

    2013-01-01

    Mastocytosis is a rare disease with reported high interleukin-6 (IL6) levels influencing disease severity. The present study investigated polymorphisms within the genes that encode IL6 and its receptor (IL6R) in relation to mastocytosis development in a case-control design. Analysis of the IL6R Asp358Ala polymorphism showed that carriers of the AA genotype had a 2·5-fold lower risk for mastocytosis than those with the AC or CC genotypes. No association with mastocytosis was found for the IL6-174G/C polymorphism, however, it may influence the effect of IL6R polymorphism. To the best of our knowledge this is the first study analysing IL6/IL6R polymorphisms in mastocytosis.

  14. IL-6 Inhibition Reduces STAT3 Activation and Enhances the Antitumor Effect of Carboplatin

    PubMed Central

    Wang, Zhi-Yong; Zhang, Jun-Ai; Wu, Xian-Jin; Liang, Yan-Fang; Lu, Yuan-Bin; Gao, Yu-Chi; Dai, You-Chao; Yu, Shi-Yan; Jia, Yan; Fu, Xiao-Xia; Rao, Xiaoquan; Xu, Jun-Fa

    2016-01-01

    Recent studies suggest that tumor-associated macrophage-produced IL-6 is an important mediator within the tumor microenvironment that promotes tumor growth. The activation of IL-6/STAT3 axis has been associated with chemoresistance and poor prognosis of a variety of cancers including colorectal carcinoma and thus serves as a potential immunotherapeutic target for cancer treatment. However, it is not fully understood whether anticytokine therapy could reverse chemosensitivity and enhance the suppressive effect of chemotherapy on tumor growth. In this study, we aimed to investigate the effect of IL-6 inhibition therapy on the antitumor effect of carboplatin. Enhanced expression of IL-6 and activation of STAT3 were observed in human colorectal carcinoma samples compared to normal colorectal tissue, with higher levels of IL-6/STAT3 in low grade carcinomas. Treatment of carboplatin (CBP) dose-dependently increased IL-6 production and STAT3 activation in human colorectal LoVo cells. Blockade of IL-6 with neutralizing antibody enhanced chemosensitivity of LoVo cells to carboplatin as evidenced by increased cell apoptosis. IL-6 blockade abolished carboplatin-induced STAT3 activation. IL-6 blockade and carboplatin synergistically reduced cyclin D1 expression and enhanced caspase-3 activity in LoVo cells. Our results suggest that inhibition of IL-6 may enhance chemosensitivity of colon cancers with overactive STAT3 to platinum agents. PMID:27006530

  15. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6

    PubMed Central

    Anesten, Fredrik; Holt, Marie K.; Schéle, Erik; Pálsdóttir, Vilborg; Reimann, Frank; Gribble, Fiona M.; Safari, Cecilia; Skibicka, Karolina P.

    2016-01-01

    Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space. PMID:27097661

  16. Preproglucagon neurons in the hindbrain have IL-6 receptor-α and show Ca2+ influx in response to IL-6.

    PubMed

    Anesten, Fredrik; Holt, Marie K; Schéle, Erik; Pálsdóttir, Vilborg; Reimann, Frank; Gribble, Fiona M; Safari, Cecilia; Skibicka, Karolina P; Trapp, Stefan; Jansson, John-Olov

    2016-07-01

    Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca(2+) concentration in neurons capable of expressing PPG. We also show that the Ca(2+) increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca(2+) to the cytosol from the extracellular space. PMID:27097661

  17. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer

    SciTech Connect

    Drygin, Denis Ho, Caroline B.; Omori, Mayuko; Bliesath, Joshua; Proffitt, Chris; Rice, Rachel; Siddiqui-Jain, Adam; O'Brien, Sean; Padgett, Claire; Lim, John K.C.; Anderes, Kenna; Rice, William G.; Ryckman, David

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.

  18. IL-17 enhancement of the IL-6 signaling cascade in astrocytes.

    PubMed

    Ma, Xiangyu; Reynolds, Stephanie L; Baker, Brandi J; Li, Xingang; Benveniste, Etty N; Qin, Hongwei

    2010-05-01

    Astrocytes have important physiological roles in CNS homeostasis and serve as a bridge between the CNS and immune system. IL-17 and IL-6 are important in many CNS disorders characterized by neuroinflammation. We examined the role of IL-17 on the IL-6 signaling cascade in primary astrocytes. IL-17 functioned in a synergistic manner with IL-6 to induce IL-6 expression in astrocytes. The synergistic effect involved numerous signaling pathways including NF-kappaB, JNK MAPK, and p38 MAPK. The NF-kappaB pathway inhibitor BAY-11, JNK inhibitor JNKi II, and p38 inhibitor SB203580 suppressed the synergistic effect of IL-6 and IL-17 on IL-6 expression. IL-17 synergized with IL-6 to enhance the recruitment of activated NF-kappaB p65, c-Fos, c-Jun, and the histone acetyltransferases CREB-binding protein and p300 to the IL-6 promoter in vivo to induce IL-6 transcription. This was accompanied by enhanced acetylation of histones H3 and H4 on the IL-6 promoter. Moreover, we elucidated an important role for suppressor of cytokine signaling (SOCS) 3 in IL-17 enhancement of IL-6 signaling in astrocytes. SOCS3 small interfering RNA knockdown and SOCS3 deletion in astrocytes augmented the synergistic effect of IL-6 and IL-17 due to an enhancement of activation of the NF-kappaB and MAPK pathways. These results indicate that astrocytes can serve as a target of Th17 cells and IL-17 in the CNS, and SOCS3 participates in IL-17 functions in the CNS as a negative feedback regulator.

  19. A Novel IL6 Antibody Sensitizes Multiple Tumor Types to Chemotherapy Including Trastuzumab-Resistant Tumors.

    PubMed

    Zhong, Haihong; Davis, April; Ouzounova, Maria; Carrasco, Rosa A; Chen, Cui; Breen, Shannon; Chang, Yong S; Huang, Jiaqi; Liu, Zheng; Yao, Yihong; Hurt, Elaine; Moisan, Jacques; Fung, Michael; Tice, David A; Clouthier, Shawn G; Xiao, Zhan; Wicha, Max S; Korkaya, Hasan; Hollingsworth, Robert E

    2016-01-15

    Elevated levels of the proinflammatory cytokine IL6 are associated with poor survival outcomes in many cancers. Antibodies targeting IL6 and its receptor have been developed for chronic inflammatory disease, but they have not yet been shown to clearly benefit cancer patients, possibly due to antibody potency or the settings in which they have been tested. In this study, we describe the development of a novel high-affinity anti-IL6 antibody, MEDI5117, which features an extended half-life and potent inhibitory effects on IL6 biologic activity. MEDI5117 inhibited IL6-mediated activation of STAT3, suppressing the growth of several tumor types driven by IL6 autocrine signaling. In the same models, MEDI5117 displayed superior preclinical activity relative to a previously developed anti-IL6 antibody. Consistent with roles for IL6 in promoting tumor angiogenesis, we found that MEDI5117 inhibited the growth of endothelial cells, which can produce IL6 and support tumorigenesis. Notably, in tumor xenograft assays in mice, we documented the ability of MEDI5117 to enhance the antitumor activities of chemotherapy or gefitinib in combination treatment regimens. MEDI5117 also displayed robust activity on its own against trastuzumab-resistant HER2(+) tumor cells by targeting the CD44(+)CD24(-) cancer stem cell population. Collectively, our findings extend the evidence of important pleiotropic roles of IL6 in tumorigenesis and drug resistance, and offer a preclinical proof of concept for the use of IL6 antibodies in combination regimens to heighten therapeutic responses and overcome drug resistance.

  20. 6'-O-Caffeoyldihydrosyringin isolated from Aster glehni suppresses lipopolysaccharide-induced iNOS, COX-2, TNF-α, IL-1β and IL-6 expression via NF-κB and AP-1 inactivation in RAW 264.7 macrophages.

    PubMed

    Seo, Seunghwan; Lee, Kyoung-Goo; Shin, Ji-Sun; Chung, Eun Kyoung; Lee, Jae Yeol; Kim, Hyoung Ja; Lee, Kyung-Tae

    2016-10-01

    Previously, we found that ethyl acetate extract fraction of Aster glehni exhibited anti-hyperuricemic effects in animal models and also five new caffeoylglucoside derivatives were isolated from this fraction. In this work, we evaluated the anti-inflammatory effects of these caffeoylglucoside derivatives and found that 6'-O-caffeoyldihydrosyringin (2, CDS) most potently inhibited the LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW 264.7 macrophages. In addition, CDS was found to concentration-dependently reduce the production of NO, PGE2, and the pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) induced by LPS in macrophages. Consistent with these observations, CDS concentration-dependently inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxidase-2 (COX-2) expression at the protein level and also iNOS, COX-2, TNF-α, and IL-6, IL-1β expression at the mRNA level. Furthermore, CDS suppressed the LPS-induced transcriptional activities of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) as well as the phosphorylation of p65 and c-Fos. Taken together, these results suggest that the anti-inflammatory effect of CDS is associated with the downregulation of iNOS, COX-2, TNF-α, IL-1β, and IL-6 expression via the negative regulation of NF-κB and AP-1 activation in LPS-induced RAW 264.7 macrophages. PMID:27590705

  1. IL-6 Trans-Signaling Drives Murine Crescentic GN.

    PubMed

    Braun, Gerald S; Nagayama, Yoshikuni; Maruta, Yuichi; Heymann, Felix; van Roeyen, Claudia R; Klinkhammer, Barbara M; Boor, Peter; Villa, Luigi; Salant, David J; Raffetseder, Ute; Rose-John, Stefan; Ostendorf, Tammo; Floege, Jürgen

    2016-01-01

    The role of IL-6 signaling in renal diseases remains controversial, with data describing both anti-inflammatory and proinflammatory effects. IL-6 can act via classic signaling, engaging its two membrane receptors gp130 and IL-6 receptor (IL-6R). Alternatively, IL-6 trans-signaling requires soluble IL-6R (sIL-6R) to act on IL-6R-negative cells that express gp130. Here, we characterize the role of both pathways in crescentic nephritis. Patients with crescentic nephritis had significantly elevated levels of IL-6 in both serum and urine. Similarly, nephrotoxic serum-induced nephritis (NTN) in BALB/c mice was associated with elevated serum IL-6 levels. Levels of serum sIL-6R and renal downstream signals of IL-6 (phosphorylated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3) increased over time in this model. Simultaneous inhibition of both IL-6 signaling pathways using anti-IL-6 antibody did not have a significant impact on NTN severity. In contrast, specific inhibition of trans-signaling using recombinant sgp130Fc resulted in milder disease. Vice versa, specific activation of trans-signaling using a recombinant IL-6-sIL-6R fusion molecule (Hyper-IL-6) significantly aggravated NTN and led to increased systolic BP in NTN mice. This correlated with increased renal mRNA synthesis of the Th17 cell cytokine IL-17A and decreased synthesis of resistin-like alpha (RELMalpha)-encoding mRNA, a surrogate marker of lesion-mitigating M2 macrophage subtypes. Collectively, our data suggest a central role for IL-6 trans-signaling in crescentic nephritis and offer options for more effective and specific therapeutic interventions in the IL-6 system.

  2. [Role of IL-6 in the development and pathogenesis of CIA and EAE].

    PubMed

    Fujimoto, Minoru; Serada, Satoshi; Naka, Tetsuji

    2008-04-01

    Interleukin (IL)-6 is a pleiotropic cytokine that has crucial roles in the regulation of immune response, inflammation and hematopoiesis. Recently, a new inflammatory helper T cell subset which produces IL-17A (IL-17), termed Th17 cells was identified and has been reported to be involved in the development and pathogenesis of collagen induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE), which are known as the mouse model of rheumatoid arthritis and multiple sclerosis, respectively. It has been demonstrated that IL-6 together with TGF-beta induces the differentiation of Th17 cells from naive helper T cells in vitro. However, IL-6 independent pathway of Th17 differentiation has also been reported, suggesting that the role of IL-6 in vivo in these diseases remains unclear. With the treatment of anti-IL-6R antibody in CIA and EAE, we could suppress the differentiation of antigen specific Th17 cells and the onset of diseases. These results indicate that IL-6 is involved in the induction of Th17 cells in vivo, and anti-IL-6R antibody might be a promising therapy of Th17-mediated autoimmune diseases.

  3. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells.

    PubMed

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-12-15

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC.

  4. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function

    PubMed Central

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  5. The Akt1/IL-6/STAT3 pathway regulates growth of lung tumor initiating cells

    PubMed Central

    Malanga, Donatella; De Marco, Carmela; Guerriero, Ilaria; Colelli, Fabiana; Rinaldo, Nicola; Scrima, Marianna; Mirante, Teresa; De Vitis, Claudia; Zoppoli, Pietro; Ceccarelli, Michele; Riccardi, Miriam; Ravo, Maria; Weisz, Alessandro; Federico, Antonella; Franco, Renato; Rocco, Gaetano; Mancini, Rita; Rizzuto, Antonia; Gulletta, Elio; Ciliberto, Gennaro; Viglietto, Giuseppe

    2015-01-01

    Here we report that the PI3K/Akt1/IL-6/STAT3 signalling pathway regulates generation and stem cell-like properties of Non-Small Cell Lung Cancer (NSCLC) tumor initiating cells (TICs). Mutant Akt1, mutant PIK3CA or PTEN loss enhances formation of lung cancer spheroids (LCS), self-renewal, expression of stemness markers and tumorigenic potential of human immortalized bronchial cells (BEAS-2B) whereas Akt inhibition suppresses these activities in established (NCI-H460) and primary NSCLC cells. Matched microarray analysis of Akt1-interfered cells and LCSs identified IL-6 as a critical target of Akt signalling in NSCLC TICs. Accordingly, suppression of Akt in NSCLC cells decreases IL-6 levels, phosphorylation of IkK and IkB, NF-kB transcriptional activity, phosphorylation and transcriptional activity of STAT3 whereas active Akt1 up-regulates them. Exposure of LCSs isolated from NSCLC cells to blocking anti-IL-6 mAbs, shRNA to IL-6 receptor or to STAT3 markedly reduces the capability to generate LCSs, to self-renew and to form tumors, whereas administration of IL-6 to Akt-interfered cells restores the capability to generate LCSs. Finally, immunohistochemical studies in NSCLC patients demonstrated a positive correlative trend between activated Akt, IL-6 expression and STAT3 phosphorylation (n = 94; p < 0.05). In conclusion, our data indicate that aberrant Akt signalling contributes to maintaining stemness in lung cancer TICs through a NF-kB/IL-6/STAT3 pathway and provide novel potential therapeutic targets for eliminating these malignant cells in NSCLC. PMID:26486080

  6. TLR4-Activated MAPK-IL-6 Axis Regulates Vascular Smooth Muscle Cell Function.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Tsai, Chien-Sung; Lin, Chih-Yuan; Tsai, Yi-Ting; Lin, Chin-Sheng; Wang, Yi-Fu; Yet, Shaw-Fang; Hsu, Yu-Juei; Kuo, Cheng-Chin

    2016-01-01

    Migration of vascular smooth muscle cells (VSMCs) into the intima is considered to be a vital event in the pathophysiology of atherosclerosis. Despite substantial evidence supporting the pathogenic role of Toll-like receptor 4 (TLR4) in the progression of atherogenesis, its function in the regulation of VSMC migration remains unclear. The goal of the present study was to elucidate the mechanism by which TLR4 regulates VSMC migration. Inhibitor experiments revealed that TLR4-induced IL-6 secretion and VSMC migration were mediated via the concerted actions of MyD88 and TRIF on the activation of p38 MAPK and ERK1/2 signaling. Neutralizing anti-IL-6 antibodies abrogated TLR4-driven VSMC migration and F-actin polymerization. Blockade of p38 MAPK or ERK1/2 signaling cascade inhibited TLR4 agonist-mediated activation of cAMP response element binding protein (CREB). Moreover, siRNA-mediated suppression of CREB production repressed TLR4-induced IL-6 production and VSMC migration. Rac-1 inhibitor suppressed TLR4-driven VSMC migration but not IL-6 production. Importantly, the serum level of IL-6 and TLR4 endogenous ligand HMGB1 was significantly higher in patients with coronary artery diseases (CAD) than in healthy subjects. Serum HMGB1 level was positively correlated with serum IL-6 level in CAD patients. The expression of both HMGB1 and IL-6 was clearly detected in the atherosclerotic tissue of the CAD patients. Additionally, there was a positive association between p-CREB and HMGB1 in mouse atherosclerotic tissue. Based on our findings, we concluded that, upon ligand binding, TLR4 activates p38 MAPK and ERK1/2 signaling through MyD88 and TRIF in VSMCs. These signaling pathways subsequently coordinate an additive augmentation of CREB-driven IL-6 production, which in turn triggers Rac-1-mediated actin cytoskeleton to promote VSMC migration. PMID:27563891

  7. Interleukin-6 (IL-6) and receptor (IL6-R) gene haplotypes associate with amniotic fluid protein concentrations in preterm birth.

    PubMed

    Velez, Digna R; Fortunato, Stephen J; Williams, Scott M; Menon, Ramkumar

    2008-06-01

    Spontaneous preterm birth (PTB-gestational age <37 weeks) occurs in approximately 450 000 births annually in the United States and is one of the leading causes of neonatal morbidity and mortality. Risk of PTB is affected by complex gene-environment interactions that are not well understood. We examined the PTB candidate gene, Interleukin 6 (IL-6) and its receptor (IL6-R) in both Caucasian (145 PTB and 194 term maternal; 140 PTB and 179 term fetal) and African-American (76 PTB and 191 term maternal; 66 PTB and 183 term fetal) DNA. Eight single nucleotide polymorphisms (SNPs) in IL-6 and 22 SNPs in IL6R were examined for association with IL-6 amniotic fluid (AF) concentrations, as concentration of IL-6 is a hypothesized risk factor. In addition, IL-6 and IL6-R SNPs were analyzed for associations with PTB. Haplotype associations were tested by sliding windows. No strong single marker effects were observed in Caucasians; however, in African-American maternal IL-6R marker rs4553185 associated with PTB (allele P = 4.49 x 10(-3) and genotype P = 0.01). The strongest haplotype associations were observed in IL-6R with IL-6 cytokine concentration as outcome: Caucasian fetal (rs4601580-rs4845618) P = 1.6 x 10(-3) and African-American maternal (rs4601580-rs4845618-rs6687726-rs7549338) P = 2.30 x 10(-3). Significant results converged on three regions in the two genes: in IL-6 markers rs1800797, rs1800796 and rs1800795; in IL-6R markers rs4075015, rs4601580, rs4645618, rs6687726 and rs7549338 and markers rs4845623, rs4537545 and rs4845625. In conclusion, our results suggest that IL-6 AF concentration, in situations of PTB, result from variation in IL-6 and more importantly IL-6R.

  8. Photodynamic therapy affects the expression of IL-6 and IL-10 in vivo

    NASA Astrophysics Data System (ADS)

    Gollnick, Sandra O.; Musser, David A.; Henderson, Barbara W.

    1998-05-01

    Photodynamic therapy (PDT), which can effectively destroy malignant tissue, also induces a complex immune response which potentiates anti-tumor immunity, but also inhibits skin contact hypersensitivity (CHS) and prolongs skin graft survival. The underlying mechanisms responsible for these effects are poorly understood, but are likely to involve meditation by cytokines. We demonstrate in a BALB/c mouse model that PDT delivered to normal and tumor tissue in vivo causes marked changes in the expression of cytokines interleukin (IL)-6 and IL-10. IL-6 mRNA and protein are rapidly and strongly enhanced in the PDT treated EMT6 tumor. Previous studies have shown that intratumoral injection of IL- 6 or transduction of the IL-6 gene into tumor cells can enhance tumor immunogenicity and inhibit tumor growth in experimental murine tumor systems. Thus, PDT may enhance local anti-tumor immunity by up-regulating IL-6. PDT also results in an increase in IL-10 mRNA and protein in the skin. The same PDT regime which enhances IL-10 production in the skin has been shown to strongly inhibit the CHS response. The kinetics of IL-10 expression coincide with the known kinetics of PDT induced CHS suppression and we propose that the enhanced IL-10 expression plays a role in the observed suppression of cell mediated responses seen following PDT.

  9. The paradigm of IL-6: from basic science to medicine

    PubMed Central

    2002-01-01

    Chapter summary IL-6 is a pleiotropic cytokine with a wide range of biological activities in immune regulation, hematopoiesis, inflammation, and oncogenesis. Its activities are shared by IL-6-related cytokines such as leukemia inhibitory factor and oncostatin M. The pleiotropy and redundancy of IL-6 functions have been identified by using a unique receptor system comprising two functional proteins: an IL-6 receptor (IL-6R) and gp130, the common signal transducer of cytokines related to IL-6. Signal transduction through gp130 is mediated by two pathways: the JAK–STAT (Janus family tyrosine kinase–signal transducer and activator of transcription) pathway and the Ras mitogen-activated protein kinase pathway. The negative regulators of IL-6 signaling have also been identified, although the physiological roles of the molecules are not yet fully understood. The pathological roles of IL-6 have also been clarified in various disease conditions, such as inflammatory, autoimmune, and malignant diseases. On the basis of the findings, a new therapeutic approach to block the IL-6 signal using humanized anti-IL-6R antibody for rheumatoid arthritis, Castleman's disease, and multiple myeloma has been attempted. PMID:12110143

  10. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases.

    PubMed

    Ferreira, Ricardo C; Freitag, Daniel F; Cutler, Antony J; Howson, Joanna M M; Rainbow, Daniel B; Smyth, Deborah J; Kaptoge, Stephen; Clarke, Pamela; Boreham, Charlotte; Coulson, Richard M; Pekalski, Marcin L; Chen, Wei-Min; Onengut-Gumuscu, Suna; Rich, Stephen S; Butterworth, Adam S; Malarstig, Anders; Danesh, John; Todd, John A

    2013-04-01

    Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10⁻²²) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10⁻²²). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10⁻⁷). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant. PMID:23593036

  11. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis. PMID:27381687

  12. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  13. Tocilizumab attenuates inflammation in ALS patients through inhibition of IL6 receptor signaling

    PubMed Central

    Mizwicki, Mathew T; Fiala, Milan; Magpantay, Larry; Aziz, Najib; Sayre, James; Liu, Guanghao; Siani, Avi; Chan, Derrick; Martinez-Maza, Otoniel; Chattopadhyay, Madhuri; Cava, Antonio La

    2012-01-01

    Patients with amyotrophic lateral sclerosis (ALS) have evidence of chronic inflammation demonstrated by infiltration of the gray matter by inflammatory macrophages, IL17A-positive T cells, and mast cells. Increased serum levels of IL6 and IL17A have been detected in sporadic ALS (sALS) patients when compared to healthy controls. Herein we investigate, in peripheral blood mononuclear cells (PBMCs), the baseline transcription of genes associated with inflammation in sALS and control subjects and the impact of the IL6 receptor (IL6R) antibody (tocilizumab) on the transcription and/or secretion of inflammation factors (e.g. cytokines) stimulated by the apo-G37R superoxide dismutase (SOD1) mutant. At baseline, PBMCs of four sALS patients (Group 1) showed significantly increased expression of TLR2 and CD14; ALOX5, PTGS2 and MMP1; IL1α, IL1β, IL6, IL36G, IL8 and TNF; CCL3, CCL20, CXCL2, CXCL3 and CXCL5. In four other sALS patients (Group 2), most of the genes just mentioned were expressed at near control levels and a significant decrease in the expression of PPARG, PPARA, RARG, HDAC4 and KAT2B; IL6R, IL6ST and ADAM17; TNFRSF11A; MGAT2 and MGAT3; PLCG1; CXCL3 were detected. Apo-G37R SOD1 up regulated the transcription of cytokines (e.g. IL1α/β, IL6, IL8, IL36G), chemokines (e.g. CCL20; CXCL3, CXCL5), and enzymes (e.g. PTGS2 and MMP1). In vitro, tocilizumab down regulated the transcription of many inflammatory cytokines, chemokines, enzymes, and receptors, which were up regulated by pathogenic forms of SOD1. Tocilizumab also reduced the secretion of the pro-inflammatory cytokines IL1β, IL6, TNFα, GM-CSF, IFNγ, and IL17A by Group 1 PBMCs. Finally, sALS patients had significantly higher concentrations of IL6, sIL6R and C-reactive protein in the cerebrospinal fluid when compared to AD patients. This pilot study demonstrates that in vitro tocilizumab suppresses many factors that drive inflammation in sALS patients, with possible increased efficacy in Group 1 ALS patients

  14. In situ hybridization of IL-6 in rheumatoid arthritis.

    PubMed Central

    Wood, N C; Symons, J A; Dickens, E; Duff, G W

    1992-01-01

    IL-6, an important mediator of the acute phase response, has been implicated in the pathogenesis of rheumatoid arthritis (RA). Many cell types including macrophages, T cells, B cells, endothelial cells and fibroblasts can produce this cytokine and production is largely regulated at the level of gene transcription or mRNA stabilization. In this paper we have first measured the levels of IL-6 activity in synovial fluid (SF) and serum from patients with RA and then localized IL-6-producing cells in the synovium by in situ hybridization combined with immunophenotyping. Patients with RA had raised levels of IL-6 in both SF and serum compared with patients with osteoarthritis and age-matched healthy controls. In individual RA patients tested serially after admission to hospital, serum IL-6 was initially raised and, unexpectedly, increased with clinical improvement. In situ hybridization of IL-6 mRNA showed positive cells both in the lymphocyte-rich aggregates and adjacent to small blood vessels. With immunophenotyping it was found that cells containing IL-6 mRNA were often in contact with CD14+ tissue macrophages and double immunophenotyping revealed that immunoreactive IL-6 was often associated with synovial T cells. Images Fig. 3 Fig. 4 Fig. 5 PMID:1531188

  15. Short sleep duration increases salivary IL-6 production.

    PubMed

    Reinhardt, Érica Lui; Fernandes, Pedro A C M; Markus, Regina P; Fischer, Frida Marina

    2016-01-01

    Morning shift sleep restriction has been associated with higher plasma IL-6 levels. The aim of this study was to investigate the effect of sleep duration on salivary IL-6. Sleep duration of morning shift workers was estimated by actigraphy. Workers with "longer sleep duration" (LSD; N = 6) and "shorter sleep duration" (SSD; N = 15) were then compared regarding salivary IL-6 levels determined at 14:00 h, bed and wake times. SSD workers did not show daily variation of IL-6 and presented higher levels at bedtime and 14:00 h compared to LSD workers. In this study, SSD is associated with an increase in salivary IL-6 content. PMID:27070477

  16. Dietary cocoa inhibits colitis associated cancer: a crucial involvement of the IL-6/STAT3 pathway.

    PubMed

    Saadatdoust, Zeinab; Pandurangan, Ashok Kumar; Ananda Sadagopan, Suresh Kumar; Mohd Esa, Norhaizan; Ismail, Amin; Mustafa, Mohd Rais

    2015-12-01

    Patients with inflammatory bowel disease (IBD) are at increased risk for developing ulcerative colitis-associated colorectal cancer (CRC). The interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)-3 signaling regulates survival and proliferation of intestinal epithelial cells and play an important role in the pathogenesis of IBD and CRC. Cocoa is enriched with polyphenols that known to possess antioxidant, anti-inflammatory and antitumor activities. Here, we explored the antitumor effects and mechanisms of cocoa diet on colitis-associated cancer (CAC) using the azoxymethane/dextran sulfate sodium model, with a particular focus on whether cocoa exerts its anticancer effect through the IL-6/STAT3 pathway. We found that cocoa significantly decreased the tumor incidence and size in CAC-induced mice. In addition to inhibiting proliferation of tumor epithelial cells, cocoa suppressed colonic IL-6 expression and subsequently activation of STAT3. Thus, our findings demonstrated that cocoa diet suppresses CAC tumorigenesis, and its antitumor effect is partly mediated by limiting IL-6/STAT3 activation. In addition, cocoa induces apoptosis by increased the expressions of Bax and caspase 3 and decreased Bcl-xl. Thus, we conclude that cocoa may be a potential agent in the prevention and treatment of CAC. PMID:26355019

  17. An altered peripheral IL6 response in major depressive disorder.

    PubMed

    Money, Kelli M; Olah, Zita; Korade, Zeljka; Garbett, Krassimira A; Shelton, Richard C; Mirnics, Karoly

    2016-05-01

    Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in

  18. Endogenous IL-6 of mesenchymal stem cell improves behavioral outcome of hypoxic-ischemic brain damage neonatal rats by supressing apoptosis in astrocyte

    PubMed Central

    Gu, Yan; He, Mulan; Zhou, Xiaoqin; Liu, Jinngjing; Hou, Nali; Bin, Tan; Zhang, Yun; Li, Tingyu; Chen, Jie

    2016-01-01

    Mesenchymal stem cell (MSC) transplantation reduces the neurological impairment caused by hypoxic-ischemic brain damage (HIBD) via immunomodulation. In the current study, we found that MSC transplantation improved learning and memory function and enhanced long-term potentiation in neonatal rats subjected to HIBD and the amount of IL-6 released from MSCs was far greater than that of other cytokines. However, the neuroprotective effect of MSCs infected with siIL-6-transduced recombinant lentivirus (siIL-6 MSCs) was significantly weakened in the behavioural tests and electrophysiological analysis. Meanwhile, the hippocampal IL-6 levels were decreased following siIL-6 MSC transplantation. In vitro, the levels of IL-6 release and the levels of IL-6R and STAT3 expression were increased in both primary neurons and astrocytes subjected to oxygen and glucose deprivation (OGD) following MSCs co-culture. The anti-apoptotic protein Bcl-2 was upregulated and the pro-apoptotic protein Bax was downregulated in OGD-injured astrocytes co-cultured with MSCs. However, the siIL-6 MSCs suppressed ratio of Bcl-2/Bax in the injured astrocytes and induced apoptosis number of the injured astrocytes. Taken together, these data suggest that the neuroprotective effect of MSC transplantation in neonatal HIBD rats is partly mediated by IL-6 to enhance anti-apoptosis of injured astrocytes via the IL-6/STAT3 signaling pathway. PMID:26766745

  19. Time course of IL-6 expression in experimental CNS ischemia.

    PubMed

    Clark, W M; Rinker, L G; Lessov, N S; Hazel, K; Eckenstein, F

    1999-04-01

    Interleukin-6 (IL-6) appears to be an important modulator of the inflammatory response associated with CNS ischemia. Clinically, IL-6 values obtained in the first week post-stroke have been shown to correlate with infarct size and outcome. In this study we used a focal reversible stroke model to investigate the time course and relationship to outcome of IL-6 production in plasma, brain and CSF. Reversible middle cerebral artery occlusion or sham surgery was produced in 50 adult Swiss Webster mice by advancing an 8-0 filament into the internal carotid artery for 2 h (sham 1 min). At 3, 6, 12, 24, and 72 h (8 each ischemia; 2 each sham) groups of animals were evaluated on a 28 point clinical scale, blood and CSF obtained, and the brains were evaluated for infarct volume and IL-6 mRNA levels. Serum levels of IL-6 (ELISA mean +/- SD; undetectable in controls) overall sham group, 102 +/- 87; 3 h, 908 +/- 494* pg ml-1; 6 h, 1079 +/- 468* pg ml-1; 12 h, 980 +/- 221* pg ml-1; pg ml-1; 24 h, 320 +/- 314* pg ml-1; 72 h, 20 +/- 30* pg ml-1 (*p < or = 0.05 to sham). CSF levels (ELISA) overall sham group, 10 +/- 18; 3 h, 379 +/- 210* pg ml-1; 6 h, 157 +/- 61* pg ml-1; 12 h, 136 +/- 88* pg ml-1; 24 h, 127 +/- 99 pg ml-1; 72 h, 72 +/- 9* pg ml-1 (*p < or = 0.05 to sham). Brain IL-6 mRNA levels overall sham group, 20; 3 h, 480; 6 h, 599; 12 h, 7960; 24 h, 20267; 72 h, 0. There was an overall R2 of 0.20 between plasma and CSF IL-6. There was an overall R2 of 0.13 and 0.20 between infarct size and serum and CSF IL-6 level respectively, and an overall R2 of 0.10 and 0.17 between neurologic function and serum and CSF IL-6 level respectively. These findings confirm that IL-6 values increase following CNS ischemia with peak serum and CSF levels occurring before brain values. CSF IL-6 levels had a stronger correlation with neurologic function and infarct size than serum.

  20. PEDF and IL-6 CONTROL PROSTATE NEUROENDOCRINE DIFFERENTIATION VIA FEED-FORWARD MECHANISM

    PubMed Central

    Smith, Norm D.; Schulze-Hoepfner, Frank Thilo; Veliceasa, Dorina; Filleur, Stephanie; Huang, Lijun; Huang, Xue-Mei; Volpert, Olga V.

    2010-01-01

    Pigment epithelium-derived factor (PEDF) promotes differentiation and survival of neuronal cells and expands the adult neuronal stem cell niche. In the prostate, PEDF is suppressed by androgen, with unclear physiological consequences. Ectopic and endogenous PEDF cause neuroendocrine differentiation of prostate cancer cells, manifested by neurite-like outgrowths and expression of chromogranin A. The trans-differentiated cells expressed both axonal and dendritic markers, as was ascertained by immunoblotting specific markers. Neuroendocrine cells formed multiple synaptophysin-positive protrusions resembling dendritic spines, and vesicles containing serotonin, pointing to a possibility of synapse formation. Interleukin-6 (IL-6), a known trans-differentiating agent, induced PEDF secretion. Moreover, PEDF neutralizing antibodies abolished trans-differentiation of IL-6 treated cells, suggesting an autocrine loop. Neurogenic events were independent of cyclic AMP. Instead, PEDF activated, in this order, RhoA, NFκB and Stat3. Inhibitors of Rho, NFκB or STAT pathways abolished differentiation and synapse formation. Additionally, NFκB activation caused IL-6 expression. Thus we discovered that NFκB controls formation of neuronal communications in the prostate due to PEDF and defined a feed-forward loop where NFκB induction elicits Stat3 activation and pro-differentiating IL-6 expression causing further expansion of the neuroendocrine communications. Our findings point to the role of NFκB and PEDF in coordinated prostate development. PMID:18433784

  1. IL-6 and its circadian secretion in humans.

    PubMed

    Vgontzas, A N; Bixler, E O; Lin, H-M; Prolo, P; Trakada, G; Chrousos, G P

    2005-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine produced by numerous types of immune and nonimmune cells and is involved in many pathophysiologic mechanisms in humans. Many studies suggest that IL-6 is a putative 'sleep factor' and its circadian secretion correlates with sleep/sleepiness. IL-6 is elevated in disorders of excessive daytime sleepiness such as narcolepsy and obstructive sleep apnea. It correlates positively with body mass index and may be a mediator of sleepiness in obesity. Also the secretion of this cytokine is stimulated by total acute or partial short-term sleep loss reflecting the increased sleepiness experienced by sleep-deprived individuals. Studies that evaluated the 24-hour secretory pattern of IL-6 in healthy young adults suggest that IL-6 is secreted in a biphasic circadian pattern with two nadirs at about 08.00 and 21.00, and two zeniths at about 19.00 and 05.00 h. In contrast, following sleep deprivation or in disorders of sleep disturbance, e.g., insomnia, IL-6 peaks during the day and, based on the level of stress system activity, i.e., cortisol secretion, contributes to either sleepiness and deep sleep (low cortisol) or feelings of tiredness and fatigue and poor sleep (high cortisol). In order to address concerns about the potential impact of differences of IL-6 levels between the beginning and the end of the 24-hour blood-drawing experiment, we proceeded with a cosinor analysis of 'detrended' data in young and old healthy individuals. This new analysis did not affect the biphasic circadian pattern of IL-6 secretion in young adults, while it augmented the flattened circadian pattern in old individuals in whom the difference was greater. Finally, IL-6 appears to be somnogenic in rats and exhibits a diurnal rhythm that follows the sleep/wake cycle in these animals. We conclude that IL-6 is a mediator of sleepiness and its circadian pattern reflects the homeostatic drive for sleep. PMID:15905620

  2. The social environment and IL-6 in rats and humans

    PubMed Central

    Saxton, Katherine B; John-Henderson, Neha; Reid, Matthew W; Francis, Darlene D

    2011-01-01

    Inflammatory cytokine levels predict a wide range of human diseases, including depression, cardiovascular disease, type 2 diabetes, autoimmune disease, general morbidity, and mortality. Stress and social experiences throughout the lifecourse have been associated with inflammatory processes. We conducted studies in humans and laboratory rats to examine the effect of early life experience and adult social position in predicting IL-6 levels. Human participants reported family homeownership during their childhood and current subjective social status. Interleukin-6 (IL-6) was measured from oral mucosal transudate. Rats were housed in groups of three, matched for quality of maternal care received. Social status was assessed via competition for resources, and plasma IL-6 was assessed in adulthood. In both humans and rats, we identified an interaction effect; early social experience moderated the effect of adult social status on IL-6 levels. Rats that experienced low levels of maternal care and people with low childhood socioeconomic status represented both the highest and lowest levels of IL-6 in adulthood, depending on their social status as young adults. The predicted interaction held for non-Hispanic people, but did not occur among Hispanic individuals. Adversity early in life may not have a monotonically negative effect on adult health, but may alter biological sensitivity to later social experiences. PMID:21640816

  3. Resveratrol Inhibits IL-6-Induced Transcriptional Activity of AR and STAT3 in Human Prostate Cancer LNCaP-FGC Cells.

    PubMed

    Lee, Mee-Hyun; Kundu, Joydeb Kumar; Keum, Young-Sam; Cho, Yong-Yeon; Surh, Young-Joon; Choi, Bu Young

    2014-09-01

    Prostate cancer is the most frequently diagnosed cancer. Although prostate tumors respond to androgen ablation therapy at an early stage, they often acquire the potential of androgen-independent growth. Elevated transcriptional activity of androgen receptor (AR) and/or signal transducer and activator of transcription-3 (STAT3) contributes to the proliferation of prostate cancer cells. In the present study, we examined the effect of resveratrol, a phytoalexin present in grapes, on the reporter gene activity of AR and STAT3 in human prostate cancer (LNCaP-FGC) cells stimulated with interleukin-6 (IL-6) and/or dihydrotestosterone (DHT). Our study revealed that resveratrol suppressed the growth of LNCaP-FGC cells in a time- and concentration-dependent manner. Whereas the AR transcriptional activity was induced by treatment with either IL-6 or DHT, the STAT3 transcriptional activity was induced only by treatment with IL-6 but not with DHT. Resveratrol significantly attenuated IL-6-induced STAT3 transcriptional activity, and DHT- or IL-6-induced AR transcriptional activity. Treatment of cells with DHT plus IL-6 significantly increased the AR transcriptional activity as compared to DHT or IL-6 treatment alone and resveratrol markedly diminished DHT plus IL-6-induced AR transcriptional activity. Furthermore, the production of prostate-specific antigen (PSA) was decreased by resveratrol in the DHT-, IL-6- or DHT plus IL-6-treated LNCaP-FGC cells. Taken together, the inhibitory effects of resveratrol on IL-6- and/or DHT-induced AR transcriptional activity in LNCaP prostate cancer cells are partly mediated through the suppression of STAT3 reporter gene activity, suggesting that resveratrol may be a promising therapeutic choice for the treatment of prostate cancer.

  4. Lack of association of IL6R rs2228145 and IL6ST/gp130 rs2228044 gene polymorphisms with cardiovascular disease in patients with rheumatoid arthritis.

    PubMed

    López-Mejías, R; García-Bermúdez, M; González-Juanatey, C; Castañeda, S; Miranda-Filloy, J A; Gómez-Vaquero, C; Fernández-Gutiérrez, B; Balsa, A; Pascual-Salcedo, D; Blanco, R; González-Álvaro, I; Llorca, J; Martín, J; González-Gay, M A

    2011-12-01

    Interleukin-6 (IL-6) is a key mediator of inflammation in rheumatoid arthritis (RA) and its actions may be controlled by the IL-6 receptor (IL-6R). IL-6 transducer (IL-6ST/ gp130) is the signal transducing subunit of the IL-6R. We assessed the influence of the IL6R and the IL6ST/gp130 genes in the risk of cardiovascular (CV) disease in RA. For this purpose, 1250 Spanish patients with RA were genotyped for the IL6R rs2228145 and IL6ST/gp130 rs2228044 functional gene polymorphisms. Patients were stratified according to the presence or absence of CV events. Also, a subgroup of patients without CV events was assessed for the presence of subclinical atherosclerosis using two surrogate markers of atherosclerosis (flow-mediated endothelium-dependent vasodilatation and carotid intima-media thickness). No significant differences in the genotype and allele frequencies for both gene polymorphisms between patients with and without CV events were observed. It was also the case when values of surrogate markers of atherosclerosis were compared according to IL6R and IL6ST genotype frequencies. In conclusion, our results do not confirm an association of IL6R rs2228145 and IL6ST/gp130 rs2228044 polymorphisms with CV disease in RA.

  5. HHV-8–encoded viral IL-6 collaborates with mouse IL-6 in the development of multicentric Castleman disease in mice

    PubMed Central

    Suthaus, Jan; Stuhlmann-Laeisz, Christiane; Tompkins, Van S.; Rosean, Timothy R.; Klapper, Wolfram; Tosato, Giovanna; Janz, Siegfried

    2012-01-01

    Human herpes virus 8 (HHV-8) or Kaposi sarcoma-associated herpes virus is the etiologic agent of Kaposi sarcoma, primary effusion lymphoma, and plasma cell-type multicentric Castleman disease (MCD). HHV-8 encodes a viral homolog of human IL-6, called viral IL-6 (vIL-6), which does not require the cellular IL-6 receptor for binding to the ubiquitously expressed gp130 receptor subunit and subsequent JAK-STAT signaling. Thus, in contrast to IL-6, vIL-6 can stimulate virtually all cells in the body. To elucidate the mechanism by which vIL-6 drives human diseases, we generated transgenic mice that constitutively express vIL-6 under control of the MHC class I promoter. The mice were found to exhibit vIL-6 serum levels comparable with those observed in HHV-8–infected patients, to contain elevated amounts of phosphorylated STAT3 in spleen and lymph nodes, where vIL-6 was produced, and to spontaneously develop key features of human plasma cell-type MCD, including splenomegaly, multifocal lymphadenopathy, hypergammaglobulin-emia, and plasmacytosis. Transfer of the vIL-6 transgene onto an IL-6–deficient genetic background abrogated MCD-like phenotypes, indicating that endogenous mouse IL-6 is a crucial cofactor in the natural history of the disease. Our results in mice suggest that human IL-6 plays an important role in the pathogenesis of HHV-8–associated MCD. PMID:22490805

  6. Enhanced T cell responses to IL-6 in type 1 diabetes are associated with early clinical disease and increased IL-6 receptor expression.

    PubMed

    Hundhausen, Christian; Roth, Alena; Whalen, Elizabeth; Chen, Janice; Schneider, Anya; Long, S Alice; Wei, Shan; Rawlings, Rebecca; Kinsman, MacKenzie; Evanko, Stephen P; Wight, Thomas N; Greenbaum, Carla J; Cerosaletti, Karen; Buckner, Jane H

    2016-09-14

    Interleukin-6 (IL-6) is a key pathogenic cytokine in multiple autoimmune diseases including rheumatoid arthritis and multiple sclerosis, suggesting that dysregulation of the IL-6 pathway may be a common feature of autoimmunity. The role of IL-6 in type 1 diabetes (T1D) is not well understood. We show that signal transducer and activator of transcription 3 (STAT3) and STAT1 responses to IL-6 are significantly enhanced in CD4 and CD8 T cells from individuals with T1D compared to healthy controls. The effect is IL-6-specific because it is not seen with IL-10 or IL-27 stimulation, two cytokines that signal via STAT3. An important determinant of enhanced IL-6 responsiveness in T1D is IL-6 receptor surface expression, which correlated with phospho-STAT3 levels. Further, reduced expression of the IL-6R sheddase ADAM17 in T cells from patients indicated a mechanistic link to enhanced IL-6 responses in T1D. IL-6-induced STAT3 phosphorylation was inversely correlated with time from diagnosis, suggesting that dysregulation of IL-6 signaling may be a marker of early disease. Finally, whole-transcriptome analysis of IL-6-stimulated CD4(+) T cells from patients revealed previously unreported IL-6 targets involved in T cell migration and inflammation, including lymph node homing markers CCR7 and L-selectin. In summary, our study demonstrates enhanced T cell responses to IL-6 in T1D due, in part, to an increase in IL-6R surface expression. Dysregulated IL-6 responsiveness may contribute to diabetes through multiple mechanisms including altered T cell trafficking and indicates that individuals with T1D may benefit from IL-6-targeted therapeutic intervention such as the one that is being currently tested (NCT02293837). PMID:27629486

  7. The IL-6/sIL-6R treatment of a malignant melanoma cell line enhances susceptibility to TNF-{alpha}-induced apoptosis

    SciTech Connect

    Wagley, Yadav; Yoo, Yung-Choon; Seo, Han Geuk; Rhee, Man Hee; Kim, Tae-Hyoung; Kang, Keon Wook; Nah, Seung-Yeol; Oh, Jae-Wook . E-mail: ohjw@mail.chosun.ac.kr

    2007-03-23

    Melanoma is an intractable tumor that has shown very impressive and promising response to local administration of high dose recombinant TNF-{alpha} in combination with IFN-{gamma} in clinical studies. In this study, we investigated the effect of IL-6/sIL-6R on TNF-{alpha}-resistant B16/F10.9 melanoma cells. A low dose of TNF-{alpha} or IL-6/sIL-6R had minimal affect on the cell growth. However, the highly active fusion protein of sIL-6R and IL-6 (IL6RIL6), covalently linked by a flexible peptide, sensitized TNF-{alpha}-resistant F10.9 melanoma cells to TNF-{alpha}-induced apoptosis. Stimulation of the cells with IL6RIL6 plus TNF-{alpha} resulted in both the activation of caspase-3 and the reduction of bcl-2 expression. Flow cytometry analysis showed that IL6RIL6-upregulated TNF-R55 and TNF-R75 expression, suggesting an increase in TNF-{alpha} responsiveness by IL6RIL6 resulting from the induction of TNF receptors. Moreover, exposure of F10.9 cells to neutralizing antibody to TNF-R55 significantly inhibited IL6RIL6/TNF-{alpha}-induced cytotoxicity. These results suggest that the IL6/sIL6R/gp130 system, which sensitizes TNF-{alpha}-resistant melanoma cells to TNF-{alpha}-induced apoptosis, may provide a new target for immunotherapy.

  8. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells.

    PubMed

    Wajner, Simone Magagnin; Goemann, Iuri Martin; Bueno, Ana Laura; Larsen, P Reed; Maia, Ana Luiza

    2011-05-01

    Nonthyroidal illness syndrome (NTIS) is a state of low serum 3,5,3' triiodothyronine (T₃) that occurs in chronically ill patients; the degree of reduction in T₃ is associated with overall prognosis and survival. Iodthyronine deiodinases are enzymes that catalyze iodine removal from thyroid hormones; type I and II deiodinase (D1 and D2, respectively) convert the prohormone thyroxine T₄ to active T₃, whereas the type III enzyme (D3) inactivates T₄ and T₃. Increased production of cytokines, including IL-6, is a hallmark of the acute phase of NTIS, but the role of cytokines in altered thyroid hormone metabolism is poorly understood. Here, we measured the effect of IL-6 on both endogenous cofactor-mediated and dithiothreitol-stimulated (DTT-stimulated) cell sonicate deiodinase activities in human cell lines. Active T₃ generation by D1 and D2 in intact cells was suppressed by IL-6, despite an increase in sonicate deiodinases (and mRNAs). N-acetyl-cysteine (NAC), an antioxidant that restores intracellular glutathione (GSH) concentrations, prevented the IL-6-induced inhibitory effect on D1- and D2-mediated T₃ production, which suggests that IL-6 might function by depleting an intracellular thiol cofactor, perhaps GSH. In contrast, IL-6 stimulated endogenous D3-mediated inactivation of T₃. Taken together, these results identify a single pathway by which IL-6-induced oxidative stress can reduce D1- and D2-mediated T₄-to-T₃ conversion as well as increasing D3-mediated T₃ (and T₄) inactivation, thus mimicking events during illness.

  9. Purinergic signaling via P2Y receptors up-mediates IL-6 production by liver macrophages/Kupffer cells.

    PubMed

    Ishimaru, Makiko; Yusuke, Negishi; Tsukimoto, Mitsutoshi; Harada, Hitoshi; Takenouchi, Takato; Kitani, Hiroshi; Kojima, Shuji

    2014-06-01

    Resident macrophages in the liver (Kupffer cells) produce various cytokines and chemokines, and have important roles in hepatitis and liver fibrosis. The cells are activated by various factors, for example lipopolysaccharide (LPS), which is an endotoxin and is high in the blood of patients with liver cirrhosis. Involvement of P2 receptors in the release of pro-inflammatory cytokines from Kupffer cells is little. In this study, we investigated purinergic signaling in the release of pro-inflammatory cytokines, such as IL-6 and TNF-α, from liver Kupffer cells of C57BL/6 mice (KUP5 cells). KUP5cells were isolated from C57BL/6 mice and cultivated with Dulbecco's modified Eagle's medium. The cells were stimulated with LPS. LPS-induced IL-6 production by KUP5 cells was suppressed significantly by pretreatments with non-selective P2 antagonist suramin, P2Y13antagonist MRS2211, and ecto-nucleotidase, whereas P2Y receptor agonists, significantly increased the IL-6 production. P2Y13knockdown reduced LPS-induced IL-6 production, but by less than 50%. These results would suggest that P2Y receptors including P2Y13and others, may involves in LPS-induced IL-6 production in Kupffer cells, leading to the liver inflammation. Therefore, we first showed the importance of purinergic signaling via P2Y receptors in the activation of Kupffer cells and liver injury, which is worthwhile in drug development for liver diseases. PMID:24849676

  10. Phenolic compounds with IL-6 inhibitory activity from Aster yomena.

    PubMed

    Kim, A Ryun; Jin, Qinglong; Jin, Hong-Guang; Ko, Hae Ju; Woo, Eun-Rhan

    2014-07-01

    A new biflavonoid, named asteryomenin (1), as well as six known phenolic compounds, esculetin (2), 4-O-β-D-glucopyranoside-3-hydroxy methyl benzoate (3), caffeic acid (4), isoquercitrin (5), isorhamnetin-3-O-glucoside (6), and apigenin (7) were isolated from the aerial parts of Aster yomena. The structures of compounds (1-7) were identified based on 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. Compounds 2-7 were isolated from this plant for the first time. For these isolates, the inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell was examined. Among these isolates, compounds 4 and 7 appeared to have potent inhibitory activity of IL-6 production in the TNF-α stimulated MG-63 cell, while compounds 1-3 and 5-6 showed moderate activity.

  11. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production.

    PubMed

    Chen, Hsin-Hung; Lin, Han-Tso; Foung, Yi-Fan; Han-You Lin, John

    2012-10-01

    Interleukin 6 (IL-6) is a protein secreted by T cells and macrophages and plays an important role in immune response. IL-6 regulates the proliferation and differentiation of T cells, and elicits immunoglobulin production in B cells. In this study, the cDNA il-6 (gil-6) sequence of the orange spotted grouper (Epinephelus coioides) was obtained. The deduced IL-6 (gIL-6) protein comprised 223 amino acids, the sequence shared approximately 30% similarity with mammalian IL-6, and between 47% and 69% similarity with other available teleost IL-6. The protein comprises the signal peptide, the IL-6 family signature, and conserved amino acid residues found in IL-6 sequences of other teleost. In order to understand the bioactivity and influence of gIL-6 on humoral immune response, recombinant gIL-6 (rgIL-6) synthesized by prokaryotes was injected into orange spotted groupers, and the immune-related gene expression at various times in various organs was observed. Our results revealed that the Th1 specific transcription factor t-bet was down-regulated and Th2 specific transcription factors gata3, and c-maf were up-regulated in immune organs, following IL-6 stimulation. Additionally, higher levels of igm mRNA and translated protein were detected in rgIL-6 stimulated fish. These results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies. PMID:22858412

  12. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice.

    PubMed

    Vida, Margarita; Gavito, Ana Luisa; Pavón, Francisco Javier; Bautista, Dolores; Serrano, Antonia; Suarez, Juan; Arrabal, Sergio; Decara, Juan; Romero-Cuevas, Miguel; Rodríguez de Fonseca, Fernando; Baixeras, Elena

    2015-07-01

    Interleukin-6 (IL-6) has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD) in wild-type (WT) and IL-6-deficient (IL-6(-/-)) mice. Additionally, HFD-fed IL-6(-/-) mice were also chronically treated with recombinant IL-6 (rIL-6). Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1) and signal transducer and activator of transcription-3 (STAT3), increased AMP kinase phosphorylation (p-AMPK), and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1). The HFD-fed IL-6(-/-) mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β), FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6 -/-: mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis.

  13. Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice

    PubMed Central

    Vida, Margarita; Gavito, Ana Luisa; Pavón, Francisco Javier; Bautista, Dolores; Serrano, Antonia; Suarez, Juan; Arrabal, Sergio; Decara, Juan; Romero-Cuevas, Miguel; Rodríguez de Fonseca, Fernando; Baixeras, Elena

    2015-01-01

    ABSTRACT Interleukin-6 (IL-6) has emerged as an important mediator of fatty acid metabolism with paradoxical effects in the liver. Administration of IL-6 has been reported to confer protection against steatosis, but plasma and tissue IL-6 concentrations are elevated in chronic liver diseases, including fatty liver diseases associated with obesity and alcoholic ingestion. In this study, we further investigated the role of IL-6 on steatosis induced through a high-fat diet (HFD) in wild-type (WT) and IL-6-deficient (IL-6−/−) mice. Additionally, HFD-fed IL-6−/− mice were also chronically treated with recombinant IL-6 (rIL-6). Obesity in WT mice fed a HFD associated with elevated serum IL-6 levels, fatty liver, upregulation of carnitine palmitoyltransferase 1 (CPT1) and signal transducer and activator of transcription-3 (STAT3), increased AMP kinase phosphorylation (p-AMPK), and downregulation of the hepatic lipogenic enzymes fatty acid synthase (FAS) and stearoyl-CoA desaturase 1 (SCD1). The HFD-fed IL-6−/− mice showed severe steatosis, no changes in CPT1 levels or AMPK activity, no increase in STAT3 amounts, inactivated STAT3, and marked downregulation of the expression of acetyl-CoA carboxylase (ACCα/β), FAS and SCD1. The IL-6 chronic replacement in HFD-fed IL-6−/− mice restored hepatic STAT3 and AMPK activation but also increased the expression of the lipogenic enzymes ACCα/β, FAS and SCD1. Furthermore, rIL-6 administration was associated with aggravated steatosis and elevated fat content in the liver. We conclude that, in the context of HFD-induced obesity, the administration of rIL-6 might contribute to the aggravation of fatty liver disease through increasing lipogenesis. PMID:26035386

  14. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production.

    PubMed

    Chen, Hsin-Hung; Lin, Han-Tso; Foung, Yi-Fan; Han-You Lin, John

    2012-10-01

    Interleukin 6 (IL-6) is a protein secreted by T cells and macrophages and plays an important role in immune response. IL-6 regulates the proliferation and differentiation of T cells, and elicits immunoglobulin production in B cells. In this study, the cDNA il-6 (gil-6) sequence of the orange spotted grouper (Epinephelus coioides) was obtained. The deduced IL-6 (gIL-6) protein comprised 223 amino acids, the sequence shared approximately 30% similarity with mammalian IL-6, and between 47% and 69% similarity with other available teleost IL-6. The protein comprises the signal peptide, the IL-6 family signature, and conserved amino acid residues found in IL-6 sequences of other teleost. In order to understand the bioactivity and influence of gIL-6 on humoral immune response, recombinant gIL-6 (rgIL-6) synthesized by prokaryotes was injected into orange spotted groupers, and the immune-related gene expression at various times in various organs was observed. Our results revealed that the Th1 specific transcription factor t-bet was down-regulated and Th2 specific transcription factors gata3, and c-maf were up-regulated in immune organs, following IL-6 stimulation. Additionally, higher levels of igm mRNA and translated protein were detected in rgIL-6 stimulated fish. These results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies.

  15. Microarray profiling of L1-overexpressing endothelial cells reveals STAT3 activation via IL-6/IL-6Rα axis.

    PubMed

    Magrini, Elena; Cavallaro, Ugo; Bianchi, Fabrizio

    2015-06-01

    We recently identified a novel role for the L1 transmembrane glycoprotein (also known as L1CAM or CD171) in the regulation of tumor angiogenesis and vessels stabilization. L1 overexpression in cultured endothelial cells of the lung (luECs) exerted a pleiotropic effect in that it regulated proliferation, migration, tubulogenesis, vascular permeability, and endothelial-to-mesenchymal transition (EndMT). In addition, we provided strong evidence that antibody-mediated targeting of L1 may be an effective strategy for vessel normalization with the potential to increase efficacy of chemotherapeutic agents. High-throughput microarray expression profile revealed that L1 modulates the expression of hundreds of genes mainly involved in cell cycle regulation, DNA replication, cellular assembly, migration, development and organization. By using a 'pathway-oriented' analysis strategy we were able to identify a network of 105 genes modulated by L1 through the predicted activation of five transcription factors: STAT1, STAT2, STAT3, IRF7, and ATF4. Indeed, L1 overexpression resulted in the strong induction of STAT3 phosphorylation which was abolished by antibody-mediated neutralization of IL-6Rα. These results indicated that L1 promoted STAT3 activation via the IL-6/IL-6Rα axis. PMID:26484199

  16. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop.

  17. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  18. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  19. IL-6 trans-signaling increases expression of airways disease genes in airway smooth muscle

    PubMed Central

    Robinson, Mac B.; Deshpande, Deepak A.; Chou, Jeffery; Cui, Wei; Smith, Shelly; Langefeld, Carl; Hastie, Annette T.; Bleecker, Eugene R.

    2015-01-01

    Genetic data suggest that IL-6 trans-signaling may have a pathogenic role in the lung; however, the effects of IL-6 trans-signaling on lung effector cells have not been investigated. In this study, human airway smooth muscle (HASM) cells were treated with IL-6 (classical) or IL-6+sIL6R (trans-signaling) for 24 h and gene expression was measured by RNAseq. Intracellular signaling and transcription factor activation were assessed by Western blotting and luciferase assay, respectively. The functional effect of IL-6 trans-signaling was determined by proliferation assay. IL-6 trans-signaling had no effect on phosphoinositide-3 kinase and Erk MAP kinase pathways in HASM cells. Both classical and IL-6 trans-signaling in HASM involves activation of Stat3. However, the kinetics of Stat3 phosphorylation by IL-6 trans-signaling was different than classical IL-6 signaling. This was further reflected in the differential gene expression profile by IL-6 trans-signaling in HASM cells. Under IL-6 trans-signaling conditions 36 genes were upregulated, including PLA2G2A, IL13RA1, MUC1, and SOD2. Four genes, including CCL11, were downregulated at least twofold. The expression of 112 genes was divergent between IL-6 classical and trans-signaling, including the genes HILPDA, NNMT, DAB2, MUC1, WWC1, and VEGFA. Pathway analysis revealed that IL-6 trans-signaling induced expression of genes involved in regulation of airway remodeling, immune response, hypoxia, and glucose metabolism. Treatment of HASM cells with IL-6+sIL6R induced proliferation in a dose-dependent fashion, suggesting a role for IL-6 trans-signaling in asthma pathogenesis. These novel findings demonstrate differential effect of IL-6 trans-signaling on airway cells and identify IL-6 trans-signaling as a potential modifier of airway inflammation and remodeling. PMID:26001777

  20. The IL-6 system in HIV-1-infection and in HAART-related fat redistribution syndromes.

    PubMed

    Saumoy, Maria; López-Dupla, Miguel; Veloso, Sergi; Alonso-Villaverde, Carlos; Domingo, Pere; Broch, Montserrat; Miranda, Merce; Coll, Blai; Saurí, Amadeu; Vendrell, Joan; Richart, Cristóbal; Vidal, Francesc

    2008-04-23

    We determined the IL-6 -174 G>C single nucleotide polymorphism, IL-6 mRNA expression in subcutaneous adipose tissue (SAT) and IL-6 plasma levels in HIV-1-infected patients with and without lipodystrophy and uninfected controls. HIV-1-infected patients had a greater prevalence of the IL-6 -174 C/C genotype and the C allele, higher SAT IL-6 mRNA expression and plasma IL-6 levels than controls. The IL-6 -174 G>C genotype distribution and allele frequencies, SAT IL-6 mRNA expression and IL-6 plasma levels were non-significantly different between HIV-1-infected patients with and without lipodystrophy.

  1. Contraction and AICAR Stimulate IL-6 Vesicle Depletion From Skeletal Muscle Fibers In Vivo

    PubMed Central

    Lauritzen, Hans P.M.M.; Brandauer, Josef; Schjerling, Peter; Koh, Ho-Jin; Treebak, Jonas T.; Hirshman, Michael F.; Galbo, Henrik; Goodyear, Laurie J.

