Overview of ISS U.S. Fire Detection and Suppression System
NASA Technical Reports Server (NTRS)
Whitaker, Alana
2003-01-01
This paper presents a general overview of the International Space Station's Fire Detection and Suppression System. The topics include: 1) Introduction to Fire Detection and Suppression (FDS); 2) Description of (FDS) Subsystems; 3) FDS System Component Location and Status; 4) FDS System Capabilities; 5) FDS Automatic and Manual Response; 6) Post Fire Atmosphere Restoration and Air Quality Assessment; and 7) FDS Research Needs. This paper is in viewgraph form.
NASA Technical Reports Server (NTRS)
Williams, David E.
2011-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.
Ju, Yu-Jeng; Lien, Yunn-Wen
2016-02-01
It has been suggested that unwanted thoughts usually intrude during mind wandering due to a shortage of mental resources. However, strategies for suppressing such thoughts have never been examined from a mind wandering perspective. Here, we compare the effectiveness of two types of attention distraction strategies that either redirect users' attention to their own breathing (focused-breathing strategy, FBS) or to a mental image (focused-distraction strategy, FDS) as related to working memory capacities. Eighty-two undergraduates were randomly assigned into a FBS or FDS group. They completed a concentration task and a thought suppression task, in which mind wandering and thought intrusions were each measured. Our results support the hypothesis that mind wandering is positively correlated to thought intrusions and shows that FBS is more effective than FDS in reducing mind wandering and thought intrusions. Moreover, in contrast to FDS, the effect of FBS is independent of users' mental resources. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, David E.
2008-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 Emergency Response capability, which includes nominal and off-nominal FDS operation, off nominal ACS operation, and off-nominal THC operation. These subsystems provide the capability to help aid the crew members during an emergency cabin depressurization, a toxic spill, or a fire. The paper will also provide a discussion of the detailed Node 1 ECLS Element Verification methodologies for operation of the Node 1 Emergency Response hardware operations utilized during the Qualification phase.
International Space Station Temperature and Humidity Control Subsystem Verification for Node 1
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 THC subsystem design. The paper will also provide a discussion of the detailed Element Verification methodologies for nominal operation of the Node 1 THC subsystem operations utilized during the Qualification phase.
Environmental Control and Life Support System
NASA Technical Reports Server (NTRS)
Ray, Charles; Adams, Alan
1990-01-01
Viewgraphs on the Environmental Control and Life Support System (ECLSS) for the space station are presented. The ECLSS is divided into six subsystems: temperature and humidity control (THC), atmosphere control and supply (ACS), atmosphere revitalization (AR), fire detection and suppression (FDS), water recovery management (WRM), and waste management (WM). Topics covered include: ECLSS subsystem functions; ECLSS distributed system; ECLSS functional distribution; CO2 removal; CO2 reduction; oxygen generation; urine processor; and potable water recovery.
Awa, Hiroko; Futamura, Akihiko; Higashiguchi, Takashi; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Chihara, Takeshi; Kaneko, Takaaki
2017-03-01
A functional dietary supplement (FDS) containing Coenzyme Q10, branched-chain amino acids and L-carnitine was administered to tumor-bearing mice, investigating its effects on tumor and muscle tissues. Experiment (A): B16 melanoma cells were implanted subcutaneously into the right side of the abdomen of 8- to 9-week-old C57BL/6J mice. The mice were divided into two groups: a FDS group that received oral administration of FDS (n=10), and a control group that received oral administration of glucose (n=10). The moribund condition was used as the endpoint, and median survival time was determined. Experiment (B): On day 21 after tumor implantation, tumors, soleus muscle, gastrocnemius muscle, and suprahyoid muscles were collected. Tumor and muscle weight and other aspects were evaluated in each group: FDS group (n=15) and control group (n=15). The median survival time was comparable (21 d in the FDS group vs. 18 d in the control group, p=0.30). However, cumulative food intake was significantly higher in the FDS group than the control group (p=0.011). Metastasis of melanoma to the lung was observed in the control group but not in the FDS group (p=0.043). The weight of the suprahyoid muscles was significantly higher in the FDS group than in the control group (p=0.0045). The weight of the tumor was significantly lower in the FDS group than in the control group (p=0.013). The results possibly suggest oral administration of FDS in tumor-bearing mice enhances the maintenance of suprahyoid muscles, resulting in an extended feeding period and suppression of tumor growth and metastasis.
NASA Technical Reports Server (NTRS)
Williams, David E.
2007-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.
NASA Technical Reports Server (NTRS)
Williams, David E.
2009-01-01
The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the Node 1 ECLS ACS subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for that subsystem.
NASA Technical Reports Server (NTRS)
Williams, David E.; Labuda, Laura
2009-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.
NASA Astrophysics Data System (ADS)
Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui
2018-03-01
Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.
User's guide for the Flight Design System (FDS)
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Frisius, W. G.; Turner, A. A.; Willoughby, J. K.
1980-01-01
Information about the Flight Design System (FDS) in the context of flight design is presented. The guide introduces the FDS user to the structure of FDS and to constructs within FDS (such as files of information or the part of FDS which interacts directly with the user). A guide to the commands available to FDS users is presented. A glossary of important terms, an index to terms, and a quick reference to the commands of FDS are included.
Study of large Forbush decreases in cosmic-ray intensity observed during solar cycle 23 and 24
NASA Astrophysics Data System (ADS)
Kumar, Anand; Badruddin, B.
2016-07-01
Neutron monitors at different geomagnetic latitude and longitude of Earth measure the cosmic-ray intensity with high precision. Sudden decreases in cosmic-ray intensity within few hours and slow recovery to pre-decrease level within a few days (Forbush decreases) are observed in neutron monitor data. We identify large-amplitude Forbush decreases (FDs), using high counting rate neutron monitor data, that occurred during previous solar cycle 23 (1995-2009) and current solar cycle 24 (2010-2015). We then search for the solar sources and the interplanetary structures responsible for these decreases. We attempt to find the relative importance of various interplanetary plasma and field parameters and the physical mechanism(s) responsible for FDs of varying amplitudes. We analyze a number of interplanetary plasma and field parameters, during both the phases (main and recovery) of FDs. The interplanetary plasma and field data analyzed in this study are the solar-wind velocity, the interplanetary magnetic field, its fluctuations, interplanetary electric field and the time variation of interplanetary electric potential. For monitoring the changes in interplanetary plasma/field conditions during the development of FDs, we also utilize plasma density, temperature and plasma beta, dynamic pressure and Mach number during the passage of interplanetary structures responsible for FDs. In addition to their amplitude, we study the recovery of FDs in detail after determining the time constant during their recovery by exponential fit to the data. As the solar magnetic polarity reversed during the maximum phase of solar cycle 23 (in the year 2000), we study the differences in amplitude, time constant of recovery and plasma/field condition to search for the polarity dependent effects, if any, on the amplitude and recovery of FDs due to implication for the models suggested to explain the Forbush decrease phenomena. The implications of these results are discussed.
NASA Technical Reports Server (NTRS)
Williams, David E.
2004-01-01
The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.
NASA Astrophysics Data System (ADS)
Ohashi, Yukitaka; Kawakami, Hiroshi; Shigeta, Yoshinori; Ikeda, Hiroshi; Yamamoto, Nobuko
2012-09-01
We investigated relationships between the flowering phenology of Prunus yedoensis "Somei-yoshino" (cherry blossom) and the local temperatures in Japan. Our observations were carried out across the Okayama Plain, which included Okayama City (about 700,000 inhabitants), from the winter of 2008 to the spring of 2009. Local air temperature (AT) and the globe temperature (GT) were recorded at the tree height. The flowering dates (FDs) of P. yedoensis were earliest in the central commercial area (located at the center of the plain), followed by the north residential area (further inland), and finally the south residential area (seaward). The recorded FDs were related to the period-averaged daily maximum/minimum AT and GT, and the phenologically effective AT and GT defined in this study. Of these parameters, the phenologically effective GTs correlated most with the FDs. Since the GT is determined by AT, solar and infrared radiations, and wind speed, our previous result suggests that a combination of these three components surrounding the tree is more important for budding and flowering than is AT alone. The supposition is supported by the flowering of P. yedoensis being the latest at the coastal region of the Okayama Plain where the AT were higher than at the inland region, excluding the urban area; it is probably caused by stronger winds there than at the other sites.
NASA Technical Reports Server (NTRS)
Williams, David E.
2003-01-01
The assembly complete Environmental Control and Life Support (ECLS) s ystem for the International Space Station (ISS) will consist of compo nents and subsystems in both the U.S. and International partner eleme nts which together will perform the functions of Temperature and Hum idity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detect ion and Suppression (FDS), and Vacuum System (VS) for the station. D ue to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems , beginning with estimates during the hardware development phase thr ough measured actuals when flight hardware is built and delivered. A summary of resources consumed by the current on-orbit U.S. ECLS syste m hardware is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics. ..
NASA Technical Reports Server (NTRS)
Williams, David E.
2004-01-01
The Core Complete Environmental Control and Life Support (ECLS) System for the International Space Station (ISS) will consist of components and subsystems in both the United States (U.S.) and International Partner elements which together will perform the functions of Temperature and Humidity Control (THC), Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Water Recovery and Management (WRM), Fire Detection and Suppression (FDS), and Vacuum System (VS) for the station. Due to limited resources available on ISS, detailed attention is given to minimizing and tracking all resources associated with all systems, beginning with estimates during the hardware development phase through measured actuals when flight hardware is built and delivered. A summary of resources consumed by the addition of future U.S. ECLS system hardware to get to Core Complete is presented, including launch weight, average continuous and peak power loads, on-orbit volume and resupply logistics.
Forward and Backward Digit Span Interaction With Race and IQ: Predictions from Jensen's Theory
ERIC Educational Resources Information Center
Jensen, Arthur R.; Figueroa, Richard A.
1975-01-01
From Jensen's two-level theory of mental abilities it was predicted that forward digit span (FDS) should correlate less with IQ than backward digit span (BDS), and age and race should interact with FDS-BDS, with FDS-BDS difference decreasing as a function of age and a greater white-black difference in BDS than in FDS. (Author/BJG)
Merilind, Eero; Salupere, Rauno; Västra, Katrin; Kalda, Ruth
2016-01-01
Several practice- and patient-related characteristics are reported to have an influence on a good quality outcome. Estonia started the pay-for-performance (P4P) system for family doctors (FDs) in 2006. Every year the number of FDs participating in P4P has increased, but only half of the FDs achieved good outcome. The aim of this study was to find out which practice- and patient-related characteristics could have an impact on a good outcome. The study was conducted using the database from the Estonian Health Insurance Fund. All working FDs were divided into two groups (with "good" and "poor" outcomes) according their achievements in P4P. We chose characteristics which described structure (practice list size, number of doctors, composition of FDs list: age, number of chronically ill patients) during the observation period 2006-2012. During the observation period 2006-2012, the number of FDs with a good outcome in P4P increased from 6% (2006) to 53% (2012). The high number of FDs in primary care teams, longer experience of participation in P4P and the smaller number of patients on FDs' lists all have an impact on a good outcome. The number of chronically ill patients in FDs lists has no significant effect on an outcome, but P4P increases the number of disease-diagnosed patients. Different practice and patient-related characteristics have an impact on a good outcome. As workload increases, smaller lists of FDs patients or increased staff levels are needed in order to maintain a good outcome. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Hu, L H; Fong, N K; Yang, L Z; Chow, W K; Li, Y Z; Huo, R
2007-02-09
Smoke and toxic gases, such as carbon monoxide, are the most fatal factors in fires. This paper models fire-induced smoke spread and carbon monoxide transportation in an 88m long channel by Fire Dynamics Simulator (FDS) with large eddy simulation (LES). FDS is now a well-founded fire dynamics computational fluid dynamic (CFD) program, which was developed by National Institute of Standards and Technology (NIST). Two full scale experiments with fire sizes of 0.75 and 1.6MW were conducted in this channel to validate the program. The spread of the fire-induced smoke flow together with the smoke temperature distribution along the channel, and the carbon monoxide concentration at an assigned position were measured. The FDS simulation results were compared with experimental data with fairly good agreement demonstrated. The validation work is then extended to numerically study the carbon monoxide concentration distribution, both vertically and longitudinally, in this long channel. Results showed that carbon monoxide concentration increase linearly with the height above the floor and decreases exponentially with the distance away from the fire source.
Foundation doctors working at night: what training opportunities exist?
Coomber, R; Smith, D; McGuinness, D; Shao, E; Soobrah, R; Frankel, A H
2014-07-01
Foundation Training is designed for doctors in their first two years of post-graduation. The number of foundation doctors (FD) in the UK working nights has reduced because of a perception that clinical supervision at night is unsatisfactory and that minimal training opportunities exist. We aimed to assess the value of night shifts to FDs and hypothesised that removing FDs from nights may be detrimental to training. Using a survey, we assessed the number of FDs working nights in London, FDs views on working nights and their supervision at night. We evaluated whether working at night, compared to daytime working provided opportunities to achieve foundation competencies. 83% (N = 2157/2593) of FDs completed the survey. Over 90% of FDs who worked nights felt that the experience they gained improved their ability to prioritise, make decisions and plan. FDs who worked nights reported higher scores for achieving competencies in history taking (2.67 vs. 2.51; p = 0.00), examination (2.72 vs. 2.59; p = 0.01) and resuscitation (2.27 vs. 1.96; p = 0.00). The majority (65%) felt adequately supervised. Our survey has demonstrated that FDs find working nights a valuable experience, providing important training opportunities, which are additional to those encountered during daytime working.
Tan, Eva D D; Davis, Wendy A; Davis, Timothy M E
2016-01-01
The aim of the present study was to determine temporal changes in characteristics and management of Asians with type 2 diabetes (T2D) compared with those of the majority Anglo-Celt (AC) patients in an urban Australian community. Cross-sectional data from the observational Fremantle Diabetes Study (FDS) collected in 1993-96 (Phase I; FDS1) and 2008-11 (Phase II; FDS2) were analyzed for patients classified as Asian (n = 44 and 65 in FDS1 and FDS2, respectively) or AC (n = 796 and 793, respectively). Between-group differences in changes in key variables between FDS phases were analyzed by generalized linear modeling with adjustment for age and gender. Asians patients were significantly younger at diagnosis and recruitment and had a lower body mass index and smaller waist circumference than the AC participants in both FDS phases. They were also less likely to be treated for hypertension. Cardiovascular risk factors and their management and macrovascular complications were similar in the two groups over time. A greater propensity to retinopathy with Asian ethnicity in FDS1 (27.3% vs 13.5%; P = 0.23) was attenuated in FDS2 (23.7% vs 19.0%; P = 0.39). Asians had a significantly lower prevalence of peripheral sensory neuropathy in FDS2 (33.8% vs 63.3%; P < 0.001; adjusted P = 0.011 for between-group temporal change). There were persistent differences between the phenotypic features of Asian migrants with T2D versus AC patients in an Australian urban community over 15 years of follow-up, but management of diabetes and non-glycemic risk factors remained comparable. Ethnicity-specific differences in susceptibility to microvascular complications should be considered in clinical management. © 2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
Silva, Pedro; Silva, Catarina L; Perestrelo, Rosa; Nunes, Fernando M; Câmara, José S
2017-10-20
Sugarcane honey (SCH) is one of the Madeira Island products par excellence and it is now popular worldwide. Its sui generis and peculiar sensory properties, explained by a variety of volatile compounds including furanic derivatives (FDs), arise mainly from manufacturing and storage conditions. A simple high-throughput approach based on semi-automatic microextraction by packed sorbent (MEPS) combined with ultra-high performance liquid chromatography (UHPLC) was developed and validated for identification and quantification of target FDs in sugarcane honey. A Quality-by-Design (QbD) approach was used as a powerful strategy to optimize analytical conditions for high throughput analysis of FDs in complex sugar-rich food matrices. The optimum point into MEPS-Method Operable Design: Region (MODR) was obtained with R-CX sorbent, acetonitrile (ACN) as elution solvent, three loading cycles and 500μL of sample volume. The optimum point into UHPLC-MODR was obtained with a CORTECS column operating at a temperature of 50°C, ACN as eluent and a flow rate of 125μLmin -1 . The robustness was demonstrated by Monte Carlo simulation and capability analysis for estimation of residual errors. The concentration-response relationship for all FDs were described by polynomial function models, being confirmed by Fisher variance (F-test). The% recoveries were in a range of 91.9-112.1%. Good method precision was observed, yielding relative standard deviations (RSDs) less than 4.9% for repeatability and 8.8% for intermediate precision. The limits of quantitation for the analytes ranged from 30.6 to 737.7μgkg -1 . The MEPS R-CX /UHPLC CORTECS -PDA method revealed an effective and potential analytical tool for SCH authenticity control based on target analysis of FDs allowing a strict control and differentiation from other similar or adulterated products. Copyright © 2017 Elsevier B.V. All rights reserved.
Control of Drug Dissolution Rate from Film Dosage Forms Containing Valsartan.
Murata, Yoshifumi; Kofuji, Kyoko; Maida, Chieko
2016-01-01
Film dosage forms (FDs) containing valsartan (VST), a popular antihypertensive drug, were prepared using a casting method with sodium alginate and other polysaccharides as the film base. Drug dissolution profiles of the FDs were investigated in limited medium. The FDs were 170-200 μm thick and were easy to handle. All FDs immediately swelled and disintegrated in the medium. About 23% of the VST incorporated into the FD prepared with 1.5% sodium alginate dissolved at 5 min. The initial dissolution rate of VST increased upon the addition of chitosan to the film base; this effect was not observed in the case of chitin. On the other hand, the rate apparently decreased upon modification with alginic acid. In addition, the solubility of VST in the dissolution medium was changed by the addition of chitosan or alginic acid. FDs prepared with polysaccharides are useful for simplifying the administration of drugs to patients, and the drug dissolution rate from FDs can be controlled by modification.
Some properties of flare-not-associated Forbush decreases
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1984-07-01
All non flare-associated Forbush decreases (N Ass Fds) over the period 1957 to 1979 are investigated. The connection between N Ass Fds occurrence and the central meridian passage of strong active regions producing great flare associated Fds shows the flare origin of the N Ass Fds. The interplanetary perturbations at the eastern and western boundaries of the modulated region are found to be long living corotating structures. These structures mark the boundaries of the region in which the (1 to 4 Mev) protons accelerated by interplanetary flare generated shocks are confined.
Can family or replacement blood donors become regular volunteer donors?
Asenso-Mensah, Kwame; Achina, Gifty; Appiah, Rita; Owusu-Ofori, Shirley; Allain, Jean-Pierre
2014-03-01
In sub-Saharan Africa (SSA) confirmed viral marker prevalence between family donors (FDs) and first-time volunteer nonremunerated donors (VNRDs) is similar. In a blood service collecting 10 units/1000 inhabitants, a questionnaire examined FD donation conditions and willingness of becoming repeat VNRDs. Four areas were explored: circumstances of visit to hospital, external pressure, experience of donating, and potential repeat donation. After donation and consent, research assistants administered 25 questions and, according to literacy, helped with translation and completion. Of 513 FDs, three-fourths were males (median age, 27 years). Only 1.3% were unemployed and more than 50% were students or teachers. Ties with hospitalized patient were family (76%), friends (13%), colleagues, or sharing place of worship (10%). Donating blood was the reason for visiting in 16.8% and 20.9% had previously donated blood probably as FDs. In one-third of FDs, the family asked for donation of which 10% was pressured by the unjustified reason that not donating was endangering the patient's life. For two-thirds of FDs, donation was given "because individuals were asked." Donation was a positive experience for 77% of donors, 62% being interested in predonation testing. Repeating donation was acceptable for 99% of 79% FDs answering. FDs are active in the population, are willing to donate blood if asked, are submitted to little pressure, do not receive incentives, and accept repeat donation. Except for circumstances of donation, FDs are not different from VNRDs and more directly motivated. They constitute a legitimate and important source to improve the blood supply in SSA. © 2013 American Association of Blood Banks.
33 CFR 147.833 - Na Kika FDS safety zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...
33 CFR 147.833 - Na Kika FDS safety zone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Na Kika FDS safety zone. 147.833 Section 147.833 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES SAFETY ZONES § 147.833 Na Kika FDS safety zone. (a) Description. Na...
Visualization and manipulating the image of a formal data structure (FDS)-based database
NASA Astrophysics Data System (ADS)
Verdiesen, Franc; de Hoop, Sylvia; Molenaar, Martien
1994-08-01
A vector map is a terrain representation with a vector-structured geometry. Molenaar formulated an object-oriented formal data structure for 3D single valued vector maps. This FDS is implemented in a database (Oracle). In this study we describe a methodology for visualizing a FDS-based database and manipulating the image. A data set retrieved by querying the database is converted into an import file for a drawing application. An objective of this study is that an end-user can alter and add terrain objects in the image. The drawing application creates an export file, that is compared with the import file. Differences between these files result in updating the database which involves checks on consistency. In this study Autocad is used for visualizing and manipulating the image of the data set. A computer program has been written for the data exchange and conversion between Oracle and Autocad. The data structure of the FDS is compared to the data structure of Autocad and the data of the FDS is converted into the structure of Autocad equal to the FDS.
The Safety Analysis of Shipborne Ammunition in Fire Environment
NASA Astrophysics Data System (ADS)
Ren, Junpeng; Wang, Xudong; Yue, Pengfei
2017-12-01
The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.
Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.
Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro
2018-05-01
Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Basu, Arpita; Betts, Nancy M.; Nguyen, Angel; Newman, Emily D.; Fu, Dongxu; Lyons, Timothy J.
2014-01-01
Dietary flavonoid intake, especially berry flavonoids, has been associated with reduced risks of cardiovascular disease (CVD) in large prospective cohorts. Few clinical studies have examined the effects of dietary berries on CVD risk factors. We examined the hypothesis that freeze-dried strawberries (FDS) improve lipid and lipoprotein profiles and lower biomarkers of inflammation and lipid oxidation in adults with abdominal adiposity and elevated serum lipids. In a randomized dose-response controlled trial, 60 volunteers [5 men and 55 women; aged 49 ± 10 y; BMI: 36 ± 5 kg/m2 (means ± SDs)] were assigned to consume 1 of the following 4 beverages for 12 wk: 1) low-dose FDS (LD-FDS; 25 g/d); 2) low-dose control (LD-C); 3) high-dose FDS (HD-FDS; 50 g/d); and 4) high-dose control (HD-C). Control beverages were matched for calories and total fiber. Blood draws, anthropometrics, blood pressure, and dietary data were collected at screening (0 wk) and after 12-wk intervention. Dose-response analyses revealed significantly greater decreases in serum total and LDL cholesterol and nuclear magnetic resonance (NMR)–derived small LDL particle concentration in HD-FDS [33 ± 6 mg/dL, 28 ± 7 mg/dL, and 301 ± 78 nmol/L, respectively (means ± SEMs)] vs. LD-FDS (−3 ± 11 mg/dL, −3 ± 9 mg/dL, and −28 ± 124 nmol/L, respectively) over 12 wk (0–12 wk; all P < 0.05). Compared with controls, only the decreases in total and LDL cholesterol in HD-FDS remained significant vs. HD-C (0.7 ± 12 and 1.4 ± 9 mg/dL, respectively) over 12 wk (0–12 wk; all P < 0.05). Both doses of strawberries showed a similar decrease in serum malondialdehyde at 12 wk (LD-FDS: 1.3 ± 0.2 μmol/L; HD-FDS: 1.2 ± 0.1 μmol/L) vs. controls (LD-C: 2.1 ± 0.2 μmol/L; HD-C: 2.3 ± 0.2 μmol/L) (P < 0.05). In general, strawberry intervention did not affect any measures of adiposity, blood pressure, glycemia, and serum concentrations of HDL cholesterol and triglycerides, C-reactive protein, and adhesion molecules. Thus, HD-FDS exerted greater effects in lowering serum total and LDL cholesterol and NMR-derived small LDL particles vs. LD-FDS in the 12-wk study. These findings warrant additional investigation in larger trials. This trial was registered at clinicaltrials.gov as NCT01883401. PMID:24670970
Smoke Detection for the Orion Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Sutin, Brian M.; Niu, William; Steiner, George; O'Hara, William; Lewis, John F.
2009-01-01
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronic to space-qualified parts, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Burke, F J T; Mackenzie, L; Falcon, H; Priest, N; Palin, W M
2014-04-01
It is likely that many foundation dentists (FDs) will have completed only minimal amounts of restorative dentistry for a number of months immediately prior to commencing work as FDs. Thus this audit aimed to assess the performance of the FDs when they carried out a number of simulated clinical exercises: amalgam cavities and restoration; Class IV resin composite restorations; and full crown preparations for metal-ceramic restorations. A total of 67 FDs completed the assessments and some results did indicate a high level of concern and need for further evaluation of restorative practice.
Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan
2018-04-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.
Long term spatial and temporal trends in frost day indices in Kansas, USA
USDA-ARS?s Scientific Manuscript database
Frost day indices such as number of frost days (nFDs), frost free days (nFFDs), last spring freeze (LSF), first fall freeze (FFF), and growing-season length (GSL), were calculated using daily minimum air temperature (Tmin) values from 23 centennial weather stations spread across Kansas during four t...
Keglević, Mladenka Vrcić; Balint, Ines; Cvetković, Ivica; Gaćina, Ana
2014-12-01
This study was undertaken with the main aim of determining the trends in the number of family doctors' (FD), gender and educational structure, working status and the number of patients per FD between 1995 and 2013. As the main source of data collection served the Croatian Health Service Yearbooks and Croatian Health Insurance Fund (CHIF) databases on practices and FDs contracting in 2013. Obtained results indicated that the number of contracted FDs increased until 2007, then decreased, and again increased until 2350 in 2013. Average number of patients on FDs list was 1987 in 2012. Less than 50% FDs were specialist in family medicine, 70.3% of them were self-employed with the CHIF contract, and 81% were women. 123 practices planned by the Network did not have contracting FD in 2013. The lack of FDs, the huge number of patients over the standard number, and the location of the missing practices within the rural communities, together make Croatian FM practices less accessible.
Antibacterial and antifungal activities from Siamese crocodile blood.
Leelawongtawon, Ratree; Siruntawineti, Jindawan; Chaeychomsri, Win; Sattaponpan, Chisanucha
2010-12-01
To evaluate the in vitro antimicrobial activity of the Siamese crocodile blood against bacteria and fungi. Thirty Siamese crocodile blood samples including freeze dried whole blood (FDWB), fresh serum (FS), and freeze dried serum (FDS) were evaluated for antimicrobial susceptibility and MIC values against ATCC-registered strains of nine bacterial species and two fungal species and one fungus isolated from a clinical specimen, by using the standard broth microdilution method and a modified resazurin microtiter plate assay. The result showed that FS (80 mg/ml) and FDS (100 mg/ml) inhibited Gram negative bacteria including Enterobacter aerogenes ATCC 13048, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 27736, Salmonella typhimurium ATCC 13311 and Pseudomonas aeruginosa ATCC 27853 with the susceptibility rate at 23.30%, 10.00%, 40.00%, 70.00%, and 86.67%, respectively for FS, and 30.00%, 10.00%, 43.33%, 76.67% and 90.00%, respectively for FDS. The MIC and MBC were in the range of 12.50-100.00 mg/ml and 25.00-100.00 mg/m1 respectively. FS and FDS also inhibited Cryptococcus neoformans 250309 and Aspergillus niger with the susceptibility rate at 90.00% and 80.00%, respectively for FS and 100.00% and 83.33%, respectively for FDS. The MIC was in the range of 25.00-100.00 mg/ml. However, FS and FDS did not inhibit Gram positive bacteria and did not kill fungi. FDWB (100 mg/ml) could neither inhibit bacteria nor fungi. FS and FDS from Siamese crocodile exhibited potential antibacterial and antifungal activities.
Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit
NASA Astrophysics Data System (ADS)
Guo, J.; Lillis, R. J.; Wimmer-Schweingruber, R. F.; Posner, A.; Halekas, J. S.; Zeitlin, C.; Hassler, D.; Lundt, N.; Simonson, P.; Lee, C. O.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Brinza, D. E.; Cucinotta, F.; Ehresmann, B.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.; weigle, G., II
2017-12-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, has been measuring the ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or streaming/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since its arrival in September 2014. The penetrating particle flux channel in the Solar Energetic Particle (SEP) instrument aboard can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying ICME propagations and SIR evolutions through the inner-heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be attributed to the energy-dependent modulation of the GCR particles by not only the pass-by ICMEs/SIRs but also the Martian atmosphere. Such an effect has been modeled via transporting particles of differently modulated GCR spectra through the Martian atmosphere.
Measurement of the decay constant f(Ds+) using D(s+)-->l+ nu.
Artuso, M; Blusk, S; Butt, J; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V; Aquines, O; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F
2007-08-17
We measure the decay constant f(Ds+) using the D(s+)-->l+ nu channel, where the l+ designates either a mu+ or a tau+, when the tau+ -->pi+ nu. Using both measurements we find f(Ds+)=274+/-13+/-7 MeV. Combining with our previous determination of f(D+), we compute the ratio f(Ds+)/f(D+)=1.23+/-0.11+/-0.04. We compare with theoretical estimates.
Measurement of the Decay Constant fDs+ Using Ds+→l+ν
NASA Astrophysics Data System (ADS)
Artuso, M.; Blusk, S.; Butt, J.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.
2007-08-01
We measure the decay constant fDs+ using the Ds+→ℓ+ν channel, where the ℓ+ designates either a μ+ or a τ+, when the τ+→π+ν¯. Using both measurements we find fDs+=274±13±7MeV. Combining with our previous determination of fD+, we compute the ratio fDs+/fD+=1.23±0.11±0.04. We compare with theoretical estimates.
Attallah, Abdelfattah M; Abdallah, Sanaa O; Attallah, Ahmed A; Omran, Mohamed M; Farid, Khaled; Nasif, Wesam A; Shiha, Gamal E; Abdel-Aziz, Abdel-Aziz F; Rasafy, Nancy; Shaker, Yehia M
2013-01-01
Several noninvasive predictive models were developed to substitute liver biopsy for fibrosis assessment. To evaluate the diagnostic value of fibronectin which reflect extracellular matrix metabolism and standard liver functions tests which reflect alterations in hepatic functions. Chronic hepatitis C (CHC) patients (n = 145) were evaluated using ROC curves and stepwise multivariate discriminant analysis (MDA) and was validated in 180 additional patients. Liver biochemical profile including transaminases, bilirubin, alkaline phosphatase, albumin, complete blood count were estimated. Fibronectin concentration was determined using monoclonal antibody and ELISA. A novel index named fibronectin discriminant score (FDS) based on fibronectin, APRI and albumin was developed. FDS produced areas under ROC curves (AUC) of 0.91 for significant fibrosis and 0.81 for advanced fibrosis. The FDS correctly classified 79% of the significant liver fibrosis patients (F2-F4) with 87% sensitivity and 75% specificity. The relative risk [odds ratio (OR)] of having significant liver fibrosis using the cut-off values determined by ROC curve analyses were 6.1 for fibronectin, 4.9 for APRI, and 4.2 for albumin. FDS predicted liver fibrosis with an OR of 16.8 for significant fibrosis and 8.6 for advanced fibrosis. The FDS had similar AUC and OR in the validation group to the estimation group without statistically significant difference. FDS predicted liver fibrosis with high degree of accuracy, potentially decreasing the number of liver biopsy required.
Family doctors' views of pharmaceutical sales representatives: assessment scale development.
Kersnik, Janko; Klemenc-Ketis, Zalika; Petek-Ster, Marija; Tusek-Bunc, Ksenija; Poplas-Susic, Tonka; Kolsek, Marko
2011-08-01
The prescribing patterns depend on the physicians' attitudes and their subjective norms towards prescribing a particular drug, as well as on their personal experience with a particular drug. The physicians are affected by their interactions with pharmaceutical industry. The objectives were to develop a scale for assessment of pharmaceutical sales representatives (PSRs) by the family doctors (FDs) and to determine factors for their evaluation. Cross-sectional anonymous postal study. We included a random sample of 250 Slovenian FDs. Settings. Slovenian FDs' surgeries. The score of various items regarding FDs' assessment of PSRs on a 7-point Likert scale. We got 163 responses (65.2% response rate). The most important characteristic of PSRs, as rated by respondents on the scale from 1 to 7, was the fact that they did not mislead when presenting products' information. The second most important characteristic was the ability to provide objective information about the product. The first three most important characteristics, as rated by the respondents by themselves, were 'Shows good knowledge on the promoted subject', 'Provides objective product information' and 'Makes brief and exact visits'. Cronbach's alpha of the composite scale was 0.844. Factor analysis revealed three PSRs' factors: selling skills, communicating skills and sense of trustworthiness. FDs evaluate PSRs mainly by their managerial skills and trustworthiness. The scale proved to be a reliable tool for assessing PSRs by FDs.
The Mariner Venus Mercury flight data subsystem.
NASA Technical Reports Server (NTRS)
Whitehead, P. B.
1972-01-01
The flight data subsystem (FDS) discussed handles both the engineering and scientific measurements performed on the MVM'73. It formats the data into serial data streams, and sends it to the modulation/demodulation subsystem for transmission to earth or to the data storage subsystem for storage on a digital tape recorder. The FDS is controlled by serial digital words, called coded commands, received from the central computer sequencer of from the ground via the modulation/demodulation subsystem. The eight major blocks of the FDS are: power converter, timing and control, engineering data, memory, memory input/output and control, nonimaging data, imaging data, and data output. The FDS incorporates some 4000 components, weighs 17 kg, and uses 35 W of power. General data on the mission and spacecraft are given.
Zhu, Wenjia; Yao, Shaobo; Xing, Haiqun; Zhang, Hui; Tai, Yuan-Chuan; Zhang, Yingqiang; Liu, Yimin; Ma, Yanru; Wu, Chenxi; Wang, Hongkai; Li, Zibo; Wu, Zhanhong; Zhu, Zhaohui; Li, Fang; Huo, Li
2016-10-01
[(18)F]fluorodeoxysorbitol ([(18)F]FDS) is the first radiopharmaceutical specific for a category of bacteria and has the potential to specifically detect Enterobacteriaceae infections. The purpose of this study was to testify the safety and investigate the biodistribution and radiation dosimetry of [(18)F]FDS in healthy human bodies. Six healthy subjects were intravenously injected with 320-520 MBq [(18)F]FDS. On each subject, 21 whole-body emission scans and a brain scan were conducted at settled time points within the next 4 h. Residence time for each source organ was determined by multi-exponential regression. Absorbed doses for target organs and effective dose were calculated via OLINDA/EXM. No adverse events due to [(18)F]FDS injection were observed in the study. The tracer was cleared rapidly from the blood pool through the urinary system. A small portion was cleared into the gut through the hepatobiliary system. The effective dose (ED) was estimated to be 0.021 ± 0.001 mSv/MBq. The organ receiving the highest absorbed dose was the urinary bladder wall (0.25 ± 0.03 mSv/MBq). [(18)F]FDS is safe and well tolerated. The effective dose was comparable to that of other F-18 labeled radiotracers. [(18)F]FDS is suitable for human use from a radiation dosimetry perspective.
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Rolland Du Roscoat, Sabine; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2016-11-01
The hemodynamic environment in cerebral aneurysms undergoing flow-diverting stent (FDS) or coil embolization treatment plays a critical role in long-term outcomes. Standard modeling approaches to endovascular coils and FDS simplify the complex geometry into a homogenous porous volume or surface through the addition of a Darcy-Brinkman pressure loss term in the momentum equation. The inertial and viscous loss coefficients are typically derived from published in vitro studies of pressure loss across FDS and coils placed in a straight tube, where the only fluid path is across the treatment - an unrealistic representation of treatment apposition in vivo. The pressure drop across FDS and coils in side branch aneurysms located on curved parent vessels is measured. Using PIV, the velocity at the aneurysm neck plane is reconstructed and used to determine loss coefficients for better models of endovascular coils or FDS that account for physiological placement and vessel curvature. These improved models are incorporated into CFD simulations and validated against in vitro model PIV velocity, as well as compared to microCT-based coil/stent-resolving CFD simulations of patient-specific treated aneurysm flow.
Parametric Characterization of Flow Inside Cererbal Aneurysms Treated with Flow-Diverting Stents
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2017-11-01
Cerebral aneurysms are often treated with a flow-diverting stent (FDS) to reduce blood flow into the aneurysm sac, promoting the development of a stable thrombus. Successful treatment is highly dependent on the degree of flow reduction and the altered hemodynamics inside the aneurysm sac following treatment. Establishing a causal connection between hemodynamic metrics of FDS-treated CAs and long-term clinical outcomes requires a rigorous parametric characterization of this flow environment. We use 3D particle image velocimetry (PIV) to measure the flow inside idealized aneurysm models treated with FDS. Physiologically realistic Reynolds numbers and increasing levels of parent vessel curvature are analyzed to understand the effect of inertia on flow development. The flow velocity into the aneurysm and the topology of the flow inside the sac is shown to be highly dependent on parent vessel Dean number (De). The role of flow pulsatility is then added to the study via time-dependent waveforms. Velocity measurements at 2 values of parent vessel Womersley number (Wo) allow us to parameterize flow inside of CAs treated with FDS as a function of De, Re and Wo, improving the fundamental understanding of how FDS alter CA hemodynamics and aiding in the development of new treatments.
Robust fault detection of wind energy conversion systems based on dynamic neural networks.
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.
Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks
Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad
2014-01-01
Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774
Huang, Alice H; Riordan, Timothy J; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V; Schweitzer, Ronen
2013-09-16
The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This remarkable translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and that translocation of the muscles to form the FDS is a mammalian evolutionary addition. Copyright © 2013 Elsevier Inc. All rights reserved.