    2013-01-01

    Recent studies suggest that interleukin 6 (IL-6) is released from contracting skeletal muscles; however, the cellular origin, secretion kinetics, and signaling mechanisms regulating IL-6 secretion are unknown. To address these questions, we developed imaging methodology to study IL-6 in fixed mouse muscle fibers and in live animals in vivo. Using confocal imaging to visualize endogenous IL-6 protein in fixed muscle fibers, we found IL-6 in small vesicle structures distributed throughout the fibers under basal (resting) conditions. To determine the kinetics of IL-6 secretion, intact quadriceps muscles were transfected with enhanced green fluorescent protein (EGFP)-tagged IL-6 (IL-6-EGFP), and 5 days later anesthetized mice were imaged before and after muscle contractions in situ. Contractions decreased IL-6-EGFP–containing vesicles and protein by 62% (P < 0.05), occurring rapidly and progressively over 25 min of contraction. However, contraction-mediated IL-6-EGFP reduction was normal in muscle-specific AMP-activated protein kinase (AMPK) α2-inactive transgenic mice. In contrast, the AMPK activator AICAR decreased IL-6-EGFP vesicles, an effect that was inhibited in the transgenic mice. In conclusion, resting skeletal muscles contain IL-6–positive vesicles that are expressed throughout myofibers. Contractions stimulate the rapid reduction of IL-6 in myofibers, occurring through an AMPKα2-independent mechanism. This novel imaging methodology clearly establishes IL-6 as a contraction-stimulated myokine and can be used to characterize the secretion kinetics of other putative myokines. PMID:23761105

  2. Increased levels of IL-6, sIL-6R, and sgp130 in the aqueous humor and serum of patients with diabetic retinopathy

    PubMed Central

    Chen, Hui; Zhang, Xiongze; Liao, Nanying

    2016-01-01

    Purpose Trans-signaling of interleukin (IL)-6 through its soluble receptor (sIL-6R) is critically involved in the promotion of chronic inflammatory diseases. The aim of the present study was to estimate IL-6, sIL-6R, and soluble gp130 (sgp130, a natural antagonist of IL-6 trans-signaling) concentrations in the serum and aqueous humor (AqH) of patients with diabetic retinopathy (DR). Methods Paired AqH and serum samples were collected from 152 consecutive diabetic patients (105 with DR and 47 without DR, NDR) and 51 healthy controls. The IL-6, sIL-6R, and sgp130 concentrations were measured with multiplex bead immunoassay. Results The sgp130 concentrations in the serum and AqH were statistically significantly elevated in patients with DR compared with the NDR patients and the healthy controls (p<0.001). The sgp130 concentrations in the serum and AqH increased as the DR severity increased (p = 0.008, p<0.001, respectively). Higher serum and AqH concentrations of IL-6 and sIL-6R were also observed in patients with DR when compared with the NDR patients and the healthy controls (p<0.001). The AqH concentration of sgp130 was found to be statistically significantly correlated with sIL-6R and IL-6. Similarly, the IL-6 concentration in the AqH was statistically significantly correlated with sIL-6R (p<0.001). Elevated sgp130, sIL-6R, and IL-6 concentrations in the AqH were associated with longer disease duration and higher body mass index, plasma glucose, and glycosylated hemoglobin (HbA1c). Conclusions The sgp130, IL-6, and sIL-6R concentrations were statistically significantly elevated in patients with DR, suggesting a probable contributing role of the IL-6 trans-signaling pathway to the pathophysiology of DR. PMID:27563232

  3. Family-based association study of interleukin 6 (IL6) and its receptor (IL6R) functional polymorphisms in schizophrenia in the Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Pawlak, Joanna; Permoda-Osip, Agnieszka; Twarowska-Hauser, Joanna

    2015-08-15

    Schizophrenia is a heterogeneous disorder and its etiology remains incompletely elucidated. Among possible causes, immunological factors have been implicated in its pathogenesis and course. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. Recent studies indicate a role of excessive interleukin-6 (IL6) signaling in the pathogenesis of schizophrenia. Findings regarding changes in the circulating levels of soluble interleukin-6 receptor (sIL6R) in schizophrenia have been equivocal. The study was performed on a group of 147 trio (patients diagnosed with schizophrenia and their healthy parents). Polymorphisms of IL6 (rs1800795, rs1800797) and IL6R (rs4537545, rs4845617, rs2228145) genes were genotyped with the use of TaqMan SNP Genotyping Assays. No association of the polymorphisms from IL6 and IL6R genes with schizophrenia was found. We also investigated haplotypes in IL6 gene (consisting of rs1800795 and rs1800797) and in IL6R gene (consisting of rs4537545, rs2228145). We also found no preference in transmission of any haplotype. Our results do not support the theory that polymorphisms of IL6 and IL6R genes are involved in the pathogenesis of schizophrenia. It seems advisable to carry out further examinations of the role of these polymorphisms in schizophrenia by means of TDT method and classical (case-control) association method.

  4. Influence of metals on IL-6 release in vitro.

    PubMed

    Schmalz, G; Schuster, U; Schweikl, H

    1998-09-01

    Certain dental alloys have been claimed to cause gingival and periodontal inflammation. However, little information is available on the molecules mediating the mechanism of such an effect. Recently, a three-dimensional cell culture system consisting of human fibroblasts and keratinocytes has been introduced for evaluating the irritancy of cosmetic products, including the analysis of inflammatory mediators. In the present study the influence of pure metals and a high noble dental cast alloy upon cell viability and the synthesis of the proinflammatory mediator interleukin-6 was recorded in this in vitro skin equivalent model. The cultures were exposed to test specimens fabricated from copper, nickel, cobalt, zinc, palladium, tin, indium, a high noble cast alloy and a dental ceramic. Cell vitality was reduced after a 24 h exposure to copper (14-25% of untreated controls), cobalt (60%), zinc (63%), indium (85%), nickel (87%), and the heat treated and not heat treated high noble cast alloy (87%/90%). Dental ceramic, palladium and tin did not influence cell viability. Increased IL-6 levels were observed in cultures exposed to copper (5-19-fold compared to untreated controls), zinc (16-fold), cobalt (12-fold), nickel (10-fold) and palladium (4-fold). Other materials tested produced IL-6 levels comparable to those of untreated controls. Our findings suggest that metal ions are involved in proinflammatory activity at low toxicity and non-toxic levels as assessed by different biological endpoints. PMID:9840004

  5. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis.

    PubMed

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    BACKGROUND The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. MATERIAL AND METHODS Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. RESULTS Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients' condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). CONCLUSIONS TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  6. Interleukin-6 (IL-6) Receptor Antagonist Protects Against Rheumatoid Arthritis

    PubMed Central

    Li, Songsong; Wu, Zhenzhou; Li, Ling; Liu, Xuehua

    2016-01-01

    Background The aim of this study was to investigate the protective effect of interleukin-6 (IL-6) receptor antagonist tocilizumab (TCZ) on rheumatoid arthritis (RA) and its related mechanism. Material/Methods Thirty RA patients receiving long-term methotrexate therapy at moderate and severe active stages were selected and treated with TCZ 8 mg/kg/time iv gtt intravenously guttae every 4 weeks. Peripheral blood was extracted before and 24 weeks after TCZ treatment. Peripheral blood mononuclear cells (PBMC) were collected by density gradient centrifugation. Flow cytometry was used to detect the ratio of CD4 naïve T cells and CD4 memory T cells, Th17 cells, and Treg cells in PBMC. DAS28 score, CRP, RF, and CCP levels in patients were evaluated. Results Compared with before treatment, IL-6 receptor antagonist TCZ significantly improved patients’ condition, including DAS28 score, CRP, RF, and CCP levels (P<0.01). Furthermore, TCZ obviously upregulated CD4 naïve T cells proportion and decreased CD4 memory T cells ratio (P<0.01). TCZ also markedly reduced the proportion of Th17 cells and increased the proportion of Treg cells (P<0.01). Conclusions TCZ can treat RA patients through regulating the ratio of CD4 naïve T cells, CD4 memory T cells, Th17 cells, and Treg cells in PBMC. PMID:27322646

  7. Role of IL-6 in the invasiveness and prognosis of glioma.

    PubMed

    Shan, Yongzhi; He, Xin; Song, Wei; Han, Dong; Niu, Jianxing; Wang, Jianzhen

    2015-01-01

    IL-6 is a cytokine secreted by glioma cells and plays an important role in the tumor growth. However, the impact of IL-6 on the invasiveness and prognosis of glioma is still unclear. In this study, immunohistochemistry was performed to determine the expression of IL-6 in 86 glioma tissues, and ELISA to measure IL-6 in the serum and cerebrospinal fluid (CSF) of these patients. Results showed, as ccompared with normal controls, the IL-6 in the glioma, CSF and serumincreased remarkably, and increased with the elevation of glioma grade. In addition, IL-6 in the supernatant was also detectable in glioma cell lines U251, U87, A172 and T98G. Transwell invasion assay showed that the invasiveness of glioma U87 cells and U251 cells increased remarkably after exogenous IL-6 treatment. Survival analysis indicated higher IL-6 before surgery and significantly reduction in IL-6 after operation in the serum and CSF predicted a poor prognosis. Thus, we speculate that, the poor prognosis of glioma is related to the IL-6 autocrine in the glioma and the IL-6 induced tumor growth and invasion. IL-6 may serve as a therapeutic target for glioma patients and IL-6 in the CSF and serum of glioma may be used to predict the prognosis of these patients. PMID:26309566

  8. Downregulation of toll-like receptor 4 and IL-6 following irradiation of the rat urinary bladder.

    PubMed

    Giglio, D; Wasén, C; Mölne, J; Suchy, D; Swanpalmer, J; Jabonero Valbuena, J; Tobin, G; Ny, L

    2016-07-01

    The pathophysiology behind radiation cystitis is poorly understood. Here we investigated whether bladder irradiation affects the immune system of the rat urinary bladder. Female rats were sedated and exposed to one single radiation dose of 20 Gy or only sedated (controls) and killed 16 h to 14 days later. Rats were placed in a metabolic cage at 16 h, 3 days, 7 days and 14 days following bladder irradiation. The urinary bladders were harvested and analysed with qPCR, immunohistochemistry and/or Western blot for the expression of interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, nitric oxide synthases (eNOS, iNOS and nNOS), tumour necrosis factor (TNF)-α and toll-like receptor 4 (TLR4). Urine was collected and analysed for IL-6 and nitrite (reflecting nitric oxide activity) with ELISA and the Griess reaction, respectively. Irradiation increased bladder frequency and decreased voiding volumes 14 days following bladder irradiation. Bladder irradiation increased the expression of IL-10 and collagen in the bladder, while TLR4 and IL-6 expressions were decreased in the urothelium concomitantly with a decrease in mast cells in the submucosa and urine levels of IL-6 and nitrite. The present findings show that bladder irradiation leads to urodynamic changes in the bladder and may suppress important immunoregulatory pathways in the urinary bladder. PMID:27117224

  9. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.

    PubMed

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-18

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback.

  10. Targeting Inhibitor of κB Kinase β Prevents Inflammation-Induced Preterm Delivery by Inhibiting IL-6 Production from Amniotic Cells.

    PubMed

    Toda, Aska; Sawada, Kenjiro; Fujikawa, Tomoyuki; Wakabayashi, Atsuko; Nakamura, Koji; Sawada, Ikuko; Yoshimura, Akihiko; Nakatsuka, Erika; Kinose, Yasuto; Hashimoto, Kae; Mabuchi, Seiji; Tokuhira, Atsushi; Nakayama, Masahiro; Itai, Akiko; Kurachi, Hirohisa; Kimura, Tadashi

    2016-03-01

    Preterm delivery (PTD) remains a serious challenge in perinatology. Intrauterine infection and/or inflammation, followed by increased inflammatory cytokines, represented by IL-6, are involved in this pathology. Our aim was to identify IL-6-producing cells in the placenta and to analyze the potential of targeting IκB kinase β (IKKβ) signaling to suppress IL-6 production for the treatment of PTD. Immunohistochemical analyses using placentas complicated with severe chorioamnionitis revealed that IL-6 is mainly expressed in human amniotic mesenchymal stromal cells (hAMSCs). Primary hAMSCs were collected, and strong IL-6 expression was confirmed. In hAMSCs, the treatment of tumor necrosis factor-α or IL-1β drastically induced IL-6 production, followed by the phosphorylation of IKKs. A novel IKKβ inhibitor, IMD-0560, almost completely inhibited IL-6 production from hAMSCs. Using an experimental lipopolysaccharide-induced PTD mouse model, the therapeutic potential of IMD-0560 was examined. IMD-0560 was delivered vaginally 4 hours before lipopolysaccharide administration. Mice in the IMD-0560 (30 mg/kg, twice a day) group had a significantly lower rate of PTD [10 of 22 (45%)] without any apparent adverse events on the mice and their pups. In uteri collected from mice, IMD-0560 inhibited not only IL-6 production but also production of related cytokines, such as keratinocyte-derived protein chemokine/CXCL1, macrophage inflammatory protein-2/CXCL2, and monocyte chemoattractant protein-1/chemokine ligand 2. Targeting IKKβ signaling shows promising effects through the suppression of these cytokines and can be explored as a future option for the prevention of PTD. PMID:26796146

  11. The effect of repeated endurance exercise on IL-6 and sIL-6R and their relationship with sensations of fatigue at rest.

    PubMed

    Robson-Ansley, Paula; Barwood, Martin; Canavan, Jane; Hack, Susan; Eglin, Clare; Davey, Sarah; Hewitt, Jennifer; Hull, James; Ansley, Les

    2009-02-01

    Strenuous, prolonged exercise increases interleukin-6 (IL-6) release. The effect of IL-6 is dependent on the availability of IL-6 receptors. Few studies have addressed the impact of exercise on IL-6 receptor levels or procalcitonin (PCT), an indicator of systemic inflammation. Changes in these molecules may give insight into cytokine-related mechanisms underlying exercise-related fatigue. Thirteen trained male subjects partook in the study. They cycled a total distance of 468 km over 6 days. Blood samples were obtained prior to and immediately following Day 1 of the study and then each morning prior to exercise. Blood samples were analysed for plasma IL-6, soluble IL-6 receptor (sIL-6R), C-reactive protein (CRP), PCT, creatine kinase (CK) and cortisol concentrations. Subjects also completed mood state questionnaires each day prior to exercise. IL-6 was elevated immediately post-exercise on Day 1 but was unchanged at rest for the duration of the event. In contrast, sIL-6R, CRP, PCT and CK concentrations were unchanged immediately post-exercise on Day 1 but were significantly elevated at rest over the duration of the event compared with pre-event baseline. sIL-6R was highly correlated to CRP. Cortisol concentrations remained unchanged at all time points. In conclusion, strenuous, prolonged exercise stimulated an acute phase response which was maintained throughout the 6-day event. sIL-6R increase is associated with CRP and may affect subjective sensations of post-exercise fatigue at rest.

  12. IL6R Variation Asp358Ala Is a Potential Modifier of Lung Function in Asthma

    PubMed Central

    Hawkins, Gregory A; Robinson, Mac B; Hastie, Annette T; Li, Xingnan; Li, Huashi; Moore, Wendy C; Howard, Timothy D; Busse, William W.; Erzurum, Serpil C.; Wenzel, Sally E.; Peters, Stephen P; Meyers, Deborah A; Bleecker, Eugene R

    2012-01-01

    Background The IL6R SNP rs4129267 has recently been identified as an asthma susceptibility locus in subjects of European ancestry but has not been characterized with respect to asthma severity. The SNP rs4129267 is in linkage disequilibrium (r2=1) with the IL6R coding SNP rs2228145 (Asp358Ala). This IL6R coding change increases IL6 receptor shedding and promotes IL6 transsignaling. Objectives To evaluate the IL6R SNP rs2228145 with respect to asthma severity phenotypes. Methods The IL6R SNP rs2228145 was evaluated in subjects of European ancestry with asthma from the Severe Asthma Research Program (SARP). Lung function associations were replicated in the Collaborative Study on the Genetics of Asthma (CSGA) cohort. Serum soluble IL6 receptor (sIL6R) levels were measured in subjects from SARP. Immunohistochemistry was used to qualitatively evaluate IL6R protein expression in BAL cells and endobronchial biopsies. Results The minor C allele of IL6R SNP rs2228145 was associated with lower ppFEV1 in the SARP cohort (p=0.005), the CSGA cohort (0.008), and in combined cohort analysis (p=0.003). Additional associations with ppFVC, FEV1/FVC, and PC20 were observed. The rs2228145 C allele (Ala358) was more frequent in severe asthma phenotypic clusters. Elevated serum sIL6R was associated with lower ppFEV1 (p=0.02) and lower ppFVC (p=0.008) (N=146). IL6R protein expression was observed in BAL macrophages, airway epithelium, vascular endothelium, and airway smooth muscle. Conclusions The IL6R coding SNP rs2228145 (Asp358Ala) is a potential modifier of lung function in asthma and may identify subjects at risk for more severe asthma. IL6 transsignaling may have a pathogenic role in the lung. PMID:22554704

  13. IL-6-174G/C and IL-6-572C/G polymorphisms are associated with increased risk of coronary artery disease.

    PubMed

    Li, L; Li, E; Zhang, L H; Jian, L G; Liu, H P; Wang, T

    2015-07-28

    We conducted this case-control study to investigate the genetic role of IL-1β+3954C/T, IL-6-174G/C, IL-6-572C/G, IL-10-1082A/G, and IL-10-819C/T in the development of coronary artery disease (CAD) in a Chinese population. Polymorphisms IL-1β+3954C/T, IL-6-174G/C, IL-6-572C/G, IL-10-1082A/G, and IL-10-819C/T were determined by polymerase chain reaction restriction fragment length polymorphism assay. The CAD patients were more likely to be cigarette smokers, have a history of hypertension, have a higher value of total cholesterol, triglycerides, and low-density lipoprotein cholesterol, and have a lower value of high-density lipoprotein cholesterol. Conditional logistic regression analyses showed that the CC genotype of IL-6-174G/C was significantly associated with increased risk of CAD [odds ratio (OR) = 2.99, 95% confidence interval (95%CI) = 1.56-6.00]. Moreover, the GG genotype of IL-6-572C/G was correlated with increased risk of CAD (OR = 1.99, 95%CI = 1.25-3.19). We found that IL-6-174G/C and IL-6-572C/G gene polymorphisms are associated with an increased risk of CAD.

  14. p38MAPK activation is involved in androgen-independent proliferation of human prostate cancer cells by regulating IL-6 secretion

    SciTech Connect

    Shida, Yohei; Igawa, Tsukasa . E-mail: tigawa@net.nagasaki-u.ac.jp; Hakariya, Tomoaki; Sakai, Hideki; Kanetake, Hiroshi

    2007-02-16

    Increased levels of serum interleukin-6 (IL-6) are frequently observed in patients with advanced, hormone-refractory prostate cancer. However, the precise mechanism of IL-6 regulation is still largely unknown. Since prostate cancer gradually progresses to an androgen-independent state despite the stress caused by various therapeutic agents, we hypothesized the stress-activated protein kinases (SAPKs) involvement in androgen-independent growth or IL-6 secretion of prostate cancer cells. Using PC-3 and DU145 human prostate cancer cells, we analyzed the role of SAPKs in IL-6 mediated cell growth and found that the p38MAPK and JNK are involved in androgen-independent cancer cell growth. Furthermore, IL-6 secretion by PC-3 and DU145 cells was significantly suppressed by SAPKs inhibitor, especially by p38MAPK inhibitor SB203580, but not by JNK inhibitor SP600125 nor by MEK inhibitor, PD98059. These results raised the possibility that the IL-6 mediated androgen-independent proliferation of PC-3 and DU145 cells is regulated at least partly via SAPKs signaling pathway especially through p38MAPK activation.

  15. Serum Levels of TNF-α and IL-6 Are Associated With Pregnancy-Induced Hypertension.

    PubMed

    Li, Yuan; Wang, Yanyun; Ding, Xiaoyan; Duan, Bide; Li, Lei; Wang, Xietong

    2016-10-01

    Tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) are proinflammatory cytokines and known to be involved in many pathological processes. However, the association between serum levels of TNF-α, IL-6, and pregnancy-induced hypertension (PIH) is unclear. The aim of the present study was to determine the serum levels of TNF-α and IL-6 and to investigate their potential correlation with PIH. In this study, the serum concentrations of TNF-α and IL-6 in pregnant women who developed PIH and normal pregnant women were measured. We found that the serum concentrations of TNF-α and IL-6 were significantly increased in the patients with PIH compared to the normal pregnant women. In addition, elevated TNF-α and IL-6 concentrations were associated with pathological complications. Moreover, in a hypoxia-induced PIH mice model, animals from the PIH group demonstrated higher TNF-α and IL-6 levels when compared to control, and serum TNF-α and IL-6 levels were positively correlated with right ventricular systolic blood pressure. Furthermore, TNF-α and IL-6 levels were decreased when the PIH mice were treated with remodulin compared to control group. In conclusion, our results suggested that high serum TNF-α and IL-6 levels are associated with PIH, and TNF-α and IL-6 might be potential predictors in the prognosis of PIH.

  16. Synergistic effect of vasoactive intestinal peptides on TNF-alpha-induced IL-6 synthesis in osteoblasts: amplification of p44/p42 MAP kinase activation.

    PubMed

    Natsume, Hideo; Tokuda, Haruhiko; Mizutani, Jun; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Minamitani, Chiho; Kato, Kenji; Kozawa, Osamu; Otsuka, Takanobu

    2010-05-01

    We previously showed that tumor necrosis factor-alpha (TNF-alpha) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of vasoactive intestinal peptide (VIP) on TNF-alpha-induced IL-6 synthesis in these cells. VIP, which by itself slightly stimulated IL-6 synthesis, synergistically enhanced the TNF-alpha-induced IL-6 synthesis in MC3T3-E1 cells. The synergistic effect of VIP on the TNF-alpha-induced IL-6 synthesis was concentration-dependent in the range between 1 and 70 nM. We previously reported that VIP stimulated cAMP production in MC3T3-E1 cells. Forskolin, a direct activator of adenylyl cyclase, or 8-bromoadenosine-3',5'-cyclic monophosphate (8bromo-cAMP), a plasma membrane-permeable cAMP analogue, markedly enhanced the TNF-alpha-induced IL-6 synthesis as well as VIP. VIP markedly up-regulated the TNF-alpha-induced p44/p42 MAP kinase phosphorylation. The Akt phosphorylation stimulated by TNF-alpha was only slightly affected by VIP. PD98059, a specific inhibitor of MEK1/2, significantly suppressed the enhancement of TNF-alpha-induced IL-6 synthesis by VIP. The synergistic effect of a combination of VIP and TNF-alpha on the phosphorylation of p44/p42 MAP kinase was diminished by H-89, an inhibitor of cAMP-dependent protein kinase. These results strongly suggest that VIP synergistically enhances TNF-alpha-stimulated IL-6 synthesis via up-regulating p44/p42 MAP kinase through the adenylyl cyclase-cAMP system in osteoblasts.

  17. Molecular and immune response characterizations of IL-6 in large yellow croaker (Larimichthys crocea).

    PubMed

    Zhu, Qian; Li, Chan; Yu, Zhen-Xing; Zou, Peng-Fei; Meng, Qing-Xiang; Yao, Cui-Luan

    2016-03-01

    Interleukin-6 (IL-6) is a multifunctional inflammatory cytokine which exists in multiple tissues and cell lines. In the present study, the full-length cDNA and the genomic sequence of IL-6 (LcIL-6) were cloned from large yellow croaker, Larimichthys crocea. The full-length cDNA of LcIL-6 was 1066 base pairs (bp), containing an open reading frame (ORF) of 678 bp encoding for 225 amino acids, a 5' untranslated region (UTR) of 71 bp and a 3' UTR of 317 bp. The predicted LcIL-6 protein included a 24 amino acids (aa) signal peptide and a conserved IL-6 domain. However, the polypeptide sequence identities between LcIL-6 and its counterparts in mammals and other fish are from 12% to 45%. The genome sequence of LcIL-6 gene was composed of 2126 bp, including five exons and four introns. Phylogenetic analysis revealed that LcIL-6 showed a close relationship with the IL-6 from other bony fish. Quantitative real-time PCR (qRT-PCR) analysis revealed that LcIL-6 mRNA was expressed in most examined tissues, with the most predominant expression in stomach, followed by blood and very weak expression in other tissues. The expression levels of LcIL-6 after challenged with LPS, poly I:C and Vibrio parahaemolyticus were investigated in spleen, head-kidney and liver. LcIL-6 transcripts were induced significantly after immune challenge, with the peak-value of 33.5 times as much as the control in the head-kidney at 3 h after LPS injection (p < 0.05). Overexpression of LcIL-6 enhanced tumor necrosis factor (TNF)-α transcripts significantly (p < 0.05) in L. crocea kidney (LCK) cells. Additionally, recombinant LcIL-6 mature peptide was obtained in the supernatant of Escherichia coli BL21 (DE3). The purified recombinant LcIL-6 fusion protein was also demonstrated to improve the transcriptional expression levels of TNF-α significantly in LCK cells (p < 0.05). However, no significant changes of Mx (myxovirus resistant protein), IL-1β, janus kinase (JAK)2, signal transducers and activators of

  18. Immunization against an IL-6 peptide induces anti-IL-6 antibodies and modulates the Delayed-Type Hypersensitivity reaction in cynomolgus monkeys

    PubMed Central

    Desallais, Lucille; Bouchez, Caroline; Mouhsine, Hadley; Moreau, Gabriel; Ratsimandresy, Rojo; Montes, Matthieu; Do, Hervé; Quintin-Colonna, Françoise; Zagury, Jean-François

    2016-01-01

    Interleukin-6 (IL-6) overproduction has been involved in the pathogenesis of several chronic inflammatory diseases and the administration of an anti-IL-6 receptor monoclonal antibody has been proven clinically efficient to treat them. However, the drawbacks of monoclonal antibodies have led our group to develop an innovative anti-IL-6 strategy using a peptide-based active immunization. This approach has previously shown its efficacy in a mouse model of systemic sclerosis. Here the safety, immunogenicity, and efficacy of this strategy was assessed in non human primates. No unscheduled death and clinical signs of toxicity was observed during the study. Furthermore, the cynomolgus monkeys immunized against the IL-6 peptide produced high levels of anti-IL-6 antibodies as well as neutralizing antibodies compared to control groups. They also showed an important decrease of the cumulative inflammatory score following a delayed-type hypersensitivity reaction induced by the Tetanus vaccine compared to control groups (minus 57,9%, P = 0.014). These findings are highly significant because the immunizing IL-6 peptide used in this study is identical in humans and in monkeys and this novel anti-IL-6 strategy could thus represent a promising alternative to monoclonal antibodies. PMID:26782790

  19. Immunization against an IL-6 peptide induces anti-IL-6 antibodies and modulates the Delayed-Type Hypersensitivity reaction in cynomolgus monkeys.

    PubMed

    Desallais, Lucille; Bouchez, Caroline; Mouhsine, Hadley; Moreau, Gabriel; Ratsimandresy, Rojo; Montes, Matthieu; Do, Hervé; Quintin-Colonna, Françoise; Zagury, Jean-François

    2016-01-01

    Interleukin-6 (IL-6) overproduction has been involved in the pathogenesis of several chronic inflammatory diseases and the administration of an anti-IL-6 receptor monoclonal antibody has been proven clinically efficient to treat them. However, the drawbacks of monoclonal antibodies have led our group to develop an innovative anti-IL-6 strategy using a peptide-based active immunization. This approach has previously shown its efficacy in a mouse model of systemic sclerosis. Here the safety, immunogenicity, and efficacy of this strategy was assessed in non human primates. No unscheduled death and clinical signs of toxicity was observed during the study. Furthermore, the cynomolgus monkeys immunized against the IL-6 peptide produced high levels of anti-IL-6 antibodies as well as neutralizing antibodies compared to control groups. They also showed an important decrease of the cumulative inflammatory score following a delayed-type hypersensitivity reaction induced by the Tetanus vaccine compared to control groups (minus 57,9%, P = 0.014). These findings are highly significant because the immunizing IL-6 peptide used in this study is identical in humans and in monkeys and this novel anti-IL-6 strategy could thus represent a promising alternative to monoclonal antibodies. PMID:26782790

  20. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies*

    PubMed Central

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-01-01

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229. PMID:27129274

  1. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    PubMed

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229).

  2. Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors.

    PubMed

    Wei, Hongen; Chadman, Kathryn K; McCloskey, Daniel P; Sheikh, Ashfaq M; Malik, Mazhar; Brown, W Ted; Li, Xiaohong

    2012-06-01

    Abnormal immune responses have been reported to be associated with autism. A number of studies showed that cytokines were increased in the blood, brain, and cerebrospinal fluid of autistic subjects. Elevated IL-6 in autistic brain has been a consistent finding. However, the mechanisms by which IL-6 may be involved in the pathogenesis of autism are not well understood. Here we show that mice with elevated IL-6 in the brain display many autistic features, including impaired cognitive abilities, deficits in learning, abnormal anxiety traits and habituations, as well as decreased social interactions. IL-6 elevation caused alterations in excitatory and inhibitory synaptic formations and disrupted the balance of excitatory/inhibitory synaptic transmissions. IL-6 elevation also resulted in an abnormal change in the shape, length and distributing pattern of dendritic spines. These findings suggest that IL-6 elevation in the brain could mediate autistic-like behaviors, possibly through the imbalances of neural circuitry and impairments of synaptic plasticity.

  3. Genetic polymorphism directs IL-6 expression in fibroblasts but not selected other cell types.

    PubMed

    Noss, Erika H; Nguyen, Hung N; Chang, Sook Kyung; Watts, Gerald F M; Brenner, Michael B

    2015-12-01

    Interleukin (IL)-6 blockade is an effective treatment for rheumatoid arthritis (RA), and synovial fibroblasts are a major IL-6 producer in the inflamed joint. We found that human RA and osteoarthritis (OA) synovial fibroblasts derived from independent donors reproducibly segregated into low, medium, and high IL-6 producers, independent of stimulus, cell passage, or disease state. IL-6 expression pattern correlated strongly with total mRNA expression, not mRNA stability, suggesting transcriptional rather than posttranscriptional regulation. High-fibroblast IL-6 expression was significantly associated with the IL-6 proximal promoter single nucleotide polymorphism (SNP) rs1800795 minor allele (CC) genotype. In contrast, no association between this SNP and IL-6 production was detected in CD14(+) monocytes, another major producer of synovial IL-6. Luciferase expression assays confirmed that this SNP was associated with differential IL-6 expression in fibroblasts. To date, several association studies examining rs1800795 allele frequency and disease risk have reported seemingly conflicting results ranging from no association to association with either the major or minor allele across a spectrum of conditions, including cancer and autoimmune, cardiovascular, infectious, and metabolic diseases. This study points to a prominent contribution from promoter genetic variation in fibroblast IL-6 regulation, but not in other IL-6-producing cell types. We propose that some of the heterogeneity in these clinical studies likely reflects the cellular source of IL-6 in specific diseases, much of which may be produced by nonhematopoietic cells. These results highlight that functional analysis of disease-associated SNPs on gene expression and pathologic processes must consider variation in diverse cell types.

  4. Hepatic carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated STAT3 activation.

    PubMed

    Cheng, J-T; Deng, Y-N; Yi, H-M; Wang, G-Y; Fu, B-S; Chen, W-J; Liu, W; Tai, Y; Peng, Y-W; Zhang, Q

    2016-02-22

    Although carcinoma-associated fibroblasts (CAFs) in tumor microenvironments have a critical role in immune cell modulation, their effects on the generation of regulatory dendritic cells (DCs) are still unclear. In this study, we initially show that CAFs derived from hepatocellular carcinoma (HCC) tumors facilitate the generation of regulatory DCs, which are characterized by low expression of costimulatory molecules, high suppressive cytokines production and enhanced regulation of immune responses, including T-cell proliferation impairment and promotion of regulatory T-cell (Treg) expansion via indoleamine 2,3-dioxygenase (IDO) upregulation. Our findings also indicate that STAT3 activation in DCs, as mediated by CAF-derived interleukin (IL)-6, is essential to IDO production. Moreover, IDO inhibitor, STAT3 and IL-6 blocking antibodies can reverse this hepatic CAF-DC regulatory function. Therefore, our results provide new insights into the mechanisms by which CAFs induce tumor immune escape as well as a novel cancer immunotherapeutic approach (for example, targeting CAFs, IDO or IL-6).

  5. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3.

    PubMed

    Samanta, Arabinda; Li, Bin; Song, Xiaomin; Bembas, Kathryn; Zhang, Geng; Katsumata, Makoto; Saouaf, Sandra J; Wang, Qiang; Hancock, Wayne W; Shen, Yuan; Greene, Mark I

    2008-09-16

    Expression of FOXP3, a potent gene-specific transcriptional repressor, in regulatory T cells is required to suppress autoreactive and alloreactive effector T cell function. Recent studies have shown that FOXP3 is an acetylated protein in a large nuclear complex and FOXP3 actively represses transcription by recruiting enzymatic corepressors, including histone modification enzymes. The mechanism by which extracellular stimuli regulate the FOXP3 complex ensemble is currently unknown. Although TGF-beta is known to induce murine FOXP3(+) Treg cells, TGF-beta in combination with IL-6 attenuates the induction of FOXP3 functional activities. Here we show that TCR stimuli and TGF-beta signals modulate the disposition of FOXP3 into different subnuclear compartments, leading to enhanced chromatin binding in human CD4(+)CD25(+) regulatory T cells. TGF-beta treatment increases the level of acetylated FOXP3 on chromatin and site-specific recruitment of FOXP3 on the human IL-2 promoter. However, the proinflammatory cytokine IL-6 down-regulates FOXP3 binding to chromatin in the presence of TGF-beta. Moreover, histone deacetylation inhibitor (HDACi) treatment abrogates the down-regulating effects of IL-6 and TGF-beta. These studies indicate that HDACi can enhance regulatory T cell function via promoting FOXP3 binding to chromatin even in a proinflammatory cellular microenvironment. Collectively, our data provide a framework of how different signals affect intranuclear redistribution, posttranslational modifications, and chromatin binding patterns of FOXP3. PMID:18779564

  6. TGF-β and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3

    PubMed Central

    Samanta, Arabinda; Li, Bin; Song, Xiaomin; Bembas, Kathryn; Zhang, Geng; Katsumata, Makoto; Saouaf, Sandra J.; Wang, Qiang; Hancock, Wayne W.; Shen, Yuan; Greene, Mark I.

    2008-01-01

    Expression of FOXP3, a potent gene-specific transcriptional repressor, in regulatory T cells is required to suppress autoreactive and alloreactive effector T cell function. Recent studies have shown that FOXP3 is an acetylated protein in a large nuclear complex and FOXP3 actively represses transcription by recruiting enzymatic corepressors, including histone modification enzymes. The mechanism by which extracellular stimuli regulate the FOXP3 complex ensemble is currently unknown. Although TGF-β is known to induce murine FOXP3+ Treg cells, TGF-β in combination with IL-6 attenuates the induction of FOXP3 functional activities. Here we show that TCR stimuli and TGF-β signals modulate the disposition of FOXP3 into different subnuclear compartments, leading to enhanced chromatin binding in human CD4+CD25+ regulatory T cells. TGF-β treatment increases the level of acetylated FOXP3 on chromatin and site-specific recruitment of FOXP3 on the human IL-2 promoter. However, the proinflammatory cytokine IL-6 down-regulates FOXP3 binding to chromatin in the presence of TGF-β. Moreover, histone deacetylation inhibitor (HDACi) treatment abrogates the down-regulating effects of IL-6 and TGF-β. These studies indicate that HDACi can enhance regulatory T cell function via promoting FOXP3 binding to chromatin even in a proinflammatory cellular microenvironment. Collectively, our data provide a framework of how different signals affect intranuclear redistribution, posttranslational modifications, and chromatin binding patterns of FOXP3. PMID:18779564

  7. MicroRNA-9 promotes IL-6 expression by inhibiting MCPIP1 expression in IL-1β-stimulated human chondrocytes

    PubMed Central

    Makki, Mohammad S; Haseeb, Abdul; Haqqi, Tariq M

    2015-01-01

    Objective Enhanced IL-6 expression plays an important role in the pathogenesis of osteoarthritis (OA). MCPIP1 is a novel post-transcriptional regulator of IL-6 expression and is targeted by miR-9. We investigated the MCPIP1 expression in OA cartilage and explored whether targeting of MCPIP1 by miR-9 contributes to enhanced IL-6 expression in OA. Methods Gene and protein expression in IL-1β-stimulated human OA chondrocytes/cartilage was determined by TaqMan assays and immunoblotting respectively. MCPIP1 and IL-6 mRNA expression at single cell level was analyzed using RNAScopeTM. MCPIP1 protein interaction with IL-6 mRNA was investigated using RNA immunoprecipitation (RIP). Transient transfections were used for siRNA mediated knockdown and overexpression of MCPIP1, its RNAse defective mutant, miR-9 or antagomir. Role of signaling pathways was evaluated using small molecule inhibitors. Binding of miR-9 with the “seed sequence” in the 3’UTR of MCPIP1 mRNA was investigated using a luciferase reporter assay. Results MCPIP1 mRNA expression was low but expression of miR-9 and IL-6 was high in the damaged OA cartilage. In IL-1β-stimulated OA chondrocytes expression of miR-9 and MCPIP1 was mutually exclusive and increase in miR-9 expression level correlated with reduced MCPIP1 expression and enhanced IL-6 expression. MCPIP1 protein directly binds with IL-6 mRNA and over-expression of wild type MCPIP1 destabilized the IL-6 mRNA. MCPIP1 expression was altered by overexpression or inhibition of miR-9. Transfection with miR-9 mimics inhibited the reporter activity and mutation of the “seed sequence” abolished the repression of reporter activity. Conclusions These studies implicate miR-9-mediated suppression of MCPIP1 in OA pathogenesis via upregulation of IL-6 expression in IL-1β-stimulated human OA chondrocytes. PMID:25917063

  8. The varying faces of IL-6: from cardiac protection to cardiac failure

    PubMed Central

    Fontes, Jillian A.; Rose, Noel R.; Čiháková, Daniela

    2015-01-01

    IL6 is a pleiotropic cytokine that is made in response to perturbations in homeostasis. IL6 becomes elevated in the acute response to host injury and can activate immune cells, direct immune cell trafficking, signal protective responses in local tissue, initial the acute phase response or initiate wound healing. In the short term this proinflammatory response is protective and limits host damage. It is when this acute response remains chronically activated that IL6 becomes pathogenic to the host. Chronically elevated IL6 levels lead to chronic inflammation and fibrotic disorders. The heart is a tissue where this temporal regulation of IL6 is very apparent. Studies from myocardial infarction show how short-term IL6 signaling can protect and preserve the heart tissue in response to acute damage, where long term IL6 signaling or an over-production of IL6R protein plays a causal role in cardiovascular disease. Thus, IL6 can be both protective and pathogenic, depending on the kinetics of the host response. PMID:25649043

  9. The varying faces of IL-6: From cardiac protection to cardiac failure.

    PubMed

    Fontes, Jillian A; Rose, Noel R; Čiháková, Daniela

    2015-07-01

    IL6 is a pleiotropic cytokine that is made in response to perturbations in homeostasis. IL6 becomes elevated in the acute response to host injury and can activate immune cells, direct immune cell trafficking, signal protective responses in local tissue, initial the acute phase response or initiate wound healing. In the short term this proinflammatory response is protective and limits host damage. It is when this acute response remains chronically activated that IL6 becomes pathogenic to the host. Chronically elevated IL6 levels lead to chronic inflammation and fibrotic disorders. The heart is a tissue where this temporal regulation of IL6 is very apparent. Studies from myocardial infarction show how short-term IL6 signaling can protect and preserve the heart tissue in response to acute damage, where long term IL6 signaling or an over-production of IL6R protein plays a causal role in cardiovascular disease. Thus, IL6 can be both protective and pathogenic, depending on the kinetics of the host response. PMID:25649043

  10. IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell lines

    PubMed Central

    Block, Katherine M.; Hanke, Neale T.; Maine, Erin A.; Baker, Amanda F.

    2011-01-01

    Objectives We investigated the signaling pathways activated in response to Interleukin (IL-6) in pancreatic cell lines, with a focus on signal transducer and activator of transcription 3 (STAT3) and proto-oncogene serine/threonine-protein (Pim-1) kinase. Methods IL-6 receptor (IL-6R) expression and IL-6 induced cell signaling was measured by Western blotting in human pancreatic cell lines. Cucurbitacin I was used as a pharmacological tool to investigate the role of STAT3 in Pim-1 activation. Stably over-expressing Pim-1 kinase cell lines were characterized for their response to IL-6 in vitro, and for their growth rate as flank tumors in scid mice. Results IL-6R was expressed across multiple cancer cell lines. In Panc-1 cells, IL-6 treatment increased expression of P-STAT3 and Pim-1 kinase. Cucurbitacin I treatment alone increased pErk1/2 expression in wild-type and Pim-1 over-expressing cell lines and resulted in exaggerated Pim-1 kinase protein levels in control and IL-6 stimulated cells, suggesting upregulation of Pim-1 may be partially STAT3 independent. Pim-1 over-expression did not significantly impact growth rate in vitro or in vivo in Panc-1 or MiaPaCa2 cell lines. Conclusions IL-6 activates STAT3 and stimulates Pim-1 kinase in pancreatic cell line models. The regulation and consequence of Pim-1 expression appears to be highly context dependent. PMID:22273698

  11. Quercetin 3-O-beta-(2''-galloyl)-glucopyranoside inhibits endotoxin LPS-induced IL-6 expression and NF-kappa B activation in macrophages.

    PubMed

    Kim, Byung Hak; Lee, In Jeong; Lee, Hwa-Young; Han, Sang-Bae; Hong, Jin Tae; Ahn, Byeongwoo; Lee, Chong-Kil; Kim, Youngsoo

    2007-09-01

    We previously isolated quercetin 3-O-beta-(2''-galloyl)-glucopyranoside (QG-32) from Persicaria lapathifolia (Polygonacease) as an inhibitor of superoxide production. In the present study, QG-32 was found to inhibit interleukin (IL)-6 production in endotoxin lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7. The QG-32 attenuated LPS-induced synthesis of IL-6 transcript but also inhibited IL-6 promoter activity, indicating that the compound could down-regulate LPS-induced IL-6 expression at the transcription level. Since nuclear factor (NF)-kappaB has been evidenced to play a major mechanism in the LPS-induced IL-6 expression, an effect of QG-32 on NF-kappaB activating pathway was further analyzed. QG-32 inhibited nuclear import as well as DNA binding activity of NF-kappaB complex and subsequently suppressed NF-kappaB transcriptional activity in LPS-stimulated macrophages. However, QG-32 affected neither LPS-induced inhibitory kappaB (IkappaB) degradation nor IkappaB kinase (IKK) activation. In another experiment, QG-32 inhibited expression vector encoding NF-kappaB p65 or p50-elicited IL-6 promoter activity. Taken together, QG-32 could inhibit NF-kappaB-dependent IL-6 expression, targeting nuclear translocation of NF-kappaB complex downstream IkappaB degradation. This mechanism of action would be different from that of quercetin, an aglycone of QG-32, targeting IKK upstream IkappaB degradation. Finally, this study could provide a pharmacological potential of QG-32 in the inflammatory disorders.

  12. Minocycline Effects on IL-6 Concentration in Macrophage and Microglial Cells in a Rat Model of Neuropathic Pain

    PubMed Central

    Moini-Zanjani, Taraneh; Ostad, Seyed-Nasser; Labibi, Farzaneh; Ameli, Haleh; Mosaffa, Nariman; Sabetkasaei, Masoumeh

    2016-01-01

    Background: Evidence indicates that neuropathic pain pathogenesis is not confined to changes in the activity of neuronal systems but involves interactions between neurons, inflammatory immune and immune-like glial cells. Substances released from immune cells during inflammation play an important role in development and maintenance of neuropathic pain. It has been found that minocycline suppresses the development of neuropathic pain. Here, we evaluated the analgesic effect of minocycline in a chronic constriction injury (CCI) model of neuropathic pain in rat and assessed IL-6 concentration from cultured macrophage and microglia cells. Methods: Male Wistar rat (n=6, 150-200 g) were divided into three different groups: 1) CCI+vehicle, 2) sham+vehicle, and 3) CCI+drug. Minocycline (10, 20, and 40 mg/kg) was injected one hour before surgery and continued daily to day 14 post ligation. Von Frey filaments and acetone, as pain behavioral tests, were used for mechanical allodynia and cold allodynia, respectively. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7, 10, and 14 post -injury. At day 14, rats were killed and monocyte-derived macrophage from right ventricle and microglia from lumbar part of the spinal cord were isolated and cultured in RPMI and Leibovitz’s media, respectively. IL-6 concentration was evaluated in cell culture supernatant after 24 h. Results: Minocycline (10, 20, and 40 mg/kg) attenuated pain behavior, and a decrease in IL-6 concentration was observed in immune cells compared to CCI vehicle-treated animals. Conclusion: Minocycline reduced pain behavior and decreased IL-6 concentration in macrophage and microglial cells. PMID:27221523

  13. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus

    PubMed Central

    Zhang, Jiyong; Sadowska, Grazyna B.; Chen, Xiaodi; Park, Seon Yeong; Kim, Jeong-Eun; Bodge, Courtney A.; Cummings, Erin; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Stonestreet, Barbara S.

    2015-01-01

    Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti–IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti–IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti–IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.—Zhang, J., Sadowska, G. B., Chen, X., Park, S. Y., Kim, J.-E., Bodge, C. A., Cummings, E., Lim, Y.-P., Makeyev, O., Besio, W. G., Gaitanis, J., Banks, W. A., Stonestreet, B. S. Anti–IL-6 neutralizing antibody modulates blood-brain barrier function in the ovine fetus. PMID:25609424

  14. Clinical values of urinary IL-6 in asymptomatic renal hematuria and renal hematuria with proteins

    PubMed Central

    SONG, MINGHUI; MA, LU; YANG, DAN; HE, ZHIJUN; LI, CHAOBO; PAN, TAO; LI, ANJUN

    2013-01-01

    Renal hematuria is caused by glomerular disease. Under pathological conditions, the distribution of interleukin-6 (IL-6) in kidney tissue is abnormal and urinary IL-6 levels are increased. Abnormal IL-6 secretion promotes the hyperplasia of mesangial cells and matrix and, thus, affects the permeability of the glomerular filtration membrane. Therefore, the detection of urinary IL-6 levels in patients with renal hematuria is beneficial for disease evaluation. A total of 82 patients with primary renal hematuria were divided into group 1 (UPr/24 h < 150 mg; pure hematuria group), group 2 (150 mg ≤ UPr/24 h ≤ 1,000 mg) and group 3 (UPr/24 h > 1,000 mg). A total of 30 normal individuals were selected as the controls. The urinary IL-6 levels were detected by the enzyme-linked immunosorbent assay (ELISA) method and a renal biopsy was conducted. The urinary IL-6 levels and renal pathological damage scores in groups 1 and 2 were significantly reduced compared with those in group 3, (P<0.001 and 0.01, respectively), with no significant difference between groups 1 and 2 (P>0.05). The correlation coefficient (r) of urinary IL-6 with 24 h urinary protein (UPr/24 h) in groups 1, 2 and 3 was 0.017, 0.045 and 0.747, respectively, and that of urinary IL-6 with renal pathological damage score was 0.627, 0.199 and 0.119, respectively. The UPr/24 h was significantly correlated with IL-6 level (r=0.7320, P<0.000). In group 1, the urinary IL-6 levels were correlated with the degree of renal pathological damage. A positive correlation was observed between urinary IL-6 levels and UPr/24 h. PMID:24137196

  15. Astrocytic IL-6 mediates locomotor activity, exploration, anxiety, learning and social behavior.

    PubMed

    Erta, Maria; Giralt, Mercedes; Esposito, Flavia Lorena; Fernandez-Gayol, Olaya; Hidalgo, Juan

    2015-07-01

    Interleukin-6 (IL-6) is a major cytokine in the central nervous system, secreted by different brain cells and with roles in a number of physiological functions. We herewith confirm and expand the importance of astrocytic production of and response to IL-6 by using transgenic mice deficient in astrocytic IL-6 (Ast-IL-6 KO) or in its receptor (Ast-IL-6R KO) in full C57Bl/6 genetic background. A major prosurvival effect of astrocytic IL-6 at early ages was clearly demonstrated. Robust effects were also evident in the control of activity and anxiety in the hole-board and elevated plus-maze, and in spatial learning in the Morris water-maze. The results also suggest an inhibitory role of IL-6 in the mechanism controlling the consolidation of hippocampus-dependent spatial learning. Less robust effects of astrocytic IL-6 system were also observed in despair behavior in the tail suspension test, and social behavior in the dominance and resident-intruder tests. The behavioral phenotype was highly dependent on age and/or sex in some cases. The phenotype of Ast-IL-6R KO mice mimicked only partially that of Ast-IL-6KO mice, which indicates both a role of astrocytes in behavior and the participation of other cells besides astrocytes. No evidences of altered function of the hypothalamic-pituitary-adrenal axis were observed. These results demonstrate that astrocytic IL-6 (acting at least partially in astrocytes) regulates normal behavior in mice.

  16. Transcriptional regulation of IL-6 in bile duct epithelia by extracellular ATP

    PubMed Central

    Yu, Jin; Sheung, Nina; Soliman, Elwy M.; Spirli, Carlo; Dranoff, Jonathan A.

    2009-01-01

    The inflammatory cytokine IL-6 is essential for cell survival after liver injury. Bile duct epithelia (BDE) markedly upregulate IL-6 release after liver injury, but the mechanisms regulating this have not been defined. Purinergic signals induce multiple potent downstream effects in BDE, so the goals of this study were to determine whether extracellular ATP regulates BDE IL-6 transcription and to identify the molecular mechanisms regulating this process. Effects of extracellular nucleotides on IL-6 transcription in primary rat bile duct epithelia were assessed. The relative effects of cAMP and cytosolic calcium were determined by use of agonists and antagonists. The role of the cAMP response element (CRE) was determined by site-directed mutagenesis. We found that ATP potently upregulated IL-6 mRNA, and that the pharmacological profile for IL-6 upregulation was most consistent with the newly identified P2Y11 receptor. This occurred in a cAMP-dependent and calcium-dependent fashion. The effect of cAMP and calcium agonists on IL-6 promoter activity was synergistic, and mutation of the IL-6 CRE blocked upregulation by ATP. Taken together, these data show that extracellular ATP acts through a mechanism involving a rat P2Y receptor functionally related to the P2Y11 receptor, cAMP, and calcium signals and that the IL-6 promoter CRE to upregulate transcription of IL-6 in BDE. Since IL-6 has such critical importance in the liver, it is likely that this pathway is of great relevance to the understanding of hepatic response to injury. PMID:19136380

  17. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6-Abundant Breast Cancer Cells by Regulating γ-Secretase-Mediated Notch1 Activation in Caveolae.

    PubMed

    Hsu, En-Chi; Kulp, Samuel K; Huang, Han-Li; Tu, Huang-Ju; Salunke, Santosh B; Sullivan, Nicholas J; Sun, Duxin; Wicha, Max S; Shapiro, Charles L; Chen, Ching-Shih

    2015-06-01

    Interleukin-6 (IL-6) and Notch signaling are important regulators of breast cancer stem cells (CSCs), which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK) in regulating IL-6-driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6-driven Notch1 activation by ILK in IL-6-producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159) and in MCF-7 and MCF-7(IL-6) cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase-mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6-induced breast CSCs.

  18. Disruption by interferon-alpha of an autocrine interleukin-6 growth loop in IL-6-dependent U266 myeloma cells by homologous and heterologous down-regulation of the IL-6 receptor alpha- and beta-chains.

    PubMed Central

    Schwabe, M; Brini, A T; Bosco, M C; Rubboli, F; Egawa, M; Zhao, J; Princler, G L; Kung, H F

    1994-01-01

    IL-6 is an autocrine growth factor for U266 myeloma cells and their growth is inhibited by IFN-alpha or IL-6 mAb. We asked, therefore, whether IFN-alpha-induced growth inhibition involved IL-6. IFN-alpha and mAb against IL-6, the IL-6R alpha-(gp80) or beta-chain (gp130) potently inhibited U266 cells. Remarkably, this effect occurred despite IFN-alpha-augmented secretion of endogenous IL-6. However, examining the IL-6R revealed that IFN-alpha drastically curtailed expression of the IL-6R alpha- and beta-chain. This effect occurred on two different levels (protein and mRNA) and by two different mechanisms (directly and indirectly through IL-6). First, IFN-alpha, but not IL-6, greatly decreased gp80 and, to a lesser extent, gp130 mRNA levels which resulted in a loss of IL-6 binding sites. Second, IFN-alpha-induced IL-6 predominantly down-regulated membrane-bound gp130. IFN-alpha-mediated decrease of gp80 levels was not detected on IL-6-independent myeloma (RPMI 8226) or myeloid cells (U937). We conclude that IFN-alpha inhibited IL-6-dependent myeloma cell growth by depriving U266 cells of an essential component of their autocrine growth loop, a functional IL-6R. Images PMID:7989587

  19. Correlation between IL-6 and invasiveness of ectoderm cells of embryo in early pregnancy.

    PubMed

    Jiang, X Y; Lu, T M; Shu, W H; Zhou, H Y

    2016-01-01

    This study aimed to explore the correlation between Interleukin-6 (IL-6) and invasiveness of ectoderm cells of embryo in early pregnancy, in order to further discuss whether IL-6 can enhance invasiveness of ectoderm cells. The study lays the foundation for determination of pathogenesis of some gestation period-related diseases. Differences in mRNA and protein expression of trophoblastic cell line JEG-3 cells in IL-6, matrix metalloproteinase-2 (MMP-2) and MMP-9 were analyzed; the regulating effect of different concentrations of IL-6 on invasive ability of trophoblast cells was studied by Transwell assay; the effect of IL-6 on proliferation of ectodermal cell line JEG-3 of embryo was analyzed by methyl thiazolyl tetrazolium (MTT) assay. The invasive number of JEG-3 cells incubated by IL-6 (10 ng/ml) was higher than that of the control group, and the difference had statistical significance (p < 0.05). Results of using MMT assay to detect the effect of IL-6 on proliferation of trophoblastic cell line JEG-3 showed that JEG-3 cells before and after processing had no significant difference from the control group (p >0.05). Therefore, IL-6 can enhance invasiveness of ectoderm cells of embryo through activation of MMP-2. PMID:27358148

  20. Pulmonary inflammation after ethanol exposure and burn injury is attenuated in the absence of IL-6.

    PubMed

    Chen, Michael M; Bird, Melanie D; Zahs, Anita; Deburghgraeve, Cory; Posnik, Bartlomiej; Davis, Christopher S; Kovacs, Elizabeth J

    2013-05-01

    Alcohol consumption leads to an exaggerated inflammatory response after burn injury. Elevated levels of interleukin-6 (IL-6) in patients are associated with increased morbidity and mortality after injury, and high systemic and pulmonary levels of IL-6 have been observed after the combined insult of ethanol exposure and burn injury. To further investigate the role of IL-6 in the pulmonary inflammatory response, we examined leukocyte infiltration and cytokine and chemokine production in the lungs of wild-type and IL-6 knockout mice given vehicle or ethanol (1.11 g/kg) and subjected to a sham or 15% total body surface area burn injury. Levels of neutrophil infiltration and neutrophil chemoattractants were increased to a similar extent in wild-type and IL-6 knockout mice 24 h after burn injury. When ethanol exposure preceded the burn injury, however, a further increase of these inflammatory markers was seen only in the wild-type mice. Additionally, signal transducer and activator of transcription-3 (STAT3) phosphorylation did not increase in response to ethanol exposure in the IL-6 knockout mice, in contrast to their wild-type counterparts. Visual and imaging analysis of alveolar wall thickness supported these findings and similar results were obtained by blocking IL-6 with antibody. Taken together, our data suggest a causal relationship between IL-6 and the excessive pulmonary inflammation observed after the combined insult of ethanol and burn injury.

  1. Interplay between YB-1 and IL-6 promotes the metastatic phenotype in breast cancer cells

    PubMed Central

    Castellana, Bàrbara; Aasen, Trond; Moreno-Bueno, Gema; Dunn, Sandra E.; Ramón y Cajal, Santiago

    2015-01-01

    Epithelial to mesenchymal transition (EMT) induces cell plasticity and promotes metastasis. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) and the pleiotropic cytokine interleukin 6 (IL-6) have both been implicated in tumor cell metastasis and EMT, but via distinct pathways. Here, we show that direct interplay between YB-1 and IL-6 regulates breast cancer metastasis. Overexpression of YB-1 in breast cancer cell lines induced IL-6 production while stimulation with IL-6 increased YB-1 expression and YB-1 phosphorylation. Either approach was sufficient to induce EMT features, including increased cell migration and invasion. Silencing of YB-1 partially reverted the EMT and blocked the effect of IL-6 while inhibition of IL-6 signaling blocked the phenotype induced by YB-1 overexpression, demonstrating a clear YB-1/IL-6 interdependence. Our findings describe a novel signaling network in which YB-1 regulates IL-6, and vice versa, creating a positive feed-forward loop driving EMT-like metastatic features during breast cancer progression. Identification of signaling partners or pathways underlying this co-dependence may uncover novel therapeutic opportunities. PMID:26512918

  2. Correlation analysis between an IL-6 genetic polymorphism and non-small cell lung cancer prognosis.

    PubMed

    Zhao, K; Xu, J; Tian, H

    2016-03-11

    Interleukin-6 (IL-6) is a multifunctional cytokine that is involved in tumor cell proliferation, apoptosis, and differentiation. The purpose of this study was to evaluate the impact of the single nucleotide polymorphism (SNP) -174G/C in IL-6 on the prognosis and pain tolerance of non-small cell lung cancer (NSCLC) patients. DNA was extracted from the peripheral blood of 434 patients with NSCLC, which was diagnosed by cytology or histology. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the IL-6 -174G/C genotypes and their correlation with survival was analyzed. The IL-6 -174G/C genotypes were high IL-6 production type (G carriers - GG or GC genotypes) and low IL-6 production type (CC genotype). The correlation between the IL-6 SNP and pain level/analgesic use was also analyzed. Survival analysis showed that patients carrying the G allele (CG/GG) had a shorter survival time than patients with the CC genotype. The -174G/C SNP is in the promoter region of the IL-6 gene and may be associated with changes in gene transcription and serum cytokine levels. Presence of the IL-6 -174G/C SNP is significantly correlated with morphine equivalent daily dose. Patients with the CC genotype needed a higher opioid dose than patients with the GG or GC genotypes. In conclusion, we found that the IL-6 -174G/C SNP is closely related to survival, analgesic use and pain tolerance in NSCLC patients. However, it is necessary to further validate the results with a larger patient cohort and elucidate the mechanisms of this SNP.

  3. IL6 and IL1B polymorphisms are associated with fat mass in older men: the MrOS Study Sweden.

    PubMed

    Strandberg, Louise; Mellström, Dan; Ljunggren, Osten; Grundberg, Elin; Karlsson, Magnus K; Holmberg, Anna H; Orwoll, Eric S; Eriksson, Anna L; Svedberg, Johan; Bengtsson, Magnus; Ohlsson, Claes; Jansson, John-Olov

    2008-03-01

    There is growing evidence that immune functions are linked to the regulation of body fat. Our studies of knockout mice indicate that both endogenous interleukin (IL)-6 and IL-1 can suppress mature-onset obesity. We now investigated whether four common polymorphisms of the IL6 and IL1 systems are associated with the fat mass measured with dual-energy X-ray absorptiometry (DXA) in elderly men (n = 3,014). The study subjects were from the Swedish part of the MrOS multicenter population study and 69-81 years of age. The IL6 -174 G>C (Minor allele frequency (MAF) = 48%) gene promoter polymorphism was associated with the primary outcome total fat mass (P = 0.006) and regional fat masses, but not with lean body mass. The IL1B -31T>C (MAF = 34%) polymorphism was also associated with total fat (P = 0.007) and regional fat masses, but not lean body mass. The IL-1 receptor antagonist (IL-1ra) gene (IL1RN) +2018 T>C (MAF = 27%) polymorphism (in linkage disequilibrium (LD) with a well-studied variable number tandem repeat of 86 base pair (bp)) and IL1B +3953 C>T (MAF = 26%) polymorphism were not associated with total fat mass. In conclusion, the IL-1 and IL-6 systems, shown to suppress mature-onset obesity in experimental animals, contain gene polymorphisms that are associated with fat, but not lean, mass in elderly men.

  4. TLR4 induces CREB-mediated IL-6 production via upregulation of F-spondin to promote vascular smooth muscle cell migration.

    PubMed

    Lee, Guan-Lin; Wu, Jing-Yiing; Yeh, Chang-Ching; Kuo, Cheng-Chin

    2016-05-13

    Toll-like receptor 4 (TLR4) is important in promoting inflammation and vascular smooth muscle cell (VSMC) migration, both of which contribute to atherosclerosis development and progression. But the mechanism underlying the regulation of TLR4 in VSMC migration remains unclear. Stimulation of VSMCs with LPS increased the cellular level of F-spondin which is associated with the regulation of proinflammatory cytokine production. The LPS-induced F-spondin expression depended on TLR4-mediated PI3K/Akt pathway. Suppression of F-spondin level by siRNA inhibited not only F-spondin expression but also LPS-induced phosphorylation of cAMP response element binding protein (CREB) and IL-6 expression, VSMC migration and proliferation as well as MMP9 expression. Moreover, suppression of CREB level by siRNA inhibited TLR4-induced IL-6 production and VSMC migration. Inhibition of F-spondin siRNA on LPS-induced migration was restored by addition of exogenous recombinant mouse IL-6. We conclude that upon ligand binding, TLR4 activates PI3K/Akt signaling to induce F-spondin expression, subsequently control CREB-mediated IL-6 production to promote VSMC migration. These findings provide vital insights into the essential role of F-spondin in VSMC function and will be valuable for developing new therapeutic strategies against atherosclerosis.

  5. IL-6 induces regionally selective spinal cord injury in patients with the neuroinflammatory disorder transverse myelitis

    PubMed Central

    Kaplin, Adam I.; Deshpande, Deepa M.; Scott, Erick; Krishnan, Chitra; Carmen, Jessica S.; Shats, Irina; Martinez, Tara; Drummond, Jennifer; Dike, Sonny; Pletnikov, Mikhail; Keswani, Sanjay C.; Moran, Timothy H.; Pardo, Carlos A.; Calabresi, Peter A.; Kerr, Douglas A.

    2005-01-01

    Transverse myelitis (TM) is an immune-mediated spinal cord disorder associated with inflammation, demyelination, and axonal damage. We investigated the soluble immune derangements present in TM patients and found that IL-6 levels were selectively and dramatically elevated in the cerebrospinal fluid and directly correlated with markers of tissue injury and sustained clinical disability. IL-6 was necessary and sufficient to mediate cellular injury in spinal cord organotypic tissue culture sections through activation of the JAK/STAT pathway, resulting in increased activity of iNOS and poly(ADP-ribose) polymerase (PARP). Rats intrathecally infused with IL-6 developed progressive weakness and spinal cord inflammation, demyelination, and axonal damage, which were blocked by PARP inhibition. Addition of IL-6 to brain organotypic cultures or into the cerebral ventricles of adult rats did not activate the JAK/STAT pathway, which is potentially due to increased expression of soluble IL-6 receptor in the brain relative to the spinal cord that may antagonize IL-6 signaling in this context. The spatially distinct responses to IL-6 may underlie regional vulnerability of different parts of the CNS to inflammatory injury. The elucidation of this pathway identifies specific therapeutic targets in the management of CNS autoimmune conditions. PMID:16184194

  6. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2.

  7. Identification of IL6 as a susceptibility gene for major depressive disorder

    PubMed Central

    Zhang, Chen; Wu, Zhiguo; Zhao, Guoqing; Wang, Fan; Fang, Yiru

    2016-01-01

    Our previous work implied that interleukin 6 (IL6) may be a biological marker for major depressive disorder (MDD). In this study, we performed a comprehensive genetic study to determine the association between the gene encoding IL6 (IL6) and MDD in Han Chinese. There were 50 drug-naïve MDD patients and 50 healthy controls undergoing an mRNA expression study. A sample of 772 patients with MDD and 759 healthy controls were used for genetic analysis. Next, we performed an eQTL analysis to identify whether risk SNP(s) is associated with IL6 expression in brain. Our results showed that patients with MDD have higher levels of IL6 than healthy controls (P = 0.008). The SNP rs1800797 has a significant association with MDD (P = 0.01) in a dominant model. The eQTL analysis showed a marginally significant association between the rs1800797 and IL6 expression in the frontal cortex (P = 0.087). Our preliminary findings are suggestive of an association between rs1800797 and the risk of MDD. Further investigations are required to evaluate this association in larger samples to increase statistical power, and to examine the correlation between rs1800797 and IL6 methylation patterns. PMID:27502736

  8. Developmentally regulated IL6-type cytokines signal to germ cells in the human fetal ovary.

    PubMed

    Eddie, Sharon L; Childs, Andrew J; Jabbour, Henry N; Anderson, Richard A

    2012-02-01

    Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation. PMID:21965347

  9. Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients

    PubMed Central

    2011-01-01

    Background The acellular fraction of epithelial ovarian cancer (EOC) ascites promotes de novo resistance of tumor cells and thus supports the idea that tumor cells may survive in the surrounding protective microenvironment contributing to disease recurrence. Levels of the pro-inflammatory cytokines IL-6 and IL-8 are elevated in EOC ascites suggesting that they could play a role in tumor progression. Methods We measured IL-6 and IL-8 levels in the ascites of 39 patients with newly diagnosed EOC. Commercially available enzyme-linked immunosorbent assay (ELISA) was used to determine IL-6 and IL-8 ascites levels. Ascites cytokine levels were correlated with clinicopathological parameters and progression-free survival. Results Mean ascites levels for IL-6 and IL-8 were 6419 pg/ml (SEM: 1409 pg/ml) and 1408 pg/ml (SEM: 437 pg/ml) respectively. The levels of IL-6 and IL-8 in ascites were significantly lower in patients that have received prior chemotherapy before the surgery (Mann-Whitney U test, P = 0.037 for IL-6 and P = 0.008 for IL-8). Univariate analysis revealed that high IL-6 ascites levels (P = 0.021), serum CA125 levels (P = 0.04) and stage IV (P = 0.009) were significantly correlated with shorter progression-free survival. Including these variables in a multivariate analysis revealed that elevated IL-6 levels (P = 0.033) was an independent predictor of shorter progression-free survival. Conclusion Elevated IL-6, but not IL-8, ascites level is an independent predictor of shorter progression-free survival. PMID:21619709

  10. Autonomy, Positive Relationships, and IL-6: Evidence for Gender-Specific Effects

    PubMed Central

    Eisenlohr-Moul, Tory A.; Segerstrom, Suzanne C.

    2014-01-01

    Objectives A body of evidence indicates that women value relationship-centered aspects of well-being more than men do, while men value autonomy-centered aspects of well-being more than women do. The current study examined whether gender moderates relations between autonomy and positive relationships and interleukin-6 (IL-6), a cytokine associated with inflammatory processes. Aspects of well-being consistent with gender-linked values were expected to be most health-protective such that positive relationships would predict lower IL-6 only or more strongly in women, and autonomy would predict lower IL-6 only or more strongly in men. Methods In the first study, a sample of 119 older adults (55% female) living in Kentucky were visited in their homes for interviews and blood draws. In the second study, a sample of 1,028 adults (45% female) living across the United States (U.S.) underwent a telephone interview followed by a visit to a research center for blood draws. Results In the Kentucky sample, autonomy was quadratically related to IL-6 such that average autonomy predicted higher IL-6; this effect was stronger in men, providing support for our hypothesis only at above average levels of IL-6. In the U.S. national sample, more positive relationships were associated with lower IL-6 in women only. When the national sample was restricted to match the Kentucky sample, higher autonomy was associated with lower IL-6 in men only. Conclusions Results provide preliminary evidence for gender-specific effects of positive relationships and autonomy on IL-6. Further work is needed to establish the generalizability of these effects to different ages, cultures, and health statuses. PMID:22908985

  11. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    PubMed Central

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH. PMID:27327080

  12. IL-8 and IL-6 primarily mediate the inflammatory response in fibromyalgia patients.

    PubMed

    Mendieta, Danelia; De la Cruz-Aguilera, Dora Luz; Barrera-Villalpando, Maria Isabel; Becerril-Villanueva, Enrique; Arreola, Rodrigo; Hernández-Ferreira, Erick; Pérez-Tapia, Sonia Mayra; Pérez-Sánchez, Gilberto; Garcés-Alvarez, María Eugenia; Aguirre-Cruz, Lucinda; Velasco-Velázquez, Marco Antonio; Pavón, Lenin

    2016-01-15

    Fibromyalgia (FM) is a chronic disease that has been linked to inflammatory reactions and changes in the systemic levels of proinflammatory cytokines that modulate responses in the sympathetic nervous system and hypothalamic-pituitary-adrenal axis. We found that concentrations of IL-6 and IL-8 were elevated in FM patients. Both cytokines correlated with clinical scores, suggesting that IL-6 and IL-8 have additive or synergistic effects in perpetuating the chronic pain in FM patients. These findings indicate that IL-6 and IL-8 are two of the most constant inflammatory mediators in FM and that their levels correlate significantly with the severity of symptoms.

  13. CTRP3 deficiency reduces liver size and alters IL-6 and TGFβ levels in obese mice.

    PubMed

    Wolf, Risa M; Lei, Xia; Yang, Zhi-Chun; Nyandjo, Maeva; Tan, Stefanie Y; Wong, G William

    2016-03-01

    C1q/TNF-related protein 3 (CTRP3) is a secreted metabolic regulator whose circulating levels are reduced in human and rodent models of obesity and diabetes. Previously, we showed that CTRP3 infusion lowers blood glucose by suppressing gluconeogenesis and that transgenic overexpression of CTRP3 protects mice against diet-induced hepatic steatosis. Here, we used a genetic loss-of-function mouse model to further address whether CTRP3 is indeed required for metabolic homeostasis under normal and obese states. Both male and female mice lacking CTRP3 had similar weight gain when fed a control low-fat (LFD) or high-fat diet (HFD). Regardless of diet, no differences were observed in adiposity, food intake, metabolic rate, energy expenditure, or physical activity levels between wild-type (WT) and Ctrp3-knockout (KO) animals of either sex. Contrary to expectations, loss of CTRP3 in LFD- or HFD-fed male and female mice also had minimal or no impact on whole body glucose metabolism, insulin sensitivity, and fasting-induced hepatic gluconeogenesis. Unexpectedly, the liver sizes of HFD-fed Ctrp3-KO male mice were markedly reduced despite a modest increase in triglyceride content. Furthermore, liver expression of fat oxidation genes was upregulated in the Ctrp3-KO mice. Whereas the liver and adipose expression of profibrotic TGFβ1, as well as its serum levels, was suppressed in HFD-fed KO mice, circulating proinflammatory IL-6 levels were markedly increased; these changes, however, were insufficient to affect systemic metabolic outcome. We conclude that, although it is dispensable for physiological control of energy balance, CTRP3 plays a previously unsuspected role in modulating liver size and circulating cytokine levels in response to obesity. PMID:26670485

  14. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures.

    PubMed

    Loppnow, Harald; Zhang, Li; Buerke, Michael; Lautenschläger, Michael; Chen, Li; Frister, Adrian; Schlitt, Axel; Luther, Tanja; Song, Nan; Hofmann, Britt; Rose-John, Stefan; Silber, Rolf-Edgar; Müller-Werdan, Ursula; Werdan, Karl

    2011-04-01

    Inflammatory pathways are involved in the development of atherosclerosis. Interaction of vessel wall cells and invading monocytes by cytokines may trigger local inflammatory processes. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are standard medications used in cardiovascular diseases. They are thought to have anti-inflammatory capacities, in addition to their lipid-lowering effects. We investigated the anti-inflammatory effect of statins in the cytokine-mediated-interaction-model of human vascular smooth muscle cells (SMC) and human mononuclear cells (MNC). In this atherosclerosis-related inflammatory model LPS (lipopolysaccharide, endotoxin), as well as high mobility group box 1 stimulation resulted in synergistic (i.e. over-additive) IL-6 (interleukin-6) production as measured in ELISA. Recombinant IL-1, tumour necrosis factor-α and IL-6 mediated the synergistic IL-6 production. The standard anti-inflammatory drugs aspirin and indomethacin (Indo) reduced the synergistic IL-6 production by 60%. Simvastatin, atorvastatin, fluvastatin or pravastatin reduced the IL-6 production by 53%, 50%, 64% and 60%, respectively. The inhibition by the statins was dose dependent. Combination of statins with aspirin and/or Indo resulted in complete inhibition of the synergistic IL-6 production. The same inhibitors blocked STAT3 phosphorylation, providing evidence for an autocrine role of IL-6 in the synergism. MNC from volunteers after 5 day aspirin or simvastatin administration showed no decreased IL-6 production, probably due to drug removal during MNC isolation. Taken together, the data show that anti-inflammatory functions (here shown for statins) can be sensitively and reproducibly determined in this novel SMC/MNC coculture model. These data implicate that statins have the capacity to affect atherosclerosis by regulating cytokine-mediated innate inflammatory pathways in the vessel wall.

  15. Differential TGF-β Signaling in Glial Subsets Underlies IL-6-Mediated Epileptogenesis in Mice.

    PubMed

    Levy, Nitzan; Milikovsky, Dan Z; Baranauskas, Gytis; Vinogradov, Ekaterina; David, Yaron; Ketzef, Maya; Abutbul, Shai; Weissberg, Itai; Kamintsky, Lyn; Fleidervish, Ilya; Friedman, Alon; Monsonego, Alon

    2015-08-15

    TGF-β1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-β1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-β signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-β1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-β signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-β1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.

  16. Differential TGF-β Signaling in Glial Subsets Underlies IL-6-Mediated Epileptogenesis in Mice.

    PubMed

    Levy, Nitzan; Milikovsky, Dan Z; Baranauskas, Gytis; Vinogradov, Ekaterina; David, Yaron; Ketzef, Maya; Abutbul, Shai; Weissberg, Itai; Kamintsky, Lyn; Fleidervish, Ilya; Friedman, Alon; Monsonego, Alon

    2015-08-15

    TGF-β1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-β1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-β signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-β1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-β signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-β1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death. PMID:26136430

  17. Interleukin (IL)-1A and IL-6: Applications to the predictive diagnostic testing of radiation pneumonitis

    SciTech Connect

    Chen Yuhchyau . E-mail: yuhchyau_chen@urmc.rochester.edu; Hyrien, Ollivier; Williams, Jacqueline; Okunieff, Paul; Smudzin, Therese; Rubin, Philip

    2005-05-01

    Purpose: To explore the application of interleukin (IL)-1{alpha} and IL-6 measurements in the predictive diagnostic testing for symptomatic radiation pneumonitis (RP). Methods and materials: In a prospective protocol investigating RP and cytokines, IL-1{alpha} and IL-6 values were analyzed by enzyme-linked immunosorbent assay from serial weekly blood samples of patients receiving chest radiation. We analyzed sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) over selected threshold values for both cytokines in the application to diagnostic testing. Results: The average coefficient of variation was 51% of the weekly mean IL-1{alpha} level and 39% of the weekly mean IL-6 value. Interleukin 1{alpha} and IL-6 became positively correlated with time. Specificity for both cytokines was better than sensitivity. IL-6 globally outperformed IL-1{alpha} in predicting RP, with higher PPV and NPV. Conclusions: Our data demonstrate the feasibility of applying IL-1{alpha} and IL-6 measurements of blood specimens to predict RP. Interleukin-6 measurements offer stronger positive predictive value than IL-1{alpha}. This application might be further explored in a larger sample of patients.

  18. The matricellular protein CCN1 promotes mucosal healing in murine colitis through IL-6.

    PubMed

    Choi, J S; Kim, K-H; Lau, L F

    2015-11-01

    The matricellular protein CCN1 (CYR61) is known to function in wound healing and is upregulated in colons of patients with Crohn's disease and ulcerative colitis, yet its specific role in colitis is unknown. Here we have used Ccn1(dm/dm) knockin mice expressing a CCN1 mutant unable to bind integrins α6β1 and αMβ2 as a model to probe CCN1 function in dextran sodium sulfate (DSS)-induced colitis. Ccn1(dm/dm) mice exhibited high mortality, impaired mucosal healing, and diminished interleukin-6 (IL-6) expression during the repair phase of DSS-induced colitis compared with wild-type mice, despite having comparable severity of initial inflammation and tissue injury. CCN1-induced IL-6 expression in macrophages through integrin αMβ2 and in fibroblasts through α6β1, and IL-6 promoted intestinal epithelial cell (IEC) proliferation. Administration of purified CCN1 protein fully rescued Ccn1(dm/dm) mice from DSS-induced mortality, restored IEC proliferation and enhanced mucosal healing, whereas delivery of IL-6 partially rectified these defects. CCN1 therapy accelerated mucosal healing and recovery from DSS-induced colitis even in wild-type mice. These findings reveal a critical role for CCN1 in restoring mucosal homeostasis after intestinal injury in part through integrin-mediated induction of IL-6 expression, and suggest a therapeutic potential for activating the CCN1/IL-6 axis for treating inflammatory bowel disease.

  19. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti–IL-6R treatment

    PubMed Central

    Wunderlich, Mark; Devarajan, Mahima; Ravishankar, Navin; Sexton, Christina; Kumar, Ashish R.; Mizukawa, Benjamin; Mulloy, James C.

    2016-01-01

    Transgenic expression of key myelosupportive human cytokines in immune-deficient mice corrects for the lack of cross-species activities of stem cell factor (SCF), IL-3, and GM-CSF. When engrafted with human umbilical cord blood (UCB), these triple-transgenic mice produce BM and spleen grafts with much higher myeloid composition, relative to nontransgenic controls. Shortly after engraftment with UCB, these mice develop a severe, fatal macrophage activation syndrome (MAS) characterized by a progressive drop in rbc numbers, increased reticulocyte counts, decreased rbc half-life, progressive cytopenias, and evidence of chronic inflammation, including elevated human IL-6. The BM becomes strikingly hypocellular, and spleens are significantly enlarged with evidence of extramedullary hematopoiesis and activated macrophages engaged in hemophagocytosis. This manifestation of MAS does not respond to lymphocyte-suppressive therapies such as steroids, i.v. immunoglobulin, or antibody-mediated ablation of human B and T cells, demonstrating a lymphocyte-independent mechanism of action. In contrast, elimination of human myeloid cells using gemtuzumab ozogamicin (anti-CD33) completely reversed the disease. Additionally, the IL-6R antibody tocilizumab delayed progression and prolonged lifespan. This new model of MAS provides an opportunity for investigation of the mechanisms driving this disease and for the testing of directed therapies in a humanized mouse.

  20. A xenograft model of macrophage activation syndrome amenable to anti-CD33 and anti–IL-6R treatment

    PubMed Central

    Wunderlich, Mark; Devarajan, Mahima; Ravishankar, Navin; Sexton, Christina; Kumar, Ashish R.; Mizukawa, Benjamin; Mulloy, James C.

    2016-01-01

    Transgenic expression of key myelosupportive human cytokines in immune-deficient mice corrects for the lack of cross-species activities of stem cell factor (SCF), IL-3, and GM-CSF. When engrafted with human umbilical cord blood (UCB), these triple-transgenic mice produce BM and spleen grafts with much higher myeloid composition, relative to nontransgenic controls. Shortly after engraftment with UCB, these mice develop a severe, fatal macrophage activation syndrome (MAS) characterized by a progressive drop in rbc numbers, increased reticulocyte counts, decreased rbc half-life, progressive cytopenias, and evidence of chronic inflammation, including elevated human IL-6. The BM becomes strikingly hypocellular, and spleens are significantly enlarged with evidence of extramedullary hematopoiesis and activated macrophages engaged in hemophagocytosis. This manifestation of MAS does not respond to lymphocyte-suppressive therapies such as steroids, i.v. immunoglobulin, or antibody-mediated ablation of human B and T cells, demonstrating a lymphocyte-independent mechanism of action. In contrast, elimination of human myeloid cells using gemtuzumab ozogamicin (anti-CD33) completely reversed the disease. Additionally, the IL-6R antibody tocilizumab delayed progression and prolonged lifespan. This new model of MAS provides an opportunity for investigation of the mechanisms driving this disease and for the testing of directed therapies in a humanized mouse. PMID:27699249

  1. The effect of IL6-174C/G polymorphisms on postprandial triglycerides metabolism in the GOLDN study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronically elevated IL-6 affects lipid and lipoprotein metabolism. Individuals genetically predisposed to higher IL-6 secretion may be at risk of dyslipidemia, especially during the postprandial phase. We investigated the effect of genetic variants at the IL6 locus on postprandial lipemia in US Whi...

  2. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    SciTech Connect

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard

    2012-05-01

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.

  3. Clinical relevance of IL-6 gene polymorphism in severely injured patients

    PubMed Central

    Jeremić, Vasilije; Alempijević, Tamara; Mijatović, Srđan; Šijački, Ana; Dragašević, Sanja; Pavlović, Sonja; Miličić, Biljana; Krstić, Slobodan

    2014-01-01

    In polytrauma, injuries that may be surgically treated under regular circumstances due to a systemic inflammatory response become life-threatening. The inflammatory response involves a complex pattern of humoral and cellular responses and the expression of related factors is thought to be governed by genetic variations. This aim of this paper is to examine the influence of interleukin (IL) 6 single nucleotide polymorphism (SNP) -174C/G and -596G/A on the treatment outcome in severely injured patients. Forty-seven severely injured patients were included in this study. Patients were assigned an Injury Severity Score. Blood samples were drawn within 24 h after admission (designated day 1) and on subsequent days (24, 48, 72 hours and 7days) of hospitalization. The IL-6 levels were determined through ELISA technique. Polymorphisms were analyzed by a method of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR). Among subjects with different outcomes, no statistically relevant difference was found with regards to the gene IL-6 SNP-174G/C polymorphism. More than a half of subjects who died had the SNP-174G/C polymorphism, while this polymorphism was represented in a slightly lower number in survivors. The incidence of subjects without polymorphism and those with heterozygous and homozygous gene IL-6 SNP-596G/A polymorphism did not present statistically significant variations between survivors and those who died. The levels of IL-6 over the observation period did not present any statistically relevant difference among subjects without the IL-6 SNP-174 or IL-6 SNP -596 gene polymorphism and those who had either a heterozygous or a homozygous polymorphism. PMID:24856384

  4. Activation of the Maternal Immune System Induces Endocrine Changes in the Placenta via IL-6

    PubMed Central

    Hsiao, Elaine Y.; Patterson, Paul H.

    2011-01-01

    Activation of the maternal immune system in rodent models sets in motion a cascade of molecular pathways that ultimately result in autism- and schizophrenia-related behaviors in offspring. The finding that interleukin-6 (IL-6) is a crucial mediator of these effects led us to examine the mechanism by which this cytokine influences fetal development in vivo. Here we focus on the placenta as the site of direct interaction between mother and fetus and as a principal modulator of fetal development. We find that maternal immune activation (MIA) with a viral mimic, synthetic double-stranded RNA (poly(I:C)), increases IL-6 mRNA as well as maternally-derived IL-6 protein in the placenta. Placentas from MIA mothers exhibit increases in CD69+ decidual macrophages, granulocytes and uterine NK cells, indicating elevated early immune activation. Maternally-derived IL-6 mediates activation of the JAK/STAT3 pathway specifically in the spongiotrophoblast layer of the placenta, which results in expression of acute phase genes. Importantly, this parallels an IL-6-dependent disruption of the growth hormone-insulin-like growth factor (GH-IGF) axis that is characterized by decreased GH, IGFI and IGFBP3 levels. In addition, we observe an IL-6-dependent induction in pro-lactin-like protein-K (PLP-K) expression as well as MIA-related alterations in other placental endocrine factors. Together, these IL-6-mediated effects of MIA on the placenta represent an indirect mechanism by which MIA can alter fetal development. PMID:21195166

  5. PREVENTION OF COLITIS-ASSOCIATED CANCER: NATURAL COMPOUNDS THAT TARGET THE IL-6 SOLUBLE RECEPTOR

    PubMed Central

    Moriasi, Cate; Subramaniam, Dharmalingam; Awasthi, Shanjana; Anant, Shrikant; Ramalingam, Satish

    2014-01-01

    The risk of developing colorectal cancer increases in patients with inflammatory bowel disease (IBD) and a growing body of evidence shows the critical role of interleukin (IL-6) in this process. IL-6 is both a pro- and anti-inflammatory cytokine whose effects are mediated through activation of STAT3. Recent studies have also demonstrated that IL-6 trans-signaling through its soluble receptor occurs in IBD and cancer. IL-6 trans-signaling therefore is emerging as an attractive approach to diminish the inflammatory signals in conditions of chronic inflammation. The purpose of cancer chemoprevention is to either delay the onset or progression from precancerous lesions. Natural compounds because of their low toxicity render themselves excellent candidates that can be administered over the lifetime of an individual. With the focus of managing IBD over a long time and preventing onset of colitis-associated cancer, we believe that there should be increased research focus on identifying chemopreventive compounds that can render themselves to long term use possibly for the lifetime of predisposed individuals. Here, we review the role of IL-6 signaling in IBD and colitis-associated cancer and underscore the importance of searching for natural compounds that would target the IL-6 trans-signaling pathway as a way to diminish chronic inflammatory conditions in the gastrointestinal tract and possibly hamper the progression to colon cancer. We propose that effective screening and identification of natural chemopreventive compounds that target IL-6 trans-signaling has important implications for the development of optimal strategies against cancer development triggered by inflammation. PMID:22583410

  6. IL-6/STAT3 signaling pathway is activated in plasma cell mastitis.

    PubMed

    Liu, Yang; Zhang, Jian; Zhou, Yu-Hui; Jiang, Yi-Na; Zhang, Wei; Tang, Xiao-Jiang; Ren, Yu; Han, Shui-Ping; Liu, Pei-Jun; Xu, Jing; He, Jian-Jun

    2015-01-01

    Plasma cell mastitis (PCM), a particular type of mastitis, mainly occurs in females at nonpregnant and nonlactating stages. The infiltration of abundant plasma cells and lymphocytes is the hallmark of the disease. The incidence rate of PCM increased gradually and its pathogenesis remained unclear. In this study, we investigated the expression of IL-6/STAT3 signaling pathway, which is vital not only for the differentiation of plasma cells but also for survival of plasma cells and T lymphocytes, in 30 PCM cases, 10 acute mastitis cases and 10 normal breast tissues by immunohistochemical analysis. IL-6 level was significantly higher in PCM patients than in acute mastitis patients or normal group. The positive rate of IL-6 and p-STAT3 staining in PCM samples was 93.3% (28/30) and 70% (21/30), respectively, and there was a significant positive association between IL-6 and p-STAT3 staining (r=0.408, P=0.025). In PCM group, the rate of nipple retraction was 40% (12/30). Significantly higher IL-6 expression was found in PCM patients with nipple retraction than in other PCM patients. However, no significant difference in IL-6 or p-STAT3 staining was detected between PCM patients experiencing recurrence and other PCM patients. In addition, Bcl-2 level was higher in PCM patients than in acute mastitis patients or normal group, but there was no difference in Bcl-2 immunostaining between PCM patients experiencing recurrence and other PCM patients. These indicate that IL-6/STAT3 signaling is activated in PCM and may play an important role in the pathogenesis of PCM.

  7. Immunoendocrine interactions during chronic cysticercosis determine male mouse feminization: role of IL-6.

    PubMed

    Morales-Montor, J; Baig, S; Mitchell, R; Deway, K; Hallal-Calleros, C; Damian, R T

    2001-10-15

    Taenia crassiceps cysticercosis results in an impressive feminization in male mice during chronic infection, characterized by increased serum estradiol levels 100 times their normal values, while those of testosterone and dihydrotestosterone are decreased by 85 and 95% respectively. Concomitantly, the levels of follicle-stimulating hormone and IL-6 are increased 70 and 90 times their normal values in the infected male mice. Since a specific Th1/Th2 shift of the immune response has been previously reported during the chronic infection, and this shift may be associated with the feminization process, we proposed that this shift is induced by immunoendocrine interactions during the disease, and this gives way to a change in the initial resistance to the infection in the male mice, which become as susceptible as female mice. To confirm this hypothesis, we depleted immune system activity in two different ways: total body irradiation and neonatal thymectomy. Our results show that when immune system activity is depleted using either strategy, the male mice do not feminize, and the levels of follicle-stimulating hormone and IL-6 are inhibited. Depletion of IL-6 using IL-6(-/-) knockout mice does not produce the feminization process stated above, while restitution of the IL-6(-/-) knockout, irradiated, and thymectomized mice with murine recombinant IL-6 restores the feminization process. Expression of the IL-6 gene was found only in the testes and spleen of infected animals. Our results illustrate the importance of immunoendocrine interactions during a parasitic disease and show a possible new mechanism of parasite establishment in an initially resistant host.

  8. Amylin-Induced Central IL-6 Production Enhances Ventromedial Hypothalamic Leptin Signaling

    PubMed Central

    Johnson, Miranda D.; Dunn-Meynell, Ambrose A.; Boyle, Christina N.; Lutz, Thomas A.; Levin, Barry E.

    2015-01-01

    Amylin acts acutely via the area postrema to reduce food intake and body weight, but it also interacts with leptin over longer periods of time, possibly via the ventromedial hypothalamus (VMH), to increase leptin signaling and phosphorylation of STAT3. We postulated that amylin enhances VMH leptin signaling by inducing interleukin (IL)-6, which then interacts with its gp130 receptor to activate STAT3 signaling and gene transcription downstream of the leptin receptor. We found that components of the amylin receptor (RAMPs1–3, CTR1a,b) are expressed in cultured VMH astrocytes, neurons, and microglia, as well as in micropunches of arcuate and ventromedial hypothalamic nuclei (VMN). Amylin exposure for 5 days increased IL-6 mRNA expression in VMH explants and microglia by two- to threefold, respectively, as well as protein abundance in culture supernatants by five- and twofold, respectively. Amylin had no similar effects on cultured astrocytes or neurons. In rats, 5 days of amylin treatment decreased body weight gain and/or food intake and increased IL-6 mRNA expression in the VMN. Similar 5-day amylin treatment increased VMN leptin-induced phosphorylation of STAT3 expression in wild-type mice and rats infused with lateral ventricular IgG but not in IL-6 knockout mice or rats infused with ventricular IL-6 antibody. Lateral ventricular infusion of IL-6 antibody also prevented the amylin-induced decrease of body weight gain. These results show that amylin-induced VMH microglial IL-6 production is the likely mechanism by which amylin treatment interacts with VMH leptin signaling to increase its effect on weight loss. PMID:25409701

  9. The effect of alcohol use on IL-6 responses across different racial/ethnic groups

    PubMed Central

    Míguez, María José; Rosenberg, Rhonda; Burbano-Levy, Ximena; Carmona, Talita; Malow, Robert

    2012-01-01

    Aims Chronic inflammation has become increasingly recognized as a health threat for people living with HIV, given its associations with multiple diseases. Accordingly, the scientific community has prioritized the need to identify mechanisms triggering inflammation. Participants & methods A clinic-based case–control study was designed to elucidate the plausible effects of alcohol use on IL-6. Peripheral blood mononuclear cells for measuring IL-6 culture supernatant and plasma for HIV assessments were collected from 59 hazardous alcohol users and 66 nonhazardous alcohol users, who were matched according to their age, gender and US CDC HIV severity status. Results Stimulated peripheral blood mononuclear cells produced significantly higher amounts of IL-6 in hazardous alcohol users compared with nonhazardous alcohol users. However, racial status and receiving HAART significantly moderated this effect. Notably, in both HAART and non-HAART scenarios, IL-6 levels were associated with CD4 counts and viral burden. A distinctive IL-6 production pattern across racial/ethnic groups was also evident and showed that, when prescribed HAART, Hispanic hazardous alcohol users have a particularly high risk of morbidity compared with their Caucasian and African–American counterparts. After adjusting for confounders (e.g., sociodemographics and HIV disease status), regression analyses confirmed that chronic inflammation, as indicated by IL-6 levels (log), is associated with alcohol use, race/ethnicity and thrombocytopenia, and tended to be related to concurrent smoking. Conclusion Our data confirm that, despite HAART, people living with HIV still have a persistent inflammatory response that, in our study, was associated with chronic hazardous alcohol use. The data also highlight racial/ethnic disparities in IL-6 that justify further investigations. PMID:23565120

  10. Interleukin-6 (IL-6) haplotypes and the response to therapy of chronic hepatitis C virus infection

    PubMed Central

    Yee, Leland J.; Im, KyungAh; Borg, Brian; Yang, Huiying; Liang, T. Jake

    2009-01-01

    Chronic hepatitis C virus (HCV) infection affects nearly 170 million individuals worldwide. Treatment of HCV with pegylated interferon-α-2a is successful in eradicating virus from only 30%–80% of those treated. Interleukin-6 (IL-6) is an important cytokine involved in the immune response to infectious agents and in vitro studies suggest that host genetic variation, particularly haplotypes, may affect IL-6 expression. We examined the contribution of haplotypes in the IL-6 gene on sustained viral response (SVR) to therapy for chronic HCV infection. We observed the IL-6 T-T-G-G-G-G-C-A-G-A haplotype to be associated with a lower risk of achieving SVR among Caucasian Americans (CAs) (RR=0.80; 95%C.I.: 0.66– 0.98; p=0.0261). Using a sliding window approach, the rs1800797-(G)-rs1800796-(G)-rs1800795-(G) haplotype was associated with a reduced chance of SVR (RR=0.79; 95%C.I.: 0.66–0.94; p=0.0081), as was the rs1800796-(G)-rs1800795-(G)-rs2069830-(C) haplotype (RR=0.78; 95%C.I.: 0.66–0.94; p=0.0065) among CAs. Overall, the rs1800797-(G)-rs1800796-(G)-rs1800795-(G) haplotype was independently associated with a reduced chance of SVR (RR=0.78; 95% C.I.: 0.62–1.0; p=0.0489) after adjustment for potential confounding factors. Our findings further illustrate the complexity of IL-6 genetic regulation and the potential importance of haplotypes on IL-6 expression. Our findings provide additional support for the potential importance of genetic variation in the IL-6 gene and the response to HCV therapy. PMID:19387461

  11. Selective inhibitors of Kv11.1 regulate IL-6 expression by macrophages in response to TLR/IL-1R ligands.

    PubMed

    Hunter, Cheryl; Kadakia, Tejas B; Cooper, Dianne; Perretti, Mauro; Schwartz, Richard C; Brown, Simon B

    2010-01-01

    The mechanism by which the platelet-endothelial cell adhesion molecule PECAM-1 regulates leukodiapedesis, vascular endothelial integrity, and proinflammatory cytokine expression in vivo is not known. We recently identified PECAM-1 as a negative regulator of Kv11.1, a specific voltage-gated potassium channel that functioned in human macrophages to reset a resting membrane potential following depolarization. We demonstrate here that dofetilide (DOF), a selective inhibitor of the Kv11.1 current, had a profound inhibitory effect on neutrophil recruitment in mice following TLR/IL-1R-elicited peritonitis or intrascrotal injection of IL-1 Beta, but had no effect on responses seen with TNF alpha. Furthermore, inhibitors of Kv11.1 (DOF, E4031, and astemizole), but not Kv1.3 (margatoxin), suppressed the expression of IL-6 and MCP-1 cytokines by murine resident peritoneal macrophages, while again having no effect on TNF alpha. In contrast, IL-6 expression by peritoneal mesothelial cells was unaffected. Using murine P388 cells, which lack endogenous C/EBP Beta expression and are unresponsive to LPS for the expression of both IL-6 and MCP-1, we observed that DOF inhibited LPS-induced expression of IL-6 mRNA following ectopic expression of wild-type C/EBP Beta, but not a serine-64 point mutant. Finally, DOF inhibited the constitutive activation of cdk2 in murine peritoneal macrophages; cdk2 is known to phosphorylate C/EBP Beta at serine-64. Taken together, our results implicate a potential role for Kv11.1 in regulating cdk2 and C/EBP Beta activity, where robust transactivation of both IL-6 and MCP-1 transcription is known to be dependent on serine-64 of C/EBP Beta. Our data might also explain the altered phenotypes displayed by PECAM-1 knockout mice in several disease models. PMID:20730378

  12. Acrolein stimulates the synthesis of IL-6 and C-reactive protein (CRP) in thrombosis model mice and cultured cells.

    PubMed

    Saiki, Ryotaro; Hayashi, Daisuke; Ikuo, Yukiko; Nishimura, Kazuhiro; Ishii, Itsuko; Kobayashi, Kaoru; Chiba, Kan; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-12-01

    Measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction with high sensitivity and specificity. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP in thrombosis model mice and cultured cells. In mice with photochemically induced thrombosis, acrolein produced at the locus of infarction increased the level of IL-6 and then CRP in plasma. This was confirmed in cell culture systems - acrolein stimulated the production of IL-6 in mouse neuroblastoma Neuro-2a cells, mouse macrophage-like J774.1 cells, and human umbilical vein endothelial cells (HUVEC), and IL-6 in turn stimulated the production of CRP in human hepatocarcinoma cells. The level of IL-6 mRNA was increased by acrolein through an increase in phosphorylation of the transcription factors, c-Jun, and NF-κB p65. Furthermore, CRP stimulated IL-6 production in mouse macrophage-like J774.1 cells and HUVEC. IL-6 functioned as a protective factor against acrolein toxicity in Neuro-2a cells and HUVEC. These results show that acrolein stimulates the synthesis of IL-6 and CRP, which function as protecting factors against acrolein toxicity, and that the combined measurement of PC-Acro, IL-6, and CRP is effective for identification of silent brain infarction. The combined measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP, and indeed acrolein increased IL-6 synthesis and IL-6 in turn increased CRP synthesis. Furthermore, IL-6 decreased acrolein toxicity in several cell lines.

  13. IL-6 as a corneal wound healing mediator in an in vitro scratch assay.

    PubMed

    Arranz-Valsero, Isabel; Soriano-Romaní, Laura; García-Posadas, Laura; López-García, Antonio; Diebold, Yolanda

    2014-08-01

    Corneal healing process under inflammatory conditions is not fully understood. We aimed at determining the effect of an inflammatory (presence of IL-6) or anti-inflammatory (presence of IL-10) environment and a mixture of both in the expression of IL-6 signaling pathway mediators, and on corneal wound healing in an in vitro scratch assay. For that purpose, human corneal epithelial cells were cultured until confluence. The effect of IL-6 (10 ng/ml), IL-10 (20 ng/ml) or IL-6 + IL-10 exposure on the expression of IL-6R, gp130, and STAT3 was determined by Western blotting and quantitative PCR, at different time points. The monolayer was mechanically wounded using a sterile 10 μl pipette tip. Wound healing rate in the presence or absence of these cytokines was measured immediately after cytokine exposure and after 4, 8, and 24 h. The effect of mitomycin C on wound healing rate, in control and IL-6-stimulated cells, was also evaluated. Detection of proliferative cells was performed with an EdU imaging kit. For the visualization of migrating cells, cold methanol-fixed cells were incubated with an α-actinin antibody. For the statistical analysis a two-factor design of experiment method was applied. Levene test was used to contrast equality of variances. If variances were equal, ANOVA was performed to test the equality of means. If variances were not equal, a Mood's median test was performed. We observed that IL-6 and IL-10 stimulation, and their combination, increased gp130 production at different time points. STAT3 production was increased in IL-6-stimulated cells, at 72 h. An increase in pSTAT3 production was found in IL-6- and IL-10-stimulated cells, that was sustained in time in IL-6 + IL-10 co-stimulated cultures. Scraped areas had an initial width of 570.57 ± 75.82 μm. In IL-6-exposed cells wound healing closure was faster than in control cells or IL-10-exposed cells. After 8 h, wound width in IL-10-exposed cells, was also significantly smaller than

  14. Upregulation of TLRs and IL-6 as a Marker in Human Colorectal Cancer

    PubMed Central

    Lu, Chien-Chang; Kuo, Hsing-Chun; Wang, Feng-Sheng; Jou, Ming-Huey; Lee, Ko-Chao; Chuang, Jiin-Haur

    2014-01-01

    Toll-like receptors (TLRs) not only form an important part of the innate immune system but also serve to activate the adaptive immune system in response to cancer. Real-time PCR; immunohistochemical stain and Western blotting analyses were performed to clarify molecular alterations in colorectal cancer (CRC) patients. We identified Toll-like receptor 1 (TLR1), TLR2, TLR4 and TLR8 gene expression levels and downstream gene, i.e., interleukin-6 (IL-6), IL-8, interferon-α (IFN-α) and myeloid differentiation primary-response protein-88 (MyD88), expression levels in CRC patients and in cancer cell lines. CRC tissues have higher TLR1, TLR2, TLR4, TLR8, IL-6 and IL-8 gene expression levels than do the normal colon mucosa (p < 0.05). TLR2 expression varied in different cell types (mucosa and lymphocytes). There was no difference in the MyD88 and IFN-α gene expression levels between cancerous and normal colon mucosa. CRC patients had higher levels of IL-6 (p = 0.002) and IL-8 (p = 0.038) expression than healthy volunteers did; and higher IL-6 and IL-8 expression was also found to signify a higher risk of recurrence. CL075 (3M002) treatments can reduce the production of IL-8 in different cancer cell lines. The signaling pathway of TLRs in cancer tissue is different from that in normal cells; and is MyD88-independent. Higher expression levels of TLR1, TLR2, TLR 4 and TLR 8 mRNA were related to upregulation inflammatory cytokines IL-6 and IL-8 gene expression in tissue and to the upregulation of IL-6 in blood. The concentration of IL-6 in serum can be used as an indicator of the possibility of CRC recurrence. Treatment with 3M002 can reduce IL-6 production in vitro and may prevent CRC recurrence. Our findings provide evidence that TLR1, TLR2, TLR4 and TLR8 gene expression induce downstream IL-6 and IL-8 gene expression; detection of these expression levels can serve as a CRC marker. PMID:25547486

  15. Inhibition of IL-6 Signaling Pathway by Curcumin in Uterine Decidual Cells

    PubMed Central

    Devi, Y. Sangeeta; DeVine, Majesta; DeKuiper, Justin; Ferguson, Susan; Fazleabas, Asgerally T.

    2015-01-01

    IL-6 is a multifunctional pro-inflammatory cytokine and has been implicated in many gestational disorders including preterm birth. Currently, there are no appropriate therapeutic interventions available to circumvent inflammatory-mediated gestational disorders. Therefore, the goal of this study was to identify a safe and effective pharmacological compound to counterbalance inflammatory responses in the uterus. Curcumin, a naturally-occuring polyphenolic compound, has been widely used in alternative medicine to treat inflammatory diseases. However, the anti-inflammatory effect of curcumin has not been explored in uterine decidual cells, a major source of IL-6. Therefore, we examined the effect of curcumin on IL-6 expression using two types of uterine decidual cells 1) HuF cells, primary human fibroblast cells obtained from the decidua parietalis; 2) UIII cells, a rodent non-transformed decidual cell line. Curcumin treatment completely abrogated the expression of IL-1β-induced IL-6 in these cells. Curcumin also strongly inhibited the expression of gp130, a critical molecule in IL-6 signaling, whereas expression of IL-6R and sIL-6R was not affected. Curcumin also inhibited phosphorylation and nuclear localization of STAT3, a well-known downstream mediator of IL-6 signaling. Furthermore, curcumin attenuated IL-1β-induced IL-6 promoter reporter activity suggesting transcriptional regulation. To further understand whether NF-ҡB is involved in this inhibition, we examined the effect of curcumin on the expression of p50 and p65 subunits of NF-ҡB in decidual cells. Expression of IL-1β-induced p50 mRNA was repressed by curcumin while p65 mRNA was not affected. However, curcumin treatment dramatically inhibited both p50 and p65 protein levels and prevented its nuclear localization. This effect is at least partly mediated through the deactivation of IKK, since IL-1β-induced IKKα/β phosphorylation is decreased upon curcumin treatment. Our results not only revealed

  16. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes

    PubMed Central

    WATSON, C; WHITTAKER, S; SMITH, N; VORA, A J; DUMONDE, D C; BROWN, K A

    1996-01-01

    Using a quantitative monolayer adhesion assay, the current report shows that treatment of human umbilical vein endothelial cells (HUVEC) with IL-6 increases their adhesiveness for blood lymphocytes, particularly CD4+ cells, but not for polymorphonuclear cells and monocytes. This effect, which was most pronounced when using low concentrations of the cytokine (0.1–1.0 U/ml) and a short incubation period (4 h), was also apparent with microvascular endothelial cells and a hybrid endothelial cell line. Skin lesions from patients with mycosis fungoides contain high levels of IL-6, and blood lymphocytes from patients with this disorder also exhibited an enhanced adhesion to IL-6-treated HUVEC. The cytokine enhanced intercellular adhesion molecule-1 (ICAM-1) expression and induced the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on endothelial cells. Antibody blocking studies demonstrated that the vascular adhesion molecules ICAM-1, VCAM-1 and E-selectin and the leucocyte integrin LFA-1 all contributed to lymphocyte binding to endothelium activated by IL-6. It is proposed that IL-6 may be involved in the recruitment of lymphocytes into non-lymphoid tissue. PMID:8697617

  17. IL-6 acts on endothelial cells to preferentially increase their adherence for lymphocytes.

    PubMed

    Watson, C; Whittaker, S; Smith, N; Vora, A J; Dumonde, D C; Brown, K A

    1996-07-01

    Using a quantitative monolayer adhesion assay, the current report shows that treatment of human umbilical vein endothelial cells (HUVEC) with IL-6 increases their adhesiveness for blood lymphocytes, particularly CD4+ cells, but not for polymorphonuclear cells and monocytes. This effect, which was most pronounced when using low concentrations of the cytokine (0.1-1.0 U/ml) and a short incubation period (4h), was also apparent with microvascular endothelial cells and a hybrid endothelial cell line. Skin lesions from patients with mycosis fungoides contain high levels of IL-6, and blood lymphocytes from patients with this disorder also exhibited an enhanced adhesion to IL-6-treated HUVEC. The cytokine enhanced intercellular adhesion molecule-1 (ICAM-1) expression and induced the expression of vascular cell adhesion molecule-1 (VCAM-1) and E-selectin on endothelial cells. Antibody blocking studies demonstrated that the vascular adhesion molecules ICAM-1, VCAM-1 and E-selectin and the leucocyte integrin LFA-1 all contributed to lymphocyte binding to endothelium activated by IL-6. It is proposed that IL-6 may be involved in the recruitment of lymphocytes into non-lymphoid tissue.

  18. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future.

    PubMed

    Kim, Go Woon; Lee, Na Ra; Pi, Ryo Han; Lim, Yee Seul; Lee, Yu Mi; Lee, Jong Min; Jeong, Hye Seung; Chung, Sung Hyun

    2015-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by polyarthritis. Numerous agents with varying mechanisms are used in the treatment of RA, including non-steroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, and some biological agents. Studies to uncover the cause of RA have recently ended up scrutinizing the importance of pro-inflammatory cytokine such as tumor necrosis factor α (TNF-α) and interleukin (IL)-6 in the pathogenesis of RA. TNF-α inhibitors are increasingly used to treat RA patients who are non-responsive to conventional anti-arthritis drugs. Despite its effectiveness in a large patient population, up to two thirds of RA patients are found to be partially responsive to anti-TNF therapy. Therefore, agents targeting IL-6 such as tocilizumab (TCZ) attracted significant attention as a promising agent in RA treatment. In this article, we review the mechanism of anti-IL-6 in the treatment of RA, provide the key efficacy and safety data from clinical trials of approved anti-IL-6, TCZ, as well as six candidate IL-6 blockers including sarilumab, ALX-0061, sirukumab, MEDI5117, clazakizumab, and olokizumab, and their future perspectives in the treatment of RA.

  19. Increased Gustatory Response Score in Obesity and Association Levels with IL-6 and Leptin

    PubMed Central

    Remla, Nesrine; Hadjidj, Zeyneb; Ghezzaz, Kamel; Moulessehoul, Soraya; Aribi, Mourad

    2016-01-01

    Background. The aim of this study was to investigate the relationship between the circulating IL-6 and leptin levels with taste alteration in young obese patients. Methods. A retrospective case-control study was conducted in thirty obese patients and thirty age- and sex-matched healthy controls. Results. Circulating levels of IL-6 and leptin were significantly increased in obese patients than in controls. However, catalase and ORAC levels were significantly decreased in obese patients compared to controls. Additionally, obese participants had high scores for the detection of fats (gustatory response scores [GRS]; p < 0.001). Moreover, IL-6 and leptin were strongly associated with GRS alteration among patients with GRS 4 (resp., OR =17.5 [95% CI, 1.56–193.32; p = 0.007]; OR = 16 [95% CI, 1.69–151.11; p = 0.006]). For the Mantel-Haenszel common odds ratio estimate (MH OR), IL-6 and leptin were strongly associated with obesity, in patients with either GRS 4 or GRS > 4 (resp., MH OR = 8.77 [95% CI, 2.06–37.44; p = 0.003]; MH OR = 5.76 [95% CI, 1.64–20.24; p = 0.006]). Conclusions. In a low grade inflammation linked to obesity, taste alteration is associated with high levels of IL-6 and leptin. PMID:27413547

  20. β2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis

    PubMed Central

    Chiarella, Sergio E.; Soberanes, Saul; Urich, Daniela; Morales-Nebreda, Luisa; Nigdelioglu, Recep; Green, David; Young, James B.; Gonzalez, Angel; Rosario, Carmen; Misharin, Alexander V.; Ghio, Andrew J.; Wunderink, Richard G.; Donnelly, Helen K.; Radigan, Kathryn A.; Perlman, Harris; Chandel, Navdeep S.; Budinger, G.R. Scott; Mutlu, Gökhan M.

    2014-01-01

    Acute exposure to particulate matter (PM) air pollution causes thrombotic cardiovascular events, leading to increased mortality rates; however, the link between PM and cardiovascular dysfunction is not completely understood. We have previously shown that the release of IL-6 from alveolar macrophages is required for a prothrombotic state and acceleration of thrombosis following exposure to PM. Here, we determined that PM exposure results in the systemic release of catecholamines, which engage the β2-adrenergic receptor (β2AR) on murine alveolar macrophages and augment the release of IL-6. In mice, β2AR signaling promoted the development of a prothrombotic state that was sufficient to accelerate arterial thrombosis. In primary human alveolar macrophages, administration of a β2AR agonist augmented IL-6 release, while the addition of a beta blocker inhibited PM-induced IL-6 release. Genetic loss or pharmacologic inhibition of the β2AR on murine alveolar macrophages attenuated PM-induced IL-6 release and prothrombotic state. Furthermore, exogenous β2AR agonist therapy further augmented these responses in alveolar macrophages through generation of mitochondrial ROS and subsequent increase of adenylyl cyclase activity. Together, these results link the activation of the sympathetic nervous system by β2AR signaling with metabolism, lung inflammation, and an enhanced susceptibility to thrombotic cardiovascular events. PMID:24865431

  1. Hydrogen Sulfide Attenuates Inflammatory Hepcidin by Reducing IL-6 Secretion and Promoting SIRT1-Mediated STAT3 Deacetylation

    PubMed Central

    Xin, Hong; Wang, Minjun; Tang, Wenbo; Shen, Zhuqing; Miao, Lei; Wu, Weijun; Li, Chengyi; Wang, Xiling; Xin, Xiaoming

    2016-01-01

    Abstract Aims: Anemia of inflammation is quite prevalent in hospitalized patients with poor prognosis. Concerns about the effectiveness and safety of iron supplementation have arisen, driving the demand for alternative therapies. Induction of hepatic hepcidin, the master hormone of iron homeostasis, causes anemia under inflammatory conditions. Previous studies indicated that hydrogen sulfide (H2S), the third gasotransmitter and a well-known regulator of inflammation, may inhibit the secretion of inflammatory cytokines. We thus investigated the effect of H2S on inflammatory hepcidin induction. Results: H2S suppressed lipopolysaccharide (LPS)-induced hepcidin production and regulated iron homeostasis in mice by decreasing serum interleukin-6 (IL-6) and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) activation; similar results were obtained in Huh7 cells exposed to conditioned medium from LPS-challenged THP-1 macrophages. Intriguingly, we found H2S also attenuated hepcidin levels in Huh7 cells and mouse primary hepatocytes in a sirtuin 1 (SIRT1)-dependent manner. By promoting SIRT1 expression and stabilizing SIRT1-STAT3 interactions, H2S ameliorated IL-6-induced STAT3 acetylation, resulting in reduced hepcidin production. Inhibition and silencing of SIRT1 diminished H2S-mediated suppression of hepcidin, as opposed to SIRT1 activation and overexpression. Consistent results were observed in vivo. Furthermore, knockout of cystathionine γ-lyase (CSE), an endogenous H2S synthase, exaggerated inflammatory hepcidin expression in mice. Innovation: For the first time, we elucidated the effects and possible mechanisms of H2S on inflammatory hepcidin and established a novel regulatory link between SIRT1 and hepcidin. Conclusion: Our work demonstrates that H2S attenuates inflammation-induced hepatic hepcidin via multipathways and suggests new treatment strategies for anemia of inflammation. Antioxid. Redox Signal. 24, 70–83. PMID:26154696

  2. Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130.

    PubMed Central

    Gearing, D P; Thut, C J; VandeBos, T; Gimpel, S D; Delaney, P B; King, J; Price, V; Cosman, D; Beckmann, M P

    1991-01-01

    Leukemia inhibitory factor (LIF) is a cytokine with a broad range of activities that in many cases parallel those of interleukin-6 (IL-6) although LIF and IL-6 appear to be structurally unrelated. A cDNA clone encoding the human LIF receptor was isolated by expression screening of a human placental cDNA library. The LIF receptor is related to the gp130 'signal-transducing' component of the IL-6 receptor and to the G-CSF receptor, with the transmembrane and cytoplasmic regions of the LIF receptor and gp130 being most closely related. This relationship suggests a common signal transduction pathway for the two receptors and may help to explain similar biological effects of the two ligands. Murine cDNAs encoding soluble LIF receptors were isolated by cross-hybridization and share 70% amino acid sequence identity to the human sequence. Images PMID:1915266

  3. IL-6 trans-signaling system in intra-amniotic inflammation, preterm birth, and preterm premature rupture of the membranes.

    PubMed

    Lee, Sarah Y; Buhimschi, Irina A; Dulay, Antonette T; Ali, Unzila A; Zhao, Guomao; Abdel-Razeq, Sonya S; Bahtiyar, Mert O; Thung, Stephen F; Funai, Edmund F; Buhimschi, Catalin S

    2011-03-01

    Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.

  4. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training.

  5. Low T3 syndrome in canine babesiosis associated with increased serum IL-6 concentration and azotaemia.

    PubMed

    Zygner, Wojciech; Gójska-Zygner, Olga; Bąska, Piotr; Długosz, Ewa

    2015-06-30

    Low triiodothyronine (T3) syndrome, also named euthyroid sick syndrome or non-thyroidal illness syndrome, has been recognized in canine babesiosis caused by Babesia rossi, where it manifested by lowering of the serum thyrotropin (TSH), total thyroxin (TT4) and free thyroxin (FT4) concentrations. This syndrome has also been observed in critical diseases in humans and animals, and the severity of the disease is considered an important factor in lowering of thyroid hormone concentrations. Interleukin-6 (IL-6) plays a role in the development of low T3 syndrome by causing a decrease in deiodinases 1 and 2 activity and increased activity of deiodinase 3, enzymes involved in the conversion of thyroxin (T4) to T3. The purpose of this study was to compare the concentrations of serum thyroid hormones and TSH between healthy dogs and dogs with babesiosis, and to determine correlations between serum IL-6 concentration and serum total T3 (TT3), TT4, FT4, and TSH concentrations, and the level of azotaemia in dogs with babesiosis. The concentrations of IL-6, TT3, TT4, FT4, TSH, urea and creatinine were determined in 13 dogs with canine babesiosis caused by Babesia canis and in 10 healthy dogs. The results of this study showed decreases in TT3, TT4, FT4, and TSH and increases in IL-6, urea and creatinine concentrations in affected dogs in comparison to healthy dogs. The concentration of IL-6 was negatively correlated with TT3 and TSH concentrations and the TT3 concentration was negatively correlated with serum urea and creatinine concentrations. This study showed low T3 syndrome in canine babesiosis, which was confirmed by the determination of the T3 concentration, and demonstrates that in canine babesiosis the T3 concentration is associated with IL-6 concentration. PMID:25976636

  6. Diesel Exhaust Particles Upregulate Interleukins IL-6 and IL-8 in Nasal Fibroblasts

    PubMed Central

    Park, Il-Ho; Shin, Jae-Min; Lee, Seoung-Ae; Lee, Heung-Man

    2016-01-01

    Background Diesel exhaust particles (DEP) are a major source of air pollution. Nasal fibroblasts are known to produce various cytokines and chemokines. The aim of this study was to evaluate DEP-induced cytokines and chemokines in nasal fibroblasts and to identify the signaling pathway involved. Methods A cytokine and chemokine array performed after stimulation of nasal fibroblasts with DEP revealed that levels of IL-6 and IL-8 were increased most significantly among various cytokines and chemokines. RT—PCR and ELISA were used to determine the mRNA and protein expression levels of IL-6 and IL-8. Signaling pathways of p-38, Akt, and NF-κB were analyzed by western blotting, luciferase assay, and ELISA. Organ cultures of nasal interior turbinate were also developed to demonstrate the ex vivo effect of DEP on the expression of IL-6 and IL-8 and the associated signaling pathway. Results DEP increased the expressions of IL-6 and IL-8 in nasal fibroblasts at mRNA and protein levels. DEP induced phosphorylation of p38, Akt, and NF-κB, whereas inhibitors of p38, Akt, and NF-κB blocked these phophorylations and the expressions of IL-6 and IL-8. These findings were also observed in ex vivo organ culture of nasal inferior turbinate. Conclusions DEP induces expression of IL-6 and IL-8 via p38, Akt, and NF-κB signaling pathways in nasal fibroblasts. This finding suggests that air pollution might induce or aggravate allergic rhinitis or chronic rhinosinusitis. PMID:27295300

  7. IL-6 and IL-8 enhance factor H binding to the cell membranes

    PubMed Central

    POPEK, SYLWIA; KAPKA-SKRZYPCZAK, LUCYNA; SAWICKI, KRZYSZTOF; WOLIŃSKA, EWA; SKRZYPCZAK, MACIEJ; CZAJKA, MAGDALENA

    2016-01-01

    The aim of the present study was to assess the role of interleukin (IL)-6 and IL-8 on the expression of fluid-phase complement inhibitor, factor H (FH), and FH-like protein 1 (FHL-1), in the A2780 ovarian carcinoma cell line. This cell line does not normally produce IL-6, however, is IL-6 responsive due to the presence of receptor for IL-6. The presence of FH and FHL-1 in the cell lysates was confirmed by western blotting. The levels of FH and FHL-1 in the medium were determined by enzyme-linked immunosorbent assay. To evaluate gene expression, reverse transcription-quantitative polymerase chain reaction was performed. The cellular localization of FH and FHL-1 in ovarian cancer cells was assessed by immunofluorescence. The present study revealed that FH, contrary to FHL-1, was secreted by ovarian cancer cells, however, this process was independent of IL stimulation. No significant differences were observed in the concentration of FH in the control cells, when compared with the samples treated with IL-6/IL-8. The results of western blotting revealed that the protein expression levels of FH and FHL-1 were not regulated by IL-6 and IL-8 in a dose-dependent manner. Immunofluorescence analysis confirmed that the A2780 ovarian cancer cell line expressed both membrane bound and intracellular forms of FH and FHL-1. The present data revealed that the A2780 cells expressed and secreted FH protein and are also able to bind FH and FHL-1. This may influence the efficiency of complement mediated immunotherapy. PMID:27035765

  8. CDX2 can be regulated through the signalling pathways activated by IL-6 in gastric cells.

    PubMed

    Cobler, Lara; Pera, Manuel; Garrido, Marta; Iglesias, Mar; de Bolós, Carme

    2014-09-01

    The inflammatory infiltrate of the gastric mucosa associated with Helicobacter pylori infection increases the presence of the pro-inflammatory cytokine IL-6 that activates both the SHP-2/ERK/MAPK and the JAK/STAT signalling pathways. Furthermore, the ectopic expression of CDX2 is detected in pre-neoplasic lesions associated with decreased levels of SOX2, and we found that in gastric adenocarcinomas their expression is inversely correlated. To determine the role of IL-6 in the regulation of CDX2, MKN45 that constitutively expresses p-STAT3, and NUGC-4 gastric cancer cell lines were treated with IL-6, which induced the CDX2 up-regulation and SOX2 down-regulation. ChIP assays determined that in IL-6-treated cells, c-JUN and p-STAT3 bound to CDX2 promoter in MKN45 cells whereas in NUGC-4 cells, p-STAT3 binds to and c-JUN releases from the CDX2 promoter. Specific inhibition of STAT3 and ERK1/2 phosphorylation through AG490 and U0126, respectively, and STAT3 down-regulation using shRNA verified that the SHP-2/ERK/MAPK pathway regulates the expression of CDX2 in basal conditions, and the CDX2 up-regulation by IL-6 is through the JAK/STAT pathway in NUGC-4 cells whereas in MKN45 cells both pathways contribute to the CDX2 up-regulation. In conclusion, the signalling pathways activated by IL-6 have a crucial role in the regulation of CDX2 that is a key factor in the process of gastric carcinogenesis, suggesting that the inflammatory infiltrate in the gastric mucosa is relevant in this process and a potential target for new therapeutic approaches. PMID:24953186

  9. Low T3 syndrome in canine babesiosis associated with increased serum IL-6 concentration and azotaemia.

    PubMed

    Zygner, Wojciech; Gójska-Zygner, Olga; Bąska, Piotr; Długosz, Ewa

    2015-06-30

    Low triiodothyronine (T3) syndrome, also named euthyroid sick syndrome or non-thyroidal illness syndrome, has been recognized in canine babesiosis caused by Babesia rossi, where it manifested by lowering of the serum thyrotropin (TSH), total thyroxin (TT4) and free thyroxin (FT4) concentrations. This syndrome has also been observed in critical diseases in humans and animals, and the severity of the disease is considered an important factor in lowering of thyroid hormone concentrations. Interleukin-6 (IL-6) plays a role in the development of low T3 syndrome by causing a decrease in deiodinases 1 and 2 activity and increased activity of deiodinase 3, enzymes involved in the conversion of thyroxin (T4) to T3. The purpose of this study was to compare the concentrations of serum thyroid hormones and TSH between healthy dogs and dogs with babesiosis, and to determine correlations between serum IL-6 concentration and serum total T3 (TT3), TT4, FT4, and TSH concentrations, and the level of azotaemia in dogs with babesiosis. The concentrations of IL-6, TT3, TT4, FT4, TSH, urea and creatinine were determined in 13 dogs with canine babesiosis caused by Babesia canis and in 10 healthy dogs. The results of this study showed decreases in TT3, TT4, FT4, and TSH and increases in IL-6, urea and creatinine concentrations in affected dogs in comparison to healthy dogs. The concentration of IL-6 was negatively correlated with TT3 and TSH concentrations and the TT3 concentration was negatively correlated with serum urea and creatinine concentrations. This study showed low T3 syndrome in canine babesiosis, which was confirmed by the determination of the T3 concentration, and demonstrates that in canine babesiosis the T3 concentration is associated with IL-6 concentration.

  10. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6

    PubMed Central

    Gu, Yan; Li, Xia; Zhao, Dezhi; Liu, Yiqi; Wang, Chunmei; Zhang, Xiang; Su, Xiaoping; Liu, Juan; Ge, Wei; Levine, Ross L.; Li, Nan; Cao, Xuetao

    2015-01-01

    Epigenetic modifiers have fundamental roles in defining unique cellular identity through the establishment and maintenance of lineage-specific chromatin and methylation status1. Several DNA modifications such as 5-hydroxymethylcytosine (5hmC) are catalysed by the ten eleven translocation (Tet) methylcytosine dioxygenase family members2, and the roles of Tet proteins in regulating chromatin architecture and gene transcription independently of DNA methylation have been gradually uncovered3. However, the regulation of immunity and inflammation by Tet proteins independent of their role in modulating DNA methylation remains largely unknown. Here we show that Tet2 selectively mediates active repression of interleukin-6 (IL-6) transcription during inflammation resolution in innate myeloid cells, including dendritic cells and macrophages. Loss of Tet2 resulted in the upregulation of several inflammatory mediators, including IL-6, at late phase during the response to lipopolysaccharide challenge. Tet2-deficient mice were more susceptible to endotoxin shock and dextran-sulfate-sodium-induced colitis, displaying a more severe inflammatory phenotype and increased IL-6 production compared to wild-type mice. IκBζ, an IL-6-specific transcription factor, mediated specific targeting of Tet2 to the Il6 promoter, further indicating opposite regulatory roles of IκBζ at initial and resolution phases of inflammation. For the repression mechanism, independent of DNA methylation and hydroxymethylation, Tet2 recruited Hdac2 and repressed transcription of Il6 via histone deacetylation. We provide mechanistic evidence for the gene-specific transcription repression activity of Tet2 via histone deacetylation and for the prevention of constant transcription activation at the chromatin level for resolving inflammation. PMID:26287468

  11. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. Methods This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. Results A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). Conclusions High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control. PMID:22494810

  12. Exercise sensitizes skeletal muscle to extracellular ATP for IL-6 expression in mice.

    PubMed

    Fernández-Verdejo, R; Casas, M; Galgani, J E; Jaimovich, E; Buvinic, S

    2014-04-01

    Active skeletal muscle synthesizes and releases interleukin-6 (IL-6), which plays important roles in the organism's adaptation to exercise. Autocrine/paracrine ATP signaling has been shown to modulate IL-6 expression. The aim of this study was to determine whether a period of physical activity modifies the ATP-induced IL-6 expression. BalbC mice were either subject to 5 weeks voluntary wheel running (VA) or kept sedentary (SED). Flexor digitorum brevis muscles were dissected, stimulated with different ATP concentrations (0-100 μM) and IL-6 mRNA levels were measured using qPCR. ATP evoked a concentration-dependent rise in IL-6 mRNA in both SED and VA mice. VA mice however, had significantly higher ATP sensitivity (pD2 pharmacological values: VA=5.58±0.02 vs. SED=4.95±0.04, p<0.05). Interestingly, in VA mice we observed a positive correlation between the level of physical activity and the IL-6 mRNA increase following fiber stimulation with 10 μM ATP. In addition, there were lower P2Y2- and higher P2Y14-receptor mRNA levels in skeletal muscles of VA compared to SED mice, showing plasticity of nucleotide receptors with exercise. These results suggest that exercise increases skeletal muscle ATP sensitivity, a response dependent on the level of physical activity performed. This could have an important role in the mechanisms controlling skeletal muscle adaptation to exercise and training. PMID:24022572

  13. [Study of the dynamics of endogenous IL-6 in the culture erythroblastic islands].

    PubMed

    Sheviakov, S A; Zakharov, Iu M

    2014-08-01

    It is found that in the process of cultivating the erythroblastic islets (EI) of rat bone marrow, the concentration of interleukin-6 (IL-6) increases in the culture medium. Stimulating erythropoiesis was observed on the 48th hour in cultures, the stimulation was characterized by the growth of endogenous erythropoietin and activation of formation of EI de novo and de repeto. The continuing increase in the concentration of IL-6 in the cultures at the 72nd hour of the experiment was accompanied by a decrease formation of islands de novo and a decrease in the absolute number of EI in culture.

  14. An IL6-correlated signature in serous epithelial ovarian cancer associates with growth factor response

    PubMed Central

    2013-01-01

    Background Epithelial ovarian cancer (EOC) is one of the most lethal gynecological cancers; the majority of EOC is the serous histotype and diagnosed at advanced stage. IL6 is the cytokine that has been found most frequently associated with carcinogenesis and progression of serous EOCs. IL6 is a growth-promoting and anti-apoptotic factor, and high plasma levels of IL6 in advanced stage EOCs correlate with poor prognosis. The objective of the present study was to identify IL6 co-regulated genes and gene network/s in EOCs. Results We applied bioinformatics tools on 7 publicly available data sets containing the gene expression profiles of 1262 EOC samples. By Pearson's correlation analysis we identified, in EOCs, an IL6-correlated gene signature containing 40 genes mainly associated with proliferation. 33 of 40 genes were also significantly correlated in low malignant potential (LMP) EOCs, while 7 genes, named C5AR1, FPR1, G0S2, IL8, KLF2, MMP19, and THBD were IL6-correlated only in advanced stage EOCs. Among the 40-gene signature EGFR ligand HBEGF, genes of the EGR family members and genes encoding for negative feedback regulators of growth factor signaling were included. The results obtained by Gene Set Enrichment and Ingenuity Pathway Analyses enabled the identification, respectively, of gene sets associated with ‘early growth factor response’ for the 40-gene signature, and a biological network related to ‘thrombosis and cardiovascular disease’ for the 7-gene signature. In agreement with these results, selected genes from the identified signatures were validated in vitro by real time RT-PCR in serous EOC cell lines upon stimulation with EGF. Conclusions Serous EOCs, independently of their aggressiveness, co-regulate IL6 expression together with that of genes associated to growth factor signaling, arguing for the hypothesis that common mechanism/s driven by EGFR ligands characterize both advanced-stage and LMP EOCs. Only advanced-stage EOCs appeared to be

  15. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    PubMed Central

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.; Picchi, Maria A.; Chen, Wenshu; Willis, Derall G.; Carr, Teara G.; Krzeminski, Jacek; Desai, Dhimant; Shantu, Amin; Lin, Yong; Jacobson, Marty R.; Belinsky, Steven A.