Huang, Alice H.; Riordan, Timothy J.; Wang, Lingyan; Eyal, Shai; Zelzer, Elazar; Brigande, John V.; Schweitzer, Ronen
2013-01-01
Summary The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This unique translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing, but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and translocation of the muscles to form the FDS is a mammalian evolutionary addition. PMID:24044893
Czabanowska, Katarzyna; Burazeri, Genc; Klemenc-Ketis, Zalika; Kijowska, Violetta; Tomasik, Tomasz; Brand, Helmut
2012-12-01
Nowadays, general practitioners (GPs) and family doctors (FDs) face increasing demands, as a consequence of complex patients' expectations, developments in science and technology, and limitations within healthcare systems which can result in competency gaps. Therefore, there is a need to identify which competencies in quality improvement (QI) are most important for GPs and FDs to possess in order to meet the demands of contemporary health care practice. To date, however, little information is available on the self-assessment of competencies related to QI among GPs and FDs. To deal with these issues, a project on QI in continuous medical education was launched in 2011. The project aims to broaden the GPs'/ FDs' continuous education offer, its quality and attractiveness, as well as provide them with opportunities for vocational advancement and enable the development of common, European frame of reference for GPs'/FDs' occupational competencies. The third work package of the project consists of the validation research of the questionnaire developed on the basis of the competency framework in QI for GPs/FDs in Europe. A cross-sectional study will be carried out using the self-assessment QI questionnaire which was originally developed in English and subsequently it was cross-culturally adapted in Slovenian, Albanian and Polish settings by use of a pilot study on a conveniently selected group of FDs/GPs (N=10) in each participating country. The final version of the questionnaire will be administered to large samples in each country involved in the survey. Two weeks after the first administration of the questionnaire, a second round, with the same procedure and including the same group of respondents, will follow. Psychometric tests will be conducted including internal consistency (after the initial and subsequent application of the instrument) and stability over time (two-week test-retest reliability). This self-assessment study will demonstrate the complex environment in which general practice/family medicine operates and, eventually, this gap analysis will set out strategically important areas for collaborative efforts related to QI in primary care. The authors consider that the study should be extended to other European countries to help identify most required competencies that GPs/FDs should possess in Europe and thus stir system and educational debate around QI curricula and training for primary care in Europe.
Schierenbeck, Tim M; Smith, Matthew C
2017-05-02
Natural freshwater systems have been severely affected by excess loading of macronutrients (e.g., nitrogen and phosphorus) from fertilizers, fossil fuels, and human and livestock waste. In the USA, impacts to drinking water quality, biogeochemical cycles, and aquatic ecosystems are estimated to cost US$210 billion annually. Field-deployable nutrient sensors (FDS) offer potential to support research and resource management efforts by acquiring higher resolution data than are currently supported by expensive conventional sampling methods. Following nearly 40 years of research and development, FDS instruments are now starting to penetrate commercial markets. However, instrument uncertainty factors (high cost, reliability, accuracy, and precision) are key drivers impeding the uptake of FDS by the majority of users. Using nitrite sensors as a case study, we review the trends, opportunities, and challenges in producing and implementing FDS from a perspective of innovation and impact. We characterize the user community and consumer needs, identify trends in research approaches, tabulate state-of-the-art examples and specifications, and discuss data life cycle considerations. With further development of FDS through prototyping and testing in real-world applications, these tools can deliver information for protecting and restoring natural waters, enhancing process control for industrial operations and water treatment, and providing novel research insights.
Kloepper, Joseph W.; McInroy, John A.; Liu, Ke; Hu, Chia-Hui
2013-01-01
Background Fern Distortion Syndrome (FDS) is a serious disease of Leatherleaf fern (Rumohra adiantiformis). The main symptom of FDS is distortion of fronds, making them unmarketable. Additional symptoms include stunting, irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes. We previously reported an association of symptoms with increased endophytic rhizome populations of fluorescent pseudomonads (FPs). The aim of the current study was to determine if FPs from ferns in Costa Rica with typical FDS symptoms would recreate symptoms of FDS. Methodology and Findings Greenhouse tests were conducted over a 29-month period. Micro-propagated ferns derived from tissue culture were first grown one year to produce rhizomes. Then, using an 8×9 randomized complete block experimental design, 8 replicate rhizomes were inoculated by dipping into 9 different treatments before planting. Treatments included water without bacteria (control), and four different groups of FPs, each at a two concentrations. The four groups of FPs included one group from healthy ferns without symptoms (another control treatment), two groups isolated from inside rhizomes of symptomatic ferns, and one group isolated from inside roots of symptomatic ferns. Symptoms were assessed 12 and 17 months later, and populations of FPs inside newly formed rhizomes were determined after 17 months. Results showed that inoculation with mixtures of FPs from ferns with FDS symptoms, but not from healthy ferns, recreated the primary symptom of frond deformities and also the secondary symptoms of irregular sporulation, decreased rhizome diameter, and internal discoloration of rhizomes. Conclusions These results suggest a model of causation of FDS in which symptoms result from latent infections by multiple species of opportunistic endophytic bacteria containing virulence genes that are expressed when populations inside the plant reach a minimum level. PMID:23516499
Experimental Study of Flow Through Carotid Aneurysms
NASA Astrophysics Data System (ADS)
Masoomi, Faezeh; Mejia-Alvarez, Ricardo
2017-11-01
There is evidence that traditional endovascular techniques like coiling are not effective for treatment of wide-neck cerebral aneurysms. Flow Diverter Stents (FDS) have emerged as promising devices for treating complex aneurysms since they enable treatment of aneurysms that were considered untreatable before. Recent studies suggest a number of associated risks with FDS, including in-stent thrombosis, perianeurysmal edema, delayed hemorrhage, and perforator occlusions. Chong et al. simulated hemodynamic behavior using patient-specific data. From their study, it is possible to infer that the standard deviation of energy loss could be a good predictor for intervention success. The aim of this study is to investigate the flow in models of cerebral aneurysms before and after FDS insertion using PIV. These models will be based on actual clinical studies and will be fabricated with advanced additive manufacturing techniques. These data will then be used to explore flow parameters that could inform the likelihood of post-intervention aneurysm rupture, and help determine FDS designs that better suit any particular patient before its procedure.
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
Flight dynamics system software development environment (FDS/SDE) tutorial
NASA Technical Reports Server (NTRS)
Buell, John; Myers, Philip
1986-01-01
A sample development scenario using the Flight Dynamics System Software Development Environment (FDS/SDE) is presented. The SDE uses a menu-driven, fill-in-the-blanks format that provides online help at all steps, thus eliminating lengthy training and allowing immediate use of this new software development tool.
NASA Astrophysics Data System (ADS)
Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.
2015-12-01
The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.
Tran, Thu M; Hampton, Carissa S; Brossard, Tom W; Harmata, Michael; Robertson, J David; Jurisson, Silvia S; Braun, David M
2017-06-01
Sucrose transporter (SUT) proteins translocate sucrose across cell membranes; however, mechanistic aspects of sucrose binding by SUTs are not well resolved. Specific hydroxyl groups in sucrose participate in hydrogen bonding with SUT proteins. We previously reported that substituting a radioactive fluorine-18 [ 18 F] at the C-6' position within the fructosyl moiety of sucrose did not affect sucrose transport by the maize (Zea mays) ZmSUT1 protein. To determine how 18 F substitution of hydroxyl groups at two other positions within sucrose, the C-1' in the fructosyl moiety or the C-6 in the glucosyl moiety, impact sucrose transport, we synthesized 1'-[F 18 ]fluoro-1'-deoxysucrose and 6-[F 18 ]fluoro-6-deoxysucrose ([ 18 F]FDS) analogs. Each [ 18 F]FDS derivative was independently introduced into wild-type or sut1 mutant plants, which are defective in sucrose phloem loading. All three (1'-, 6'-, and 6-) [ 18 F]FDS derivatives were efficiently and equally translocated, similarly to carbon-14 [ 14 C]-labeled sucrose. Hence, individually replacing the hydroxyl groups at these positions within sucrose does not interfere with substrate recognition, binding, or membrane transport processes, and hydroxyl groups at these three positions are not essential for hydrogen bonding between sucrose and ZmSUT1. [ 18 F]FDS imaging afforded several advantages compared to [ 14 C]-sucrose detection. We calculated that 1'-[ 18 F]FDS was transported at approximately a rate of 0.90 ± 0.15 m.h-1 in wild-type leaves, and at 0.68 ± 0.25 m.h-1 in sut1 mutant leaves. Collectively, our data indicated that [ 18 F]FDS analogs are valuable tools to probe sucrose-SUT interactions and to monitor sucrose transport in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion
NASA Astrophysics Data System (ADS)
Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.
2014-12-01
The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations, and FDS influence functions will be compared with those generated from WRF and the Lagrangian Particle Dispersion Model. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions.
Software conversion history of the Flight Dynamics System (FDS)
NASA Technical Reports Server (NTRS)
Liu, K.
1984-01-01
This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.
NASA Astrophysics Data System (ADS)
Glasa, J.; Valasek, L.; Weisenpacher, P.; Halada, L.
2013-02-01
Recent advances in computer fluid dynamics (CFD) and rapid increase of computational power of current computers have led to the development of CFD models capable to describe fire in complex geometries incorporating a wide variety of physical phenomena related to fire. In this paper, we demonstrate the use of Fire Dynamics Simulator (FDS) for cinema fire modelling. FDS is an advanced CFD system intended for simulation of the fire and smoke spread and prediction of thermal flows, toxic substances concentrations and other relevant parameters of fire. The course of fire in a cinema hall is described focusing on related safety risks. Fire properties of flammable materials used in the simulation were determined by laboratory measurements and validated by fire tests and computer simulations
NASA Technical Reports Server (NTRS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-01-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
NASA Astrophysics Data System (ADS)
Iucci, N.; Parisi, M.; Signorini, C.; Storini, M.; Villoresi, G.
1985-08-01
Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region.
Park, Eunyoung; Edirisinghe, Indika; Wei, Hequn; Vijayakumar, Lakshmi Prabha; Banaszewski, Katarzyna; Cappozzo, Jack C; Burton-Freeman, Britt
2016-05-01
This study evaluated the dose-response relationship of strawberries, an anthocyanin-rich fruit, on postprandial glucose and insulin concentrations in individuals with insulin resistance (IR), including changes in plasma anthocyanins, markers of oxidative stress, and inflammation. In a randomized controlled, four-arm, dose-response, crossover trial, 21 adults with IR consumed a high-carbohydrate, high-fat meal with one of four beverages containing 0 g freeze-dried whole strawberry powder (0g FDS, control), 10, 20, or 40 g FDS, controlled for fiber. Blood was collected at 0 min and at 30 min intervals postmeal until 2 h, then hourly until 6 h. Postmeal insulin concentrations (6 h) were significantly reduced after the 40-g FDS beverage compared to other beverages (p < 0.05). Postmeal 6 h glucose concentrations were not different, although mean insulin:glucose ratio was significantly different among beverages (p < 0.05). Pelargonidin-glucuronide was inversely associated with mean insulin concentrations after the 20 and 40 g FDS (p < 0.05). Oxidized low-density lipoprotein was reduced after 20 g FDS (p < 0.05) and IL-6 was not different among treatments. Strawberry intake reduced the insulin demand to manage postmeal glucose in obese individuals with IR, which was related to plasma anthocyanin/pelargonidin concentrations. The data support a role of strawberries in improving insulin sensitivity in people with IR. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Burnout in European family doctors: the EGPRN study.
Soler, Jean Karl; Yaman, Hakan; Esteva, Magdalena; Dobbs, Frank; Asenova, Radost Spiridonova; Katic, Milica; Ozvacic, Zlata; Desgranges, Jean Pierre; Moreau, Alain; Lionis, Christos; Kotányi, Péter; Carelli, Francesco; Nowak, Pawel R; de Aguiar Sá Azeredo, Zaida; Marklund, Eva; Churchill, Dick; Ungan, Mehmet
2008-08-01
The aim of this study was to determine the prevalence of burnout, and of associated factors, amongst family doctors (FDs) in European countries. Methodology. A cross-sectional survey of FDs was conducted using a custom-designed and validated questionnaire which incorporated the Maslach Burnout Inventory Human Services Survey (MBI-HSS) as well as questions about demographic factors, working experience, health, lifestyle and job satisfaction. MBI-HSS scores were analysed in the three dimensions of emotional exhaustion (EE), depersonalization (DP) and personal accomplishment (PA). Almost 3500 questionnaires were distributed in 12 European countries, and 1393 were returned to give a response rate of 41%. In terms of burnout, 43% of respondents scored high for EE burnout, 35% for DP and 32% for PA, with 12% scoring high burnout in all three dimensions. Just over one-third of doctors did not score high for burnout in any dimension. High burnout was found to be strongly associated with several of the variables under study, especially those relative to respondents' country of residence and European region, job satisfaction, intention to change job, sick leave utilization, the (ab)use of alcohol, tobacco and psychotropic medication, younger age and male sex. Burnout seems to be a common problem in FDs across Europe and is associated with personal and workload indicators, and especially job satisfaction, intention to change job and the (ab)use of alcohol, tobacco and medication. The study questionnaire appears to be a valid tool to measure burnout in FDs. Recommendations for employment conditions of FDs and future research are made, and suggestions for improving the instrument are listed.
Rocha, Abraham; Lima, Guilherme; Medeiros, Zulma; Aguiar-Santos, Ana; Alves, Sandra; Montarroyos, Ulisses; Oliveira, Paula; Béliz, Fátima; Netto, Maria José; Furtado, André
2004-02-01
The purpose of this study was to examine the circulating filarial antigen (CFA) detected by the monoclonal antibody (mAb) Og4C3-ELISA in paired samples of serum and hydrocele fluid from 104 men with hydrocele, living in an endemic area of Wuchereria bancrofti. Nocturnal blood specimens were filtered and examined for microfilariae (MF) and ultrasound was used in order to identify the presence of adult worms (the filaria dance sign - FDS) in the lymphatic vessels of the scrotal area. Four groups were selected according to their parasitological status: group I - 71 MF- and FDS-; group II - 21 MF+ and FDS+; group III - 10 MF- and FDS+ and group IV- 2 MF+ and FDS-. CFA was identified simultaneously (fluid and serum) in 11 (15.5%), 21 (100%), 3 (30%), and 1 (50%) in groups I, II, III, and IV, respectively. In despite of high CFA+ level (antigen Og4C3) units/ml, the Geometrical Mean (GM) = 2696) in the sera of these 36/104 paired samples, when compared to the hydrocele fluid, (GM = 1079), showed a very good correlation between the CFA level in the serum and CFA level in the fluid (r = 0.731). CFA level in the serum of the 23 microfilaremics (groups II and IV) was extremely high (GM = 4189) and was correlated with MF density (r = 0.442). These findings report for the first time the potential alternative use of the hydrocele fluid to investigate CFA using the mAb Og4C3-ELISA.
Man-machine interface analysis of the flight design system
NASA Technical Reports Server (NTRS)
Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.
1978-01-01
The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested.
Simplified Design Method for Tension Fasteners
NASA Astrophysics Data System (ADS)
Olmstead, Jim; Barker, Paul; Vandersluis, Jonathan
2012-07-01
Tension fastened joints design has traditionally been an iterative tradeoff between separation and strength requirements. This paper presents equations for the maximum external load that a fastened joint can support and the optimal preload to achieve this load. The equations, based on linear joint theory, account for separation and strength safety factors and variations in joint geometry, materials, preload, load-plane factor and thermal loading. The strength-normalized versions of the equations are applicable to any fastener and can be plotted to create a "Fastener Design Space", FDS. Any combination of preload and tension that falls within the FDS represents a safe joint design. The equation for the FDS apex represents the optimal preload and load capacity of a set of joints. The method can be used for preliminary design or to evaluate multiple pre-existing joints.
2002-08-01
evaluate functionality, the FDP/SIS and FDS were independently pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by...each. In three digits the distal phalanx moved similarly whether pulling on the FDP/SIS or the FDS tendon. This suggests some scarring/adhesions between... pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by each. In three digits the distal phalanx moved similarly
Hybrid Upwind Splitting (HUS) by a Field-by-Field Decomposition
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1995-01-01
We introduce and develop a new approach for upwind biasing: the hybrid upwind splitting (HUS) method. This original procedure is based on a suitable hybridization of current prominent flux vector splitting (FVS) and flux difference splitting (FDS) methods. The HUS method is designed to naturally combine the respective strengths of the above methods while excluding their main deficiencies. Specifically, the HUS strategy yields a family of upwind methods that exhibit the robustness of FVS schemes in the capture of nonlinear waves and the accuracy of some FDS schemes in the resolution of linear waves. We give a detailed construction of the HUS methods following a general and systematic procedure directly performed at the basic level of the field by field (i.e. waves) decomposition involved in FDS methods. For such a given decomposition, each field is endowed either with FVS or FDS numerical fluxes, depending on the nonlinear nature of the field under consideration. Such a design principle is made possible thanks to the introduction of a convenient formalism that provides us with a unified framework for upwind methods. The HUS methods we propose bring significant improvements over current methods in terms of accuracy and robustness. They yield entropy-satisfying approximate solutions as they are strongly supported in numerical experiments. Field by field hybrid numerical fluxes also achieve fairly simple and explicit expressions and hence require a computational effort between that of the FVS and FDS. Several numerical experiments ranging from stiff 1D shock-tube to high speed viscous flows problems are displayed, intending to illustrate the benefits of the present approach. We assess in particular the relevance of our HUS schemes to viscous flow calculations.
Weinstein, Edward A.; Ordonez, Alvaro A.; DeMarco, Vincent P.; Murawski, Allison M.; Pokkali, Supriya; MacDonald, Elizabeth M.; Klunk, Mariah; Mease, Ronnie C.; Pomper, Martin G.; Jain, Sanjay K.
2015-01-01
The Enterobacteriaceae are a family of rod-shaped Gram-negative bacteria that normally inhabit the gastrointestinal tract and are the most common cause of Gram-negative bacterial infections in humans. In addition to causing serious multidrug-resistant, hospital-acquired infections, a number of Enterobacteriaceae species are also recognized as biothreat pathogens. As a consequence, new tools are urgently needed to specifically identify and localize infections due to Enterobacteriaceae and to monitor antimicrobial efficacy. In this report, we used commercially available 2-[18F]-fluorodeoxyglucose (18F-FDG) to produce 2-[18F]-fluorodeoxysorbitol (18F-FDS), a radioactive probe for Enterobacteriaceae, in 30 min. 18F-FDS selectively accumulated in Enterobacteriaceae, but not in Gram-positive bacteria or healthy mammalian or cancer cells in vitro. In a murine myositis model, 18F-FDS positron emission tomography (PET) rapidly differentiated true infection from sterile inflammation with a limit of detection of 6.2 ± 0.2 log10 colony-forming units (CFU) for Escherichia coli. Our findings were extended to models of mixed Gram-positive and Gram-negative thigh co-infections, brain infection, Klebsiella pneumonia, and mice undergoing immunosuppressive chemotherapy. This technique rapidly and specifically localized infections due to Enterobacteriaceae, providing a three-dimensional holistic view within the animal. Last, 18F-FDS PET monitored the efficacy of antimicrobial treatment, demonstrating a PET signal proportionate to the bacterial burden. Therapeutic failures associated with multidrug-resistant, extended-spectrum β-lactamase (ESBL)–producing E. coli infections were detected in real time. Together, these data show that 18F-FDS is a candidate imaging probe for translation to human clinical cases of known or suspected infections owing to Enterobacteriaceae. PMID:25338757
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozai, M.; Munakata, K.; Kato, C.
2016-07-10
We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in themore » western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.« less
Wu, Xiao Hong; Wang, Wei; Yin, Chun Mei; Hou, Hai Jun; Xie, Ke Jun; Xie, Xiao Li
2017-01-01
Rice cultivation has been challenged by increasing food demand and water scarcity. We examined the responses of water use, grain yield, and water productivity to various modes of field water managements in Chinese double rice systems. Four treatments were studied in a long-term field experiment (1998-2015): continuous flooding (CF), flooding-midseason drying-flooding (F-D-F), flooding-midseason drying-intermittent irrigation without obvious standing water (F-D-S), and flooding-rain-fed (F-RF). The average precipitation was 483 mm in early-rice season and 397 mm in late-rice season. The irrigated water for CF, F-D-F, F-D-S, and F-RF, respectively, was 263, 340, 279, and 170 mm in early-rice season, and 484, 528, 422, and 206 mm in late-rice season. Grain yield for CF, F-D-F, F-D-S, and F-RF, respectively, was 4,722, 4,597, 4,479, and 4,232 kgha-1 in early-rice season, and 5,420, 5,402, 5,366, and 4,498 kgha-1 in late-rice season. Compared with CF, F-D-F consumed more irrigated water, which still decreased grain yield, leading to a decrease in water productivity by 25% in early-rice season and by 8% in late-rice season. Compared with F-D-F, F-D-S saved much irrigated water with a small yield reduction, leading to an increase in water productivity by 22% in early-rice season and by 26% in late-rice season. The results indicate that CF is best for early-rice and FDS is best for late-rice in terms of grain yield and water productivity.
Doubova, Svetlana Vladislavovna; Mino-León, Dolores; Reyes-Morales, Hortensia; Flores-Hernandez, Sergio; Torres-Arreola, Laura del Pilar; Pérez-Cuevas, Ricardo
2010-08-01
To develop and test two educational programmes (interactive and passive) aimed at improving family doctors' (FD) prescribing practices and patient's knowledge and use of non-opioid analgesics (NOA). The educational programmes were conducted in two family medicine clinics by using a three-stage approach: baseline evaluation, design, and implementation of educational activities, and post-programme evaluation. An interactive educational programme (IEP) was compared with a passive educational programme (PEP); both were participated by FDs and patients. The IEP for FDs comprised of workshops, discussion groups, in-service training and guidelines, while for patients the IEP consisted of an interactive session with a video, leaflets and a discussion. The PEP consisted in delivering the guidelines to the FDs and the leaflets to patients. The effect of the programmes on the FDs was measured through the appropriateness of prescriptions and analysed using the differences-in-differences estimator (D-in-D), and on patients through changes in self-medication and in their knowledge about the proper use and adverse events by analysing the inter- and intra-group differences before and after the programmes. The IEP obtained better results to improve appropriate FDs prescription of NOA than PEP (D-in-D = 15%). Regarding the patients, the PEP group reached higher reduction of self-medication than the IEP group (13.4% vs. 9.1%); the knowledge of proper NOA use increased by 8.5% in both groups, whereas knowledge of NOA-related adverse events was better in the IEP (39.6%) than in the PEP group (9.2%). The IEP was better to improve the doctors' abilities to prescribe NOAs, and both programmes improved patients' knowledge.
Lee, Jong Hwa; Lee, Kyeong Woo; Kim, Sang Beom; Lee, Sook Joung; Chun, Sang Myung; Jung, Sung Moon
2016-06-01
To describe the correlation between the functional dysphagia scale and aspiration pneumonia and which characteristics influence the occurrence of aspiration pneumonia in patients with idiopathic Parkinson disease. Fifty-three patients with idiopathic Parkinson disease were prospectively evaluated in this study. Disease severity and functional status were measured by modified Hoehn and Yahr (H&Y) staging, Schwab and England activities of daily living (S-E ADL) scale and Korean version of Mini-Mental State Examination (K-MMSE). Swallowing function was evaluated by the functional dysphagia scale (FDS) and the penetration-aspiration scale (PAS) based on a videofluoroscopic swallowing study. The patients were followed up for 3 months and divided into two groups according to the occurrence of aspiration pneumonia. The correlation between the variables and aspiration pneumonia was analyzed. Eight patients of the 53 patients were allocated to the aspiration pneumonia group and 45 patients to the non-aspiration pneumonia group. The patients in the aspiration pneumonia group had significantly higher H&Y staging, and scored lower on S-E ADL scale and K-MMSE. The patients in the aspiration pneumonia group had significantly higher scores on FDS and PAS. A multiple logistic regression analysis showed that the S-E ADL scale and the FDS were associated with the occurrence of aspiration pneumonia in the patients with Parkinson disease. Given that the FDS can quantitatively assess the functional problems associated with dysphagia, it can be clinically effective in predicting the occurrence of aspiration pneumonia, and the FDS and the S-E ADL scale could be predictive variables for aspiration pneumonia in patients with Parkinson disease.
Effect of electronic prescribing with formulary decision support on medication use and cost.
Fischer, Michael A; Vogeli, Christine; Stedman, Margaret; Ferris, Timothy; Brookhart, M Alan; Weissman, Joel S
2008-12-08
Electronic prescribing (e-prescribing) with formulary decision support (FDS) prompts prescribers to prescribe lower-cost medications and may help contain health care costs. In April 2004, 2 large Massachusetts insurers began providing an e-prescribing system with FDS to community-based practices. Using 18 months (October 1, 2003, to March 31, 2005) of administrative data, we conducted a pre-post study with concurrent controls. We first compared the change in the proportion of prescriptions for 3 formulary tiers before and after e-prescribing began, then developed multivariate longitudinal models to estimate the specific effect of e-prescribing when controlling for baseline differences between intervention and control prescribers. Potential savings were estimated using average medication costs by formulary tier. More than 1.5 million patients filled 17.4 million prescriptions during the study period. Multivariate models controlling for baseline differences between prescribers and for changes over time estimated that e-prescribing corresponded to a 3.3% increase (95% confidence interval, 2.7%-4.0%) in tier 1 prescribing. The proportion of prescriptions for tiers 2 and 3 (brand-name medications) decreased correspondingly. e-Prescriptions accounted for 20% of filled prescriptions in the intervention group. Based on average costs for private insurers, we estimated that e-prescribing with FDS at this rate could result in savings of $845,000 per 100,000 patients. Higher levels of e-prescribing use would increase these savings. Clinicians using e-prescribing with FDS were significantly more likely to prescribe tier 1 medications, and the potential financial savings were substantial. Widespread use of e-prescribing systems with FDS could result in reduced spending on medications.
Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)
NASA Technical Reports Server (NTRS)
Good, Susan M.; Nicholson, Ann M.
2012-01-01
The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.
AlMatter, Muhammad; Hellstern, Victoria; Ganslandt, Oliver; Bäzner, Hansjörg; Henkes, Hans; Aguilar-Pérez, Marta
2018-01-01
Purpose The Medina Embolic Device (MED) is a new intrasaccular device with promising early results. Previously we documented our initial experience of this device both alone and in combination with other devices including flow diverter stents (FDS). We sought to determine the effect of the MED + FDS strategy for the treatment of selected aneurysms. Materials and Methods We performed a retrospective analysis of prospectively collected data to identify all patients with aneurysms treated using both the MED and intraluminal FDS. We present our technical success rate, early and mid-term angiographic follow-up, and clinical outcome data. Results We identified 25 non-consecutive patients. The treatment was staged in 9 patients and in a single session 16 patients. The average age was 61±12.8 years (range 40–82). The average fundus height was 11±3.6 mm and average fundus width was 10.1±3.4 mm. In the staged cohort (n=9) at delayed angiography (mean 10 mths) 8 aneurysms (89%) showed complete exclusion (mRRC 1) and in one patient there was a parent vessel occlusion. In the simultaneous cohort delayed angiography (n=10, mean 8.1 months) demonstrated complete occlusion (mRRC 1) in 6 aneurysms (60%), 3 neck remnants (mRRC 2) (30%) and 1 patient (10%) showed persistent aneurysmal filling (mRRC 3a). There were 5 complications with permanent morbidity (mRS >2) in two patients. There were no mortalities. Conclusion The MED can be successfully used in combination with intraluminal FDS and in selected aneurysms this may represent an alternative to FDS and adjunctive coiling. PMID:29535895
Vie, Bruno; Loffredo, Remy; Sanahdji, Farid; Weber, Jean-Paul; Jammes, Yves
2014-01-01
We hypothesized that the repetitive use of a toenail clipper by podiatric physicians could induce fatigue of the flexor digitorum superficialis (FDS) muscle, reducing the accuracy of toenail cutting. We examined the consequences of cutting a plastic sheet, reproducing the resistance of thick toenails, with a podiatric medical clipper on the maximal handgrip force (Fmax) developed by the FDS muscle and an isometric handgrip sustained at 50% of Fmax, during which endurance to fatigue and changes in the power spectra of the surface FDS muscle electromyogram (root mean square and median frequency) were measured. The same participants randomly performed one or five runs of 30 successive cuttings, each on different days. After the first and fifth cutting runs, Fmax increased, suggesting a post-tetanic potentiation. During the handgrip sustained at 50% of Fmax, we measured a significant reduction in the tension-time index after the first cutting run. Moreover, after the fifth cutting run, the tension-time index decrease was significantly accentuated, and the decrease in FDS muscle median frequency was enhanced. No median frequency decline was measured during the cutting runs. These results suggest that the efficacy of occupational podiatric medical tasks progressively declines with the repetition of toenail cutting. We propose solutions to remedy this situation.
Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion
NASA Astrophysics Data System (ADS)
Lin, CherngShing; Hsu, JuiPei
2018-01-01
It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.
Stable and low diffusive hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1992-01-01
A new concept for upwinding is introduced, named the hybrid upwind splitting (HUS), which is achieved by combining the basically distinct flux vector splitting (FVS) and the flux difference splitting (FDS) approaches. The HUS approach yields upwind methods which share the robustness of the FVS schemes in the capture of nonlinear waves and the accuracy of some of the FDS schemes. Numerical illustrations are presented proving the relevance of the HUS methods for viscous calculations.
Czabanowska, Katarzyna; Burazeri, Genc; Klemenc-Ketis, Zalika; Kijowska, Violetta; Tomasik, Tomasz; Brand, Helmut
2012-01-01
Background: Nowadays, general practitioners (GPs) and family doctors (FDs) face increasing demands, as a consequence of complex patients’ expectations, developments in science and technology, and limitations within healthcare systems which can result in competency gaps. Therefore, there is a need to identify which competencies in quality improvement (QI) are most important for GPs and FDs to possess in order to meet the demands of contemporary health care practice. To date, however, little information is available on the self-assessment of competencies related to QI among GPs and FDs. To deal with these issues, a project on QI in continuous medical education was launched in 2011. The project aims to broaden the GPs’/ FDs’ continuous education offer, its quality and attractiveness, as well as provide them with opportunities for vocational advancement and enable the development of common, European frame of reference for GPs’/FDs’ occupational competencies. The third work package of the project consists of the validation research of the questionnaire developed on the basis of the competency framework in QI for GPs/FDs in Europe. Methods: A cross-sectional study will be carried out using the self-assessment QI questionnaire which was originally developed in English and subsequently it was cross-culturally adapted in Slovenian, Albanian and Polish settings by use of a pilot study on a conveniently selected group of FDs/GPs (N=10) in each participating country. The final version of the questionnaire will be administered to large samples in each country involved in the survey. Two weeks after the first administration of the questionnaire, a second round, with the same procedure and including the same group of respondents, will follow. Psychometric tests will be conducted including internal consistency (after the initial and subsequent application of the instrument) and stability over time (two-week test-retest reliability). Discussion: This self-assessment study will demonstrate the complex environment in which general practice/family medicine operates and, eventually, this gap analysis will set out strategically important areas for collaborative efforts related to QI in primary care. The authors consider that the study should be extended to other European countries to help identify most required competencies that GPs/FDs should possess in Europe and thus stir system and educational debate around QI curricula and training for primary care in Europe. PMID:23378694
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1991-01-01
The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures.
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-08-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures
Chouteau, Mathieu; Llaurens, Violaine; Piron-Prunier, Florence; Joron, Mathieu
2017-01-01
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata. Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata. The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism. PMID:28673971
Afshar, Mohamad Reza; Ghorbani, Ali; Rashedi, Vahid; Jalilevand, Nahid; Kamali, Mohamad
2017-10-01
The aim of this study was to compare working memory span in Persian-speaking preschool children with speech sound disorder (SSD) and their typically speaking peers. Additionally, the study aimed to examine Non-Word Repetition (NWR), Forward Digit Span (FDS) and Backward Digit Span (BDS) in four groups of children with varying severity levels of SSD. The participants in this study comprised 35 children with SSD and 35 typically developing (TD) children -matched for age and sex-as a control group. The participants were between the age range of 48 and 72 months. Two components of working memory including phonological loop and central executive were compared between two groups. We used two tasks (NWR and FDS) to assess phonological loop component, and one task (BDS) to assess central executive component. Percentage of correct consonants (PCC) was used to calculate the severity of SSD. Significant differences were observed between the two groups in all tasks that assess working memory (p < 0.001). In addition, the comparison of the phonological loop of working memory between the various severity groups indicated significant differences between different severities of both NWR and FDS tasks among the SSD children (p < 0.001). Nevertheless, comparison of the central executive between various severity groups, which was assessed with the BDS task, did not show any significant differences (p > 0.05). The result showed that PCC scores in TD children were associated with NWR (p < 0.001), FDS (p = 0.001), and BDS (p < 0.001). Furthermore, PCC scores in SSD children were associated with NWR and FDS (p < 0.001), but not with BDS (p > 0.05). The working memory skills were weaker in SSD children, in comparison to TD children. In addition, children with varying levels of severity of SSD differed in terms of NWR and FSD, but not BDS. Copyright © 2017 Elsevier B.V. All rights reserved.
De novo transcriptomic analysis during Lentinula edodes fruiting body growth.
Wang, Yingzhu; Zeng, Xianlu; Liu, Wenguang
2018-01-30
The fruiting body of Lentinula edodes is a popular edible mushroom, and extracts from the mycelium and the fruiting body of this species have diverse therapeutic potential. To gain insights into the molecular mechanisms underlying the fruiting body growth of L. edodes from the early bud stage (EBS), through the intermediate developing stage (IDS), to the fully developed stage (FDS), we performed de novo transcriptomic analysis using high-throughput Illumina RNA-sequencing. First, we generated three cDNA libraries representative of the three respective stages. We then obtained 38,933,148, 44,594,472, and 37,905,646 high-quality reads from the respective libraries and assembled the reads into 25,104 transcriptional contigs, containing 15,199 unigenes. We found that only 9331 of the unigenes had been annotated in the NCBI non-redundant protein database, and we functionally annotated 4758 of them through Gene Ontology (GO) analysis and 2921 of them through Clusters of Orthologous Groups of proteins (COGs) analysis. We also assigned 3995 unigenes to metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes (KEGG). We further identified 399 differentially expressed genes (DEGs) between EBS and IDS, 1428 between IDS and FDS, and 1830 between EBS and FDS, uncovering 769 DEGs in multiple metabolic and signaling pathways. Interestingly, there were a limited number of DEGs whose expression was dramatically associated with FDS. Finally, genes, whose expression was either highly up-regulated in FDS or remained at a high level during fruiting body growth, were annotated specifically in the pathways of purine metabolism, unsaturated fatty acid metabolism and meiosis, suggesting that these key molecular events were actively occurring in the fruiting body. Our work is the first high-throughput transcriptome study on the growth of L. edodes fruiting bodies, and the results uncovered candidate genes for future gene identification and utilization of this commercially and medically important mushroom. Copyright © 2017 Elsevier B.V. All rights reserved.
Udall, John H; Fitzpatrick, Michael J; McGarry, Michelle H; Leba, Thu-Ba; Lee, Thay Q
2009-01-01
The medial ulnar collateral ligament (MUCL) is an important passive stabilizer to the valgus stresses that athletes experience during overhead throwing motion. However, the role of the flexor-pronator muscles as active stabilizers to valgus stress is not well defined in the literature. The objectives of this study were to quantify the relative contribution of the individual flexor-pronator muscles to valgus stability of the elbow and how this relationship was affected by ligament status. A custom elbow testing system and Microscribe 3DLX were used for biomechanical testing. Flexor-pronator muscles were loaded to simulate contraction, and the valgus angle of the elbow was measured in eight cadaveric specimens at 30 degrees , 60 degrees , and 90 degrees of elbow flexion with 3 different valgus torques applied to the forearm. Loads based on muscle cross-sectional area were applied to the flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), and pronator teres (PT). The effect of each muscle was evaluated by unloading the individual muscle while the other 2 remained loaded, resulting in 5 loading conditions: no muscles loaded, all muscles loaded, unloaded FCU, unloaded FDS, and unloaded PT. Valgus angle was measured for 3 MUCL ligament conditions: intact, stretched, and cut. The effect of muscle loading on valgus angle was similar for each ligament condition. Loading the flexor-pronator muscles significantly decreased valgus angle of the elbow in all testing conditions (P < .01). Unloading the FDS significantly increased valgus angle compared to all muscles loaded in all testing conditions (P < .016). Unloading the FCU and PT significantly increased valgus angle in less than half of the testing conditions. The FDS, PT, and FCU are all active stabilizers of the elbow to valgus stress. The FDS is the biggest contributor amongst the flexor-pronator muscles.
Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters
Pettersson, H. E.
1975-01-01
Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009
NASA Astrophysics Data System (ADS)
Doiron, Daniel R.; Dunn, J. B.; Mitchell, W. L.; Dalton, Brian K.; Garbo, Greta M.; Warner, Jon A.
1995-05-01
The detection and quantification of the concentration of exogenous chromophores in-vivo by their fluorescence is complicated by many physical and geometrical parameters. Measurement of such signals is advantageous in determining the pharmacokinetics of photosensitizers such as those used in photodynamic therapy (PDT) or to assist in the diagnosis of tissue histological state. To overcome these difficulties a ratio based fiber optic contact fluorometer has been developed. This fluorescence detection system (FDS) uses the ratio of the fluorescence emission peak of the exogenous chromophore to that of endogenous chromophores, i.e. autofluorescence, to correct for a variety of parameters affecting the magnitude of the measured signals. By doing so it also minimizes the range of baseline measurements prior to exogenous drug injection, for various tissue types. Design of the FDS and results of its testing in animals and patients using the second generation photosensitizer Tin ethyletiopurpurin (SnET2) are presented. These results support the feasibility and usefulness of the Ratio FDS system.
Resident training in a teaching hospital: How do attendings teach in the real operative environment?