    2015-01-01

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed using data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. The associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion. Citation: Leng S, Thomas CL, Snider AM, Picchi MA, Chen W, Willis DG, Carr TG, Krzeminski J, Desai D, Shantu A, Lin Y, Jacobson MR, Belinsky SA. 2016. Radon exposure, IL-6 promoter variants, and lung squamous

  16. Simultaneous immunoassay analysis of plasma IL-6 and TNF-α on a microchip.

    PubMed

    Abe, Kaori; Hashimoto, Yoshiko; Yatsushiro, Shouki; Yamamura, Shohei; Bando, Mika; Hiroshima, Yuka; Kido, Jun-ichi; Tanaka, Masato; Shinohara, Yasuo; Ooie, Toshihiko; Baba, Yoshinobu; Kataoka, Masatoshi

    2013-01-01

    Sandwich enzyme-linked immunosorbant assay (ELISA) using a 96-well plate is frequently employed for clinical diagnosis, but is time-and sample-consuming. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. The microchip was made of cyclic olefin copolymer with 4 straight microchannels. For the construction of the sandwich ELISA for interleukin-6 (IL-6) or tumor necrosis factor-α (TNF-α), we used a piezoelectric inkjet printing system for the deposition and fixation of the 1st anti-IL-6 antibody or 1st anti-TNF-α antibody on the surface of the each microchannel. After the infusion of 2 µl of sample to the microchannel and a 20 min incubation, 2 µl of biotinylated 2nd antibody for either antigen was infused and a 10 min incubation. Then 2 µl of avidin-horseradish peroxidase was infused; and after a 5 min incubation, the substrate for peroxidase was infused, and the luminescence intensity was measured. Calibration curves were obtained between the concentration and luminescence intensity over the range of 0 to 32 pg/ml (IL-6: R(2) = 0.9994, TNF-α: R(2) = 0.9977), and the detection limit for each protein was 0.28 pg/ml and 0.46 pg/ml, respectively. Blood IL-6 and TNF-α concentrations of 5 subjects estimated from the microchip data were compared with results obtained by the conventional method, good correlations were observed between the methods according to linear regression analysis (IL-6: R(2) = 0.9954, TNF-α: R(2) = 0.9928). The reproducibility of the presented assay for the determination of the blood IL-6 and TNF-α concentration was comparable to that obtained with the 96-well plate. Simultaneous detection of blood IL-6 and TNF-α was possible by the deposition and fixation of each 1st antibody on the surface of a separate microchannel. This assay enabled us to determine simultaneously blood IL-6 and TNF-α with accuracy, satisfactory sensitivity, time saving ability, and low consumption of sample and reagents, and

  17. The Blockade of IL6 Counterparts the Osmolar Stress-Induced Apoptosis in Human Conjunctival Epithelial Cells

    PubMed Central

    Ju, Hee-Jung; Byun, Yong-Soo; Mok, Jee-Won

    2016-01-01

    To determine the effect of hyperosmolarity on cell survival/apoptosis of conjunctival epithelial cells and evaluate the possible role of IL6, Wong-Kilbourne derivative of Chang conjunctival cell line (WKD) was used in this study. Confluent cells were incubated under different osmolarity (290 mOsm and 500 mOsm) with or without neutralizing IL6 antibody (50 ng/mL). The expression of IL6 level was measured in the supernatant of each conditioned medium. Cell viability/apoptosis assay was performed using Annexin V/Propidium Iodide (PI) and Cell Counting Kit-8 (CCK-8). Western blot was conducted to measure the abundance of apoptotic markers and IL6 related downstream signaling pathway. The concentration of IL6 showed time-dependent increase in cells treated with 500 mOsm. Although apoptosis of WKD cell is increased in treated 500 mOsm for 24 h, apoptosis reduced in WKD cell treated 500 mOsm with anti-IL6 for 24 h. Anti-IL6 inhibited the activation of JAK-STAT signaling pathway, which was induced by hyperosmolarity. Hyperosmolar condition induced apoptosis in conjunctival epithelial cells, along with increase of IL6 production. IL6 neutralizing antibody inhibited apoptosis and JAK-STAT signaling in hyperosmolar condition. These findings suggested that IL6 may be involved in apoptotic change and in hyperosmolarity. PMID:27555966

  18. Evaluation of anti-IL-6 monoclonal antibody therapy using murine type II collagen-induced arthritis

    PubMed Central

    Liang, Bailin; Song, Zheng; Wu, Bin; Gardner, Debra; Shealy, David; Song, Xiao-Yu; Wooley, Paul H

    2009-01-01

    Interleukin-6 is a multifunctional cytokine that is critical for T/B-cell differentiation and maturation, immunoglobulin secretion, acute-phase protein production, and macrophage/monocyte functions. Extensive research into the biology of IL-6 has implicated IL-6 in the pathophysiology and pathogenesis of RA. An anti-murine IL-6 mAb that neutralizes mouse IL-6 activities was tested in animal model of collagen-induced arthritis. Prophylactic treatment with anti-IL-6 mAb significantly reduced the incidence and severity of arthritis compared to control mAb treated mice. The mitogenic response of B and T cells isolated from the lymph nodes of anti-IL-6 treated mice was significantly reduced compared to cells isolated from control mAb treated mice. The overall histopathology score for paws from the anti-IL-6 treated mice was significantly reduced when compared to paws from mice treated with control mAb, including both inflammatory (synovitis and pannus) and erosive (erosions and architecture) parameters. Reduced loss of cartilage matrix components was also observed in the anti-IL-6 treated mice. Collectively, these data suggest that IL-6 plays a major role in the pathophysiology of rheumatoid arthritis, and thus support the potential benefit of anti-IL-6 mAb treatment in rheumatoid arthritis patients. PMID:19368720

  19. Principles of interleukin (IL)-6-type cytokine signalling and its regulation.

    PubMed Central

    Heinrich, Peter C; Behrmann, Iris; Haan, Serge; Hermanns, Heike M; Müller-Newen, Gerhard; Schaper, Fred

    2003-01-01

    The IL (interleukin)-6-type cytokines IL-6, IL-11, LIF (leukaemia inhibitory factor), OSM (oncostatin M), ciliary neurotrophic factor, cardiotrophin-1 and cardiotrophin-like cytokine are an important family of mediators involved in the regulation of the acute-phase response to injury and infection. Besides their functions in inflammation and the immune response, these cytokines play also a crucial role in haematopoiesis, liver and neuronal regeneration, embryonal development and fertility. Dysregulation of IL-6-type cytokine signalling contributes to the onset and maintenance of several diseases, such as rheumatoid arthritis, inflammatory bowel disease, osteoporosis, multiple sclerosis and various types of cancer (e.g. multiple myeloma and prostate cancer). IL-6-type cytokines exert their action via the signal transducers gp (glycoprotein) 130, LIF receptor and OSM receptor leading to the activation of the JAK/STAT (Janus kinase/signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) cascades. This review focuses on recent progress in the understanding of the molecular mechanisms of IL-6-type cytokine signal transduction. Emphasis is put on the termination and modulation of the JAK/STAT signalling pathway mediated by tyrosine phosphatases, the SOCS (suppressor of cytokine signalling) feedback inhibitors and PIAS (protein inhibitor of activated STAT) proteins. Also the cross-talk between the JAK/STAT pathway with other signalling cascades is discussed. PMID:12773095

  20. IL6 and IL10 are genetic susceptibility factors of periodontal disease

    PubMed Central

    Scapoli, Luca; Girardi, Ambra; Palmieri, Annalisa; Carinci, Francesco; Testori, Tiziano; Zuffetti, Francesco; Monguzzi, Riccardo; Lauritano, Dorina

    2012-01-01

    Background: Periodontitis is a disease mainly caused by a chronic infection of tissues that support the teeth. Several factors, such as diabetes, smoking and oral care, as well as genetic susceptibility can influence both the risk to develop periodontitis and its progression. The aim of the investigation was to test whether alleles of candidate genes were associated with periodontitis. Materials and Methods: A case control study was performed with a cohort of 184 patients with chronic periodontitis and 231 healthy controls from the Italian population. A total of six single nucleotide polymorphisms from five candidate genes, i.e., IL1A, IL1B, IL6, IL10 and vitamin D receptor, were investigated. Results: Evidence of association were obtained for rs1800795 mapping in IL6 (P value = 0.01) as well as for the rs1800872 mapping in IL10 (P = 0.04). The rarer variant allele lowered the risk to develop periodontitis at IL6 (Odds Ratio [OR] = 0.69 [95% confidence interval {CI} 0.51-0.93]) and increased the risk at IL10 (OR = 1.38 [95% CI 1.01-1.86]). Conclusions: The present investigation indicated that polymorphisms of IL6 and IL10 constitute risk factors for chronic periodontitis, while there was no evidence implicating a specific IL1A or IL1B genotype. PMID:23814583

  1. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative Neoplasms

    PubMed Central

    Čokić, Vladan P.; Mitrović-Ajtić, Olivera; Beleslin-Čokić, Bojana B.; Marković, Dragana; Buač, Marijana; Diklić, Miloš; Kraguljac-Kurtović, Nada; Damjanović, Svetozar; Milenković, Pavle; Gotić, Mirjana; Raj, Puri K.

    2015-01-01

    The recent JAK1/2 inhibitor trial in myeloproliferative neoplasms (MPNs) showed that reducing inflammation can be more beneficial than targeting gene mutants. We evaluated the proinflammatory IL-6 cytokine and JAK-STAT signaling pathway related genes in circulating CD34+ cells of MPNs. Regarding laboratory data, leukocytosis has been observed in polycythemia vera (PV) and JAK2V617F mutation positive versus negative primary myelofibrosis (PMF) patients. Moreover, thrombocytosis was reduced by JAK2V617F allele burden in essential thrombocythemia (ET) and PMF. 261 significantly changed genes have been detected in PV, 82 in ET, and 94 genes in PMF. The following JAK-STAT signaling pathway related genes had augmented expression in CD34+ cells of MPNs: CCND3 and IL23A regardless of JAK2V617F allele burden; CSF3R, IL6ST, and STAT1/2 in ET and PV with JAK2V617F mutation; and AKT2, IFNGR2, PIM1, PTPN11, and STAT3 only in PV. STAT5A gene expression was generally reduced in MPNs. IL-6 cytokine levels were increased in plasma, as well as IL-6 protein levels in bone marrow stroma of MPNs, dependent on JAK2V617F mutation presence in ET and PMF patients. Therefore, the JAK2V617F mutant allele burden participated in inflammation biomarkers induction and related signaling pathways activation in MPNs. PMID:26491227

  2. B cells produce less IL-10, IL-6 and TNF-α in myasthenia gravis.

    PubMed

    Yilmaz, Vuslat; Oflazer, Piraye; Aysal, Fikret; Parman, Yeşim G; Direskeneli, Haner; Deymeer, Feza; Saruhan-Direskeneli, Güher

    2015-06-01

    B cells from myasthenia gravis (MG) patients with autoantibodies (Aab) against acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or with no detectable Aab were investigated as cytokine producing cells in this study. B cells were evaluated for memory phenotypes and expressions of IL-10, IL-6 and IL-12A. Induced productions of IL-10, IL-6, IL-12p40, TNF-α and LT from isolated B cells in vitro were measured by immunoassays. MG patients receiving immunosuppressive treatment had higher proportions of memory B cells compared with healthy controls and untreated patients. With CD40 stimulation MG patients produced significantly lower levels of IL-10, IL-6. With CD40 and B cell receptor stimulation of B cells, TNF-α production also decreased in addition to these cytokines. The lower levels of these cytokine productions were not related to treatment. Our results confirm a disturbance of B cell subpopulations in MG subgroups on immunosuppressive treatment. B cell derived IL-10, IL-6 and TNF-α are down-regulated in MG, irrespective of different antibody productions. Ineffective cytokine production by B cells may be a susceptibility factor in dysregulation of autoimmune Aab production.

  3. IL-6 contributes to an immune tolerance checkpoint in post germinal center B cells.

    PubMed

    Yan, Yi; Wang, Ying-Hua; Diamond, Betty

    2012-02-01

    The generation of a B cell repertoire involves producing and subsequently purging autoreactive B cells. Receptor editing, clonal deletion and anergy are key mechanisms of central B cell tolerance. Somatic mutation of antigen-activated B cells within the germinal center produces a second wave of autoreactivity; but the regulatory mechanisms that operate at this phase of B cell activation are poorly understood. We recently identified a post germinal center tolerance checkpoint, where receptor editing is re-induced to extinguish autoreactivity that is generated by somatic hypermutation. Re-induction of the recombinase genes RAG1 and RAG2 in antigen-activated B cells requires antigen to engage the B cell receptor and IL-7 to signal through the IL-7 receptor. We demonstrate that this process requires IL-6 to upregulate IL-7 receptor expression on post germinal center B cells. Diminishing IL-6 by blocking antibody or haplo-insufficiency leads to reduced expression of the IL-7 receptor and RAG and increased titers of anti-DNA antibodies following immunization with a peptide mimetope of DNA. The dependence on IL-6 to initiate receptor editing is B cell intrinsic. Interestingly, estradiol decreases IL-6 expression thereby increasing the anti-DNA response. Our data reveal a novel regulatory cascade to control post germinal center B cell autoreactivity.

  4. Relationships Among IL-6, TNF-α, Adipokines, Vitamin D and Chronic Periodontitis

    PubMed Central

    TELES, F.R.; TELES, R.P.; MARTIN, L.; SOCRANSKY, S.S.; HAFFAJEE, A.D.

    2013-01-01

    Objectives to explore relationships among serum adipokines, vitamin D, clinical and microbial parameters of chronic periodontitis before and after treatment. Methods weight, height and smoking status were recorded for 56 patients with chronic periodontitis. Plaque, gingivitis, bleeding on probing (BOP), suppuration, pocket depth (PD) and attachment level (AL) were measured at all teeth present. Subgingival biofilm samples from each tooth were analyzed for levels of 40 bacterial species using checkerboard DNA-DNA hybridization. Serum levels of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), adiponectin, leptin, resistin and vitamin D were measured at baseline. Sample collection was then performed in a subset of the population 6 months post-therapy (n=17). Serum samples were analyzed using ELISA and immunoassays. Differences in clinical, microbial and serum factors among groups were sought using the Mann-Whitney test. Correlations among factors were evaluated using regression analysis. Effects of therapy were sought using the Wilcoxon signed ranks test Results There were positive correlations between adiponectin/vitamin D and between IL-6/leptin; negative correlations between IL-6/vitamin D, and leptin/vitamin D, but no associations between serum analytes and clinical or microbial parameters. Gender and BMI were associated with levels of adipokines. Periodontal therapy improved clinical and microbiological parameters, but did not influence the levels of serum analytes. Conclusions Adipokines and IL-6 levels were affected by gender and BMI. Serum analytes were not influenced by periodontal therapy. PMID:22181684

  5. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells.

    PubMed

    Cronin, J G; Kanamarlapudi, V; Thornton, C A; Sheldon, I M

    2016-09-01

    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration. PMID:26813342

  6. Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells

    PubMed Central

    Cronin, J G; Kanamarlapudi, V; Thornton, C A; Sheldon, I M

    2016-01-01

    Interleukin 6 (IL-6), acting via the IL-6 receptor (IL6R) and signal transducer and activator of transcription-3 (STAT3), limits neutrophil recruitment once bacterial infections are resolved. Bovine endometritis is an exemplar mucosal disease, characterized by sustained neutrophil infiltration and elevated IL-6 and IL-8, a neutrophil chemoattractant, following postpartum Gram-negative bacterial infection. The present study examined the impact of the IL6R/STAT3 signaling pathway on IL-8 production by primary endometrial cells in response to short- or long-term exposure to lipopolysaccharide (LPS) from Gram-negative bacteria. Tyrosine phosphorylation of STAT3 is required for DNA binding and expression of specific targets genes. Immunoblotting indicated constitutive tyrosine phosphorylation of STAT3 in endometrial cells was impeded by acute exposure to LPS. After 24 h exposure to LPS, STAT3 returned to a tyrosine phosphorylated state, indicating cross-talk between the Toll-like receptor 4 (TLR4) and the IL6R/STAT3 signaling pathways. This was confirmed by short interfering RNA targeting the IL6R, which abrogated the accumulation of IL-6 and IL-8, induced by LPS. Furthermore, there was a differential endometrial cell response, as the accumulation of IL-6 and IL-8 was dependent on STAT3, suppressor of cytokine signaling 3, and Src kinase signaling in stromal cells, but not epithelial cells. In conclusion, positive feedback through the IL6R amplifies LPS-induced IL-6 and IL-8 production in the endometrium. These findings provide a mechanistic insight into how elevated IL-6 concentrations in the postpartum endometrium during bacterial infection leads to marked and sustained neutrophil infiltration. PMID:26813342

  7. Exercise promotes IL-6 release from legs in older men with minor response to unilateral immobilization.

    PubMed

    Reihmane, Dace; Gram, Martin; Vigelsø, Andreas; Wulff Helge, Jørn; Dela, Flemming

    2016-11-01

    Physical inactivity is a major contributor to low-grade systemic inflammation. Most of the studies characterizing interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) release from exercising legs have been done in young, healthy men, but studies on inactivity in older people are lacking. The impact of 14 days of one-leg immobilization (IM) on IL-6 and TNF-α release during exercise in comparison to the contralateral control (CON) leg was investigated. Fifteen healthy men (age 68.1 ± 1.1 year (mean ± SEM); BMI 27.0 ± 0.4 kg·m(2); VO2max 33.3 ± 1.6 ml·kg(‒1)·min(‒1)) performed 45 min of two-leg dynamic knee extensor exercise at 19.5 ± 0.9 W. Arterial and femoral venous blood samples from the CON and the IM legs were collected every 15 min during exercise, and thigh blood flow was measured with ultrasound Doppler. Arterial plasma IL-6 concentration increased with exercise (rest vs. 45 min, main effect p < .05). IL-6 release increased with exercise (rest vs. 30 min, main effect p < .05). Furthermore, IL-6 release was borderline (main effect, p = .085, effect size 0.28) higher in the IM leg compared to the CON leg (288 (95% CI: 213-373) vs. 220 (95% CI: 152-299) pg·min(‒1), respectively). There was no release of TNF-α in either leg and arterial concentrations remained unchanged during exercise (p > .05). In conclusion, exercise induces more pronounced IL-6 secretion in healthy older men. Two weeks of unilateral immobilization on the other hand had only a minor influence on IL-6 release. Neither immobilization nor exercise had an effect on TNF-α release across the working legs in older men. PMID:27686402

  8. Evaluation of IL-6, CRP and hs-CRP as Early Markers of Neonatal Sepsis

    PubMed Central

    Ganesan, Purushothaman; Sattar, Shameem Banu Abdul; Shankar, Shenbaga Lalitha

    2016-01-01

    Introduction Bacterial sepsis is a life threatening crisis with high mortality and morbidity in neonates. Due to non-specific clinical presentation, diagnosis of sepsis is still a challenge. It can be diagnosed by blood culture but it is time consuming. So, a reliable marker is needed for the diagnosis of neonatal sepsis so that early treatment can be initiated. Various cytokines, chemokines, acute phase reactants, cell surface markers and interferons have been evaluated to find out the effective marker for early diagnosis of neonatal sepsis. In this study, levels of IL-6, CRP and hs-CRP have been analysed which would favour the diagnosis of neonatal sepsis. Aim This study aimed to detect the levels of IL-6, CRP and hs-CRP in clinically suspected cases of neonatal sepsis and to evaluate and analyze the above parameters as the early markers of neonatal sepsis in comparison with blood culture. Materials and Methods Eighty neonates were included in this study of which 40 were clinically suspected cases of neonatal sepsis who met the inclusion criteria and the other 40 were normal healthy neonates that were taken as controls. After obtaining written informed consent from either parent of all neonates, venous blood samples were collected. Blood culture was performed by conventional method. Estimation of serum IL-6 was done by ELISA method and serum CRP and hs-CRP were done by immunofluorescence assay. Results The CRP level >13.49 mg/l showed sensitivity and specificity of 80% and 65.70% respectively. The IL-6 >51.29 pg/ml showed sensitivity of 100% and specificity of 62.86% and hs-CRP showed sensitivity of 90% and specificity of 32.86%. Combination of IL-6 and CRP showed sensitivity and specificity of 100% and 75.71% respectively. Conclusion Our study suggests that IL-6 is a highly sensitive marker and CRP is a more specific marker for the diagnosis of neonatal sepsis. hs-CRP is a less reliable marker. So, the combination of IL-6 and CRP are the better predictors of

  9. The contribution of the functional IL6R polymorphism rs2228145, eQTLs and other genome-wide SNPs to the heritability of plasma sIL-6R levels.

    PubMed

    van Dongen, Jenny; Jansen, Rick; Smit, Dirk; Hottenga, Jouke-Jan; Mbarek, Hamdi; Willemsen, Gonneke; Kluft, Cornelis; Penninx, Brenda W J; Ferreira, Manuel A; Boomsma, Dorret I; de Geus, Eco J C

    2014-07-01

    The non-synonymous SNP rs2228145 in the IL6R gene on chromosome 1q21.3 is associated with a wide range of common diseases, including asthma, rheumatoid arthritis, type 1 diabetes and coronary heart disease. We examined the contribution of this functional IL6R gene polymorphism rs2228145 versus other genome-wide SNPs to the variance of sIL-6R levels in blood plasma in a large population-based sample (N ~5,000), and conducted an expression QTL analysis to identify SNPs associated with IL6R gene expression. Based on data from 2,360 twin families, the broad heritability of sIL-6R was estimated at 72 and 51% of the total variance was explained by the functional SNP rs2228145. Converging findings from GWAS, linkage, and GCTA analyses indicate that additional variance of sIL-6R levels can be explained by other variants in the IL6R region, including variants at the 3'-end of IL6R tagged by rs60760897 that are associated with IL6R RNA expression.

  10. The contribution of the functional IL6R polymorphism rs2228145, eQTLs and other genome-wide SNPs to the heritability of plasma sIL-6R levels

    PubMed Central

    van Dongen, Jenny; Jansen, Rick; Smit, Dirk; Hottenga, Jouke-Jan; Mbarek, Hamdi; Willemsen, Gonneke; Kluft, Cornelis; Penninx, Brenda W.J.; Ferreira, Manuel A.; Boomsma, Dorret I.; de Geus, Eco J. C.

    2014-01-01

    The non-synonymous SNP rs2228145 in the IL6R gene on chromosome 1q21.3 is associated with a wide range of common diseases, including asthma, rheumatoid arthritis, type 1 diabetes and coronary heart disease. We examined the contribution of this functional IL6R gene polymorphism rs2228145 versus other genome-wide SNPs to the variance of sIL-6R levels in blood plasma in a large population-based sample (N∼5000), and conducted an expression QTL (eQTL) analysis to identify SNPs associated with IL6R gene expression. Based on data from 2360 twin families, the broad heritability of sIL-6R was estimated at 72%, and 51% of the total variance was explained by the functional SNP rs2228145. Converging findings from GWAS, linkage, and GCTA analyses indicate that additional variance of sIL-6R levels can be explained by other variants in the IL6R region, including variants at the 3′end of IL6R tagged by rs60760897 that are associated with IL6R RNA expression. PMID:24791950

  11. Effects of Flurbiprofen on CRP, TNF-α, IL-6, and Postoperative Pain of Thoracotomy

    PubMed Central

    Esme, Hidir; Kesli, Recep; Apiliogullari, Burhan; Duran, Ferdane Melike; Yoldas, Banu

    2011-01-01

    Objective: The aims of this study were to evaluate serum levels of acute phase reactants, such as CRP and cytokines (TNF-α and IL-6) in patients who have undergone thoracotomy and to investigate the effects of flurbiprofen on postoperative inflammatory response. Methods: Forty patients undergoing posterolateral thoracotomy were randomly divided into 2 groups of 20 each. Control group received tramadol (4 x 100 mg) intravenously for four days, and flurbiprofen group received both tramadol (4 x 100 mg) and flurbiprofen (2 x 100 mg). Blood samples were collected before surgery and at the 3th and 168th hours after surgical procedure to measure serum CRP, IL-6, and TNF-α. Pain visual analog scales were recorded daily during the first four postoperative days. Spirometric measurement of forced expiratory volume in the first second (FEV 1) was done before and four days after the operation. Results: The serum CRP, IL-6, and TNF-α levels in both groups increased significantly at 3th hour after thoracotomy. Serum TNF-α levels did not differ significantly between the groups at postoperative 4th day. However, IL-6 and CRP were significantly lower in flurbiprofen group than in control group at the same day (p<0.05). Visual analog scale was significantly lower in flurbiprofen group at 6th, 12th, 48th, 72th, and 96th hours postoperatively (p<0.05). The patients receiving flurbiprofen had higher FEV 1 values when compared with control group at postoperative 4th day. Conclusions: Patients undergoing thoracotomy showed reduced postoperative pain, mean additional analgesic consumption, and serum IL-6 and CRP levels, when flurbiprofen was added to systemic analgesic therapy. Analgesia with anti-inflammatory drug may contribute to the attenuation of the postoperative inflammatory response and prevent postoperative pain in patients undergoing thoracotomy. PMID:21448308

  12. Restoration of lung surfactant protein D by IL-6 protects against secondary pneumonia following hemorrhagic shock

    PubMed Central

    Thacker, Stephen; Moran, Ana; Lionakis, Mihalis; Mastrangelo, Mary-Ann A.; Halder, Tripti; Huby, Maria del Pilar; Wu, Yong; Tweardy, David J.

    2015-01-01

    Summary Objectives To identify novel approaches to improve innate immunity in the lung following trauma complicated by hemorrhagic shock (T/HS) for prevention of nosocomial pneumonia. Methods We developed a rat model of T/HS followed by Pseudomonas aeruginosa (PA) pneumonia to assess the effect of alveolar epithelial cell (AEC) apoptosis, and its prevention by IL-6, on lung surfactant protein (SP)-D protein levels, lung bacterial burden, and survival from PA pneumonia, as well as to determine whether AEC apoptosis is a consequence of the unfolded protein response (UPR). Lung UPR transcriptome analysis was performed on rats subjected to sham, T/HS, and T/HS plus IL-6 protocols. Group comparisons were performed via Kaplan–Meier or ANOVA. Results T/HS decreased lung SP-D by 1.8-fold (p < 0.05), increased PA bacterial burden 9-fold (p < 0.05), and increased PA pneumonia mortality by 80% (p < 0.001). IL-6, when provided at resuscitation, normalized SP-D levels (p < 0.05), decreased PA bacterial burden by 4.8-fold (p < 0.05), and prevented all mortality from PA pneumonia (p < 0.001). The UPR transcriptome was significantly impacted by T/HS; IL-6 treatment normalized the T/HS-induced UPR transcriptome changes (p < 0.05). Conclusions Impaired innate lung defense occurs following T/HS and is mediated, in part, by reduction in SP-D protein levels, which, along with AEC apoptosis, may be mediated by the UPR, and prevented by use of IL-6 as a resuscitation adjuvant. PMID:24291043

  13. Cycling Exercise with Electrical Stimulation of Antagonist Muscles Increases Plasma Growth Hormone and IL-6.

    PubMed

    Omoto, Masayuki; Matsuse, Hiroo; Hashida, Ryuki; Takano, Yoshio; Yamada, Shin; Ohshima, Hiroshi; Tagawa, Yoshihiko; Shiba, Naoto

    2015-01-01

    Performing aerobics and resistance exercise at exactly the same time has not been available although combining both types of exercise in one training program has been attempted. The hybrid training system (HTS) is a resistance exercise that combines voluntary concentric muscle contractions with electrically stimulated eccentric muscle contractions. We devised an exercise technique using HTS on a cycle ergometer (HCE). Growth hormone (GH) and lactate are indicators of adequate training intensity. Interleukin-6 (IL-6) reflects enhancing lipid metabolism. The purpose of this study was to show that HCE provides sufficient exercise to stimulate the secretion of GH, lactate and IL-6. We compared an HCE test with cycle ergometer alone (CE). Ten healthy male subjects performed HCE and CE tests for 30 minutes each. The workload of both tests was set the same at 40% of each subject's peak oxygen uptake. For HCE, 2-minute HTS and 1-minute rest intervals were repeated. GH, lactate, and IL-6 were evaluated before and immediately after exercise, and at 15, 30 and 60 minutes. GH and lactate increased immediately after HCE. Moreover, the degree of the increases in GH after HCE (0 and 15 minutes) was higher than that after CE. IL-6 increased after HCE at 30 min, and the rate of change was higher than for CE. These results showed that HCE was more efficient in stimulating acute increases in GH, lactate and IL-6 than CE at the same workload. We may be able to combine electrically stimulated resistance exercise with aerobic exercise using HCE.

  14. Cycling Exercise with Electrical Stimulation of Antagonist Muscles Increases Plasma Growth Hormone and IL-6.

    PubMed

    Omoto, Masayuki; Matsuse, Hiroo; Hashida, Ryuki; Takano, Yoshio; Yamada, Shin; Ohshima, Hiroshi; Tagawa, Yoshihiko; Shiba, Naoto

    2015-01-01

    Performing aerobics and resistance exercise at exactly the same time has not been available although combining both types of exercise in one training program has been attempted. The hybrid training system (HTS) is a resistance exercise that combines voluntary concentric muscle contractions with electrically stimulated eccentric muscle contractions. We devised an exercise technique using HTS on a cycle ergometer (HCE). Growth hormone (GH) and lactate are indicators of adequate training intensity. Interleukin-6 (IL-6) reflects enhancing lipid metabolism. The purpose of this study was to show that HCE provides sufficient exercise to stimulate the secretion of GH, lactate and IL-6. We compared an HCE test with cycle ergometer alone (CE). Ten healthy male subjects performed HCE and CE tests for 30 minutes each. The workload of both tests was set the same at 40% of each subject's peak oxygen uptake. For HCE, 2-minute HTS and 1-minute rest intervals were repeated. GH, lactate, and IL-6 were evaluated before and immediately after exercise, and at 15, 30 and 60 minutes. GH and lactate increased immediately after HCE. Moreover, the degree of the increases in GH after HCE (0 and 15 minutes) was higher than that after CE. IL-6 increased after HCE at 30 min, and the rate of change was higher than for CE. These results showed that HCE was more efficient in stimulating acute increases in GH, lactate and IL-6 than CE at the same workload. We may be able to combine electrically stimulated resistance exercise with aerobic exercise using HCE. PMID:26522057

  15. Multiple protein kinase pathways mediate amplified IL-6 release by human lung fibroblasts co-exposed to nickel and TLR-2 agonist, MALP-2

    SciTech Connect

    Gao Fei; Brant, Kelly A.; Ward, Rachel M.; Cattley, Richard T.; Barchowsky, Aaron; Fabisiak, James P.

    2010-09-01

    Microbial stimuli and atmospheric particulate matter (PM) interact to amplify the release of inflammatory and immune-modulating cytokines. The basis of this interaction, however, is not known. Cultured human lung fibroblasts (HLF) were used to determine whether various protein kinase pathways were involved in the release of IL-6 following combined exposure to the PM-derived metal, Ni, and M. fermentans-derived macrophage-activating lipopeptide 2 (MALP-2), a toll-like receptor 2 agonist. Synergistic release of IL-6 by MALP-2 and NiSO{sub 4} was obvious after 8 h of co-stimulation and correlated with a late phase accumulation of IL-6 mRNA. Ni and MALP-2, alone or together, all led to rapid and transient phosphorylations of ERK{sub 1/2} and JNK/SAPK of similar magnitude. p38 phosphorylation, however, was observed only after prolonged treatment of cells with both stimuli together. A constitutive level of PI3K-dependent Akt phosphorylation remained unchanged by Ni and/or MALP-2 exposure. IL-6 induced by Ni/MALP-2 co-exposure was partially dependent on activity of HIF-1{alpha} and COX-2 as shown by targeted knockdown using siRNA. IL-6 release in response to Ni/MALP-2 was partially sensitive to pharmacological inhibition of ERK{sub 1/2}, p38, and PI3K signaling. The protein kinase inhibitors had minimal or no effects on Ni/MALP-2-induced accumulation of HIF-1{alpha} protein, however, COX-2 expression and, more markedly PGE{sub 2} production, were suppressed by LY294002, SB203580, and U0126. Thus, Ni/MALP-2 interactions involve multiple protein kinase pathways (ERK{sub 1/2}, p38, and PI3K) that modulate events downstream from the early accumulation of HIF-1{alpha} to promote IL-6 gene expression directly or secondarily, through COX-2-derived autocrine products like PGE{sub 2}.

  16. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8

    PubMed Central

    Bhaumik, Dipa; Scott, Gary K.; Schokrpur, Shiruyeh; Patil, Christopher K.; Orjalo, Arturo V.; Rodier, Francis; Lithgow, Gordon J.; Campisi, Judith

    2009-01-01

    Senescence is a cellular program that irreversibly arrests the proliferation of damaged cells and induces the secretion of the inflammatory mediators IL- 6 and IL-8 which are part of a larger senescence associated secretory phenotype (SASP). We screened quiescent and senescent human fibroblasts for differentially expressed microRNAS (miRNAs) and found that miRNAs 146a and 146b (miR-146a/b) were significantly elevated during senescence. We suggest that delayed miR-146a/b induction might be a compensatory response to restrain inflammation. Indeed, ectopic expression of miR-146a/b in primary human fibroblasts suppressed IL-6 and IL-8 secretion and downregulated IRAK1, a crucial component of the IL-1 receptor signal transduction pathway. Cells undergoing senescence without induction of a robust SASP did not express miR-146a/b. Further, IL-1α neutralizing antibodies abolished both miR-146a/b expression and IL-6 secretion. Our findings expand the biological contexts in which miRNA-146a/b modulates inflammatory responses. They suggest that IL-1 receptor signaling initiates both miR-146a/b upregulation and cytokine secretion, and that miR-146a/b is expressed in response to rising inflammatory cytokine levels as part of a negative feedback loop that restrains excessive SASP activity. PMID:20148189

  17. Prediction of disease severity in neuromyelitis optica by the levels of interleukin (IL)-6 produced during remission phase.

    PubMed

    Barros, P O; Cassano, T; Hygino, J; Ferreira, T B; Centurião, N; Kasahara, T M; Andrade, R M; Linhares, U C; Andrade, A F B; Vasconcelos, C C F; Alvarenga, R; Marignier, R; Bento, C A M

    2016-03-01

    T helper type 17 (Th17) cytokines have been implicated in the pathogenesis of neuromyelitis optica (NMO). As humanized anti-interleukin (IL)-6R (tocilizumab) immunoglobulin (Ig)G has been used as disease-modifying therapy for NMO, the objective of our study was to investigate the role of endogenous IL-6 on NMO-derived CD4(+) T cell behaviour. High production of IL-6, IL-17 and IL-21 by CD4(+) T-cells was detected in NMO patients. Further, IL-21 and IL-6 levels were related directly to the level of neurological disabilities. The addition of anti-IL-6R IgG not only reduced directly the production of these cytokines, but also almost abolished the ability of activated autologous monocytes in enhancing IL-6, IL-17 and IL-21 release by CD4(+) T cells. In contrast, the production of IL-10 was amplified in those cell cultures. Further, anti-IL-6R monoclonal antibodies (mAb) also potentiated the ability of glucocorticoid in reducing Th17 cytokines. Finally, the in-vivo and in-vitro IL-6 levels were significantly higher among those patients who experienced clinical relapse during 2-year follow-up. In summary, our results suggest a deleterious role of IL-6 in NMO by favouring, at least in part, the expansion of corticoid-resistant Th17 cells.

  18. Activation of the IL-6/JAK/STAT3 signaling pathway in human middle ear cholesteatoma epithelium

    PubMed Central

    Liu, Wei; Xie, Shumin; Chen, Xing; Rao, Xingwang; Ren, Hongmiao; Hu, Bing; Yin, Tuanfang; Xiang, Yuyan; Ren, Jihao

    2014-01-01

    Interleukin-6 (IL-6) is one of the most important cytokines which has been shown to play a critical role in the pathogenesis of cholesteatoma. In this study, we aimed to investigate the expression of interleukin-6 (IL-6) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3) in middle ear cholesteatoma epithelium in an effort to determine the role of IL-6/JAK/STAT3 signaling pathway in the pathogenesis of cholesteatoma. Immunohistochemistry was used to examine the expression of IL-6 and p-STAT3 in 25 human middle ear cholesteatoma samples and 15 normal external auditory canal (EAC) epithelium specimens. We also analyzed the relation of IL-6 and p-STAT3 expression levels to the degree of bone destruction in cholesteatoma. We found that the expression of IL-6 and p-STAT3 were significantly higher in cholesteatoma epithelium than in normal EAC epithelium (p<0.05). In cholesteatoma epithelium, a significant positive association was observed between IL-6 and p-STAT3 expression (p<0.05). However, no significant relationships were observed between the degree of bone destruction and the levels of IL-6 and p-STAT3 expression (p>0.05). To conclude, our results support the concept that IL-6/JAK/STAT3 signaling pathway is active and may play an important role in the mechanisms of epithelial hyper-proliferation responsible for cholesteatoma. PMID:24551293

  19. Kaposi's sarcoma herpesvirus (KSHV) microRNA K12-1 functions as an oncogene by activating NF-κB/IL-6/STAT3 signaling

    PubMed Central

    Qu, Zhaoxia

    2016-01-01

    The human oncogenic virus Kaposi's sarcoma herpesvirus (KSHV) is the most common cause of malignancies among AIDS patients. KSHV possesses over hundred genes, including 25 microRNAs (miRNAs). The roles of these miRNAs and many other viral genes in KSHV biology and pathogenesis remain largely unknown. Accordingly, the molecular mechanisms by which KSHV induces tumorigenesis are still poorly defined. Here, we identify KSHV miRNA K12-1 (miR-K12-1) as a novel viral oncogene by activating two important transcription factors, nuclear factor-κb (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Interestingly, miR-K12-1 activates STAT3 indirectly through inducing NF-κB activation and NF-κB-dependent expression of the cytokine interleukin-6 (IL-6) by repressing the expression of the NF-κB inhibitor IκBα. Accordingly, expression of ectopic IκBα or knockdown of NF-κB RelA, IL-6 or STAT3 prevents expression of cell growth genes and suppresses the oncogenicities of both miR-K12-1 and KSHV. These data identify miR-K12-1/NF-κB/IL-6/STAT3 as a novel oncogenic signaling underlying KSHV tumorigenesis. These data also provide the first evidence showing that IL-6/STAT3 signaling acts as an essential mediator of NF-κB oncogenic actions. These findings significantly improve our understanding of KSHV pathogenesis and oncogenic interaction between NF-κB and STAT3. PMID:27166260

  20. Defective Initiation of Liver Regeneration in Osteopontin-Deficient Mice after Partial Hepatectomy due to Insufficient Activation of IL-6/Stat3 Pathway.

    PubMed

    Wen, Yankai; Feng, Dechun; Wu, Hailong; Liu, Wenjun; Li, Hongjie; Wang, Fang; Xia, Qiang; Gao, Wei-Qiang; Kong, Xiaoni

    2015-01-01

    The initial process in liver regeneration after partial hepatectomy involves the recruitment of immune cells and the release of cytokines. Osteopontin (OPN), a pro-inflammatory protein, plays critical roles in immune cell activation and migration. Although OPN has been implicated in the pathogenesis of many liver diseases, the role of OPN in liver regeneration remains obscure. In the present study, we found that serum and hepatic OPN protein levels were significantly elevated in wild-type (WT) mice after partial hepatectomy (PHx) and that bile ductal epithelia were the major cell source of hepatic OPN. Compared to WT mice, OPN knockout (KO) mice exhibited delayed liver regeneration after PHx. This delay in OPN(-/-) mice was attributed to impaired hepatic infiltration of macrophages and neutrophils, decreased serum and hepatic IL-6 levels, and blunted activation of macrophages after PHx. Furthermore, we demonstrate that the attenuated activation of macrophages is at least partially due to decreased hepatic and portal vein LPS levels in OPN(-/-) mice. In response to decreased IL-6 levels, the activation of signal transducer and transcription (Stat) 3 was reduced in hepatocytes of OPN(-/-) mice compared to WT mice after PHx. Consequently, hepatic activation of the downstream direct targets of IL6/Stat3, such as c-fos, c-jun, and c-myc, was also suppressed post-PHx in OPN(-/-) mice compared to WT mice. Collectively, these results support a unique role for OPN during the priming phase of liver regeneration, in which OPN enhances the recruitment of macrophages and neutrophils, and triggers hepatocyte proliferation through Kupffer cell-derived IL-6 release and the downstream activation of Stat3.

  1. Effects of interleukin (IL)-6 gene polymorphisms on recurrent aphthous stomatitis.

    PubMed

    Karakus, Nevin; Yigit, Serbulent; Rustemoglu, Aydin; Kalkan, Goknur; Bozkurt, Nihan

    2014-03-01

    Recurrent aphthous stomatitis (RAS) is a common disease with oral ulceration in which cytokines are thought to play an important role. High levels of interleukin (IL)-6, a pro-inflammatory cytokine have been detected in the circulation of ulcer tissue. The purpose of the present study was to investigate if the IL-6 gene polymorphisms are associated with RAS or clinical characteristics of RAS in a cohort of Turkish population. 184 RAS patients and 150 healthy controls were included in the study. The genotypes of IL-6 gene -572G>C and -174G>C polymorphisms were determined using polymerase chain reaction based restriction fragment length polymorphism analysis. The genotype frequencies of -572G>C polymorphism showed statistically significant differences between RAS patients and controls (p = 0.01). Frequencies of GG + GC genotypes and G allele of -572G>C polymorphism were found higher in RAS patients (p = 0.0001, OR 10.8, 95 % CI 2.79-70.5; p = 0.0008, OR 2.06, 95 % CI 1.35-3.17, respectively). The genotype frequencies of -174G>C polymorphism also showed statistically significant differences between RAS patients and controls (p < 0.0001). Frequencies of GG genotype and G allele of -174G>C polymorphism were found higher in RAS patients (p < 0.0001, OR 4.87, 95 % CI 3.06-7.85; p < 0.0001, OR 3.82, 95 % CI 2.64-5.59, respectively). GG-GG combined genotype and G-G haplotype of -174G>C to -572G>C loci were also significantly higher in RAS patients (p < 0.0001 and p = 1.5 × 10(-8), respectively). After stratifying clinical and demographical characteristics of RAS patients according to IL-6 gene polymorphisms, an association was observed between family history of RAS and -174G>C polymorphism (p = 0.011). Susceptibility effects of both IL-6 gene -572G>C and -174G>C polymorphisms for RAS were observed. Further studies are necessary to prove the association of IL-6 gene polymorphisms with RAS.

  2. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury

    PubMed Central

    2010-01-01

    Background Increased intracranial pressure (ICP) is a serious, life-threatening, secondary event following traumatic brain injury (TBI). In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology. Methods In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS≤8) with or without incidence of elevated intracranial pressure (ICP). De-identified samples and ELISAs were used to confirm the sensitivity and specificity of IL-6 as a prognostic marker of elevated ICP in both isolated TBI patients, and polytrauma patients with TBI. Results Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP ≥ 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained ≤20 mm Hg. When blinded samples (n = 22) were assessed, a serum IL-6 cut-off of <5 pg/ml correctly identified 100% of all the healthy volunteers, a cut-off of >128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained ≤20 mm Hg throughout the study period. In contrast, the marker had no prognostic value in predicting elevated ICP in polytrauma patients with TBI. When the levels of serum IL-6 were assessed in patients with orthopedic injury (n = 7) in the absence of TBI, a significant increase was found in these patients compared to healthy volunteers, albeit lower than that observed in TBI patients. Conclusions Our

  3. A multiple-dose pharmacokinetics of polyethylene glycol recombinant human interleukin-6 (PEG-rhIL-6) in rats*

    PubMed Central

    He, Xue-ling; Yin, Hai-lin; Wu, Jiang; Zhang, Ke; Liu, Yan; Yuan, Tao; Rao, Hai-lin; Li, Liang; Yang, Guang; Zhang, Xue-mei

    2011-01-01

    Radiation therapy has been widely applied in cancer treatment. However, it often causes thrombocytopenia (deficiency of white blood cells) as an adverse effect. Recombinant human interleukin-6 (rhIL-6) has been found to be a very effective way against this thrombocytopenia, but IL-6 has low stability in blood, which reduces its efficacy. To increases the stability and half-life of rhIL-6, it was modified by polyethylene glycol (PEG). The pharmacokinetics and the tissue distribution of PEG-rhIL-6 labeled with 125I were examined after subcutaneous injection in rats. The pharmacokinetic pattern of PEG-rhIL-6 was defined with linear-kinetics, and we fitted a one-compartment model with half-lives of 10.44–11.37 h (absorption, t 1/2Ka) and 19.77–21.53 h (elimination, t 1/2Ke), and peak concentrations at 20.51–21.96 h (t peak) in rats. Half-lives and t peak of PEG-rhIL-6 were longer than those of rhIL-6 previously reported. In the present study, for deposition of PEG-rhIL-6 in rats, the tissue distribution examination showed that blood was the major organ involved, rather than liver. However, as to the elimination of PEG-rhIL-6, the major organ was the kidney. The excretion fraction of the injection dose recovered from urine was 23.32% at 192 h after subcutaneous administration. Less than 6% of PEG-rhIL-6 was eliminated via the feces at 192 h. These results indicate that PEG-rhIL-6 is a good candidate drug formulation for patients with cancer. PMID:21194184

  4. Function of Integrin-Linked Kinase in Modulating the Stemness of IL-6–Abundant Breast Cancer Cells by Regulating γ-Secretase–Mediated Notch1 Activation in Caveolae12

    PubMed Central

    Hsu, En-Chi; Kulp, Samuel K.; Huang, Han-Li; Tu, Huang-Ju; Salunke, Santosh B.; Sullivan, Nicholas J.; Sun, Duxin; Wicha, Max S.; Shapiro, Charles L.; Chen, Ching-Shih

    2015-01-01

    Interleukin-6 (IL-6) and Notch signaling are important regulators of breast cancer stem cells (CSCs), which drive the malignant phenotype through self-renewal, differentiation, and development of therapeutic resistance. We investigated the role of integrin-linked kinase (ILK) in regulating IL-6–driven Notch1 activation and the ability to target breast CSCs through ILK inhibition. Ectopic expression/short hairpin RNA-mediated knockdown of ILK, pharmacological inhibition of ILK with the small molecule T315, Western blot analysis, immunofluorescence, and luciferase reporter assays were used to evaluate the regulation of IL-6–driven Notch1 activation by ILK in IL-6–producing triple-negative breast cancer cell lines (MDA-MB-231, SUM-159) and in MCF-7 and MCF-7IL-6 cells. The effects of ILK on γ-secretase complex assembly and cellular localization were determined by immunofluorescence, Western blots of membrane fractions, and immunoprecipitation. In vivo effects of T315-induced ILK inhibition on CSCs in SUM-159 xenograft models were assessed by mammosphere assays, flow cytometry, and tumorigenicity assays. Results show that the genetic knockdown or pharmacological inhibition of ILK suppressed Notch1 activation and the abundance of the γ-secretase components presenilin-1, nicastrin, and presenilin enhancer 2 at the posttranscriptional level via inhibition of caveolin-1-dependent membrane assembly of the γ-secretase complex. Accordingly, knockdown of ILK inhibited breast CSC-like properties in vitro and the breast CSC subpopulation in vivo in xenograft tumor models. Based on these findings, we propose a novel function of ILK in regulating γ-secretase–mediated Notch1 activation, which suggests the targeting of ILK as a therapeutic approach to suppress IL-6–induced breast CSCs. PMID:26152358

  5. Association of IL-6 Polymorphism -174G/C and Metabolic Syndrome in Hypertensive Patients

    PubMed Central

    Teixeira, Andrei Alkmim; Quinto, Beata Marie Redublo; Dalboni, Maria Aparecida; Rodrigues, Cassio Jose de Oliveira; Batista, Marcelo Costa

    2015-01-01

    Introduction. Visceral obesity, the central core of metabolic syndrome (MetS), is conceived as the pathogenic basis of an increased cardiovascular burden and is related with changes in cytokines. We investigated whether IL-6-174G/C gene polymorphism is associated with MetS prevalence in hypertensive patients. Method. A population of hypertensive patients was included and stratified by the presence of MetS according to IDF criteria and evaluated by Framingham risk score. The IL-6-174G/C genotyping was performed by polymerase chain reaction and the prevalence of MetS was compared between “C” carrier and “non-C” carrier groups. Results. From an original sample of 664 patients, 612 (34.2% men, age 57.3 ± 10.1, 30.4% diabetics) were included. MetS was diagnosed in 51.3% of total population and “C” carriers demonstrated high prevalence of MetS (P < 0.05) and each of its components. On binary logistic regression, it was observed that the IL-6 polymorphism was independently associated with occurrence of MetS, even after adjusting for covariates (OR 1.13–2.37, 95% CI, P < 0.05). Conclusion. The C allele at the -174 locus of IL-6 gene is independently associated with the occurrence of metabolic syndrome, emphasizing the importance of inflammatory genetic background in the pathogenesis of visceral obesity and related cardiovascular burden. PMID:25815341

  6. Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    PubMed Central

    2012-01-01

    Background Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted. PMID:22695063

  7. WISP1 mediates IL-6-dependent proliferation in primary human lung fibroblasts

    PubMed Central

    Klee, S.; Lehmann, M.; Wagner, D. E.; Baarsma, H. A.; Königshoff, M.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. IPF is characterized by epithelial cell injury and reprogramming, increases in (myo)fibroblasts, and altered deposition of extracellular matrix. The Wnt1-inducible signaling protein 1 (WISP1) is involved in impaired epithelial-mesenchymal crosstalk in pulmonary fibrosis. Here, we aimed to further investigate WISP1 regulation and function in primary human lung fibroblasts (phLFs). We demonstrate that WISP1 is directly upregulated by Transforming growth factor β1 (TGFβ1) and Tumor necrosis factor α (TNFα) in phLFs, using a luciferase-based reporter system. WISP1 mRNA and protein secretion increased in a time- and concentration-dependent manner by TGFβ1 and TNFα in phLFs, as analysed by qPCR and ELISA, respectively. Notably, WISP1 is required for TGFβ1- and TNFα-dependent induction of interleukin 6 (IL-6), a mechanism that is conserved in IPF phLFs. The siRNA-mediated WISP1 knockdown led to a significant IL-6 reduction after TGFβ1 or TNFα stimulation. Furthermore, siRNA-mediated downregulation or antibody-mediated neutralization of WISP1 reduced phLFs proliferation, a process that was in part rescued by IL-6. Taken together, these results strongly indicate that WISP1-induced IL-6 expression contributes to the pro-proliferative effect on fibroblasts, which is likely orchestrated by a variety of profibrotic mediators, including Wnts, TGFβ1 and TNFα. PMID:26867691

  8. IL-6, IL-10, c-Jun and STAT3 expression in B-CLL.

    PubMed

    Antosz, Halina; Wojciechowska, Katarzyna; Sajewicz, Joanna; Choroszyńska, Dorota; Marzec-Kotarska, Barbara; Osiak, Magdalena; Pająk, Natalia; Tomczak, Waldemar; Jargiełło-Baszak, Małgorzata; Baszak, Jacek

    2015-03-01

    Chronic lymphocytic leukemia is characterized by the accumulation of functionally abnormal, monoclonal B lymphocytes in the peripheral blood, bone marrow, lymph nodes and spleen, resulting in a reduction count of normal immunocompetent cells and their impaired immune function. The defect in transmission of signals from various types of extracellular receptors, leading to aberrant cytokines and transcription factors gene expression, may underlie the basis of immune failure in B-CLL. The aim of the study was to assess of IL-6, IL-10, c-Jun, and STAT3 expression. In response to antigenic stimulation IL-6, IL-10, c-Jun, and STAT3 proteins induce mutual activity. The subject of the study was subpopulations of leukemic lymphocytes (CD5+ CD19+) and CD19+ B cells from healthy donors (control group). Our results provide evidence that the regulation of IL-6, IL-10, c-Jun, and STAT3 gene expression in CLL B cells is clearly different from normal B lymphocytes. In B-CLL STAT3 expression in unstimulated lymphocytes is significantly higher (p<0.0001) compared with normal subpopulation of B cell. In contrast, IL-6, IL-10, and c-Jun mRNA expressions are statistically lower in B-CLL in comparison with the control group, in all cases (p<0.0001). When analyzing the relationship between c-Jun expression and B-CLL stage according Rai we revealed decreasing c-Jun expression, both at the mRNA and protein levels, along with advancing stage of disease. PMID:25477266

  9. IL-6 gene promoter polymorphisms: genetic susceptibility to recurrent pregnancy loss.

    PubMed

    Demirturk, F; Ates, O; Gunal, O; Bozkurt, N; Aysal, T; Nacar, M C

    2014-01-01

    Recurrent pregnancy loss (RPL) is defined as three or more pregnancy losses before 20 weeks. RPL is a multifactorial condition with several etiologic factors including genetic abnormalities of the parents, anatomical, endocrinological, hematologic and immunologic abnormalities, infections, nutritional and environmental factors. The causes of pregnancy loss in about half of the women with RPL even after extensive investigations remain unknown. We analyzed IL-6 -174 G/C, -572 G/C, -597 G/A, -1363 G/T, -2954 G/C promoter region polymorphisms in 113 RPL patients and 113 healthy subjects by using polymerase chain reaction (PCR)-based restriction fragment length polymorphism (RFLP) assay. The -174G/C genotypic and -174C allelic frequency and the -2954G/C genotypic and -2954C allelic frequency of IL-6 was higher in RPL patients than healthy controls and a significant association was found between RPL and -174G/C, -2954G/C polymorphisms (p < 0.0001, OR: 0.28, 95% CI: 0.15-0.51, p < 0.034, OR: 0.16, 95% CI: 0.01-1.12 respectively). We found remarkably similar frequencies in RPL patients compared to controls for IL-6 -572G/C,-597G/A and -1363G/T genotypes/alleles and no association was observed between RPL and these polymorphisms. Our study supported that IL-6 -174G/C and -2954G/C polymorphisms were associated with an increased risk of RPL in Turkish patients (Tab. 3, Ref. 24). PMID:25246282

  10. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats

    PubMed Central

    Kheradmand, Afshin; Nayebi, Alireza Mohajjel; Jorjani, Masoumeh; Haddadi, Rasool

    2016-01-01

    Objective(s): Neuroinflammation and oxidative stress play a key role in pathogenesis of Parkinson’s disease (PD). In the present study we investigated the effect of reactive oxygen species (ROS) scavenger WR-1065 on catalepsy and cerebrospinal fluid (CSF) level of interleukin 6(IL-6) and striatum superoxide dismutase (SOD) activity in 6-hydroxydopamine (6-OHDA) induced experimental model of PD. Materials and Methods: Seventy two male Wistar rats were divided into 9 equal groups and 6-OHDA (8 μg/2 μl/rat) was infused unilaterally into substantia nigra pars copmacta (SNc) to induce PD. Catalepsy was measured by standard bar test, CSF level of IL-6 was assessed by enzyme-linked immunosorbent assay (ELISA) method and SOD activity measured by spectrophotometric method. In pre-treatment groups WR-1065 (20, 40 and 80 μg/2 μl/rat/day, for 3 days) was infused into the SNc before 6-OHDA administration and 21 days later, as a recovery period, behavioral and molecular assay tests were done. Results: Our results showed that pre-treatment with WR-1065 improved (P<0.001) 6-OHDA-induced catalepsy in a dose dependent manner. In 6-OHDA-lesioned animals SOD activity in SNc and CSF level of IL-6 was decreased markedly (P<0.001) when compared with non-lesioned group, while pre-treatment with WR-1065(P<0.001) restored their levels up to the normal range. Conclusion: Our study indicated that pre-treatment with WR-1065 could modulate catalepsy and IL-6 level in 6-OHDA-lesioned rats. Also WR1065 could increase SOD activity up to normal range. It can be regarded as an anti-oxidative drug in prevention or adjunctive therapy of PD. PMID:27403255

  11. Continuous therapeutic epinephrine but not norepinephrine prolongs splanchnic IL-6 production in porcine endotoxic shock.

    PubMed

    Bergmann, Michael; Gornikiewicz, Alexander; Tamandl, Dietmar; Exner, Ruth; Roth, Erich; Függer, Reinhold; Götzinger, Peter; Sautner, Thomas

    2003-12-01

    Catecholamines play a central role in the treatment of sepsis-associated hypotension. However, these hormones have also been shown to modulate the lipopolysaccharide (LPS)-induced induction of cytokines such as tumor necrosis factor alpha, interleukin (IL)-10, and IL-6 in vitro and in human endotoxemia. We hypothesized that catecholamines applied therapeutically in septic shock also influence cytokine patterns. We studied the cytokine response in tissues of the splanchnic compartment in a porcine endotoxin shock model up to 4 h. Shock was induced by a short infusion of LPS, and animals were treated either with fluid resuscitation alone or in combination with continuous epinephrine or norepinephrine. Animals, receiving epinephrine therapy, showed a significantly prolonged upregulation of IL-6 mRNA expression at 4 h after LPS application in liver (P = 0.0014), spleen (P < 0.0001), and mesenteric lymph nodes (P = 0.0078) as compared with animals treated with norepinephrine or fluid resuscitation. Serum IL-6 increased over time in all groups. The total concentration of the cytokine (area under the curve) was significantly higher in the epinephrine group as compared with the norepinephrine and fluid resuscitation groups (P = 0.017). The peak of serum tumor necrosis factor alpha at 1 h after LPS application was already significantly reduced by epinephrine, which was only administered at a mean of less than 0.05 microg/kg/min at this time point (P < 0.01). None of the catecholamines had a significant effect on IL-10 serum levels when compared with animals receiving fluid resuscitation alone. Our data suggest that the therapeutic application of epinephrine but not of norepinephrine is associated with a profound effect on the IL-6 response of splanchnic reticuloendothelial tissues.

  12. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    PubMed

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  13. IL-6 secreted by cancer-associated fibroblasts induces tamoxifen resistance in luminal breast cancer.

    PubMed

    Sun, X; Mao, Y; Wang, J; Zu, L; Hao, M; Cheng, G; Qu, Q; Cui, D; Keller, E T; Chen, X; Shen, K; Wang, J

    2014-06-01

    Cancer-associated fibroblasts (CAFs) have been implicated in the development of resistance to anticancer drugs; however, the role and mechanism underlying CAFs in luminal breast cancer (BrCA) tamoxifen resistance are unclear. We found that stromal fibroblasts isolated from the central or peripheral area of BrCA have similar CAF phenotype and activity. In vitro and in vivo experiments showed that CAFs derived from clinical-luminal BrCAs induce tamoxifen resistance through decreasing estrogen receptor-α (ER-α) level when cultured with luminal BrCA cell lines MCF7 and T47D. CAFs promoted tamoxifen resistance through interleukin-6 (IL-6) secretion, which activates Janus kinase/signal transducers and activators of transcription (JAK/STAT3) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways in tumor cells, followed by induction of epithelial-mesenchymal transition and upregulation of E3 ubiquitin ligase anaphase-promoting complex 10 activity, which targeted ER-α degradation through the ubiquitin-proteasome pathway. Inhibition of proteasome activity, IL-6 activity or either the JAK/STAT3 or PI3K/AKT pathways markedly reduced CAF-induced tamoxifen resistance. In xenograft experiments of CAFs mixed with MCF7 cells, CAF-specific IL-6 knockdown inhibited tumorigenesis and restored tamoxifen sensitivity. These findings indicate that CAFs mediate tamoxifen resistance through IL-6-induced degradation of ER-α in luminal BrCAs.Oncogene advance online publication, 9 June 2014; doi:10.1038/onc.2014.158.

  14. Mild Hypothermia Protects Pigs’ Gastric Mucosa After Cardiopulmonary Resuscitation via Inhibiting Interleukin 6 (IL-6) Production

    PubMed Central

    Wang, Yan; Song, Jian; Liu, Yuhong; Li, Yaqiang; Liu, Zhengxin

    2016-01-01

    Background The purpose of this study was to determine the effect of mild hypothermia therapy on gastric mucosa after cardiopulmonary resuscitation (CPR) and the underlying mechanism. Material/Methods Ventricular fibrillation was induced in pigs. After CPR, the surviving pigs were divided into mild hypothermia-treated and control groups. The changes in vital signs and hemodynamic parameters were monitored before cardiac arrest and at intervals of 0.5, 1, 2, 4, 6, 12, and 24 h after restoration of spontaneous circulation. Serum IL-6 was determined at the same time, and gastroscopy was performed. The pathologic changes were noted, and the expression of IL-6 was determined by hematoxylin and eosin (HE) staining and immunohistochemistry under light. Results The heart rate, mean arterial blood pressure, and cardiac output in both groups did not differ significantly. The gastric mucosa ulcer index evaluated by gastroscopy 2 h and 24 h after restoration of spontaneous circulation (ROSC) in the mild hypothermic group was lower than that the control group (P<0.05). The inflammatory pathologic score of gastric mucosa in the mild hypothermic group 6–24 h after ROSC was lower than that in the control group (P<0.05). Serum and gastric mucosa IL-6 expression 0.5–4 h and 6, 12, and 24 h after ROSC was lower in the mild hypothermic group than in the control group (P<0.05). Conclusions Mild hypothermia treatment protects gastric mucosa after ROSC via inhibiting IL-6 production and relieving the inflammatory reaction. PMID:27694796

  15. Resting IL-6 and TNF-α level in children of different weight and fitness status.

    PubMed

    Hosick, Peter; McMurray, Robert; Hackney, A C; Battaglini, Claudio; Combs, Terry; Harrell, Joanne

    2013-05-01

    Reports suggest children with high aerobic fitness (VO2max; mL/kg/min) have healthier profiles of TNF-α and IL-6; however, research has not accounted for differences in adiposity between high-fit and low-fit individuals. Thus, this study examined differences in inflammatory markers of obese and normal weight children of different fitness levels, using two different VO2max units: per unit of fat free mass (VO2FFM) or total body mass (VO2kg). Children (n = 124; ages 8-12) were divided into four matched groups; normal weight high-fit (NH), normal weight low- fit (NL), obese high-fit (OH), and obese low-fit (OL). Height, weight, skinfolds, body mass index (BMI), and predicted VO2max were measured and a morning, fasting blood sample taken. IL-6 was elevated in the NL and OL groups compared with the NH group, as well as the OL group compared with the OH group. No differences were found in TNF-α. The relationship between IL-6 or TNF-α and the two units of predicted VO2max did not differ suggesting that either VO2FM or VO2kg can be used to describe aerobic power when studying inflammation and exercise in youth. The relationship between IL-6 or TNF-α and predicted VO2max, whether expressed per mass or per fat-free mass was similar, suggesting that both can be used to describe aerobic power when studying inflammation and exercise in youth. Given the polar design of this study, this relationship should be confirmed including overweight subjects.