Glarner, Carly E; Law, Katherine E; Zelenski, Amy B; McDonald, Robert J; Greenberg, Jacob A; Foley, Eugene F; Wiegmann, Douglas A; Greenberg, Caprice C
2017-07-01
The study aim was to explore the nature of intraoperative education and its interaction with the environment where surgical education occurs. Video and audio recording captured teaching interactions between colorectal surgeons and general surgery residents during laparoscopic segmental colectomies. Cases and collected data were analyzed for teaching behaviors and workflow disruptions. Flow disruptions (FDs) are considered deviations from natural case progression. Across 10 cases (20.4 operative hours), attendings spent 11.2 hours (54.7%) teaching, using directing (M = 250.1), and confirming (M = 236.1) most. FDs occurred 410 times, accounting for 4.4 hours of case time (21.57%). Teaching occurred with FD events for 2.4 hours (22.2%), whereas 77.8% of teaching happened outside FD occurrence. Teaching methods shifted from active to passive during FD events to compensate for patient safety. Understanding how FDs impact operative learning will inform faculty development in managing interruptions and improve its integration into resident education. Copyright © 2016. Published by Elsevier Inc.
A cut-cell immersed boundary technique for fire dynamics simulation
NASA Astrophysics Data System (ADS)
Vanella, Marcos; McDermott, Randall; Forney, Glenn
2015-11-01
Fire simulation around complex geometry is gaining increasing attention in performance based design of fire protection systems, fire-structure interaction and pollutant transport in complex terrains, among others. This presentation will focus on our present effort in improving the capability of FDS (Fire Dynamics Simulator, developed at the Fire Research Division, NIST. https://github.com/firemodels/fds-smv) to represent fire scenarios around complex bodies. Velocities in the vicinity of the bodies are reconstructed using a classical immersed boundary scheme (Fadlun and co-workers, J. Comput. Phys., 161:35-60, 2000). Also, a conservative treatment of scalar transport equations (i.e. for chemical species) will be presented. In our method, discrete conservation and no penetration of species across solid boundaries are enforced using a cut-cell finite volume scheme. The small cell problem inherent to the method is tackled using explicit-implicit domain decomposition for scalar, within the FDS time integration scheme. Some details on the derivation, implementation and numerical tests of this numerical scheme will be discussed.
2018-01-01
Background Family doctors (FDs) focus on biopsychosocial components of health during consultations. However, much of the evidence employed by these doctors is produced by researchers who are not routinely involved in family practice. Family doctors competent in both clinical practice and research are essential to addressing this gap. With the growing recognition of family medicine as the specialty of choice for many young doctors, there is a scarcity of literature that describes their experiences in combining research and daily family practice. Aim Members from Young Doctor Movements (YDMs) under the auspices of the World Organisation of Family Doctors (WONCA) sought to address this knowledge gap by reflecting on their experiences towards becoming researchers. With the assistance of senior doctors, they explored solutions that can help young FDs incorporate research into their family practice. Methods Following an online YDM meeting, a summary of the experiences of young FDs as well as strategies useful for incorporating research into their everyday practice as FDs was prepared. Result Nine thematic areas were derived, including experiences and motivation towards regular research, culture and environment of practice, relevance and gains of research, teamwork and mentorship. Conclusion Family practices can incorporate research by promoting a personal and organisational research culture, highlighting gains and relevance of making it part of the profession and fostering teamwork, supportive networks and mentorship while making it enjoyable. PMID:29781695
Mechanical Strength of the Side-to-Side Versus Pulvertaft Weave Tendon Repair
Brown, Stephen H. M.; Hentzen, Eric R.; Kwan, Alan; Ward, Samuel R.; Fridén, Jan; Lieber, Richard L.
2010-01-01
Purpose The side-to-side (SS) tendon suture technique was designed to function as a repair that permits immediate post-operative activation and mobilization of a transferred muscle. This study was designed to test the strength and stiffness of the SS technique against a variation of the Pulvertaft (PT) repair technique. Methods Flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) tendons were harvested from four fresh cadavers and used as a model system. Seven SS and six PT repairs were performed using the FDS as the donor and the FDP as the recipient tendon. For SS repairs, the FDS was woven through one incision in the FDP, and was joined with four cross-stitch running sutures down both sides, and one double-loop suture at each tendon free end; for PT repairs, FDS was woven through three incisions in FDP, joined with a double-loop suture at both ends of the overlap, and four evenly spaced mattress sutures between the ends. Tendon repairs were placed in a tensile testing machine, pre-conditioned and tested to failure. Results There were no statistically significant differences in cross-sectional area (p=0.99) or initial length (p=0.93) between SS and PT repairs. Therefore, all comparisons between methods were made using measures of loads and deformations, rather than stresses and strains.. All failures occurred in the repair region, rather than at the clamps. However, failure mechanisms were different between the two techniques—PT repairs failed by the suture knots either slipping or pulling through the tendon material, followed by the FDS tendon pulling through the FDP tendon; SS repairs failed by shearing of fibers within the FDS. Load at first failure (p < 0.01), ultimate load (p < 0.001), and repair stiffness (p < 0.05) were all significantly different between SS and PT techniques; in all cases the mean value for SS was higher than for PT. Discussion The SS repair, using a cross-stitch suture technique, was significantly stronger and stiffer compared to the PT repair using a mattress suture technique. This suggests that using SS repairs could enable patients to load the repair soon after surgery. Ultimately, this should reduce the risk of developing adhesions and result in improved functional outcome and fewer complications in the acute post-operative period. Future work will address the specific mechanisms (for example, suture-throw technique, tendon-weave technique) that underlie the improved strength and stiffness of the SS repair. PMID:20223604
Field modeling of heat transfer in atrium
NASA Astrophysics Data System (ADS)
Nedryshkin, Oleg; Gravit, Marina; Bushuev, Nikolay
2017-10-01
The results of calculating fire risk are an important element in the system of modern fire safety assessment. The article reviews the work on the mathematical modeling of fire in the room. A comparison of different calculation models in the programs of fire risk assessment and fire modeling was performed. The results of full-scale fire tests and fire modeling in the FDS program are presented. The analysis of empirical and theoretical data on fire modeling is made, a conclusion is made about the modeling accuracy in the FDS program.
A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.
Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord
2017-08-02
Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given the phenotypic similarities in FDS affected calves, the genetic mapping and absence of further high impact variants in the critical genome regions, it is highly likely that the missense mutation in the FGFR2 gene caused the FDS phenotype in a dominant mode of inheritance.
NUTS and BOLTS: Applications of Fluorescence Detected Sedimentation
Kroe, Rachel R.; Laue, Thomas M.
2008-01-01
Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors (absorbance and interference) impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes allowing the characterization of very dilute solutions of macromolecules, applications we call Normal Use Tracer Sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high affinity interactions. Second, AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call Biological On Line Tracer Sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieu such as cell lysates and serum. Examples are presented that embody features of both NUTS and BOLTS applications, along with our observations on these applications. PMID:19103145
2014-01-01
The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically applied to systems with micromolar KD. Here we present a new approach for the study of high-affinity interactions using fluorescence detected sedimentation velocity analytical ultracentrifugation (FDS-SV). Taking full advantage of the large data sets in FDS-SV by direct boundary modeling with sedimentation coefficient distributions c(s), we demonstrate detection and hydrodynamic resolution of protein complexes at low picomolar concentrations. We show how this permits the characterization of the antibody–antigen interactions with low picomolar binding constants, 2 orders of magnitude lower than previously achieved. The strongly size-dependent separation and quantitation by concentration, size, and shape of free and complex species in free solution by FDS-SV has significant potential for studying high-affinity multistep and multicomponent protein assemblies. PMID:24552356
Measurement of B(Ds+→l+ν) and the decay constant fDS+
NASA Astrophysics Data System (ADS)
Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Smith, A.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.; Aquines, O.; Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Huang, G. S.; Miller, D. H.; Pavlunin, V.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Butt, J.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Pivarski, J.; Riley, D.; Ryd, A.; Sadoff, A. J.; Schwarthoff, H.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Cawlfield, C.; Eisenstein, B. I.; Karliner, I.; Kim, D.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.
2007-10-01
We examine e+e-→Ds-Ds*+ and Ds*-Ds+ interactions at 4170 MeV using the CLEO-c detector in order to measure the decay constant fDs+. We use the Ds+→ℓ+ν channel, where the ℓ+ designates either a μ+ or a τ+, when the τ+→π+ν¯. Analyzing both modes independently, we determine B(Ds+→μ+ν)=(0.594±0.066±0.031)%, and B(Ds+→τ+ν)=(8.0±1.3±0.4)%. We also analyze them simultaneously to find an effective value of Beff(Ds+→μ+ν)=(0.638±0.059±0.033)% and extract fDs+=274±13±7MeV. Combining with our previous determination of B(D+→μ+ν), we also find the ratio fDs+/fD+=1.23±0.11±0.04. We compare to current theoretical estimates. Finally, we find B(Ds+→e+ν)<1.3×10-4 at 90% confidence level.
Properties of duck meat sausages supplemented with cereal flours.
Yang, H S; Ali, M S; Jeong, J Y; Moon, S H; Hwang, Y H; Park, G B; Joo, S T
2009-07-01
Duck meat sausages were prepared using 10% beef fat (FDS) and 10% hydrated cereal flours including rice (RDS), wheat, corn, millet, and barley to replace fat. Control duck sausages (DS) were also prepared only with duck meat and duck meat plus 10% beef fat. Results showed that protein and fat contents significantly decreased and total expressible fluid reduced with the addition of cereal flours in duck sausage batters. The FDS had higher fat content and lower pH compared with others. Duck sausages with 10% supplemented wheat flour showed the lowest cooking loss among sausages and had similar redness and chroma values to FDS and DS. Texture analysis indicated that hardness of duck sausage significantly decreased when cereal flours and beef fat were added. In particular, RDS showed the lowest values for all texture measurements compared with others. Result of moisture absorption capacity suggested that the decrease in hardness in RDS was due to higher moisture retention for rice flour treatment. Sensory evaluation indicated that DS had significantly lower overall acceptability than RDS, due to its off-flavor, whereas RDS had higher overall acceptability than DS.
Frauscher, Birgit; Gabelia, David; Biermayr, Marlene; Stefani, Ambra; Hackner, Heinz; Mitterling, Thomas; Poewe, Werner; Högl, Birgit
2014-10-01
Rapid eye movement sleep without atonia (RWA) is the polysomnographic hallmark of REM sleep behavior disorder (RBD). To partially overcome the disadvantages of manual RWA scoring, which is time consuming but essential for the accurate diagnosis of RBD, we aimed to validate software specifically developed and integrated with polysomnography for RWA detection against the gold standard of manual RWA quantification. Academic referral center sleep laboratory. Polysomnographic recordings of 20 patients with RBD and 60 healthy volunteers were analyzed. N/A. Motor activity during REM sleep was quantified manually and computer assisted (with and without artifact detection) according to Sleep Innsbruck Barcelona (SINBAR) criteria for the mentalis ("any," phasic, tonic electromyographic [EMG] activity) and the flexor digitorum superficialis (FDS) muscle (phasic EMG activity). Computer-derived indices (with and without artifact correction) for "any," phasic, tonic mentalis EMG activity, phasic FDS EMG activity, and the SINBAR index ("any" mentalis + phasic FDS) correlated well with the manually derived indices (all Spearman rhos 0.66-0.98). In contrast with computerized scoring alone, computerized scoring plus manual artifact correction (median duration 5.4 min) led to a significant reduction of false positives for "any" mentalis (40%), phasic mentalis (40.6%), and the SINBAR index (41.2%). Quantification of tonic mentalis and phasic FDS EMG activity was not influenced by artifact correction. The computer algorithm used here appears to be a promising tool for REM sleep behavior disorder detection in both research and clinical routine. A short check for plausibility of automatic detection should be a basic prerequisite for this and all other available computer algorithms. © 2014 Associated Professional Sleep Societies, LLC.
Guédon, Alexis; Clarençon, Frédéric; Di Maria, Federico; Rosso, Charlotte; Biondi, Alessandra; Gabrieli, Joseph; Rojas, Patricia; Chiras, Jacques; Sourour, Nader
2016-10-01
OBJECTIVE The authors evaluate the rate and discuss the pathomechanisms of very late (≥ 4-month) ischemic complications after flow-diverter stent (FDS) placement for intracranial aneurysms. METHODS The authors retrospectively reviewed the clinical data of the patients treated at Pitié-Salpêtrière Hospital between January 2010 and September 2014, who underwent FDS placement for intracranial aneurysm. The patients received dual-antiplatelet therapy (clopidogrel and aspirin) 5 days before and 3-6 months after the procedure and then aspirin alone for 6-9 months. An ischemic complication was defined as a sudden focal neurological deficit documented on diffusion-weighted images. RESULTS Eighty-six consecutive patients were included. Three (3.5%) patients treated with the Pipeline embolization device experienced a delayed acute ischemic stroke (2 cases of perforator/side-wall branch infarction and 1 case of thromboembolic stroke) with an average delay of 384 days (4 months, 20 months, and 13 months, respectively). The aneurysm locations were the left superior cerebellar artery, the right anterior choroid artery, and the left internal carotid artery (paraclinoid segment), respectively. The complications occurred after the patients had completed the antiaggregation protocol, except for Patient 1, who was receiving aspirin alone because of a spontaneous hematoma. At the acute phase, no in-stent thromboses were found on digital subtraction angiography. In Patient 2, the treated anterior choroid artery was occluded 20 months after the procedure. In Patient 3, a focal stenosis (approximately 40%) of the distal aspect of the FDS, probably caused by intimal hyperplasia, was seen. CONCLUSIONS Very late ischemic complications after FDS treatment were observed in 3.5% of the cases in the authors' series, some of which occurred as late as more than 1 year after placement.
Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C
2005-08-15
Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.
Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie
2015-01-01
The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519
Psychometric properties of Frustration Discomfort Scale in a Turkish sample.
Ozer, Bilge Uzun; Demir, Ayhan; Harrington, Neil
2012-08-01
The present study assessed the psychometric properties of the Frustration Discomfort Scale for Turkish college students. The Frustration Discomfort Scale (FDS), Procrastination Assessment Scale-Student, and Rosenberg Self-Esteem Scale were administered to a sample of 171 (98 women, 73 men) Turkish college students. The results of the confirmatory factor analysis yielded fit index values demonstrating viability of the four-dimensional solution as in the original. Findings also revealed that, as predicted, the Discomfort Intolerance subscale of Turkish FDS was most strongly correlated with procrastination. Overall results provided evidence for the factor validity and reliability of the Turkish version of the scale for use in a Turkish population.
A wrist tendon travel assessment of hand movements associated with industrial repetitive activities.
Ugbolue, U Chris; Nicol, Alexander C
2012-01-01
To investigate slow and fast paced industrial activity hand repetitive movements associated with carpal tunnel syndrome where movements are evaluated based on finger and wrist tendon travel measurements. Nine healthy subjects were recruited for the study aged between 23 and 33 years. Participants mimicked an industrial repetitive task by performing the following activities: wrist flexion and extension task, palm open and close task; and pinch task. Each task was performed for a period of 5 minutes at a slow (0.33 Hz) and fast (1 Hz) pace for a duration of 3 minutes and 2 minutes respectively. Tendon displacement produced higher flexor digitorum superficialis (FDS) tendon travel when compared to the flexor digitorum profundus (FDP) tendons. The left hand mean (SD) tendon travel for the FDS tendon and FDP tendon were 11108 (5188) mm and 9244 (4328) mm while the right hand mean tendon travel (SD) for the FDS tendon and FDP tendon were 9225 (3441) mm and 7670 (2856) mm respectively. Of the three tasks mimicking an industrial repetitive activity, the wrist flexion and extension task produced the most tendon travel. The findings may be useful to researchers in classifying the level of strenuous activity in relation to tendon travel.
Organic photochromics for spatial light modulation
NASA Astrophysics Data System (ADS)
Kirkby, C. J. G.; Bennion, I.
1986-02-01
The feasibility of using fulgide derivatives (FD), a class of thermally stable, fatigue-free photochromic materials (PM), as optically addressed spatial light modulators (SLIM) is analyzed. Photochromism is the property of a material that changes from one physicochemical state to another due to the impingement of light. The PMs are low-resolution but exhibit no granularity as photographic films do, therefore permitting the use of PMs as data or image recording media with direct-read-after-write capability. It is known that the properties of the FDs (of dimethyl succinic anhydride), i.e., the fatigue, thermal stability and absorption band location, can be tailored by control of the location of two of the oxygen links at two locations on the molecule. Manipulating the absorption spectra also allows manipulation of the refractive index, ergo the SLIM capability of the FDs. Molecular substitutions have proven effective for adjustments of the wavelength sensitivities of the FDs. Film thicknesses of 3-10 microns have been shown capable of supporting a practical resolution limit of 100-200 line pairs/mm, a 30 dB dynamic range, a Fourier plane SNR of 50, and an image recycle time of 40 msec.
Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
NASA Astrophysics Data System (ADS)
Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila
2018-04-01
Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.
NASA Technical Reports Server (NTRS)
Maag, W.
1977-01-01
The Flight Design System (FDS) and the Unified System for Orbit Computation (USOC) are compared and described in relation to mission planning for the shuttle transportation system (STS). The FDS is designed to meet the requirements of a standardized production tool and the USOC is designed for rapid generation of particular application programs. The main emphasis in USOC is put on adaptability to new types of missions. It is concluded that a software system having a USOC-like structure, adapted to the specific needs of MPAD, would be appropriate to support planning tasks in the area unique to STS missions.
Stable and low diffusive hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1992-01-01
We introduce in this paper a new concept for upwinding: the Hybrid Upwind Splitting (HUS). This original strategy for upwinding is achieved by combining the two previous existing approaches, the Flux Vector (FVS) and Flux Difference Splittings (FDS), while retaining their own interesting features. Indeed, our approach yields upwind methods that share the robustness of FVS schemes in the capture of nonlinear waves and the accuracy of some FDS schemes in the capture of linear waves. We describe here some examples of such HUS methods obtained by hybridizing the Osher approach with FVS schemes. Numerical illustrations are displayed and will prove in particular the relevance of the HUS methods we propose for viscous calculations.
Large eddy simulation of fine water sprays: comparative analysis of two models and computer codes
NASA Astrophysics Data System (ADS)
Tsoy, A. S.; Snegirev, A. Yu.
2015-09-01
The model and the computer code FDS, albeit widely used in engineering practice to predict fire development, is not sufficiently validated for fire suppression by fine water sprays. In this work, the effect of numerical resolution of the large scale turbulent pulsations on the accuracy of predicted time-averaged spray parameters is evaluated. Comparison of the simulation results obtained with the two versions of the model and code, as well as that of the predicted and measured radial distributions of the liquid flow rate revealed the need to apply monotonic and yet sufficiently accurate discrete approximations of the convective terms. Failure to do so delays jet break-up, otherwise induced by large turbulent eddies, thereby excessively focuses the predicted flow around its axis. The effect of the pressure drop in the spray nozzle is also examined, and its increase has shown to cause only weak increase of the evaporated fraction and vapor concentration despite the significant increase of flow velocity.
Yoshikawa, H; Takada, K; Muranishi, S
1984-01-01
The permselectivity to the small intestinal blood-lymph barrier for the exogenous macromolecules absorbed from the lumen was investigated using in situ rat closed loop experiment. We chose the fluorescein isothiocyanate-labelled dextran (FD) as macromolecule and lipid-surfactant mixed micelles as an absorption promoter. The mean molecular weights of FDs used were 10500, 17500, 39000 and 64200 (abbreviated: FD10 , 20, 40 and 70). The lymph/plasma ratios of FDs concentrations during 5 h post administration were 0.2-1.2 ( FD10 ), 0.4-1.3 ( FD20 ), 1.3-7.2 ( FD40 ) and 2.6-11.9 ( FD70 ), respectively. The FD40 and FD70 levels in the lymph were significantly higher than those in the plasma. The cumulative amounts (% of the absorbed quantity) of FDs in the lymph from the lumen of the small intestine for 5 h after administration were 0.46% ( FD10 ), 0.51% ( FD20 ), 1.17% ( FD40 ) and 1.89% ( FD70 ), respectively. These findings suggest that the threshold molecular weight of FD for the transfer into the lymphatics with higher level compared to the blood concentration from the lumen across the small intestinal blood-lymph barrier exists between 17500 and 39000.
Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli
2011-01-01
The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Sketching Designs Using the Five Design-Sheet Methodology.
Roberts, Jonathan C; Headleand, Chris; Ritsos, Panagiotis D
2016-01-01
Sketching designs has been shown to be a useful way of planning and considering alternative solutions. The use of lo-fidelity prototyping, especially paper-based sketching, can save time, money and converge to better solutions more quickly. However, this design process is often viewed to be too informal. Consequently users do not know how to manage their thoughts and ideas (to first think divergently, to then finally converge on a suitable solution). We present the Five Design Sheet (FdS) methodology. The methodology enables users to create information visualization interfaces through lo-fidelity methods. Users sketch and plan their ideas, helping them express different possibilities, think through these ideas to consider their potential effectiveness as solutions to the task (sheet 1); they create three principle designs (sheets 2,3 and 4); before converging on a final realization design that can then be implemented (sheet 5). In this article, we present (i) a review of the use of sketching as a planning method for visualization and the benefits of sketching, (ii) a detailed description of the Five Design Sheet (FdS) methodology, and (iii) an evaluation of the FdS using the System Usability Scale, along with a case-study of its use in industry and experience of its use in teaching.
Simultaneous Forbush decreases and associated geomagnetic storms during the last three solar cycles
NASA Astrophysics Data System (ADS)
Okpala, K. C.
2013-12-01
Forbush decrease (FD) are observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors. FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of glactic origin will occur during Geomagnetic storms. In this study we examine over one hundred and fifty (150) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2003. The negative peaks of the FDs and the Dst coincided for most of the events (~70%). There was good correlation (>0.65) between the FDs and Dst. Fresh evidence of the influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.
Cooking with Fire: The Mutagenicity- and PAH-Emission ...
Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove
Processing of electronic waste in a counter current teeter-bed separator.
Dey, Sujit Kumar; Ari, Vidyadhar; Das, Avimanyu
2012-09-30
Advanced gravity separation of ground electronic waste (e-waste) in a teeter-bed separator was investigated. It was established that the Floatex Density Seprator (FDS) is a promising device for wet processing of e-waste to recover metal values physically. It was possible to enrich the metal content from 23% in the feed to 37% in the product in a single stage operation using the FDS with over 95% recovery of the metals. A two-stage processing scheme was developed that enriched the metal content further to 48.2%. The influence of the operating variables, namely, teeter water flow rate, bed pressure and feed rate were quantified. Low bed pressures and low teeter water rates produced higher mass yields with poorer product grades. On the contrary, a high bed pressure and high teeter water rate combination led to a lower mass yield but better product quality. A high feed rate introduced en-masse settling leading to higher yield but at a poorer product grade. For an FDS with 230 mm × 230 mm cross section and a height of 530 mm, the process condition with 6.6l pm teeter water rate, 5.27 kPa bed pressure and 82 kg/hr feed rate maximized the yield for a target product grade of 37% metal in a single pass. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jiao; Xue, Jinhua; Xiao, Xilin; Xu, Li; Jiang, Min; Peng, Pengcheng; Liao, Lifu
2017-12-01
The coordination reaction of thorium (IV) with a ditopic bidentate ligand to form supramolecular polymer was studied by resonance light scattering (RLS) spectra, second-order scattering (SOS) spectra and frequency-doubling scattering (FDS) spectra, respectively. The ditopic bidentate ligand is isophthalaldehyde-tetrapyrrole (IPTP). It was synthesized through a condensation reaction of isophthalaldehyde with pyrrole. The formation of supramolecular polymer results in remarkable intensity enhancements of the three light scattering signals. The maximum scattering wavelengths of RLS, FDS and SOS were 290, 568 and 340 nm, respectively. The reaction was used to establish new light scattering methods for the determination of thorium (IV) by using IPTP as probe. Under optimum conditions, the intensity enhancements of RLS, SOS and FDS were directly proportional to the concentration of thorium (IV) in the ranges of 0.01 to 1.2 μg mL- 1, 0.05 to 1.2 μg mL- 1 and 0.05 to 1.2 μg mL- 1, respectively. The detection limits were 0.003 μg mL- 1, 0.012 μg mL- 1 and 0.021 μg mL- 1, respectively. The methods were suitable for analyzing thorium (IV) in actual samples. The results show acceptable recoveries and precision compared with a reference method.
Thornley, P; Quinn, A; Elley, K
2015-08-28
This study reports on an investigation into clinical audit (CA) educational and service delivery outcomes in a dental foundation training (DFT) programme. The aim was to investigate CA teaching, learning and practice from the perspective of foundation dentists (FDs) and to record suggestions for improvement. A qualitative research methodology was used. Audio recordings of focus group interviews with FDs were triangulated by an interview with a group of training programme directors (TPDs). The interviews were transcribed and thematically analysed using a 'Framework' approach within Nvivo Data Analysis Software. FDs report considerable learning and behaviour change. However, TPDs have doubts about the long-term effects on service delivery. There can be substantial learning in the clinical, managerial, communication and professionalism domains, and in the development of time management, organisational and team-working skills. Information is provided about use of resources and interaction with teachers and colleagues. CA provides learning opportunities not produced by other educational activities including 'awkward conversations' with team-members in the context of change management and providing feedback. This is relevant when applying the recommendations of the Francis report. This paper should be useful to any dentist conducting audit or team training. Suggestions are made for improvements to resources and support including right touch intervention. Trainers should teach in the 'Goldilocks Zone'.
Schreck, Michael J; Holbrook, Hayden S; Koman, L Andrew
2018-02-01
Pseudo-boutonniere deformity is an uncommon complication from long-standing proximal interphalangeal (PIP) joint contracture in Dupuytren disease. Prolonged flexion contracture of the PIP joint can lead to central slip attenuation and resultant imbalances in the extensor mechanism. We present a technique of flexor digitorum superficialis (FDS) tendon transfer to the lateral bands to correct pseudo-boutonniere deformity at the time of palmar fasciectomy for the treatment of Dupuytren disease. The FDS tendon is transferred from volar to dorsal through the lumbrical canal and sutured into the dorsally mobilized lateral bands. This technique presents an approach to the repair of pseudo-boutonniere deformity in Dupuytren disease. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shahabi, Shakiba; Treccani, Laura; Rezwan, Kurosch
2016-01-01
The synthesis of fluorophore-doped silica nanoparticles (FDS NPs) with two conventional approaches, Stöber and microemulsion, as well as a novel amino acid-catalyzed seeds regrowth technique (ACSRT) is presented. The efficiency of each applied synthesis route toward incorporation of selected hydrophilic fluorophores, including rhodamine B isothiocyanate and fluorescein isothiocyanate, without and with an amine-containing crosslinker, into silica matrix was systematically studied. Our results clearly highlight the advantages of ACSRT to obtain FDS NPs with a remarkable encapsulation efficiency, high quantum yield, and enhanced stability against bleaching and dye leaking due to efficient embedding of the dyes inside silica network even without the amine-containing silane reagent. Moreover, evaluation of photostability of FDNPs internalized in human bone cells demonstrates the merits of ACSRT.
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
Mutlu, Esra; Warren, Sarah H.; Ebersviller, Seth M.; Kooter, Ingeborg M.; Schmid, Judith E.; Dye, Janice A.; Linak, William P.; Gilmour, M. Ian; Jetter, James J.; Higuchi, Mark; DeMarini, David M.
2016-01-01
Background: Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. Objective: We evaluated two categories of solid-fuel cookstoves for eight pollutant and four mutagenicity emission factors, correlated the mutagenicity emission factors, and compared them to those of other combustion emissions. Methods: We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS), and we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Results: With the exception of NOx, the emission factors per MJd were highly correlated (r ≥ 0.97); the correlation for NOx with the other emission factors was 0.58–0.76. Excluding NOx, the NDS and FDS reduced the emission factors an average of 68 and 92%, respectively, relative to the TSF. Nevertheless, the mutagenicity emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was between those of a large diesel bus engine and a small diesel generator. Conclusions: Both mutagenicity and pollutant emission factors may be informative for characterizing cookstove performance. However, mutagenicity emission factors may be especially useful for characterizing potential health effects and should be evaluated in relation to health outcomes in future research. An FDS operated as intended by the manufacturer is safer than a TSF, but without adequate ventilation, it will still result in poor indoor air quality. Citation: Mutlu E, Warren SH, Ebersviller SM, Kooter IM, Schmid JE, Dye JA, Linak WP, Gilmour MI, Jetter JJ, Higuchi M, DeMarini DM. 2016. Mutagenicity and pollutant emission factors of solid-fuel cookstoves: comparison with other combustion sources. Environ Health Perspect 124:974–982; http://dx.doi.org/10.1289/ehp.1509852 PMID:26895221
Global Lightning Response to Forbush Decreases in Short-term
NASA Astrophysics Data System (ADS)
Li, H.; Wu, Q.; Wang, C.
2017-12-01
During the past three decades, particular scientific attention has been drawn to the potential link between solar activities and global climate change. How the sun modulates the climate has always been controversial. There are three relatively widely accepted mechanisms illustrating this process: the total solar irradiance (TSI), the solar ultraviolet radiation (SUR), and the space weather mechanisms. As for space weather mechanism, the sun influences the microphysical process in cloud by modulating the cosmic ray flux and thus changes the cloud cover, which finally affects the earth's radiation balance. Unfortunately, the lack of related observations and some opposite research results make this mechanism rather debatable. In order to provide possible evidence for space weather mechanism, we study the influence of Forbush decreases (FDs) of galactic cosmic ray on global lightning activities, which to some extent represents the basic process of cosmic ray-atmospheric coupling. We use the daily lightning counts from 1998 to 2014 observed by LIS sensor aboard the TRMM satellite. Considering the "diurnal distribution" (occurring more in the afternoon than in the morning) and the "seasonal distribution" (occurring more in summer than in winter) of lightning activities as well as the 49-day precession of TRMM satellite, the daily lightning counts show an intricate periodic fluctuation. We propose a 3-step approach - latitude zone limitation, orbit branch selection and local time normalization - to eliminate it. As for FDs, we select them by checking the hourly neutron counts variation of each month of 17 years obtained from the Oulu Cosmic Ray Station. During the selection, we choose the FDs which are "strong" (decrease more than 6%) and "standard" (strongly decrease in a few hours to one day and gradually recover in about one week) to diminish the meteorological influence and other possible disturbance. For both case study and temporal superposition of several cases, the results illustrate that there is a statistically significant positive correlation between FD and daily lightning count, and the latter reaches its minimum 2-3 days after the former onset. In addition, this response enhances if we only choose the stronger and the more standard FDs. This work has reached the 95% confidence level of Monte Carlo test.
Using fire dynamics simulator to reconstruct a hydroelectric power plant fire accident.
Chi, Jen-Hao; Wu, Sheng-Hung; Shu, Chi-Min
2011-11-01
The location of the hydroelectric power plant poses a high risk to occupants seeking to escape in a fire accident. Calculating the heat release rate of transformer oil as 11.5 MW/m(2), the fire at the Taiwan Dajia-River hydroelectric power plant was reconstructed using the fire dynamics simulator (FDS). The variations at the escape route of the fire hazard factors temperature, radiant heat, carbon monoxide, and oxygen were collected during the simulation to verify the causes of the serious casualties resulting from the fire. The simulated safe escape time when taking temperature changes into account is about 236 sec, 155 sec for radiant heat changes, 260 sec for carbon monoxide changes, and 235-248 sec for oxygen changes. These escape times are far less than the actual escape time of 302 sec. The simulation thus demonstrated the urgent need to improve escape options for people escaping a hydroelectric power plant fire. © 2011 American Academy of Forensic Sciences.
Capabilities of current wildfire models when simulating topographical flow
NASA Astrophysics Data System (ADS)
Kochanski, A.; Jenkins, M.; Krueger, S. K.; McDermott, R.; Mell, W.
2009-12-01
Accurate predictions of the growth, spread and suppression of wild fires rely heavily on the correct prediction of the local wind conditions and the interactions between the fire and the local ambient airflow. Resolving local flows, often strongly affected by topographical features like hills, canyons and ridges, is a prerequisite for accurate simulation and prediction of fire behaviors. In this study, we present the results of high-resolution numerical simulations of the flow over a smooth hill, performed using (1) the NIST WFDS (WUI or Wildland-Urban-Interface version of the FDS or Fire Dynamic Simulator), and (2) the LES version of the NCAR Weather Research and Forecasting (WRF-LES) model. The WFDS model is in the initial stages of development for application to wind flow and fire spread over complex terrain. The focus of the talk is to assess how well simple topographical flow is represented by WRF-LES and the current version of WFDS. If sufficient progress has been made prior to the meeting then the importance of the discrepancies between the predicted and measured winds, in terms of simulated fire behavior, will be examined.
Interpreting high time resolution galactic cosmic ray observations in a diffusive context
NASA Astrophysics Data System (ADS)
Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.
2009-12-01
We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.
Warning signals are under positive frequency-dependent selection in nature
Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu
2016-01-01
Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416
Anatomical considerations of fascial release in ulnar nerve transposition: a concept revisited.
Mahan, Mark A; Gasco, Jaime; Mokhtee, David B; Brown, Justin M
2015-11-01
Surgical transposition of the ulnar nerve to alleviate entrapment may cause otherwise normal structures to become new sources of nerve compression. Recurrent or persistent neuropathy after anterior transposition is commonly attributable to a new distal compression. The authors sought to clarify the anatomical relationship of the ulnar nerve to the common aponeurosis of the humeral head of the flexor carpi ulnaris (FCU) and flexor digitorum superficialis (FDS) muscles following anterior transposition of the nerve. The intermuscular septa of the proximal forearm were explored in 26 fresh cadaveric specimens. The fibrous septa and common aponeurotic insertions of the flexor-pronator muscle mass were evaluated in relation to the ulnar nerve, with particular attention to the effect of transposition upon the nerve in this region. An intermuscular aponeurosis associated with the FCU and FDS muscles was present in all specimens. Transposition consistently resulted in angulation of the nerve during elbow flexion when this fascial septum was not released. The proximal site at which the nerve began to traverse this fascial structure was found to be an average of 3.9 cm (SD 0.7 cm) from the medial epicondyle. The common aponeurosis encountered between the FDS and FCU muscles represents a potential site of posttransposition entrapment, which may account for a subset of failed anterior transpositions. Exploration of this region with release of this structure is recommended to provide an unconstrained distal course for a transposed ulnar nerve.
Burke, F J T; Ravaghi, V; Mackenzie, L; Priest, N; Falcon, H C
2017-04-21
Aim To assess the performance and thereby the progress of the FDs when they carried out a number of simulated clinical exercises at the start and at the end of their FD year.Methods A standardised simulated clinical restorative dentistry training exercise was carried out by a group of 61 recently qualified dental graduates undertaking a 12 months' duration foundation training programme in England, at both the start and end of the programme. Participants completed a Class II cavity preparation and amalgam restoration, a Class IV composite resin restoration and two preparations for a porcelain-metal full crown. The completed preparations and restorations were independently assessed by an experienced consultant in restorative dentistry, using a scoring system based on previously validated criteria. The data were subjected to statistical analysis.Results There was wide variation in individual performance. Overall, there was a small but not statistically significant improvement in performance by the end of the programme. A statistically significant improvement was observed for the amalgam preparation and restoration, and, overall, for one of the five geographical sub-groups in the study. Possible reasons for the variable performance and improvement are discussed.Conclusions There was variability in the performance of the FDs. The operative performance of FDs at the commencement and end of their FD year indicated an overall moderately improved performance over the year and a statistically significant improvement in their performance with regard to amalgam restoration.
Czachowski, Slawomir; Pawlikowska, Teresa
2011-08-01
The establishment of family medicine (FM) in Poland following political reform. To describe family doctors' (FD) experiences during the introduction of FM. A qualitative study of 25 FDs in Poland, using thematic analysis of semi-structured interviews. Open-structured narrative-based interviews with five FDs were then used to deepen understanding of the major emergent themes. Fifteen of 25 had a different initial specialization to FM; 10 of 25 overseas work experience. Many doctors were driven by personal circumstances to engage with this new discipline, which provided a better fit with their life circumstances and a chance to escape from hierarchical structures characterizing the old regime. Personal experience of role models helped embrace FM, whereas adherence to ingrained biomedical approaches led to difficulty with exposure to common problems and could facilitate burnout. Shifting relationships in the reformed system caused tensions between primary and secondary care. While relationships with patients and specialists were being renegotiated, the concept of an independent FD practice surfaced. We observed that the most serious problems that the doctors encountered were circumstances related to the former health care system, in contrast to any lack of professional skills. This is a rare qualitative study exploring Polish doctors' perspectives of the health care reform after the collapse of communism in Central and Eastern Europe. This analysis of newly qualified FDs has provided an insight into the authentic experiences, and motivation of grass roots FM pioneers in Poland.
Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai
2013-01-01
Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503
Ishii, Yoko; Miyashita, Mitsunori; Sato, Kazuki; Ozawa, Taketoshi
2012-02-01
The aim of this study was to develop a tool to measure the family's difficulties in caring for cancer patients at the end of life at home: Family's Difficulty Scale in end-of-life home care (FDS). The draft of the FDS was derived from a pilot interview survey and literature reviews. The questionnaires were sent to 395 bereaved family caregivers whose family members were patients with terminal cancer receiving home service. We obtained 306 responses (response rate, 81%). Factor analysis resulted in 29 items and 8 factors: Burden of Care, Concerns about Home Care Doctor, Balance of Work and Care, Patient's Pain and Condition, Concerns about Visiting Nurse, Concerns about Home Care Service, Relationship between Family Caregivers and their Families, and Funeral Preparations. The cumulative rate of contribution was 71.8%. Cronbach coefficient α for the FDS was 0.73-0.75; the intraclass correlation coefficient in the test-retest examination was 0.75-0.85. Evidence for construct validity was confirmed by convergent and divergent validity. Concurrent validity was confirmed by significant correlations between identified factors and concurrent measures. The validity and reliability of this new instrument were confirmed. This scale should help home care providers to assess and focus on family difficulties and provide individualized care for the family who cares for a patient with terminal cancer at home.
Design of analytical failure detection using secondary observers
NASA Technical Reports Server (NTRS)
Sisar, M.
1982-01-01
The problem of designing analytical failure-detection systems (FDS) for sensors and actuators, using observers, is addressed. The use of observers in FDS is related to the examination of the n-dimensional observer error vector which carries the necessary information on possible failures. The problem is that in practical systems, in which only some of the components of the state vector are measured, one has access only to the m-dimensional observer-output error vector, with m or = to n. In order to cope with these cases, a secondary observer is synthesized to reconstruct the entire observer-error vector from the observer output error vector. This approach leads toward the design of highly sensitive and reliable FDS, with the possibility of obtaining a unique fingerprint for every possible failure. In order to keep the observer's (or Kalman filter) false-alarm rate under a certain specified value, it is necessary to have an acceptable matching between the observer (or Kalman filter) models and the system parameters. A previously developed adaptive observer algorithm is used to maintain the desired system-observer model matching, despite initial mismatching or system parameter variations. Conditions for convergence for the adaptive process are obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors, while accurate and fast parameter identification, in both deterministic and stochastic cases, is obtained.
NASA Astrophysics Data System (ADS)
Davies, R. D.; Dickinson, C.; Banday, A. J.; Jaffe, T. R.; Górski, K. M.; Davis, R. J.
2006-08-01
Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here, we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three `standard' templates. The free-free emission of the diffuse ionized gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000 K. This is inconsistent with estimates from Galactic HII regions although a variation in the derived ratio of Hα to free-free intensity by a factor of ~2 is also found from region to region. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied. The anomalous emission correlates well with the Finkbeiner, Davis & Schlegel model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60 GHz, of β ~ -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8 × Tn. We find a preferred value n ~ 1.6, although there is a scatter from region to region. Nevertheless, the preferred index drops to zero at higher frequencies where the thermal dust emission dominates. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a synchrotron component correlated with dust. The importance of these results for the correction of cosmic microwave background data for Galactic foreground emission is discussed.
GCR Modulation by Small-Scale Features in the Interplanetary Medium
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.
2007-12-01
In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.
Bs and Ds decay constants in three-flavor lattice QCD.
Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko
2004-04-23
Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection
Santoyo-Ramón, Jose Antonio; Cano-García, Jose Manuel
2016-01-01
During the last years, many research efforts have been devoted to the definition of Fall Detection Systems (FDSs) that benefit from the inherent computing, communication and sensing capabilities of smartphones. However, employing a smartphone as the unique sensor in a FDS application entails several disadvantages as long as an accurate characterization of the patient’s mobility may force to transport this personal device on an unnatural position. This paper presents a smartphone-based architecture for the automatic detection of falls. The system incorporates a set of small sensing motes that can communicate with the smartphone to help in the fall detection decision. The deployed architecture is systematically evaluated in a testbed with experimental users in order to determine the number and positions of the sensors that optimize the effectiveness of the FDS, as well as to assess the most convenient role of the smartphone in the architecture. PMID:27930736
Analysis of a Smartphone-Based Architecture with Multiple Mobility Sensors for Fall Detection.
Casilari, Eduardo; Santoyo-Ramón, Jose Antonio; Cano-García, Jose Manuel
2016-01-01
During the last years, many research efforts have been devoted to the definition of Fall Detection Systems (FDSs) that benefit from the inherent computing, communication and sensing capabilities of smartphones. However, employing a smartphone as the unique sensor in a FDS application entails several disadvantages as long as an accurate characterization of the patient's mobility may force to transport this personal device on an unnatural position. This paper presents a smartphone-based architecture for the automatic detection of falls. The system incorporates a set of small sensing motes that can communicate with the smartphone to help in the fall detection decision. The deployed architecture is systematically evaluated in a testbed with experimental users in order to determine the number and positions of the sensors that optimize the effectiveness of the FDS, as well as to assess the most convenient role of the smartphone in the architecture.
Parenting skills and family support programs for drug-abusing mothers.
Kumpfer, Karol L; Fowler, Melissa A
2007-04-01
Children born to drug-using mothers can suffer from fetal alcohol or drug syndrome (FAS/FDS) or fetal alcohol or drug effect (FAE/FDE). Such children have a greater likelihood of developing acute or chronic physical, cognitive and behavioral problems. In-utero exposure to tobacco, alcohol or drugs impact on the developing fetus and, after birth, the family environment and family system exert effects on the infants and children of substance-abusing parents. Evidence-based prevention and maternal drug treatment programs focus on enhancing parental childcaring abilities, supporting parent-child attachment and encouraging family support systems to improve children's health and cognitive outcomes. FAS/FDS prevention programs, as well as selective and indicated prenatal and postnatal interventions, can improve the support given both to mother and to child, and evidence-based, in-home parenting and family-skills-training approaches are particularly useful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xi; Feng, Xueshang; Potgieter, Marius S.
Based on the reduced diffusion mechanism for producing Forbush decreases (Fds) in the heliosphere, we constructed a three-dimensional (3D) diffusion barrier, and by incorporating it into a stochastic differential equation (SDE) based time-dependent, cosmic-ray transport model, a 3D numerical model for simulating Fds is built and applied to a period of relatively quiet solar activity. This SDE model generally corroborates previous Fd simulations concerning the effects of the solar magnetic polarity, the tilt angle of the heliospheric current sheet (HCS), and cosmic-ray particle energy. Because the modulation processes in this 3D model are multi-directional, the barrier’s geometrical features affect themore » intensity profiles of Fds differently. We find that both the latitudinal and longitudinal extent of the barrier have relatively fewer effects on these profiles than its radial extent and the level of decreased diffusion inside the disturbance. We find, with the 3D approach, that the HCS rotational motion causes the relative location from the observation point to the HCS to vary, so that a periodic pattern appears in the cosmic-ray intensity at the observing location. Correspondingly, the magnitude and recovery time of an Fd change, and the recovering intensity profile contains oscillation as well. Investigating the Fd magnitude variation with heliocentric radial distance, we find that the magnitude decreases overall and, additionally, that the Fd magnitude exhibits an oscillating pattern as the radial distance increases, which coincides well with the wavy profile of the HCS under quiet solar modulation conditions.« less
Raouf, Hoda Abdel; Kader, Ghada Abdel; Jaradat, Ahmed; Dharap, Amol; Fadel, Raouf; Salem, Abdel Halim
2013-07-01
The palmaris longus (PL) is one of the most variable muscles in the human body. Racial differences in its variation have been documented. Several studies have attempted to correlate PL absence with other anatomical variations. This study was conducted to determine the prevalence of absence of PL, correlate it with gender and body side and to determine its association with other anatomical variations in the Egyptian population. The presence of PL was clinically determined in 386 Egyptians using the standard technique. All subjects were examined for the presence of the flexor digitorum superficialis (FDS) to the fifth finger. Allen's test was done to assess the completeness of the superficial palmar arch (SPA). The overall prevalence of absence of the PL in Egyptian subjects was 50.8%. There was no significant difference in PL absence with regard to the body side but a significant difference was seen as regards gender and when bilateral absence of PL was compared to its unilateral absence. Absence of FDS tendon to the fifth finger was seen in 1.3% subjects. There was no association between the absence of the FDS tendon to the fifth finger and either presence or absence of PL and also between the absence of PL and the incompleteness of SPA in both genders. In conclusion, the prevalence of absence of PL in the Egyptian population represents one of the highest rates of absence to be reported for this muscle, which is significantly different from that in other ethnic groups. Copyright © 2013 Wiley Periodicals, Inc.
Chodzyński, Kamil J; Eker, Omer F; Vanrossomme, Axel E; de Sousa, Daniel Ribeiro; Coussement, Grégory; Vanhamme, Luc; Dubois, Frank; Bonafé, Alain; Chopard, Bastien; Courbebaisse, Guy; Zouaoui Boudjeltia, Karim
2016-12-08
Most intracranial aneurysms morphologic studies focused on characterization of size, location, aspect ratio, relationship to the surrounding vasculature and hemodynamics. However, the spatial orientation with respect to the gravity direction has not been taken into account although it could trigger various hemodynamic conditions. The present work addresses this possibility. It was divided in two parts: 1) the orientations of 18, 3D time-of-flight MRI (3D TOF MRI), scans of saccular aneurysms were analyzed. This investigation suggested that there was no privileged orientation for cerebral aneurysms. The aneurysms were oriented in the brain as follows: 9 - down, 9 - up; 11 - right, 7 - left; 6 - front, 12 - back. 2) Based on these results, subsidiary in vitro experiments were performed, analyzing the behavior of red blood cells (RBCs) within a silicone model of aneurysm before and after flow diverter stent (FDS) deployment in the parent vessel. These experiments used a test bench that reproduces physiological pulsatile flow conditions for two orientations: an aneurysm sack pointing either up (opposite to gravitational force) and down (along the gravitational force). The results showed that the orientation of an aneurysm significantly affects the intra-aneurysmal RBCs behavior after stenting, and therefore that gravity can affect the intra-aneurysm behavior of RBCs. This suggests that the patient׳s aneurysm orientation could impact the outcome of the FDS treatment. The implementation of this effect in patient-specific numerical and preoperative decision support techniques could contribute to better understand the intrasaccular biological and hemodynamic events induced by FDS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Retrospective Study of 383 Cases of Fibro-Osseous Lesions of the Jaws.
Kato, Camila de Nazaré Alves de Oliveira; Nunes, Laiz Fernandes Mendes; Chalub, Loliza Luiz Figueiredo Houri; Etges, Adriana; Silva, Tarcília Aparecida; Mesquita, Ricardo Alves
2018-05-10
The aims of this study were to describe the clinical and radiologic features of 383 fibro-osseous lesions (FOLs) from an oral pathology reference service in Brazil and to compare the findings with previous studies. The hypothesis of the study was that the most common type of FOL would differ from other investigations. We conducted a descriptive and retrospective study with review of the records of the clinical and biopsy services (1990 to 2015). All records of the patients included showed a definitive diagnosis of FOL. The primary outcome variable was the type of FOL, and the predictor variables were gender, age, ethnicity, location, and clinical and radiologic characteristics. Descriptive analyses and χ 2 tests were performed. The P value was set at .05. From the 27,998 records available, 383 showed FOLs, with 187 (48.8%) being cemento-osseous dysplasias (CODs), 103 (26.9%) being fibrous dysplasias (FDs), and 93 (24.3%) being ossifying fibromas (OFs). The mean age of the patients was 38.5 ± 17.5 years. CODs presented a predilection for female gender (n = 314, 82.0%), African descent (n = 134, 71.6%), and the mandible (n = 248, 64.6%). The most common radiologic feature was a mixed radiolucent-radiopaque image (n = 149, 51.7%). FDs and OFs were commonly diagnosed during the first and second decades of life (P < .001), whereas CODs were more frequently diagnosed beyond the third decade (P < .001). Secondary osteomyelitis was more significantly observed in CODs (P < .001) than in FDs and OFs. Swelling was more frequently reported for FDs and OFs than for CODs (P < .001). CODs were the most frequently observed FOLs in this Brazilian population. Female patients, patients of African descent, and patients with mandibular localization were most commonly affected by these conditions. The most common type of FOL differed from that in similar case reports or series from various geographic locations. It is believed that the data source (clinical and/or biopsy services) can directly influence the outcome. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lage, Nicholas Alexander
Experimentation and Computational modeling of non-thermally thin samples of poly(methyl methacrylate) (PMMA) burning in a Narrow Channel Apparatus (NCA) was conducted. The Narrow Channel Apparatus is used to replicate a microgravity environment by flowing of mixtures of nitrogen and oxygen through a narrow gap to suppress buoyancy above the burning sample. A new NCA was built, and experiments were conducted using it to provide the empirical data presented in this thesis. Samples of PMMA were burned, with thicknesses of 3, 5, and 10 mm, with an opposed-flow mean velocity of 15 cm/s and a 21% oxygen concentration. Flame spread rates were obtained from tracked flame positions. Thermocouples were embedded in the top and bottom surfaces of some of the samples to measure surface temperatures. Using Fire Dynamics Simulator (FDS), version 6.2.0, coupled with Gpyro, a two-dimensional model was developed for non-thermally thin samples of PMMA that are burned in the NCA. A 5 mm gap height was used as well as a laminar, parabolic flow at the inlet. Direct numerical simulation (DNS) was set. Finite rate kinetics were used to model the pyrolysis and combustion reactions. Complete combustion was assumed. Simulations with fuel thicknesses of 1, 3, 5, and 10 mm were run, under the same conditions as the experiment. A comparison between one-dimensional and two-dimensional heat conduction within the sample was made to show the effect the heat transfer parallel to flame propagation has on flame spread rates and solid-phase temperature profiles. A comparison between mica and an adiabatic plane set beneath the PMMA was also made as well as the length of time the sample is exposed to the ignition source. Through comparison of the model with the experiment, it was found that the flame spread rates of the model showed unrealistic trends with thickness. An investigation was completed with the aid of an energy balance as well as graphs, such as equivalence ratios, surface temperatures, surface heat fluxes, fuel vapor mass fluxes, etc., that were plotted with respect to the flame position to find the source of the unrealistic trends, but conclusive evidence was never obtained.
Automation of closed environments in space for human comfort and safety
NASA Technical Reports Server (NTRS)
1990-01-01
The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three phases. The first phase is to research the ECLSS as a whole system and then concentrate efforts on the automation of a single subsystem. The AR subsystem was chosen for our focus. During the second phase, the system control process will then be applied to the AR subsystem.
Modeling of fire smoke movement in multizone garments building using two open source platforms
NASA Astrophysics Data System (ADS)
Khandoker, Md. Arifur Rahman; Galib, Musanna; Islam, Adnan; Rahman, Md. Ashiqur
2017-06-01
Casualty of garment factory workers from factory fire in Bangladesh is a recurring tragedy. Smoke, which is more fatal than fire itself, often propagates through different pathways from lower to upper floors during building fire. Among the toxic gases produced from a building fire, carbon monoxide (CO) can be deadly, even in small amounts. This paper models the propagation and transportation of fire induced smoke (CO) that resulted from the burning of synthetic polyester fibers using two open source platforms, CONTAM and Fire Dynamics Simulator (FDS). Smoke migration in a generic multistoried garment factory building in Bangladesh is modeled using CONTAM where each floor is compartmentalized by different zones. The elevator and stairway shafts are modeled by phantom zones to simulate contaminant (CO) transport from one floor to upper floors. FDS analysis involves burning of two different stacks of polyester jacket of six feet height and with a maximum heat release rate per unit area of 1500kw/m2 over a storage area 50m2 and 150m2, respectively. The resulting CO generation and removal rates from FDS are used in CONTAM to predict fire-borne CO propagation in different zones of the garment building. Findings of the study exhibit that the contaminant flow rate is a strong function of the position of building geometry, location of initiation of fire, amount of burnt material, presence of AHU and contaminant generation and removal rate of CO from the source location etc. The transport of fire-smoke in the building Hallways, stairways and lifts are also investigated in detail to examine the safe egress of the occupants in case of fire.
Zużewicz, Krystyna; Roman-Liu, Danuta; Konarska, Maria; Bartuzi, Paweł; Matusiak, Krzysztof; Korczak, Dariusz; Lozia, Zbigniew; Guzek, Marek
2013-10-01
The aim of the study was to verify whether simultaneous responses from the muscular and circulatory system occur in the driver's body under simulated conditions of a crash threat. The study was carried out in a passenger car driving simulator. The crash was included in the driving test scenario developed in an urban setting. In the group of 22 young male subjects, two physiological signals - ECG and EMG were continuously recorded. The length of the RR interval in the ECG signal was assessed. A HRV analysis was performed in the time and frequency domains for 1-minute record segments at rest (seated position), during undisturbed driving as well as during and several minutes after the crash. For the left and right side muscles: m. trapezius (TR) and m. flexor digitorum superficialis (FDS), the EMG signal amplitude was determined. The percentage of maximal voluntary contraction (MVC) was compared during driving and during the crash. As for the ECG signal, it was found that in most of the drivers changes occurred in the parameter values reflecting HRV in the time domain. Significant changes were noted in the mean length of RR intervals (mRR). As for the EMG signal, the changes in the amplitude concerned the signal recorded from the FDS muscle. The changes in ECG and EMG were simultaneous in half of the cases. Such parameters as mRR (ECG signal) and FDS-L amplitude (EMG signal) were the responses to accident risk. Under simulated conditions, responses from the circulatory and musculoskeletal systems are not always simultaneous. The results indicate that a more complete driver's response to a crash in road traffic is obtained based on parallel recording of two physiological signals (ECG and EMG).
Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P
2006-03-17
The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.
Modeling and Analysis of Realistic Fire Scenarios in Spacecraft
NASA Technical Reports Server (NTRS)
Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.
2015-01-01
An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).
Kshirsagar, Nilima A; Gogtay, N J; Garg, B S; Deshmukh, P R; Rajgor, D D; Kadam, V S; Thakur, P A; Gupta, A; Ingole, N S; Lazdins-Helds, J K
2017-10-01
Lymphatic filariasis (LF) affects 73 countries, causes morbidity and impedes socioeconomic development. We had found no difference in safety and micro (Mf) and macro filarial action of single-dose diethylcarbamazine (DEC) and DEC + albendazole (ABZ) in an F01 study done in India (year 2000). There was a programmatic need to evaluate safety and efficacy of multiple annual treatments (F02). Subjects (155) from the F01 study, meeting inclusion-exclusion criteria, were enrolled in F02 and treated with further two annual doses of DEC or DEC + ABZ. Efficacy was evaluated for Mf positivity by peripheral smear (PS) and nucleopore (NP) filter, circulating filarial antigen (CFA) and filarial dance sign (FDS) positivity and Mf count at yearly follow-up. Safety was assessed for 5 days after drug administration. Total of 139 subjects evaluated for efficacy (69 DEC and 70 DEC + ABZ group). Mf positivity prevalence declined progressively by 95% (PS), 66% (NP), and 95% (PS) and 86% (NP); CFA positivity prevalence declined by 15% and 9%; FDS by 100% each; Mf count declined by 75.5 and 76.9% with three annual treatment of DEC and DEC + ABZ, respectively. Addition of ABZ did not show any advantage over DEC given as three annual rounds for LF. DEC and DEC + ABZ were well tolerated. There was no correlation between result of CFA and FDS, (both claimed to be indicative of adult worm). Analysis of published studies and our data indicate that macrofilaricidal effect of DEC/DEC + ABZ may be seen in children and not adults, with three or more annual dosing.
Effect of Low-Frequency rTMS and NMES on Subacute Unilateral Hemispheric Stroke With Dysphagia
Lim, Kil-Byung; Lee, Hong-Jae; Yoo, Jeehyun
2014-01-01
Objective To investigate the effect of low-frequency repetitive transcranial magnetic stimulation (rTMS) and neuromuscular electrical stimulation (NMES) on post-stroke dysphagia. Methods Subacute (<3 months), unilateral hemispheric stroke patients with dysphagia were randomly assigned to the conventional dysphagia therapy (CDT), rTMS, or NMES groups. In rTMS group, rTMS was performed at 100% resting motor threshold with 1 Hz frequency for 20 minutes per session (5 days per week for 2 weeks). In NMES group, electrical stimulation was applied to the anterior neck for 30 minutes per session (5 days per week for 2 weeks). All three groups were given conventional dysphagia therapy for 4 weeks. We evaluated the functional dysphagia scale (FDS), pharyngeal transit time (PTT), the penetration-aspiration scale (PAS), and the American Speech-Language Hearing Association National Outcomes Measurement System (ASHA NOMS) swallowing scale at baseline, after 2 weeks, and after 4 weeks. Results Forty-seven patients completed the study; 15 in the CDT group, 14 in the rTMS group, and 18 in the NMES group. Mean changes in FDS and PAS for liquid during first 2 weeks in the rTMS and NMES groups were significantly higher than those in the CDT group, but no significant differences were found between the rTMS and NMES group. No significant difference in mean changes of FDS and PAS for semi-solid, PTT, and ASHA NOMS was observed among the three groups. Conclusion These results indicated that both low-frequency rTMS and NMES could induce early recovery from dysphagia; therefore, they both could be useful therapeutic options for dysphagic stroke patients. PMID:25379488
Potosnak, Mark J; Lestourgeon, Lauren; Nunez, Othon
2014-05-15
Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments. Copyright © 2014 Elsevier B.V. All rights reserved.
Numerical simulation of steady and unsteady asymmetric vortical flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.
Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K
NASA Astrophysics Data System (ADS)
Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying
2014-12-01
China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.
POMC neurons in heat: A link between warm temperatures and appetite suppression.
Vicent, Maria A; Mook, Conor L; Carter, Matthew E
2018-05-01
When core body temperature increases, appetite and food consumption decline. A higher core body temperature can occur during exercise, during exposure to warm environmental temperatures, or during a fever, yet the mechanisms that link relatively warm temperatures to appetite suppression are unknown. A recent study in PLOS Biology demonstrates that neurons in the mouse hypothalamus that express pro-opiomelanocortin (POMC), a neural population well known to suppress food intake, also express a temperature-sensitive ion channel, transient receptor potential vanilloid 1 (TRPV1). Slight increases in body temperature cause a TRPV1-dependent increase in activity in POMC neurons, which suppresses feeding in mice. Taken together, this study suggests a novel mechanism linking body temperature and food-seeking behavior.
NASA Astrophysics Data System (ADS)
Bornand, Garrett Randall
Fire safety is an important part of engineering when human lives are at stake. From everyday homes to spacecraft that can cost hundreds of millions of dollars. The research in this thesis attempts to provide scientific evidence that the apparatus in question successfully simulates microgravity and can possibly replace NASA's current test method for spacecraft fire safety. Flame spread tests were conducted with thermally thick and thermally thin polymethylmethacrylate (PMMA) samples to study flame spread behavior in response to environmental changes. The tests were conducted using the San Diego State University Narrow Channel Apparatus (SDSU NCA) as well as within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS). The SDSU NCA can suppress buoyant flow in horizontally spreading flames, and is currently being investigated as a possible replacement or complement to NASA's current material flammability test standard for non-metallic solids, NASA-STD-(I)-6001B Test 1. The buoyant suppression attained in the NCA allows tests to be conducted in a simulated microgravity environment-a characteristic that NASA's Test 1 lacks since flames present in Test 1 are driven by buoyant flows. The SDSU NCA allows for tests to be conducted at various opposed flow oxidizer velocities, oxygen percent by volume, and total pressure to mimic various spacecraft and habitat atmospheres. Tests were conducted at 1 atm pressure, thin fuel thickness of 50 and 75 microns, thick fuel thickness ranging from 3 mm to 5.6 mm, opposed oxidizer velocity ranging from 10 to 25 cm/s, and oxygen concentration by volume at 21, 30, and 50 percent. The simulated microgravity flame spread results were then compared to true microgravity experiments including; testing conducted on the International Space Station (ISS) under the Burning and Suppression of Solids (BASS) research, NASA's 5.2 second Drop Tower, and Micro-Gravity Laboratory's (MGLAB) 4.5 second Drop Tower. Data was also compared to results found by Michigan State University's NCA. Flame spread results from the SDSU NCA compare closely to that of the other experimental techniques. Additionally, an infrared camera and species concentration sensors were added to the SDSU NCA and initial results are provided. Fire Dynamics Simulator (FDS) was used to model the combustion of PMMA within the SDSU NCA. Both thin and thick fuel beds were simulated and the numerical results were compared to experimental data. The simulation was then used to determine various results that cannot easily be found with experimentation, including how effectively the NCA simulates microgravity under certain environmental conditions, gas and fuel bed temperatures, heat fluxes, species concentrations, pyrolysis rate, and other various data. The simulation was found to give reasonable results and overall flame spread trends, but could be improved upon with further detailed kinetic parameter studies.
Seizure Suppression by High Temperature via cAMP Modulation in Drosophila.
Saras, Arunesh; Tanouye, Mark A
2016-10-13
Bang-sensitive (BS) Drosophila mutants display characteristic seizure-like activity (SLA) and paralysis after mechanical shock . After high-frequency electrical stimulation (HFS) of the brain, they generate robust seizures at very low threshold voltage. Here we report an important phenomenon, which effectively suppresses SLA in BS mutants. High temperature causes seizure suppression in all BS mutants (para bss1 , eas, sda) examined in this study. This effect is fully reversible and flies show complete recovery from BS paralysis once the temperature effect is nullified. High temperature induces an increase in seizure threshold after a brief pulse of heat shock (HS). By genetic screening, we identified the involvement of cAMP in the suppression of seizures by high temperature. We propose that HS induces adenylyl cyclase which in turn increases cAMP concentration which eventually suppresses seizures in mutant flies. In summary, we describe an unusual phenomenon, where high temperature can suppress SLA in flies by modulating cAMP concentration. Copyright © 2016 Saras and Tanouye.
Electrospinning of guar gum/corn starch blends
USDA-ARS?s Scientific Manuscript database
In this study, electrospun nanofibers were prepared for the first time from aqueous blends of guar gum (GG) and corn starch with amylose contents of 27.8% (CS28) and 50% (CS50). The fiber morphology and fiber diameter sizes (FDS) were correlated with solution rheology. The spinning solutions were pr...
24 CFR 902.33 - Financial reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... financial data to HUD on an annual basis. The financial information must be: (1) Prepared in accordance with...) Submitted electronically in the format prescribed by HUD using the Financial Data Schedule (FDS). (b) Annual... (a) of this section, a PHA shall provide one copy of the completed audit report package and the...
24 CFR 902.33 - Financial reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... financial data to HUD on an annual basis. The financial information must be: (1) Prepared in accordance with...) Submitted electronically in the format prescribed by HUD using the Financial Data Schedule (FDS). (b) Annual... (a) of this section, a PHA shall provide one copy of the completed audit report package and the...
24 CFR 902.33 - Financial reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... financial data to HUD on an annual basis. The financial information must be: (1) Prepared in accordance with...) Submitted electronically in the format prescribed by HUD using the Financial Data Schedule (FDS). (b) Annual... (a) of this section, a PHA shall provide one copy of the completed audit report package and the...
24 CFR 902.33 - Financial reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... financial data to HUD on an annual basis. The financial information must be: (1) Prepared in accordance with...) Submitted electronically in the format prescribed by HUD using the Financial Data Schedule (FDS). (b) Annual... (a) of this section, a PHA shall provide one copy of the completed audit report package and the...
From Foundation to Honours Degree: The Student Experience
ERIC Educational Resources Information Center
Greenbank, Paul
2007-01-01
Purpose: This paper aims to examine how students from foundation degrees (FDs) run at local further education colleges coped (academically and to a lesser extent psychologically) with the transition to a final year honours degree at a university. Design/methodology/approach: This paper is based on the experience of FD graduates who joined the…
ERIC Educational Resources Information Center
Czabanowska, Katarzyna; Klemenc-Ketis, Zalika; Potter, Amanda; Rochfort, Andree; Tomasik, Tomasz; Csiszar, Judit; Van den Bussche, Piet
2012-01-01
Objective: The aim of this study was to develop a comprehensive framework of quality improvement competencies for use in continuing professional development (CPD) and continuing medical education (CME) for European general practice/family medicine physicians (GPs/FDs). Methods: The study was carried out in three phases: literature review,…
Foundation Degrees: A Case for Greater Institutional Autonomy?
ERIC Educational Resources Information Center
Greenbank, Paul
2010-01-01
Foundation Degrees (FDs) were launched in 2000 by the Department for Education and Skills (DfES). One of the key reasons for their introduction was a belief that this new work-based higher education (HE) qualification could help meet employer demand for people with higher technician/associate professional-level skills. According to the Higher…
Students' Perceptions of Foundation Degrees
ERIC Educational Resources Information Center
Ooms, A.; Burke, L. M.; Marks-Maran, D. J.; Webb, M.; Cooper, D.
2012-01-01
In 2008 there were 87,339 people enrolled on foundation degrees (FDs) in the UK (Foundation Degree Forward, 2009), and educational institutions in the UK offered 1700 different foundation degrees in over 25 subjects, with nearly 900 more in development (Action on Access, 2010). In addition, student views are seen to be of importance, as…
Fatigue Damage Spectrum calculation in a Mission Synthesis procedure for Sine-on-Random excitations
NASA Astrophysics Data System (ADS)
Angeli, Andrea; Cornelis, Bram; Troncossi, Marco
2016-09-01
In many real-life environments, certain mechanical and electronic components may be subjected to Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic (sinusoidal) contributions, in particular sine tones due to some rotating parts of the system (e.g. helicopters, engine-mounted components,...). These components must be designed to withstand the fatigue damage induced by the “composed” vibration environment, and qualification tests are advisable for the most critical ones. In the case of an accelerated qualification test, a proper test tailoring which starts from the real environment (measured vibration signals) and which preserves not only the accumulated fatigue damage but also the “nature” of the excitation (i.e. sinusoidal components plus random process) is important to obtain reliable results. In this paper, the classic time domain approach is taken as a reference for the comparison of different methods for the Fatigue Damage Spectrum (FDS) calculation in case of Sine-on-Random vibration environments. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is proposed.
Zhao, Huaying; Fu, Yan; Glasser, Carla; Andrade Alba, Eric J; Mayer, Mark L; Patterson, George; Schuck, Peter
2016-01-01
The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors. DOI: http://dx.doi.org/10.7554/eLife.17812.001 PMID:27436096
NASA Technical Reports Server (NTRS)
Seale, R. H.
1979-01-01
The prediction of the SRB and ET impact areas requires six separate processors. The SRB impact prediction processor computes the impact areas and related trajectory data for each SRB element. Output from this processor is stored on a secure file accessible by the SRB impact plot processor which generates the required plots. Similarly the ET RTLS impact prediction processor and the ET RTLS impact plot processor generates the ET impact footprints for return-to-launch-site (RTLS) profiles. The ET nominal/AOA/ATO impact prediction processor and the ET nominal/AOA/ATO impact plot processor generate the ET impact footprints for non-RTLS profiles. The SRB and ET impact processors compute the size and shape of the impact footprints by tabular lookup in a stored footprint dispersion data base. The location of each footprint is determined by simulating a reference trajectory and computing the reference impact point location. To insure consistency among all flight design system (FDS) users, much input required by these processors will be obtained from the FDS master data base.
Yao, Xiyang; Ma, Junwei; Li, Haiying; Shen, Haitao; Lu, Xiaojun; Chen, Gang
2017-02-01
Background We evaluated the safety and efficiency of flow diverters (FDs) in treating small intracranial aneurysms (IAs). Materials and Methods We reviewed the literature published in PubMed and EMBASE. R for Project software was used to calculate the complete aneurysm occlusion rates, procedure-related neurologic mortality, procedure-related neurologic morbidity and procedure-related permanent morbidity. Results Ten observational studies were included in this analysis. The complete aneurysm occlusion rate was 84.23% (80.34%-87.76%), the procedure-related neurologic mortality was 0.87% (0.29%-1.74%), the procedure-related neurologic morbidity rate was 5.22% (3.62%-7.1%), the intracerebral haemorrhage rate was 1.42% (0.64%-2.49%), the ischemic rate was 2.35% (1.31%-3.68%), the subarachnoid haemorrhage rate was 0.03% (0%-0.32%) and the procedure-related permanent morbidity was 2.41% (0.81%-4.83%). Conclusions Treatment of small IAs with FDs may be correlated with high complete occlusion rates and low complication rates. Future long-term follow-up randomized trials will determine the optimal treatment for small IAs.
Hoffman, Amanda; Wu, Xiaotong; Wang, Jianjie; Brodeur, Amanda; Thomas, Rintu; Thakkar, Ravindra; Hadi, Halena; Glaspell, Garry P.; Duszynski, Molly; Wanekaya, Adam; DeLong, Robert K.
2017-01-01
Two-dimensional fluorescence difference spectroscopy (2-D FDS) was used to determine the unique spectral signatures of zinc oxide (ZnO), magnesium oxide (MgO), and 5% magnesium zinc oxide nanocomposite (5% Mg/ZnO) and was then used to demonstrate the change in spectral signature that occurs when physiologically important proteins, such as angiotensin-converting enzyme (ACE) and ribonuclease A (RNase A), interact with ZnO nanoparticles (NPs). When RNase A is bound to 5% Mg/ZnO, the intensity is quenched, while the intensity is magnified and a significant shift is seen when torula yeast RNA (TYRNA) is bound to RNase A and 5% Mg/ZnO. The intensity of 5% Mg/ZnO is quenched also when thrombin and thrombin aptamer are bound to the nanocomposite. These data indicate that RNA–protein interaction can occur unimpeded on the surface of NPs, which was confirmed by gel electrophoresis, and importantly that the change in fluorescence excitation, emission, and intensity shown by 2-D FDS may indicate specificity of biomolecular interactions. PMID:29244716
NASA Astrophysics Data System (ADS)
Tian, Fengling; Huang, Wei; Yang, Jidong; Li, Qin
In pH 3.25-3.35 Britton-Robinson (BR) buffer solution, albendazole (ABZ) could react with eosin Y (EY) to form a 1:1 ion-association complex, which not only results in the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS). Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 356 nm. The detection limit for ABZ were 21.51 ng mL-1 for the fluorophotometry, 6.93 ng mL-1 for the RRS method and 12.89 ng mL-1 for the FDS method. Among them, the RRS method had the highest sensitivity. The experimental conditions were optimized and effects of coexisting substances were evaluated. Meanwhile, the influences of coexisting substances were tested. The methods have been successfully applied to the determination of ABZ in capsules and human urine samples. The composition and structure of the ion-association complex and the reaction mechanism were discussed.
Xu, Jinxia; Bai, Zhangjun; Zu, Fanlin; Yan, Fanyong; Wei, Junfu; Zhang, Saihui; Luo, Yunmei
2018-07-05
A convenient, highly sensitive and reliable assay for 2,4,6‑trinitrophenol (TNP) and Fe (III) ion (Fe 3+ ) in the dual spectroscopic manner is developed based on novel carbon dots (CDs). The CDs with highly blue emitting fluorescent were easily prepared via the one-step potassium hydroxide-assisted reflux method from dextrin. The as-synthesized CDs exhibited the high crystalline quality, the excellent fluorescence characteristics with a high quantum yield of ~13.1%, and the narrow size distribution with an average diameter of 6.3±0.5nm. Fluorescence and frequency doubling scattering (FDS) spectra of CDs show the unique changes in the presence of TNP/Fe 3+ by different mechanism. The fluorescence of CDs decreased apparently in the presence of TNP via electron-transfer. Thus, after the experimental conditions were optimized, the linear range for detection TNP is 0-50μM, the detection limit was 19.1nM. With the addition of Fe 3+ , the FDS of CDs appeared to be highly sensitive with a quick response to Fe 3+ as a result of the change concentration of the scattering particle. The emission peak for FDS at 450nm was enhanced under the excitation wavelength at 900nm. The fluorescence response changes linearly with Fe 3+ concentration in the range of 8-40μM, the detection limits were determined to be 44.1nM. The applications of CDs were extended for the detection of TNP, Fe 3+ in real water samples with a high recovery. The results reported here may become the potential tools for the fast response of TNP and Fe 3+ in the analysis of environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Böbel, A.; Knapek, C. A.; Räth, C.
2018-05-01
Experiments of the recrystallization processes in two-dimensional complex plasmas are analyzed to rigorously test a recently developed scale-free phase transition theory. The "fractal-domain-structure" (FDS) theory is based on the kinetic theory of Frenkel. It assumes the formation of homogeneous domains, separated by defect lines, during crystallization and a fractal relationship between domain area and boundary length. For the defect number fraction and system energy a scale-free power-law relation is predicted. The long-range scaling behavior of the bond-order correlation function shows clearly that the complex plasma phase transitions are not of the Kosterlitz, Thouless, Halperin, Nelson, and Young type. Previous preliminary results obtained by counting the number of dislocations and applying a bond-order metric for structural analysis are reproduced. These findings are supplemented by extending the use of the bond-order metric to measure the defect number fraction and furthermore applying state-of-the-art analysis methods, allowing a systematic testing of the FDS theory with unprecedented scrutiny: A morphological analysis of lattice structure is performed via Minkowski tensor methods. Minkowski tensors form a complete family of additive, motion covariant and continuous morphological measures that are sensitive to nonlinear properties. The FDS theory is rigorously confirmed and predictions of the theory are reproduced extremely well. The predicted scale-free power-law relation between defect fraction number and system energy is verified for one more order of magnitude at high energies compared to the inherently discontinuous bond-order metric. It is found that the fractal relation between crystalline domain area and circumference is independent of the experiment, the particular Minkowski tensor method, and the particular choice of parameters. Thus, the fractal relationship seems to be inherent to two-dimensional phase transitions in complex plasmas. Minkowski tensor analysis turns out to be a powerful tool for investigations of crystallization processes. It is capable of revealing nonlinear local topological properties, however, still provides easily interpretable results founded on a solid mathematical framework.