  16. Solitary plasmacytoma of the tonsillar site associated with actinomyces infection: the possible role of IL-6.

    PubMed

    Zappacosta, R; Rosini, S; Aiello, F B; Rullo, A; Croce, A; Lattanzio, G; Viola, P

    2012-01-01

    ExtraMedullary Plasmacytoma (EMP) is a rare plasma cell tumor. It can occur in the upper aerodigestive tract and presents as a large nodule causing local compressive symptoms. A 79-year old woman presented to Otorhinolaryngology Department with progressive hearing loss and no other symptoms. Following PET/TC examination due to the suspicion of a lymphoproliferative disease, the patient underwent tonsillectomy and the diagnosis of solitary EMP was formulated. In addition to that, the histological examination of the tonsillar tissue revealed large colonies of filamentous bacteria, showing abundant sulphur granules and Splendore-Hoeppli phenomenon; these evidences indicating the presence of a chronic Actinomyces infection. Immunohistochemical analysis demonstrated a marked IL-6 immunoreactivity of the neoplastic plasma cells. Interestingly, a marked IL-6 immunoreactivity was also found in the tissue surrounding the Actinomyces colonies. In the present study we report for the first time a solitary EMP associated with Actinomycosis. It is tempting to speculate that the unsuspected and untreated Actinomyces infection, through chronic IL-6 production, could contribute to the neoplastic transformation of plasma cells.

  17. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    PubMed

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  18. Identification of Liver Cancer Progenitors Whose Malignant Progression Depends on Autocrine IL-6 Signaling

    PubMed Central

    He, Guobin; Dhar, Debanjan; Nakagawa, Hayato; Font-Burgada, Joan; Ogata, Hisanobu; Jiang, Yuhong; Shalapour, Shabnam; Seki, Ekihiro; Yost, Shawn E.; Jepsen, Kristen; Frazer, Kelly A.; Harismendy, Olivier; Hatziapostolou, Maria; Iliopoulos, Dimitrios; Suetsugu, Atsushi; Hoffman, Robert M.; Tateishi, Ryosuke; Koike, Kazuhiko; Karin, Michael

    2014-01-01

    SUMMARY Hepatocellular carcinoma (HCC) is a slowly developing malignancy postulated to evolve from pre-malignant lesions in chronically damaged livers. However, it was never established that premalignant lesions actually contain tumor progenitors that give rise to cancer. Here, we describe isolation and characterization of HCC progenitor cells (HcPCs) from different mouse HCC models. Unlike fully malignant HCC, HcPCs give rise to cancer only when introduced into a liver undergoing chronic damage and compensatory proliferation. Although HcPCs exhibit a similar transcriptomic profile to bipotential hepatobiliary progenitors, the latter do not give rise to tumors. Cells resembling HcPCs reside within dysplastic lesions that appear several months before HCC nodules. Unlike early hepatocarcinogenesis, which depends on paracrine IL-6 production by inflammatory cells, due to upregulation of LIN28 expression, HcPCs had acquired autocrine IL-6 signaling that stimulates their in vivo growth and malignant progression. This may be a general mechanism that drives other IL-6-producing malignancies. PMID:24120137

  19. Calcitriol downregulates TNF-α and IL-6 expression in cultured placental cells from preeclamptic women.

    PubMed

    Noyola-Martínez, Nancy; Díaz, Lorenza; Avila, Euclides; Halhali, Ali; Larrea, Fernando; Barrera, David

    2013-01-01

    Placenta is an important source and target of hormones that contribute to immunological tolerance and maintenance of pregnancy. In preeclampsia (PE), placental calcitriol synthesis is low; whereas pro-inflammatory cytokines levels are increased, threatening pregnancy outcome. Previously, we showed that calcitriol inhibits Th-1 cytokines under experimental inflammatory conditions in normal trophoblasts. However, a study of the regulation of inflammatory cytokines by calcitriol in trophoblasts from a natural inflammatory condition, such as PE, is still lacking. Therefore, the aim of the present study was to investigate calcitriol effects upon TNF-α, IFN-γ, IL-6 and IL-1β in cultured placental cells from preeclamptic women by using qPCR and ELISA. Placentas were collected after cesarean section from preeclamptic women and enriched trophoblastic preparations were cultured in the absence or presence of different calcitriol concentrations during 24h. In these cell cultures, pro-inflammatory cytokines TNF-α and IL-6 secretion and mRNA expression were downregulated by calcitriol (P<0.05). No significant effects of calcitriol upon IFN-γ and IL-1β were observed. In addition, basal expression of TNF-α, IL-6 and IL-1β decreased as the cells formed syncytia. Our study supports an important autocrine/paracrine role of placental calcitriol in controlling adverse immunological responses at the feto-maternal interface, particularly in gestational pathologies associated with exacerbated inflammatory responses such as preeclampsia.

  20. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  1. [Serum ghrelin, IL-6 and TNF-α levels in patients with chronic obstructive pulmonary disease.].

    PubMed

    Deveci, Yasemin; Deveci, Figen; Ilhan, Nevin; Karaca, Ilgın; Turgut, Teyfik; Muz, Mehmet Hamdi

    2010-01-01

    It is determined that endocrine factors can play role on cachexia in chronic obstructive pulmonary disease (COPD). High levels of ghrelin is reported in cachectic COPD cases but its' relation couldn't shown statistically. In our study, it is aimed to detect serum ghrelin levels in COPD, its' relation with proinflammatory cytokines and whether serum ghrelin is associated with cachexia. Sixty stable COPD patients and 15 healthy volunteers were included in the study. COPD patients were divided into two groups, cachectic and normal weight, according to their body mass index. Spirometric assessments were performed and serum tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6) and ghrelin levels were measured in all cases. When COPD patients were compared with control group; serum ghrelin levels were statistically lower, TNF-a and IL-6 levels were statistically higher in COPD group. For cachectic COPD patients; serum ghrelin levels were statistically lower and IL-6 levels were statistically higher, compared with normal weight COPD patients. Although, serum TNF-a levels were higher for cachectic COPD patients; these levels were not significant. Positive correlation between serum ghrelin levels and body mass index was detected in patients with COPD. As a result; it is thought that increased proinflammatory cytokines and decreased serum active ghrelin levels may contribute to the development of weight loss.

  2. The STAT3 beacon: IL-6 recurrently activates STAT 3 from endosomal structures.

    PubMed

    German, Christopher L; Sauer, Brian M; Howe, Charles L

    2011-08-15

    Endocytic trafficking plays an important role in signal transduction. Signal transducer and activator of transcription 3 (STAT3) and mitogen-activate protein kinase (MAPK) have both been localized to endosomal structures and are dependent upon endocytosis for downstream function. While the dependence of MAPK signaling upon endosomes has been well characterized, the involvement of endosomes in regulating STAT3 signaling has not been defined. Consequently, this study evaluated the role of endosomes in the initiation, modulation, amplification and persistence of interleukin-6(IL-6)-induced STAT3 signal transduction and transcription, and utilized IL-6-induced MAPK signaling as a comparator. Using pharmacologic treatment and temperature control of endocytic trafficking, pulse-chase treatments and in vitro kinase assays, STAT3 was found to interact with endosomes in a markedly different fashion than MAPK. STAT3 was activated by direct interaction with internal structures upstream of the late endosome following IL-6 exposure and persistent STAT3 signaling depended upon recurrent activation from endocytic structures. Further, STAT3 subcellular localization was not dependent upon endocytic trafficking. Instead, STAT3 transiently interacted with endosomes and relocated to the nucleus by an endosome-independent mechanism. Finally, endocytic trafficking played a central role in regulating STAT3 serine 727 phosphorylation through crosstalk with the MAPK signaling system. Together, these data reveal endosomes as central to the genesis, course and outcome of STAT3 signal transduction and transcription.

  3. Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5.

    PubMed

    Feng, Xiaoke; Shi, Yumeng; Xu, Lingxiao; Peng, Qiuyue; Wang, Fang; Wang, Xiaoxi; Sun, Wei; Lu, Yan; Tsao, Betty P; Zhang, Miaojia; Tan, Wenfeng

    2016-01-01

    Receptor activator of nuclear factor κB ligand (RANKL) is critically involved in bone erosion of rheumatoid arthritis (RA). We previously reported association between younger age at onset of RA and a RANKL promoter SNP that conferred an elevated promoter activity via binding to a transcription factor SOX5. Here we study the regulation of SOX5 levels in relation to RANKL expression in RA synovial fibroblasts (SF) and the development of bone erosion in the collagen-induced arthritis (CIA) mouse. Our data indicated SOX5 levels were higher in synovium and synovial fluid from RA compared to osteoarthritis patients. Pro-inflammatory cytokines upregulated SOX5 and RANKL expression in both primary RA SF and the rheumatoid synovial fibroblast cell line, MH7A. Overexpression of SOX5 resulted in significantly increased RANKL levels, while knockdown of SOX5 resulted in diminished IL-6 mediated RANKL upregulation in MH7A cells. Chromatin immunoprecipitation (ChIP) showed approximately 3-fold enrichment of RANKL-specific DNA in anti-SOX5 immunoprecipitate in IL-6 treated MH7A cells as compared to untreated cells. Locally silencing SOX5 gene significantly diminished RANKL positive cells and bone erosion in CIA mice. These findings suggest SOX5 is an important regulator of IL-6-induced RANKL expression in RA SF. PMID:27550416

  4. Modulation of IL-6 induced RANKL expression in arthritic synovium by a transcription factor SOX5

    PubMed Central

    Feng, Xiaoke; Shi, Yumeng; Xu, Lingxiao; Peng, Qiuyue; Wang, Fang; Wang, Xiaoxi; Sun, Wei; Lu, Yan; Tsao, Betty P.; Zhang, Miaojia; Tan, Wenfeng

    2016-01-01

    Receptor activator of nuclear factor κB ligand (RANKL) is critically involved in bone erosion of rheumatoid arthritis (RA). We previously reported association between younger age at onset of RA and a RANKL promoter SNP that conferred an elevated promoter activity via binding to a transcription factor SOX5. Here we study the regulation of SOX5 levels in relation to RANKL expression in RA synovial fibroblasts (SF) and the development of bone erosion in the collagen-induced arthritis (CIA) mouse. Our data indicated SOX5 levels were higher in synovium and synovial fluid from RA compared to osteoarthritis patients. Pro-inflammatory cytokines upregulated SOX5 and RANKL expression in both primary RA SF and the rheumatoid synovial fibroblast cell line, MH7A. Overexpression of SOX5 resulted in significantly increased RANKL levels, while knockdown of SOX5 resulted in diminished IL-6 mediated RANKL upregulation in MH7A cells. Chromatin immunoprecipitation (ChIP) showed approximately 3-fold enrichment of RANKL-specific DNA in anti-SOX5 immunoprecipitate in IL-6 treated MH7A cells as compared to untreated cells. Locally silencing SOX5 gene significantly diminished RANKL positive cells and bone erosion in CIA mice. These findings suggest SOX5 is an important regulator of IL-6-induced RANKL expression in RA SF. PMID:27550416

  5. Control of IgE responses. III. IL-6 and IFN-alpha are isotype-specific regulators of peak BPO-specific IgE antibody-forming cell responses in mice.

    PubMed

    Auci, D L; Kleiner, G I; Chice, S M; Dukor, P; Durkin, H G

    1993-03-01

    The ability of cytokines (IL-4, IL-5, IL-6, IFN-alpha, IFN-gamma, TNF-alpha, GmCSF) to regulate peak benzylpenicilloyl (BPO)-specific IgE antibody-forming cell (AFC) responses was investigated. These responses were induced in BALB/c mice by ip injection of BPO-keyhole limpet hemocyanin (BPO-KLH; 10 micrograms) in aluminum hydroxide gel on Days 0, 21, and 42. On Day 44, or on Days 43, 44, and 45, mice were injected sc with varying doses of cytokine or anti-cytokine antibody. On Day 46, the numbers of BPO-specific AFC (IgM, IgG1, IgE and IgA) in spleen were determined ex vivo in enzyme-linked immunosorbent spot assay. Among the cytokines tested, only IL-6 suppressed BPO-specific IgE AFC responses in an isotype-specific fashion (60-90%). However, treatment of mice with anti-IL-6 also suppressed these responses, suggesting that IL-6 can either suppress or increase peak antigen specific IgE responses, depending upon its concentration. Among the cytokines tested, only IFN-alpha increased BPO-specific IgE AFC responses in an isotype-specific fashion. Since treatment with anti-IFN-alpha suppressed these responses, it appears that IFN-alpha is required to maintain peak antigen-specific IgE AFC responses. IL-4 or IFN-gamma nonspecifically suppressed responses of all isotypes. Treatment with anti-IL-4 also suppressed IgE responses, suggesting that this cytokine is required to maintain peak antigen specific IgE responses. Treatment with anti-IFN-gamma increased IgE responses, indicating that IFN-gamma suppresses peak antigen-specific IgE responses.

  6. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.

    PubMed

    Murakami, Masaaki; Hirano, Toshio

    2011-01-01

    It is commonly thought that autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases (Marrack et al., 2001; Mathis and Benoist, 2004). In several cases, however, even for diseases associated with class II major histocompatibility complex (MHC) alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established (Mocci et al., 2000; Skapenko et al., 2005). Rheumatoid arthritis (RA) and arthritis in F759 knock-in mice (F759 mice) are such examples (Atsumi et al., 2002; Brennan et al., 2002; Falgarone et al., 2009). These include associations with class II MHC and CD4 molecules; increased numbers of memory/activated CD4+ T cells; and improved outcomes in response to suppressions and/or deficiencies in class II MHC molecules, CD4+ T cells, and the T cell survival cytokine IL-7. Regarding the development of arthritis in F759 mice, it is not only the immune system, but also non-immune tissue that are involved, indicating that the importance of their interactions (Sawa et al., 2006, 2009; Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Furthermore, we have shown that local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice (Murakami et al., 2011). For example, local microbleeding-mediated CCL20 expression induce such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non-hematopoietic cells in the joint (Murakami et al., 2011). We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier for

  7. Increased IL6 plasma levels in indolent systemic mastocytosis patients are associated with high risk of disease progression.

    PubMed

    Mayado, A; Teodosio, C; Garcia-Montero, A C; Matito, A; Rodriguez-Caballero, A; Morgado, J M; Muñiz, C; Jara-Acevedo, M; Álvarez-Twose, I; Sanchez-Muñoz, L; Matarraz, S; Caldas, C; Muñoz-González, J I; Escribano, L; Orfao, A

    2016-01-01

    Systemic mastocytosis (SM) is a heterogeneous disease with altered interleukin (IL)-6 and IL13 plasma levels. However, no study has simultaneously investigated the plasma levels of IL1β, IL6, IL13, CCL23 and clusterin in SM at diagnosis and correlated them with disease outcome. Here we investigated IL1β, IL6, IL13, CCL23 and clusterin plasma levels in 75 SM patients--66 indolent SM (ISM) and 9 aggressive SM--and analyzed their prognostic impact among ISM cases grouped according to the extent of hematopoietic involvement of the bone marrow cells by the KIT D816V mutation. Although increased IL1β, IL6 and CCL23 levels were detected in SM patients versus healthy controls, only IL6 and CCL23 levels gradually increased with disease severity. Moreover, increased IL6 plasma levels were associated with ISM progression to more aggressive disease, in particular among ISM patients with multilineal KIT mutation (ISM-ML), these patients also showing a higher frequency of organomegalies, versus other ISM-ML patients. Of note, all ISM patients who progressed had increased IL6 plasma levels already at diagnosis. Our results indicate that SM patients display an altered plasma cytokine profile already at diagnosis, increased IL6 plasma levels emerging as an early marker for disease progression among ISM cases, in particular among high-risk ISM patients who carry multilineage KIT mutation. PMID:26153655

  8. IL-6 modulates hepatocyte proliferation via induction of HGF/p21{sup cip1}: Regulation by SOCS3

    SciTech Connect

    Sun Rui; Jaruga, Barbara; Kulkarni, Shailin; Sun Haoyu; Gao Bin . E-mail: bgao@mail.nih.gov

    2005-12-30

    The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21{sup cip1} protein expression in primary mouse hepatocytes. Disruption of the p21{sup cip1} gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21{sup cip1} protein expression and a slightly stronger inhibition of cell proliferation in SOCS3{sup +/-} mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3{sup +/-} mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21{sup cip1}-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.

  9. IL-6/STAT3/TFF3 signaling regulates human biliary epithelial cell migration and wound healing in vitro.

    PubMed

    Jiang, Gui-xing; Zhong, Xiang-yu; Cui, Yun-fu; Liu, Wei; Tai, Sheng; Wang, Zhi-dong; Shi, Yu-guang; Zhao, Shi-yong; Li, Chun-long

    2010-12-01

    Interleukin-6 (IL-6), through activation of the signal transducer and activator of transcription 3 (STAT3) and trefoil factor family 3 (TFF3), has been implicated in the promotion of mouse biliary epithelial cell (BEC) proliferation and migration. However, it is still unclear whether the IL-6/STAT3/TFF3 signaling had similar effects on human BECs. Here, we showed that exposure of human BECs to recombinant IL-6 resulted in STAT3 phosphorylation and increased the expression of TFF3 at both mRNA and protein levels. Moreover, inhibition of STAT3 using RNA interference significantly abrogated IL-6-induced TFF3 expression. In an in-vitro wound healing model, IL-6 facilitated human BEC migration. This promotion of cell migration by IL-6 was blocked when STAT3 was knocked down. Interestingly, the addition of exogenous TFF3 could rescue the cell migration defects caused by STAT3 silencing. In conclusion, our data indicate that STAT3 plays a critical role in IL-6-induced TFF3 expression in human BECs and the IL-6/STAT3/TFF3 signaling is involved in human BEC migration and wound healing.

  10. Micro-concentration Lipopolysaccharide as a Novel Stimulator of Megakaryocytopoiesis that Synergizes with IL-6 for Platelet Production

    PubMed Central

    Wu, Di; Xie, Jun; Wang, Xuejun; Zou, Bingcheng; Yu, Yin; Jing, Tao; Zhang, Songmei; Zhang, Qing

    2015-01-01

    Lipopolysaccharide (LPS) induces platelet activation and enhances platelet sensitivity to aggregation, which might alter platelet counts. We found that serial doses of micro-concentration LPS significantly increased the platelet count in mice treated with kanamycin, along with increased expression of IL-6 compared with IL-3 and TPO in megakaryocytes obtained from the mouse bone morrow following LPS administration. Furthermore, LPS at lower levels ranging plus IL-6 effectively stimulated CFU-MK formation and increased CD41 expression and megakaryocyte polyploidization. Meanwhile, there was a sustained rise in the percentage of reticulated platelets in the whole blood in response to low-dosage LPS combined with IL-6. In vivo experiments also demonstrated that the administration of LPS combined with IL-6 substantially enhanced the number of circulating platelets in normal and thrombocytopenic mice. Notably, the optimal LPS concentration in combination with IL-6 might be a novel stimulator of TLR4 and IL-6R expression in Dami cell lines, which initially occurs through TLR4-IL-6R crosstalk and then involves the activation of NF-κB and phosphorylation of p38 MAPK. These data suggest a new paradigm for the regulation of megakaryocytopoiesis and platelet production via a synergistic effect of LPS and IL-6, which has the potential to be used for the design of new therapies. PMID:26330186

  11. Pivotal role of IL-6 in the hyperinflammatory responses to subacute ozone in adiponectin-deficient mice

    PubMed Central

    Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.

    2013-01-01

    Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131

  12. Contribution of Fibroblast and Mast Cell (Afferent) and Tumor (Efferent) IL-6 Effects within the Tumor Microenvironment.

    PubMed

    Hugo, Honor J; Lebret, Stephanie; Tomaskovic-Crook, Eva; Ahmed, Nuzhat; Blick, Tony; Newgreen, Donald F; Thompson, Erik W; Ackland, M Leigh

    2012-04-01

    Hyperactive inflammatory responses following cancer initiation have led to cancer being described as a 'wound that never heals'. These inflammatory responses elicit signals via NFκB leading to IL-6 production, and IL-6 in turn has been shown to induce epithelial to mesenchymal transition in breast cancer cells in vitro, implicating a role for this cytokine in cancer cell invasion. We previously have shown that conditioned medium derived from cancer-associated fibroblasts induced an Epithelial to Mesenchymal transition (EMT) in PMC42-LA breast cancer cells and we have now identify IL-6 as present in this medium. We further show that IL-6 is expressed approximately 100 fold higher in a cancer-associated fibroblast line compared to normal fibroblasts. Comparison of mouse-specific (stroma) and human-specific (tumor) IL-6 mRNA expression from MCF-7, MDA MB 468 and MDA MB 231 xenografts also indicated the stroma rather than tumor as a significantly higher source of IL-6 expression. Mast cells (MCs) feature in inflammatory cancer-associated stroma, and activated MCs secrete IL-6. We observed a higher MC index (average number of mast cells per xenograft section/average tumor size) in MDA MB 468 compared to MDA MB 231 xenografts, where all MC were observed to be active (degranulating). This higher MC index correlated with greater mouse-specific IL-6 expression in the MDA MB 468 xenografts, implicating MC as an important source of stromal IL-6. Furthermore, immunohistochemistry on these xenografts for pSTAT3, which lies downstream of the IL-6 receptor indicated frequent correlations between pSTAT3 and mast cell positive cells. Analysis of publically available databases for IL-6 expression in patient tissue revealed higher IL-6 in laser capture microdissected stroma compared to adjacent tissue epithelium from patients with inflammatory breast cancer (IBC) and invasive non-inflammatory breast cancer (non-IBC) and we show that IL-6 expression was significantly higher in Basal

  13. Correlation between manual muscle strength and interleukin-6 (IL-6) plasma levels in elderly community-dwelling women.

    PubMed

    Pereira, Leani Souza Máximo; Narciso, Fabrícia Mendes Silva; Oliveira, Daniela Matos Garcia; Coelho, Fernanda Matos; Souza, Danielle da Glória de; Dias, Rosângela Corrêa

    2009-01-01

    Sarcopenia is a loss of muscle mass related to aging and leads to muscle performance decline. An increase in inflammatory mediator levels, especially of IL-6, has been associated to reduced muscle strength in the elderly. The aim of the present cross-sectional study was to correlate IL-6 plasma levels with manual muscle strength (MMS) in 63 community-dwelling elderly women. (71.2+/-7.4years). IL-6 was measured using enzyme-linked immunosorbent assay (ELISA) and MMS was measured using the JAMAR dynamometer. Pearson's test was used to explore the relationship between the outcomes at the significance level of alpha=0.05. IL-6 levels (2.56+/-3.44pg/ml) and MMS (22.86+/-4.62kgf) exhibited an inverse correlation (r=-0.2673 and p=0.0373). The increase in IL-6 plasma levels possibly contributed toward the reduction in manual muscle strength among the elderly women studied.

  14. From CRP to IL-6 to IL-1: Moving Upstream To Identify Novel Targets for Atheroprotection

    PubMed Central

    Ridker, Paul M

    2016-01-01

    Plasma levels of the inflammatory biomarker high sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or HDL cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of LDL cholesterol. Yet, while hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to IL-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β producing NLRP3 inflammasome. Cholesterol crystals, neutrophil extracellular traps (NETs), atheroprone flow, and local tissue hypoxia activate the NLRP3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with no change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10,065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials employing alternative anti-inflammatory agents active against the CRP/IL-6/IL-1 axis including low dose methotrexate and colchicine are being explored. If successful

  15. miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes

    PubMed Central

    Makki, Mohammad Shahidul; Haqqi, Tariq M

    2015-01-01

    IL-6 is an inflammatory cytokine and its overexpression plays an important role in osteoarthritis (OA) pathogenesis. Expression of IL-6 is regulated post-transcriptionally by MCPIP1. The 3′ untranslated region (UTR) of MCPIP1 mRNA harbors a miR-139 ‘seed sequence', therefore we examined the post-transcriptional regulation of MCPIP1 by miR-139 and its impact on IL-6 expression in OA chondrocytes. Expression of miR-139 was found to be high in the damaged portion of the OA cartilage compared with unaffected cartilage from the same patient and was also induced by IL-1β in OA chondrocytes. Inhibition of miR-139 decreased the expression of IL-6 mRNA by 38% and of secreted IL-6 protein by 40%. However, overexpression of miR-139 increased the expression of IL-6 mRNA by 36% and of secreted IL-6 protein by 56%. These data correlated with altered expression profile of MCPIP1 in transfected chondrocytes. Studies with a luciferase reporter construct confirmed the interactions of miR-139 with the ‘seed sequence' located in the 3′ UTR of MCPIP mRNA. Furthermore, miR-139 overexpression increased the catabolic gene expression but expression of anabolic markers remained unchanged. Overexpression of miR-139 also induced apoptosis in OA chondrocytes. Importantly, we also discovered that IL-6 is a potent inducer of miR-139 expression in OA chondrocytes. These findings indicate that miR-139 functions as a post-transcriptional regulator of MCPIP1 expression and enhances IL-6 expression, which further upregulates miR-139 expression in OA chondrocytes. These results support our hypothesis that miR-139-mediated downregulation of MCPIP1 promotes IL-6 expression in OA. Therefore, targeting miR-139 could be therapeutically beneficial in the management of OA. PMID:26450708

  16. Interleukin-6 -174 promoter polymorphism does not influence IL-6 production after LPS and IL-1 beta stimulation in human umbilical cord vein endothelial cells.

    PubMed

    Kiszel, Petra; Makó, Veronika; Prohászka, Zoltán; Cervenak, László

    2007-10-01

    The IL-6 is a typical pleiotropic cytokine, which regulates T cell response, B cell differentiation and immunoglobulin production. Endothelial cells can produce large amounts of IL-6. SNP at position -174 (G/C) in the IL-6 promoter region was found to be associated with a series of complex diseases. In this study we analyzed whether IL-6 -174 G/C polymorphism has any effect on IL-6 production of in vitro cultured HUVECs. Thirty-three fresh umbilical cords were recruited from healthy pregnancies. The endothelial cells isolated from human umbilical cords were genotyped for IL-6 -174 SNP. C allele frequency was 0.379. The IL-6 production of each primary HUVEC line was measured after IL-1beta or LPS treatment by ELISA. Serial dilutions of the stimulating agents were applied and maximum amount of produced IL-6 (R(max)) and stimulator concentrations at half-maximal IL-6 response (MR(50)) were calculated for each of the cell lines. IL-6 production was not associated with IL-6 -174 SNP genotypes or with presence of C allele. Our results showed that IL-6 production of HUVEC after proinflammatory stimulation was not influenced by IL-6 -174 SNP. Further functional studies are required to compare differences and similarities in IL-6 -174 SNP dependent expression of IL-6 among various cell types.

  17. Ivy leaves dry extract EA 575® decreases LPS-induced IL-6 release from murine macrophages.

    PubMed

    Schulte-Michels, J; Runkel, F; Gokorsch, S; Häberlein, H

    2016-03-01

    IL-6 plays a key role in the course of inflammatory processes as well as in the regulation of immune responses by the release of different cytokines. IL-6 is produced e.g. by macrophages recruited to the airways in response to a variety of inflammatory stimuli like allergens and respiratory viruses. Patients with inflammatory airway diseases therefore may benefit from therapies targeting the IL-6 pathway, e.g. reduction of the IL-6 release. Within this context, we tested the influence of the ivy leaves dry extract EA 575® on the LPS-induced release of IL-6 from murine macrophages (J774.2). One point seven µg/ml (5 µM) corticosterone served as positive control and was able to reduce LPS-induced IL-6 release by 46 ± 4%. EA 575® was tested in concentrations between 40 and 400 µg/ml. EA 575® decreased the LPS-induced IL-6 release in a dose-dependent manner and statistically significant by 25 ± 4%, 32 ± 4%, and 40 ± 7% in concentrations of 80, 160, and 400 µg/ml, respectively. The present data suggest an anti-inflammatory effect of EA 575® used in therapy of chronic- and acute inflammatory airway diseases accompanied with cough. PMID:27183712

  18. Skeletal muscle IL-6 and regulation of liver metabolism during high-fat diet and exercise training.

    PubMed

    Knudsen, Jakob G; Joensen, Ella; Bertholdt, Lærke; Jessen, Henrik; van Hauen, Line; Hidalgo, Juan; Pilegaard, Henriette

    2016-05-01

    Interleukin (IL)-6 is released from skeletal muscle (SkM) during exercise and has been shown to affect hepatic metabolism. It is, however, unknown whether SkM IL-6 is involved in the regulation of exercise training-induced counteraction of changes in carbohydrate and lipid metabolism in the liver in response to high-fat diet (HFD) feeding. Male SkM-specific IL-6 KO (MKO) and Floxed mice were subjected to Chow diet, HFD or HFD combined with exercise training (HFD ExTr) for 16 weeks. Hepatic phosphoenolpyruvate carboxykinase (PEPCK) protein content decreased with both HFD and HFD ExTr in Floxed mice, but increased in IL-6 MKO mice on HFD In addition, the intrahepatic glucose concentration was in IL-6 MKO mice higher in HFD than chow. Within HFD ExTr mice, hepatic glucose-6-phosphatase (G6Pase) 36 kDa protein content was higher in IL-6 MKO than Floxed mice. Hepatic pyruvate dehydrogenase kinase (PDK) 4 and PDK2 protein content was in Floxed mice lower in HFD ExTr than Chow. In addition, hepatic ACC1-phosphorylation was higher and ACC1 protein lower in HFD Together this suggests that SkM IL-6 regulates hepatic glucose metabolism, but does not seem to be of major importance for the regulation of oxidative capacity or lipogenesis in liver during HFD or HFD combined with exercise training. PMID:27185906

  19. Cancer cachexia is mediated in part by the induction of IL-6-like cytokines from the spleen.

    PubMed

    Barton, B E; Murphy, T F

    2001-12-21

    The development of cancer cachexia has been linked to cytokines related to interleukin6 (IL-6). We examined the kinetics of IL-6, IL-11, oncostatinM (OSM) and leukaemia inhibitory factor (LIF) induction in the splenocytes of tumour-bearing mice. Using a lung carcinoma line, which grows in C57BL/6J mice, we observed that when the tumour grew and cachexia was observed, the splenocytes produced IL-6, IL-11, and OSM, but not LIF. Cytokine expression was observed within 1 week (day 3 for IL-6 and IL-11, and day 1 for OSM) of administration of tumour cells, and was observed in splenocytes without tumour metastases to the spleen. Cytokine expression preceded cachexia (determined by changes in serum triglyceride levels and decrease in epididymal fat-pad weights) development by over 1 week. Exogenous administration of IL-11 resulted in the accelerated onset of cachexia, compared to control protein treatment, but without an effect on the tumour burden. In vivo treatment with a neutralizing dose of anti-OSM antibody inhibited the triglyceride dysregulation only until the synthesis of IL-6 and IL-11 began in the spleen (day 3). Afterward, IL-6 and IL-11 induced lipid catabolism in the absence of functional OSM. We conclude from the data described above that cachexia developed due to a systemic cytokine response induced by a tumour burden, and that IL-6-like cytokines contributed independently to lipid hypercatabolism in the aetiology of cancer cachexia. PMID:11884029

  20. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement.

    PubMed

    Bharti, Rashmi; Dey, Goutam; Mandal, Mahitosh

    2016-05-28

    Interleukin-6 (IL-6) is a cytokine present in tumor microenvironment. Elevated level of IL-6 is associated with cancer cell proliferation, angiogenesis and metastasis through fueling STAT3, MAPK and Akt signaling. It promotes epithelial to mesenchymal transition (EMT) through altered expression of N-cadherin, vimentin, snail, twist and E-cadherin leading to cancer metastasis. IL-6 boosts mammosphere formation, self-renewal of stem cells, stemness properties of cancer cells and recruitment of mesenchymal stem cells. IL-6 is also a contributing factor for multidrug resistance in cancer due to gp130/MAPK/STAT3 mediated activation of transcription factors C/EBPβ/δ, overexpression of p-glycoprotein, EMT transition and expansion of stem cells. The in-depth investigation of IL-6 mediated cellular effects and its signaling pathway can provide the new window for future research and clinical development of IL-6 targeted therapy in cancer. Thus, an overview is delivered in this review deciphering the emerging aspect of the predominant influence of IL-6 in malignant transformation, EMT, cancer-associated stem cells and chemoresistance. PMID:26945971

  1. Meta-analysis of IL-6 -174G/C polymorphism and psoriasis risk.

    PubMed

    Nie, G; Xie, C L; Cao, Y J; Xu, M M; Shi, X; Zou, A L; Qi, J H

    2016-01-01

    Previous studies examining the association between interleukin-6 (IL-6) -174G/C polymorphism and psoriasis risk have produced inconsistent results. The aim of this study was to offer a comprehensive review of the association between IL-6 -174G/C polymorphism and psoriasis risk through a meta-analysis. Literature search of PubMed and Embase databases was conducted to identify all eligible studies published before October 29, 2015. Four case-control studies involving 651 psoriasis cases and 552 controls were included in this meta-analysis. Data were extracted, and pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the associations. Combined analysis revealed a significant association between this polymorphism and psoriasis risk under the recessive model (OR = 1.69, 95%CI = 1.12-2.55, P = 0.013 for GG vs GC + CC), and the heterozygous comparison model (OR = 1.70, 95%CI = 1.29-2.23, P < 0.001 for GG vs GC). However, no significant association was observed under the allelic model (OR = 1.37, 95%CI = 0.99-1.89, P = 0.060 for G vs C), the dominant model (OR = 1.25, 95%CI = 0.92-1.71, P = 0.152 for GG + GC vs CC), and the homozygote comparison model (OR = 1.62, 95%CI = 0.79-3.32, P = 0.186 for GG vs CC). We conclude that the IL-6 -174G/C polymorphism contributes to psoriasis risk. However, further studies should be performed to validate our results. PMID:27421005

  2. IL-1beta, IL-6 and IL-8 levels in gyneco-obstetric infections.

    PubMed Central

    Basso, Beatriz; Giménez, Francisco; López, Carlos

    2005-01-01

    OBJECTIVE: During pregnancy cytokines and inflammatory mediators stimulate the expression of prostaglandin, the levels of which determine the onset of labor. The aim of this work was to study interleukin IL-1beta, IL-6 and IL-8 levels in the vaginal discharge, serum and urine of pregnant women with genitourinary infection before and after specific treatment. One hundred and fifty-one patients were studied during the second or third trimester of their pregnancy. METHODS: The selected patients were: healthy or control group (n = 52), those with bacterial vaginosis (n = 47), those with vaginitis (n = 37), those with asymptomatic urinary infection (n = 15) and post-treatment. The level of cytokines was assayed by ELISA test. The Mann-Whitney U-test was used for statistical analysis. RESULTS: The IL-1beta levels in vaginal discharge were: control 103.5 +/- 24.2 pg/ml, bacterial vaginosis 1030 +/- 59.5, vaginitis 749.14 +/- 66.7l ( p < 0.0001), post-treatment 101.4 +/- 28.7. IL-6 values were similar in both control and infected groups, and there were no patients with chorioamnionitis. In vaginal discharge IL-6: control 14.2 +/- 3.9 pg/ml, bacterial vaginosis 13.2 +/- 3.8, vaginitis 13 +/- 4.2. IL-8 levels were: control 1643 +/- 130.3 pg/ml, bacterial vaginosis 2612.7 +/- 257.7, vaginitis 3437 +/- 460 (p < 0.0001), post-treatment 1693 +/- 126.6. In urine the results were: control 40.2 +/- 17 pg/ml, asymptomatic urinary infection 1200.7 +/- 375 (p < 0.0001). In patients with therapeutic success both IL-1beta and IL-8 returned to normal levels. CONCLUSIONS: Genitourinary infections induce a significant increase in IL-1beta and IL-8 levels in vaginal secretions, and IL-8 in urine as well. Both cytokines could be useful as evolutive markers of infection. PMID:16338780

  3. Common variants of IL6, LEPR, and PBEF1 are associated with obesity in Indian children.

    PubMed

    Tabassum, Rubina; Mahendran, Yuvaraj; Dwivedi, Om Prakash; Chauhan, Ganesh; Ghosh, Saurabh; Marwaha, Raman K; Tandon, Nikhil; Bharadwaj, Dwaipayan

    2012-03-01

    The increasing prevalence of obesity in urban Indian children is indicative of an impending crisis of metabolic disorders. Although perturbations in the secretion of adipokines and inflammatory molecules in childhood obesity are well documented, the contribution of common variants of genes encoding them is not well investigated. We assessed the association of 125 common variants from 21 genes, encoding adipocytokines and inflammatory markers in 1,325 urban Indian children (862 normal weight [NW group] and 463 overweight/obese [OW/OB group]) and replicated top loci in 1,843 Indian children (1,399 NW children and 444 OW/OB children). Variants of four genes (PBEF1 [rs3801266] [P = 4.5 × 10(-4)], IL6 [rs2069845] [P = 8.7 × 10(-4)], LEPR [rs1137100] [P = 1.8 × 10(-3)], and IL6R [rs7514452] [P = 2.1 × 10(-3)]) were top signals in the discovery sample. Associations of rs2069845, rs1137100, and rs3801266 were replicated (P = 7.9 × 10(-4), 8.3 × 10(-3), and 0.036, respectively) and corroborated in meta-analysis (P = 2.3 × 10(-6), 3.9 × 10(-5), and 4.3 × 10(-4), respectively) that remained significant after multiple testing corrections. These variants also were associated with quantitative measures of adiposity (weight, BMI, and waist and hip circumferences). Allele dosage analysis of rs2069845, rs1137100, and rs3801266 revealed that children with five to six risk alleles had an approximately four times increased risk of obesity than children with less than two risk alleles (P = 1.2 × 10(-7)). In conclusion, our results demonstrate the association of the common variants of IL6, LEPR, and PBEF1 with obesity in Indian children.

  4. Cellular senescence or EGFR signaling induces Interleukin 6 (IL-6) receptor expression controlled by mammalian target of rapamycin (mTOR)

    PubMed Central

    Garbers, Christoph; Kuck, Fabian; Aparicio-Siegmund, Samadhi; Konzak, Kirstin; Kessenbrock, Mareike; Sommerfeld, Annika; Häussinger, Dieter; Lang, Philipp A; Brenner, Dirk; Mak, Tak W.; Rose-John, Stefan; Essmann, Frank; Schulze-Osthoff, Klaus; Piekorz, Roland P; Scheller, Jürgen

    2013-01-01

    Interleukin 6 (IL-6) signaling plays a role in inflammation, cancer, and senescence. Here, we identified soluble IL-6 receptor (sIL-6R) as a member of the senescence-associated secretory phenotype (SASP). Senescence-associated sIL-6R upregulation was mediated by mammalian target of rapamycin (mTOR). sIL-6R was mainly generated by a disintegrin and metalloprotease 10 (ADAM10)-dependent ectodomain shedding to enable IL-6 trans-signaling. In vivo, heterozygous PTEN-knockout mice exhibited higher mTOR activity and increased sIL-6R levels. Moreover, aberrant EGF receptor (EGFR) activation triggered IL-6 synthesis. In analogy to senescence, EGFR-induced activation of mTOR also induced IL-6R expression and sIL-6R generation. Hence, mTOR activation reprograms IL-6 non-responder cells into IL-6 responder cells. Our data suggest that mTOR serves as a central molecular switch to facilitate cellular IL-6 classic and trans-signaling via IL-6R upregulation with direct implications for cellular senescence and tumor development. PMID:24047696

  5. IL-6-Producing, Noncatecholamines Secreting Pheochromocytoma Presenting as Fever of Unknown Origin.

    PubMed

    Ciacciarelli, Marco; Bellini, Davide; Laghi, Andrea; Polidoro, Alessandro; Pacelli, Antonio; Bottaccioli, Anna Giulia; Palmaccio, Giuseppina; Stefanelli, Federica; Clemenzi, Piera; Carini, Luisa; Iuliano, Luigi; Alessandri, Cesare

    2016-01-01

    Fever of unknown origin (FUO) can be an unusual first clinical manifestation of pheochromocytoma. Pheochromocytomas are tumors that may produce a variety of substances in addition to catecholamines. To date, several cases of IL-6-producing pheochromocytomas have been reported. This report describes a 45-year-old woman with pheochromocytoma who was admitted with FUO, normal blood pressure levels, microcytic and hypochromic anemia, thrombocytosis, hyperfibrinogenemia, hypoalbuminemia, and normal levels of urine and plasma metanephrines. After adrenalectomy, fever and all inflammatory findings disappeared. PMID:27579040

  6. IL-6-Producing, Noncatecholamines Secreting Pheochromocytoma Presenting as Fever of Unknown Origin

    PubMed Central

    Bellini, Davide; Laghi, Andrea; Polidoro, Alessandro; Pacelli, Antonio; Bottaccioli, Anna Giulia; Palmaccio, Giuseppina; Stefanelli, Federica; Clemenzi, Piera; Carini, Luisa; Alessandri, Cesare

    2016-01-01

    Fever of unknown origin (FUO) can be an unusual first clinical manifestation of pheochromocytoma. Pheochromocytomas are tumors that may produce a variety of substances in addition to catecholamines. To date, several cases of IL-6-producing pheochromocytomas have been reported. This report describes a 45-year-old woman with pheochromocytoma who was admitted with FUO, normal blood pressure levels, microcytic and hypochromic anemia, thrombocytosis, hyperfibrinogenemia, hypoalbuminemia, and normal levels of urine and plasma metanephrines. After adrenalectomy, fever and all inflammatory findings disappeared. PMID:27579040

  7. Eudesmane-type sesquiterpenoids from Salvia plebeia inhibit IL-6-induced STAT3 activation.

    PubMed

    Jang, Hyun-Jae; Oh, Hyun-Mee; Hwang, Joo Tae; Kim, Mi-Hwa; Lee, Soyoung; Jung, Kyungsook; Kim, Young-Ho; Lee, Seung Woong; Rho, Mun-Chual

    2016-10-01

    Seven eudesmane-type sesquiterpenoid lactones and the known plebeiolide C were isolated from an ethanol-soluble extract of the aerial parts of Salvia plebeia R. Br. Their structures were determined via NMR and MS, and their absolute configurations were elucidated using ECD, and X-ray crystallographic analysis, as well as the modified Mosher ester method. All isolates were evaluated for their inhibitory effects on IL6-induced STAT3 promoter activation in stably transfected Hep3B cells. Of these isolates, eudebeiolide D exhibited an inhibitory effect with the IC50 value of 1.1 μM. PMID:27506573

  8. The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II

    PubMed Central

    Manhiani, M Marlina; Seth, Dale M; Banes-Berceli, Amy K L; Satou, Ryosuke; Navar, L Gabriel; Brands, Michael W

    2015-01-01

    Angiotensin II (AngII) is a critical physiologic regulator of volume homeostasis and mean arterial pressure (MAP), yet it also is known to induce immune mechanisms that contribute to hypertension. This study determined the role of interleukin-6 (IL-6) in the physiologic effect of AngII to maintain normal MAP during low-salt (LS) intake, and whether hypertension induced by plasma AngII concentrations measured during LS diet required IL-6. IL-6 knockout (KO) and wild-type (WT) mice were placed on LS diet for 7 days, and MAP was measured 19 h/day with telemetry. MAP was not affected by LS in either group, averaging 101 ± 4 and 100 ± 4 mmHg in WT and KO mice, respectively, over the last 3 days. Seven days of ACEI decreased MAP ∼25 mmHg in both groups. In other KO and WT mice, AngII was infused at 200 ng/kg per minute to approximate plasma AngII levels during LS. Surgical reduction of kidney mass and high-salt diet were used to amplify the blood pressure effect. The increase in MAP after 7 days was not different, averaging 20 ± 5 and 22 ± 6 mmHg in WT and KO mice, respectively. Janus Kinase 2 (JAK2)/signal transducer of activated transcription (STAT3) phosphorylation were not affected by LS, but were increased by AngII infusion at 200 and 800 ng/kg per minute. These data suggest that physiologic levels of AngII do not activate or require IL-6 to affect blood pressure significantly, whether AngII is maintaining blood pressure on LS diet or causing blood pressure to increase. JAK2/STAT3 activation, however, is tightly associated with AngII hypertension, even when caused by physiologic levels of AngII. PMID:26486161

  9. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity

    PubMed Central

    Bester, Janette; Pretorius, Etheresia

    2016-01-01

    Complex interactions exist between cytokines, and the interleukin family plays a fundamental role in inflammation. Particularly circulating IL-1β, IL-6 and IL-8 are unregulated in systemic and chronic inflammatory conditions. Hypercoagulability is an important hallmark of inflammation, and these cytokines are critically involved in abnormal clot formation, erythrocyte pathology and platelet hyper-activation, and these three cytokines have known receptors on platelets. Although these cytokines are always unregulated in inflammation, we do not know how the individual cytokines act upon the structure of erythrocytes and platelets, and which of the viscoelastic clot parameters are changed. Here we study the effects of IL-1β, IL-6 and IL-8 at low physiological levels, representative of chronic inflammation, by using scanning electron microscopy and thromboelastography. All three interleukins caused the viscoelastic properties to display an increased hypercoagulability of whole blood and pathology of both erythrocytes and platelets. The most pronounced changes were noted where all three cytokines caused platelet hyper-activation and spreading. Erythrocyte structure was notably affected in the presence of IL-8, where the morphological changes resembled that typically seen in eryptosis (programmed cell death). We suggest that erythrocytes and platelets are particularly sensitive to cytokine presence, and that they are excellent health indicators. PMID:27561337

  10. Active and passive smoking, IL6, ESR1, and breast cancer risk

    PubMed Central

    Curtin, Karen; Giuliano, Anna R.; Sweeney, Carol; Baumgartner, Richard; Edwards, Sandra; Wolff, Roger K.; Baumgartner, Kathy B.; Byers, Tim

    2008-01-01

    We evaluated the association between smoking and risk of breast cancer in non-Hispanic white (NHW) and Hispanic or American Indian (HAI) women living in the Southwestern United States. Data on lifetime exposure to active and passive smoke data were available from 1527 NHW cases and 1601 NHW controls; 798 HAI cases and 924 HAI controls. Interleukin 6 (IL6) and Estrogen Receptor alpha (ESR1) polymorphisms were assessed in conjunction with smoking. Pack-years of smoking (≥15) were associated with increased risk of pre-menopausal breast cancer among NHW women (OR 1.6, 95% CI 1.1–2. 4). Passive smoke increased risk of pre-menopausal breast cancer for HAI women (OR 1.9, 95% CI 1.1–3.1 everyone; OR 2.3, 95% CI 1.2–4.5 nonsmokers). HAI pre-menopausal women who were exposed to 10+ h of passive smoke per week and had the rs2069832 IL6 GG genotype had over a fourfold increased risk of breast cancer (OR 4.4, 95% CI 1.5–12.8; P for interaction 0.01). Those with the ESR1 Xba1 AA genotype had a threefold increased risk of breast cancer if they smoked ≥15 pack-years relative to non-smokers (P interaction 0.01). These data suggest that breast cancer risk is associated with active and passive smoking. PMID:17594514

  11. A2B Adenosine Receptor–Mediated Induction of IL-6 Promotes CKD

    PubMed Central

    Dai, Yingbo; Zhang, Weiru; Wen, Jiaming; Zhang, Yujin; Kellems, Rodney E.

    2011-01-01

    Chronic elevation of adenosine, which occurs in the setting of repeated or prolonged tissue injury, can exacerbate cellular dysfunction, suggesting that it may contribute to the pathogenesis of CKD. Here, mice with chronically elevated levels of adenosine, resulting from a deficiency in adenosine deaminase (ADA), developed renal dysfunction and fibrosis. Both the administration of polyethylene glycol–modified ADA to reduce adenosine levels and the inhibition of the A2B adenosine receptor (A2BR) attenuated renal fibrosis and dysfunction. Furthermore, activation of A2BR promoted renal fibrosis in both mice infused with angiotensin II (Ang II) and mice subjected to unilateral ureteral obstruction (UUO). These three mouse models shared a similar profile of profibrotic gene expression in kidney tissue, suggesting that they share similar signaling pathways that lead to renal fibrosis. Finally, both genetic and pharmacologic approaches showed that the inflammatory cytokine IL-6 mediates adenosine-induced renal fibrosis downstream of A2BR. Taken together, these data suggest that A2BR-mediated induction of IL-6 contributes to renal fibrogenesis and shows potential therapeutic targets for CKD. PMID:21511827

  12. Lemongrass effects on IL-1beta and IL-6 production by macrophages.

    PubMed

    Sforcin, J M; Amaral, J T; Fernandes, A; Sousa, J P B; Bastos, J K

    2009-01-01

    Cymbopogon citratus has been widely recognised for its ethnobotanical and medicinal usefulness. Its insecticidal, antimicrobial and therapeutic properties have been reported, but little is known about its effect on the immune system. This work aimed to investigate the in vivo effect of a water extract of lemongrass on pro-inflammatory cytokine (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of lemongrass essential oil on cytokine production by macrophages was also analysed in vitro. The chemical composition of the extract and the oil was also investigated. Treatment of mice with water extract of lemongrass inhibited macrophages to produce IL-1beta but induced IL-6 production by these cells. Lemongrass essential oil inhibited the cytokine production in vitro. Linalool oxide and epoxy-linalool oxide were found to be the major components of lemongrass water extract, and neral and geranial were the major compounds of its essential oil. Taken together, these data suggest an anti-inflammatory action of this natural product.

  13. Thrombin stimulates IL-6 and IL-8 expression in cytomegalovirus-infected human retinal pigment epithelial cells.

    PubMed

    Scholz, Martin; Vogel, Jens-Uwe; Höver, Gerold; Kotchetkov, Ruslan; Cinatl, Jaroslav; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2004-02-01

    Recently, we reported that thrombin specifically stimulates protease-activated receptor-1 (PAR-1) signaling in RPE entailing inhibition of Sp1 dependent HCMV replication. We now studied whether thrombin modulates the expression of the proinflammatory cytokine/chemokines IL-6 and IL-8 in mock- and cytomegalovirus-infected human retinal pigment epithelial cells (RPE). Our data show that thrombin/PAR-1 stimulates IL-6 and IL-8 gene transcription and protein secretion in both mock- and HCMV-infected RPE. Thrombin/PAR-1-mediated signaling stimulated PKC and NF-kappaB-dependent IL-6 and IL-8 gene expression via phosphoinositide 3-kinase and further downstream via p42/44 and p38 MAPKs. Thus, thrombin/PAR-1-mediated IL-6/IL-8 gene expression is uncoupled from Sp1 inhibition and may support proinflammatory pathomechanisms probably involved in hemorrhage/HCMV retinitis progression.

  14. Hormonal-receptor positive breast cancer: IL-6 augments invasion and lymph node metastasis via stimulating cathepsin B expression.

    PubMed

    Ibrahim, Sherif A; El-Ghonaimy, Eslam A; Hassan, Hebatallah; Mahana, Noha; Mahmoud, Mahmoud Abdelbaky; El-Mamlouk, Tahani; El-Shinawi, Mohamed; Mohamed, Mona M

    2016-09-01

    Hormonal-receptor positive (HRP) breast cancer patients with positive metastatic axillary lymph nodes are characterized by poor prognosis and increased mortality rate. The mechanisms by which cancer cells invade lymph nodes have not yet been fully explored. Several studies have shown that expression of IL-6 and the proteolytic enzyme cathepsin B (CTSB) was associated with breast cancer poor prognosis. In the present study, the effect of different concentrations of recombinant human IL-6 on the invasiveness capacity of HRP breast cancer cell line MCF-7 was tested using an in vitro invasion chamber assay. The impact of IL-6 on expression and activity of CTSB was also investigated. IL-6 treatment promoted the invasiveness potential of MCF-7 cells in a dose-dependent manner. Furthermore, MCF-7 cells displayed elevated CTSB expression and activity associated with loss of E-cadherin and upregulation of vimentin protein levels upon IL-6 stimulation. To validate these results in vivo, the level of expression of IL-6 and CTSB in the carcinoma tissues of HRP-breast cancer patients with positive and negative axillary metastatic lymph nodes (pLNs and nLNs) was assessed. Western blot and immunohistochemical staining data showed that expression of IL-6 and CTSB was higher in carcinoma tissues in HRP-breast cancer with pLNs than those with nLNs patients. ELISA results showed carcinoma tissues of HRP-breast cancer with pLNs exhibited significantly elevated IL-6 protein levels by approximately 2.8-fold compared with those with nLNs patients (P < 0.05). Interestingly, a significantly positive correlation between IL-6 and CTSB expression was detected in clinical samples of HRP-breast cancer patients with pLNs (r = 0.78, P < 0.01). Collectively, this study suggests that IL-6-induced CTSB may play a role in lymph node metastasis, and that may possess future therapeutic implications for HRP-breast cancer patients with pLNs. Further studies are necessary to fully identify IL-6/CTSB

  15. Lack of association between IL-1 and IL-6 gene polymorphisms and myocardial infarction in Turkish population.

    PubMed

    Coker, A; Arman, A; Soylu, O; Tezel, T; Yildirim, A

    2011-06-01

    Inflammation and genetics play a key role in the pathogenesis of atherosclerosis and its clinical result myocardial infarction (MI). Proinflammatory cytokines, IL-1 and IL-6, have been shown to play essential roles in developmental stages of coronary artery plaque formation. The aim of this study was to determine the association between IL-1 [IL-1RN, IL-1β (-511, +3953)], IL-6 [-174, -572, -597] gene polymorphisms and MI in Turkish population. A total of 402 people were participated; 235 healthy control subjects and 167 MI patients (MI<40, n: 72; MI>40, n: 95). Polymerase chain reaction (PCR) was used to determine the genotype of IL-1RN, whereas the genotypes of IL-1β (-511, +3953) and IL-6 (-174, -572, -597) were determined using PCR followed with restriction digestion analysis. There was no significant difference between MI and controls for IL-1RN, IL-1β-511, +3953 (P: 0.875, 0.608, 0.442) and IL-6 -174, -572, -597 (P: 0.977, 0.632, 0.584) gene polymorphisms. Lack of association was observed between MI at younger age (MI<40) and either IL-1RN VNTR, IL-1β-511, +3953 (P: 0.878, 0.732, 0.978) or IL-6 -174, -572, -597 (P: 0.313, 0.654, 0.552) gene polymorphisms. This study demonstrated that there was not any association between IL-1, IL-6 gene variants and MI in Turkish population. In addition, IL-1 and IL-6 gene polymorphisms did not affect MI at younger age (MI<40) or older age (MI>40). Thus, IL-1 and IL-6 single nucleotide polymorphisms may not be a risk factor for susceptibility to MI in Turkish population.

  16. An affibody-adalimumab hybrid blocks combined IL-6 and TNF-triggered serum amyloid A secretion in vivo

    PubMed Central

    Yu, Feifan; Gudmundsdotter, Lindvi; Akal, Anastassja; Gunneriusson, Elin; Frejd, Fredrik; Nygren, Per-Åke

    2014-01-01

    In inflammatory disease conditions, the regulation of the cytokine system is impaired, leading to tissue damages. Here, we used protein engineering to develop biologicals suitable for blocking a combination of inflammation driving cytokines by a single construct. From a set of interleukin (IL)-6-binding affibody molecules selected by phage display, five variants with a capability of blocking the interaction between complexes of soluble IL-6 receptor α (sIL-6Rα) and IL-6 and the co-receptor gp130 were identified. In cell assays designed to analyze any blocking capacity of the classical or the alternative (trans) signaling IL-6 pathways, one variant, ZIL-6_13 with an affinity (KD) for IL-6 of ∼500 pM, showed the best performance. To construct fusion proteins (“AffiMabs”) with dual cytokine specificities, ZIL-6_13 was fused to either the N- or C-terminus of both the heavy and light chains of the anti-tumor necrosis factor (TNF) monoclonal antibody adalimumab (Humira®). One AffiMab construct with ZIL-6_13 positioned at the N-terminus of the heavy chain, denoted ZIL-6_13-HCAda, was determined to be the most optimal, and it was subsequently evaluated in an acute Serum Amyloid A (SAA) model in mice. Administration of the AffiMab or adalimumab prior to challenge with a mix of IL-6 and TNF reduced the levels of serum SAA in a dose-dependent manner. Interestingly, the highest dose (70 mg/kg body weight) of adalimumab only resulted in a 50% reduction of SAA-levels, whereas the corresponding dose of the ZIL-6_13-HCAda AffiMab with combined IL-6/TNF specificity, resulted in SAA levels below the detection limit. PMID:25484067

  17. A high-fat diet increases IL-1, IL-6, and TNF-α production by increasing NF-κB and attenuating PPAR-γ expression in bone marrow mesenchymal stem cells.

    PubMed

    Cortez, Mayara; Carmo, Luciana Simão; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-04-01

    It is well established that a high-fat diet (HFD) can lead to overweight and ultimately to obesity, as well as promoting low-grade chronic inflammation associated with increased levels of such mediators as TNF-α, IL-1, and IL-6. Bone marrow mesenchymal stem cells (MSCs), which are involved in hematopoietic niches and microenvironments, can be affected by these cytokines, resulting in induction of NF-κB and inhibition of PPAR-γ. Because this phenomenon could ultimately lead to suppression of bone marrow adipogenesis, we set out to investigate the effect of an HFD on the expression of PPAR-γ and NF-κB, as well as the production of IL-1, IL-6, and TNF-α in MSCs. Two-month-old male Wistar rats were fed a HFD diet and evaluated by means of leukograms and myelograms along with blood total cholesterol, triglyceride, and C-reactive protein levels. MSCs were isolated, and PPAR-γ and NF-κB were quantified, as well as IL-1, IL-6, and TNF-α production. Animals that were fed a HFD showed higher levels of blood total cholesterol, triglycerides, and C-reactive protein with leukocytosis and bone marrow hyperplasia. MSCs from HFD animals showed increased production of IL-1, IL-6, and TNF-α and increased NF-κB and reduced PPAR-γ expression. Therefore, ingestion of an HFD induces alterations in MSCs that may influence modulation of hematopoiesis.

  18. Anger Is Associated with Increased IL-6 Stress Reactivity in Women, But Only Among Those Low in Social Support

    PubMed Central

    O’Donovan, Aoife; Prather, Aric A.; Aschbacher, Kirstin

    2015-01-01

    Background Social connections moderate the effects of high negative affect on health. Affective states (anger, fear, and anxiety) predict interleukin-6 (IL-6) reactivity to acute stress; in turn, this reactivity predicts risk of cardiovascular disease progression. Purpose Here, we examined whether perceived social support mitigates the relationship between negative affect and IL-6 stress reactivity. Method Forty-eight postmenopausal women completed a standardized mental lab stressor with four blood draws at baseline and 30, 50, and 90 min after the onset of the stressor and anger, anxiety, and fear were assessed 10 min after task completion. Participants self-rated levels of social support within a week prior to the stressor. Results Only anger was related to IL-6 stress reactivity—those experiencing high anger after the stressor had significant increases in IL-6. IL-6 reactivity was marginally associated with perceived support, but more strikingly, perceived support mitigated anger associations with IL-6 stress reactivity. Conclusion Supportive ties can dampen the relationship of anger to pro-inflammatory reactivity to acute stress. Implications to cardiovascular disease are discussed. PMID:24357433

  19. Inactivation of the IL-6 gene prevents development of multicentric Castleman's disease in C/EBP beta-deficient mice

    PubMed Central

    1996-01-01

    Castleman's disease is a lymphoproliferative disorder thought to be related to deregulated production of IL-6. We have previously shown that mice lacking the trans-acting factor C/EBP beta, a transcriptional regulator of IL-6 and a mediator of IL-6 intracellular signaling, develop a pathology nearly identical to multicentric Castleman's disease, together with increasingly high levels of circulating IL-6. We describe here how the simultaneous inactivation of both IL-6 and C/EBP beta genes prevents the development of pathological traits of Castleman's disease observed in C/EBP beta-deficient mice. Histological and phenotypic analysis of lymph nodes and spleen of double mutant mice did not show either the lymphoadenopathy and splenomegaly or the abnormal expansion of myeloid, B and plasma cell compartments observed in C/EBP beta-/- mice, while B cell development, although delayed, was normal. Our data demonstrate that IL-6 is essential for the development of multicentric Castleman's disease in C/EBP beta-/- mice. PMID:8879230

  20. IL-6 Antibody and RGD Peptide Conjugated Poly(amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells.

    PubMed

    Mekuria, Shewaye Lakew; Debele, Tilahun Ayane; Chou, Hsiao-Ying; Tsai, Hsieh-Chih

    2016-01-14

    In this study, PAMAM dendrimer (G4.5) was conjugated with two targeting moieties, IL-6 antibody and RGD peptide (G4.5-IL6 and G4.5-RGD conjugates). Doxorubicin anticancer drug was physically loaded onto G4.5-IL6 and G4.5-RGD with the encapsulation efficiency of 51.3 and 30.1% respectively. The cellular internalization and uptake efficiency of G4.5-IL6/DOX and G4.5-RGD/DOX complexes was observed and compared by confocal microscopy and flow cytometry using HeLa cells, respectively. The lower IC50 value of G4.5-IL6/DOX in comparison to G4.5-RGD/DOX is indication that higher drug loading and faster drug release rate corresponded with greater cytotoxicity. The cytotoxic effect was further verified by increment in late apoptotic/necrotic cells due to delivery of drug through receptor-mediated endocytosis. On the basis of these results, G4.5-IL6 is a better suited carrier for targeted drug delivery of DOX to cervical cancer cells. PMID:26670944

  1. Relationships of Urinary VEGF/CR and IL-6/CR with Glomerular Pathological Injury in Asymptomatic Hematuria Patients

    PubMed Central

    Ma, Lu; Gao, Yinghe; Chen, Guanglei; Gong, Junhua; Yang, Dan; Xie, Yongxin; Wang, Mingcui; Chen, Hong; Song, Minghui

    2015-01-01

    Background Interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) have important functions in injury and repair processes of glomerular intrinsic cells. A study was conducted to analyze the urinary VEGF/creatinine (CR) and IL-6/CR levels in simple hematuria patients after excluding the interference of creatinine. We aimed to investigate the function and relationships of the above indices in the glomerular pathological injury process, and to elaborate the values of urinary VEGF and IL-6 changes in the diagnosis of asymptomatic hematuria or hematuria with proteinuria. Material/Methods A total of 121 renal hematuria patients diagnosed by clinical and laboratory tests were included as research subjects. The midstream fresh morning urine was collected on the day renal biopsy was performed. Results The IL-6/CR value of the group III was significantly greater than in group I (Z=−2.478, P<0.05), with a statistically significant difference between these 2 groups. The VEGF/CR value of group III was significantly greater than in group II (P<0.01). Compared with group I, the VEGF/CR of group III was significantly greater (Z=−4.65, P<0.01), with a statistically significant difference. Conclusions The VEGF/CR and IL-6/CR values in simple hematuria patients were positively correlated with glomerular pathological injury scores. VEGF/CR and IL-6/CR might be used as biological diagnostic indicators in determining the extent of simple hematuria glomerular injury. PMID:25634015

  2. Selective, α2β1 Integrin-Dependent Secretion of IL-6 by Connective Tissue Mast Cells

    PubMed Central

    McCall-Culbreath, Karissa D.; Li, Zhengzhi; Zhang, Zhonghua; Lu, Lucy X.; Orear, Lynda; Zutter, Mary M.