Fernández-Arcos, Ana; Iranzo, Alex; Serradell, Mónica; Gaig, Carles; Guaita, Marc; Salamero, Manel; Santamaria, Joan
2017-04-01
To compare two electromyographic (EMG) montages, isolated mentalis muscle versus mentalis in combination with upper limb muscles in the baseline diagnostic video-polysomnography (V-PSG) of patients with idiopathic REM sleep behaviors disorder (IRBD) who eventually were diagnosed with a clinically defined neurodegenerative syndrome. Forty-nine patients were included. At baseline, diagnosis of RBD was based on a typical history of dream enactment behaviors plus V-PSG showing REM sleep with qualitative increased EMG activity and/or abnormal behaviors. Quantification of EMG activity (tonic, phasic and "any") in the mentalis and upper limb muscles (biceps brachii-BB, n = 36 or flexor digitorum superficialis-FDS, n = 13) was performed manually and compared with published cut-offs. Nine (18.4%) patients had either tonic or phasic EMG below the cut-offs for the isolated mentalis and four of them (11.1 %) also had values below the cut-off for the mentalis combined with BB. All 13 patients recorded with the FDS were above the mentalis combined with FDS cut-off. For the diagnosis of IRBD, sensitivity of isolated mentalis was 81.6% and of the combination of mentalis plus upper limb muscles was 91.8% (p = .03). Audiovisual analysis showed abnormal REM sleep behaviors in all nine patients with values below the cut-offs. Quantification of EMG activity in the upper limbs combined with the mentalis increases the ability to diagnose IRBD when compared with the isolated measurement of the mentalis. Detection of typical abnormal behaviors during REM sleep with audiovisual analysis is essential for the diagnosis of IRBD in patients with EMG values below the published cut-offs. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Primary Motor Cortex Representation of Handgrip Muscles in Patients with Leprosy
Rangel, Maria Luíza Sales; Sanchez, Tiago Arruda; Moreira, Filipe Azaline; Hoefle, Sebastian; Souto, Inaiacy Bittencourt; da Cunha, Antônio José Ledo Alves
2015-01-01
Background Leprosy is an endemic infectious disease caused by Mycobacterium leprae that predominantly attacks the skin and peripheral nerves, leading to progressive impairment of motor, sensory and autonomic function. Little is known about how this peripheral neuropathy affects corticospinal excitability of handgrip muscles. Our purpose was to explore the motor cortex organization after progressive peripheral nerve injury and upper-limb dysfunction induced by leprosy using noninvasive transcranial magnetic stimulation (TMS). Methods In a cross-sectional study design, we mapped bilaterally in the primary motor cortex (M1) the representations of the hand flexor digitorum superficialis (FDS), as well as of the intrinsic hand muscles abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM). All participants underwent clinical assessment, handgrip dynamometry and motor and sensory nerve conduction exams 30 days before mapping. Wilcoxon signed rank and Mann-Whitney tests were performed with an alpha-value of p<0.05. Findings Dynamometry performance of the patients’ most affected hand (MAH), was worse than that of the less affected hand (LAH) and of healthy controls participants (p = 0.031), confirming handgrip impairment. Motor threshold (MT) of the FDS muscle was higher in both hemispheres in patients as compared to controls, and lower in the hemisphere contralateral to the MAH when compared to that of the LAH. Moreover, motor evoked potential (MEP) amplitudes collected in the FDS of the MAH were higher in comparison to those of controls. Strikingly, MEPs in the intrinsic hand muscle FDI had lower amplitudes in the hemisphere contralateral to MAH as compared to those of the LAH and the control group. Taken together, these results are suggestive of a more robust representation of an extrinsic hand flexor and impaired intrinsic hand muscle function in the hemisphere contralateral to the MAH due to leprosy. Conclusion Decreased sensory-motor function induced by leprosy affects handgrip muscle representation in M1. PMID:26203653
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
ERIC Educational Resources Information Center
Thurgate, Claire; MacGregor, Janet
2009-01-01
Foundation degrees (FDs) involve the fusion of academic and vocational paths in higher education (HE) qualifications; the challenge for academics and employers is the credible assessment of the student's workplace learning. Focusing to the workplace enables participants to learn from their daily routines encountered at work. The challenge is to…
Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications
ERIC Educational Resources Information Center
Pabon, Peter; Ternstrom, Sten; Lamarche, Anick
2011-01-01
Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…
ERIC Educational Resources Information Center
Simm, David; Marvell, Alan; Schaaf, Rebecca; Winlow, Heather
2012-01-01
Over the last decade, some UK Geography Departments have diversified their range of courses to offer Foundation degrees (Fds), providing students with alternative routes through higher education (HE). These courses are delivered either offsite at further education colleges (FECs), embedded within an undergraduate programme at higher education…
Superconductor-Insulator Transition in NbTiN Films
NASA Astrophysics Data System (ADS)
Burdastyh, M. V.; Postolova, S. V.; Baturina, T. I.; Proslier, T.; Vinokur, V. M.; Mironov, A. Yu.
2017-12-01
Experimental results indicating a direct disorder-induced superconductor-insulator transition in NbTiN thin films have been reported. It has been shown that an increase in the resistance per square in the normal state is accompanied by the suppression of the critical temperature of the superconducting transition T c according to the fermion mechanism of suppression of superconductivity by disorder. At the same time, the temperature of the Berezinskii-Kosterlitz-Thouless transition is completely suppressed at a nonzero critical temperature and, then, the ground state changes to insulating, which is characteristic of the boson model of suppression of superconductivity by disorder. It has been shown that the temperature dependences of the resistance of insulating films follow the Arrhenius activation law.
Towards a Pedagogy of Work-Based Learning: Perceptions of Work-Based Learning in Foundation Degrees
ERIC Educational Resources Information Center
Burke, Linda; Marks-Maran, Diane J.; Ooms, Ann; Webb, Marion; Cooper, Denise
2009-01-01
One of the features of foundation degrees (FDs) is the incorporation of work-based learning (WBL) into the curriculum. WBL is seen as an important part of vocational programmes and is described by Foundation Degrees Forward (FDF) as a potentially radical approach to connecting work with learning. The Quality Assurance Agency (QAA), in its…
1984-12-01
December 1984 APPROVED FOR PUBUC RELEASE; DISTRIBUTION UNLIMITED. U_ US ARMY *’ HUMAN ENGINEERING LABORATORY US ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN...INTRODUCTION A. Background In March 1982, the HELBAT ( Human Engineering Laboratory Battalion Artillery Test) Executive Committee agreed that the Ballistic...tactical equipment and its -. human operators. FOSCE mimicked the actions of the platoon forward observers that work for the FIST HQ while the FDS
Vortex-antivortex lattices in superconducting films with arrays of magnetic dots
NASA Astrophysics Data System (ADS)
Milosevic, M. V.; Peeters, F. M.
2004-03-01
Using the numerical approach within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of out-of-plane magnetized ferromagnetic dots (FD) deposited on top of it. The perturbation of the superconducting order parameter in the SC film as subject of the inhomogeneous magnetic field of the FDs is studied, and various vortex-antivortex configurations are observed, with net vorticity equal zero. In the case of a periodic array of magnetic disks, vortices are confined under the disks, while the antivortices form a rich spectra of lattice states. In the ground state, antivortices are arranged in the so-called matching configurations between the FDs, while other configurational varieties have higher energy. In the metastable regime, the states with fractional number of vortex-antivortex pairs per unit cell are found, some of which with strongly distorted vortex cores. The exact (anti)vortex structure depends on the size, thickness and magnetization of the magnetic dots, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ ^* . We discuss the further experimental implications, such as magnetic-field-induced superconductivity.
Pabon, Peter; Ternström, Sten; Lamarche, Anick
2011-06-01
To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the contour, is assessed and also is compared to density-based VRP averaging methods that use the overlap count. VRP contours can be usefully described and compared using FDs. The method also permits the visualization of the local covariation along the contour average. For example, the FD-based analysis shows that the population variance for ensembles of VRP contours is usually smallest at the upper left part of the VRP. To illustrate the method's advantages and possible further application, graphs are given that compare the averaged contours from different authors and recording devices--for normal, trained, and untrained male and female voices as well as for child voices. The proposed technique allows any VRP shape to be brought to the same uniform base. On this uniform base, VRP contours or contour elements coming from a variety of sources may be placed within the same graph for comparison and for statistical analysis.
NASA Astrophysics Data System (ADS)
Li, Chengze; Chang, Yaqing; Pang, Zhenguo; Ding, Jun; Ji, Nanjing
2015-03-01
Environmental conditions, including ambient temperature, play important roles in survival, growth development, and reproduction of the Japanese sea cucumber, Apostichopus japonicus. Low temperatures result in slowed growth and skin ulceration disease. In a previous study, we investigated the effect of low temperature on gene expression profiles in A. japonicus by suppression subtractive hybridization (SSH). Genes encoding Ferritin, Lysozyme, Hsp70, gp96, and AjToll were selected from a subtracted cDNA library of A. japonicus under acute cold stress. The transcriptional expression profiles of these genes were investigated in different tissues (coelomocyte, respiratory tree, intestine, longitudinal muscle) after exposure to acute and mild temperature dropping treatments. The results show that (1) the five cold-tolerance-related genes were found in all four tissues and the highest mRNA levels were observed in coelomocyte and respiratory tree; (2) under the temperature dropping treatments, three types of transcriptional regulation patterns were observed: primary suppression followed by up-regulation at -2°C, suppressed expression throughout the two treatments, and more rarely an initial stimulation followed by suppression; and (3) gene expression suppression was more severe under acute temperature dropping than under mild temperature dropping treatment. The five cold-tolerance-related genes that were distributed mainly in coelomocyte and respiratory tissues were generally down-regulated by low temperature stress but an inverse up-regulation event was found at the extreme temperature (-2°C).
Ventilation of Animal Shelters in Wildland Fire Scenarios
NASA Astrophysics Data System (ADS)
Bova, A. S.; Bohrer, G.; Dickinson, M. B.
2009-12-01
The effects of wildland fires on cavity-nesting birds and bats, as well as fossorial mammals and burrow-using reptiles, are of considerable interest to the fire management community. However, relatively little is known about the degree of protection afforded by various animal shelters in wildland fire events. We present results from our ongoing investigation, utilizing NIST’s Fire Dynamics Simulator (FDS) and experimental data, of the effectiveness of common shelter configurations in protecting animals from combustion products. We compare two sets of simulations with observed experimental results. In the first set, wind tunnel experiments on single-entry room ventilation by Larsen and Heiselberg (2008) were simulated in a large domain resolved into 10 cm cubic cells. The set of 24 simulations comprised all combinations of incident wind speeds of 1,3 and 5 m/s; angles of attack of 0, 45, 90 and 180 degrees from the horizontal normal to the entrance; and temperature differences of 0 and 10 degrees C between the building interior and exterior. Simulation results were in good agreement with experimental data, thus providing a validation of FDS code for further ventilation experiments. In the second set, a cubic simulation domain of ~1m on edge and resolved into 1 cm cubic cells, was set up to represent the experiments by Ar et al. (2004) of wind-induced ventilation of woodpecker cavities. As in the experiments, we simulated wind parallel and perpendicular to the cavity entrance with different mean forcing velocities, and monitored the rates of evacuation of a neutral-buoyancy tracer from the cavity. Simulated ventilation rates in many, though not all, cases fell within the range of experimental data. Reasons for these differences, which include vagueness in the experimental setup, will be discussed. Our simulations provide a tool to estimate the viability of an animal in a shelter as a function of the shelter geometry and the fire intensity. In addition to the above, we explore the role of turbulence and its effect on ventilation rates, especially in single-entrance shelters. The goal of this work is to provide engineering formulas to estimate the probable levels of harmful or irritating combustion products in animal shelters during wildland fires.
How Does the Political Nature of the Defense Acquisition Process Affect Cost Growth
2006-09-01
using the following equations. 100*% k k k BCWP COCO = (5) Where: k = the kth year of DAES reporting and, kKk BCWPACWPCO −= (6) The...F-16 270 F-35 Joint Strike Fighter (JSF) 6 FAAD C2I 64 FAAD NLOS Fiber Optic Guided-Missile 7 FBCB2 19 FDS 60 FFG-7 271 Future Aircraft Carrier
NASA Astrophysics Data System (ADS)
Florisbal, L. M.; Janasi, V. A.; Bitencourt, M. F.; Nardi, L. V. S.; Marteleto, N. S.
2018-04-01
The Florianópolis Dyke Swarm (FDS), one of the major dyke swarms belonging to the Early cretaceous (135-131 Ma) Paraná Magmatic Province, is largely dominated by high Sr-Ti-P basalts that are confirmed here as feeders of the unique Urubici (= Khumib) lavas of the Paraná and Edendeka lava piles on the basis of their age and geochemistry. Our study integrates field, petrographic, whole-rock geochemistry, and Sr-Nd-Pb isotope geochemistry of representative samples from three main areas of exposition (Santa Catarina Island, Garopaba and Pinheira beaches), thus encompassing the whole extension of the FDS. Compared to the Urubici lavas, the dykes have usually higher contents of LILE and LREE, more radiogenic Sr and Pb, and more unradiogenic Nd, features attributed to a more pronounced interaction with melts derived from the country rocks registered in the basic magmas that remained in the conduits. Some of these dykes show strongly interactive contacts that must be part of a wider zone of crustal melting, probably more developed at greater depths. Small volumes of intermediate to acidic rocks form the cores of some composite dykes, and correspond to products of fractional crystallization from Urubici basalts contaminated with high Rb/Sr, and U/Th crustal melts (probably derived from Neoproterozoic granites), as indicated by geochemical and Sr-Nd-Pb isotope data. The chemical and isotope signatures of the less contaminated FDS basalts and related Urubici lavas do not show clear evidence of inputs from primitive mantle, and seem heavily influenced by enriched mantle. This suggests that the mantle wedge that was affected by subduction during the Neoproterozoic may have been frozen and coupled to the base of the lithospheric plate where the Early cretaceous magmatism occurred. A control of previous tectonic limits on the sources of the Urubici basalts seems evident, since they seem to be related to the younger lithosphere from the South Domain, related to the Florianópolis Batholith, and no influence from the older "cratonic" lithosphere of the Central Domain can be identified in their feeders.
Effect of Electrical Stimulation of the Suprahyoid Muscles in Brain-Injured Patients with Dysphagia.
Beom, Jaewon; Oh, Byung-Mo; Choi, Kyoung Hyo; Kim, Won; Song, Young Jin; You, Dae Sang; Kim, Sang Jun; Han, Tai Ryoon
2015-08-01
The purpose of this study is to determine whether neuromuscular electrical stimulation of the suprahyoid muscle is effective compared to that of the infrahyoid muscle in brain-injured patients with dysphagia. A total of 132 patients with stroke, traumatic brain injury, or brain tumor in 2 university hospitals were allocated to 2 groups: those who received electrical stimulation therapy (EST) on the suprahyoid muscles (SM group, n = 66) and those who received EST with one pair of electrodes on the suprahyoid muscle and the other pair on the infrahyoid muscle (SI group, n = 66). Patients received 11.2 ± 3.4 sessions of electrical stimulation in the SM group and 11.9 ± 3.4 sessions in the SI group. The functional dysphagia scale (FDS), swallow function score (SFS), supraglottic penetration, and subglottic aspiration were measured using videofluoroscopic swallowing study. FDS scores decreased from 42.0 ± 19.1 to 32.3 ± 17.8 in the SM group and from 44.8 ± 17.4 to 32.9 ± 18.8 in the SI group by per-protocol (PP) analysis, and those decreased from 41.2 ± 20.9 to 34.5 ± 20.3 in the SM group and from 44.3 ± 19.1 to 35.7 ± 20.5 in the SI group by intention-to-treat (ITT) analysis, after electrical stimulation (p < 0.001 for each). SFSs increased from 3.3 ± 1.8 to 4.2 ± 1.6 in the SM group and from 2.8 ± 1.8 to 4.0 ± 1.8 in the SI group by PP analysis, and those increased from 3.3 ± 1.6 to 3.9 ± 1.6 in the SM group and from 2.8 ± 1.9 to 3.6 ± 2.0 in the SI group by ITT analysis, after electrical stimulation (p < 0.001, respectively). However, changes in FDS scores, SFSs, penetration, and aspiration were comparable between the SM and the SI groups. The results suggest that both SM and SI therapies induced similar improvements in swallowing function in brain-injured patients.
Hibernation in black bears: independence of metabolic suppression from body temperature.
Tøien, Øivind; Blake, John; Edgar, Dale M; Grahn, Dennis A; Heller, H Craig; Barnes, Brian M
2011-02-18
Black bears hibernate for 5 to 7 months a year and, during this time, do not eat, drink, urinate, or defecate. We measured metabolic rate and body temperature in hibernating black bears and found that they suppress metabolism to 25% of basal rates while regulating body temperature from 30° to 36°C, in multiday cycles. Heart rates were reduced from 55 to as few as 9 beats per minute, with profound sinus arrhythmia. After returning to normal body temperature and emerging from dens, bears maintained a reduced metabolic rate for up to 3 weeks. The pronounced reduction and delayed recovery of metabolic rate in hibernating bears suggest that the majority of metabolic suppression during hibernation is independent of lowered body temperature.
Genetically tunable M13 phage films utilizing evaporating droplets.
Alberts, Erik; Warner, Chris; Barnes, Eftihia; Pilkiewicz, Kevin; Perkins, Edward; Poda, Aimee
2018-01-01
This effort utilizes a genetically tunable system of bacteriophage to evaluate the effect of charge, temperature and particle concentration on biomaterial synthesis utilizing the coffee ring (CR) effect. There was a 1.6-3 fold suppression of the CR at higher temperatures while maintaining self-assembled structures of thin films. This suppression was observed in phage with charged and uncharged surface chemistry, which formed ordered and disordered assemblies respectively, indicating CR suppression is not dependent on short-range ordering or surface chemistry. Analysis of the drying process suggests weakened capillary flow at elevated temperatures caused CR suppression and could be further enhanced for controlled assembly for advanced biomaterials. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
NASA Technical Reports Server (NTRS)
1989-01-01
This pair of Voyager 2 images (FDS 11446.21 and 11448.10), two 591-s exposures obtained through the clear filter of the wide angle camera, show the full ring system with the highest sensitivity. Visible in this figure are the bright, narrow N53 and N63 rings, the diffuse N42 ring, and (faintly) the plateau outside of the N53 ring (with its slight brightening near 57,500 km).
B.L. Yashwanth; B. Shotorban; S. Mahalingam; C.W. Lautenberger; David Weise
2016-01-01
The effects of thermal radiation and moisture content on the pyrolysis and gas phase ignition of a solid fuel element containing high moisture content were investigated using the coupled Gpyro3D/FDS models. The solid fuel has dimensions of a typical Arctostaphylos glandulosa leaf which is modeled as thin cellulose subjected to radiative heating on...
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L
2018-01-01
Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP + oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids.
Santoyo-Ramón, José Antonio
2018-01-01
This paper describes a wearable Fall Detection System (FDS) based on a body-area network consisting of four nodes provided with inertial sensors and Bluetooth wireless interfaces. The signals captured by the nodes are sent to a smartphone which simultaneously acts as another sensing point. In contrast to many FDSs proposed by the literature (which only consider a single sensor), the multisensory nature of the prototype is utilized to investigate the impact of the number and the positions of the sensors on the effectiveness of the production of the fall detection decision. In particular, the study assesses the capability of four popular machine learning algorithms to discriminate the dynamics of the Activities of Daily Living (ADLs) and falls generated by a set of experimental subjects, when the combined use of the sensors located on different parts of the body is considered. Prior to this, the election of the statistics that optimize the characterization of the acceleration signals and the efficacy of the FDS is also investigated. As another important methodological novelty in this field, the statistical significance of all the results (an aspect which is usually neglected by other works) is validated by an analysis of variance (ANOVA). PMID:29642638
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes
2014-01-01
We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.
Gaudez, Clarisse; Cail, François
2016-11-01
This study compared muscular and postural stresses, performance and subject preference in women aged 18-40 years using a standard mouse, a vertical mouse and a slanted mouse in three different computer workstation positions. Four tasks were analysed: pointing, pointing-clicking, pointing-clicking-dragging and grasping-pointing the mouse after typing. Flexor digitorum superficialis (FDS) and extensor carpi radialis (ECR) activities were greater using the standard mouse compared to the vertical or slanted mouse. In all cases, the wrist position remained in the comfort zone recommended by standard ISO 11228-3. The vertical mouse was less comfortable and more difficult to use than the other two mice. FDS and ECR activities, shoulder abduction and wrist extension were greater when the mouse was placed next to the keyboard. Performance and subject preference were better with the unrestricted mouse positioning on the desktop. Grasping the mouse after typing was the task that caused the greatest stress. Practitioner Summary: In women, the slanted mouse and the unrestricted mouse positioning on the desktop provide a good blend of stresses, performance and preference. Unrestricted mouse positioning requires no keyboard, which is rare in practice. Placing the mouse in front of the keyboard, rather than next to it, reduced the physical load.
Guan, Xiaoqian; Chen, Shuai; Voon, Chia Pao; Wong, Kam-Bo; Tikkanen, Mikko; Lim, Boon L.
2018-01-01
Plant-type ferredoxins in Arabidopsis transfer electrons from the photosystem I to multiple redox-driven enzymes involved in the assimilation of carbon, nitrogen, and sulfur. Leaf-type ferredoxins also modulate the switch between the linear and cyclic electron routes of the photosystems. Recently, two novel ferredoxin homologs with extra C-termini were identified in the Arabidopsis genome (AtFdC1, AT4G14890; AtFdC2, AT1G32550). FdC1 was considered as an alternative electron acceptor of PSI under extreme ferredoxin-deficient conditions. Here, we showed that FdC1 could interact with some, but not all, electron acceptors of leaf-type Fds, including the ferredoxin-thioredoxin reductase (FTR), sulfite reductase (SiR), and nitrite reductase (NiR). Photoreduction assay on cytochrome c and enzyme assays confirmed its capability to receive electrons from PSI and donate electrons to the Fd-dependent SiR and NiR but not to the ferredoxin-NADP+ oxidoreductase (FNR). Hence, FdC1 and leaf-type Fds may play differential roles by channeling electrons from photosystem I to different downstream electron acceptors in photosynthetic tissues. In addition, the median redox potential of FdC1 may allow it to receive electrons from FNR in non-photosynthetic plastids. PMID:29670639
The effect of 630-nm light stimulation on the sEMG signal of forearm muscle
NASA Astrophysics Data System (ADS)
Yang, Dan D.; Hou, W. Sheng; Wu, Xiao Y.; Zheng, Xiao L.; Zheng, Jun; Jiang, Ying T.
2010-11-01
This study aimed to explore if the red light irradiation can affect the electrophysiology performance of flexor digitorum superficialis (FDS) and fatigue recovery. Four healthy volunteers were randomly divided into two groups. In the designed force-tracking tasks, all subjects performed the four fingertip isometric force production except thumb with a load of 30% of the maximum voluntary contraction (MVC) force until exhaustion. Subsequently, for the red light group, red light irradiation (640 nm wavelength, 0.23J/cm2, 20 min) was used on the right forearm; for the control group, the subjects relaxed without red light irradiation. Then subjects were required to perform fatigue trail again, and sEMG signal was collected simultaneously from FDS during finger force production. Average rectified value (ARV) and median frequency (MF) of sEMG were calculated. Compared to the control group, the red light irradiation induced more smoother value of ARV between 30% and 40%, and the value of MF was obviously large and smooth. The above electrophysiological markers indicated that recovery from muscle fatigue may be positively affected by the red light irradiation, suggesting that sEMG would become a power tool for exploring the effect of red light irradiation on local muscle fatigue.
Estimation of number of fatalities caused by toxic gases due to fire in road tunnels.
Qu, Xiaobo; Meng, Qiang; Liu, Zhiyuan
2013-01-01
The quantitative risk assessment (QRA) is one of the explicit requirements under the European Union (EU) Directive (2004/54/EC). As part of this, it is essential to be able to estimate the number of fatalities in different accident scenarios. In this paper, a tangible methodology is developed to estimate the number of fatalities caused by toxic gases due to fire in road tunnels by incorporating traffic flow and the spread of fire in tunnels. First, a deterministic queuing model is proposed to calculate the number of people at risk, by taking into account tunnel geometry, traffic flow patterns, and incident response plans for road tunnels. Second, the Fire Dynamics Simulator (FDS) is used to obtain the temperature and concentrations of CO, CO(2), and O(2). By taking advantage of the additivity of the fractional effective dose (FED) method, fatality rates for different locations in given time periods can be estimated. An illustrative case study is carried out to demonstrate the applicability of the proposed methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantitative computational infrared imaging of buoyant diffusion flames
NASA Astrophysics Data System (ADS)
Newale, Ashish S.
Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations.
Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress.
Zhang, Hua; Xu, Heng; Feng, Mengjie; Zhu, Ying
2018-01-01
High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Application of CFD Modeling to Room Fire Growth on Walls
2003-04-01
to each particle. For fires of other geometries, expressions must be available for representing the characteristic velocity and flame length , in the...burning time, z , is the flame length , ri,, is the selected particle rate. The velocity of the particles generally depends on their launch site. But if...over the characteristic flame length , We used R* = 0.05 or 20 cells over the characteristic flame length . In FDS 2.0 the stoichiometric mixture
Analysis of the Influence of Construction Insulation Systems on Public Safety in China
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-01-01
With the Government of China’s proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies. PMID:27589774
Analysis of the Influence of Construction Insulation Systems on Public Safety in China.
Zhang, Guowei; Zhu, Guoqing; Zhao, Guoxiang
2016-08-30
With the Government of China's proposed Energy Efficiency Regulations (GB40411-2007), the implementation of external insulation systems will be mandatory in China. The frequent external insulation system fires cause huge numbers of casualties and extensive property damage and have rapidly become a new hot issue in construction evacuation safety in China. This study attempts to reconstruct an actual fire scene and propose a quantitative risk assessment method for upward insulation system fires using thermal analysis tests and large eddy simulations (using the Fire Dynamics Simulator (FDS) software). Firstly, the pyrolysis and combustion characteristics of Extruded polystyrene board (XPS panel), such as ignition temperature, combustion heat, limiting oxygen index, thermogravimetric analysis and thermal radiation analysis were studied experimentally. Based on these experimental data, large eddy simulation was then applied to reconstruct insulation system fires. The results show that upward insulation system fires could be accurately reconstructed by using thermal analysis test and large eddy simulation. The spread of insulation material system fires in the vertical direction is faster than that in the horizontal direction. Moreover, we also find that there is a possibility of flashover in enclosures caused by insulation system fires as the smoke temperature exceeds 600 °C. The simulation methods and experimental results obtained in this paper could provide valuable references for fire evacuation, hazard assessment and fire resistant construction design studies.
Sung, Youngje; Nam, Sang Min; Lew, Helen
2015-04-01
To assess the clinical outcomes following botulinum neurotoxin type A (BoNT-A) treatment with an individualized injection technique based on the types of spasms and to compare the results of the individualized injection technique with those of the conventional injection technique in the same patients. From November 2011 to July 2013, 77 BoNT-A injections were performed in 38 patients. Eighteen patients were treated with conventional BoNT-A injections before 2011, and 20 patients were referred to our hospital for unsatisfactory results after a conventional injection technique. We classified the patients by spasm-dominant sites: the lateral orbital area, representing the orbital orbicularis-dominant group (ODG); the glabella, representing the corrugator-dominant group (CDG); and the ptosis, representing the palpebral part of the orbicularis-dominant group (PDG). We increased the injection dose into the spasm-dominant sites of the blepharospasm groups. We assessed subjective symptom scores (functional disability score, FDS) after treatment. This study included 38 patients (26 women, 12 men; mean age, 60.6 ± 10.9 years). There were 21 patients in the ODG, 10 patients in the CDG, and 7 patients in the PDG. Mean ages were 59.7 ± 12.6, 59.8 ± 8.5, and 66.8 ± 9.0 years, and mean BoNT-A injection dose was 38.8 ± 11.2, 38.8 ± 11.2, and 38.8 ± 10.8 U in each group, respectively (p = 0.44, 0.82 Kruskal-Wallis test). Mean FDS after injection was 1.7 ± 0.7 in the ODG, 1.4 ± 0.8 in the CDG, and 1.2 ± 0.3 in the PDG. There were significant differences in reading and job scale among the three groups. In a comparison between the conventional and individualized injection techniques, there was a significant improvement in mean FDS and in the reading scale in the PDG with the individualized injection technique. The success rate was 92.1% in the conventional injection group and 94.1% in the individualized injection group. The individualized injection technique of BoNT-A according to the spasm-dominant site is an effective and safe treatment method for essential blepharospasm patients.
Electron transfer to nitrogenase in different genomic and metabolic backgrounds.
Poudel, Saroj; Colman, Daniel R; Fixen, Kathryn R; Ledbetter, Rhesa N; Zheng, Yanning; Pence, Natasha; Seefeldt, Lance C; Peters, John W; Harwood, Caroline S; Boyd, Eric S
2018-02-26
Nitrogenase catalyzes the reduction of dinitrogen (N 2 ) using low potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O 2 ) sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd/Fld-reducing enzymes in 359 genomes of putative N 2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified and their distributions largely corresponded to differences in the host cells' ability to integrate O 2 or light into energy metabolism. Predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the level of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N 2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation. IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O 2 or light into their energy metabolism. Acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex. Copyright © 2018 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Sun, Y.; Zhou, G.; Li, K. R.; Li, Q.; Pan, W.
2017-12-01
With high specific heat and density, supercritical helium can be used to reduce the temperature oscillationand improve temperature stabilityin the low temperature conditions. However, the natural convection ofthe supercritical helium has a complex influence on the suppression of the temperature oscillation. In this paper,a transient three-dimensional numerical simulation is carried out for the natural convection in the cylinder to analyze the effect of natural convection on transferring of temperature oscillation.According to the results of numerical calculation, a cryogenic system cooled by GM cryocooler is designed tostudy the influence of natural convection of supercritical helium on temperature oscillation suppression.
Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression
NASA Astrophysics Data System (ADS)
Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan
2018-06-01
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.
NASA Astrophysics Data System (ADS)
Tsai, Ming-Yen; Chang, Ting-Chang; Chu, Ann-Kuo; Hsieh, Tien-Yu; Chen, Te-Chih; Lin, Kun-Yao; Tsai, Wu-Wei; Chiang, Wen-Jen; Yan, Jing-Yi
2013-07-01
This letter investigates the effect of temperature on hot-carrier stress-induced degradation behavior in InGaZnO thin film transistors. After hot-carrier stress at 25 °C, serious on-current and subthreshold swing degradations are observed due to trap state generation near the drain side. For identical stress performed at elevated temperatures, current degradation in the I-V transfer curve under reverse mode is gradually suppressed and the anomalous hump in the gate-to-drain capacitance-voltage curve becomes more severe. These suppressed degradations and the more severe hump can be both attributed to hole-trapping near the drain side due to high drain bias at high temperature.
Suppressing hillock formation in Si-supported pure Al films
NASA Astrophysics Data System (ADS)
Liu, N. Z.; Liu, Y.
2018-04-01
To suppress the hillock formation and hence improve the service performance of pure Al thin films deposited on Si substrate, dependence of hillock formation on film thickness and annealing temperature was systematically investigated. Experimental results revealed that the hillock volume increased linearly with both the film thickness and annealing temperature. While the evolution of hillock density with film thickness was complicated, strongly depending on the annealing temperature. It was evident that the hillock formation could be effectively suppressed at a critical annealing temperature especially in thinner thickness, similar to the previous findings in Mo/glass-supported pure Al films. These experimental evidences clearly demonstrated that the hillock formation should be controlled by the plastic deformation in the surrounding film, which was further rationalized by a micromechanics model.
Consequence modeling using the fire dynamics simulator.
Ryder, Noah L; Sutula, Jason A; Schemel, Christopher F; Hamer, Andrew J; Van Brunt, Vincent
2004-11-11
The use of Computational Fluid Dynamics (CFD) and in particular Large Eddy Simulation (LES) codes to model fires provides an efficient tool for the prediction of large-scale effects that include plume characteristics, combustion product dispersion, and heat effects to adjacent objects. This paper illustrates the strengths of the Fire Dynamics Simulator (FDS), an LES code developed by the National Institute of Standards and Technology (NIST), through several small and large-scale validation runs and process safety applications. The paper presents two fire experiments--a small room fire and a large (15 m diameter) pool fire. The model results are compared to experimental data and demonstrate good agreement between the models and data. The validation work is then extended to demonstrate applicability to process safety concerns by detailing a model of a tank farm fire and a model of the ignition of a gaseous fuel in a confined space. In this simulation, a room was filled with propane, given time to disperse, and was then ignited. The model yields accurate results of the dispersion of the gas throughout the space. This information can be used to determine flammability and explosive limits in a space and can be used in subsequent models to determine the pressure and temperature waves that would result from an explosion. The model dispersion results were compared to an experiment performed by Factory Mutual. Using the above examples, this paper will demonstrate that FDS is ideally suited to build realistic models of process geometries in which large scale explosion and fire failure risks can be evaluated with several distinct advantages over more traditional CFD codes. Namely transient solutions to fire and explosion growth can be produced with less sophisticated hardware (lower cost) than needed for traditional CFD codes (PC type computer verses UNIX workstation) and can be solved for longer time histories (on the order of hundreds of seconds of computed time) with minimal computer resources and length of model run. Additionally results that are produced can be analyzed, viewed, and tabulated during and following a model run within a PC environment. There are some tradeoffs, however, as rapid computations in PC's may require a sacrifice in the grid resolution or in the sub-grid modeling, depending on the size of the geometry modeled.
Molecular regulation of santalol biosynthesis in Santalum album L.
Rani, Arti; Ravikumar, Puja; Reddy, Manjunatha Damodara; Kush, Anil
2013-09-25
Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013.
Recurrent Renal Colic in a Patient with Munchausen Syndrome
Miconi, Francesco; Rapaccini, Valentina; Savarese, Emanuela; Cabiati, Gabriele; Pasini, Augusto; Miconi, Giovanni; Principi, Nicola
2018-01-01
Background: In most of the cases regarding children, factitious disorders (FDs) are intentionally produced by parents. Less attention is paid to FDs in which a child or adolescent intentionally induces or falsifies the disease to attain a patient’s role. Case presentation: A 13-year-old immigrated and adopted boy previously underwent an operation for renal joint syndrome and was affected by recurrent episodes of renal colic. The boy was admitted reporting acute left flank pain with scars on the mucous face of his prepuce and had a recent previous hospitalization for the same reason. Laboratory tests and radiological findings did not reveal any morphological or functional alterations. Self-induced FD was suspected, and a psychiatric consultation was performed. After psychiatric consultation and remission of the symptoms with a placebo, a diagnosis of Munchausen syndrome was suspected. The patient’s uncle was not initially convinced of the diagnosis. Some videos clearly showed that the boy was handling his prepuce to excrete stones, explaining the scars. A therapeutic plan with psychiatrist support was later accepted with a positive outcome. No further signs and symptoms of renal colic were reported. Conclusions: It is recommended that paediatricians include FD in the differential diagnosis of a persistent and unexplained medical condition. If suspicion arises, confirmation and long-term therapy by a group of qualified specialists, including psychiatrists, should be planned. PMID:29596350
A snapshot of the organization and provision of primary care in Turkey
2011-01-01
Background This WHO study aimed to support Turkey in its efforts to strengthen the primary care (PC) system by implementing the WHO Primary Care Evaluation Tool (PCET). This article provides an overview of the organization and provision of primary care in Turkey. Methods The WHO Primary Care Evaluation Tool was implemented in two provinces (Bolu and Eskişehir) in Turkey in 2007/08. The Tool consists of three parts: a national questionnaire concerning the organisation and financing of primary care; a questionnaire for family doctors; and a questionnaire for patients who visit a family health centre. Results Primary care has just recently become an official health policy priority with the introduction of a family medicine scheme. Although the supply of family doctors (FDs) has improved, they are geographically uneven distributed, and nationwide shortages of primary care staff remain. Coordination of care could be improved and quality control mechanisms were lacking. However, patients were very satisfied with the treatment by FDs. Conclusions The study provides an overview of the current state of PC in Turkey for two provinces with newly introduced family medicine, by using a structured approach to evaluate the essential functions of PC, including governance, financing, resource generation, as well as the characteristics of a "good" service delivery system (as being accessible, comprehensive, coordinated and continuous). PMID:21542904
Directing an artificial zinc finger protein to new targets by fusion to a non-DNA-binding domain.
Lim, Wooi F; Burdach, Jon; Funnell, Alister P W; Pearson, Richard C M; Quinlan, Kate G R; Crossley, Merlin
2016-04-20
Transcription factors are often regarded as having two separable components: a DNA-binding domain (DBD) and a functional domain (FD), with the DBD thought to determine target gene recognition. While this holds true for DNA bindingin vitro, it appears thatin vivoFDs can also influence genomic targeting. We fused the FD from the well-characterized transcription factor Krüppel-like Factor 3 (KLF3) to an artificial zinc finger (AZF) protein originally designed to target the Vascular Endothelial Growth Factor-A (VEGF-A) gene promoter. We compared genome-wide occupancy of the KLF3FD-AZF fusion to that observed with AZF. AZF bound to theVEGF-Apromoter as predicted, but was also found to occupy approximately 25,000 other sites, a large number of which contained the expected AZF recognition sequence, GCTGGGGGC. Interestingly, addition of the KLF3 FD re-distributes the fusion protein to new sites, with total DNA occupancy detected at around 50,000 sites. A portion of these sites correspond to known KLF3-bound regions, while others contained sequences similar but not identical to the expected AZF recognition sequence. These results show that FDs can influence and may be useful in directing AZF DNA-binding proteins to specific targets and provide insights into how natural transcription factors operate. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album
Srivastava, Prabhakar Lal; Daramwar, Pankaj P.; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S. Shiva; Thulasiram, Hirekodathakallu V.
2015-01-01
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems. PMID:25976282
Functional Characterization of Novel Sesquiterpene Synthases from Indian Sandalwood, Santalum album.
Srivastava, Prabhakar Lal; Daramwar, Pankaj P; Krithika, Ramakrishnan; Pandreka, Avinash; Shankar, S Shiva; Thulasiram, Hirekodathakallu V
2015-05-15
Indian Sandalwood, Santalum album L. is highly valued for its fragrant heartwood oil and is dominated by a blend of sesquiterpenes. Sesquiterpenes are formed through cyclization of farnesyl diphosphate (FPP), catalyzed by metal dependent terpene cyclases. This report describes the cloning and functional characterization of five genes, which encode two sesquisabinene synthases (SaSQS1, SaSQS2), bisabolene synthase (SaBS), santalene synthase (SaSS) and farnesyl diphosphate synthase (SaFDS) using the transcriptome sequencing of S. album. Using Illumina next generation sequencing, 33.32 million high quality raw reads were generated, which were assembled into 84,094 unigenes with an average length of 494.17 bp. Based on the transcriptome sequencing, five sesquiterpene synthases SaFDS, SaSQS1, SaSQS2, SaBS and SaSS involved in the biosynthesis of FPP, sesquisabinene, β-bisabolene and santalenes, respectively, were cloned and functionally characterized. Novel sesquiterpene synthases (SaSQS1 and SaSQS2) were characterized as isoforms of sesquisabinene synthase with varying kinetic parameters and expression levels. Furthermore, the feasibility of microbial production of sesquisabinene from both the unigenes, SaSQS1 and SaSQS2 in non-optimized bacterial cell for the preparative scale production of sesquisabinene has been demonstrated. These results may pave the way for in vivo production of sandalwood sesquiterpenes in genetically tractable heterologous systems.
Clarençon, F; Di Maria, F; Gabrieli, J; Shotar, E; Zeghal, C; Nouet, A; Chiras, J; Sourour, N-A
2017-03-01
Flow diverter stents (FDSs) are increasingly used for the treatment of intracranial aneurysms. Initially developed for the management of giant and large aneurysms, their indications have progressively expanded. The purpose of our study was to evaluate the safety and effectiveness of FDSs for the treatment of anterior cerebral artery (ACA) aneurysms. Among the 94 consecutive patients treated for 100 intracranial aneurysms by means of FDSs in our institution from October 2010 to January 2015, eight aneurysms (8 %) in seven patients were located on the ACA. Three aneurysms were located on the A1 segment, three aneurysms on the anterior communicating artery (ACom) and two on the A2-A3 junction. In three cases, FDS was used for angiographic recurrence after coiling. Five patients were treated with a Pipeline embolization device, one with a NeuroEndograft and the last one with a Silk FDS. Treatment was feasible in all cases. No technical difficulty was reported. No acute or delayed clinical complication was recorded. Modified Rankin Scale was 0 for six patients and one for one patient. Mean angiographic follow-up was 9.7 ± 3.9 months (range 6-15). Total exclusion was observed in five aneurysms (71.4 %) and neck remnant in two (28.6 %) cases. One patient refused the control DSA. Our series shows the safety and effectiveness of FDSs for the treatment of ACA aneurysms.
A Deep Look at the Fornax Cluster
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-04-01
Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42
Suppression and Structure of Low Strain Rate Nonpremixed Flames
NASA Technical Reports Server (NTRS)
Hamins, Anthony; Bundy, Matthew; Park, Woe Chul; Lee, Ki Yong; Logue, Jennifer
2003-01-01
The agent concentration required to achieve suppression of low strain rate nonpremixed flames is an important fire safety consideration. In a microgravity environment such as a space platform, unwanted fires will likely occur in near quiescent conditions where strain rates are very low. Diffusion flames typically become more robust as the strain rate is decreased. When designing a fire suppression system for worst-case conditions, low strain rates should be considered. The objective of this study is to investigate the impact of radiative emission, flame strain, agent addition, and buoyancy on the structure and extinction of low strain rate nonpremixed flames through measurements and comparison with flame simulations. The suppression effectiveness of a suppressant (N2) added to the fuel stream of low strain rate methane-air diffusion flames was measured. Flame temperature measurements were attained in the high temperature region of the flame (T greater than 1200 K) by measurement of thin filament emission intensity. The time varying temperature was measured and simulated as the flame made the transition from normal to microgravity conditions and as the flame extinguished.
Charmed-meson decay constants in three-flavor lattice QCD.
Aubin, C; Bernard, C; Detar, C; Di Pierro, M; Freeland, E D; Gottlieb, Steven; Heller, U M; Hetrick, J E; El-Khadra, A X; Kronfeld, A S; Levkova, L; Mackenzie, P B; Menscher, D; Maresca, F; Nobes, M; Okamoto, M; Renner, D; Simone, J; Sugar, R; Toussaint, D; Trottier, H D
2005-09-16
We present the first lattice QCD calculation with realistic sea quark content of the D+-meson decay constant f(D+). We use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f(D+)=201+/-3+/-17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f(Ds)=249+/-3+/-16 MeV for the Ds meson.
A Biomechanical Simulation of the Effect of the Extrinsic Flexor Muscles on Finger Joint Flexion
2001-10-25
vol. 44, pp. 493-504, 1997. [8] A.B. Leger and T.E. Milner, “The effect of eccentric exercise on intrinsic and reflex stiffness in the human hand...line of action of the tendons and the effective moment arms. After a certain point, the FDP tendon became slack, while the FDS tendon remained...link chain with three revolute joints and four links was created to model the index finger. The tendons from the extrinsic flexor muscles were
Thermomechanical Processing of Structural Steels with Dilute Niobium Additions
NASA Astrophysics Data System (ADS)
Cui, Z.; Patel, J.; Palmiere, E. J.
The recrystallisation behaviour of medium carbon steels with dilute Nb addition was investigated by means of plane strain compression tests and the observation of prior austenite microstructures during different deformation conditions. It was found that complete suppression of recrystallisation did not occur in the deformation temperature range investigated. At lower deformation temperatures, partial recrystallisation occurred in the higher Nb sample. This gives the potential to obtain a full suppression of recrystallisation at lower deformation temperatures.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
Development of a Moisture-in-Solid-Insulation Sensor for Power Transformers
García, Belén; García, Diego; Robles, Guillermo
2015-01-01
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements. PMID:25658393
Development of a moisture-in-solid-insulation sensor for power transformers.
García, Belén; García, Diego; Robles, Guillermo
2015-02-04
Moisture is an important variable that must be kept under control to guarantee a safe operation of power transformers. Because of the hydrophilic character of cellulose, water mainly remains in the solid insulation, while just a few parts per million are dissolved in oil. The distribution of moisture between paper and oil is not static, but varies depending on the insulation temperature, and thus, water migration processes take place continuously during transformers operation. In this work, a sensor is presented that allows the determination of the moisture content of the transformer solid insulation in the steady state and during the moisture migration processes. The main objective of the design is that the electrodes of the sensor should not obstruct the movement of water from the solid insulation to the oil, so the proposed prototype uses a metallic-mesh electrode to do the measurements. The measurement setup is based on the characterization of the insulation dielectric response by means of the frequency dielectric spectroscopy (FDS) method. The sensitivity of the proposed sensor has been tested on samples with a moisture content within 1% to 5%, demonstrating the good sensitivity and repeatability of the measurements.
Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ
2016-01-01
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877
Suppression of polymethyl methacrylate dust explosion by ultrafine water mist/additives.
Gan, Bo; Li, Bei; Jiang, Haipeng; Bi, Mingshu; Gao, Wei
2018-06-05
The suppressions of ultrafine water mists containing additives (NaCl and NaHCO 3 ) on 100 nm, 5 μm, and 30 μm polymethyl methacrylate (PMMA) dust explosions were experimentally studied in a dust-explosion apparatus. High-speed photography showed that maximum vertical positions and flame propagation velocities were significantly decreased by suppression with ultrafine water mist/additives. Flame propagation velocities in 100 nm, 5 μm, and 30 μm dust explosions suppressed by the ultrafine pure water mist were reduced by 48.2%, 27.7%, and 15.3%, respectively. Maximum temperatures and temperature rising rates measured by a fine thermocouple in nano- and micro-PMMA dust explosions were also significantly decreased. It was proved that the addition of NaCl and NaHCO 3 improved the suppression effects of the ultrafine pure water mist. The improvement of explosion suppression by an 8% NaHCO 3 mist was superior to that of a 16% NaCl mist. The suppression mechanisms of ultrafine water mist/additives are further discussed by analyzing the physical and chemical effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Tingfang; Wang, Aiji; Kong, Lingrui; Li, Yongliang; Wang, Yinshu
2016-04-01
Pure and Cl- incorporated ZnO nanofilms were grown by the ultrasonic spray-assisted chemical vapor deposition (CVD) method. The properties of the nanofilms were investigated. The effects of growth temperature and Cl- concentration on the crystal structure, morphology, and optical properties of the nanofilms were studied. Temperature plays an important role in the growth mode and morphology of the pure nanofilms. Preferential growth along the c-axis occurs only at modulating temperature. Lower temperature suppresses the preferential growth, and higher temperature suppresses the growth of the nanofilms. The morphologies of the nanofilms change from lamellar and spherical structures into hexagonal platelets, then into separated nanoparticles with an increase in the temperature. Incorporating Cl- results in the lattice contracting gradually along with c-axis. Grains composing the nanofilms refine, and the optical gap broadens with increasing of Cl- concentration in growth precursor. Incorporating Cl- could reduce oxygen vacancies and passivate the non-irradiated centers, thus enhancing the UV emission and suppressing the visible emission of ZnO nanofilms.
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
Albo, Asaf; Flores, Yuri V.; Hu, Qing; ...
2017-09-11
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Flores, Yuri V.; Hu, Qing
The mechanisms that limit the temperature performance of diagonal GaAs/Al 0.15GaAs 0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure.more » We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Furthermore, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.« less
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
NASA Astrophysics Data System (ADS)
Albo, Asaf; Flores, Yuri V.; Hu, Qing; Reno, John L.
2017-09-01
The mechanisms that limit the temperature performance of diagonal GaAs/Al0.15GaAs0.85-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated leakage of charge carriers through excited states into the continuum. THz-QCLs with energetically higher-laying excited states supported by sufficiently high barriers aim to eliminate these leakage mechanisms and lead to improved temperature performance. Although suppression of thermally activated carrier leakage was realized in a three-well THz-QCL based on a resonant-phonon scheme, no improvement in the temperature performance was reported thus far. Here, we report a major improvement in the temperature performance of a two-quantum-well direct-phonon THz-QCL structure. We show that the improved laser performance is due to the suppression of the thermally activated carrier leakage into the continuum with the increase in the injection barrier height. Moreover, we demonstrate that high-barrier two-well structures can support a clean three-level laser system at elevated temperatures, which opens the opportunity to achieve temperature performance beyond the state-of-the-art.
Role of Escherichia coli dnaA gene and its integrative suppression in M13 Coliphage DNA synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Stallions, D.R.
An F/sup +/ derivative of Escherichia coli E508 thermosensitive in dnaA function (involved in DNA synthesis initiation), its revertant and an Hfr derivative of E508(ts) in which the temperature-sensitive phenotype is suppressed by integrative suppression have been compared for their ability to support M13 phage DNA synthesis at the nonpermissive temperature. Upon infection at the nonpermissive temperature, both the revertant and the Hfr strain support normal phage replication while the temperature-sensitive mutant does not. However, when infection is carried out at a permissive temperature and the temperature is shifted up after infection, phage synthesis occurs in the temperature-sensitive mutant also,more » but in lesser quantity than in the revertant strain. Analysis of intracellular labeled phage DNA indicates: (a) parental replicative form DNA synthesis is not dependent on dnaA function; (b) progeny replicative form DNA synthesis is strongly inhibited in the temperature-sensitive dnaA mutant at the nonpermissive temperature; (c) progeny single-strand DNA synthesis does not absolutely require dnaA function; (d) progeny single-strand DNA is present in the circular form. The implication of the host DNA replication in M13 DNA synthesis is discussed.« less
Sung, Choongki; Wang, G.; Rhodes, Terry L.; ...
2017-11-16
We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sung, Choongki; Wang, G.; Rhodes, Terry L.
We report the first observation of increased edge electron temperature turbulence correlated with changes in gradients and the ELM suppression time which occurs after the application of resonant magnetic perturbations (RMP) on DIII-D H-mode plasmas. This increase (T ~ e/T e approximately doubles) occurs in the region extending from the top of the pedestal outward to the upper part of the edge steep gradient region. This is significant as it is consistent with increased turbulence driven transport potentially replacing some part of the edge localized mode (ELM) driven transport. However, temperature turbulence does not change with the initial RMP applicationmore » while ELMs are still present, indicating the turbulence changes are not causative in the development of ELM suppression or initial profile evolution with RMP – but rather a response to these effects. This temperature turbulence is broadband and long wavelength, k θρ s < 0.5, where k θ = poloidal wavenumber, ρ s = ion sound gyroradius. As has been reported previously, long wavelength density turbulence (k θρ s < 1.0) in the same location also increases after ELMs were suppressed by the RMP. Since the decrease of the density starts nearly immediately with RMP application, these results suggest that the so-called RMP “density pump-out” is not linked to these long wavelength turbulent transport changes. Comparison with linear stability analysis finds both consistencies and inconsistencies in this important region.« less
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-12-23
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-01-01
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530
Regional cerebral blood flow correlates of the severity of writer's cramp symptoms.
Lerner, Alicja; Shill, Holly; Hanakawa, Takashi; Bushara, Khalaf; Goldfine, Andrew; Hallett, Mark
2004-03-01
Writer's cramp is a type of idiopathic focal dystonia with incompletely understood pathophysiology. Recent studies provide evidence that one element might be a sensory processing defect. We performed a PET study with O(15) H(2)O to find out in which brain areas activity correlates with the severity of writer's cramp symptoms. We studied 10 patients with writer's cramp and 10 age- and gender-matched control subjects. There were seven conditions, each repeated twice: rest, writing, tapping with index finger for 2, 3, 4, and 5 min. For each scan, we obtained EMG recordings from the flexor digitorum superficialis (FDS), extensor indicis proprius (EIP) muscles, and a subjective score of severity of dystonia. Scans were realigned, normalized, smoothed, and analyzed using SPM99. Analysis included both intra- and intergroup comparisons and a correlation analysis where we used EMG recordings and subjective dystonia score as covariates. Random effect analysis of the writing task showed overactivity of the primary sensory cortex and no significant underactivity. Correlation analysis of dystonia patients showed activation of SI when we used the subjective dystonia score as a covariate, and activation of both the SI and primary motor cortex when the normalized EMG score of FDS was used. While some overactivity of MI is not surprising, overactivity of SI is more dramatic and suggests a primary deficit in processing sensory feedback. Writer's cramp may arise in part as a dysfunction of sensory circuits, which causes defective sensorimotor integration resulting in co-contractions of muscles and overflow phenomena.
Paediatric interventional cardiology: flat detector versus image intensifier using a test object
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.
2010-12-01
Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.
Comparison of dysphagia outcomes between rostral and caudal lateral medullary infarct patients.
Chun, Min Ho; Kim, Daeha; Chang, Min Cheol
2017-11-01
A detailed knowledge of dysphagia outcomes in lateral medullary infarct (LMI) patients would enable proper establishment of swallowing therapy goals and strategies. However, little is known about the impact of infarct location on dysphagia outcomes in patients with LMI. Twenty patients with rostral LMI (rostral group) and 20 patients with caudal LMI (caudal group) participated in the study. All patients underwent swallowing therapy, which included compensatory treatments and strengthening exercises, for >3 months. Dysphagia evaluation was performed twice (during the subacute stage and six months after stroke onset) using videofluoroscopic swallowing studies. Dysphagia degree was assessed using the functional dysphagia scale (FDS), the penetration-aspiration scale (PAS) and the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale. In the subacute stage, the rostral group had significantly higher FDS and PAS scores and a significantly lower ASHA NOMS score than the caudal group. Patients from both groups showed significant improvement from the initial evaluation to the six-month evaluation. There were no significant differences in these scale scores between the two groups at the six-month evaluation. In the subacute stage, patients in the rostral group had more severe dysphagia than those in the caudal group. Dysphagia improved in both groups after 3-6 months of swallowing therapy. At six months after onset, there were no significant differences in dysphagia severity between the two groups. Recovery from dysphagia after LMI was observed regardless of the infarct location.
NASA Astrophysics Data System (ADS)
Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang
2011-12-01
A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).
Surgical flow disruptions during robotic-assisted radical prostatectomy.
Dru, Christopher J; Anger, Jennifer T; Souders, Colby P; Bresee, Catherine; Weigl, Matthias; Hallett, Elyse; Catchpole, Ken
2017-06-01
We sought to apply the principles of human factors research to robotic-assisted radical prostatectomy to understand where training and integration challenges lead to suboptimal and inefficient care. Thirty-four robotic-assisted radical prostatectomy and bilateral pelvic lymph node dissections over a 20 week period were observed for flow disruptions (FD) - deviations from optimal care that can compromise safety or efficiency. Other variables - physician experience, trainee involvement, robot model (S versus Si), age, body mass index (BMI), and American Society of Anesthesiologists (ASA) physical status - were used to stratify the data and understand the effect of context. Effects were studied across four operative phases - entry to insufflations, robot docking, surgical intervention, and undocking. FDs were classified into one of nine categories. An average of 9.2 (SD = 3.7) FD/hr were recorded, with the highest rates during robot docking (14.7 [SD = 4.3] FDs/hr). The three most common flow disruptions were disruptions of communication, coordination, and equipment. Physicians with more robotic experience were faster during docking (p < 0.003). Training cases had a greater FD rate (8.5 versus 10.6, p < 0.001), as did the Si model robot (8.2 versus 9.8, p = 0.002). Patient BMI and ASA classification yielded no difference in operative duration, but had phase-specific differences in FD. Our data reflects the demands placed on the OR team by the patient, equipment, environment and context of a robotic surgical intervention, and suggests opportunities to enhance safety, quality, efficiency, and learning in robotic surgery.
Kinmonth-Schultz, Hannah A; Tong, Xinran; Lee, Jae; Song, Young Hun; Ito, Shogo; Kim, Soo-Hyung; Imaizumi, Takato
2016-07-01
Day length and ambient temperature are major stimuli controlling flowering time. To understand flowering mechanisms in more natural conditions, we explored the effect of daily light and temperature changes on Arabidopsis thaliana. Seedlings were exposed to different day/night temperature and day-length treatments to assess expression changes in flowering genes. Cooler temperature treatments increased CONSTANS (CO) transcript levels at night. Night-time CO induction was diminished in flowering bhlh (fbh)-quadruple mutants. FLOWERING LOCUS T (FT) transcript levels were reduced at dusk, but increased at the end of cooler nights. The dusk suppression, which was alleviated in short vegetative phase (svp) mutants, occurred particularly in younger seedlings, whereas the increase during the night continued over 2 wk. Cooler temperature treatments altered the levels of FLOWERING LOCUS M-β (FLM-β) and FLM-δ splice variants. FT levels correlated strongly with flowering time across treatments. Day/night temperature changes modulate photoperiodic flowering by changing FT accumulation patterns. Cooler night-time temperatures enhance FLOWERING BHLH (FBH)-dependent induction of CO and consequently increase CO protein. When plants are young, cooler temperatures suppress FT at dusk through SHORT VEGETATIVE PHASE (SVP) function, perhaps to suppress precocious flowering. Our results suggest day length and diurnal temperature changes combine to modulate FT and flowering time. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Karras, Gabriel; Lockyer, Nicholas P.
2014-05-01
A systematic mass spectrometric study of two of the most common analgesic drugs, paracetamol and ibuprofen, is reported. The drugs were studied by means of secondary ion mass spectrometry (SIMS) and secondary neutral mass spectrometry (SNMS) using laser post-ionization (LPI) both in pure samples and in a two-component mixture. Ion suppression within the two-component system observed in SIMS mode is ameliorated using LPI under room temperature analysis. However, suppression effects are apparent in LPI mode on performing the analysis at cryogenic temperatures, which we attribute to changes in the desorption characteristics of sputtered molecules, which influences the subsequent post-ionization efficiency. This suggests different mechanisms of ion suppression in SIMS and LPI modes.
Energy-filtered cold electron transport at room temperature
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-01-01
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839
Palmer, Richard M
2010-06-01
A Novel Decision-Making Process for Tooth Retention or Extraction J Periodontol 2009;80:476-491. Avila G, Galindo-Moreno P, Soehren S, Misch CE, Morelli T, Wang H-L. Richard M. Palmer, PhD, BDS, FDS RCS PURPOSE/QUESTION: Is it possible to devise a system to help in the decision-making process of tooth extraction/retention based on a critical evaluation of the literature? University of Michigan Periodontal Graduate Student Research Fund Comprehensive literature review Level 3: Other evidence Not applicable.
Field by field hybrid upwind splitting methods
NASA Technical Reports Server (NTRS)
Coquel, Frederic; Liou, Meng-Sing
1993-01-01
A new and general approach to upwind splitting is presented. The design principle combines the robustness of flux vector splitting schemes in the capture of nonlinear waves and the accuracy of some flux difference splitting schemes in the resolution of linear waves. The new schemes are derived following a general hybridization technique performed directly at the basic level of the field by field decomposition involved in FDS methods. The scheme does not use a spatial switch to be tuned up according to the local smoothness of the approximate solution.
Anomalous vibrational modes in acetanilide: a F.D.S. incoherent inelastic neutron scattering study
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Eckert, Juergen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.
The origin of the anomalous infra-red and Raman modes in acetanilide (C6H5NHCOCH3, or ACN)(1) , remains a subject of considerable controversy. One family of theoretical models involves Davydov-like solitons (2) nonlinear vibrational coupling (3), or "polaronic" localized modes (4)(5). An alternative interpretation of the extra-bands in terms of a Fermi resonance was proposed (6) and recently the existence of slightly non-degenerate hydrogen atom configurations (7) in the H-bond was suggested as an explanation for the anomalies.
ARES Modeling of High-foot Implosions (NNSA Milestone #5466)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurricane, O. A.
ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.
Strangeness Suppression and Color Deconfinement
NASA Astrophysics Data System (ADS)
Satz, Helmut
2018-02-01
The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.
The human burst suppression electroencephalogram of deep hypothermia.
Westover, M Brandon; Ching, Shinung; Kumaraswamy, Vishakhadatta M; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S; Kilbride, Ronan; Brown, Emery N; Purdon, Patrick L
2015-10-01
Deep hypothermia induces 'burst suppression' (BS), an electroencephalogram pattern with low-voltage 'suppressions' alternating with high-voltage 'bursts'. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sung, C.; Wang, G.; Rhodes, T. L.; Smith, S. P.; Osborne, T. H.; Ono, M.; McKee, G. R.; Yan, Z.; Groebner, R. J.; Davis, E. M.; Zeng, L.; Peebles, W. A.; Evans, T. E.
2017-11-01
The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs only after ELMs are suppressed and are not observed during the initial RMP application. The T˜ e/Te increases ( >60%) are coincident with changes in normalized density and electron temperature gradients in the region from the top of the pedestal outward to the upper portion of the steep edge gradient. Density turbulence (kθρs ≤ 0.4) in this location was also observed to increase only after ELM suppression. These results are significant since they indicate that increased gradient-driven turbulent transport is one possible mechanism to regulate and maintain ELM-free H-mode operation. Investigation of linear stability of drift wave instabilities using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73 (2016)] shows that the dominant mode moves closer to the electron mode branch from the ion mode branch only after ELMs are suppressed, correlated with the increased turbulence. The increased turbulence during ELM suppression, rather than with the initial RMP application, indicates that the often observed RMP induced "density pump-out" cannot be attributed to long wavelength edge turbulence level changes.
Fire Suppression by Halon 2402, Volume 1
1987-10-01
Department of Environmental Medicine , The Medical College of Wisconsin, July 1973. 34. Gaydos, J. C., Colonel, MC, Director, Occupational and...ejected as a liquid ), better fuel- nerting capacity (lower vapor pressure). and improved flame suppression (possibly resulting \\from the presence of...of 0.05, 0.10, 0.20, and 0.25 inch; Velocity of 45 ft/s; Ambient Temperature of 70 OF; Liquid Temperature of 50 OF; and Initial Angle of 0 Degrees
NASA Astrophysics Data System (ADS)
Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng
2017-03-01
The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.
Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai
2015-01-01
Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847
Mittal, Anuradha; Holehouse, Alex S; Cohan, Megan C; Pappu, Rohit V
2018-05-12
Intrinsically disordered proteins and regions (IDPs / IDRs) are characterized by well-defined sequence-to-conformation relationships (SCRs). These relationships refer to the sequence-specific preferences for average sizes, shapes, residue-specific secondary structure propensities, and amplitudes of multiscale conformational fluctuations. SCRs are discerned from the sequence-specific conformational ensembles of IDPs. A vast majority of IDPs are actually tethered to folded domains (FDs). This raises the question of whether or not SCRs inferred for IDPs are applicable to IDRs tethered to folded domains. Here, we use atomistic simulations based on a well-established forcefield paradigm and an enhanced sampling method to obtain comparative assessments of SCRs for thirteen archetypal IDRs modeled as autonomous units, as C-terminal tails connected to folded domains, and as linkers between pairs of folded domains. Our studies uncover a set of general observations regarding context-independent versus context-dependent SCRs of IDRs. SCRs are minimally perturbed upon tethering to folded domains if the IDRs are deficient in charged residues and for polyampholytic IDRs where the oppositely charged residues within the sequence of the IDR are separated into distinct blocks. In contrast, the interplay between IDRs and tethered folded domains has a significant modulatory effect on SCRs if the IDRs have intermediate fractions of charged residues or if they have sequence-intrinsic conformational preferences for canonical random coils. Our findings suggest that IDRs with context-independent SCRs might be independent evolutionary modules whereas IDRs with context-dependent intrinsic SCRs might co-evolve with the FDs to which they are tethered. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Paliwal, Nikhil; Damiano, Robert J.; Davies, Jason M.; Siddiqui, Adnan H.; Meng, Hui
2017-03-01
Treatment of intracranial aneurysms (IAs) has been revolutionized by the advent of endovascular Flow Diverters (FDs), which disrupt blood flow within the aneurysm to induce pro-thrombotic conditions, and serves as a scaffold for endothelial ingrowth and arterial remodeling. Despite good clinical success of FDs, complications like incomplete occlusion and post-treatment rupture leading to subarachnoid hemorrhage have been reported. In silico computational fluid dynamic analysis of the pre- and post-treated geometries of IA patients can shed light on the contrasting blood hemodynamics associated with different clinical outcomes. In this study, we analyzed hemodynamic modifications in 15 IA patients treated using a single FD; 10 IAs were completely occluded (successful) and 5 were partially occluded (unsuccessful) at 12-month follow-up. An in-house virtual stenting workflow was used to recapitulate the clinical intervention on these cases, followed by CFD to obtain pre- and post-treatment hemodynamics. Bulk hemodynamic parameters showed comparable reductions in both groups with average inflow rate and aneurysmal velocity reduction of 40.3% and 52.4% in successful cases, and 34.4% and 49.2% in unsuccessful cases. There was a substantial reduction in localized parameter like vortex coreline length and Energy Loss for successful cases, 38.2% and 42.9% compared to 10.1% and 10.5% for unsuccessful cases. This suggest that for successfully treated IAs, the localized complex blood flow is disrupted more prominently by the FD as compared to unsuccessful cases. These localized hemodynamic parameters can be potentially used in prediction of treatment outcome, thus aiding the clinicians in a priori assessment of different treatment strategies.
Paliwal, Nikhil; Damiano, Robert J; Davies, Jason M; Siddiqui, Adnan H; Meng, Hui
2017-02-11
Treatment of intracranial aneurysms (IAs) has been revolutionized by the advent of endovascular Flow Diverters (FDs), which disrupt blood flow within the aneurysm to induce pro-thrombotic conditions, and serves as a scaffold for endothelial ingrowth and arterial remodeling. Despite good clinical success of FDs, complications like incomplete occlusion and post-treatment rupture leading to subarachnoid hemorrhage have been reported. In silico computational fluid dynamic analysis of the pre- and post-treated geometries of IA patients can shed light on the contrasting blood hemodynamics associated with different clinical outcomes. In this study, we analyzed hemodynamic modifications in 15 IA patients treated using a single FD; 10 IAs were completely occluded (successful) and 5 were partially occluded (unsuccessful) at 12-month follow-up. An in-house virtual stenting workflow was used to recapitulate the clinical intervention on these cases, followed by CFD to obtain pre- and post-treatment hemodynamics. Bulk hemodynamic parameters showed comparable reductions in both groups with average inflow rate and aneurysmal velocity reduction of 40.3% and 52.4% in successful cases, and 34.4% and 49.2% in unsuccessful cases. There was a substantial reduction in localized parameter like vortex coreline length and Energy Loss for successful cases, 38.2% and 42.9% compared to 10.1% and 10.5% for unsuccessful cases. This suggest that for successfully treated IAs, the localized complex blood flow is disrupted more prominently by the FD as compared to unsuccessful cases. These localized hemodynamic parameters can be potentially used in prediction of treatment outcome, thus aiding the clinicians in a priori assessment of different treatment strategies.
Suppression of vapor cell temperature error for spin-exchange-relaxation-free magnetometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jixi, E-mail: lujixi@buaa.edu.cn; Qian, Zheng; Fang, Jiancheng
2015-08-15
This paper presents a method to reduce the vapor cell temperature error of the spin-exchange-relaxation-free (SERF) magnetometer. The fluctuation of cell temperature can induce variations of the optical rotation angle, resulting in a scale factor error of the SERF magnetometer. In order to suppress this error, we employ the variation of the probe beam absorption to offset the variation of the optical rotation angle. The theoretical discussion of our method indicates that the scale factor error introduced by the fluctuation of the cell temperature could be suppressed by setting the optical depth close to one. In our experiment, we adjustmore » the probe frequency to obtain various optical depths and then measure the variation of scale factor with respect to the corresponding cell temperature changes. Our experimental results show a good agreement with our theoretical analysis. Under our experimental condition, the error has been reduced significantly compared with those when the probe wavelength is adjusted to maximize the probe signal. The cost of this method is the reduction of the scale factor of the magnetometer. However, according to our analysis, it only has minor effect on the sensitivity under proper operating parameters.« less
Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure
Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...
2016-02-10
We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less
NASA Astrophysics Data System (ADS)
Quan, Yun-Yun; Jiang, Pei-Guo; Zhang, Li-Zhi
2014-09-01
Superhydrophobic films fabricated on copper and aluminum surfaces have potential applications to solve water condensation and frosting problems on chilled ceiling system. The rough surfaces of copper foils obtained by solution immersion method exhibit the existence of fractal structures. The hydrophobicity of copper surfaces is enhanced with fractal structures. The relationship between contact angles (CAs) and the fractal dimensions (FDs) for surface roughness of Cu samples with different etching time is investigated. Moisture condensation and frosting experiments on the two kinds of surfaces are conducted in natural environment under different chilling temperatures. During condensation, micro water condensate droplets drift down the surface like dust floating in the air. Several larger condensate droplets about 1-2 mm appear on the substrates after 3 h condensation. This continuous jumping motion of the condensate will be beneficial in delaying frosting. The results demonstrate that dense nanostructures on copper surfaces are superior to loose lattice-like microstructures on aluminum surfaces for preventing the formation of large droplets condensate and in delaying the icing. The large water droplets of 2-3 mm in diameter that would form on a common metal foil are sharply decreased to dozens of microns and small droplets are formed on a modified surface, which will then drift down like a fog.
NASA Technical Reports Server (NTRS)
Turner, Travis L.; Zhong, Z. W.; Mei, Chuh
1994-01-01
A feasibility study on the use of shape memory alloys (SMA) for suppression of the random response of composite panels due to acoustic loads at elevated temperatures is presented. The constitutive relations for a composite lamina with embedded SMA fibers are developed. The finite element governing equations and the solution procedures for a composite plate subjected to combined acoustic and thermal loads are presented. Solutions include: 1) Critical buckling temperature; 2) Flat panel random response; 3) Thermal postbuckling deflection; 4) Random response of a thermally buckled panel. The preliminary results demonstrate that the SMA fibers can completely eliminate the thermal postbuckling deflection and significantly reduce the random response at elevated temperatures.
1983-04-01
transition sections on the basis of its strength, ductility, and corrosion H resistance. In addition, austenitic stainless steels , such as 304, retain their...desirable mechanical properties at both cryogenic and elevated temperatures (approaching low red heat or 650C), and since both extremes were likely... temperature incoming air combined with a fuel spray would create the effect of escaping bleed air in the test chamber, with velocities low enough to
Kanda, Hirosato; Gu, Jianguo G.
2016-01-01
Except a small population of primary afferent neurons for sensing cold to generate the sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of other primary afferent neurons that are not for cold-sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In the present study we have found that not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (regarded as cold-ineffective neurons) or suppress (regarded as cold-suppressive neurons) their membrane excitability. For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by the increases in action potential (AP) firing numbers and/or reduction of AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. PMID:26709732
Kanda, Hirosato; Gu, Jianguo G
2017-05-01
Aside from a small population of primary afferent neurons for sensing cold, which generate sensations of innocuous and noxious cold, it is generally believed that cold temperatures suppress the excitability of primary afferent neurons not responsible for cold sensing. These not-for-cold-sensing neurons include the majority of non-nociceptive and nociceptive afferent neurons. In this study we have found that the not-for-cold-sensing neurons of rat trigeminal ganglia (TG) change their excitability in several ways at cooling temperatures. In nearly 70% of not-for-cold-sensing TG neurons, a cooling temperature of 15°C increases their membrane excitability. We regard these neurons as cold-active neurons. For the remaining 30% of not-for-cold-sensing TG neurons, the cooling temperature of 15°C either has no effect (cold-ineffective neurons) or suppress their membrane excitability (cold-suppressive neurons). For cold-active neurons, the cold temperature of 15°C increases their excitability as is evidenced by increases in action potential (AP) firing numbers and/or the reduction in AP rheobase when these neurons are depolarized electrically. The cold temperature of 15°C significantly inhibits M-currents and increases membrane input resistance of cold-active neurons. Retigabine, an M-current activator, abolishes the effect of cold temperatures on AP firing, but not the effect of cold temperature on AP rheobase levels. The inhibition of M-currents and the increases of membrane input resistance are likely two mechanisms by which cooling temperatures increase the excitability of not-for-cold-sensing TG neurons. This article is part of the special article series "Pain". © 2015 International Society for Neurochemistry.
NASA Technical Reports Server (NTRS)
Monson, Russell K.; Neice, Amberly A.; Trahan, Nicole A.; Shiach, Ian; McCorkel, Joel T.; Moore, David J. P.
2016-01-01
Plant isoprene emissions have been linked to several reaction pathways involved in atmospheric photochemistry. Evidence exists from a limited set of past observations that isoprene emission rate (I(sub s)) decreases as a function of increasing atmospheric CO2 concentration, and that increased temperature suppresses the CO2 effect. We studied interactions between intercellular CO2 concentration (C(sub I)) and temperature as they affect I(sub s) in field-grown hybrid poplar trees in one of the warmest climates on earth - the Sonoran Desert of the southwestern United States. We observed an unexpected midsummer down regulation of I(sub s) despite the persistence of relatively high temperatures. High temperature suppression of the I(sub s):C(sub I) relation occurred at all times during the growing season, but sensitivity of I(sub s) to increased C(sub I) was greatest during the midsummer period when I(subs) was lowest. We interpret the seasonal down regulation of I(sub s) and increased sensitivity of I(sub s) to C(sub I) as being caused by weather changes associated with the onset of a regional monsoon system. Our observations on the temperature suppression of the I(sub s):C(sub I) relation are best explained by the existence of a small pool of chloroplastic inorganic phosphate, balanced by several large, connected metabolic fluxes, which together, determine the C(sub I) and temperature dependencies of phosphoenolpyruvate import into the chloroplast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.
2016-06-27
We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less
Niobe: Improved noise temperature and back ground noise suppression
NASA Astrophysics Data System (ADS)
Tobar, Michael E.; Locke, Clayton R.; Heng, Ik Siong; Ivanov, Eugene N.; Blair, David G.
2000-06-01
The calibration and sensitivity of the Niobe detector are presented. Typically the detector operates with a 1 mK noise temperature. A best noise temperature of 890 μK between 1300 to 2000 UTC for day 60 in 1997 is reported. The transducer has been upgraded with a new microwave amplifier, which has a measured electronic noise floor 40 dB lower than the previous amplifier, which is only 10 dB above the quantum limit. A detector noise temperature of 23 μk can be expected with this improvement. Also, we discuss a new filter to suppress accidental coincidences between two gravitational wave detectors. The filter is based on the amplitude ratio of events in pairs of detectors and improves the statistical significance of zero time delay coincidences. .
Image based Monte Carlo Modeling for Computational Phantom
NASA Astrophysics Data System (ADS)
Cheng, Mengyun; Wang, Wen; Zhao, Kai; Fan, Yanchang; Long, Pengcheng; Wu, Yican
2014-06-01
The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verfication of the models for Monte carlo(MC)simulation are very tedious, error-prone and time-consuming. In addiation, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling by FDS Team (Advanced Nuclear Energy Research Team, http://www.fds.org.cn). The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients(Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection.
Bridging the education-action gap: a near-peer case-based undergraduate ethics teaching programme.
Kong, Wing May; Knight, Selena
2017-10-01
Undergraduate ethics teaching has made significant progress in the past decade, with evidence showing that students and trainee doctors feel more confident in identifying and analysing ethical issues. There is general consensus that ethics education should enable students and doctors to take ethically appropriate actions, and nurture moral integrity. However, the literature reports that doctors continue to find it difficult to take action when faced with perceived unethical behaviour. This has been evident in recent healthcare scandals, in which care has fallen below acceptable ethical standards, despite the presence of professional ethical guidelines and competencies. The National Foundation Training Programme forms the first 2 years of training for new UK doctors. We designed a Foundation Doctor (FD)-led teaching programme in which medical students were invited to bring cases and experiences from clinical placements for small group discussion facilitated by FDs. The aim was to enable students to act ethically in practice through developing moral sensitivity and moral identity, together with skills in ethical reasoning and tools to address barriers to taking ethical action. FDs were chosen as facilitators, based on the evidence that near-peer is an effective form of teaching in medicine and may provide positive role models for students. This article reviews the background rationale for the programme and its design. Important themes emerging from the case discussions are explored. Student and FD facilitator feedbacks are evaluated, and practical challenges to the implementation of this type of programme are discussed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2003-01-01
This report discusses the development and application of two alternative strategies in the form of global and sequential local response surface (RS) techniques for the solution of reliability-based optimization (RBO) problems. The problem of a thin-walled composite circular cylinder under axial buckling instability is used as a demonstrative example. In this case, the global technique uses a single second-order RS model to estimate the axial buckling load over the entire feasible design space (FDS) whereas the local technique uses multiple first-order RS models with each applied to a small subregion of FDS. Alternative methods for the calculation of unknown coefficients in each RS model are explored prior to the solution of the optimization problem. The example RBO problem is formulated as a function of 23 uncorrelated random variables that include material properties, thickness and orientation angle of each ply, cylinder diameter and length, as well as the applied load. The mean values of the 8 ply thicknesses are treated as independent design variables. While the coefficients of variation of all random variables are held fixed, the standard deviations of ply thicknesses can vary during the optimization process as a result of changes in the design variables. The structural reliability analysis is based on the first-order reliability method with reliability index treated as the design constraint. In addition to the probabilistic sensitivity analysis of reliability index, the results of the RBO problem are presented for different combinations of cylinder length and diameter and laminate ply patterns. The two strategies are found to produce similar results in terms of accuracy with the sequential local RS technique having a considerably better computational efficiency.