    2011-01-01

    Mast cells, critical mediators of inflammation and anaphylaxis, are poised as one of the first lines of defense against external assault. Mast cells release several classes of preformed and de novo synthesized mediators. Cross-linking of the high-affinity Fc∊RI results in degranulation and the release of preformed, proinflammatory mediators including histamine and serotonin. We previously demonstrated that mast cell activation by Listeria monocytogenes requires the α2β1 integrin for rapid IL-6 secretion both in vivo and in vitro. However, the mechanism of IL-6 release is unknown. Here, we demonstrate the Listeria- and α2β1 integrin-mediated mast cell release of preformed IL-6 without the concomitant release of histamine or β-hexosaminidase. α2β1 integrin-dependent mast cell activation and IL-6 release is calcium independent. In contrast, IgE cross-linking-mediated degranulation is calcium dependent and does not result in IL-6 release, demonstrating that distinct stimuli result in the release of specific mediator pools. These studies demonstrate that IL-6 is presynthesized and stored in connective tissue mast cells and can be released from mast cells in response to distinct, α2β1 integrin-dependent stimulation, providing the host with a specific innate immune response without stimulating an allergic reaction. Copyright © 2011 S. Karger AG, Basel PMID:21502744

  3. Selective, α2β1 integrin-dependent secretion of il-6 by connective tissue mast cells.

    PubMed

    McCall-Culbreath, Karissa D; Li, Zhengzhi; Zhang, Zhonghua; Lu, Lucy X; Orear, Lynda; Zutter, Mary M

    2011-01-01

    Mast cells, critical mediators of inflammation and anaphylaxis, are poised as one of the first lines of defense against external assault. Mast cells release several classes of preformed and de novo synthesized mediators. Cross-linking of the high-affinity FcεRI results in degranulation and the release of preformed, proinflammatory mediators including histamine and serotonin. We previously demonstrated that mast cell activation by Listeria monocytogenes requires the α2β1 integrin for rapid IL-6 secretion both in vivo and in vitro. However, the mechanism of IL-6 release is unknown. Here, we demonstrate the Listeria- and α2β1 integrin-mediated mast cell release of preformed IL-6 without the concomitant release of histamine or β-hexosaminidase. α2β1 integrin-dependent mast cell activation and IL-6 release is calcium independent. In contrast, IgE cross-linking-mediated degranulation is calcium dependent and does not result in IL-6 release, demonstrating that distinct stimuli result in the release of specific mediator pools. These studies demonstrate that IL-6 is presynthesized and stored in connective tissue mast cells and can be released from mast cells in response to distinct, α2β1 integrin-dependent stimulation, providing the host with a specific innate immune response without stimulating an allergic reaction.

  4. S-Propargyl-Cysteine, a Novel Hydrogen Sulfide Donor, Inhibits Inflammatory Hepcidin and Relieves Anemia of Inflammation by Inhibiting IL-6/STAT3 Pathway.

    PubMed

    Wang, Minjun; Tang, Wenbo; Xin, Hong; Zhu, Yi Zhun

    2016-01-01

    Anemia of inflammation (AI) is clinically prevalent and greatly threatens public health. Traditional remedies have raised controversy during clinical practice, calling for alternative therapies. We have recently found that hydrogen sulfide (H2S) inhibits inflammatory hepcidin, the critical mediator of AI. However, due to the chemical property of H2S, there remains an urgent need for a stable H2S donor in AI treatment. Here we reported that S-propargyl-cysteine (SPRC), a novel water-soluble H2S donor, suppressed hepatic hepcidin and corrected hypoferremia induced by lipopolysaccharide. The effects of SPRC were reversed by inhibition of cystathionine γ-lyase, one of the major endogenous H2S synthases. Moreover, SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythrocyte membrane integrity in a chronic mouse AI model. Consistently, splenomegaly was ameliorated and splenic iron accumulation relieved. Mechanism study indicated that serum IL-6 content and hepatic Il-6 mRNA were decreased by SPRC, in parallel with reduced hepatic JAK2/STAT3 activation. On the whole, our data reveal the inhibition of inflammatory hepcidin by SPRC, and suggest SPRC as a potential remedy against AI. PMID:27649298

  5. S-Propargyl-Cysteine, a Novel Hydrogen Sulfide Donor, Inhibits Inflammatory Hepcidin and Relieves Anemia of Inflammation by Inhibiting IL-6/STAT3 Pathway

    PubMed Central

    Xin, Hong; Zhu, Yi Zhun

    2016-01-01

    Anemia of inflammation (AI) is clinically prevalent and greatly threatens public health. Traditional remedies have raised controversy during clinical practice, calling for alternative therapies. We have recently found that hydrogen sulfide (H2S) inhibits inflammatory hepcidin, the critical mediator of AI. However, due to the chemical property of H2S, there remains an urgent need for a stable H2S donor in AI treatment. Here we reported that S-propargyl-cysteine (SPRC), a novel water-soluble H2S donor, suppressed hepatic hepcidin and corrected hypoferremia induced by lipopolysaccharide. The effects of SPRC were reversed by inhibition of cystathionine γ-lyase, one of the major endogenous H2S synthases. Moreover, SPRC reduced serum hepcidin, improved transferrin saturation, and maintained erythrocyte membrane integrity in a chronic mouse AI model. Consistently, splenomegaly was ameliorated and splenic iron accumulation relieved. Mechanism study indicated that serum IL-6 content and hepatic Il-6 mRNA were decreased by SPRC, in parallel with reduced hepatic JAK2/STAT3 activation. On the whole, our data reveal the inhibition of inflammatory hepcidin by SPRC, and suggest SPRC as a potential remedy against AI. PMID:27649298

  6. Protective Effects of Nobiletin Against Endotoxic Shock in Mice Through Inhibiting TNF-α, IL-6, and HMGB1 and Regulating NF-κB Pathway.

    PubMed

    Li, Weifeng; Wang, Xiumei; Niu, Xiaofeng; Zhang, Hailin; He, Zehong; Wang, Yu; Zhi, Wenbing; Liu, Fang

    2016-04-01

    Nobiletin (NOB), the major bioactive component of polymethoxyflavones in citrus fruits, has been reported possessing significant biological properties. The purpose of the present study was to investigate the protective role of NOB on lipopolysaccharide (LPS)-induced endotoxic shock in mice. We found pretreatment with NOB increases the survival rate of mice after endotoxin injection. The present study clearly demonstrates that pretreatment with NOB decreases the production of early pro-inflammatory cytokines TNF-α, IL-6, and late-phase mediator HMGB1 in serum and tissues of kidney, lung, and liver. The histopathological study indicates that NOB administration significantly attenuate tissues injury induced by LPS. Moreover, NOB suppresses the activity of nuclear factor-kappa B (NF-κB). These results suggest that NOB protects mice against LPS-induced endotoxic shock through inhibiting the production of TNF-α, IL-6, and HMGB1 and the activation of NF-κB, which elucidate that NOB may be a promising drug candidate for the treatment of septic shock.

  7. Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses.

    PubMed

    Choudhury, Sreetama; Gupta, Payal; Ghosh, Sayan; Mukherjee, Sudeshna; Chakraborty, Priyanka; Chatterji, Urmi; Chattopadhyay, Sreya

    2016-05-16

    Arsenic contamination of drinking water is a matter of global concern. Arsenic intake impairs immune responses and leads to a variety of pathological conditions including cancer. In order to understand the intricate tuning of immune responses elicited by chronic exposure to arsenic, a mouse model was established by subjecting mice to different environmentally relevant concentrations of arsenic in drinking water for 30days. Detailed study of the thymus, a primary immune organ, revealed arsenic-mediated tissue damage in both histological specimens and scanning electron micrographs. Analysis of molecular markers of apoptosis by Western blot revealed a dose-dependent activation of the apoptotic cascade. Enzymatic assays supported oxidative stress as an instigator of cell death. Interestingly, assessment of inflammatory responses revealed disparity in the NF-κB/IL-6/STAT3 axis, where it was found that in animals consuming higher amounts of arsenic NF-κB activation did not lead to the classical IL-6 upregulation response. This deviation from the canonical pathway was accompanied with a significant rise in numbers of CD4+ CD25+ FoxP3 expressing cells in the thymus. The cytokine profile of the animals exposed to higher doses of arsenic also indicated an immune-suppressed milieu, thus validating that arsenic shapes the immune environment in context to its dose of exposure and that at higher doses it leads to immune-suppression. Our study establishes a novel role of arsenic in regulating immune homeostasis in context to its dose, where, at higher doses, arsenic related upregulation of NF-κB cascade takes on an alternative role that is correlated with increased immune-suppression.

  8. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism

    PubMed Central

    Bernal, Carmen E.; Zorro, Maria M.; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H.; Baena, Andres; Ramirez-Pineda, Jose R.

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  9. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    PubMed

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.

  10. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism.

    PubMed

    Bernal, Carmen E; Zorro, Maria M; Sierra, Jelver; Gilchrist, Katherine; Botero, Jorge H; Baena, Andres; Ramirez-Pineda, Jose R

    2016-01-01

    Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation. PMID:26870700

  11. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance.

    PubMed

    Kraakman, Michael J; Kammoun, Helene L; Allen, Tamara L; Deswaerte, Virginie; Henstridge, Darren C; Estevez, Emma; Matthews, Vance B; Neill, Bronwyn; White, David A; Murphy, Andrew J; Peijs, Lone; Yang, Christine; Risis, Steve; Bruce, Clinton R; Du, Xiao-Jun; Bobik, Alex; Lee-Young, Robert S; Kingwell, Bronwyn A; Vasanthakumar, Ajithkumar; Shi, Wei; Kallies, Axel; Lancaster, Graeme I; Rose-John, Stefan; Febbraio, Mark A

    2015-03-01

    Interleukin-6 (IL-6) plays a paradoxical role in inflammation and metabolism. The pro-inflammatory effects of IL-6 are mediated via IL-6 "trans-signaling," a process where the soluble form of the IL-6 receptor (sIL-6R) binds IL-6 and activates signaling in inflammatory cells that express the gp130 but not the IL-6 receptor. Here we show that trans-signaling recruits macrophages into adipose tissue (ATM). Moreover, blocking trans-signaling with soluble gp130Fc protein prevents high-fat diet (HFD)-induced ATM accumulation, but does not improve insulin action. Importantly, however, blockade of IL-6 trans-signaling, unlike complete ablation of IL-6 signaling, does not exacerbate obesity-induced weight gain, liver steatosis, or insulin resistance. Our data identify the sIL-6R as a critical chemotactic signal for ATM recruitment and suggest that selectively blocking IL-6 trans-signaling may be a more favorable treatment option for inflammatory diseases, compared with current treatments that completely block the action of IL-6 and negatively impact upon metabolic homeostasis.

  12. Increased astrocyte expression of IL-6 or CCL2 in transgenic mice alters levels of hippocampal and cerebellar proteins

    PubMed Central

    Gruol, Donna L.; Vo, Khanh; Bray, Jennifer G.

    2014-01-01

    Emerging research has identified that neuroimmune factors are produced by cells of the central nervous system (CNS) and play critical roles as regulators of CNS function, directors of neurodevelopment and responders to pathological processes. A wide range of neuroimmune factors are produced by CNS cells, primarily the glial cells, but the role of specific neuroimmune factors and their glial cell sources in CNS biology and pathology have yet to be fully elucidated. We have used transgenic mice that express elevated levels of a specific neuroimmune factor, the cytokine IL-6 or the chemokine CCL2, through genetic modification of astrocyte expression to identify targets of astrocyte produced IL-6 or CCL2 at the protein level. We found that in non-transgenic mice constitutive expression of IL-6 and CCL2 occurs in the two CNS regions studied, the hippocampus and cerebellum, as measured by ELISA. In the CCL2 transgenic mice elevated levels of CCL2 were evident in the hippocampus and cerebellum, whereas in the IL-6 transgenic mice, elevated levels of IL-6 were only evident in the cerebellum. Western blot analysis of the cellular and synaptic proteins in the hippocampus and cerebellum of the transgenic mice showed that the elevated levels of CCL2 or IL-6 resulted in alterations in the levels of specific proteins and that these actions differed for the two neuroimmune factors and for the two brain regions. These results are consistent with cell specific profiles of action for IL-6 and CCL2, actions that may be an important aspect of their respective roles in CNS physiology and pathophysiology. PMID:25177271

  13. Evaluating ESWL-induced renal injury based on urinary TNF-α, IL-1α, and IL-6 levels.

    PubMed

    Goktas, Cemal; Coskun, Abdurrahman; Bicik, Zerrin; Horuz, Rahim; Unsal, Ibrahim; Serteser, Mustafa; Albayrak, Selami; Sarıca, Kemal

    2012-10-01

    Extracorporeal shockwave lithotripsy (ESWL) has dramatically changed the treatment of urinary lithiasis and has been the first treatment option for the majority of patients for more than two decades. Despite its significant benefits, it induces acute renal injury that extends from the papilla to the outer cortex. We evaluated the severity of the inflammatory response to ESWL by measuring the urinary excretion of the cytokines TNF-α, IL-1α, and IL-6. The study included 21 selected patients and 14 control subjects. All patients underwent the same ESWL procedure (2,500 shockwaves at 100 shockwaves/min and 0.039 J from the lithotripter). Urine TNF-α, IL-1α, and IL-6 levels were measured using standard ELISA kits. In the study population (patients and controls), we did not detect TNF-α in the urine samples. The levels of both IL-1α (2.5 pg/ml) and IL-6 (3.8 pg/ml) measured before ESWL were not significantly different from the control group (2.5 and 5.2 pg/ml, respectively; p > 0.05). Twenty-four hours after ESWL, in contrast to IL-1α (4 pg/ml), urine IL-6 (19.7 pg/ml) increased significantly (p < 0.05). Fourteen days after ESWL, IL-1α increased to 5 pg/ml, while IL-6 (7 pg/ml) decreased to the control level. Urine cytokine levels may be used to evaluate the inflammatory response to ESWL. After ESWL, IL-6 levels increased in the early phase, while IL-1α levels increased later. These two markers may be used to measure the severity of inflammation. In contrast to IL-1α and IL-6, urine TNF-α excretion was not increased by ESWL. We believe that the inflammatory response to ESWL can be detected by the urinary excretion of IL-1α for up to 14 days.

  14. The C-174G promoter polymorphism of the IL-6 gene affects energy expenditure and insulin sensitivity.

    PubMed

    Kubaszek, Agata; Pihlajamäki, Jussi; Punnonen, Kari; Karhapää, Pauli; Vauhkonen, Ilkka; Laakso, Markku

    2003-02-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine expressed in many tissues. IL-6 null mice show low energy expenditure, but the effect of the variants of the IL-6 gene on energy expenditure has not been previously studied in humans. Therefore, we investigated the effect of the C-174G promoter polymorphism of the IL-6 gene on energy expenditure, measured by indirect calorimetry in healthy Finnish subjects (n = 124). We also measured insulin sensitivity by the hyperinsulinemic-euglycemic clamp. Subjects with the C-174C genotype of the IL-6 gene had significantly lower energy expenditure than subjects with the G-174C or G-174G genotypes both in fasting (CC 13.68 +/- 1.98, CG 14.73 +/- 1.57, GG 14.81 +/- 2.01 kcal x kg(-1) x min(-1); P = 0.012) and during the euglycemic-hyperinsulinemic clamp (CC 15.24 +/- 2.05, CG 16.62 +/- 2.06, GG 16.66 +/- 2.50 kcal x kg(-1) x min(-1); P = 0.007). Moreover, subjects homozygous for the C allele had lower rates of whole-body glucose uptake than carriers of the G allele (CC 50.95 +/- 13.91, CG 59.40 +/- 14.17, GG 59.21 +/- 15.93 micro mol x kg(-1) x min(-1); P = 0.016). The rates of both oxidative (P = 0.013) and nonoxidative (P = 0.016) glucose disposal were significantly affected by the IL-6 promoter polymorphism. In conclusion, the C-174C promoter polymorphism of the IL-6 gene influences energy expenditure and insulin sensitivity in healthy normoglycemic subjects. Whether this polymorphism is a risk factor for obesity or type 2 diabetes can be estimated only in prospective population-based studies.

  15. Interleukin-5 (IL-5) and IL-6 define two molecularly distinct pathways of B-cell differentiation.

    PubMed Central

    Randall, T D; Lund, F E; Brewer, J W; Aldridge, C; Wall, R; Corley, R B

    1993-01-01

    Interleukin-5 (IL-5) and IL-6 have both been reported to act as B-cell differentiation factors by stimulating activated B cells to secrete antibody. However, it has not been possible to directly compare the effects of these two lymphokines because of the lack of a suitable B-cell line capable of responding to both. We have identified a clonal, inducible B-cell lymphoma, CH12, that has this property. Both IL-5 and IL-6 can independently stimulate increases in steady-state levels of immunoglobulin and J-chain mRNA and proteins, and they both induce the differentiation of CH12 into high-rate antibody-secreting cells. Nevertheless, there are significant differences in the activities of these two lymphokines. First, while IL-6 acts only as a differentiation factor, IL-5 also augments the proliferation of CH12 cells. Second, the differentiation stimulated by IL-5 but not by IL-6 is partially inhibited by IL-4. Inhibition of IL-5-induced differentiation was not at the level of IL-5 receptor expression, since IL-4 did not inhibit IL-5-induced proliferation. Third, IL-5 but not IL-6 stimulated increased mouse mammary tumor proviral gene expression in CH12 cells. These results demonstrate that while both IL-5 and IL-6 may act as differentiation factors for B cells, they induce differentiation by using at least partially distinct molecular pathways. Our results also establish that B cells characteristic of a single stage of development can independently respond to IL-4, IL-5, and IL-6. Images PMID:8321200

  16. Expression of NF-κB and IL-6 in oral precancerous and cancerous lesions: An immunohistochemical study

    PubMed Central

    Nikitakis, Nikolaos; Sfakianou, Aikaterini; Avgoustidis, Dimitrios; Sklavounou-Andrikopoulou, Alexandra

    2016-01-01

    Background The purpose of this study was to evaluate the immunohistochemical expression of NF-κB and IL-6 in oral premalignant and malignant lesions and to investigate their possible correlation with the presence of subepithelial inflammation. Material and Methods Thirty two oral premalignant lesions, clinically compatible with leukoplakia or erythroplakia, were investigated. Microscopically, 11 of them showed hyperkeratosis and acanthosis (epithelial hyperplasia) and 21 showed dysplasia of varying degrees. Nine cases of OSCC and four control cases of normal oral mucosa were also included in the study. Immunohistochemical staining with NF-κB (p65) and IL-6 was performed. IL-6 and nuclear NF-κB staining were assessed as positive or negative. For cytoplasmic localization of NF-κB, a total score combining intensity and percentage of positive epithelial cells was additionally calculated. The presence of inflammation was also recorded. Results Intensity and total scores for NF-κΒ cytoplasmic immunostaining showed a statistically significant gradual increase from normal mucosa to OSCC (p=0.012 and p=0.026 respectively). Non-statistically significant increased NF-κΒ nuclear localization was detected in dysplasias and OSCCs. Positive statistical correlation was detected between the presence of inflammation and IL-6 expression (p=0.015). No correlation between NF-κΒ and IL-6 was detected. Conclusions NF-κΒ is activated in the early stages of oral carcinogenesis. IL-6 may have an NF-κΒ-independent role, possibly through regulation of the inflammatory response. Key words:NF-κB, IL-6, immunohistochemistry, oral squamous cell carcinoma, oral precancerous lesion. PMID:26595830

  17. Total and partial sleep deprivation: Effects on plasma TNF-αRI, TNF-αRII, and IL-6, and reversal by caffeine operating through adenosine A2 receptor

    NASA Astrophysics Data System (ADS)

    Shearer, William T.; Reuben, James M.; Lee, Bang-Ning; Mullington, Janet; Price, Nicholas; Dinges, David F.

    2000-01-01

    Plasma levels of IL-6 and TNF-α are elevated in individuals who are deprived of sleep. TNF-α regulates expression of its soluble receptors, sTNF-αRI and sTNF-αRII. Sleep deprivation (SD) also increases extracellular adenosine that induces sedation and sleep. An antagonist of adenosine, caffeine, raises exogenous adenosine levels, stimulates the expression of IL-6 and inhibits the release of TNF-α. Our objective was to determine the effect of total SD (TSD) or partial SD (PSD) on the levels of these sleep regulatory molecules in volunteers who experienced SD with or without the consumption of caffeine. Plasma levels of IL-6, sTNF-αRI and sTNF-αRII were assayed by ELISA in samples collected at 90-min intervals from each subject over an 88-hour period. The results were analyzed by the repeated measures ANOVA. Whereas only TSD significantly increased sTNF-αRI over time, caffeine suppressed both sTNF-α receptors in TSD and PSD subjects. The selective increase in the expression of sTNF-αRI and not sTNF-αRII in subjects experiencing TSD with caffeine compared with others experiencing PSD with caffeine has not been previously reported. Moreover, caffeine significantly increased IL-6 in TSD subjects compared with those who did not receive caffeine. However, subjects who were permitted intermittent naps (PSD) ablated the effects of caffeine and reduced their level of IL-6 to that of the TSD group. These data further lend support to the hypothesis that the sTNF-αRI and not the sTNF-αRII plays a significant role in sleep regulation by TNF-α. .

  18. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways

    PubMed Central

    LOU, LIXIA; ZHOU, JINGWEI; LIU, YUJUN; WEI, YI; ZHAO, JIULI; DENG, JIAGANG; DONG, BIN; ZHU, LINGQUN; WU, AIMING; YANG, YINGXI; CHAI, LIMIN

    2016-01-01

    Chlorogenic acid (CGA) is the primary constituent of Caulis Lonicerae, a Chinese herb used for the treatment of rheumatoid arthritis (RA). The present study aimed to investigate whether CGA was able to inhibit the proliferation of the fibroblast-like synoviocyte cell line (RSC-364), stimulated by interleukin (IL)-6, through inducing apoptosis. Following incubation with IL-6 or IL-6 and CGA, the cellular proliferation of RSC-364 cells was detected by MTT assay. The ratio of apoptosed cells were detected by flow cytometry. Western blot analysis was performed to observe protein expression levels of key molecules involved in the Janus-activated kinase/signal transducer and activator of transcription 3 (JAK/STAT) signaling pathway [phosphorylated (p)-STAT3, JAK1 and gp130] and the nuclear factor κB (NF-κB) signaling pathway [phosphorylated (p)-inhibitor of κB kinase subunit α/β and NF-κB p50). It was revealed that CGA was able to inhibit the inflammatory proliferation of RSC-364 cells mediated by IL-6 through inducing apoptosis. CGA was also able to suppress the expression levels of key molecules in the JAK/STAT and NF-κB signaling pathways, and inhibit the activation of these signaling pathways in the inflammatory response through IL-6-mediated signaling, thereby resulting in the inhibition of the inflammatory proliferation of synoviocytes. The present results indicated that CGA may have potential as a novel therapeutic agent for inhibiting inflammatory hyperplasia of the synovium through inducing synoviocyte apoptosis in patients with RA. PMID:27168850

  19. Elevated serum levels of IL-6 and IL-17 may associate with the development of ankylosing spondylitis

    PubMed Central

    Liu, Wei; Wu, Yuan-Hao; Zhang, Lei; Liu, Xiao-Ya; Xue, Bin; Wang, Yi; Liu, Bin; Jiang, Qiao; Kwang, Hou-Wen; Wu, Dong-Jing

    2015-01-01

    Purpose: A meta-analysis was undertaken to examine the correlation between ankylosing spondylitis (AS) progression and serum levels of pro-inflammatory cytokines, Interleukin-6 (IL-6) and Interleukin-17 (IL-17) in AS patients. Methods: PubMed, EBSCO, Cochrane Library database, Ovid, Springer link, WANFANG, China national knowledge infrastructure (CNKI) and VIP databases(last updated search in October, 2014) were exhaustively searched for published case-control studies using keywords related to IL-6, IL-17 and AS. The search results were screened using stringent inclusion and exclusion criteria, and the data from selected high-quality studies was analyzed with Comprehensive Meta-analysis 2.0 software. Results: Thirteen case-control studies were selected for this meta-analysis and contained a pooled total of 514 AS patients and 358 healthy controls. Our main result revealed strikingly higher serum levels of IL-6 and IL-17 in AS patients, compared to healthy controls (IL-6: SMD = 2.51, 95% CI = 1.33~3.70, P = 0.01; IL-17: SMD = 3.05, 95% CI = 2.09~4.02, P < 0.001). Ethnicity-based subgroup analysis showed a statistically correlation of high IL-6 and IL-17 serum levels with AS both in Asian (IL-6: SMD = 3.15, 95% CI = 0.75~5.55, P < 0.001; IL-17: SMD = 3.30, 95% CI = 1.93~4.66, P < 0.001) and Caucasian populations (IL-6: SMD = 1.34, 95% CI = 0.33~2.35, P = 0.009; IL-17: SMD = 2.52, 95% CI = 1.06~3.98, P = 0.001). Conclusion: Meta-analysis of pooled data from thirteen high-quality studies revealed a strong correlation between elevated IL-6 and IL-17 serum levels and the development of AS. Therefore, IL-6 and IL-17 could be used as markers for diagnosis and assessment of treatment outcomes in AS patients. PMID:26770328

  20. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G; Zimmers, Teresa A

    2012-08-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.

  1. Effects of flurbiprofen axetil on postoperative serum IL-2 and IL-6 levels in patients with colorectal cancer.

    PubMed

    Jiang, W W; Wang, Q H; Peng, P; Liao, Y J; Duan, H X; Xu, M; Li, Y; Zhang, P B

    2015-01-01

    We explored the effects of flurbiprofen axetil on interleukin (IL)-2 and IL-6 levels in postoperative patients with colorectal cancer. A total of 120 patients (American Society of Anesthesiologists I and II) scheduled to undergo colorectal cancer surgery were randomly divided into 3 groups (N = 40 in each group): flurbiprofen axetil group (group F), morphine group (group M), and tramadol group (group T). Group M received 0.1 mg/kg morphine, group T received 1.5 mg/kg tramadol, and group F received 1.5 mg/kg flurbiprofen axetil. Patients in the 3 groups were administered treatments through intravenous injection 10 min before surgery. Serum IL-2 and IL-6 levels were detected. Postoperative adverse reactions were recorded, such as nausea, vomiting, and pruritus. The serum IL-6 level of the 3 groups increased 3 h after surgery. Compared with group M, IL-6 level was higher in group T and group F at 1 day after the surgery, and the differences between group M and the other groups were significant (P < 0.05). Moreover, the incidence of adverse reactions was significantly different among 3 groups (P < 0.05). Flurbiprofen axetil promoted the secretion of IL-2 and inhibited IL-6; additionally, flurbiprofen axetil may have a lower incidence of adverse reactions compared to other treatments.

  2. IL-6 Signaling in Myelomonocytic Cells Is Not Crucial for the Development of IMQ-Induced Psoriasis.

    PubMed

    Klebow, Sabrina; Hahn, Matthias; Nikoalev, Alexei; Wunderlich, F Thomas; Hövelmeyer, Nadine; Karbach, Susanne H; Waisman, Ari

    2016-01-01

    Psoriasis is an autoimmune skin disease that is associated with aberrant activity of immune cells and keratinocytes. In mice, topical application of TLR7/8 agonist IMQ leads to a skin disorder resembling human psoriasis. Recently, it was shown that the IL-23/ IL-17 axis plays a deciding role in the pathogenesis of human psoriasis, as well as in the mouse model of IMQ-induced psoriasis-like skin disease. A consequence of IL-17A production in the skin includes increased expression and production of IL-6, resulting in the recruitment of neutrophils and other myelomonocytic cells to the site of inflammation. To further investigate and characterize the exact role of IL-6 signaling in myelomonocytic cells during experimental psoriasis, we generated mice lacking the IL-6 receptor alpha specifically in myelomonocytic cells (IL-6RαΔmyel). Surprisingly, disease susceptibility of these mice was not affected in this model. Our study shows that classical IL-6 signaling in myelomonocytic cells does not play an essential role for disease development of IMQ-induced psoriasis-like skin disease.

  3. Boswellic acid disables signal transduction of IL-6-STAT-3 in Ehrlich ascites tumor bearing irradiated mice.

    PubMed

    Moustafa, Enas Mahmoud; Thabet, Noura Magdy; Azab, Khaled Shaaban

    2016-08-01

    Boswellic acid (BA) is known for its ability to trigger apoptosis as well as to inhibit angiogenesis in tumor tissue. In this study, we investigated the effect of BA on the IL-6-STAT-3 signalling pathway in irradiated mice bearing solid tumors of Ehrlich ascites carcinoma (EAC). For this, we administered BA (25 mg·(kg body mass)(-1)·day(-1), by intraperitoneal injection) to mice with EAC, and then exposed them to 4 Gy of gamma radiation. Data analyses of the results revealed a specific impact from BA on IL-6R mRNA and survivin mRNA in EACs and irradiated EAC-bearing mice. Also, significant improvements were observed in the protein expression of JAK-1, P-JAK-1, STAT-3, P-STAT-3, and caspase-3, as well as VEGF and IL-6 levels. We propose that BA interfered with IL-6-STAT-3 signal transduction, thereby preventing the activation of caspase-3 and subsequently triggering the process of apoptosis. However, the alternative angiogenesis pathway, which includes the over-expression of VEGF and which depends on IL-6-STAT-3 signalling, was inhibited by the action of BA. Thus, we recommend that therapeutic strategies for cancer should include treatment with BA.

  4. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    NASA Astrophysics Data System (ADS)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  5. IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin

    PubMed Central

    Botto, Sara; Streblow, Daniel N.; DeFilippis, Victor; White, Laura; Kreklywich, Craig N.; Smith, Patricia P.

    2011-01-01

    Human cytomegalovirus (HCMV) is linked to the acceleration of vascular diseases such as atherosclerosis and transplant vasculopathy. One of the hallmarks of these diseases is angiogenesis (AG) and neovessel formation. Endothelial cells (ECs) are an integral part of AG and are sites of HCMV persistence. AG requires multiple synchronous processes that include EC proliferation, migration, and vessel stabilization. Virus-free supernatant (secretome) from HCMV-infected ECs induces AG. To identify factor(s) involved in this process, we performed a human cytokine array. Several cytokines were significantly induced in the HCMV secretomes including interleukin-6 (IL-6), granulocyte macrophage colony-stimulating factor, and IL-8/CXCL8. Using in vitro AG assays, neutralization of IL-6 significantly reduced neovessel formation. Addition of the HCMV secretome to preformed vessels extended neovessel survival, but this effect was blocked by neutralization of IL-6. In these cells, IL-6 prevented apoptosis by blocking caspase-3 and -7 activation through the induction of survivin. Neutralization of IL-6 receptor on ECs abolished the ability of HCMV secretome to increase survivin expression and activated effector caspases. Moreover, survivin shRNA expression induced rapid regression of tubule capillary networks in ECs stimulated with HCMV secretome and activated effector caspases. These observations may explain how CMV accelerates vascular disease despite limited infection in tissues. PMID:20930069

  6. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection

    PubMed Central

    Chiaretti, Antonio; Pulitanò, Silvia; Barone, Giovanni; Ferrara, Pietro; Capozzi, Domenico; Riccardi, Riccardo

    2013-01-01

    The role of cytokines in relation to clinical manifestations, disease severity, and outcome of children with H1N1 virus infection remains thus far unclear. The aim of this study was to evaluate interleukin IL-1β and IL-6 plasma expressions and their association with clinical findings, disease severity, and outcome of children with H1N1 infection. We prospectively evaluated 15 children with H1N1 virus infection and 15 controls with lower respiratory tract infections (LRTI). Interleukin plasma levels were measured using immunoenzymatic assays. Significantly higher levels of IL-1β and IL-6 were detected in all patients with H1N1 virus infection compared to controls. It is noteworthy to mention that in H1N1 patients with more severe clinical manifestations of disease IL-1β and IL-6 expressions were significantly upregulated compared to H1N1 patients with mild clinical manifestations. In particular, IL-6 was significantly correlated with specific clinical findings, such as severity of respiratory compromise and fever. No correlation was found between interleukin expression and final outcome. In conclusion, H1N1 virus infection induces an early and significant upregulation of both interleukins IL1β and IL-6 plasma expressions. The upregulation of these cytokines is likely to play a proinflammatory role in H1N1 virus infection and may contribute to airway inflammation and bronchial hyperreactivity in these patients. PMID:23737648

  7. Effects of flurbiprofen axetil on postoperative serum IL-2 and IL-6 levels in patients with colorectal cancer.

    PubMed

    Jiang, W W; Wang, Q H; Peng, P; Liao, Y J; Duan, H X; Xu, M; Li, Y; Zhang, P B

    2015-01-01

    We explored the effects of flurbiprofen axetil on interleukin (IL)-2 and IL-6 levels in postoperative patients with colorectal cancer. A total of 120 patients (American Society of Anesthesiologists I and II) scheduled to undergo colorectal cancer surgery were randomly divided into 3 groups (N = 40 in each group): flurbiprofen axetil group (group F), morphine group (group M), and tramadol group (group T). Group M received 0.1 mg/kg morphine, group T received 1.5 mg/kg tramadol, and group F received 1.5 mg/kg flurbiprofen axetil. Patients in the 3 groups were administered treatments through intravenous injection 10 min before surgery. Serum IL-2 and IL-6 levels were detected. Postoperative adverse reactions were recorded, such as nausea, vomiting, and pruritus. The serum IL-6 level of the 3 groups increased 3 h after surgery. Compared with group M, IL-6 level was higher in group T and group F at 1 day after the surgery, and the differences between group M and the other groups were significant (P < 0.05). Moreover, the incidence of adverse reactions was significantly different among 3 groups (P < 0.05). Flurbiprofen axetil promoted the secretion of IL-2 and inhibited IL-6; additionally, flurbiprofen axetil may have a lower incidence of adverse reactions compared to other treatments. PMID:26662445

  8. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production.

    PubMed

    Shi, Zhi; Yang, Wei-Min; Chen, Li-Pai; Yang, Dong-Hua; Zhou, Qi; Zhu, Jin; Chen, Jun-Jiang; Huang, Ruo-Chun; Chen, Zhe-Sheng; Huang, Ruo-Pan

    2012-10-01

    Drug resistance remains a major hurdle to successful cancer treatment. Many mechanisms such as overexpression of multidrug-resistance related proteins, increased drug metabolism, decreased apoptosis, and impairment of signal transduction pathway can contribute multidrug resistance (MDR). Recent studies strongly suggest a close link between cytokines and drug resistance. To identify new targets involved in drug resistance, we established a multidrug-resistant human breast cancer cell line MCF-7/R and examined the cytokine profile using cytokine antibody array technology. Among 120 cytokines/chemokines screened, IL-6, IL-8, and 13 other proteins were found to be markedly increased in drug-resistant MCF-7/R cell line as compared to sensitive MCF-7/S cell line, while 7 proteins were specifically reduced in drug-resistant MCF-7/R cells. Neutralizing antibodies against IL-6 and IL-8 partially reversed the drug resistance of MCF-7/R to paclitaxel and doxorubicin, while a neutralizing antibody against MCP-1 had no significant effect. Inhibition of endogenous IL-6 or IL-8 by siRNA technology significantly enhanced drug sensitivity of MCF-7/R cells. Furthermore, overexpression of IL-6 or IL-8 expression by transfection increased the ADM resistance in MCF-7/S cells. Our data suggest that increased expression levels of IL-6 and IL-8 may contribute to MDR in human breast cancer cells.

  9. The IL-6 gene G-174C polymorphism related to health indices in Greek primary school children.

    PubMed

    Dedoussis, George V Z; Manios, Yannis; Choumerianou, Despoina M; Yiannakouris, Nikos; Panagiotakos, Demosthenes B; Skenderi, Katerina; Zampelas, Antonis

    2004-07-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine expressed in many tissues. A polymorphism in the IL-6 gene, associated with differences in IL-6 transcription rate, has been recently described. Subjects with the -174GG genotype are prone to lipid abnormalities. We investigated the effect of the G-174C IL-6 polymorphism on health indices and lipid values of 184 Greek primary school children. The genotype distribution of the polymorphism was 37.5% for GG and 52.2% and 10.3% for GC and CC, respectively. No differences were observed between genotype distribution and gender (p = 0.37). Boys homozygous for the G allele showed higher triglyceride levels than boys carrying the C allele (86 +/- 28 vs. 74 +/- 20 mg/dL, p = 0.02) and lower mid-upper arm muscle circumference (17.46 +/- 1.86 vs. 18.91 +/- 2.53 cm, p = 0.013). In addition, girls homozygous for the G allele had higher values for suprailiac skinfolds compared with those bearing the C allele (21.28 +/- 12.56 vs. 17.09 +/- 13.36 mm, p = 0.06). These findings were confirmed by multiple linear regression analysis, after controlling for age, sex, BMI, energy and total fat intake, and weekly physical activity. From the results of the present study, we concluded that individuals homozygous for G allele on the IL-6 gene have higher values in some parameters associated with obesity.

  10. IL-6 Signaling in Myelomonocytic Cells Is Not Crucial for the Development of IMQ-Induced Psoriasis

    PubMed Central

    Klebow, Sabrina; Hahn, Matthias; Nikoalev, Alexei; Wunderlich, F. Thomas; Hövelmeyer, Nadine

    2016-01-01

    Psoriasis is an autoimmune skin disease that is associated with aberrant activity of immune cells and keratinocytes. In mice, topical application of TLR7/8 agonist IMQ leads to a skin disorder resembling human psoriasis. Recently, it was shown that the IL-23/ IL-17 axis plays a deciding role in the pathogenesis of human psoriasis, as well as in the mouse model of IMQ-induced psoriasis-like skin disease. A consequence of IL-17A production in the skin includes increased expression and production of IL-6, resulting in the recruitment of neutrophils and other myelomonocytic cells to the site of inflammation. To further investigate and characterize the exact role of IL-6 signaling in myelomonocytic cells during experimental psoriasis, we generated mice lacking the IL-6 receptor alpha specifically in myelomonocytic cells (IL-6RαΔmyel). Surprisingly, disease susceptibility of these mice was not affected in this model. Our study shows that classical IL-6 signaling in myelomonocytic cells does not play an essential role for disease development of IMQ-induced psoriasis-like skin disease. PMID:26999594

  11. IL-6 Receptor Is a Possible Target against Growth of Metastasized Lung Tumor Cells in the Brain

    PubMed Central

    Noda, Mami; Yamakawa, Yukiko; Matsunaga, Naoya; Naoe, Satoko; Jodoi, Taishi; Yamafuji, Megumi; Akimoto, Nozomi; Teramoto, Norihiro; Fujita, Kyota; Ohdo, Shigehiro; Iguchi, Haruo

    2013-01-01

    In the animal model of brain metastasis using human lung squamous cell carcinoma-derived cells (HARA-B) inoculated into the left ventricle of the heart of nude mice, metastasized tumor cells and brain resident cells interact with each other. Among them, tumor cells and astrocytes have been reported to stimulate each other, releasing soluble factors from both sides, subsequently promoting tumor growth significantly. Among the receptors for soluble factors released from astrocytes, only IL-6 receptor (IL-6R) on tumor cells was up-regulated during the activation with astrocytes. Application of monoclonal antibody against human IL-6R (tocilizumab) to the activated HARA-B cells, the growth of HARA-B cells stimulated by the conditioned medium of HARA-B/astrocytes was significantly inhibited. Injecting tocilizumab to animal models of brain metastasis starting at three weeks of inoculation of HARA-B cells, two times a week for three weeks, significantly inhibited the size of the metastasized tumor foci. The up-regulated expression of IL-6R on metastasized lung tumor cells was also observed in the tissue from postmortem patients. These results suggest that IL-6R on metastasized lung tumor cells would be a therapeutic target to inhibit the growth of the metastasized lung tumor cells in the brain. PMID:23271367

  12. Variants in the inflammatory IL6 and MPO genes modulate stroke susceptibility through main effects and gene–gene interactions

    PubMed Central

    Manso, Helena; Krug, Tiago; Sobral, João; Albergaria, Isabel; Gaspar, Gisela; Ferro, José M; Oliveira, Sofia A; Vicente, Astrid M

    2011-01-01

    There is substantial evidence that inflammation within the central nervous system contributes to stroke risk and recovery. Inflammatory conditions increase stroke risk, and the inflammatory response is of major importance in recovery and healing processes after stroke. We investigated the role of inflammatory genes IL1B, IL6, MPO, and TNF in stroke susceptibility and recovery in a population sample of 672 patients and 530 controls, adjusting for demographic, clinical and lifestyle risk factors, and stroke severity parameters. We also considered the likely complexity of inflammatory mechanisms in stroke, by assessing the combined effects of multiple genes. Two interleukin 6 (IL6) and one myeloperoxidase (MPO) single-nucleotide polymorphisms were significantly associated with stroke risk (0.022IL6 and MPO genes was also identified in association with stroke susceptibility (P=0.031 after 1,000 permutations). In a subset of 546 patients, one IL6 haplotype was associated with stroke outcome at 3 months (correctedP=0.024), an intriguing finding warranting further validation. Our findings support the association of the IL6 gene and present novel evidence for the involvement of MPO in stroke susceptibility, suggesting a modulation of stroke risk by main gene effects, clinical and lifestyle factors, and gene–gene interactions. PMID:21407237

  13. Properdin provides protection from Citrobacter rodentium-induced intestinal inflammation in a C5a/IL-6-dependent manner.

    PubMed

    Jain, Umang; Cao, Qi; Thomas, Nikhil A; Woodruff, Trent M; Schwaeble, Wilhelm J; Stover, Cordula M; Stadnyk, Andrew W

    2015-04-01

    Citrobacter rodentium is an attaching and effacing mouse pathogen that models enteropathogenic and enterohemorrhagic Escherichia coli in humans. The complement system is an important innate defense mechanism; however, only scant information is available about the role of complement proteins during enteric infections. In this study, we examined the impact of the lack of properdin, a positive regulator of complement, in C. rodentium-induced colitis. Following infection, properdin knockout (P(KO)) mice had increased diarrhea and exacerbated inflammation combined with defective epithelial cell-derived IL-6 and greater numbers of colonizing bacteria. The defect in the mucosal response was reversed by administering exogenous properdin to P(KO) mice. Then, using in vitro and in vivo approaches, we show that the mechanism behind the exacerbated inflammation of P(KO) mice is due to a failure to increase local C5a levels. We show that C5a directly stimulates IL-6 production from colonic epithelial cells and that inhibiting C5a in infected wild-type mice resulted in defective epithelial IL-6 production and exacerbated inflammation. These outcomes position properdin early in the response to an infectious challenge in the colon, leading to complement activation and C5a, which in turn provides protection through IL-6 expression by the epithelium. Our results unveil a previously unappreciated mechanism of intestinal homeostasis involving complement, C5a, and IL-6 during bacteria-triggered epithelial injury.

  14. RNAi mediated IL-6 in vitro knockdown in psoriasis skin model with topical siRNA delivery system based on liquid crystalline phase.

    PubMed

    Depieri, Lívia Vieira; Borgheti-Cardoso, Lívia Neves; Campos, Patrícia Mazureki; Otaguiri, Katia Kaori; Vicentini, Fabiana Testa Moura de Carvalho; Lopes, Luciana Biagini; Fonseca, Maria José Vieira; Bentley, M Vitória Lopes Badra

    2016-08-01

    Gene therapy by RNA interference (RNAi) is a post-transcriptional silencing process that can suppress the expression of a particular gene and it is a promising therapeutic approach for the treatment of many severe diseases, including cutaneous disorders. However, difficulties related to administration and body distribution limit the clinical use of small interfering RNA (siRNA) molecules. In this study, we proposed to use nanocarriers to enable siRNA application in the topical treatment of skin disorders. A siRNA nanodispersion based on liquid crystalline phase and composed of monoolein (MO), oleic acid (OA) and polyethylenimine (PEI) was developed and its physicochemical properties, efficiency of complexation and carrier/siRNA stability were assessed. Subsequently, cell viability, cellular uptake, in vitro skin irritation test using reconstructed human epidermis (RHE) and in vitro IL-6 knockdown in psoriasis skin model were evaluated. The results showed that the liquid crystalline nanodispersion is a promising topical delivery system for administration of siRNA, being able to overcome the limitations of the route of administration, as well those resulting from the characteristics of siRNA molecules. The formulation was effective at complexing the siRNA, presented high rate of cell uptake (∼90%), increased the skin penetration of siRNA in vitro, and did not cause skin irritation compared with Triton-X (a moderate irritant), resulting in a 4-fold higher viability of reconstructed human epidermis and a 15.6-fold lower release of IL-1α. A single treatment with the liquid crystalline nanodispersion carrying IL-6 siRNA for 6h was able to reduce the extracellular IL-6 levels by 3.3-fold compared with control treatment in psoriasis skin model. Therefore, liquid crystalline nanodispersion is a suitable nanocarrier for siRNA with therapeutic potential to suppress skin disease-specific genes. This study also highlights the applicability of reconstructed skin models in

  15. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    PubMed

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  16. [Clinical value of TNF, IL-6, and IL-10 gene polymorphic markers in chronic glomerulonephritis].

    PubMed

    Kamyshova, E S; Shvetsov, M Yu; Kutyrina, I M; Burdennyi, A M; Chzhen, A; Nosikov, V V; Bobkova, I N

    2016-01-01

    Резюме Цель исследования. Изучить ассоциацию полиморфных маркеров (ПМ) G(–238)A гена TNF, G(–174)C гена IL6 и G(–1082)A гена IL10 с клиническими особенностями хронического гломерулонефрита (ХГН) и ответом на иммуносупрессивную терапию (ИСТ). Материалы и методы. У 102 больных ХГН проанализировали клинические синдромы на момент установления диагноза, морфологические варианты нефрита и ответ на ИСТ в зависимости от носительства исследуемых ПМ генов TNF, IL6 и IL10. Результаты. Ассоциации ПМ G(–238)A гена TNF с особенностями клинической картины ХГН не обнаружено. У носителей аллеля С ПМ G(–174)C гена IL6 по сравнению с гомозиготами GG чаще отмечалось нарушение функции почек на момент установления диагноза (р=0,014). У носителей генотипа АА ПМ G(–1082)A гена IL10 чаще обнаруживали АГ (р=0,023); кроме того у них наблюдалась тенденция к более частому сочетанию нефротического синдрома и АГ (р=0,082). При анализе распределения морфологических вариантов ХГН обнаружено, что пролиферативные варианты чаще выявляли у больных с генотипом GG (ген TNF) по сравнению с носителями аллеля А (р=0,067), а непролиферативные формы — у гомозигот GG (

  17. Influence of interleukin-6 and G174C polymorphism in IL-6 gene on obesity and energy balance.

    PubMed

    Popko, Katarzyna; Gorska, E; Demkow, U

    2010-11-01

    Obesity is a multifactor disease with a very complicated etiology. Genetic factors play an important role in the development of primary obesity. They may be responsible for up to 40% of causes leading to obesity. There are a great number of genes affecting food intake and energy expenditure. Serious consequences accompanying obesity, e.g., type 2 diabetes and lipid abnormalities may be caused by increased level of proinflammatory cytokines, such as IL-1, IL-6, and TNF. It is possible that polymorphisms located in cytokine genes affect the level of protein expression. It is known that IL-6 plays a role in lipid metabolism and energy expenditure. The polymorphism found in point 174 (G174C) of a promoter region of IL-6 gene affects the level of interleukin-6 expression and, consequently, may lead to obesity and correlated conditions.

  18. NK-CD11c+ Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection

    PubMed Central

    Cheekatla, Satyanarayana Swamy; Tripathi, Deepak; Venkatasubramanian, Sambasivan; Nathella, Pavan Kumar; Paidipally, Padmaja; Ishibashi, Munenori; Welch, Elwyn; Tvinnereim, Amy R.; Ikebe, Mitsuo; Valluri, Vijaya Lakshmi; Babu, Subash; Kornfeld, Hardy; Vankayalapati, Ramakrishna

    2016-01-01

    In this study, we developed a mouse model of type 2 diabetes mellitus (T2DM) using streptozotocin and nicotinamide and identified factors that increase susceptibility of T2DM mice to infection by Mycobacterium tuberculosis (Mtb). All Mtb-infected T2DM mice and 40% of uninfected T2DM mice died within 10 months, whereas all control mice survived. In Mtb-infected mice, T2DM increased the bacterial burden and pro- and anti-inflammatory cytokine and chemokine production in the lungs relative to those in uninfected T2DM mice and infected control mice. Levels of IL-6 also increased. Anti-IL-6 monoclonal antibody treatment of Mtb-infected acute- and chronic-T2DM mice increased survival (to 100%) and reduced pro- and anti-inflammatory cytokine expression. CD11c+ cells were the major source of IL-6 in Mtb-infected T2DM mice. Pulmonary natural killer (NK) cells in Mtb-infected T2DM mice further increased IL-6 production by autologous CD11c+ cells through their activating receptors. Anti-NK1.1 antibody treatment of Mtb-infected acute-T2DM mice increased survival and reduced pro- and anti-inflammatory cytokine expression. Furthermore, IL-6 increased inflammatory cytokine production by T lymphocytes in pulmonary tuberculosis patients with T2DM. Overall, the results suggest that NK-CD11c+ cell interactions increase IL-6 production, which in turn drives the pathological immune response and mortality associated with Mtb infection in diabetic mice. PMID:27783671

  19. Prenatal Activation of Toll-Like Receptor-4 Dampens Adult Hippocampal Neurogenesis in An IL-6 Dependent Manner

    PubMed Central

    Mouihate, Abdeslam

    2016-01-01

    Prenatal immune challenge has been associated with alteration in brain development and plasticity that last into adulthood. We have previously shown that prenatal activation of toll-like receptor 4 by lipopolysaccharide (LPS) induces IL-6-dependent STAT-3 signaling pathway in the fetal brain. Whether this IL-6-dependent activation of fetal brain results in long lasting impact in brain plasticity is still unknown. Furthermore, it has been shown that prenatal LPS heightens the hypothalamic–pituitary–adrenal (HPA) response in adulthood. In the present study we tested whether LPS administration during pregnancy affects neurogenesis in adult male offspring. Because corticosterone, the end-product of HPA axis activity in rats, alters neurogenesis we tested whether this enhanced HPA axis responsiveness in adult male offspring played a role in the long lasting impact of LPS on neurogenesis during adulthood. Pregnant rats were given either LPS, or LPS and an IL-6 neutralizing antibody (IL-6Ab). The newly born neurons were monitored in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus of adult male offspring by monitoring doublecortin and T-box brain protein-2 expression: two well-established markers of newly born neurons. Prenatal LPS decreased the number of newly born neurons in the DG, but not in the SVZ of adult offspring. This decreased number of newly born neurons in the DG was absent when IL-6Ab was co-injected with LPS during pregnancy. Furthermore, administration of a corticosterone receptor blocker, RU-486, to adult offspring blunted the prenatal LPS induced decrease in newly born neurons in the DG. These data suggest that maternally triggered IL-6 plays a crucial role in the long lasting impact of LPS on adult neurogenesis. PMID:27445700

  20. IL-6-Mediated Activation of Stat3α Prevents Trauma/Hemorrhagic Shock-Induced Liver Inflammation

    PubMed Central

    Moran, Ana; Thacker, Stephen A.; Arikan, Ayse Akcan; Mastrangelo, Mary-Ann A.; Wu, Yong; Yu, Bi; Tweardy, David J.

    2011-01-01

    Trauma complicated by hemorrhagic shock (T/HS) is the leading cause of morbidity and mortality in the United States for individuals under the age of 44 years. Initial survivors are susceptible to developing multiple organ failure (MOF), which is thought to be caused, at least in part, by excessive or maladaptive activation of inflammatory pathways. We previously demonstrated in rodents that T/HS results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required, and the mechanism(s) for the IL-6 protective effect have not been reported. In the experiments described here, we demonstrated that the extent of liver inflammation induced by T/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver inflammation and is associated with increased Stat3 activation. Global assessment of the livers showed that the main effect of IL-6 was to normalize the T/HS-induced inflammation transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver inflammation and to normalize the T/HS-induced liver inflammation transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated T/HS-induced liver inflammation, confirming a role for Stat3, especially Stat3α, in preventing T/HS-mediated liver inflammation. Thus, T/HS-induced liver inflammation depends on the duration of hypotension and requires resuscitation; IL-6 administration at the start of resuscitation reverses T/HS-induced liver inflammation, through activation of Stat3α, which normalized the T/HS-induced liver inflammation transcriptome. PMID:21738667

  1. Soluble ICAM-1, Independent of IL-6, Is Associated with Prevalent Frailty in Community-Dwelling Elderly Taiwanese People

    PubMed Central

    Lee, Wei-Ju; Chen, Liang-Kung; Liang, Chih-Kuang; Peng, Li-Ning; Chiou, Shu-Ti; Chou, Pesus

    2016-01-01

    Background Activation of inflammatory pathway with elevation of inflammatory biomarkers such as Interleukin 6 (IL-6) has been considered a pathophysiological feature of frailty. In recent years, the association between Intercellular adhesive molecule -1 (ICAM-1) and vascular inflammatory was established. Provocation of inflammatory cascades from ICAM-1 is potential IL-6 related, although the association between the inflammatory process and frailty is little to known. The study was intended to evaluate the relationship between serum ICAM-1, IL-6 and frailty. Materials and Methods Data was derived from a representative national sampling cohort in Taiwan. The cross-sectional study included nine-hundred-forty-six community-dwelling people aged 53 and older. Frailty was defined as having three or more components (including, muscle shrinkage, slowness, weakness, exhaustion, and low activity) Serum IL-6 and ICAM-1 levels were measured using standard enzyme–linked immunosorbent assays. Results Soluble ICAM-1 (sICAM-1) levels were stepwise increased in non-frail, pre-frail and frail elderly people (the median levels were 255 vs. 265 vs. 285 ng/ml, respectively p<0.001). A multivariate multinomial logistic regression, which was adjusted for age, sex, smoking, education, BMI, and chronic disease number, was utilized to determine that the probability of being frail due to increased log (ICAM-1) and log (IL-6) standard deviation levels were 1.44 (95% CI 1.09–1.91) and 1.54 (95%CI 1.07–2.20), respectively. Conclusion sICAM-1 was significantly associated with frailty, independent of IL-6. This implied that leukocyte migration and inflammation cascade activation might contribute to frailty, in addition to monocyte/macrophage-mediated immuno-inflammation. PMID:27310835

  2. Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1 beta gene.

    PubMed Central

    Tsukada, J; Saito, K; Waterman, W R; Webb, A C; Auron, P E

    1994-01-01

    A site located between -2782 and -2729 of the human prointerleukin-1 beta (IL1B) gene functions as a strong lipopolysaccharide (LPS)-responsive enhancer independent of the previously identified enhancer located between -2896 and -2846 (F. Shirakawa, K. Saito, C.A. Bonagura, D.L. Galson, M. J. Fenton, A. C. Webb, and P. E. Auron, Mol. Cell. Biol. 13:1332-1344, 1993). Although these two enhancers appear to function cooperatively in the native sequence context, they function independently as LPS-responsive elements upon removal of an interposed silencer sequence. The new enhancer is not induced by dibutyryl cyclic AMP (dbcAMP) alone but is superinduced by costimulation with LPS-dbcAMP. This pattern of induction depends upon the nature of the sequence, a composite NF-IL6-cAMP response element (CRE) binding site. This pseudosymmetrical sequence is shown to contrast with a classical symmetric CRE which responds to dbcAMP but not LPS. DNA binding studies using in vivo nuclear extract, recombinant proteins, and specific antibodies show that LPS induces the formation of two different complexes at the enhancer: (i) an NF-IL6-CREB heterodimer and (ii) a heterodimer consisting of NF-IL6 and a non-CREB, CRE-binding protein. Cotransfection studies using NF-IL6 and CREB expression vectors show that NF-IL6 transactivates the enhancer in the presence of LPS, whereas CREB acts either positively or negatively, depending upon its cAMP-regulated phosphorylation state. Our data demonstrate that the newly identified enhancer is a specialized LPS-responsive sequence which can be modulated by cAMP as a result of the involvement of NF-IL6-CRE-binding protein heterodimers. Images PMID:7935442

  3. Autophagy Pathway Is Required for IL-6 Induced Neuroendocrine Differentiation and Chemoresistance of Prostate Cancer LNCaP Cells

    PubMed Central

    Chang, Yi-Ting; Chu, Cheng-Ying; Lee, Chin-Ling; Hsu, Hung-Wei; Zhou, Tyng-An; Wu, Zhaoju; Kim, Randie H.; Desai, Sonal J.; Liu, Shangqin; Kung, Hsing-Jien

    2014-01-01

    Prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE) tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ) markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA), a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results reveal the

  4. Induced heteroduplex genotyping of TNF-alpha, IL-1beta, IL-6 and IL-10 polymorphisms associated with transcriptional regulation.

    PubMed

    Morse, H R; Olomolaiye, O O; Wood, N A; Keen, L J; Bidwell, J L

    1999-10-01

    We describe the construction and use of 7 induced heteroduplex generators, reagents for the rapid and unequivocal genotyping of nucleotide sequence polymorphism in TNF-alpha, IL-1beta, IL-6 and IL-10. Polymorphisms detected are those previously associated with regulation of gene transcription: TNF-alpha positions -308 and -238; IL-1beta position +3953; IL-6 position -174; and IL-10 positions -1082, -819 and -592. The reagents were used for analysis of allele and haplotype frequencies in a population of healthy Caucasian volunteer blood donors.

  5. Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways.

    PubMed

    Zheng, Yu; Chow, Shu-Oi; Boernert, Katja; Basel, Dennis; Mikuscheva, Anastasia; Kim, Sarah; Fong-Yee, Colette; Trivedi, Trupti; Buttgereit, Frank; Sutherland, Robert L; Dunstan, Colin R; Zhou, Hong; Seibel, Markus J

    2014-09-01

    The bone microenvironment and its modification by cancer and host cell interactions is a key driver of skeletal metastatic growth. Interleukin-6 (IL-6) stimulates receptor activator of NF-κB ligand (RANKL) expression in bone cells, and serum IL-6 levels are associated with poor clinical outcomes in cancer patients. We investigated the effects of RANKL on cancer cells and the role of tumor-derived IL-6 within the bone microenvironment. Using human breast cancer cell lines to induce tumors in the bone of immune-deficient mice, we first determined whether RANKL released by cells of the osteoblast lineage directly promotes IL-6 expression by cancer cells in vitro and in vivo. We then disrupted of IL-6 signaling in vivo either via knockdown of IL-6 in tumor cells or through treatment with specific anti-human or anti-mouse IL-6 receptor antibodies to investigate the tumor effect. Finally, we tested the effect of RANK knockdown in cancer cells on cancer growth. We demonstrate that osteoblast lineage-derived RANKL upregulates secretion of IL-6 by breast cancers in vivo and in vitro. IL-6, in turn, induces expression of RANK by cancer cells, which sensitizes the tumor to RANKL and significantly enhances cancer IL-6 release. Disruption in vivo of this auto-amplifying crosstalk by knockdown of IL-6 or RANK in cancer cells, or via treatment with anti-IL-6 receptor antibodies, significantly reduces tumor growth in bone but not in soft tissues. RANKL and IL-6 mediate direct paracrine-autocrine signaling between cells of the osteoblast lineage and cancer cells, significantly enhancing the growth of metastatic breast cancers within bone.

  6. Soluble IL-6 Receptor and IL-27 Subunit p28 Protein Complex Mediate the Antiviral Response through the Type III IFN Pathway.

    PubMed

    Yang, Xiaodan; Hao, Hua; Xia, Zhangchuan; Xu, Gang; Cao, Zhongying; Chen, Xueyuan; Liu, Shi; Zhu, Ying

    2016-09-15

    Previously, we demonstrated that the soluble IL-6R (sIL-6R) plays an important role in the host antiviral response through induction of type I IFN and sIL-6R-mediated antiviral action via the IL-27 subunit p28; however, the mechanism that underlies sIL-6R and p28 antiviral action and whether type III IFN is involved remain unknown. In this study, we constructed a sIL-6R and p28 fusion protein (sIL-6R/p28 FP) and demonstrated that the fusion protein has stronger antiviral activity than sIL-6R alone. Consequently, knockout of sIL-6R inhibited virus-triggered IFN-λ1 expression. In addition, sIL-6R/p28 FP associated with mitochondrial antiviral signaling protein and TNFR-associated factor 6, the retinoic acid-inducible gene I adapter complex, and the antiviral activity mediated by sIL-6R/p28 FP was dependent on mitochondrial antiviral signaling protein. Furthermore, significantly reduced binding of p50/p65 and IFN regulatory factor 3 to the IFN-λ1 promoter was observed in sIL-6R knockout cells compared with the control cells. Interestingly, a novel heterodimer of c-Fos and activating transcription factor 1 was identified as a crucial transcriptional activator of IFN-λ1 The sIL-6R/p28 FP upregulated IFN-λ1 expression by increasing the binding abilities of c-Fos and activating transcription factor 1 to the IFN-λ1 promoter via the p38 MAPK signaling pathway. In conclusion, these results demonstrate the important role of sIL-6R/p28 FP in mediating virus-induced type III IFN production. PMID:27527594

  7. Down-regulation of microRNA-9 leads to activation of IL-6/Jak/STAT3 pathway through directly targeting IL-6 in HeLa cell.

    PubMed

    Zhang, Jiangbo; Jia, Junqiao; Zhao, Lijun; Li, Xiaojun; Xie, Qing; Chen, Xiangmei; Wang, Jianliu; Lu, Fengmin

    2016-05-01

    MicroRNA-9 (miR-9) presents to exert distinct and even opposite functions in different kinds of tumors through targeting different cellular genes. However, its role in cervical adenocarcinoma remains uncertain. Here, we report that miR-9 is down-regulated in cervical adenocarcinoma due to its frequent promoter-hypermethylation and exerts its tumor suppressor role through inhibiting several novel target genes, including interleukin-6 (IL-6). The promoters of miR-9 precursors (mir-9-1, -2, and -3) were hypermethylated in cervical adenocarcinoma tissues. Demethylation treatment of HeLa dramatically increased the expression of mature miR-9. Both in vitro and in vivo functional experiments confirmed that miR-9 can inhibit the proliferation, migration, and malignant transformation abilities of HeLa cells. Bioinformatics methods and array-based RNA expression profiles were used to screen the downstream target genes of miR-9. Dual-luciferase reporting assay, real-time qPCR, and ELISA or Western blot confirmed four genes (CKAP2, HSPC159, IL-6, and TC10) to be novel direct target genes of miR-9. Pathway annotation analysis of the differently expressed genes (DEGs) induced by ectopic miR-9 expression revealed the enrichment in Jak/STAT3 pathway, which is one of the downstream pathways of IL-6. Ectopic expression of miR-9 in HeLa inhibited Jak/STAT3 signaling activity. Moreover, such effect could be partially reversed by the addition of exogenous IL-6. In conclusion, our results here present a tumor suppressor potential of miR-9 in cervical adenocarcinoma for the first time and suggest that miR-9 could repress tumorigenesis through inhibiting the activity of IL-6/Jak/STAT3 pathway.