Novel Computational Protocols for Functionally Classifying and Characterising Serine Beta-Lactamases
Das, Sayoni; Dawson, Natalie L.; Dobrijevic, Dragana; Orengo, Christine
2016-01-01
Beta-lactamases represent the main bacterial mechanism of resistance to beta-lactam antibiotics and are a significant challenge to modern medicine. We have developed an automated classification and analysis protocol that exploits structure- and sequence-based approaches and which allows us to propose a grouping of serine beta-lactamases that more consistently captures and rationalizes the existing three classification schemes: Classes, (A, C and D, which vary in their implementation of the mechanism of action); Types (that largely reflect evolutionary distance measured by sequence similarity); and Variant groups (which largely correspond with the Bush-Jacoby clinical groups). Our analysis platform exploits a suite of in-house and public tools to identify Functional Determinants (FDs), i.e. residue sites, responsible for conferring different phenotypes between different classes, different types and different variants. We focused on Class A beta-lactamases, the most highly populated and clinically relevant class, to identify FDs implicated in the distinct phenotypes associated with different Class A Types and Variants. We show that our FunFHMMer method can separate the known beta-lactamase classes and identify those positions likely to be responsible for the different implementations of the mechanism of action in these enzymes. Two novel algorithms, ASSP and SSPA, allow detection of FD sites likely to contribute to the broadening of the substrate profiles. Using our approaches, we recognise 151 Class A types in UniProt. Finally, we used our beta-lactamase FunFams and ASSP profiles to detect 4 novel Class A types in microbiome samples. Our platforms have been validated by literature studies, in silico analysis and some targeted experimental verification. Although developed for the serine beta-lactamases they could be used to classify and analyse any diverse protein superfamily where sub-families have diverged over both long and short evolutionary timescales. PMID:27332861
Sleep disorders in Charcot-Marie-Tooth disease type 1.
Boentert, Matthias; Knop, Katharina; Schuhmacher, Christine; Gess, Burkhard; Okegwo, Angelika; Young, Peter
2014-03-01
Obstructive sleep apnoea (OSA) and restless legs syndrome (RLS) have been reported in Charcot-Marie-Tooth disease (CMT) type 1A and axonal subtypes of CMT, respectively. The aim of this case-control study was to investigate both prevalence and severity of OSA, RLS and periodic limb movements in sleep (PLMS) in adult patients with genetically proven CMT1. 61 patients with CMT1 and 61 insomnic control subjects were matched for age, sex, and Body Mass Index. Neurological disability in patients with CMT was assessed using the Functional Disability Scale (FDS). RLS diagnosis was based on a screening questionnaire and structured clinical interviews. All participants underwent overnight polysomnography. OSA was present in 37.7% of patients with CMT1 and 4.9% of controls (p<0.0001). The mean Apnoea Hypoponea Index (AHI) was significantly higher in patients with CMT1 than in control individuals (9.1/h vs 1.2/h). RLS was present in 40.9% of patients with CMT1 and in 16.4% of controls (p<0.001). In the CMT1 group, OSA was significantly more common in men and RLS in women. The AHI correlated with both age and the FDS score, the latter being a significant independent predictor of OSA. PLMS were found in 41.0% of patients with CMT1, but were not correlated with measures of sleep quality. In addition to known risk factors, CMT may predispose to OSA. RLS is highly prevalent not only in axonal subtypes of CMT but also in primarily demyelinating subforms of CMT. PLMS are common in CMT1, but do not significantly impair sleep quality.
Whitworth, S R; Bruce, D G; Starkstein, S E; Davis, W A; Davis, T M E; Bucks, R S
2016-12-01
To determine the contribution of lifetime major depressive disorder (L-MDD) and lifetime generalized anxiety disorder (L-GAD) to current psychological symptom severity, health behaviour and glycaemic control in type 2 diabetes. 1285 community-dwelling people with type 2 diabetes (Fremantle Diabetes Study Phase-II; FDS2) completed the PHQ-9 and Brief Life-Time Depression Scale (BLDS) to assess current and past MDD. The Generalized Anxiety Disorder Scale (GADS) and the Generalized Anxiety Disorder Scale-Lifetime (GAD-LT), designed for FDS2, assessed current and past anxiety. Data were analysed using analysis of covariance and multiple mediation models, controlling for age, gender, marital status, and diabetes duration. L-MDD and L-GAD were independently associated with more severe current depression (both P<0.001) and anxiety (both P<0.001) symptoms. Mediation models revealed that, through increasing the severity of current depressive symptoms, L-MDD was associated with higher HbA 1c and body mass index (BMI), greater likelihood of current smoking, and reduced self-monitoring of blood glucose (SMBG) (indirect regression path ab, all P<0.001). In combination, L-MDD+L-GAD additionally elevated the risk of higher HbA 1c and worse diabetes management, by increasing the severity of current depressive symptoms (indirect regression path ab, all P<0.001). Lifetime depression and anxiety increase risk of more severe psychological symptoms, hyperglycaemia, and difficulties with health behaviour in type 2 diabetes. Early screening for these disorders at diabetes diagnosis may be warranted to maximize long-term health outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Roohparvar, Rasool; Taher, Mohammad Ali; Mohadesi, Alireza
2008-01-01
For the simultaneous determination of nickel(ll) and copper(ll) in plant samples, a rapid and accurate method was developed. In this method, solid-phase extraction (SPE) and first-order derivative spectrophotometry (FDS) are combined, and the result is coupled with the H-point standard addition method (HPSAM). Compared with normal spectrophotometry, derivative spectrophotometry offers the advantages of increased selectivity and sensitivity. As there is no need for carrying out any pretreatment of the sample, the spectrophotometry method is easy, but because of a high detection limit, it is not so practical. In order to decrease the detection limit, it is suggested to combine spectrophotometry with a preconcentration method such as SPE. In the present work, after separation and preconcentration of Ni(ll) and Cu(ll) on modified clinoptilolite zeolite that is loaded with 2-[1-(2-hydroxy-5-sulforphenyl)-3-phenyl-5-formaza-no]-benzoic acid monosodium salt (zincon) as a selective chromogenic reagent, FDS-HPSAM, which is a simple and selective spectrophotometric method, has been applied for simultaneous determination of these ions. With optimum conditions, the detection limit in original solutions is 0.7 and 0.5 ng/mL, respectively, for nickel and copper. The linear concentration ranges in the proposed method for nickel and copper ions in original solutions are 1.1 to 3.0 x 10(3) and 0.9 to 2.0 x 10(3) ng/mL, respectively. The recommended procedure is applied to successful determination of Cu(ll) and Ni(ll) in standard and real samples.
THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
2016-09-01
We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less
NASA Astrophysics Data System (ADS)
Montorio Llovería, Raquel; Pérez-Cabello, Fernando; García-Martín, Alberto
2016-09-01
Fire severity can be assessed by identifying and quantifying the fractional abundance of post-fire ground cover types, an approach with great capacity to predict ecosystem response. Focused on shrubland formations of Mediterranean-type ecosystems, three burned areas (Ibieca and Zuera wildfires and Peñaflor experimental fire) were sampled in the summers of 2006 and 2007. Two different ground measurements were made for each of the 356 plots: (i) 3-band high spatial resolution photography (HSRP) and (ii) the hemispherical-conical reflectance factor (HCRF) in the visible to near-infrared spectral range (VNIR, 400-900 nm). Stepwise multiple lineal regression (SMLR) models were fitted to spectral variables (HCRF, first derivative spectra or FDS, and four absorption indices) to estimate the fractional cover of seven post-fire ground cover types (vegetation and soil - unburned and charred components - and ash - char and ash, individually and as a combined category). Models were developed and validated at the Peñaflor site (training, n = 217; validation, n = 88) and applied to the samples from the Ibieca and Zuera sites (n = 51). The best results were observed for the abundance estimations of green vegetation (Radj.20.70-0.90), unburned soil (Radj.20.40-0.75), and the combination of ashes (Radj.20.65-0.80). In comparison of spectral data, FDS outperforms reflectance or absorption data because of its higher accuracy levels and, importantly, its greater capacity to yield generalizable models. Future efforts should be made to improve the estimation of intermediate severity levels and upscaling the developed models. In the context of fire severity assessment, our study demonstrates the potential of hyperspectral data to estimate in a quick and objective manner post-fire ground cover fractions and thus provide valuable information to guide management responses.
Atomic Clocks with Suppressed Blackbody Radiation Shift
NASA Astrophysics Data System (ADS)
Yudin, V. I.; Taichenachev, A. V.; Okhapkin, M. V.; Bagayev, S. N.; Tamm, Chr.; Peik, E.; Huntemann, N.; Mehlstäubler, T. E.; Riehle, F.
2011-07-01
We develop a concept of atomic clocks where the blackbody radiation shift and its fluctuations can be suppressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the fact that in a system with two accessible clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal environment, there exists a “synthetic” frequency νsyn ∝ (ν1-ɛ12ν2) largely immune to the blackbody radiation shift. For example, in the case of Yb+171 it is possible to create a synthetic-frequency-based clock in which the fractional blackbody radiation shift can be suppressed to the level of 10-18 in a broad interval near room temperature (300±15K). We also propose a realization of our method with the use of an optical frequency comb generator stabilized to both frequencies ν1 and ν2, where the frequency νsyn is generated as one of the components of the comb spectrum.
Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel.
Yuan, Liming; Smith, Alex C
2015-05-01
Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect.
Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel
Yuan, Liming; Smith, Alex C.
2015-01-01
Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect. PMID:26190905
Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki
2016-10-02
Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
Thermal transport dynamics in the quasi-single helicity state
NASA Astrophysics Data System (ADS)
McKinney, I. J.; Terry, P. W.
2017-06-01
A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.
Entropic Barriers for Two-Dimensional Quantum Memories
NASA Astrophysics Data System (ADS)
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
NASA Astrophysics Data System (ADS)
Kim, Jeehoon; Haberkorn, N.; Graf, M. J.; Usov, I.; Ronning, F.; Civale, L.; Nazaretski, E.; Chen, G. F.; Yu, W.; Thompson, J. D.; Movshovich, R.
2012-10-01
We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs in superconducting Ca0.5Na0.5Fe2As2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016 cm-2 produced by 3 MeV protons results in a reduction of the superconducting critical temperature Tc by approximately 10%. In contrast, ρs(0) is suppressed by approximately 60%. This breakdown of the Abrikosov-Gorkov theory may be explained by the so-called “Swiss cheese model,” which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5Na0.5Fe2As2 with large intraband and simultaneous interband scattering as well as the s±-wave nature of short coherence length superconductivity.
A comparison of cooling techniques in firefighters after a live burn evolution
Colburn, Deanna; Suyama, Joe; Reis, Steven E; Morley, Julia L; Goss, Fredric L; Chen, Yi-Fan; Moore, Charity G; Hostler, David
2010-01-01
Objective We compared two active cooling devices to passive cooling in a moderate (≈22°C) temperature environment on heart rate (HR) and core temperature (Tc) recovery when applied to firefighters following 20 min. of fire suppression. Methods Firefighters (23 male, 2 female) performed 20 minutes of fire suppression at a live fire evolution. Immediately following the evolution, the subjects removed their thermal protective clothing and were randomized to receive forearm immersion (FI), ice water perfused cooling vest (CV) or passive (P) cooling in an air-conditioned medical trailer for 30 minutes. Heart rate and deep gastric temperature were monitored every five minutes during recovery. Results A single 20-minute bout of fire suppression resulted in near maximal HR (175±13 - P, 172±20 - FI, 177±12 beats•min−1 - CV) when compared to baseline (p < 0.001), a rapid and substantial rise in Tc (38.2±0.7 - P, 38.3±0.4 - FI, 38.3±0.3° - CV) compared to baseline (p < 0.001), and mass lost from sweating of nearly one kilogram. Cooling rates (°C/min) differed (p = 0.036) by device with FI (0.05±0.04) providing higher rates than P (0.03±0.02) or CV (0.03±0.04) although differences over 30 minutes were small and recovery of body temperature was incomplete in all groups. Conclusions During 30 min. of recovery following a 20-minute bout of fire suppression in a training academy setting, there is a slightly higher cooling rate for FI and no apparent benefit to CV when compared to P cooling in a moderate temperature environment. PMID:21294631
Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.
Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W
2015-03-16
The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.
Wei, Zhong; Huang, Jianfeng; Yang, Tianjie; Jousset, Alexandre; Xu, Yangchun; Shen, Qirong; Friman, Ville-Petri
2017-10-01
Microbe-based biocontrol applications hold the potential to become an efficient way to control plant pathogen disease outbreaks in the future. However, their efficiency is still very variable, which could be due to their sensitivity to the abiotic environmental conditions.Here, we assessed how environmental temperature variation correlates with ability of Ralstonia pickettii , an endophytic bacterial biocontrol agent, to suppress the Ralstonia solanacearum pathogen during different tomato crop seasons in China.We found that suppression of the pathogen was highest when the seasonal mean temperatures were around 20 °C and rapidly decreased with increasing mean crop season temperatures. Interestingly, low levels of disease incidence did not correlate with low pathogen or high biocontrol agent absolute densities. Instead, the biocontrol to pathogen density ratio was a more important predictor of disease incidence levels between different crop seasons. To understand this mechanistically, we measured the growth and strength of competition between the biocontrol agent and the pathogen over a naturally occurring temperature gradient in vitro . We found that the biocontrol strain grew relatively faster at low temperature ranges, and the pathogen at high temperature ranges, and that similar to field experiments, pathogen suppression peaked at 20 °C.Together, our results suggest that temperature-mediated changes in the strength of bacterial competition could potentially explain the variable R. solanacearum biocontrol outcomes between different crop seasons in China. Synthesis and applications . Our results suggest that abiotic environmental conditions, such as temperature, can affect the efficacy of biocontrol applications. Thus, in order to develop more consistent biocontrol applications in the future, we might need to find and isolate bacterial strains that can retain their functionality regardless of the changing environmental conditions.
Measurement Sensitivity Improvement of All-Optical Atomic Spin Magnetometer by Suppressing Noises
Chen, Xiyuan; Zhang, Hong; Zou, Sheng
2016-01-01
Quantum manipulation technology and photoelectric detection technology have jointly facilitated the rapid development of ultra-sensitive atomic spin magnetometers. To improve the output signal and sensitivity of the spin-exchange-relaxation-free (SERF) atomic spin magnetometer, the noises influencing on the output signal and the sensitivity were analyzed, and the corresponding noise suppression methods were presented. The magnetic field noises, including the residual magnetic field noise and the light shift noise, were reduced to approximately zero by employing the magnetic field compensation method and by adjusting the frequency of the pump beam, respectively. With respect to the operation temperature, the simulation results showed that the temperature of the potassium atomic spin magnetometer realizing the spin-exchange relaxation-free regime was 180 °C. Moreover, the fluctuation noises of the frequency and the power were suppressed by using the frequency and the power stable systems. The experimental power stability results showed that the light intensity stability was enhanced 10%. Contrast experiments on the sensitivity were carried out to demonstrate the validity of the suppression methods. Finally, a sensitivity of 13 fT/Hz1/2 was successfully achieved by suppressing noises and optimizing parameters. PMID:27322272
Apparatus for draining lower drywell pool water into suppresion pool in boiling water reactor
Gluntz, Douglas M.
1996-01-01
An apparatus which mitigates temperature stratification in the suppression pool water caused by hot water drained into the suppression pool from the lower drywell pool. The outlet of a spillover hole formed in the inner bounding wall of the suppression pool is connected to and in flow communication with one end of piping. The inlet end of the piping is above the water level in the suppression pool. The piping is routed down the vertical downcomer duct and through a hole formed in the thin wall separating the downcomer duct from the suppression pool water. The piping discharge end preferably has an elevation at or near the bottom of the suppression pool and has a location in the horizontal plane which is removed from the point where the piping first emerges on the suppression pool side of the inner bounding wall of the suppression pool. This enables water at the surface of the lower drywell pool to flow into and be discharged at the bottom of the suppression pool.
Suppressing Nonradiative Recombination in Crown-Shaped Quantum Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Kwangwook; Ju, Gunwu; Na, Byung Hoon
We examined the structural and optical properties of a crown-shaped quantum well (CSQW) to suppress nonradiative recombination. To reduce carrier loss in defect traps at the well/barrier interface, the CSQW was designed to concentrate carriers in the central region by tailoring the bandgap energy. Temperature-dependent photoluminescence measurements showed that the CSQW had a high activation energy and low potential fluctuation. In addition, the long carrier lifetime of the CSQW at high temperatures can be interpreted as indicating a decrease in carrier loss at defect traps.
Utilization of ultrasonic atomization for dust control in underground mining
NASA Astrophysics Data System (ADS)
Okawa, Hirokazu; Nishi, Kentaro; Kawamura, Youhei; Kato, Takahiro; Sugawara, Katsuyasu
2017-07-01
This study examined dust suppression using water particles generated by ultrasonic atomization (2.4 MHz) at low temperature (10 °C). Green tuff (4 µm), green tuff (6 µm), kaolin, and silica were used as dust samples. Even though ultrasonic atomization makes fine water particles, raising relative air humidity immediately was difficult at low temperature. However, remaining water particles that did not change to water vapor contributed to suppression of dust dispersion. Additionally, the effect of water vapor amount (absolute humidity) and water particles generated by ultrasonic atomization on the amount of dust dispersion was investigated using experimental data at temperatures of 10, 20, and 30 °C. Utilization of ultrasound atomization at low temperature has the advantages of low humidity increments in the working space and water particles remaining stable even with low relative air humidity.
Measurement of the absolute branching fraction of Ds+ --> tau+ nutau decay.
Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G
2008-04-25
Using a sample of tagged D(s)(+) decays collected near the D(s)(*+/-)D(s)(-/+) peak production energy in e(+)e(-) collisions with the CLEO-c detector, we study the leptonic decay D(s)(+)-->tau(+)nu(tau) via the decay channel tau(+)-->e(+)nu(e)nu(tau). We measure B(D(s)(+)-->tau(+)nu(tau))=(6.17+/-0.71+/-0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of D(s)(+)-->mu(+)nu(mu) and D(s)(+)-->tau(+)nu(tau) (via tau(+)-->pi(+)nu(tau)), we determine f(D(s))=(274+/-10+/-5) MeV.
1992-02-01
Division (Code RM) ONERA Office of Aeronautics & Space Technology 29 ave de la Division Leclerc NASA Hq 92320 Chfitillon Washington DC 20546 France United...Vector of thickness variables. V’ = [ t2 ........ tN Vector of thickness changes. AV ’= [rt, 5t2 ......... tNJ TI 7-9 Vector of strain derivatives. F...ds, ds, I d, 1i’,= dt, dr2 ........ dt--N Vector of buckling derivatives. dX d). , dt1 dt2 dtN Then 5F= Vs’i . AV and SX V,’. AV The linearised
NASA Astrophysics Data System (ADS)
Wang, Wenzhou; Zhou, Xianping; Liu, Zhigang; Liu, Ya; Liu, Wanfu; Hong, Li
2017-09-01
In this study, a special section tunnel model was established by using FDS (Fire Dynamics Simulator). The influences of lope and curvature on smoke flow under natural ventilation have been studied. The results showed that under the condition of natural ventilation, the slope has some influences on the smoke flow in special section tunnel. The smoke spreading speed is accelerated along the upstream direction and decrease along the downstream direction due to buoyancy effect of slope. The steeper the tunnel, the more obvious the buoyancy effect. The curvature has little effect on the flow of flue gas.
NASA Astrophysics Data System (ADS)
Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.
2015-02-01
We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.
H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation
NASA Astrophysics Data System (ADS)
Fernandez, Ricardo; Bryan, Greg L.; Haiman, Zoltan; Li, Miao
2014-04-01
The presence of quasars at redshifts z > 6 indicates the existence of supermassive black holes (SMBHs) as massive as a few times 109 M⊙, challenging models for SMBH formation. One pathway is through the direct collapse of gas in Tvir ≳ 104 K haloes; however, this requires the suppression of H2 cooling to prevent fragmentation. In this paper, we examine a proposed new mechanism for this suppression which relies on cold-mode accretion flows leading to shocks at high densities (n > 104 cm-3) and temperatures (T > 104 K). In such gas, H2 is efficiently collisionally dissociated. We use high-resolution numerical simulations to test this idea, demonstrating that such haloes typically have lower temperature progenitors, in which cooling is efficient. Those haloes do show filamentary flows; however, the gas shocks at or near the virial radius (at low densities), thus preventing the proposed collisional mechanism from operating. We do find that if we artificially suppress H2 formation with a high-UV background, so as to allow gas in the halo centre to enter the high-temperature, high-density `zone of no return', it will remain there even if the UV flux is turned off, collapsing to high density at high temperature. Due to computational limitations, we simulated only three haloes. However, we demonstrate, using Monte Carlo calculations of 106 halo merger histories, that a few rare haloes could assemble rapidly enough to avoid efficient H2 cooling in all of their progenitor haloes, provided that the UV background exceeds J21 ˜ few at redshifts as high as z ˜ 20.
Muralidharan, S; Box, M S; Sedivy, E L; Wigge, P A; Weigel, D; Rowan, B A
2014-11-01
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species-specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature-based suppression of ectopic immune activation in hybrids exhibits a linear or non-linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non-linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade-off between immunity and growth depends on the specific defence components involved. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Alumina Paste Layer as a Sublimation Suppression Barrier for Yb14MnSb11
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Caillat, Thierry
2010-01-01
Sublimation is a major cause of degradation of thermoelectric power generation systems. Most thermoelectric materials tend to have peak values at the temperature where sublimation occurs. A sublimation barrier is needed that is stable at operating temperatures, inert against thermoelectric materials, and able to withstand thermal cycling stress. A porous alumina paste layer is suitable as a sublimation barrier for Yb14MnSb11. It can accommodate stress generated by the thermal expansion discrepancy between the suppression layer and thermoelectric materials. Sublimation suppression is achieved by filling pores naturally with YbO2, a natural byproduct of sublimation. YbO2 generated during the sublimation of Yb14MnSb11 fills the porous structure of the alumina paste, causing sublimation to decrease with time as the pores become filled.
Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe 3
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.; ...
2018-01-22
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Kucerová, H; Strnadová, M; Ludvík, J; Chaloupka, J
1999-01-01
In Bacillus megaterium, a temperature that suppresses sporulation (43 degrees C) only slightly exceeds both the optimum growth temperature and the temperature still permitting sporulation (40-41 degrees C). Here we show that, when cells grown at 35 degrees C and transferred to a sporulation medium, were subjected to shifts between 35 degrees C and the sporulation suppressing temperature (SST, 43 degrees C), their development and proteolytic activities were deeply affected. During the reversible sporulation phase that took place at 35 degrees C for 2-3 h (T2-T3), the cells developed forespores and their protein turnover was characterized by degradation of short-lived proteins and proteins made accessible to the proteolytic attack because of starvation. During the following irreversible sporulation phase refractile heat-resistant spores appeared at T4-T5. Protein turnover rate increased again after T2 and up to T8 60-70% prelabelled proteins were degraded. The SST suppressed sporulation at its beginning; at T3 no asymmetric septa were observed and the amount of heat-resistant spores at T8 was by 4-5 orders lower than at 35 degrees C. However, the cells remained viable and were able to sporulate when transferred to a lower temperature. Protein degradation was increased up to T3 but then its velocity sharply dropped and the amount of degraded protein at T8 corresponded to slightly more than one-half of that found at 35 degrees C. The cytoplasmic proteolytic activity was enhanced but the activity in the membrane fraction was decreased. When a temperature shift to SST was applied at the beginning of the irreversible sporulation phase (T2.5), the sporulation process was impaired. A portion of forespores lyzed, the others were able to complete their development but most spores were not heat-resistant and their coats showed defects. Protein degradation increased again because an effective proteolytic system was developed during the reversible sporulation phase but the amount of degraded protein was slightly lower than at 35 degrees C. A later (T4) shift to SST had no effect on the sporulation process.
Kubota, Kenji; Ng, James C K
2016-06-01
RNA silencing functions as an antivirus defense strategy in plants, one that plant viruses counter by producing viral suppressors of RNA silencing (VSRs). VSRs have been identified in three members of the genus Crinivirus but they do not all share identical suppression mechanisms. Here, we used Agrobacterium co-infiltration assays to investigate the suppressor activity of proteins encoded by Lettuce chlorosis virus (LCV). Of 7 LCV proteins (1b, P23, HSP70 homolog, P60, CP, CPm, and P27) tested for the suppression of silencing of green fluorescent protein (GFP) expression in wild-type Nicotiana benthamiana plants, only P23 suppressed the onset of local silencing. Small-interfering (si)RNA accumulation was reduced in leaves co-infiltrated with P23, suggesting that P23 inhibited the accumulation or enhanced the degradation of siRNA. P23 also inhibited the cell-to-cell and systemic movement of RNA silencing in GFP-expressing transgenic N. benthamiana plants. Expression of P23 via agroinfiltration of N. benthamiana leaves induced local necrosis that increased in severity at elevated temperatures, a novelty given that a direct temperature effect on necrosis severity has not been reported for the other crinivirus VSRs. These results further affirm the sophistication of crinivirus VSRs in mediating the evasion of host's antiviral defenses and in symptom modulation.
A Method for Suppressing Superconductivity of Thin Films
NASA Astrophysics Data System (ADS)
Suppula, Tarmo; Pekola, Jukka; Kauppinen, Juha
2003-03-01
We have developed a method for suppressing superconductivity of thin films. Thin stripes of cobalt grown by e-gun evaporation and patterned by e-beam lithography were placed in the vicinity of aluminium thin film structures. The cobalt stripes were magnetized at 4.2 K with a superconducting coil and the remanence suppressed superconductivity of the Al stripe at temperatures down to 50 mK at least. The magnetization remained in thermal cycling and in a longer storage at room temperature. Motivation for this work is the Coulomb Blockade Thermometer(CBT)^1 which has to be in a normal state to operate. The CBT sensor contains aluminium which is superconducting at temperatures below 1.4 K. An external magnetic field is not always available or acceptable in cryostats. A small grain of permanent magnet mounted to the sensor is another solution, but suspicious if the sensor is put in strong magnetic fields or if "zero field" environment is required. We have shown that suitably patterned and magnetized Co stripes in the vicinity of tunnel junctions of the CBT can solve this problem. The amount of magnetic material in the sensor, as well as the stray field, is very small. This technique may be useful in other low temperature thin film devices also. 1) Product of Nanoway Ltd.
2012-01-01
We have shown that it is possible to tune, up to complete suppression, the photoluminescence superlinear dependence on the excitation density in quantum dot samples at high temperatures by annealing treatments. The effect has been attributed to the reduction of the defectivity of the material induced by annealing. PMID:23033918
Octahedral tilt independent magnetism in confined GdTiO3 films
NASA Astrophysics Data System (ADS)
Need, R. F.; Isaac, B. J.; Kirby, B. J.; Borchers, J. A.; Stemmer, S.; Wilson, Stephen D.
2018-03-01
Low temperature polarized neutron reflectometry measurements are presented, exploring the evolution of ferrimagnetism in thin GdTiO3 films embedded within a SrTiO3 matrix. In GdTiO3 films thinner than ˜4 nm, the TiO6 octahedral tilts endemic to GdTiO3 coherently relax toward the undistorted, cubic phase of SrTiO3. Our measurements indicate that the ferrimagnetic state within the GdTiO3 layers survives as these TiO6 octahedral tilts are suppressed. Furthermore, our data suggest that layers of suppressed magnetization (i.e., magnetic dead layers) develop within the GdTiO3 layer at each GdTiO3/SrTiO3 interface and explain the apparent magnetization suppression observed in thin GdTiO3 films when using volume-averaged techniques. Our data show that the low temperature magnetic moment inherent to the core GdTiO3 layers is only weakly impacted as the octahedral tilt angles are suppressed by more than 50% and the t2 g bandwidth is dramatically renormalized.
Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yokoyama, Shuichiro, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: shu@icrr.u-tokyo.ac.jp
Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
NASA Astrophysics Data System (ADS)
H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong
2005-02-01
Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.
Hoyt, M A; He, L; Totis, L; Saunders, W S
1993-09-01
The kinesin-related products of the CIN8 and KIP1 genes of Saccharomyces cerevisiae redundantly perform an essential function in mitosis. The action of either gene-product is required for an outwardly directed force that acts upon the spindle poles. We have selected mutations that suppress the temperature-sensitivity of a cin8-temperature-sensitive kip1-delta strain. The extragenic suppressors analyzed were all found to be alleles of the KAR3 gene. KAR3 encodes a distinct kinesin-related protein whose action antagonizes Cin8p/Kip1p function. All seven alleles analyzed were altered within the region of KAR3 that encodes the putative force-generating (or "motor") domain. These mutations also suppressed the inviability associated with the cin8-delta kip1-delta genotype, a property not shared by a deletion of KAR3. Other properties of the suppressing alleles revealed that they were not null for function. Six of the seven were unaffected for the essential karyogamy and meiosis properties of KAR3 and the seventh was dominant for the suppressing trait. Our findings suggest that despite an antagonistic relationship between Cin8p/Kip1p and Kar3p, aspects of their mitotic roles may be similar.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Bodnarik, J.; Droege, G.; Evans, L. G.; Golovin, D.; Hamara, D.; Harshman, K.;
2015-01-01
The Lunar Exploration Neutron Detector (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) detects a widespread suppression of the epithermal neutron leakage flux that is coincident with the pole-facing slopes (PFS) of the Moon's southern hemisphere. Suppression of the epithermal neutron flux is consistent with an interpretation of enhanced concentrations of hydrogen-bearing volatiles within the upper meter of the regolith. Localized flux suppression in PFS suggests that the reduced solar irradiation and lowered temperature on PFS constrains volatility to a greater extent than in surrounding regions. Epithermal neutron flux mapped with LEND's Collimated Sensor for Epithermal Neutrons (CSETN) was analyzed as a function of slope geomorphology derived from the Lunar Orbiting Laser Altimeter (LOLA) and the results compared to co-registered maps of diurnally averaged temperature from the Diviner Lunar Radiometer Experiment and an averaged illumination map derived from LOLA. The suppression in the average south polar epithermal neutron flux on equator-facing slopes (EFS) and PFS (85-90 deg S) is 3.3 +/- 0.04% and 4.3 +/- 0.05% respectively (one-sigma-uncertainties), relative to the average count-rate in the latitude band 45-90 deg S. The discrepancy of 1.0 +/- 0.06% between EFS and PFS neutron flux corresponds to an average of approximately 23 parts-per-million-by-weight (ppmw) more hydrogen on PFS than on EFS. Results show that the detection of hydrogen concentrations on PFS is dependent on their spatial scale. Epithermal flux suppression on large scale PFS was found to be enhanced to 5.2 +/- 0.13%, a discrepancy of approximately 45 ppmw hydrogen relative to equivalent EFS. Enhanced poleward hydration of PFS begins between 50 deg S and 60 deg S latitude. Polar regolith temperature contrasts do not explain the suppression of epithermal neutrons on pole-facing slopes. The Supplemental on-line materials include supporting results derived from the uncollimated Lunar Prospector Neutron Spectrometer and the LEND Sensor for Epithermal Neutrons.
USDA-ARS?s Scientific Manuscript database
Postharvest temperatures recommended as safe to avoid chilling injury (CI) based on lack of visible symptoms suppress tomato aroma development. We investigated how temperatures at or above the putative CI threshold of 12.5°C affected aroma of pink ‘Tasti Lee’ tomatoes and if controlled atmosphere (C...
Heat suppression of the fiber coating on a cladding light stripper in high-power fiber laser.
Yan, Ming-Jian; Wang, Zheng; Meng, Ling-Qiang; Yin, Lu; Han, Zhi-Gang; Shen, Hua; Wang, Hai-Lin; Zhu, Ri-Hong
2018-01-20
We present a theoretical model for the thermal effect of the fiber coating on a high-power cladding light stripper, which is fabricated by chemical etching. For the input and output of the fiber coating, a novel segmented corrosion method and increasing attenuation method are proposed for heat suppression, respectively. The relationship between the attenuation and temperature rise of the fiber coating at the output is experimentally demonstrated. The temperature distribution of the fiber coating at the input as well as the return light power caused by scattering are measured for the etched fiber with different surface roughness values. The results suggest that the rise in temperature is primarily caused by the scattering light propagating into the coating. Finally, an attenuation of 27 dB is achieved. At a room temperature of 23°C and input pump power of 438 W, the highest temperature of the input fiber coating decreases from 39.5°C to 27.9°C by segmented corrosion, and the temperature rise of the output fiber coating is close to 0.
High frequency measurements of shot noise suppression in atomic-scale metal contacts
NASA Astrophysics Data System (ADS)
Wheeler, Patrick J.; Evans, Kenneth; Russom, Jeffrey; King, Nicholas; Natelson, Douglas
2009-03-01
Shot noise provides a means of assessing the number and transmission coefficients of transmitting channels in atomic- and molecular-scale junctions. Previous experiments at low temperatures in metal and semiconductor point contacts have demonstrated the expected suppression of shot noise when junction conductance is near an integer multiple of the conductance quantum, G0≡2e^2/h. Using high frequency techniques, we demonstrate the high speed acquisition of such data at room temperature in mechanical break junctions. In clean Au contacts conductance histograms with clear peaks at G0, 2G0, and 3G0 are acquired within hours, and histograms of simultaneous measurements of the shot noise show clear suppression at those conductance values. We describe the dependence of the noise on bias voltage and analyze the noise vs. conductance histograms in terms of a model that averages over transmission coefficients.
Bajorunaite, Egle; Cirkovas, Andrejus; Radzevicius, Kostas; Larsen, Kim Lambertsen; Sereikaite, Jolanta; Bumelis, Vladas-Algirdas
2009-06-01
Cyclodextrins with different ring size and ring substituents were tested for recombinant mink and porcine growth hormones aggregation suppression in the refolding process from Escherichia coli inclusion bodies. Methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin show a positive effect on the aggregation suppression of both proteins. The influence of different methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin concentrations on the renaturation yield of both growth hormones was investigated. Moreover, methyl-beta-cyclodextrin and 2-hydroxypropyl-beta-cyclodextrin suppress not only folding-related, but also temperature-related aggregates formation of both proteins. Circular dichroism experiments (monitoring of protein solution turbidity by registering high tension voltage) showed that the onset temperature of aggregation of both growth hormones increased with increasing 2-hydroxypropyl-beta-cyclodextrin concentration. In conclusion, cyclodextrins have perspectives in biotechnology of veterinary growth hormones not only for protein production, but also for its storage.
NASA Technical Reports Server (NTRS)
Frenklach, M.
1983-01-01
Soot formation in toluene-, benzene-, and acetylene-oxygen-argon mixtures was investigated to study soot formation in a combustion environment. High concentrations of oxygen completely suppress soot formation. The addition of oxygen at relatively low concentrations uniformly suppresses soot formation at high pressures, while at relatively lower pressures it suppresses soot formation at higher temperatures while promoting soot production at lower temperatures. The observed behavior indicates that oxidation reactions compete with ring fragmentation. The main conclusion to be drawn from the results is that the soot formation mechanism is probably the same for the pyrolysis and oxidation of hydrocarbons. That is, the addition of oxygen does not alter the soot route but rather promotes or inhibits this route by means of competitive reactions. An approach to empirical modeling of soot formation during pyrolysis of aromatic hydrocarbons is also presented.
Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation
NASA Astrophysics Data System (ADS)
Ikarashi, Nobuyuki; Masuzaki, Koji
2011-03-01
Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.
Bottomonium suppression using a lattice QCD vetted potential
NASA Astrophysics Data System (ADS)
Krouppa, Brandon; Rothkopf, Alexander; Strickland, Michael
2018-01-01
We estimate bottomonium yields in relativistic heavy-ion collisions using a lattice QCD vetted, complex-valued, heavy-quark potential embedded in a realistic, hydrodynamically evolving medium background. We find that the lattice-vetted functional form and temperature dependence of the proper heavy-quark potential dramatically reduces the dependence of the yields on parameters other than the temperature evolution, strengthening the picture of bottomonium as QGP thermometer. Our results also show improved agreement between computed yields and experimental data produced in RHIC 200 GeV /nucleon collisions. For LHC 2.76 TeV /nucleon collisions, the excited states, whose suppression has been used as a vital sign for quark-gluon-plasma production in a heavy-ion collision, are reproduced better than previous perturbatively-motivated potential models; however, at the highest LHC energies our estimates for bottomonium suppression begin to underestimate the data. Possible paths to remedy this situation are discussed.
Suppression of HPA-axis activity by haloperidol after experimentally induced heat stress.
Hennig, J; Rzepka, U; Mai, B; Netter, P
1995-07-01
1. Healthy male volunteers were exposed to either a heat condition (52 degrees C) or normal temperature (28 degrees C) receiving a single oral dose of 3 mg haloperidol or placebo in a double-blind design. 2. Ratings on aversiveness as well as on intensity of ambient temperature and saliva samples for determination of cortisol were sampled at defined intervals. Body core temperature and sweat loss were measured continuously throughout the three hour experiment. 3. Results indicate increased levels of cortisol after exposure to heat but not after a pretreatment with haloperidol. 4. The findings of this study suggest that D2-receptors of tuberoinfundibular neurons are blocked by haloperidol which suppresses the dopamine mediated release of vasopressin induced by dehydration and the subsequent stimulation of CRH.