  8. Activation of transcription factor IL-6 (NF-IL-6) and nuclear factor-kappaB (NF-kappaB) by lipid ozonation products is crucial to interleukin-8 gene expression in human airway epithelial cells.

    PubMed

    Kafoury, Ramzi M; Hernandez, Jazmir M; Lasky, Joseph A; Toscano, William A; Friedman, Mitchell

    2007-04-01

    Ozone (O(3)) is a major component of smog and an inhaled toxicant to the lung. O(3) rapidly reacts with the airway epithelial cell membrane phospholipids to generate lipid ozonation products (LOP). 1-Hydroxy-1-hydroperoxynonane (HHP-C9) is an important LOP, produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine. This LOP, at a biologically relevant concentration (100 microM), increases the activity of phospholipase C, nuclear factors-kappaB (NF-kappaB), and interleukin-6 (NF-IL-6) and the expression of the inflammatory gene, interleukin-8 (IL-8) in a cultured human bronchial epithelial cell line (BEAS-2B). The signaling pathways of ozone and its biologically-active products are as yet undefined. In the present study, we report that the HHP LOP, HHP-C9 (100 microM x 4 h), activated the expression of IL-8 (218 +/- 26% increase over control, n = 4, P < 0.01) through an apparent interaction between the two transcription factors, NF-kappaB and NF-IL-6. Transfection studies using luciferase reporter assays demonstrated that HHP-C9 induced a significant increase in NF-kappaB-DNA binding activity (37 +/- 7% increase over control, n = 6, P < 0.05). Inhibition of NF-kappaB showed a statistically significant but modest decrease in IL-8 release, which suggested a role for another transcription factor, NF-IL-6. Exposure of BEAS-2B cells to HHP-C9 induced a significant increase in the DNA binding activity of NF-IL-6 (45 +/- 11% increase over control, n = 6, P < 0.05). The results of the present study indicate that NF-IL-6 interacts with NF-kappaB in regulating the expression of IL-8 in cultured human airway epithelial cells exposed to LOP, the biological products of ozone in the lung. PMID:17366569

  9. IL6 Inhibits HBV Transcription by Targeting the Epigenetic Control of the Nuclear cccDNA Minichromosome

    PubMed Central

    Palumbo, Gianna Aurora; Scisciani, Cecilia; Pediconi, Natalia; Lupacchini, Leonardo; Alfalate, Dulce; Guerrieri, Francesca; Calvo, Ludovica; Salerno, Debora; Di Cocco, Silvia; Levrero, Massimo; Belloni, Laura

    2015-01-01

    The HBV covalently closed circular DNA (cccDNA) is organized as a mini-chromosome in the nuclei of infected hepatocytes by histone and non-histone proteins. Transcription from the cccDNA of the RNA replicative intermediate termed pre-genome (pgRNA), is the critical step for genome amplification and ultimately determines the rate of HBV replication. Multiple evidences suggest that cccDNA epigenetic modifications, such as histone modifications and DNA methylation, participate in regulating the transcriptional activity of the HBV cccDNA. Inflammatory cytokines (TNFα, LTβ) and the pleiotropic cytokine interleukin-6 (IL6) inhibit hepatitis B virus (HBV) replication and transcription. Here we show, in HepG2 cells transfected with linear HBV monomers and HBV-infected NTCP-HepG2 cells, that IL6 treatment leads to a reduction of cccDNA-bound histone acetylation paralleled by a rapid decrease in 3.5kb/pgRNA and subgenomic HBV RNAs transcription without affecting cccDNA chromatinization or cccDNA levels. IL6 repressive effect on HBV replication is mediated by a loss of HNF1α and HNF4α binding to the cccDNA and a redistribution of STAT3 binding from the cccDNA to IL6 cellular target genes. PMID:26580974

  10. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages.

    PubMed

    Honda, Kaori L; Lamon-Fava, Stefania; Matthan, Nirupa R; Wu, Dayong; Lichtenstein, Alice H

    2015-06-01

    Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity. PMID:25921297

  11. Increased inflammation and impaired resistance to Chlamydophila pneumoniae infection in Dusp1(-/-) mice: critical role of IL-6.

    PubMed

    Rodriguez, Nuria; Dietrich, Harald; Mossbrugger, Ilona; Weintz, Gabriele; Scheller, Jürgen; Hammer, Michael; Quintanilla-Martinez, Leticia; Rose-John, Stefan; Miethke, Thomas; Lang, Roland

    2010-09-01

    The MAPK phosphatase DUSP1 is an essential negative regulator of TLR-triggered innate immune activation. Here, we have investigated the impact of DUSP1 on inflammatory and antimicrobial host responses to the intracellular pathogen Chlamydophila pneumoniae. Following nasal infection, DUSP1-deficient mice mounted an enhanced pulmonary cytokine (IL-1beta, IL-6) and chemokine response (CCL3, CCL4, CXCL1, CXCL2), leading to increased leukocyte infiltration. Of interest, the increased inflammatory response, in the absence of DUSP1, was associated with higher bacterial numbers in the lungs, although the expression of IFN-gamma and critical antichlamydial effector molecules, such as iNOS, was intact. Blockade of IL-6 trans-signaling by injection of a soluble gp130-Fc fusion protein corrected the overshooting chemokine production as well as the increased chlamydial load in Dusp1(-/-) mice. Furthermore, IL-6 enhanced the replication of C. pneumoniae in embryonic fibroblasts in vitro. These data show that DUSP1 is required to achieve a balanced response to chlamydial infection and identify IL-6 as critical for amplifying inflammation and benefiting chlamydial growth through direct effects on infected cells.

  12. The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells

    PubMed Central

    Slørdahl, Tobias S.; Abdollahi, Pegah; Vandsemb, Esten N.; Rampa, Christoph; Misund, Kristine; Baranowska, Katarzyna A.; Westhrin, Marita; Waage, Anders; Rø, Torstein B.; Børset, Magne

    2016-01-01

    Multiple myeloma (MM) is a neoplastic proliferation of bone marrow plasma cells. PRL-3 is a phosphatase induced by interleukin (IL)-6 and other growth factors in MM cells and promotes MM-cell migration. PRL-3 has also been identified as a marker gene for a subgroup of patients with MM. In this study we found that forced expression of PRL-3 in the MM cell line INA-6 led to increased survival of cells that were depleted of IL-6. It also caused redistribution of cells in cell cycle, with an increased number of cells in G2M-phase. Furthermore, forced PRL-3 expression significantly increased phosphorylation of Signal transducer and activator of transcription (STAT) 3 both in the presence and the absence of IL-6. Knockdown of PRL-3 with shRNA reduced survival in MM cell line INA-6. A pharmacological inhibitor of PRL-3 reduced survival in the MM cell lines INA-6, ANBL-6, IH-1, OH-2 and RPMI8226. The inhibitor also reduced survival in 9 of 9 consecutive samples of purified primary myeloma cells. Treatment with the inhibitor down-regulated the anti-apoptotic protein Mcl-1 and led to activation of the intrinsic apoptotic pathway. Inhibition of PRL-3 also reduced IL-6-induced phosphorylation of STAT3. In conclusion, our study shows that PRL-3 is an important mediator of growth factor signaling in MM cells and hence possibly a good target for treatment of MM. PMID:27036022

  13. INCREASED IL-8 AND IL-6 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES

    EPA Science Inventory

    INCREASED IL-6 AND IL-8 EXPRESSION IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO CARBON ULTRAFINE PARTICLES.
    R Silbajoris1, A G Lenz2, I Jaspers3, J M Samet1. 1NHEERL, USEPA, RTP, NC, USA; 2GSF-Institute for Inhalation Biology, Neuherberg, Germany; 3 CEMLB, UNC-CH, Chapel Hill, ...

  14. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression

    PubMed Central

    Wei, Y B; Liu, J J; Villaescusa, J C; Åberg, E; Brené, S; Wegener, G; Mathé, A A; Lavebratt, C

    2016-01-01

    Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms. PMID:27529677

  15. Elevation of Il6 is associated with disturbed let-7 biogenesis in a genetic model of depression.

    PubMed

    Wei, Y B; Liu, J J; Villaescusa, J C; Åberg, E; Brené, S; Wegener, G; Mathé, A A; Lavebratt, C

    2016-01-01

    Elevation of the proinflammatory cytokine IL-6 has been implicated in depression; however, the mechanisms remain elusive. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression post-transcriptionally. The lethal-7 (let-7) miRNA family was suggested to be involved in the inflammation process and IL-6 was shown to be one of its targets. In the present study, we report elevation of Il6 in the prefrontal cortex (PFC) of a genetic rat model of depression, the Flinders Sensitive Line (FSL) compared to the control Flinders Resistant Line. This elevation was associated with an overexpression of LIN28B and downregulation of let-7 miRNAs, the former an RNA-binding protein that selectively represses let-7 synthesis. Also DROSHA, a key enzyme in miRNA biogenesis was downregulated in FSL. Running was previously shown to have an antidepressant-like effect in the FSL rat. We found that running reduced Il6 levels and selectively increased let-7i and miR-98 expression in the PFC of FSL, although there were no differences in LIN28B and DROSHA expression. Pri-let-7i was upregulated in the running FSL group, which associated with increased histone H4 acetylation. In conclusion, the disturbance of let-7 family biogenesis may underlie increased proinflammatory markers in the depressed FSL rats while physical activity could reduce their expression, possibly through regulating primary miRNA expression via epigenetic mechanisms. PMID:27529677

  16. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages.

    PubMed

    Honda, Kaori L; Lamon-Fava, Stefania; Matthan, Nirupa R; Wu, Dayong; Lichtenstein, Alice H

    2015-06-01

    Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity.

  17. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages

    PubMed Central

    Honda, Kaori L.; Lamon-Fava, Stefania; Matthan, Nirupa R.; Wu, Dayong; Lichtenstein, Alice H.

    2015-01-01

    Docosahexaenoic acid (DHA) is generally reported to have anti-inflammatory properties, however, prior work has documented differential effects on individual pro-inflammatory cytokines: reduced IL-6, but not TNFα, mRNA expression in macrophages. To elucidate the mechanism, the roles of prostaglandin E2 (PGE2), cyclic AMP response element-binding protein (CREB), and NFκB were examined in RAW 264.7 macrophages. DHA did not influence CREB activity, but significantly reduced PGE2 production by 41% and NFκB activity by 32%. Exogenous PGE2 inhibited TNFα mRNA expression dose dependently. Unexpectedly, inhibiting PGE2 production with NS-398 also decreased TNFα mRNA expression, suggesting a concentration-dependent dual role of PGE2 in regulating TNFα expression. IL-6 expression was unaffected by endogenous or exogenous PGE2. Partial block of NFκB activation (SN50; 46%, or, BAY-11-7082; 41%) lowered IL-6 to a greater extent than TNFα mRNA expression. The differential effect of DHA on TNFα and IL-6 mRNA expression may be mediated via reduction in NFκB activity. PMID:25921297

  18. Il6 gene promoter polymorphism (-174G/C) influences the association between fat mass and cardiovascular risk factors.

    PubMed

    Moleres, A; Rendo-Urteaga, T; Azcona, C; Martínez, J A; Gómez-Martínez, S; Ruiz, J R; Moreno, L A; Marcos, A; Marti, A

    2009-12-01

    During the last decades, the prevalence of obesity has increased rapidly among young people. A polymorphism in the promoter region of the IL6 gene (-174G/C), has been previously reported to be involved in obesity and metabolic syndrome development. Therefore, the aim of the study was to examine whether the IL6-174G/C polymorphism influence the association of body fat with low-grade inflammatory markers and blood lipids and lipoproteins in Spanish adolescents. 504 Spanish adolescents participating in the AVENA study were genotyped for the-174G/C polymorphism of the IL6 gene. Anthropometric and body composition measurements were taken and blood samples were collected for plasma molecules determinations. No differences between genotypes were observed in anthropometric values, body composition measurements and plasma markers concentration. Physical activity level differ between genotypes with subjects carrying the C allele of the polymorphism being significantly (p<0.05) more active than GG subjects. The association between body fat mass and plasma glucose was influenced by the -174G/C polymorphism of the IL6 gene. Subjects carrying the C allele of the mutation seem to have higher values of lipoprotein (a) and C-reactive protein as their percentage of body fat mass increase. Our results suggest that this promoter polymorphism influences the association between adiposity and some plasma markers.

  19. A case for IL-6, IL-17A, and nitric oxide in the pathophysiology of Sjögren's syndrome.

    PubMed

    Benchabane, Sarah; Boudjelida, Abdelhalim; Toumi, Ryma; Belguendouz, Houda; Youinou, Pierre; Touil-Boukoffa, Chafia

    2016-09-01

    Sjögren's syndrome (SS) is an autoimmune epithelitis characterized by mononuclear cell (MNC) infiltration of the lacrimal and salivary glands (SG), as well as the presence of serum autoantibodies. This condition is a growing public health concern in Algeria. Herein, we sought to determine if the levels of interleukin (IL)-6, IL-17A, and nitric oxide (NO), were correlated with the extent of MNC infiltration. The expression of inducible NO synthase (NOS2) and CD68 was measured in the SG of all patients, but not in those of the normal controls (NCs). We included 44 primary Sjögren's syndrome (pSS) patients and 15 NCs in this study; we found that the expression of NOS2 and CD68 was elevated in all of the SG of SS patients. Additionally, the serum and saliva levels of IL-6, IL-17A, and NO were higher in the pSS patients, compared with the NCs. Furthermore, the NOS2-induced excess NO was associated with the extent of the MNC infiltration, and thereby with tissue injury. It is also important to note that there were correlations between the levels of IL-6, IL-17A, and NO. Such findings indicate that through the effects of NO, IL-17A participates in the pathophysiology of the disease. With the purpose of improving both the diagnosis and prognosis, IL-6, IL-17A, and NO should be assayed in the serum and saliva of patients suspected of SS. PMID:27207443

  20. The effect of physical activity on serum IL-6 and vaspin levels in late elementary school children

    PubMed Central

    Hong, Hye-Ryun; Ha, Chang-Duk; Jin, Young-Yun; Kang, Hyun-Sik

    2015-01-01

    [Purpose] This study investigates the effects of physical activity on serum IL-6 and vaspin in late elementary school children. [Methods] Those who (n = 220) completed the 7-day physical activity monitoring underwent a second round of measurements including body fat, serum glucose and insulin, and serum IL-6 and vaspin. One way ANOVAs followed by LSD post hoc tests were used to test for significant differences in dependent variables across incremental physical activity levels at p=0.05. Multivariate stepwise linear regression analyses were used to determine significant predictors for serum IL-6 and vaspin levels at p=0.05. [Results] The results showed significant inverse linear trends for body fat parameters across incremental physical activity levels (from low to high); the lower the body fat, the higher the physical activity levels. On the other hand, there were no significant linear trends for insulin resistance markers or dietary intake across incremental physical activity levels. Multiple stepwise linear regression analyses were used to determine significant predictors for individual variations in serum IL-6 and vaspin in the study population. We found that body mass index (p=0.002) and low- and moderate-intensity physical activities (p=0.002 and p=0.0045, respectively) were significant determinants of serum IL-6. In addition, low- and moderate-intensity physical activities (p=0.01 & p=0.022, respectively) were significant determinants of serum vaspin levels in this study population. [Conclusion] In summary, the findings of the current study suggest that promotion of physical activity along with a healthy diet should be key components of lifestyle interventions to improve serum cytokine profiles associated with insulin resistance syndrome in late elementary school children. PMID:26244128

  1. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis.

    PubMed

    Lin, Jinpiao; Zhou, Zhou; Huo, Rongfen; Xiao, Lianbo; Ouyang, Guilin; Wang, Li; Sun, Yue; Shen, Baihua; Li, Dangsheng; Li, Ningli

    2012-06-01

    Cysteine-rich protein 61 (Cyr61)/CCN1 is a product of an immediate early gene and functions in mediating cell adhesion and inducing cell migration. We previously showed that increased production of Cyr61 by fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA) promotes FLS proliferation and participates in RA pathogenesis with the IL-17-dependent pathway. However, whether Cyr61 in turn regulates Th17 cell differentiation and further enhances inflammation of RA remained unknown. In the current study, we explored the potential role of Cyr61 as a proinflammatory factor in RA pathogenesis. We found that Cyr61 treatment dramatically induced IL-6 production in FLS isolated from RA patients. Moreover, IL-6 production was attenuated by Cyr61 knockdown in FLS. Mechanistically, we showed that Cyr61 activated IL-6 production via the αvβ5/Akt/NF-κB signaling pathway. Further, using a coculture system consisting of purified CD4(+) T cells and RA FLS, we found that RA FLS stimulated Th17 differentiation, and the pro-Th17 differentiation effect of RA FLS can be attenuated or stimulated by Cyr61 RNA interference or addition of exogenous Cyr61, respectively. Finally, using the collagen-induced arthritis animal model, we showed that treatment with the anti-Cyr61 mAb led to reduction of IL-6 levels, decrease of Th17 response, and attenuation of inflammation and disease progression in vivo. Taken together, our results reveal a novel role of Cyr61 in promoting Th17 development in RA via upregulation of IL-6 production by FLS, thus adding a new layer into the functional interplay between FLS and Th17 in RA pathogenesis. Our study also suggests that targeting of Cyr61 may represent a novel strategy in RA treatment.

  2. Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation.

    PubMed

    Marmary, Yitzhak; Adar, Revital; Gaska, Svetlana; Wygoda, Annette; Maly, Alexander; Cohen, Jonathan; Eliashar, Ron; Mizrachi, Lina; Orfaig-Geva, Carmit; Baum, Bruce J; Rose-John, Stefan; Galun, Eithan; Axelrod, Jonathan H

    2016-03-01

    Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy. PMID:26759233

  3. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway via Zinc Finger Transcription Factor CREB

    PubMed Central

    Zhang, Yuqing; Bharadwaj, Uddalak; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi; Li, Min

    2010-01-01

    Purpose Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. Experimental Design The expression of cyclin D1, IL-6, and STAT3 in pancreatic cancer xenografts and cells were examined by real time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of CREB is examined by a promoter activity assay. Results Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4 silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells, and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts, and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity, and caused increased phosphorylation of cAMP response element binding protein (CREB). Conclusions Our study suggest that ZIP4 overexpression causes increased IL-6 transcription via CREB, which in turn activates STAT3, and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth, and suggest new therapeutic targets including ZIP4, IL-6, and STAT3 in pancreatic cancer treatment. PMID:20160059

  4. Effects of miR-223 on expression of IL-1β and IL-6 in human gingival fibroblasts.

    PubMed

    Matsui, Sari; Ogata, Yorimasa

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional expression by translational inhibition or mRNA degradation. miRNAs bind to target mRNAs through partial complementarity, and can regulate many genes. In the present study, we investigated the effects of miR-223 on the expression of inflammatory cytokines in human gingival fibroblasts (HGF). To determine the effects of miR-223 on the expressions of interleukin-1β (IL-1β) and IL-6, HGF were stimulated by IL-1β (1 ng/mL) or tumor necrosis factor-α (TNF-α; 10 ng/mL) and transfected with a miR-223 expression plasmid. Levels of mRNA for IL-1β, IL-6, inhibitor of kappa-B kinase α (IKKα) and mitogen-activated protein kinase phosphatase-5 (MKP-5) were measured by real-time PCR, and levels IL-1β, IL-6 and IKKα protein were determined by enzyme-linked immunosorbent assay and Western blotting. Expression of IL-1β and IL-6 mRNAs was induced by IL-1β and TNF-α and further increased by miR-223 overexpression. IL-1β and TNF-α induced the expression of IL-1β and IL-6 mRNAs, and this was reduced by miR-223 inhibitor. Overexpression of miR-223 decreased the levels of IKKα protein and MKP-5 mRNA in HGF. These findings indicate that miR-223 might control the inflammatory response via IKKα and MKP-5 in periodontal tissue. (J Oral Sci 58, 101-108, 2016).

  5. IL-4 Downregulates IL-1β and IL-6 and Induces GATA3 in Psoriatic Epidermal Cells: Route of Action of a Th2 Cytokine.

    PubMed

    Onderdijk, Armanda J; Baerveldt, Ewout M; Kurek, Dorota; Kant, Marius; Florencia, Edwin F; Debets, Reno; Prens, Errol P

    2015-08-15

    Clinical improvement of psoriasis induced by IL-4 treatment has been ascribed to changes in dermal inflammatory cells, such as activation of Th2 cells and tolerization of dendritic cells by suppressing IL-23 production. The pathologic epidermal alterations in psoriatic lesional skin include increased epidermal expression of IL-1β, IL-6, S100A7, and human β-defensin 2 (hBD2) and a downregulated expression of the epidermal transcription factor GATA3. Effects of IL-4 on the epidermal compartment of psoriasis lesions were not previously investigated. Therefore, we investigated whether IL-4 directly affects abovementioned psoriatic markers in the epidermal compartment. We cultured freshly isolated psoriatic epidermal cells, whole psoriatic and healthy skin biopsies, human keratinocytes and Langerhans cells with IL-4. The secretion of IL-1β and IL-6 by psoriatic epidermal cells was inhibited by IL-4 via transcriptional and posttranscriptional mechanisms, respectively. In normal skin, IL-4 inhibited IL-1β- and IL-17A-induced hBD2 expression in vitro. In addition, IL-4 reduced the protein expression of hBD2 in psoriatic skin biopsies and induced phospho-STAT6 protein. Epidermal GATA3 mRNA and protein were significantly upregulated by IL-4 in epidermal cells and keratinocytes. Our data argue that IL-4 improves psoriasis not only via modification/induction of Th2 cells and type II dendritic cells, but also via direct inhibition of inflammatory cytokines in resident IL-4R-expressing epidermal cells and thereby alters the psoriatic skin phenotype toward a healthy skin phenotype.

  6. Integrin-linked kinase as a novel molecular switch of the IL-6-NF-κB signaling loop in breast cancer.

    PubMed

    Hsu, En-Chi; Kulp, Samuel K; Huang, Han-Li; Tu, Huang-Ju; Chao, Min-Wu; Tseng, Yu-Chou; Yang, Ming-Chen; Salunke, Santosh B; Sullivan, Nicholas J; Chen, Wen-Chung; Zhang, Jianying; Teng, Che-Ming; Fu, Wen-Mei; Sun, Duxin; Wicha, Max S; Shapiro, Charles L; Chen, Ching-Shih

    2016-04-01

    Substantial evidence has clearly demonstrated the role of the IL-6-NF-κB signaling loop in promoting aggressive phenotypes in breast cancer. However, the exact mechanism by which this inflammatory loop is regulated remains to be defined. Here, we report that integrin-linked kinase (ILK) acts as a molecular switch for this feedback loop. Specifically, we show that IL-6 induces ILK expression via E2F1 upregulation, which, in turn, activates NF-κB signaling to facilitate IL-6 production. shRNA-mediated knockdown or pharmacological inhibition of ILK disrupted this IL-6-NF-κB signaling loop, and blocked IL-6-induced cancer stem cells in vitro and estrogen-independent tumor growth in vivo Together, these findings establish ILK as an intermediary effector of the IL-6-NF-κB feedback loop and a promising therapeutic target for breast cancer.

  7. Effects of 174 G/C polymorphism in the promoter region of the interleukin-6 gene on plasma IL-6 levels and muscle strength in elderly women.

    PubMed

    Pereira, D S; Garcia, D M; Narciso, F M S; Santos, M L A S; Dias, J M D; Queiroz, B Z; Souza, E R; Nóbrega, O T; Pereira, L S M

    2011-02-01

    We investigated the effect of -174 G/C single-nucleotide polymorphism in the promoter region of the IL6 gene on plasma IL-6 levels and muscle strength, and the relationship between IL-6 levels and muscle strength in elderly women. The sample consisted of 199 elderly residents (73.0 ± 7.8 years old) from rest homes and the community in Belo Horizonte, MG, Brazil. -174 G/C polymorphism was determined by direct sequencing of the product by PCR, and plasma IL-6 concentrations were measured by ELISA. Muscle strength in the knee joint was evaluated using a Biodex System 3 Pro® isokinetic dynamometer. ANCOVA was used to determine the effect of polymorphism on IL-6 levels and muscle strength, and the Pearson correlation coefficient to assess the relationship between IL-6 levels and muscle strength. -174 G/C polymorphism was associated with the plasma IL-6 levels of elderly women (P < 0.01) since homozygotes for the G allele showed high IL-6 levels (GG 3.85 pg/mL, GC + CC 2.13 pg/mL). There was no association of polymorphism on muscle strength (P > 0.05). No association was found between IL-6 levels and knee extensor muscle (r = 0.087, P = 0.306) or flexor (r = -0.011, P = 0.894) strength. An interaction between -174 G/C polymorphism and housing conditions of the sample of elderly women was identified, with the effect of genotype on IL-6 levels being higher in the institutionalized elderly. These results support the evidence that -174 G/C polymorphism of the IL6 gene associates with individual variability of plasma IL-6 levels in elderly women.

  8. Sequential signaling cascade of IL-6 and PGC-1α is involved in high glucose-induced podocyte loss and growth arrest

    SciTech Connect

    Kim, Dong Il; Park, Soo Hyun

    2013-06-14

    Highlights: •The pathophysiological role of IL-6 in high glucose-induced podocyte loss. •The novel role of PGC-1α in the development of diabetic nephropathy. •Signaling of IL-6 and PGC-1α in high glucose-induced dysfunction of podocyte. -- Abstract: Podocyte loss, which is mediated by podocyte apoptosis, is implicated in the onset of diabetic nephropathy. In this study, we investigated the involvement of interleukin (IL)-6 in high glucose-induced apoptosis of rat podocytes. We also examined the pathophysiological role of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in this system. High glucose treatment induced not only podocyte apoptosis but also podocyte growth arrest. High glucose treatment also increased IL-6 secretion and activated IL-6 signaling. The high glucose-induced podocyte apoptosis was blocked by IL-6 neutralizing antibody. IL-6 treatment or overexpression induced podocyte apoptosis and growth arrest, and IL-6 siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Furthermore, high glucose or IL-6 treatment increased PGC-1α expression, and PGC-1α overexpression also induced podocyte apoptosis and growth arrest. PGC-1α siRNA transfection blocked high glucose-induced podocyte apoptosis and growth arrest. Collectively, these findings showed that high glucose promoted apoptosis and cell growth arrest in podocytes via IL-6 signaling. In addition, PGC-1α is involved in podocyte apoptosis and cell growth arrest. Therefore, blocking IL-6 and its downstream mediators such as IL6Rα, gp130 and PGC-1α may attenuate the progression of diabetic nephropathy.

  9. Primate neural retina upregulates IL-6 and IL-10 in response to a herpes simplex vector suggesting the presence of a pro-/anti-inflammatory axis.

    PubMed

    Sauter, Monica M; Brandt, Curtis R

    2016-07-01

    Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells.

  10. Mechanisms of permanent loss of olfactory receptor neurons induced by the herbicide 2,6-dichlorobenzonitrile: Effects on stem cells and noninvolvement of acute induction of the inflammatory cytokine IL-6

    SciTech Connect

    Xie, Fang; Fang, Cheng; Schnittke, Nikolai; Schwob, James E.; Ding, Xinxin

    2013-11-01

    We explored the mechanisms underlying the differential effects of two olfactory toxicants, the herbicide 2,6-dichlorobenzonitrile (DCBN) and the anti-thyroid drug methimazole (MMZ), on olfactory receptor neuron (ORN) regeneration in mouse olfactory epithelium (OE). DCBN, but not MMZ, induced inflammation-like pathological changes in OE, and DCBN increased interleukin IL-6 levels in nasal-wash fluid to much greater magnitude and duration than did MMZ. At 24 h after DCBN injection, the population of horizontal basal cells (HBCs; reserve, normally quiescent OE stem cells) lining the DMM became severely depleted as some of them detached from the basal lamina, and sloughed into the nasal cavity along with the globose basal cells (GBCs; heterogeneous population of stem and progenitor cells), neurons, and sustentacular cells of the neuroepithelium. In contrast, the layer of HBCs remained intact in MMZ-treated mice, as only the mature elements of the neuroepithelium were shed. Despite the respiratory metaplasia accompanying the greater severity of the DCBN lesion, residual HBCs that survived intoxication were activated by the injury and contributed to the metaplastic respiratory epithelium, as shown by tracing their descendants in a K5CreEr{sup T2}::fl(stop)TdTomato strain of mice in which recombination causes HBCs to express TdTomato in advance of the lesion. But, contrary to published observations with MMZ, the HBCs failed to form ORNs. A role for IL-6 in suppressing ORN regeneration in DCBN-treated mice was rejected by the failure of the anti-inflammatory drug dexamethasone to prevent the subsequent respiratory metaplasia in the DMM, suggesting that other factors lead to HBC neuro-incompetence. - Highlights: • The herbicide dichlobenil (DCBN) can damage olfactory epithelium stem cells. • Another olfactory toxicant, methimazole, leaves the olfactory stem cells intact. • DCBN, but not methimazole, induces a prolonged increase in nasal IL-6 levels. • Dexamethasone

  11. The pneumococcal polysaccharide capsule and pneumolysin differentially affect CXCL8 and IL-6 release from cells of the upper and lower respiratory tract.

    PubMed

    Küng, Eliane; Coward, William R; Neill, Daniel R; Malak, Hesham A; Mühlemann, Kathrin; Kadioglu, Aras; Hilty, Markus; Hathaway, Lucy J

    2014-01-01

    The polysaccharide capsule and pneumolysin toxin are major virulence factors of the human bacterial pathogen Streptococcus pneumoniae. Colonization of the nasopharynx is asymptomatic but invasion of the lungs can result in invasive pneumonia. Here we show that the capsule suppresses the release of the pro-inflammatory cytokines CXCL8 (IL-8) and IL-6 from the human pharyngeal epithelial cell line Detroit 562. Release of both cytokines was much less from human bronchial epithelial cells (iHBEC) but levels were also affected by capsule. Pneumolysin stimulates CXCL8 release from both cell lines. Suppression of CXCL8 homologue (CXCL2/MIP-2) release by the capsule was also observed in vivo during intranasal colonization of mice but was only discernable in the absence of pneumolysin. When pneumococci were administered intranasally to mice in a model of long term, stable nasopharyngeal carriage, encapsulated S. pneumoniae remained in the nasopharynx whereas the nonencapsulated pneumococci disseminated into the lungs. Pneumococcal capsule plays a role not only in protection from phagocytosis but also in modulation of the pro-inflammatory immune response in the respiratory tract.

  12. TNF-α and IL-6 serum levels: neurobiological markers of alcohol consumption in alcohol-dependent patients?

    PubMed

    Heberlein, Annemarie; Käser, Marius; Lichtinghagen, Ralf; Rhein, Mathias; Lenz, Bernd; Kornhuber, Johannes; Bleich, Stefan; Hillemacher, Thomas

    2014-11-01

    We investigated the serum levels of IL-6 and TNF-α in 30 male alcohol-dependent patients during withdrawal (day 1, 7, and 14) and compared them with the levels obtained from 18 healthy male controls. IL-6 (day 1: T = 2,593, p = 0.013; day 7: T = 2,315, p = 0.037; day 14: T = 1,650, p = 0.112) serum levels were significantly increased at the beginning of alcohol withdrawal. TNF-α (T = 3,202, p = 0.03) serum levels were significantly elevated in the patients' group during the whole period of withdrawal. IL-6 serum levels decreased significantly during withdrawal (F = 16.507, p < 0.001), whereas TNF-α levels did not change significantly (day 1-14). IL-6 serum levels were directly associated with alcohol consumption (r = 0.392, p = 0.047) on day 1. Moreover, the IL-6 serum levels were associated with alcohol craving (PACS total score day 1: r = -0.417, p = 0.022, the score of the obsessive subscale of the OCDS on day 14 [r = -0.549, p = 0.022]), depression (r = -0.507, p = 0.005), and trait anxiety (r = -0.674, p < 0.001) on day 1. We found an association with the duration of active drinking following the last period of abstinence and the TNF-α serum levels (day 1:r = 0.354, p = 0.009; day 7: r = 0.323, p = 0.022; day 14: r = 0.303, p = 0.034) as well as an association with the severity of alcohol dependence measured by the SESA scale (r = 0.454, p = 0.015). Moreover, we found a significant association between the BDNF serum levels and the TNF-α serum levels (r = -0.426, p = 0.021). Our results support an association between alterations in TNF-α and IL-6 serum levels and alcohol consumption. PMID:25262503

  13. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed.

  14. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. PMID:26481614

  15. Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise.

    PubMed

    Bodell, P W; Kodesh, E; Haddad, F; Zaldivar, F P; Cooper, D M; Adams, G R

    2009-02-01

    Childhood diseases are often accompanied by chronic inflammation, which is thought to negatively impact growth. Interleukin-6 (IL-6) is typically cited as an indicator of inflammation and is linked to impaired growth. This study was designed to isolate and identify potential effects of chronic IL-6 exposure on skeletal muscle growth during development. A second aim was to determine if endurance exercise, thought to antagonize chronic inflammation, would interact with any effects of IL-6. The muscles of one leg of rapidly growing rats were exposed to IL-6 or vehicle for 14 days. Subgroups of IL-6-infused rats were provided access to running wheels. Local IL-6 infusion resulted in approximately 13% muscle growth deficit (myofibrillar protein levels). Exercise (>4,000 m/day) prevented this deficit. IL-6 infusion increased mRNA for suppressor of cytokine signaling-3 (SOCS3) and tumor necrosis factor-alpha (TNF-alpha), and this was not prevented by exercise. IL-6 infusion increased the mRNAs for atrogin, insulin-like growth factor-I (IGF-I), and IGF binding protein-4 (IGFBP4), and these effects were mitigated by exercise. Exercise stimulated an increase in total RNA ( approximately 19%) only in the IL-6-infused muscle, suggesting that a compensatory increase in translational capacity was required to maintain muscle growth. This study indicates that IL-6 exposure during periods of rapid growth in young animals can retard growth possibly via interactions with key growth factors. Relatively high volumes of endurance-type exercise do not exacerbate the negative effects of IL-6 and in fact were found to be beneficial in protecting muscle growth.

  16. Cytokine IL-6 secretion by trophoblasts regulated via sphingosine-1-phosphate receptor 2 involving Rho/Rho-kinase and Rac1 signaling pathways.

    PubMed

    Goyal, Pankaj; Brünnert, Daniela; Ehrhardt, Jens; Bredow, Marike; Piccenini, Svea; Zygmunt, Marek

    2013-08-01

    Various cytokines derived from placental cells are essential for normal placenta development and successful pregnancy. Interleukin-6 (IL-6) is a multifunctional cytokine produced by extravillous and cytotrophoblasts regulating the functions of these cells, e.g. migration, invasion, trophoblast differentiation and proliferation. In macrophages, newly synthesized IL-6 accumulates in the Golgi complex and exits in tubulovesicular carriers fused with recycling endosomes and secreted as a soluble protein. Sphingosine-1-phosphate (S1P) induces various cytokine secretions including IL-6 in different cell types. The signaling mechanisms regulating the IL-6 secretion are unknown. In this study, we found that S1PR2 was the major S1P receptor being expressed in BeWo cells. S1P regulated IL-6 protein secretion in early phase (6 h) and gene expression in later phase (24 h). IL-6 secretion was completely inhibited via inhibitor of transcription (Actinomycin D) or protein synthesis (Cycloheximide) confirming that IL-6 releases constitutively from BeWo cells. By using specific S1PR2 inhibitor JTE-013 and S1PR2 gene silencing, we found that S1PR2 was the main receptor that regulates IL-6 secretion. Furthermore, S1P induced RhoGTPases-dependent pathways that are required for IL-6 secretion. Pretreatment of cells with specific Rho-kinase inhibitor (Y27632) and Rac1 inhibitor (NSC23766) drastically inhibited S1P-induced IL-6 secretion. By using a specific Phosphoinositide 3-kinase (PI3K) inhibitor (LY294002), we found that basal activity of PI3K was required for secretion but was independent of S1P/S1PR2 axis activation. In summary, we report first time that binding of S1P to S1PR2 activates multiple RhoGTPases-dependent pathways that coordinate with PI3K pathway for secretion of IL-6 in BeWo cells.

  17. Biafine applied on human epidermal wounds is chemotactic for macrophages and increases the IL-1/IL-6 ratio.

    PubMed

    Coulomb, B; Friteau, L; Dubertret, L

    1997-01-01

    Using a model of pure epidermal wounds in normal human volunteers, we have studied the effects of Biafine emulsion firstly on inflammatory cell migration, vascular permeability and cytokine release during the first 24 h, and secondly on epidermal wound healing by measuring transepidermal water loss from day 1 to day 7. Under these conditions, Biafine does not improve epidermal healing, in contrast to what is observed with bleeding dermoepidermal wounds. Our results suggest that the effects of Biafine are essentially at the dermis level. The analysis of epidermal wound exudates leads to the same conclusion. As a matter of fact, we demonstrated that Biafine is chemotactic for macrophages and increases the IL-1/IL-6 ratio, chiefly by reducing the secretion of IL-6. This study permits to progressively clarify the mode of action of Biafine, that seems to be located at the level of granulation tissue formation and not at the epidermal level.

  18. MicroRNA-200c Represses IL-6, IL-8, and CCL-5 Expression and Enhances Osteogenic Differentiation.

    PubMed

    Hong, Liu; Sharp, Thad; Khorsand, Behnoush; Fischer, Carol; Eliason, Steven; Salem, Ali; Akkouch, Adil; Brogden, Kim; Amendt, Brad A

    2016-01-01

    MicroRNAs (miRs) regulate inflammation and BMP antagonists, thus they have potential uses as therapeutic reagents. However, the molecular function of miR-200c in modulating proinflammatory and bone metabolic mediators and osteogenic differentiation is not known. After miR-200c was transduced into a human embryonic palatal mesenchyme (HEPM) (a cell line of preosteoblasts), using lentiviral vectors, the resulting miR-200c overexpression increased osteogenic differentiation biomarkers, including osteocalcin (OCN) transcripts and calcium content. miR-200c expression also down-regulated interleukin (IL)-6, IL-8, and chemokine (C-C motif) ligand (CCL)-5 under lipopolysaccharide (LPS) stimulation and increased osteoprotegerin (OPG) in these cells. miR-200c directly regulates the expression of IL-6, IL-8 and CCL-5 transcripts by binding to their 3'UTRs. A plasmid-based miR-200c inhibitor effectively reduces their binding activities. Additionally, miR-200c delivered using polyethylenimine (PEI) nanoparticles effectively inhibits IL-6, IL-8 and CCL-5 in primary human periodontal ligament fibroblasts and increases the biomarkers of osteogenic differentiation in human bone marrow mesenchymal stem cells (MSCs), including calcium content, ALP, and Runx2. These data demonstrate that miR-200c represses IL-6, IL-8 and CCL-5 and improves osteogenic differentiation. miR-200c may potentially be used as an effective means to prevent periodontitis-associated bone loss by arresting inflammation and osteoclastogenesis and enhancing bone regeneration. PMID:27529418

  19. High-intensity interval training attenuates the exercise-induced increase in plasma IL-6 in response to acute exercise.

    PubMed

    Croft, Louise; Bartlett, Jonathan D; MacLaren, Don P M; Reilly, Thomas; Evans, Louise; Mattey, Derek L; Nixon, Nicola B; Drust, Barry; Morton, James P

    2009-12-01

    This aims of this study were to investigate the effects of carbohydrate availability during endurance training on the plasma interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-alpha response to a subsequent acute bout of high-intensity interval exercise. Three groups of recreationally active males performed 6 weeks of high-intensity interval running. Groups 1 (LOW+GLU) and 2 (LOW+PLA) trained twice per day, 2 days per week, and consumed a 6.4% glucose or placebo solution, respectively, before every second training session and at regular intervals throughout exercise. Group 3 (NORM) trained once per day, 4 days per week, and consumed no beverage during training. Each group performed 50 min of high-intensity interval running at the same absolute workloads before and after training. Muscle glycogen utilization in the gastrocnemius muscle during acute exercise was reduced (p < 0.05) in all groups following training, although this was not affected by training condition. Plasma IL-6 concentration increased (p < 0.05) after acute exercise in all groups before and after training. Furthermore, the magnitude of increase was reduced (p < 0.05) following training. This training-induced attenuation in plasma IL-6 increase was similar among groups. Plasma IL-8 concentration increased (p < 0.05) after acute exercise in all groups, although the magnitude of increase was not affected (p > 0.05) by training. Acute exercise did not increase (p > 0.05) plasma TNF-alpha when undertaken before or after training. Data demonstrate that the exercise-induced increase in plasma IL-6 concentration in response to customary exercise is attenuated by previous exercise training, and that this attenuation appears to occur independent of carbohydrate availability during training.

  20. IL-6 and TNF-α serum levels are associated with early death in community-acquired pneumonia patients

    PubMed Central

    Bacci, M.R.; Leme, R.C.P.; Zing, N.P.C.; Murad, N.; Adami, F.; Hinnig, P.F.; Feder, D.; Chagas, A.C.P.; Fonseca, F.L.A.

    2015-01-01

    Community-acquired pneumonia (CAP) is amongst the leading causes of death worldwide. As inflammatory markers, cytokines can predict outcomes, if interpreted together with clinical data and scoring systems such as CURB-65, CRB, and Acute Physiology and Chronic Health Evaluation II (APACHE II). The aim of this study was to determine the impact of inflammatory biomarkers on the early mortality of hospitalized CAP patients. Twenty-seven CAP patients needing hospitalization were enrolled for the study and samples of interleukin-1 (IL-1) and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), and homocystein were collected at the time of admission (day 1) as well as on the seventh day of the treatment. There was a significant reduction in the levels of IL-6 between the first and the second collections. Median IL-6 values decreased from 24 pg/mL (day 1) to 8 pg/mL (day 7) (P=0.016). The median levels of TNF-α were higher in patients: i) with acute kidney injury (AKI) (P=0.045), ii) requiring mechanical ventilation (P=0.040), iii) with short hospital stays (P=0.009), iv) admitted to the intensive care unit (ICU) (P=0.040), v) who died early (P=0.003), and vi) with worse CRB scores (P=0.013). In summary, IL-6 and TNF-α levels were associated with early mortality of CAP patients. Longer admission levels demonstrated greater likelihood of early death and overall mortality, necessity of mechanical ventilation, and AKI. PMID:25714883

  1. IL-6 and TNF-α serum levels are associated with early death in community-acquired pneumonia patients.

    PubMed

    Bacci, M R; Leme, R C P; Zing, N P C; Murad, N; Adami, F; Hinnig, P F; Feder, D; Chagas, A C P; Fonseca, F L A

    2015-05-01

    Community-acquired pneumonia (CAP) is amongst the leading causes of death worldwide. As inflammatory markers, cytokines can predict outcomes, if interpreted together with clinical data and scoring systems such as CURB-65, CRB, and Acute Physiology and Chronic Health Evaluation II (APACHE II). The aim of this study was to determine the impact of inflammatory biomarkers on the early mortality of hospitalized CAP patients. Twenty-seven CAP patients needing hospitalization were enrolled for the study and samples of interleukin-1 (IL-1) and interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), and homocystein were collected at the time of admission (day 1) as well as on the seventh day of the treatment. There was a significant reduction in the levels of IL-6 between the first and the second collections. Median IL-6 values decreased from 24 pg/mL (day 1) to 8 pg/mL (day 7) (P=0.016). The median levels of TNF-α were higher in patients: i) with acute kidney injury (AKI) (P=0.045), ii) requiring mechanical ventilation (P=0.040), iii) with short hospital stays (P=0.009), iv) admitted to the intensive care unit (ICU) (P=0.040), v) who died early (P=0.003), and vi) with worse CRB scores (P=0.013). In summary, IL-6 and TNF-α levels were associated with early mortality of CAP patients. Longer admission levels demonstrated greater likelihood of early death and overall mortality, necessity of mechanical ventilation, and AKI. PMID:25714883

  2. Effects of 300 mT static magnetic field on IL-6 secretion in normal human colon myofibroblasts.

    PubMed

    Gruchlik, Arkadiusz; Wilczok, Adam; Chodurek, Ewa; Polechoński, Władysław; Wolny, Daniel; Dzierzewicz, Zofia

    2012-01-01

    Intestinal subepithelial myofibroblasts play crucial role in the growth and development of the intestine. Colitis, small bowel injury, gastric ulcer disease and inflammatory bowel disease (IBD) accompany the increase of number of activated myofibroblasts. In the last few years, the increasing production of electromagnetic (EMF) and static magnetic fields (SMF), due to the expanding use of electronic devices in everyday life, has led to a number of studies on the effects of these fields on living organisms. EMF therapy, because of its anti-inflammatory properties, may be used in medicine in IBD treatment. This mechanism has not been elucidated yet. In the present work normal human colon myofibroblasts CCD-18Co were exposed to SMF with a flux density of 300 mT. After 24 h incubation TNF-alpha-dependent IL-6 secretion was determined with ELISA kit (RandD Systems).The influence of magnetic field and its effect on cell proliferation were determined with TOX-2 (In Vitro Toxicology Assay Kit XTT Based, TOX-2, Sigma) and CyQUANT NF cell proliferation assay kit (Molecular Probes). It was shown that SMF inhibited TNF-alpha-dependent IL-6 secretion. The observed effects were statistically significant and depended on the time of incubation. Moreover, SMF triggered cell proliferation whereas it did not alter cell viability. IL-6 belongs to pro-inflammatory cytokines family and plays a crucial role in IBD. Inhibition of IL-6 secretion by SMF and lack of its cytotoxic effect seem to be advantageous whilst SMF is implicated in the treatment of inflammatory diseases associated by increase in number of activated myofibroblasts. PMID:23285697

  3. Maternal Serum Levels of TNF-Alpha and IL-6 Long after Delivery in Preeclamptic and Normotensive Pregnant Women

    PubMed Central

    Vitoratos, N.; Economou, E.; Iavazzo, C.; Panoulis, K.; Creatsas, G.

    2010-01-01

    Aim. To evaluate maternal TNF-alpha and IL-6 plasma levels in normotensive pregnant women, women with preeclampsia, and to examine the temporal changes in their levels from theantepartum to the postpartum period correlated with the regression of preeclampsia. Method. A prospective study was performed in the 2nd Department of Obstetrics and Gynecology, University of Athens. Blood samples were obtained: (1) antepartum at the time of clinical diagnosis of the syndrome, 2. 12-14 weeks postpartum. Results. No statistically significant differences were found in IL-6 levels, whereas a difference was found in TNF-alpha levels between preeclamptic and controls in antepartum period (0.80 pg/ml versus 0.60 pg/ml, P : .04). Long after delivery, TNF-alpha levels were significantly higher in preeclamptic compared to normotensive controls (0.86 pg/ml versus 0.60 pg/ml, P : .004). No difference was observed in TNF-alpha before and after delivery in both groups. No difference was noticed in IL-6 levels in women of normotensive group long after delivery compared to that before delivery. Long after delivery IL-6 levels were statistically significant higher in preeclamptic women compared to normal controls (3.53 ± 0.52 pg/ml versus 1.69 ± 0.48 pg/ml, P : .02). Conclusion. Preeclamptic women remain under a status of increased inflammatory stress up to 12-14 weeks postpartum despite the fact that all the other signs of preeclampsia are resolved. PMID:21253506

  4. MicroRNA-200c Represses IL-6, IL-8, and CCL-5 Expression and Enhances Osteogenic Differentiation

    PubMed Central

    Sharp, Thad; Khorsand, Behnoush; Fischer, Carol; Eliason, Steven; Salem, Ali; Akkouch, Adil; Brogden, Kim; Amendt, Brad A.

    2016-01-01

    MicroRNAs (miRs) regulate inflammation and BMP antagonists, thus they have potential uses as therapeutic reagents. However, the molecular function of miR-200c in modulating proinflammatory and bone metabolic mediators and osteogenic differentiation is not known. After miR-200c was transduced into a human embryonic palatal mesenchyme (HEPM) (a cell line of preosteoblasts), using lentiviral vectors, the resulting miR-200c overexpression increased osteogenic differentiation biomarkers, including osteocalcin (OCN) transcripts and calcium content. miR-200c expression also down-regulated interleukin (IL)-6, IL-8, and chemokine (C-C motif) ligand (CCL)-5 under lipopolysaccharide (LPS) stimulation and increased osteoprotegerin (OPG) in these cells. miR-200c directly regulates the expression of IL-6, IL-8 and CCL-5 transcripts by binding to their 3’UTRs. A plasmid-based miR-200c inhibitor effectively reduces their binding activities. Additionally, miR-200c delivered using polyethylenimine (PEI) nanoparticles effectively inhibits IL-6, IL-8 and CCL-5 in primary human periodontal ligament fibroblasts and increases the biomarkers of osteogenic differentiation in human bone marrow mesenchymal stem cells (MSCs), including calcium content, ALP, and Runx2. These data demonstrate that miR-200c represses IL-6, IL-8 and CCL-5 and improves osteogenic differentiation. miR-200c may potentially be used as an effective means to prevent periodontitis-associated bone loss by arresting inflammation and osteoclastogenesis and enhancing bone regeneration. PMID:27529418

  5. Low-Level Mercury in Children: Associations with Sleep Duration and Cytokines TNF-α and IL-6

    PubMed Central

    Gump, Brooks B.; Gabrikova, Elena; Bendinskas, Kestutis; Dumas, Amy K.; Palmer, Christopher D.; Parsons, Patrick J.; MacKenzie, James A.

    2014-01-01

    There is a sizeable literature suggesting that mercury (Hg) exposure affects cytokine levels in humans. In addition to their signaling role in the immune system, some cytokines are also integrally associated with sleep behavior. In this cross-sectional study of 9–11 year old children (N = 100), we measured total blood Hg in whole blood, serum levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), and objectively measured sleep and activity using actigraphy. Increasing blood Hg was associated with significantly shorter sleep duration and lower levels of TNF-α. IL-6 was not associated with sleep or blood Hg. This study is the first to document an association between total blood Hg and sleep (albeit a small effect), and the first to consider the associations of total blood Hg with cytokines TNF-α and IL-6 in a pediatric sample. Further research using alternative designs (e.g., time-series) is necessary to determine if there is a causal pathway linking low-level Hg exposure to sleep restriction and reduced cytokines. PMID:25173056

  6. Configurational Reassignment and Improved Preparation of the Competitive IL-6 Receptor Antagonist 20R,21R-Epoxyresibufogenin-3-formate

    PubMed Central

    Boos, Terrence L.; Cheng, Kejun; Greiner, Elisabeth; Deschamps, Jeffrey R.; Jacobson, Arthur E.; Rice, Kenner C.

    2012-01-01

    20R,21R-Epoxyresibufogenin-3-formate (1) and 20S,21S-epoxyresibufogenin-3-formate (2) were synthesized from commercial resibufogenin (3) using known procedures. The major product (1) was dextrorotatory, as was the major product from the reported synthesis of epoxyresibufogenin-3-formate; however, the literature (+)-compound was assigned the 20S,21S-configuration based on NMR data. We have now unequivocally determined, using single-crystal X-ray structure analyses of the major and minor products of the synthesis and of their derivatives, that the major product from the synthesis was (+)-20R,21R-epoxyresibufogenin-3-formate (1). Our minor synthetic product was determined to have the (-)-20S,21S-configuration (2). The (+)-20R,21R-compound 1 has been found to have high affinity for the IL-6 receptor and to act as an IL-6 antagonist. A greatly improved synthesis of 1 was achieved through oxidation of preformed resibufogenin-3-formate. This has enabled us to prepare, from the very expensive commercial resibufogenin, considerably larger quantities of 1, the only known non-peptide small molecule IL-6 antagonist. PMID:22360661

  7. Therapeutic benefit of bortezomib on acute GVHD is tissue specific and is associated with IL-6 levels

    PubMed Central

    Pai, Chien-Chun Steven; Hsiao, Hui-Hua; Sun, Kai; Chen, Mingyi; Hagino, Takeshi; Tellez, Joseph; Mall, Christine; Blazar, Bruce R.; Monjazeb, Arta; Abedi, Mehrdad; Murphy, William J.

    2014-01-01

    Bortezomib, a proteasome inhibitor capable of direct anti-tumor effects, has been shown to prevent acute graft-versus-host disease (aGVHD) when administered in a short course immediately after bone marrow transplantation (BMT) in mice. However, when given continuously, CD4+ T cell mediated gastrointestinal tract damages increase GVHD mortality. To investigate the protective effects of bortezomib on other organs, we have used a CD8 dependent aGVHD model of C3H.SW donor T cells engrafted into irradiated C57BL/6 recipients (minor MHC mismatch), which lack significant gut GVHD. Our data in this model show that bortezomib can be given continuously to prevent and treat aGVHD mediated by CD8+ T cells, but this effect is organ-specific such that only skin, but not liver, protection was observed. Despite the lack of hepatic protection, bortezomib still significantly improved survival primarily due to its skin protection. Reduced skin GVHD by bortezomib was correlated with reduced serum and skin IL-6 levels. Administration of a blocking IL-6 antibody in this model also resulted in similar cutaneous GVHD protection. These results indicate that bortezomib or blockade of IL-6 may prevent CD8+ T cell mediated cutaneous aGVHD. PMID:25064746

  8. Polymorphonuclear leukocyte migration across model intestinal epithelia enhances Salmonella typhimurium killing via the epithelial derived cytokine, IL-6.

    PubMed

    Nadeau, William J; Pistole, Thomas G; McCormick, Beth A

    2002-11-01

    The host response to Salmonella typhimurium involves movement of polymorphonuclear leukocytes (PMN) across the epithelium and into the intestinal lumen. Following their arrival in the lumen, the PMN attempt to combat bacterial infection by activating antimicrobial defenses such as granule release, oxidative burst, phagocytosis, and cell signaling. We sought to examine PMN-S. typhimurium interaction following PMN arrival in the lumenal compartment. Here, for the first time, we demonstrate that PMN that have transmigrated across model intestinal epithelia have an enhanced ability to kill S. typhimurium. Our data provide evidence to indicate that the extracellular release of the primary and secondary granules of PMN, myeloperoxidase and lactoferrin, respectively, is correlated with enhanced bacterial killing. Furthermore, epithelial cells, during PMN transmigration, release the cytokine IL-6. IL-6 is known to increase intracellular stores of Ca(2+), and we have determined that this epithelial released cytokine is not only responsible for priming the PMN to release their granules, but also stimulating the PMN to kill S. typhimurium. These results substantiate the pathway in which PMN transmigration activates the epithelial release of IL-6, which in turn increases intracellular Ca(2+) storage. Our results, herein, extend this pathway to include an enhanced PMN granule release and an enhanced killing of S. typhimurium.

  9. Comparison of the roles of IL-1, IL-6, and TNFalpha in cell culture and murine models of aseptic loosening.

    PubMed

    Taki, Naoya; Tatro, Joscelyn M; Lowe, Robert; Goldberg, Victor M; Greenfield, Edward M

    2007-05-01

    Pro-inflammatory cytokines, such as IL-1, IL-6, and TNF, are considered to be major mediators of osteolysis and ultimately aseptic loosening. This study demonstrated that synergistic interactions among these cytokines are required for the in vitro stimulation of osteoclast differentiation by titanium particles. In contrast, genetic knock out of these cytokines or their receptors does not protect murine calvaria from osteolysis induced by titanium particles. Thus, the extent of osteolysis was not substantially altered in single knock out mice lacking either the IL-1 receptor or IL-6. Osteolysis also was not substantially altered in double knock out mice lacking both the IL-1 receptor and IL-6 or in double knock out mice lacking both TNF receptor-1 and TNF receptor-2. The differences between the in vivo and the cell culture results make it difficult to conclude whether the pro-inflammatory cytokines contribute to aseptic loosening. One alternative is that in vivo experiments are more physiological and that therefore the current results do not support a role for the pro-inflammatory cytokines in aseptic loosening. We however favor the alternative that, in this case, the cell culture experiments can be more informative. We favor this alternative because the role of the pro-inflammatory cytokines may be obscured in vivo by compensation by other cytokines or by the low signal to noise ratio found in measurements of particle-induced osteolysis.

  10. Osteocyte expression of caspase-3, COX-2, IL-6 and sclerostin are spatially and temporally associated following stress fracture initiation.

    PubMed

    Wu, Andy C; Kidd, Lisa J; Cowling, Nicholas R; Kelly, Wendy L; Forwood, Mark R

    2014-01-01

    Stress fractures (SFxs) are debilitating injuries and exact mechanisms that initiate their repair incompletely understood. We hypothesised that osteocyte apoptosis and expression of cytokines and proteins such as sclerostin, VEGF, TGF-β, COX-2 and IL-6 were early signalling events to facilitate the formation of periosteal woven bone and recruitment of osteoclast precursors to the site of remodelling. A SFx was created in the right ulna of mature female wistar rats using cyclic end loading. Rats were killed 1, 4 and 7 days after loading (n=5 per group). Standard histological staining was used to examine SFx morphology and immunohistochemistry to detect the localisation of these proteins and in situ hybridisation to detect mRNA along the SFx line or gene expression to quantify the target genes. Unloaded ulnae served as controls. The labelling index of caspase-3, COX-2 and IL-6 was significantly elevated in the region of SFxs at all time points compared with controls (P<0.001). In addition, the labelling index of sclerostin protein was significantly reduced in osteocytes adjacent to the SFx region when compared with controls at all three time points (P<0.001). Both VEGF and TGF-β expressions were only localised in the woven bone. These data reinforce the involvement of osteocyte apoptosis in the healing of fatigue damage in bone, and demonstrate that local regulation of sclerostin, COX-2 and IL-6 are important signalling events associated with new bone formation and SFx remodelling. PMID:25228984

  11. Interleukin-6 (IL6) genotype is associated with fat-free mass in men but not women.

    PubMed

    Roth, Stephen M; Schrager, Matthew A; Lee, Mechele R; Metter, E Jeffrey; Hurley, Ben F; Ferrell, Robert E

    2003-12-01

    We studied the association of the G-174C promoter polymorphism in the interleukin-6 gene (IL6) with total body fat and fat-free mass (FFM) in 242 men and women (IL6 genotypes: G/G, n = 87; G/C, n = 100; C/C, n = 55) across the adult age span (21-92 years). In men, but not women (significant genotype by sex interactions; p =.023-.048), the C/C group exhibited significantly lower total FFM than the G/G group (54.7 +/- 0.8 kg vs 57.2 +/- 0.7 kg, respectively, p =.020), as well as significantly lower FFM of the lower limbs compared with the G/G group (18.4 +/- 0.3 kg vs 19.8 +/- 0.3 kg, respectively, p =.004). No significant genotype differences were observed in total body fat mass in either men or women. The results indicate that the IL6 G-174C polymorphism is significantly associated with FFM in men but not women.

  12. Role of the distal fragment of chromosome 13 in the regulation of IL-6-induced effect on the behavior of mice.

    PubMed

    Bazovkina, D V; Sinyakova, N A; Kulikov, A V

    2014-02-01

    We studied the effect of IL-6 on the open-field behavior and degree of cataleptic freezing in male AKR/J mice and AKR.CBA-D13Mit76 congenic animals (differing from CBA/Lac mice in the chromosome 13 fragment of 111.35-116.14 Mbp). IL-6 in both doses significantly increased the time of cataleptic freezing. IL-6 in a dose of 3 μg/kg had a strong inhibitory effect on locomotor activity of AKR.CBA-D13Mit76 males in the open-field test. However, IL-6 in both doses did not modulate locomotor activity and severity of catalepsy in AKR/J males. Our results indicate that the distal fragment of chromosome 13 is involved in the effect of IL-6 on the locomotor activity of mice.

  13. The impact of shift work induced chronic circadian disruption on IL-6 and TNF-α immune responses

    PubMed Central

    2010-01-01

    AIM Sleep disturbances induce proinflammatory immune responses, which might increase cardiovascular disease risk. So far the effects of acute sleep deprivation and chronic sleep illnesses on the immune system have been investigated. The particular impact of shift work induced chronic circadian disruption on specific immune responses has not been addressed so far. Methods Pittsburgh-Sleep-Quality-Index (PSQI) questionnaire and blood sampling was performed by 225 shift workers and 137 daytime workers. As possible markers the proinflammatory cytokines IL-6 and TNF-α and lymphocyte cell count were investigated. A medical examination was performed and biometrical data including age, gender, height, weight, waist and hip circumference and smoking habits were collected by a structured interview. Results Shift workers had a significantly higher mean PSQI score than day workers (6.73 vs. 4.66; p < 0.001). Day workers and shift workers had similar serum levels of IL-6 (2.30 vs. 2.67 resp.; p = 0.276), TNF-α (5.58 vs. 5.68, resp.; p = 0.841) or lymphocytes count (33.68 vs. 32.99, resp.; p = 0.404). Furthermore there were no differences in cytokine levels (IL-6 p = 0.761; TNF-α p = 0.759) or lymphocyte count (p = 0.593) comparing the sleep quality within the cohorts. When this calculation of sleep quality was stratified by shift and day workers irrespective of their sleep quality day workers and shift workers had similar serum levels of IL-6, TNF-α or lymphocytes count. Multiple linear regression analysis showed a significant correlation of lymphocytes count and smoking habits. Conclusion Shift work induces chronic sleep debt. Our data reveals that chronic sleep debt might not always lead to an activation of the immune system, as we did not observe differences in lymphocyte count or level of IL-6 or TNF-α serum concentration between shift workers and day workers. Therefore chronic sleep restriction might be eased by a long-term compensating immune regulation which (in

  14. Interdependent and independent roles of type I interferons and IL-6 in innate immune, neuroinflammatory and sickness behaviour responses to systemic poly I:C.

    PubMed

    Murray, Carol; Griffin, Éadaoin W; O'Loughlin, Elaine; Lyons, Aoife; Sherwin, Eoin; Ahmed, Suaad; Stevenson, Nigel J; Harkin, Andrew; Cunningham, Colm

    2015-08-01

    Type I interferons (IFN-I) are expressed in the brain during many inflammatory and neurodegenerative conditions and have multiple effects on CNS function. IFN-I is readily induced in the brain by systemic administration of the viral mimetic, poly I:C (synthetic double-stranded RNA). We hypothesised that IFN-I contributes to systemically administered poly I:C-induced sickness behaviour, metabolic and neuroinflammatory changes. IFN-I receptor 1 deficient mice (IFNAR1(-/-)) displayed significantly attenuated poly I:C-induced hypothermia, hypoactivity and weight loss compared to WT C57BL/6 mice. This amelioration of sickness was associated with equivalent IL-1β and TNF-α responses but much reduced IL-6 responses in plasma, hypothalamus and hippocampus of IFNAR1(-/-) mice. IFN-β injection induced trivial IL-6 production and limited behavioural change and the poly I:C-induced IFN-β response did not preceed, and would not appear to mediate, IL-6 induction. Rather, IFNAR1(-/-) mice lack basal IFN-I activity, have lower STAT1 levels and show significantly lower levels of several inflammatory transcripts, including stat1. Basal IFN-I activity appears to play a facilitatory role in the full expression of the IL-6 response and activation of the tryptophan-kynurenine metabolism pathway. The deficient IL-6 response in IFNAR1(-/-) mice partially explains the observed incomplete sickness behaviour response. Reconstitution of circulating IL-6 revealed that the role of IFNAR in burrowing activity is mediated via IL-6, while IFN-I and IL-6 have additive effects on hypoactivity, but the role of IFN-I in anorexia is independent of IL-6. Hence, we have demonstrated both interdependent and independent roles for IFN-I and IL-6 in systemic inflammation-induced changes in brain function.

  15. Structural characterization and immunomodulatory effects of polysaccharides from Phellinus linteus and Phellinus igniarius on the IL-6/IL-10 cytokine balance of the mouse macrophage cell lines (RAW 264.7).

    PubMed

    Suabjakyong, Papawee; Nishimura, Kazuhiro; Toida, Toshihiko; Van Griensven, Leo J L D

    2015-08-01

    Phellinus linteus and igniarius (L.) Quel. have been used in traditional Asian medicine for over two centuries against a variety of diseases. Polysaccharides from their fruiting bodies show strong immunomodulatory activity. In this study we characterized the structure and composition of polysaccharides from Phellinus linteus and Phellinus igniarius by HPLC, GC-MS and NMR (1-H, 13-C, COSY, NOESY and TOCSY). The polysaccharides from P. linteus and P. igniarius mainly contained glucose with minor proportions of mannose, galactose, xylose, arabinose and rhamnose. Methylation analyses showed that the glycosidic linkages were mostly 1 → 3, 1 → 6 or 1 → 3,6. The two-dimensional COSY, NOESY and TOCSY confirmed that these polysaccharides have a main chain of →3)-β-D-Glcp-(1→ with →6)-β-D-Glcp-(1→ side chain. In vitro assays by RT-PCR and ELISA showed that (1 → 3; 1 → 6)-β-D-polysaccharides from P. linteus and P. igniarius decreased TNF-α in RAW 264.7 cells, suggesting an immuno-suppressive activity. Furthermore, these polysaccharides stimulated a high IL-10 response and induced strong suppression of transcription of IL-6. The results suggest that polysaccharides from P. linteus and P. igniarius could possibly find applications in restoring the IL-6/IL-10 balance, the disturbance of which is thought to be related to chronic inflammatory disease, obesity, diabetes type 2, and to mania and depression. PMID:26190688

  16. Age-Associated Increase in Cytokine Production During Systemic Inflammation-II: The Role of IL-1β in Age-Dependent IL-6 Upregulation in Adipose Tissue.

    PubMed

    Starr, Marlene E; Saito, Mizuki; Evers, B Mark; Saito, Hiroshi

    2015-12-01

    Expression of interleukin-6 (IL-6) upon acute inflammatory stress is significantly augmented by aging in adipose tissue, a major source of this cytokine. In the present study, we examined the mechanism of age-dependent IL-6 overproduction using visceral white adipose tissue from C57BL/6 mice. Upon treatment with lipopolysaccharide (LPS) in vitro, IL-6 was produced by adipose tissue explants, and secreted levels were significantly higher in cultures from aged (24 months) mice compared to young (4 months). Interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNFα), two inducers of IL-6, were mainly produced by the lungs and spleen rather than adipose tissue in mice after LPS injection. Treatment of adipose explants with physiological levels of IL-1β induced significant age-dependent secretion of IL-6, while treatment with TNFα had little effect, demonstrating an augmented response of adipose tissues to IL-1β in the aged. In vitro experiments utilizing a neutralizing antibody against IL-1β and in vivo experiments utilizing IL-1-receptor-1 deficient mice, confirmed that IL-6 overproduction in the aged is regulated by autocrine/paracrine action of IL-1β which specifically occurs in aged adipose tissues. These findings indicate an elevated inflammatory potential of adipose tissue in the aged and a unique IL-1β-mediated mechanism for IL-6 overproduction, which may impact age-associated vulnerability to acute inflammatory diseases such as sepsis.

  17. IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin resistance in human skeletal muscle.

    PubMed

    Kim, Tae Ho; Choi, Sung E; Ha, Eun Suk; Jung, Jong Gab; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan Woo

    2013-04-01

    We investigated the cytokines and mechanisms involved in the induction of insulin resistance in human skeletal muscle. Ten subjects with impaired glucose tolerance (IGT) and 10 control subjects were recruited. We performed biopsies on the vastus lateralis muscle and used immunoblotting to determine levels of inflammatory cytokines, Toll-like receptor (TLR) gene expression, and insulin signaling. We also used a human myotube culture system to examine the mechanisms underlying TLR-4 gene expression. To identify inflammatory cytokines associated with insulin resistance, we measured the levels of IL-6, TNF-α, TLR-2, and TLR-4 in skeletal muscle from non-obese patients with IGT and control subjects. Levels of IL-6, TNF-α, and TLR-4, but not TLR-2, were significantly increased in the IGT group. Insulin resistance decreased significantly in HSMMs following long-term IL-6 treatment. TLR-4 gene expression was significantly increased in human skeletal muscle myoblasts (HSMMs) treated with IL-6. To determine the main signaling pathway for IL-6-induced TLR-4 gene expression, we examined several signaling factors associated with IL-6 signaling pathways. We found that the active form of "signal transducer and activator of transcription 3" (STAT3) was increased. "Stattic" (a STAT3 inhibitor) markedly inhibited TLR-4 gene expression. IL-6 induction of TLR-4 gene expression via STAT3 is one of the main mechanisms underlying insulin resistance in human skeletal muscle.

  18. Association of IL-6 and MMP-3 gene polymorphisms with susceptibility to adolescent idiopathic scoliosis: a meta-analysis.

    PubMed

    Zhao, Jian; Yang, Mingyuan; Li, Ming

    2016-09-01

    Recently, several institutions have investigated the associations of MMP-3-1171 5A/6A and IL-6-174-G/C gene polymorphisms with adolescent idiopathic scoliosis (AIS), while reports from different institutions are not consistent. Therefore, we, comprehensively and systematically performed this meta-analysis to detect whether the two gene polymorphisms are correlated with AIS. From January 1994 to October 2015, all case-control studies focussed on the relationship between the two aforementioned gene polymorphisms and the susceptibility to AIS were retrieved from bibliographic databases. A total of 16 articles were found, of which five consisted of 944 cases and 1177 controls, were finally included after being assessed by two reviewers. We calculated the pooled odds ratio (OR) with 95% confidence interval (95% CI) to assess the associations. The pooled data analyses were based on allele contrast, homozygote, heterozygote, dominant and recessive models. Overall, there was no significant association of IL-6-174-G/C gene polymorphism with AIS risk. Significant association was observed in homozygote model of MMP-3-1171-5A/6A gene polymorphism (5A5A versus 6A6A: OR = 1.69, 95% CI = 1.11-2.58, P = 0.02). When stratified into Caucasian and Asian populations, positive association was found in Caucasian population (5A versus 6A: OR = 1.43, 95% CI = 1.11-1.84, P = 0.006; 5A5A versus 6A6A: OR = 1.90, 95% CI = 1.13-3.19, P = 0.015); however, there was no significant association in Asian population. The present study concluded that 5A5A genotype of MMP-3-1171 5A/6A gene polymorphism was associated with AIS, especially in Caucasian population. However, no significant association was detected between IL-6-174-G/C gene polymorphism and AIS. PMID:27659327

  19. Acidic environment augments FcεRI-mediated production of IL-6 and IL-13 in mast cells

    SciTech Connect

    Kamide, Yosuke; Ishizuka, Tamotsu; Tobo, Masayuki; Tsurumaki, Hiroaki; Aoki, Haruka; Mogi, Chihiro; Nakakura, Takashi; Yatomi, Masakiyo; Ono, Akihiro; Koga, Yasuhiko; Sato, Koichi; Hisada, Takeshi; Dobashi, Kunio; Yamada, Masanobu; Okajima, Fumikazu

    2015-08-28

    Although blood pH is maintained in a narrow range of around pH 7.4 in living organisms, inflammatory loci are characterized by acidic conditions. Mast cells tend to reside close to the surface of the body in areas such as the mucosa and skin where they may be exposed to exogenous acids, and they play an important role in immune responses. However, little is known about the effects of extracellular acidification on the functions of mast cell. Here, we found that extracellular acidification increased the dinitrophenyl-conjugated human serum albumin (DNP-HSA)-induced production of interleukin (IL)-6 and IL-13 in MC/9 cells or bone marrow-derived mouse mast cells sensitized with anti-DNP IgE. Extracellular acidification also inhibited migration of MC/9 cells toward DNP-HSA. In addition, acidic pH stimulated antigen-induced activation of p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt). These findings suggest that extracellular acidification augmented antigen/IgE-induced and FcεRI-mediated production of IL-6 and IL-13 in mast cells, and that this was associated with the enhancement of p38 MAPK and Akt activation. - Highlights: • Antigen-induced IL-6 and IL-13 production was augmented by acidic pH in mast cells. • Acidic pH-induced actions were associated with activation of p38 MAPK and Akt. • Inhibition of p38 MAPK and Akt attenuated cytokine responses to acidic pH. • Acidic pH effects are not attributable to actions of known proton-sensing GPCRs.

  20. Pulmonary instillation of MWCNT increases lung permeability, decreases gp130 expression in the lungs, and initiates cardiovascular IL-6 transsignaling.

    PubMed

    Thompson, Leslie C; Holland, Nathan A; Snyder, Ryan J; Luo, Bin; Becak, Daniel P; Odom, Jillian T; Harrison, Benjamin S; Brown, Jared M; Gowdy, Kymberly M; Wingard, Christopher J

    2016-01-15

    Pulmonary instillation of multiwalled carbon nanotubes (MWCNT) has the potential to promote cardiovascular derangements, but the mechanisms responsible are currently unclear. We hypothesized that exposure to MWCNT would result in increased epithelial barrier permeability by 24 h postexposure and initiate a signaling process involving IL-6/gp130 transsignaling in peripheral vascular tissue. To test this hypothesis we assessed the impact of 1 and 10 μg/cm(2) MWCNT on transepithelial electrical resistance (TEER) and expression of barrier proteins and cell activation in vitro using normal human bronchial epithelial primary cells. Parallel studies using male Sprague-Dawley rats instilled with 100 μg MWCNT measured bronchoalveolar lavage (BAL) differential cell counts, BAL fluid total protein, and lung water-to-tissue weight ratios 24 h postexposure and quantified serum concentrations of IL-6, soluble IL-6r, and soluble gp130. Aortic sections were examined immunohistochemically for gp130 expression, and gp130 mRNA/protein expression was evaluated in rat lung, heart, and aortic tissue homogenates. Our in vitro findings indicate that 10 μg/cm(2) MWCNT decreased the development of TEER and zonula occludens-1 expression relative to the vehicle. In rats MWCNT instillation increased BAL protein, lung water, and induced pulmonary eosinophilia. Serum concentrations of soluble gp130 decreased, aortic endothelial expression of gp130 increased, and expression of gp130 in the lung was downregulated in the MWCNT-exposed group. We propose that pulmonary exposure to MWCNT can manifest as a reduced epithelial barrier and activator of vascular gp130-associated transsignaling that may promote susceptibility to cardiovascular derangements. PMID:26589480

  1. The Severity of Visceral Leishmaniasis Correlates with Elevated Levels of Serum IL-6, IL-27 and sCD14

    PubMed Central

    dos Santos, Priscila L.; de Oliveira, Fabrícia A.; Santos, Micheli Luize B.; Cunha, Luana Celina S.; Lino, Michelle T. B.; de Oliveira, Michelle F. S.; Bomfim, Manuela O. M.; Silva, Angela Maria; de Moura, Tatiana R.; de Jesus, Amélia R.; Duthie, Malcolm S.; Reed, Steven G.; de Almeida, Roque P.

    2016-01-01

    Background Visceral leishmaniasis (VL) is a severe disease caused by infection with protozoa of the genus Leishmania. Classic VL is characterized by a systemic infection of phagocytic cells and an intense activation of the inflammatory response. It is unclear why 90% of infected individuals do not develop the disease while a minority develop the classical form. Furthermore, among those that develop disease, a small group progresses to more severe form that is unresponsive to treatment. The presence of inflammatory mediators in serum could theoretically help to control the infection. However, there is also a release of anti-inflammatory mediators that could interfere with the control of parasite multiplication. In this study, we took advantage of the spectrum of outcomes to test the hypothesis that the immune profile of individuals infected with Leishmania (L.) infantum is associated with the development and severity of disease. Methodology/Principal Findings Sera from patients with confirmed diagnosis of VL were evaluated for the presence of numerous molecules, and levels compared with healthy control and asymptomatic infected individuals. Conclusions/Principal Findings Although differences were not observed in LPS levels, higher levels of sCD14 were detected in VL patients. Our data suggest that L. infantum may activate the inflammatory response via CD14, stimulating a generalized inflammatory response with production of several cytokines and soluble molecules, including IFN-γ, IL-27, IL-10, IL-6 and sCD14. These molecules were strongly associated with hepatosplenomegaly, neutropenia and thrombocytopenia. We also observed that IL-6 levels greater than 200 pg/ml were strongly associated with death. Together our data reinforce the close relationship of IFN-γ, IL-10, IL-6, TNF-α and IL-27 in the immune dynamics of VL and suggest the direct participation of sCD14 in the activation of the immune response against L. infantum. PMID:26814478

  2. Genetic Variants in IL6R and ADAM19 are Associated with COPD Severity in a Mexican Mestizo Population.

    PubMed

    Pérez-Rubio, Gloria; Silva-Zolezzi, Irma; Fernández-López, Juan Carlos; Camarena, Ángel; Velázquez-Uncal, Mónica; Morales-Mandujano, Fabiola; Hernández-Zenteno, Rafael De Jesús; Flores-Trujillo, Fernando; Sánchez-Romero, Candelaria; Velázquez-Montero, Alejandra; Espinosa de Los Monteros, Carlos; Sansores, Raúl H; Ramírez-Venegas, Alejandra; Falfán-Valencia, Ramcés

    2016-10-01

    Chronic obstructive pulmonary disease (COPD) is a complex and multifactorial disease with a strong genetic component. Our objective is to identify the genetic variants associated with COPD risk and its severity in Mexican Mestizo population. We evaluated 1285 single-nucleotide polymorphisms (SNPs) of candidate genes in 299 smokers with COPD (COPD-S) and 531 smokers without COPD (SWOC) using an Illumina GoldenGate genotyping microarray. In addition, 251 ancestry informative markers were included. Allele A of rs2545771 in CYP2F2P is associated with a lower risk of COPD (p = 4.02E-10, odds ratio [OR] = 0.104, confidence interval [CI] 95% 0.05-0.18). When the COPD group was stratified by severity according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD; levels III + IV vs. I + II), 3 SNPs (rs4329505 and rs4845626 in interleukin 6 receptor [IL6R] and rs1422794 in a disintegrin and metalloproteinase domain 19 [ADAM19]) were associated with a lower risk of suffering the most severe stages of the disease. rs2819096 in the surfactant protein D (SFTPD) gene was associated with a higher risk of COPD GOLD III + IV (p = 7.79E-03, OR = 1.80, CI 95% 1.16-2.79). Finally, the haplotype in IL6R was associated with a lower risk of suffering from more severe COPD, whereas the haplotype in ADAM19 was associated with a higher risk (p = 7.40E-03, OR = 2.83, CI 95% 1.20-6.86) of suffering from the severe stages of the disease. Our data suggest that there are alleles and haplotypes in the IL6R, ADAM19, and SFTPD genes associated with different severity stages of COPD; in CYP2F2P, rs25455771 is associated with a lower risk of COPD.

  3. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence.

    PubMed

    Finkel, Kelsey A; Warner, Kristy A; Kerk, Samuel; Bradford, Carol R; McLean, Scott A; Prince, Mark E; Zhong, Haihong; Hurt, Elaine M; Hollingsworth, Robert E; Wicha, Max S; Tice, David A; Nör, Jacques E

    2016-05-01

    Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC.

  4. The influence of radiotherapy on IL-2 and IL-6 secretions of mucous membrane epithelial cells of wistar small intestine.

    PubMed

    Liu, Bin; Li, Xiaoling; Ai, Fulu; Wang, Tianlu; Chen, Yun; Zhang, Hao

    2015-01-01

    The aim of the study was to investigate the influence of radiotherapy on IL-2 and IL-6 secretions of mucous epithelial cells of small intestine and the inhibition effect of deproteinized calf blood extractive (DCBE, also known as Actovegin in trade name) on apoptosis of mucous epithelial cells of small intestine. 50 wistars were randomly divided into 5 groups with 10 in each including normal group (NG), radiation group (RG), low-dose Actovegin group (L-AG), middle-dose Actovegin group (M-AG), and high-dose Actovegin (H-AG). High-energy X-ray linear accelerator was used for abdominal irradiation of RG, L-AG, M-AG, and H-AG at the exposure dose of 9.0 Gy to establish the wistar radiation damage model. Modeling wistars were injected with medicine for successive 4 days, and their small intestinal mucosas were extracted as pathological sections; then fully automated analyzer was employed to detect their IL-2 and IL-6 levels. Immunohistochemical analysis was carried out to explore the effect of Actovegin on apoptosis of mucous membrane epithelial cells of small intestine. The IL-2 and IL-6 levels of RG are significantly higher than other groups and differences are statistically significant (P < 0.05); however, the IL-2 and IL-6 levels of L-AG, M-AG, and H-AG are higher than NG; there is no statistically significant difference between them (P > 0.05). Compared with RG, the villus height, membrane thickness, crypt depth, and whole layer thickness significantly improved (P < 0.05). However, the expression levels of apoptosis-related protein bax of M-AG and H-AG are significantly lower than RG, and their bcl-2 levels are higher than RG with significant difference between them (P < 0.05). Actovegin is capable of effectively inhibiting the expression of apoptosis-related protein bax and facilitating the expression of anti-apoptosis protein bcl-2, having preferable remediation effect on mucous membrane epithelial cells of radioactive enteritis.

  5. IL-17A, IL-22, IL-6, and IL-21 Serum Levels in Plaque-Type Psoriasis in Brazilian Patients

    PubMed Central

    de Oliveira, Priscilla Stela Santana; Cardoso, Pablo Ramon Gualberto; Lima, Emerson Vasconcelos de Andrade; Pereira, Michelly Cristiny; Duarte, Angela Luzia Branco Pinto; Pitta, Ivan da Rocha; Rêgo, Moacyr Jesus Barreto de Melo; Pitta, Maira Galdino da Rocha

    2015-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by alterations in cytokines produced by both Th1 and Th17 pathways. The aim of this study was to evaluate serum levels of pivotal cytokines and correlate them with clinical parameters. Serum samples from 53 psoriasis patients and 35 healthy volunteers, matched by the proportion of sex and age ratios, were collected for ELISA cytokine detection. Psoriasis Area and Severity Index (PASI) was assessed at the time of sampling in psoriasis patients. Our findings demonstrate that IL-17A, IL-22, and IL-6 serum concentrations were significantly higher in psoriasis patients than in the control group. No statistical correlation could be found between cytokines concentrations, PASI score, and age in this study. Although our results do not show any correlation between serum levels of IL-17A, IL-22, and IL-6 and disease activity, the present study confirms that they were increased in Brazilian psoriasis patients in comparison to healthy volunteers. PMID:26351408

  6. TNF-{alpha} similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts

    SciTech Connect

    Mueller, Lars; Seggern, Lena von; Schumacher, Jennifer; Goumas, Freya; Wilms, Christian; Braun, Felix; Broering, Dieter C.

    2010-07-02

    Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparable up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.

  7. Inhibition of skin pigmentation by an extract of Lepidium apetalum and its possible implication in IL-6 mediated signaling.

    PubMed

    Choi, Hyunjung; Ahn, Soomi; Lee, Byeong G; Chang, Ihseop; Hwang, Jae S

    2005-12-01

    The development of effective skin-lightening agents is an increasingly important area of research aimed at the treatment of hyperpigmentation induced by UV irradiation or by medical conditions such as melasma, postinflammatory melanoderma and solar lentigo. Although some inhibit tyrosinase, identifying and understanding the mechanisms of action of other agents is an important goal if more effective pigmentation inhibitors are to be developed. We present here that an extract of Lepidium apetalum (ELA) decreased UV-induced skin pigmentation in brown guinea pigs and melanogenesis of HM3KO human melanoma cells. Interestingly, ELA did not reduce melanogenesis in HM3KO cells unless they were co-cultivated in keratinocyte-conditioned medium prepared by culturing keratinocytes with ELA. Under these conditions, ELA decreased tyrosinase mRNA and protein expression as well as melanin content via an ELA-mediated increase in keratinocyte IL-6 production which in turn was shown to decrease in the expression Mitf, a transcription factor implicated in tyrosinase gene expression and melanocyte differentiation. The results reveal that ELA may be an effective inhibitor of hyperpigmentation caused by UV irradiation or by pigmented skin disorders through a mechanism involving IL-6-mediated downregulation of Mitf rather than a direct inhibition of tyrosinase activity.

  8. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8.

    PubMed

    Toosi, Siavash; Orlow, Seth J; Manga, Prashiela

    2012-11-01

    Vitiligo is characterized by depigmented skin patches caused by loss of epidermal melanocytes. Oxidative stress may have a role in vitiligo onset, while autoimmunity contributes to disease progression. In this study, we sought to identify mechanisms that link disease triggers and spreading of lesions. A hallmark of melanocytes at the periphery of vitiligo lesions is dilation of the endoplasmic reticulum (ER). We hypothesized that oxidative stress results in redox disruptions that extend to the ER, causing accumulation of misfolded peptides, which activates the unfolded protein response (UPR). We used 4-tertiary butyl phenol and monobenzyl ether of hydroquinone, known triggers of vitiligo. We show that expression of key UPR components, including the transcription factor X-box-binding protein 1 (XBP1), is increased following exposure of melanocytes to phenols. XBP1 activation increases production of immune mediators IL6 and IL8. Co-treatment with XBP1 inhibitors reduced IL6 and IL8 production induced by phenols, while overexpression of XBP1 alone increased their expression. Thus, melanocytes themselves produce cytokines associated with activation of an immune response following exposure to chemical triggers of vitiligo. These results expand our understanding of the mechanisms underlying melanocyte loss in vitiligo and pathways linking environmental stressors and autoimmunity.

  9. Association of IL-6 and CRP gene polymorphisms with obesity and metabolic disorders in children and adolescents.

    PubMed

    Todendi, Pâmela F; Klinger, Elisa I; Ferreira, Michele B; Reuter, Cézane P; Burgos, Miria S; Possuelo, Lia G; Valim, Andréia R M

    2015-01-01

    Activation of adipose tissue inflammation is associated with obesity caused by lipid accumulation in adipocytes. Through this activation, proinflammatory cytokines, such as Interleukin-6 (IL-6) and C-reactive protein (CRP) seem to influence metabolic disorders. The present study evaluated whether polymorphisms in the CRP (rs1205) and IL-6 (rs1800795, rs2069845) genes are associated with the development of metabolic disorders in children and adolescents. A cross-sectional study was performed, consisting of 470 students from the municipality of Santa Cruz do Sul, Brazil, aged 7-17 years. Body mass index (BMI) was classified according to overweight and obesity. Genotyping was performed by real-time Polymerase Chain Reaction (PCR). Anthropometric characteristics, biochemical markers, immunological markers and blood pressure were assessed. Descriptive statistics, chi-square and logistic regression were used for the analyses. No association was detected between the rs1800795 polymorphism and the assessed variables. Individuals with the risk genotype in the rs1205 gene were associated with the risk of developing hypercholesterolemia (OR 2.79; CI 1.40, 5.57; p = 0.003). Carriers of the risk genotype in the rs2069845 gene are associated with the risk of developing obesity (OR 3.07; CI 1.08, 8.72; p = 0.03). The polymorphism rs2069845 was associated with obesity and rs1205 was associated with the risk of developing hypercholesterolemia in Brazilian schoolchildren.

  10. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice.

    PubMed

    Tsuji, Petra A; Carlson, Bradley A; Anderson, Christine B; Seifried, Harold E; Hatfield, Dolph L; Howard, Michael T

    2015-08-06

    Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake.

  11. IL-17A, IL-22, IL-6, and IL-21 Serum Levels in Plaque-Type Psoriasis in Brazilian Patients.

    PubMed

    de Oliveira, Priscilla Stela Santana; Cardoso, Pablo Ramon Gualberto; Lima, Emerson Vasconcelos de Andrade; Pereira, Michelly Cristiny; Duarte, Angela Luzia Branco Pinto; Pitta, Ivan da Rocha; Rêgo, Moacyr Jesus Barreto de Melo; Pitta, Maira Galdino da Rocha

    2015-01-01

    Psoriasis is a chronic inflammatory skin disease characterized by alterations in cytokines produced by both Th1 and Th17 pathways. The aim of this study was to evaluate serum levels of pivotal cytokines and correlate them with clinical parameters. Serum samples from 53 psoriasis patients and 35 healthy volunteers, matched by the proportion of sex and age ratios, were collected for ELISA cytokine detection. Psoriasis Area and Severity Index (PASI) was assessed at the time of sampling in psoriasis patients. Our findings demonstrate that IL-17A, IL-22, and IL-6 serum concentrations were significantly higher in psoriasis patients than in the control group. No statistical correlation could be found between cytokines concentrations, PASI score, and age in this study. Although our results do not show any correlation between serum levels of IL-17A, IL-22, and IL-6 and disease activity, the present study confirms that they were increased in Brazilian psoriasis patients in comparison to healthy volunteers. PMID:26351408

  12. Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma.

    PubMed

    San-Miguel, Jesús; Bladé, Joan; Shpilberg, Ofer; Grosicki, Sebastian; Maloisel, Frédéric; Min, Chang-Ki; Polo Zarzuela, Marta; Robak, Tadeusz; Prasad, Sripada V S S; Tee Goh, Yeow; Laubach, Jacob; Spencer, Andrew; Mateos, María-Victoria; Palumbo, Antonio; Puchalski, Tom; Reddy, Manjula; Uhlar, Clarissa; Qin, Xiang; van de Velde, Helgi; Xie, Hong; Orlowski, Robert Z

    2014-06-26

    Because interleukin-6 (IL-6) is considered important in the proliferation of early multiple myeloma (MM), we hypothesized that the addition of the anti-IL-6 monoclonal antibody siltuximab to the bortezomib-melphalan-prednisone (VMP) regimen would improve outcomes in transplant-ineligible patients with newly diagnosed MM. One hundred and six patients were randomized to receive 9 cycles of VMP or VMP plus siltuximab (11 mg/kg every 3 weeks) followed by siltuximab maintenance. Baseline characteristics were well balanced except for immunoglobulin A subtype and 17p deletions. With a complete response (CR) rate of 27% on siltuximab plus VMP (S+VMP) and 22% on VMP, the study did not confirm its hypothesis that the addition of siltuximab would increase the CR rate by at least 10%. Overall response rate was 88% on S+VMP and 80% on VMP, and at least very good partial response rates were 71% and 51% (P = .0382), respectively. Median progression-free survival (17 months) and 1-year overall survival (88%) were identical in the 2 arms. Grade ≥3 adverse-event incidence was 92% on S+VMP and 81% on VMP (P = .09), with trends toward more hematologic events and infections on S+VMP. Maintenance therapy with siltuximab was well tolerated. In conclusion, the addition of siltuximab to VMP did not improve the CR rate or long-term outcomes. This study was registered at http://clinicaltrials.gov as #NCT00911859. PMID:24833354

  13. Interleukin 6 promoter 174 G/C polymorphisms in acute ischemic stroke: G allele is protective but not associated with IL-6 levels or stroke outcome.

    PubMed

    Yan, J; J M, Greer; P A, McCombe

    2016-04-15

    Our study investigated the frequency of interleukin-6 (IL-6) promoter polymorphism rs1800795 (-174 G>C), possible association of this polymorphism with IL-6 levels and the outcome after stroke in 95 patients with acute ischemic stroke and 268 healthy subjects. It shows a significant reduction in the frequency of G alleles in stroke patients compared to healthy controls. Carriage of G allele is not associated with stroke subtypes, the initial severity or the outcome after stroke. The -174 polymorphisms were not associated with variation in IL-6 levels post-stroke. Our results indicate that IL-6 promoter -174 polymorphisms may play a role in susceptibility to stroke, but not stroke outcome.

  14. Effect of preseasonal enzyme potentiated desensitisation (EPD) on plasma-IL-6 and IL-10 of grass pollen-sensitive asthmatic children.

    PubMed

    Ippoliti, F; Ragno, V; Del Nero, A; McEwen, L M; McEwen, H; Businco, L

    1997-05-01

    EPD is a method of preventive immunotherapy which employs b-glucuronidase as a biological response modifier. Plasma IL-6 and IL-10 were measured before a single injection of EPD, 24 hours later and 15 days after in a group of 17 children suffering from grass pollen asthma. 17 normal untreated children were used as controls. Although the study was conducted before the grass pollen season when the allergic children were free of symptoms, their plasma IL-6 and IL-10 were significantly elevated before the injection of EPD. 24 hours after treatment the plasma IL-10 had increased significantly and there was also a slight rise in IL-6. 15 days after treatment IL-6 had fallen to normal but IL-10 was still elevated. These findings suggest antigen-specific and non-specific mechanisms by which EPD may produce clinical improvement. PMID:9202812

  15. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8.

    PubMed

    Hartman, Zachary C; Poage, Graham M; den Hollander, Petra; Tsimelzon, Anna; Hill, Jamal; Panupinthu, Nattapon; Zhang, Yun; Mazumdar, Abhijit; Hilsenbeck, Susan G; Mills, Gordon B; Brown, Powel H

    2013-06-01

    Triple-negative breast cancers (TNBC) are aggressive with no effective targeted therapies. A combined database analysis identified 32 inflammation-related genes differentially expressed in TNBCs and 10 proved critical for anchorage-independent growth. In TNBC cells, an LPA-LPAR2-EZH2 NF-κB signaling cascade was essential for expression of interleukin (IL)-6, IL-8, and CXCL1. Concurrent inhibition of IL-6 and IL-8 expression dramatically inhibited colony formation and cell survival in vitro and stanched tumor engraftment and growth in vivo. A Cox multivariable analysis of patient specimens revealed that IL-6 and IL-8 expression predicted patient survival times. Together these findings offer a rationale for dual inhibition of IL-6/IL-8 signaling as a therapeutic strategy to improve outcomes for patients with TNBCs.

  16. C5a Induces the Synthesis of IL-6 and TNF-α in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways

    PubMed Central

    Ji, Mingde; Lu, Yanlai; Zhao, Chenhui; Gao, Wenxing; He, Fengxia; Zhang, Jing; Zhao, Dan; Qiu, Wen; Wang, Yingwei

    2016-01-01

    Inflammatory response has been reported to contribute to the renal lesions in rat Thy-1 nephritis (Thy-1N) as an animal model of human mesangioproliferative glomerulonephritis (MsPGN). Besides C5b-9 complex, C5a is also a potent pro-inflammatory mediator and correlated to severity of various nephritic diseases. However, the role of C5a in mediating pro-inflammatory cytokine production in rats with Thy-1N is poorly defined. In the present studies, the levels of C5a, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were first determined in the renal tissues of rats with Thy-1N. Then, the expression of IL-6 and TNF-α was detected in rat glomerular mesangial cells (GMC) stimulated with our recombinant rat C5a in vitro. Subsequently, the activation of mitogen-activated protein kinase (MAPK) signaling pathways (p38 MAPK, ERK1/2 and JNK) and their roles in the regulation of IL-6 and TNF-α production were examined in the GMC induced by C5a. The results showed that the levels of C5a, IL-6 and TNF-α were markedly increased in the renal tissues of Thy-1N rats. Rat C5a stimulation in vitro could up-regulate the expression of IL-6 and TNF-α in rat GMC, and the activation of MAPK signaling pathways was involved in the induction of IL-6 and TNF-α. Mechanically, p38 MAPK activation promoted IL-6 production, while either ERK1/2 or JNK activation promoted TNF-α production in the GMC with exposure to C5a. Taken together, these data implicate that C5a induces the synthesis of IL-6 and TNF-α in rat GMC through the activation of MAPK signaling pathways. PMID:27583546

  17. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    PubMed

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-02-09

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.

  18. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    PubMed Central

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K.; Perna, Fabiana; Bowman, Robert L.; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N. C.; Feldman, Michael; Mao, Jun J.; Colameco , Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H.; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133hi/ERlo/OXPHOSlo. These cells exit metabolic dormancy via an IL6-driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy. PMID:26858125

  19. TLR ligand induced IL-6 counter-regulates the anti-viral CD8+ T cell response during an acute retrovirus infection

    PubMed Central

    Wu, Weimin; Dietze, Kirsten K.; Gibbert, Kathrin; Lang, Karl S.; Trilling, Mirko; Yan, Huimin; Wu, Jun; Yang, Dongliang; Lu, Mengji; Roggendorf, Michael; Dittmer, Ulf; Liu, Jia

    2015-01-01

    We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8+ T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8+ T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8+ T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8+ T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8+ T cells in vitro. This effect was mediated by a direct stimulation of CD8+ T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8+ T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections. PMID:25994622

  20. TNFα Mediated IL-6 Secretion Is Regulated by JAK/STAT Pathway but Not by MEK Phosphorylation and AKT Phosphorylation in U266 Multiple Myeloma Cells

    PubMed Central

    Lee, Chansu; Oh, Jeong-In; Park, Juwon; Choi, Jee-Hye; Bae, Eun-Kyung; Lee, Hyun Jung; Jung, Woo June; Lee, Dong Soon; Ahn, Kwang-Sung; Yoon, Sung-Soo

    2013-01-01

    IL-6 and TNFα were significantly increased in the bone marrow aspirate samples of patients with active multiple myeloma (MM) compared to those of normal controls. Furthermore, MM patients with advanced aggressive disease had significantly higher levels of IL-6 and TNFα than those with MM in plateau phase. TNFα increased interleukin-6 (IL-6) production from MM cells. However, the detailed mechanisms involved in signaling pathways by which TNFα promotes IL-6 secretion from MM cells are largely unknown. In our study, we found that TNFα treatments induce MEK and AKT phosphorylation. TNFα-stimulated IL-6 production was abolished by inhibition of JAK2 and IKKβ or by small interfering RNA (siRNA) targeting TNF receptors (TNFR) but not by MEK, p38, and PI3K inhibitors. Also, TNFα increased phosphorylation of STAT3 (ser727) including c-Myc and cyclin D1. Three different types of JAK inhibitors decreased the activation of the previously mentioned pathways. In conclusion, blockage of JAK/STAT-mediated NF-κB activation was highly effective in controlling the growth of MM cells and, consequently, an inhibitor of TNFα-mediated IL-6 secretion would be a potential new therapeutic agent for patients with multiple myeloma. PMID:24151609

  1. Effect of budesonide and nedocromil sodium on IL-6 and IL-8 release from human nasal mucosa and polyp epithelial cells.

    PubMed

    Xaubet, A; Mullol, J; Roca-Ferrer, J; Pujols, L; Fuentes, M; Pérez, M; Fabra, J M; Picado, C

    2001-05-01

    We investigated the effect of budesonide and nedocromil sodium on the secretion of IL-6 and IL-8 by cultured epithelial cells from healthy nasal mucosa and nasal polyps. Human epithelial cell conditioned media was generated with fetal calf serum (FCS) in the presence or absence of budesonide and/or nedocromil sodium. Budesonide inhibited FCS-induced IL-6 and IL-8 release in a dose-dependent manner. The IC25 (25% inhibitory concentration) of budesonide on IL-6 release was higher in nasal polyp than in nasal mucosa epithelial cells (34 nM vs. 200 pM). The IC25 of budesonide on IL-8 release was higher in nasal mucosa than in nasal polyps (145 pM vs. 4 pM). Nedocromil sodium caused a dose-related inhibitory effect on IL-8 release from nasal mucosa (IC25, 207 nM), while it only had a significant effect in nasal polyps at 10(-5) M. Nedocromil sodium had no effect on IL-6 release. The inhibitory effect of budesonide was higher than that of nedocromil sodium on both nasal polyps and nasal mucosa. Budesonide and nedocromil sodium may exert their anti-inflammatory action in the respiratory mucosa by modulating the secretion of IL-6 and IL-8. The different effect of budesonide and nedocromil sodium on IL-6 and IL-8 release may be explained by differences in the mechanisms which regulate the upregulation of these cytokines in inflammatory responses.

  2. Handgrip performance in relation to self-perceived fatigue, physical functioning and circulating IL-6 in elderly persons without inflammation

    PubMed Central

    Bautmans, Ivan; Gorus, Ellen; Njemini, Rose; Mets, Tony

    2007-01-01

    Background Low grip strength is recognized as one of the characteristics of frailty, as are systemic inflammation and the sensation of fatigue. Contrary to maximal grip strength, the physical resistance of the muscles to fatigue is not often included in the clinical evaluation of elderly patients. The aim of this study was to investigate if the grip strength and the resistance of the handgrip muscles to fatigue are related to self-perceived fatigue, physical functioning and circulating IL-6 in independently living elderly persons. Methods Forty elderly subjects (15 female and 25 male, mean age 75 ± 5 years) were assessed for maximal grip strength, as well as for fatigue resistance and grip work (respectively time and work delivered until grip strength drops to 50% of its maximum during sustained contraction), self perceived fatigue (VAS-Fatigue, Mob-Tiredness scale and the energy & fatigue items of the WHOQOL-100), self rated physical functioning (domain of physical functioning on the MOS short-form) and circulating IL-6. Relationships between handgrip performance and the other outcome measures were assessed. Results In the male participants, fatigue resistance was negatively related to actual sensation of fatigue (VAS-F, p < .05) and positively to circulating IL-6 (p < .05). When corrected for body weight, the relations of fatigue resistance with self-perceived fatigue became stronger and also apparent in the female. Grip strength and grip work were significantly related with several items of self-perceived fatigue and with physical functioning. These relations became more visible by means of higher correlation coefficients when grip strength and grip work were corrected for body weight. Conclusion Well functioning elderly subjects presenting less handmuscle fatigue resistance and weaker grip strength are more fatigued, experience more tiredness during daily activities and are more bothered by fatigue sensations. Body weight seems to play an important role in the

  3. Serum Levels of IL-1β, IL-6, TGF-β, and MMP-9 in Patients Undergoing Carotid Artery Stenting and Regulation of MMP-9 in a New In Vitro Model of THP-1 Cells Activated by Stenting

    PubMed Central

    Zhang, Rongrong; Jiang, Fan; Chen, Cindy Si; Wang, Tianzhu; Feng, Jinzhou; Tao, Tao; Qin, Xinyue

    2015-01-01

    Inflammation plays an important role in the pathophysiological process after carotid artery stenting (CAS). Monocyte is a significant source of inflammatory cytokines in vascular remodeling. Telmisartan could reduce inflammation. In our study, we first found that, after CAS, the serum IL-1β, IL-6, TGF-β, and MMP-9 levels were significantly increased, but only MMP-9 level was elevated no less than 3 months. Second, we established a new in vitro model, where THP-1 monocytes were treated with the supernatants of human umbilical vein endothelial cells (HUVECs) that were scratched by pipette tips, which mimics monocytes activated by mechanical injury of stenting. The treatment enhanced THP-1 cell adhesion, migration and invasion ability, and the phosphorylation of ERK1/2 and Elk-1 and MMP-9 expression were significantly increased. THP-1 cells pretreated with PD98095 (ERK1/2 inhibitor) attenuated the phosphorylation of ERK1/2 and Elk-1 and upregulation of MMP-9, while pretreatment with telmisartan merely decreased the phosphorylation of Elk-1 and MMP-9 expression. These results suggested that IL-1β, IL-6, TGF-β, and MMP-9 participate in the pathophysiological process after CAS. Our new in vitro model mimics monocytes activated by stenting. MMP-9 expression could be regulated through ERK1/2/Elk-1 pathway, and the protective effects of telmisartan after stenting are partly attributed to its MMP-9 inhibition effects via suppression of Elk-1. PMID:26113783

  4. Radiation-Induced Interleukin-6 Expression Through MAPK/p38/NF-kappaB Signaling Pathway and the Resultant Antiapoptotic Effect on Endothelial Cells Through Mcl-1 Expression With sIL6-Ralpha

    SciTech Connect

    Chou, C.-H.; Chen, S.-U.; Cheng, J.C.-H.

    2009-12-01

    Purpose: To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Methods and Materials: Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Results: Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Conclusion: Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  5. An Elevated Fetal IL-6 Concentration Can Be Observed In Fetuses with Anemia Due To Rh Alloimmunization: Implications for the Understanding of the Fetal Inflammatory Response Syndrome

    PubMed Central

    Vaisbuch, Edi; Romero, Roberto; Gomez, Ricardo; Kusanovic, Juan Pedro; Mazaki-Tovi, Shali; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.

    2010-01-01

    Objective The fetal inflammatory response syndrome (FIRS) has been described in the context of preterm labor and preterm PROM and is often associated with intra-amniotic infection/inflammation. This syndrome is characterized by systemic fetal inflammation and operationally-defined by an elevated fetal plasma interleukin (IL)-6. The objective of this study was to determine if FIRS can be found in fetuses with activation of their immune system, such as the one observed in Rh alloimmune-mediated fetal anemia. Methods Fetal blood sampling was performed in sensitized Rh-D negative women with suspected fetal anemia (n=16). Fetal anemia was diagnosed according to reference range nomograms established for the assessment of fetal hematologic parameters. An elevated fetal plasma IL-6 concentration was defined using a cutoff of >11 pg/mL. Concentrations of IL-6 were determined by immunoassay. Non-parametric statistics were used for analysis. Results 1) The prevalence of an elevated fetal plasma IL-6 was 25% (4/16); 2) there was an inverse relationship between the fetal hematocrit and IL-6 concentration - the lower the hematocrit, the higher the fetal IL-6 (r= −0.68, p=0.004); 3) fetuses with anemia had a significantly higher plasma IL-6 concentration than those without anemia (3.74 pg/ml, interquartile range (IQR) 1.18–2.63 vs. 1.46 pg/ml, IQR 1.76–14.7; p=0.02); 4) interestingly, all fetuses with an elevated plasma IL-6 concentration had anemia (prevalence 40%, 4/10), while in the group without anemia, none had an elevated fetal plasma IL-6. Conclusions An elevation in fetal plasma IL-6 can be observed in a subset of fetuses with anemia due to Rh alloimmunization. This observation suggests that the hallmark of FIRS can be caused by non-infection-related insults. Further studies are required to determine whether the prognosis of FIRS caused by intra-amniotic infection/inflammation is different from that induced by alloimmunization. PMID:20701435

  6. The IL-6 response to Chlamydia from primary reproductive epithelial cells is highly variable and may be involved in differential susceptibility to the immunopathological consequences of chlamydial infection

    PubMed Central

    2013-01-01

    Background Chlamydia trachomatis infection results in reproductive damage in some women. The process and factors involved in this immunopathology are not well understood. This study aimed to investigate the role of primary human cellular responses to chlamydial stress response proteases and chlamydial infection to further identify the immune processes involved in serious disease sequelae. Results Laboratory cell cultures and primary human reproductive epithelial cultures produced IL-6 in response to chlamydial stress response proteases (CtHtrA and CtTsp), UV inactivated Chlamydia, and live Chlamydia. The magnitude of the IL-6 response varied considerably (up to 1000 pg ml-1) across different primary human reproductive cultures. Thus different levels of IL-6 production by reproductive epithelia may be a determinant in disease outcome. Interestingly, co-culture models with either THP-1 cells or autologous primary human PBMC generally resulted in increased levels of IL-6, except in the case of live Chlamydia where the level of IL-6 was decreased compared to the epithelial cell culture only, suggesting this pathway may be able to be modulated by live Chlamydia. PBMC responses to the stress response proteases (CtTsp and CtHtrA) did not significantly vary for the different participant cohorts. Therefore, these proteases may possess conserved innate PAMPs. MAP kinases appeared to be involved in this IL-6 induction from human cells. Finally, we also demonstrated that IL-6 was induced by these proteins and Chlamydia from mouse primary reproductive cell cultures (BALB/C mice) and mouse laboratory cell models. Conclusions We have demonstrated that IL-6 may be a key factor for the chlamydial disease outcome in humans, given that primary human reproductive epithelial cell culture showed considerable variation in IL-6 response to Chlamydia or chlamydial proteins, and that the presence of live Chlamydia (but not UV killed) during co-culture resulted in a reduced IL-6 response

  7. Biliary wound healing, ductular reactions, and IL-6/gp130 signaling in the development of liver disease

    PubMed Central

    Demetris, A J; III, John G Lunz; Specht, Susan; Nozaki, Isao

    2006-01-01

    Basic and translational wound healing research in the biliary tree lag significantly behind similar studies on the skin and gastrointestinal tract. This is at least partly attributable to lack of easy access to the biliary tract for study. But clinical relevance, more interest in biliary epithelial cell (BEC) pathophysiology, and widespread availability of BEC cultures are factors reversing this trend. In the extra-hepatic biliary tree, ineffectual wound healing, scarring and stricture development are pressing issues. In the smallest intra-hepatic bile ducts either impaired BEC proliferation or an exuberant response can contribute to liver disease. Chronic inflammation and persistent wound healing reactions in large and small bile ducts often lead to liver cancer. General concepts of wound healing as they apply to the biliary tract, importance of cellular processes dependent on IL-6/gp130/STAT3 signaling pathways, unanswered questions, and future directions are discussed. PMID:16773708

  8. IL-12, IL-6 and IFN-gamma production by lymphocytes of pregnant women with rheumatoid arthritis remission during pregnancy.

    PubMed Central

    Tchórzewski, H; Krasomski, G; Biesiada, L; Głowacka, E; Banasik, M; Lewkowicz, P

    2000-01-01

    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with progressive activity. The RA remission was observed in women during pregnancy, but the mechanism responsible for remission is hypothetical only and concerns mechanisms of immune regulation such as lymphocyte subpopulations and interleukin production. AIMS: The lymphocyte subpopulations and interleukin production in vitro in a group of healthy non-pregnant women, healthy pregnant women and pregnant women suffering from RA may help towards a better understanding of regulation of the immune processes. METHODS: The investigations were performed in trimester III--2 days after delivery and 6 weeks after delivery. Peripheral blood lymphocytes were isolated on Gradisol gradient and analysed immediately or after having been cultured for 72 hours in RPMI medium supplemented with 10% FCS. The cultures were terminated after 72 h, supernatants stored at -72 degrees C for interleukin evaluation. The concentrations of IFN-gamma, IL-2, IL-6, IL-12, TNF-alpha and its soluble receptors R-I, R-II were estimated in non-stimulated and PHA (Sigma, 5 microg/ml) stimulated culture supernatants using ELISA Endogen kits according to the manufacturer's instructions. RESULTS: The general pattern of T cell subpopulation distribution was similar in all analysed groups. Decreased IFN-gamma, IL-12 and increased IL-6 production by lymphocytes after PHA stimulation was found in trimester III in pregnant women with RA as compared to healthy pregnant woman. CONCLUSION: The obtained results suggest that in pregnant women with RA the TH1 cell response predominates, contrary to healthy pregnant women with TH2 type functional response. These phenomena were not observed after delivery. PMID:11213913

  9. Relationships between cytokine (IL-6 and TGF-β1) gene polymorphisms and chromosomal damage in hospital workers.

    PubMed

    Santovito, Alfredo; Cervella, Piero; Chiarizio, Michela; Meschiati, Giulia; Delsoglio, Marta; Manitta, Eleonora; Picco, Giulia; Delpero, Massimiliano

    2016-05-01

    Cytokine gene polymorphisms have been found to be associated with a pre-disposition to a variety of diseases, including inflammatory and cancer diseases. The present study evaluated the influence of six cytokine gene polymorphisms on the level of genomic damage observed in peripheral blood lymphocytes from hospital pathologists chronically exposed to low doses of different xenobiotics. Lymphocytes from 50 pathologists and 50 control subjects were recruited and analyzed in Sister Chromatid Exchange (SCE) and Chromosomal Aberrations (CA) assays. The frequencies of six cytokine gene polymorphisms and their relationships with the cytogenetic damage levels were also evaluated. The results indicated that significant differences were found between pathologists and controls in terms of SCE frequency (p < 0.001) and RI values (p < 0.001), as well as in terms of CA and cells with aberrations (p < 0.001). No associations were found between all analyzed cytokine gene polymorphisms and CA frequency in both pathologists and control groups. Vice versa, among pathologists, homozygote individuals for the IL-6 G allele showed a significantly (p = 0.017) lower frequency of SCE with respect to heterozygote subjects. Similarly, for TGFβ1 codon 10 locus, homozygote for T allele and heterozygote TC subjects showed a significantly (p = 0.021) lower frequency of SCE with respect to homozygote CC individuals. Among controls, no significant differences were found in the frequency of SCE between genotypes at all loci. Based on these results, we speculate that high circulating levels of a pro-inflammatory cytokine like IL-6 and lower levels of the immunosuppressant cytokine TGFβ1 could be associated directly with a longer duration and/or greater intensity of inflammatory processes, and indirectly with significantly higher levels of genomic damage. PMID:27297963

  10. Curcumin Inhibits Imiquimod-Induced Psoriasis-Like Inflammation by Inhibiting IL-1beta and IL-6 Production in Mice

    PubMed Central

    Hu, Jinhong

    2013-01-01

    Curcumin, a selective phosphorylase kinase inhibitor, is a naturally occurring phytochemical present in turmeric. Curcumin has been confirmed to have anti-inflammatory properties in addition to the ability to decrease the expression of pro-inflammatory cytokines in keratinocytes. The interleukin-23 (IL-23)/IL-17A cytokine axis plays a critical role in the pathogenesis of psoriasis. Here, we report that topical use of a curcumin gel formulation strongly inhibited imiquimod (IMQ)-induced psoriasis-like inflammation, the development of which was based on the IL-23/IL-17A axis. IMQ-induced epidermal hyperplasia and inflammation in BALB/c mouse ear was significantly inhibited following curcumin treatment. Real-time PCR showed that mRNA levels of IL-17A, IL-17F, IL-22, IL-1β, IL-6 and TNF-α cytokines were decreased significantly by curcumin in ear skin, an effect similar to that of clobetasol. In addition, we found that curcumin may enhance the proliferation of epidermis γδ T cells but inhibit dermal γδ T cell proliferation. We inferred that curcumin was capable of impacting the IL-23/IL-17A axis by inhibiting IL-1β/IL-6 and then indirectly down-regulating IL-17A/IL-22 production. In conclusion, curcumin can relieve the IMQ-induced psoriasis-like inflammation in a mouse model, similar to the effects of clobetasol. Therefore, we have every reason to expect that curcumin will be used in the treatment of psoriasis in the future. PMID:23825622

  11. Clinical Relevance of VPAC1 Receptor Expression in Early Arthritis: Association with IL-6 and Disease Activity

    PubMed Central

    Seoane, Iria V.; Ortiz, Ana M.; Piris, Lorena; Lamana, Amalia; Juarranz, Yasmina; García-Vicuña, Rosario; González-Álvaro, Isidoro; Gomariz, Rosa P.; Martínez, Carmen

    2016-01-01

    Background The vasoactive intestinal peptide (VIP) receptors VPAC1 and VPAC2 mediate anti-inflammatory and immunoregulatory responses in rheumatoid arthritis (RA). Data on the expression of these receptors could complement clinical assessment in the management of RA. Our goal was to investigate the correlation between expression of both receptors and the 28-Joint Disease Activity Score (DAS28) in peripheral blood mononuclear cells (PBMCs) from patients with early arthritis (EA). We also measured expression of IL-6 to evaluate the association between VIP receptors and systemic inflammation. Methods We analyzed 250 blood samples collected at any of the 5 scheduled follow-up visits from 125 patients enrolled in the Princesa Early Arthritis Register Longitudinal study. Samples from 22 healthy donors were also analyzed. Sociodemographic, clinical, and therapeutic data were systematically recorded. mRNA expression levels were determined using real-time PCR. Then, longitudinal multivariate analyses were performed. Results PBMCs from EA patients showed significantly higher expression of VPAC2 receptors at baseline compared to healthy donors (p<0.001). With time, however, VPAC2 expression tended to be significantly lower while VPAC1 receptor expression increased in correlation with a reduction in DAS28 index. Our results reveal that more severe inflammation, based on high levels of IL-6, is associated with lower expression of VPAC1 (p<0.001) and conversely with increased expression of VPAC2 (p<0.001). A major finding of this study is that expression of VPAC1 is lower in patients with increased disease activity (p = 0.001), thus making it possible to differentiate between patients with various degrees of clinical disease activity. Conclusion Patients with more severe inflammation and higher disease activity show lower levels of VPAC1 expression, which is associated with patient-reported impairment. Therefore, VPAC1 is a biological marker in EA. PMID:26881970

  12. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock.

    PubMed

    Zhang, Yong; Zhang, Jinxiang; Korff, Sebastian; Ayoob, Faez; Vodovotz, Yoram; Billiar, Timothy R

    2014-09-01

    An excessive and uncontrolled systemic inflammatory response is associated with organ failure, immunodepression, and increased susceptibility to nosocomial infection following trauma. Interleukin 6 (IL-6) plays a particularly prominent role in the host immune response after trauma with hemorrhage. However, as a result of its pleiotropic functions, the effect of IL-6 in trauma and hemorrhage is still controversial. It remains unclear whether suppression of IL-6 after hemorrhagic shock and trauma will attenuate organ injury and immunosuppression. In this study, C57BL/6 mice were treated with anti-mouse IL-6 monoclonal antibody immediately prior to resuscitation in an experimental model combining hemorrhagic shock and lower-extremity injury. Interleukin 6 levels and signaling were transiently suppressed following administrations of anti-IL-6 monoclonal antibody following hemorrhagic shock and lower-extremity injury. This resulted in reduced lung and liver injury, as well as suppression in the levels of key inflammatory mediators including IL-10, keratinocyte-derived chemokine, monocyte chemoattractant protein 1, and macrophage inhibitory protein 1α at both 6 and 24 h. Furthermore, the shift to TH2 cytokine production and suppressed lymphocyte response were partly prevented. These results demonstrate that IL-6 is not only a biomarker but also an important driver of injury-induced inflammation and immune suppression in mice. Rapid measurement of IL-6 levels in the early phase of postinjury care could be used to guide IL-6-based interventions.

  13. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients.

  14. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment.

    PubMed

    Zheng, Xin; Xu, Meng; Yao, Bowen; Wang, Cong; Jia, Yuli; Liu, Qingguang

    2016-09-01

    Aberrant tumor microenvironment is involved closely in tumor initiation and progression, in which cancer associated fibroblasts (CAFs) play a pivotal role. Both IL-6/STAT3 signaling and TIMP-1 have been found to modulate the crosstalk between tumor cells and CAFs in tumor microenvironment, however, the underlying mechanism remains unclear. Here, we showed that IL-6/STAT3 signaling was activated aberrantly in HCC tissues and correlated with poor post-surgical outcome. The in vitro experiments confirmed that activation of IL-6/STAT3 pathway enhanced TIMP-1 expression directly via phosphorylated STATs (p-STAT3)-binding with TIMP-1 promoter in Huh7 cells. Furthermore, activation of IL-6/STAT3 pathway in HCC cells was shown to induce the transformation from normal liver fibroblasts (LFs) to CAFs via up-regulating TIMP-1 expression. Co-culture with CAFs promoted the growth of Huh7 cells both in vitro and in vivo. Finally, by co-Immunoprecipitation and immunoblotting assessments, PCAF, a well-known acetyltransferase, was revealed to acetylate cytoplasmic STAT3 protein directly and regulate TIMP-1 expression negatively in Huh7 cells. In summary, this investigation indicated that there was a positive IL-6/TIMP-1 feedback loop controlling the crosstalk between HCC cells and its neighbouring fibroblasts. The data here also identified that PCAF repressed TIMP-1 expression via acetylation of STAT3. In conclusion, this investigation demonstrated that CAFs promoted HCC growth via IL-6/STAT3/AKT pathway and TIMP-1 over-expression driven by IL-6/STAT3 pathway in HCC cells brought in more CAFs through activating LFs. Finally, PCAF could block this positive feedback by acetylating STAT3 in HCC cells.

  15. Sex hormone affects the severity of non-alcoholic steatohepatitis through the MyD88-dependent IL-6 signaling pathway

    PubMed Central

    Xin, Guangda; Qin, Shaoyou; Wang, Song; Wang, Xu; Zhang, Yonggui

    2015-01-01

    Recent research has shown that the occurrence of gender disparity in liver cancer associated with sex differences in MyD88-dependent IL-6 production, but the role of this signaling pathway in sex differences of non-alcoholic steatohepatitis (NASH) remains unknown. To investigate the effects of sex hormone-specific intervention on pathology and progression of NASH, and on the inflammatory TLR-MyD88-IL-6 signaling pathway NASH was modeled in C57/BL6 mice by feeding a methionine and choline-deficient (MCD) diet for 4 weeks. Male mice were subjected to sex hormone-related interventions such as orchidectomy, and orchidectomy combined with administration of either testosterone propionate or estradiol benzoate. Next, the degree of non-alcoholic fatty liver disease activity score (NAS), serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and the expression level of MyD88 and IL-6, were compared between these groups. Males developed more serious inflammatory problems and had a higher NAS than the females. Sex-specific intervention in male mice by orchidectomy reduced NAS, ALT, and AST, and the expression level of MyD88 and IL-6. But administration of exogenous androgen had no influence on either NAS or the expression of ALT, AST, MyD88, and IL-6. On the other hand, exogenous estrogen could alleviate the pathological damage caused by NASH, as well as reduce NAS, ALT and AST, and the expression of MyD88 and IL-6. The result show different sex hormone-related interventions affected the severity of NASH, possibly by modulating the level of sex hormones and regulating the TLR-MyD88-IL-6 signaling pathway. PMID:25790822

  16. Elevated expression of APE1/Ref-1 and its regulation on IL-6 and IL-8 in bone marrow stromal cells of multiple myeloma.

    PubMed

    Xie, Jia-Yin; Li, Meng-Xia; Xiang, De-Bing; Mou, Jiang-Hong; Qing, Yi; Zeng, Lin-Li; Yang, Zhen-Zhou; Guan, Wei; Wang, Dong

    2010-10-01

    A number of growth factors secreted by bone marrow stromal cells (BMSCs), including interleukin-6 and -8 (IL-6/8), are important for the initiation and progression of multiple myeloma (MM). However, the mechanisms that regulate the production of IL-6/8 by BMSC have not yet been well characterized. Human dual functional protein apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE1/Ref-1) is essential for cell survival and proliferation. Previous studies showed that APE1/Ref-1 was overexpressed in tumor cells, but few studies showed its expression in supportive cells in the tumor microenvironment. We first detected APE1/Ref-1 expression in BMSCs of normal, initial, and recurrent MM patients, and then explore the correlation between APE1/Ref-1 level and IL-6/8 secretion of BMSCs. A marked increase of APE1/Ref-1 expression and abnormal subcellular distribution were observed in MM BMSCs. APE1/Ref-1 overexpression was related to higher secretary level of IL-6/8 by MM BMSCs and the IL-6/8 secretion was blocked significantly by adenovirus-mediated APE1/Ref-1-specific (small interfering RNA) siRNA. Our results also demonstrated that APE1/Ref-1-specific siRNA significantly inhibited DNA binding activity of AP-1 and nuclear factor-κB (NF-κB), 2 important transcription factors in the regulation IL-6/8 secretion in MM BMSCs. The results provided by the present study indicate APE1/Ref-1, which plays a regulatory role in IL-6/8 production by BMSCs, may be a potential therapeutic target of MM.

  17. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway

    PubMed Central

    Xue, Hao; Yuan, Guang; Guo, Xing; Liu, Qinglin; Zhang, Jinsen; Gao, Xiao; Guo, Xiaofan; Xu, Shugang; Li, Tong; Shao, Qianqian; Yan, Shaofeng; Li, Gang

    2016-01-01

    ABSTRACT Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients. PMID:27163161

  18. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway.

    PubMed

    Xue, Hao; Yuan, Guang; Guo, Xing; Liu, Qinglin; Zhang, Jinsen; Gao, Xiao; Guo, Xiaofan; Xu, Shugang; Li, Tong; Shao, Qianqian; Yan, Shaofeng; Li, Gang

    2016-07-01

    Hypoxia induces protective autophagy in glioblastoma cells and new therapeutic avenues that target this process may improve the outcome for glioblastoma patients. Recent studies have suggested that the autophagic process is upregulated in glioblastomas in response to extensive hypoxia. Hypoxia also induces the upregulation of a specific set of proteins and microRNAs (miRNAs) in a variety of cell types. IL6 (interleukin 6), an inflammatory autocrine and paracrine cytokine that is overexpressed in glioblastoma, has been reported to be a biomarker for poor prognosis because of its tumor-promoting effects. Here, we describe a novel tumor-promoting mechanism of IL6, whereby hypoxia-induced IL6 acts as a potent initiator of autophagy in glioblastoma via the phosphorylated (p)-STAT3-MIR155-3p pathway. IL6 and p-STAT3 levels correlated with the abundance of autophagic cells and HIF1A levels in human glioma tissues and with the grade of human glioma, whereas inhibition of exogenous or endogenous IL6 repressed autophagy in glioblastoma cells in vitro. Knockdown of endogenous MIR155-3p inhibited IL6-induced autophagy, and enforced expression of MIR155-3p restored the anti-autophagic activity of IL6 inhibitors. We show that the hypoxia-IL6-p-STAT3-MIR155-3p-CREBRF-CREB3-ATG5 pathway plays a central role in malignant glioma progression, with blockade of the IL6 receptor by tocilizumab demonstrating a certain level of therapeutic efficacy in a xenograft model in vivo, especially in combination with temozolomide. Moreover, tocilizumab inhibits autophagy by promoting tumor apoptosis. Collectively, our findings provide new insight into the molecular mechanisms underlying hypoxia-induced glioma cell autophagy and point toward a possible efficacious adjuvant therapy for glioblastoma patients. PMID:27163161

  19. NFκB1 is essential to prevent the development of multiorgan autoimmunity by limiting IL-6 production in follicular B cells.

    PubMed

    de Valle, Elisha; Grigoriadis, George; O'Reilly, Lorraine A; Willis, Simon N; Maxwell, Mhairi J; Corcoran, Lynn M; Tsantikos, Evelyn; Cornish, Jasper K S; Fairfax, Kirsten A; Vasanthakumar, Ajithkumar; Febbraio, Mark A; Hibbs, Margaret L; Pellegrini, Marc; Banerjee, Ashish; Hodgkin, Philip D; Kallies, Axel; Mackay, Fabienne; Strasser, Andreas; Gerondakis, Steve; Gugasyan, Raffi

    2016-04-01

    We examined the role of NFκB1 in the homeostasis and function of peripheral follicular (Fo) B cells. Aging mice lacking NFκB1 (Nfκb1(-/-)) develop lymphoproliferative and multiorgan autoimmune disease attributed in large part to the deregulated activity of Nfκb1(-/-)Fo B cells that produce excessive levels of the proinflammatory cytokine interleukin 6 (IL-6). Despite enhanced germinal center (GC) B cell differentiation, the formation of GC structures was severely disrupted in the Nfκb1(-/-)mice. Bone marrow chimeric mice revealed that the Fo B cell-intrinsic loss of NFκB1 led to the spontaneous generation of GC B cells. This was primarily the result of an increase in IL-6 levels, which promotes the differentiation of Fo helper CD4(+)T cells and acts in an autocrine manner to reduce antigen receptor and toll-like receptor activation thresholds in a population of proliferating IgM(+)Nfκb1(-/-)Fo B cells. We demonstrate that p50-NFκB1 represses Il-6 transcription in Fo B cells, with the loss of NFκB1 also resulting in the uncontrolled RELA-driven transcription of Il-6.Collectively, our findings identify a previously unrecognized role for NFκB1 in preventing multiorgan autoimmunity through its negative regulation of Il-6 gene expression in Fo B cells. PMID:27022143

  20. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    PubMed

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. PMID:27030742