Onset of Superfluidity in ^{3}He Films.
Saitoh, Masamichi; Ikegami, Hiroki; Kono, Kimitoshi
2016-11-11
We elucidate, for the first time, the overall behavior of the onset temperature of superfluidity in ^{3}He films for a wide range of film thicknesses d between 0.06 and 10 μm by taking advantage of the tunability of d implemented using microfabricated devices. We observe a suppression of the onset temperature of superfluidity T_{c}^{f} in a film from the bulk transition temperature as d decreases. In particular, T_{c}^{f} is strongly suppressed when d approaches the coherence length (∼77 nm). The observed T_{c}^{f} as a function of d is similar to that expected from the quasiclassical theory, but it unexpectedly deviates from the theoretical value by several percent when 0.5≲d≲5 μm.
Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae
Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.
2013-01-01
Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276
The influence of convective blueshift on radial velocities of F, G, and K stars
NASA Astrophysics Data System (ADS)
Bauer, F. F.; Reiners, A.; Beeck, B.; Jeffers, S. V.
2018-02-01
Context. Apparent radial velocity (RV) signals induced by stellar surface features such as spots and plages can result in a false planet detection or hide the presence of an orbiting planet. Our ability to detect rocky exoplanets is currently limited by our understanding of such stellar signals. Aims: We model RV variations caused by active regions on the stellar surface of typical exoplanet-hosting stars of spectral type F, G, and K. We aim to understand how the stellar magnetic field strength, convective blueshift, and spot temperatures can influence RV signals caused by active regions. Methods: We use magneto-hydrodynamic (MHD) simulations for stars with spectral types F3V, a G2V, and a K5V. We quantify the impact of the magnetic field strength inside active regions on the RV measurement using the magnetic and non-magnetic FeI lines at 6165 Å and 6173 Å. We also quantify the impact of spot temperature and convective blueshift on the measured RV values. Results: Increasing the magnetic field strength increases the efficiency to suppress convection in active regions which results in an asymmetry between red- and blueshifted parts of the RV curves. A stronger suppression of convection also leads to an observed increase in RV amplitude for stronger magnetic fields. The MHD simulations predict convective motions to be faster in hotter stars. The suppression of faster convection leads to a stronger RV amplitude increase in hotter stars when the magnetic field is increased. While suppression of convection increases the asymmetry in RV curves,c a decreasing spot temperature counteracts this effect. When using observed temperatures for dark spots in our simulations we find that convective blueshift effects are negligible.
Soriano, Jaymar; Kubo, Takatomi; Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu; Ikeda, Kazushi
2017-10-01
Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain's normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored.
Inoue, Takao; Kida, Hiroyuki; Yamakawa, Toshitaka; Suzuki, Michiyasu
2017-01-01
Experiments with drug-induced epilepsy in rat brains and epileptic human brain region reveal that focal cooling can suppress epileptic discharges without affecting the brain’s normal neurological function. Findings suggest a viable treatment for intractable epilepsy cases via an implantable cooling device. However, precise mechanisms by which cooling suppresses epileptic discharges are still not clearly understood. Cooling experiments in vitro presented evidence of reduction in neurotransmitter release from presynaptic terminals and loss of dendritic spines at post-synaptic terminals offering a possible synaptic mechanism. We show that termination of epileptic discharges is possible by introducing a homogeneous temperature factor in a neural mass model which attenuates the post-synaptic impulse responses of the neuronal populations. This result however may be expected since such attenuation leads to reduced post-synaptic potential and when the effect on inhibitory interneurons is less than on excitatory interneurons, frequency of firing of pyramidal cells is consequently reduced. While this is observed in cooling experiments in vitro, experiments in vivo exhibit persistent discharges during cooling but suppressed in magnitude. This leads us to conjecture that reduction in the frequency of discharges may be compensated through intrinsic excitability mechanisms. Such compensatory mechanism is modelled using a reciprocal temperature factor in the firing response function in the neural mass model. We demonstrate that the complete model can reproduce attenuation of both magnitude and frequency of epileptic discharges during cooling. The compensatory mechanism suggests that cooling lowers the average and the variance of the distribution of threshold potential of firing across the population. Bifurcation study with respect to the temperature parameters of the model reveals how heterogeneous response of epileptic discharges to cooling (termination or suppression only) is exhibited. Possibility of differential temperature effects on post-synaptic potential generation of different populations is also explored. PMID:28981509
Hibernation in an antarctic fish: on ice for winter.
Campbell, Hamish A; Fraser, Keiron P P; Bishop, Charles M; Peck, Lloyd S; Egginton, Stuart
2008-03-05
Active metabolic suppression in anticipation of winter conditions has been demonstrated in species of mammals, birds, reptiles and amphibians, but not fish. This is because the reduction in metabolic rate in fish is directly proportional to the decrease in water temperature and they appear to be incapable of further suppressing their metabolic rate independently of temperature. However, the Antarctic fish (Notothenia coriiceps) is unusual because it undergoes winter metabolic suppression irrespective of water temperature. We assessed the seasonal ecological strategy by monitoring swimming activity, growth, feeding and heart rate (f(H)) in N. coriiceps as they free-ranged within sub-zero waters. The metabolic rate of wild fish was extrapolated from f(H )recordings, from oxygen consumption calibrations established in the laboratory prior to fish release. Throughout the summer months N. coriiceps spent a considerable proportion of its time foraging, resulting in a growth rate (G(w)) of 0.18 +/- 0.2% day(-1). In contrast, during winter much of the time was spent sedentary within a refuge and fish showed a net loss in G(w) (-0.05 +/- 0.05% day(-1)). Whilst inactive during winter, N. coriiceps displayed a very low f(H), reduced sensory and motor capabilities, and standard metabolic rate was one third lower than in summer. In a similar manner to other hibernating species, dormancy was interrupted with periodic arousals. These arousals, which lasted a few hours, occurred every 4-12 days. During arousal activity, f(H) and metabolism increased to summer levels. This endogenous suppression and activation of metabolic processes, independent of body temperature, demonstrates that N. coriiceps were effectively 'putting themselves on ice' during winter months until food resources improved. This study demonstrates that at least some fish species can enter a dormant state similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits.
Fabrication of TiNi/CFRP smart composite using cold drawn TiNi wires
NASA Astrophysics Data System (ADS)
Xu, Ya; Otsuka, Kazuhiro; Toyama, Nobuyuki; Yoshida, Hitoshi; Jang, Byung-Koog; Nagai, Hideki; Oishi, Ryutaro; Kishi, Teruo
2002-07-01
In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.
Measurement of the Absolute Branching Fraction of Ds+→τ+ντ Decay
NASA Astrophysics Data System (ADS)
Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Reed, J.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.
2008-04-01
Using a sample of tagged Ds+ decays collected near the Ds*±Ds∓ peak production energy in e+e- collisions with the CLEO-c detector, we study the leptonic decay Ds+→τ+ντ via the decay channel τ+→e+νeν¯τ. We measure B(Ds+→τ+ντ)=(6.17±0.71±0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of Ds+→μ+νμ and Ds+→τ+ντ (via τ+→π+ν¯τ), we determine fDs=(274±10±5)MeV.
Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability
NASA Technical Reports Server (NTRS)
Xu, Kun
1999-01-01
In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.
Analysis of the instability underlying electrostatic suppression of the Leidenfrost state
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.
2017-03-01
A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.
Effect of heating on the suppression of tearing modes in tokamaks.
Classen, I G J; Westerhof, E; Domier, C W; Donné, A J H; Jaspers, R J E; Luhmann, N C; Park, H K; van de Pol, M J; Spakman, G W; Jakubowski, M W
2007-01-19
The suppression of (neoclassical) tearing modes is of great importance for the success of future fusion reactors like ITER. Electron cyclotron waves can suppress islands, both by driving noninductive current in the island region and by heating the island, causing a perturbation to the Ohmic plasma current. This Letter reports on experiments on the TEXTOR tokamak, investigating the effect of heating, which is usually neglected. The unique set of tools available on TEXTOR, notably the dynamic ergodic divertor to create islands with a fully known driving term, and the electron cyclotron emission imaging diagnostic to provide detailed 2D electron temperature information, enables a detailed study of the suppression process and a comparison with theory.
Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure
NASA Astrophysics Data System (ADS)
Louca, Despina; Yan, Jiaqiang; Llobet, Anna; Arita, Ryotaro
2011-08-01
Superconductivity in FeTe1-xSex can be controlled by annealing in the absence of extrinsic influences. Using neutron diffraction, we show that the superconducting transition temperature (TC) sensitively depends on the atomic configurations of the Te and Se ions. Low-temperature annealing not only homogenizes the Te and Se ion distribution, it suppresses TC because of changes in the chalcogen ion’s z parameter. In particular, the height of Te from the Fe basal plane is much reduced while that for Se shows a modest increase. These trends are the reverse of the effects induced by pressure.
NASA Astrophysics Data System (ADS)
Gonderman, S.; Tripathi, J. K.; Sizyuk, T.; Hassanein, A.
2017-08-01
Tungsten (W) has been selected as the divertor material in ITER based on its promising thermal and mechanical properties. Despite these advantages, continued investigation has revealed W to undergo extreme surface morphology evolution in response to relevant fusion operating conditions. These complications spur the need for further exploration of W and other innovative plasma facing components (PFCs) for future fusion devices. Recent literature has shown that alloying of W with other refractory metals, such as tantalum (Ta), results in the enhancement of key PFC properties including, but not limited to, ductility, hydrogen isotope retention, and helium ion (He+) radiation tolerance. In the present study, pure W and W-Ta alloys are exposed to simultaneous and sequential low energy, He+ and deuterium (D+) ion beam irradiations at high (1223 K) and low (523 K) temperatures. The goal of this study is to cultivate a complete understanding of the synergistic effects induced by dual and sequential ion irradiation on W and W-Ta alloy surface morphology evolution. For the dual ion beam experiments, W and W-Ta samples were subjected to four different He+: D+ ion ratios (100% He+, 60% D+ + 40% He+, 90% D+ + 10% He+ and 100% D+) having a total constant He+ fluence of 6 × 1024 ion m-2. The W and W-Ta samples both exhibit the expected damaged surfaces under the 100% He+ irradiation, but as the ratio of D+/He+ ions increases there is a clear suppression of the surface morphology at high temperatures. This observation is supported by the sequential experiments, which show a similar suppression of surface morphology when W and W-Ta samples are first exposed to low energy He+ irradiation and then exposed to subsequent low energy D+ irradiation at high temperatures. Interestingly, this morphology suppression is not observed at low temperatures, implying there is a D-W interaction mechanism which is dependent on temperature that is driving the suppression of the microstructure evolution in both the pure W and W-Ta alloys. Minor irradiation tolerance enhancement in the performance of the W-Ta samples is also observed.
Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.
Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos
2016-07-19
Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.
Nathaniel, Thomas I; Otukonyong, Effiong; Abdellatif, Ahmed; Soyinka, Julius O
2012-10-01
Recent investigations of hypoxia physiology in the naked mole rat have opened up an interesting line of research into the basic physiological and genomic alterations that accompany hypoxia survival. The extent to which such findings connect the effect of hypoxia to metabolic rate (O₂ consumption), core body temperature (Tb), and transcripts encoding the immediate early gene product (such as c-fos) under a constant ambient temperature (Ta) is not well known. We investigated this issue in the current study. Our first sets of experiments measured Tb and metabolic rates during exposure of naked mole rats to hypoxia over a constant Ta. Hypoxia significantly decreased metabolic rates in the naked mole rat. Although core Tb also decreased during hypoxia, the effect of hypoxia in suppressing core Tb was not significant. The second series of experiments revealed that c-fos protein and mRNA expression in the hippocampus neurons (CA1) increased in naked mole rats that were repeatedly exposed to 3% O₂ for 60 min per day for 5 days when compared to normoxia. Our findings provide evidence for the up-regulation of c-fos and suppression of metabolic rate in hypoxia tolerating naked mole rats under constant ambient temperature. Metabolic suppression and c-fos upregulation constitute part of the physiological complex associated with adaptation to hypoxia. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, K.H.; Kim, M.H.
Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boilingmore » temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.« less
Jayatilake, Sharmila; Arai, Katsuhito; Kumada, Nanami; Ishida, Yoshiko; Tanaka, Ichiro; Iwatsuki, Satoru; Ohwada, Takuji; Ohnishi, Masao; Tokuji, Yoshihiko; Kinoshita, Mikio
2014-01-01
Inflammatory bowel disease (IBD) is an autoimmune disease of unknown etiology and can lead to inflammation and cancer. Whey proteins contain many bioactive peptides with potential health benefits against IBD. We investigated the effect of low-temperature-processed whey protein concentrate (LWPC) on the suppression of IBD by using a dextran sodium sulfate (DSS)-induced colitis model in BALB/c mice. Oral intake of LWPC resulted in improved recovery of body weight in mice. Histological analysis showed that the epithelium cells of LWPC-treated mice were healthier and that lymphocyte infiltration was reduced. The increase in mucin due to the LWPC also reflected reduced inflammation in the colon. Transcriptome analysis of the colon by DNA microarrays revealed marked downregulation of genes related to immune responses in LWPC-fed mice. In particular, the expression of interferon gamma receptor 2 (Ifngr2) and guanylate-binding proteins (GBPs) was increased by DSS treatment and decreased in LWPC-fed mice. These findings suggest that LWPCs suppress DSS-induced inflammation in the colon by suppressing the signaling of these cytokines. Our findings suggest that LWPCs would be an effective food resource for suppressing IBD symptoms. PMID:28234324
Jayatilake, Sharmila; Arai, Katsuhito; Kumada, Nanami; Ishida, Yoshiko; Tanaka, Ichiro; Iwatsuki, Satoru; Ohwada, Takuji; Ohnishi, Masao; Tokuji, Yoshihiko; Kinoshita, Mikio
2014-06-13
Inflammatory bowel disease (IBD) is an autoimmune disease of unknown etiology and can lead to inflammation and cancer. Whey proteins contain many bioactive peptides with potential health benefits against IBD. We investigated the effect of low-temperature-processed whey protein concentrate (LWPC) on the suppression of IBD by using a dextran sodium sulfate (DSS)-induced colitis model in BALB/c mice. Oral intake of LWPC resulted in improved recovery of body weight in mice. Histological analysis showed that the epithelium cells of LWPC-treated mice were healthier and that lymphocyte infiltration was reduced. The increase in mucin due to the LWPC also reflected reduced inflammation in the colon. Transcriptome analysis of the colon by DNA microarrays revealed marked downregulation of genes related to immune responses in LWPC-fed mice. In particular, the expression of interferon gamma receptor 2 (Ifngr2) and guanylate-binding proteins (GBPs) was increased by DSS treatment and decreased in LWPC-fed mice. These findings suggest that LWPCs suppress DSS-induced inflammation in the colon by suppressing the signaling of these cytokines. Our findings suggest that LWPCs would be an effective food resource for suppressing IBD symptoms.
Tanatar, M. A.; Ni, N.; Thaler, A.; ...
2011-07-27
Temperature-dependent interplane resistivity ρ c(T) was measured systematically as a function of transition-metal substitution in the iron-arsenide superconductors Ba(Fe 1-xM x)₂As₂, M=Ni, Pd, Rh. The data are compared with the behavior found in Ba(Fe 1-xCo x)₂As₂, revealing resistive signatures of pseudogap. In all compounds we find resistivity crossover at a characteristic pseudogap temperature T* from nonmetallic to metallic temperature dependence on cooling. Suppression of T* proceeds very similarly in cases of Ni and Pd doping and much faster than in similar cases of Co and Rh doping. In cases of Co and Rh doping an additional minimum in the temperature-dependentmore » ρ c emerges for high dopings, when superconductivity is completely suppressed. These features are consistent with the existence of a charge gap covering part of the Fermi surface. The part of the Fermi surface affected by this gap is notably larger for Ni- and Pd-doped compositions than in Co- and Rh-doped compounds.« less
Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato
USDA-ARS?s Scientific Manuscript database
Storing potato (Solanum tuberosum) tubers at cold temperatures prevents sprouting and minimizes losses due to disease. Unfortunately, cold storage triggers an accumulation of reducing sugars, a phenomenon referred to as cold-induced sweetening (CIS). High-temperature processing of potato tubers wit...
Effects of evening bright light exposure on melatonin, body temperature and sleep.
Bunnell; Treiber; Phillips; Berger
1992-03-01
Five male subjects were exposed to a single 2-h period of bright (2500 lux) or dim (<100 lux) light prior to sleep on two consecutive nights. The two conditions were repeated the following week in opposite order. Bright light significantly suppressed salivary melatonin and raised rectal temperature 0.3 degrees C (which remained elevated during the first 1.5 h of sleep), without affecting tympanic temperature. Bright light also increased REM latency, NREM period length, EEG spectral power in low frequency, 0.75-8 Hz and sigma, 12-14 Hz (sleep spindle) bandwidths during the first hour of sleep, and power of all frequency bands (0.5-32 Hz) within the first NREMP. Potentiation of EEG slow wave activity (0.5-4.0 Hz) by bright light persisted through the end of the second NREMP. The enhanced low-frequency power and delayed REM sleep after bright light exposure could represent a circadian phase-shift and/or the effect of an elevated rectal temperature, possibly mediated by the suppression of melatonin.
Gray, Elmer W; Wyatt, Roger D; Adler, Peter H; Smink, John; Cox, Julie E; Noblet, Ray
2012-06-01
Black fly suppression programs are conducted across a wide range of environmental conditions, targeting a variety of pest species with diverse life histories. Operational applications of Vectobac 12AS (Bacillus thuringiensis subsp. israelensis) were conducted during times characterized by water temperature and turbidity extremes. Applications were conducted in the Yellow River in central Wisconsin targeting Simulium annulus and S. johannseni when water temperatures were 1-2 degrees C. Applications were conducted in the Green River in western North Carolina targeting the S. jenningsi group after a rain event, when portions of the treatment zone experienced turbidities of 276 nephelometric turbidity units. Excellent larvicidal activity was observed in both programs, with 97% mortality or greater being observed at distances over 5 km downstream of a treatment site. Mortality data for larval black flies in 2 operational suppression programs conducted in 2011 demonstrated a negligible effect of near-freezing water temperatures and exceptionally high turbidity on Bti activity.
Carbon Dioxide Dispersion in the Combustion Integrated Rack Simulated Numerically
NASA Technical Reports Server (NTRS)
Wu, Ming-Shin; Ruff, Gary A.
2004-01-01
When discharged into an International Space Station (ISS) payload rack, a carbon dioxide (CO2) portable fire extinguisher (PFE) must extinguish a fire by decreasing the oxygen in the rack by 50 percent within 60 sec. The length of time needed for this oxygen reduction throughout the rack and the length of time that the CO2 concentration remains high enough to prevent the fire from reigniting is important when determining the effectiveness of the response and postfire procedures. Furthermore, in the absence of gravity, the local flow velocity can make the difference between a fire that spreads rapidly and one that self-extinguishes after ignition. A numerical simulation of the discharge of CO2 from PFE into the Combustion Integrated Rack (CIR) in microgravity was performed to obtain the local velocity and CO2 concentration. The complicated flow field around the PFE nozzle exits was modeled by sources of equivalent mass and momentum flux at a location downstream of the nozzle. The time for the concentration of CO2 to reach a level that would extinguish a fire anywhere in the rack was determined using the Fire Dynamics Simulator (FDS), a computational fluid dynamics code developed by the National Institute of Standards and Technology specifically to evaluate the development of a fire and smoke transport. The simulation shows that CO2, as well as any smoke and combustion gases produced by a fire, would be discharged into the ISS cabin through the resource utility panel at the bottom of the rack. These simulations will be validated by comparing the results with velocity and CO2 concentration measurements obtained during the fire suppression system verification tests conducted on the CIR in March 2003. Once these numerical simulations are validated, portions of the ISS labs and living areas will be modeled to determine the local flow conditions before, during, and after a fire event. These simulations can yield specific information about how long it takes for smoke and combustion gases produced by a fire to reach a detector location, how large the fire would be when the detector alarms, and the behavior of the fire until it has been extinguished. This new capability could then be used to optimize the location of fire detectors and fire-suppression ports as well as to evaluate the effectiveness of fire suppressants and response strategies. Numerical data collected from these simulations could also be used to develop a virtual reality fire event for crew training and fire safety awareness. This work is funded by NASA's Bioastronautics Initiative, which has the objective of ensuring and enhancing the health, safety, and performance of humans in space. As part of this initiative, the Microgravity Combustion Science Branch at the NASA Glenn Research Center is conducting spacecraft fire safety research to significantly improve fire safety on inhabited spacecraft.
Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling
2014-09-30
warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed
An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Korte, John J.
1991-01-01
An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.
Refinement of myotome values in the upper limb: Evidence from brachial plexus injuries.
Bell, S W; Brown, M J C; Hems, T J
2017-02-01
We reviewed patients with partial supraclavicular brachial plexus injuries in order to refine the myotome values of the upper limb. Forty-two patients with defined partial injuries to the supraclavicular brachial plexus were reviewed from a prospective database. The injuries patterns covered C5, C5-6, C5-7, C5-8, C7-T1 and C8-T1 roots. Upper plexus injuries were classified on the basis of surgical exploration and intraoperative stimulation and lower plexus injuries from MRI. Flexor Carpi Radialis (FCR) was paralyzed in C5-7 injuries, in addition to paralysis of deltoid, supraspinatus, infraspinatus and biceps, when compared to C5-6 injuries. Complete paralysis of Flexor Digitorum Profundus (FDP) and Flexor Digitorum Superficialis (FDS) to all digits was identified in C7-T1 injuries. In C5-8 injuries weakness was noted in FDP of ulnar digits and intrinsics innervated by the ulnar nerve, while in C8-T1 injuries paralysis was noted in the FDP to the radial digits. All patients with C8-T1 injuries had paralysis of FDS and the thenar muscles. In upper plexus injuries paralysis of FCR indicated involvement of C7 root in addition to C5 and C6 roots. The results provide new detail of innervation of muscles acting on the hand. Flexor muscles and intrinsic muscles of the thumb and radial fingers (median nerve) have an important contribution from T1, while for those acting on the ulnar digits (ulnar nerve) the main contribution is from C8 with some input from C7. T1 also gives consistent innervation to extensor pollicis longus. A revised myotome chart for the upper limb is proposed. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
Jones, Christopher L; Kamper, Derek G
2018-01-01
Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p < 0.001). A greater effect was seen during the opening phase ( p < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.
Jones, Christopher L.; Kamper, Derek G.
2018-01-01
Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies. PMID:29545767
The Dynamics of Voluntary Force Production in Afferented Muscle Influence Involuntary Tremor
Laine, Christopher M.; Nagamori, Akira; Valero-Cuevas, Francisco J.
2016-01-01
Voluntary control of force is always marked by some degree of error and unsteadiness. Both neural and mechanical factors contribute to these fluctuations, but how they interact to produce them is poorly understood. In this study, we identify and characterize a previously undescribed neuromechanical interaction where the dynamics of voluntary force production suffice to generate involuntary tremor. Specifically, participants were asked to produce isometric force with the index finger and use visual feedback to track a sinusoidal target spanning 5–9% of each individual's maximal voluntary force level. Force fluctuations and EMG activity over the flexor digitorum superficialis (FDS) muscle were recorded and their frequency content was analyzed as a function of target phase. Force variability in either the 1–5 or 6–15 Hz frequency ranges tended to be largest at the peaks and valleys of the target sinusoid. In those same periods, FDS EMG activity was synchronized with force fluctuations. We then constructed a physiologically-realistic computer simulation in which a muscle-tendon complex was set inside of a feedback-driven control loop. Surprisingly, the model sufficed to produce phase-dependent modulation of tremor similar to that observed in humans. Further, the gain of afferent feedback from muscle spindles was critical for appropriately amplifying and shaping this tremor. We suggest that the experimentally-induced tremor may represent the response of a viscoelastic muscle-tendon system to dynamic drive, and therefore does not fall into known categories of tremor generation, such as tremorogenic descending drive, stretch-reflex loop oscillations, motor unit behavior, or mechanical resonance. Our findings motivate future efforts to understand tremor from a perspective that considers neuromechanical coupling within the context of closed-loop control. The strategy of combining experimental recordings with physiologically-sound simulations will enable thorough exploration of neural and mechanical contributions to force control in health and disease. PMID:27594832
NASA Astrophysics Data System (ADS)
Ustra, A.; Kessouri, P.; Leite, A.; Mendonça, C. A.; Bandeira, N.
2017-12-01
Magnetic minerals in soils and rocks are one way to study biogechemical and paleoenvironmental processes. The ultrafine fraction of these minerals (superparmagnetic (SP) and stable single domain (SSD)) are usually investigated in environmental magnetism studies, since changes in mineralogy, concentration, size and morphology of the magnetic grains can be related to biogeochemical processes. In this study, we use low-field frequency dependent susceptibility (FDS) and isothermal remanent magnetization (IRM) to characterize the magnetic properties of materials in environmental magnetism. Magnetic susceptibility (MS) measurements are frequently used as a proxy of magnetic minerals present in soils and rocks. MS is a complex function of magnetic mineralogy and grain size, as well as magnitude and frequency of the applied field. This work presents a method for inverting low-field FDS data. The inverted parameters can be interpreted in terms of grain size variations of magnetic particles on the SP-SSD transition. This work also presents a method for inverting IRM demagnetization curves, to obtain the saturation magnetization, the individual magnetic moment for an assemblage of ultrafine SP minerals and estimate the concentration of magnetic carriers. IRM magnetization curves can be interpreted as resulting from distinct contributions of different mineral phases, which can be described by Cummulative Log-Gaussian (CLG) distributions. Each acquisition curve provides fundamental parameters that are characteristic of the respective mineral phase. The CLG decomposition is widely used in an interpretation procedure named mineral unmixing. In this work we present an inversion method for mineral unmixing, implementing the genetic algorithm to find the parameters of distinct components. These methodologies have been tested by synthetic models and applied to data from environmental magnetism studies. In this work we apply the proposed methodologies to characterize the magnetic properties of samples from the former Brandywine MD Defense Reutilization and Marketing Office (DRMO). The results from the magnetic properties characterization will provide additional information that may assist the interpretation of the biogeophysical signatures observed at the site.
SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, J; Cao, R; Pei, X
Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less
Suppression of Collisionless Magnetic Reconnection in Asymmetric Current Sheets
NASA Technical Reports Server (NTRS)
Liu, Yi-Hsin; Hesse, Michael
2016-01-01
Using fully kinetic simulations, we study the suppression of asymmetric reconnection in the limit where the diamagnetic drift speed >> Alfven speed and the magnetic shear angle is moderate. We demonstrate that the slippage between electrons and the magnetic flux mitigates the suppression and can even result in fast reconnection that lacks one of the outflow jets. Through comparing a case where the diamagnetic drift is supported by the temperature gradient with a companion case that has a density gradient instead, we identify a robust suppression mechanism. The drift of the x-line is slowed down locally by the asymmetric nature of the x-line, and then the x-line is run over and swallowed by the faster-moving following flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Bud'ko, Sergey L.
We report the temperature-pressure-magnetic eld phase diagram of the ferromagnetic Kondolattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ~5.8GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C =14 K. Application of pressure suppresses T C, but a pressure induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p>4.1GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower temperature phase being fully suppressed above 5.3GPa. The critical pressures for the presumed quantummore » phase transitions are p1≅4.1GPa and p2≅5.3GPa. Above 4.1GPa, application of magnetic eld shows a tricritical point evolving into a wing structure phase with a quantum tricritical point at 2.8T at 5.4GPa, where the rst order antiferromagneticferromagnetic transition changes into the second order antiferromagnetic-ferromagnetic transition.« less
Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device
NASA Technical Reports Server (NTRS)
Caillat, Thierry (Inventor); Paik, Jong-Ah (Inventor)
2014-01-01
Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.
Spin reorientation transition and hard magnetic properties of MnBi intermetallic compound
NASA Astrophysics Data System (ADS)
Suzuki, K.; Wu, X.; Ly, V.; Shoji, T.; Kato, A.; Manabe, A.
2012-04-01
The effects of mechanical grinding (MG) on the crystallite size, the spin reorientation transition temperature (TSR) and the hard magnetic properties in melt-spun low temperature phase (LTP) MnBi have been investigated in order to understand the origin of magnetic hardening induced by MG. The room-temperature coercive field (μ0Hcj) is enhanced dramatically from 0.08 T before MG to 1.5 T after MG for 43.2 ks while TSR is concurrently suppressed from 110 to 38 K. The coercive force exhibits positive temperature dependence approximately 50-60 K above TSR and the lowered TSR after MG could result in magnetic hardening at room temperature. The room-temperature coercive force of LTP-MnBi is highly dependent on the crystallite size (D) and is found to be described phenomenologically by the following relationship: μ0Hcj = μ0Ha(δ/D)n, where μ0Ha is ˜ 4 T, the Bloch wall width δ is 7 nm, and the exponent n is approximately 0.7. Our results suggest that the grain refinement is the primary origin of the hardening effect induced by MG with a possible minor hardening effect due to the suppression of the spin reorientation transition temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velişa, G.; Wendler, E.; Zhao, S.
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
Velişa, G.; Wendler, E.; Zhao, S.; ...
2017-12-17
A combined experimental and computational evaluation of damage accumulation in ion-irradiated Ni, NiFe, and NiFeCoCr is presented. Furthermore, a suppressed damage accumulation, at early stages (low-fluence irradiation), is revealed in NiFeCoCr, with a linear dependence as a function of ion fluence, in sharp contrast with Ni and NiFe. This effect, observed at 16 K, is attributed to the complex energy landscape in these alloys that limits defect mobility and therefore enhances defect interaction and recombination. Our results, together with previous room-temperature and high-temperature investigations, suggest "self-healing" as an intrinsic property of complex alloys that is not a thermally activated process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odegard, N.; Kogut, A.; Miller, N. J.
2016-09-01
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE /FIRAS and COBE /DIRBE observations from 3 mm to 100 μ m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation formore » the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.« less
Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations
NASA Technical Reports Server (NTRS)
Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.
2016-01-01
Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two-graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the othermodels. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.
The rhesus measurement system: A new instrument for space research
NASA Technical Reports Server (NTRS)
Schonfeld, Julie E.; Hines, John W.
1993-01-01
The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.
NASA Technical Reports Server (NTRS)
Stapfer, G.; Truscello, V. C.
1975-01-01
For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.
Freshwater survival and growth of juvenile salmon are affected by many factors, including high summer temperatures and other stressors such as parasitism. Delayed or suppressed growth related to stress can influence subsequent survival of juvenile salmonids in freshwater and mar...
Ding, Yuanhao; Ma, Yizan; Liu, Nian; Xu, Jiao; Hu, Qin; Li, Yaoyao; Wu, Yuanlong; Xie, Sai; Zhu, Longfu; Min, Ling; Zhang, Xianlong
2017-09-01
Male sterility caused by long-term high-temperature (HT) stress occurs widely in crops. MicroRNAs (miRNAs), a class of endogenous non-coding small RNAs, play an important role in the plant response to various abiotic stresses. To dissect the working principle of miRNAs in male sterility under HT stress in cotton, a total of 112 known miRNAs, 270 novel miRNAs and 347 target genes were identified from anthers of HT-insensitive (84021) and HT-sensitive (H05) cotton cultivars under normal-temperature and HT conditions through small RNA and degradome sequencing. Quantitative reverse transcriptase-polymerase chain reaction and 5'-RNA ligase-mediated rapid amplification of cDNA ends experiments were used to validate the sequencing data. The results show that miR156 was suppressed by HT stress in both 84021 and H05; miR160 was suppressed in 84021 but induced in H05. Correspondingly, SPLs (target genes of miR156) were induced both in 84021 and H05; ARF10 and ARF17 (target genes of miR160) were induced in 84021 but suppressed in H05. Overexpressing miR160 increased cotton sensitivity to HT stress seen as anther indehiscence, associated with the suppression of ARF10 and ARF17 expression, thereby activating the auxin response that leads to anther indehiscence. Supporting this role for auxin, exogenous Indole-3-acetic acid (IAA) leads to a stronger male sterility phenotype both in 84021 and H05 under HT stress. Cotton plants overexpressing miR157 suppressed the auxin signal, and also showed enhanced sensitivity to HT stress, with microspore abortion and anther indehiscence. Thus, we propose that the auxin signal, mediated by miRNAs, is essential for cotton anther fertility under HT stress. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Rodríguez-Marroyo, J A; Villa, J G; López-Satue, J; Pernía, R; Carballo, B; García-López, J; Foster, C
2011-11-01
The aim of this study was to analyse the physiological strain of firefighters, using heart rate (HR) and core temperature, during real wildfire suppression according to the type of attack performed (direct, indirect or mixed). Three intensity zones were established according to the HR corresponding to the ventilatory threshold (VT) and respiratory compensation threshold (RCT): zone 1,
The Human Burst Suppression Electroencephalogram of Deep Hypothermia
Kumaraswamy, Vishakhadatta M.; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S.; Kilbride, Ronan; Brown, Emery N.; Purdon, Patrick L.
2015-01-01
Objective Deep hypothermia induces ‘burst suppression’ (BS), an electroencephalogram pattern with low-voltage ‘suppressions’ alternating with high-voltage ‘bursts’. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. Methods We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Results Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. Conclusions These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. Significance These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. PMID:25649968
NASA Astrophysics Data System (ADS)
Shah, Tirthesh Jayesh
The NASA Burning and Suppression of Solids-II (BASS II) experiment examines the combustion of different solid materials and material geometries in microgravity. While flames in microgravity are driven by diffusion and weak advection due to crew movements and ventilation, the current NASA spacecraft material selection test method (NASA-STD- 6001 Test 1) is driven by buoyant forces as gravity is present. The overall goal of this project is to understand the burning of intermediate and thick fuels in microgravity, and devise a normal gravity test to apply to future materials. Clear cast polymethylmethacrylate (PMMA) samples 10 cm long by 1 or 2 cm wide with thicknesses ranging from 1-5 mm were investigated. PMMA is the ideal choice since it is widely used and we know its stoichiometric chemistry. Tests included both one sided and two sided burns. Samples are ignited by heating a wire behind the sample. The samples are burned in a flow duct within the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) to ensure true microgravity conditions. The experiment takes place in opposed flow with varying Oxygen concentrations and flow velocities. Flames are recorded on two cameras and later tracked to determine spread rate. Currently we are modeling combustion of PMMA using Fire Dynamics Simulator (FDS 5.5.3) and Smokeview. The entire modelling for BASS-II is done in DNS mode because of the laminar conditions and small domain. In DNS mode the Navier Stokes equations are solved without the Turbulence model. The model employs the same test sample and MSG geometry as the experiment; but in 2D. The experimental data gave upstream velocity at several points using an anemometer. A flow profile for the inlet velocity is obtained using Matlab and input into the model. The flame spread rates obtained after tracking are then compared with the experimental data and the results follow the trends but the spread rates are higher.
NASA Astrophysics Data System (ADS)
Yang, Wenchao; Luo, Yongsong; Guo, Pengfei; Sun, Haibin; Yao, Yao
2017-04-01
The open-circuit voltage (Voc ) of organic solar cells generally approaches its maximum obtainable values as the temperature decreases. However, recent experiments have revealed that the Voc may suffer from an ultrahigh loss at low temperatures. In order to verify this explanation and investigate the impacts of energetic disorder on the temperature-dependent behaviors of the Voc in general, we calculate the Voc-T plots with the drift-diffusion method under various device working parameters. With the disorder being incorporated into the device model by considering the disorder-suppressed (temperature-dependent) charge-carrier mobilities, it is found that the ultrahigh Voc losses cannot be reproduced under the Onsager-Braun-type charge generation rate. With the charge generation rate being constant or weakly dependent on temperature, for nonselective contacts, the Voc reduces drastically at low temperatures, while for selective contacts, the Voc increases monotonically with decreasing temperature. With higher carrier mobilities or smaller device thicknesses, the ultrahigh loss occurs at lower temperatures. The mechanism is that, since the disorder-suppressed charge mobilities give rise to both low charge-extraction efficiency and small bimolecular recombination rate, plenty of charge carriers can be extracted from the wrong electrode and can form a large leakage current, which counteracts the majority-carrier current and reduces the Voc at low temperatures. Our results thus highlight the essential role of charge-carrier kinetics, except for the charge-filling effect, on dominating the disorder-induced Voc losses.
Effect of α-particle irradiation on a NdFeAs(O,F) thin film
NASA Astrophysics Data System (ADS)
Tarantini, C.; Iida, K.; Sumiya, N.; Chihara, M.; Hatano, T.; Ikuta, H.; Singh, R. K.; Newman, N.; Larbalestier, D. C.
2018-07-01
The effect of α-particle irradiation on a NdFeAs(O,F) thin film has been investigated to determine how the introduction of defects affects basic superconducting properties, including the critical temperature T c and the upper critical field H c2, and properties more of interest for applications, like the critical current density J c and the related pinning landscape. The irradiation-induced suppression of the film T c is significantly smaller than on a similarly damaged single crystal. Moreover H c2 behaves differently, depending on the field orientation: for H//c the H c2 slope monotonically increases with increasing disorder, whereas for H//ab it remains constant at low dose and it increases only when the sample is highly disordered. This suggests that a much higher damage level is necessary to drive the NdFeAs(O,F) thin film into the dirty limit. Despite the increase in the low temperature H c2, the effects on the J c(H//c) performances are moderate in the measured temperature and field ranges, with a shifting of the pinning force maximum from 4.5 to 6 T after an irradiation of 2 × 1015 cm-2. On the contrary, J c(H//ab) is always suppressed. The analysis demonstrates that irradiation does introduce point defects (PD) acting as pinning centres proportionally to the irradiation fluence but also suppresses the effectiveness of c-axis correlated pinning present in the pristine sample. We estimate that significant performance improvements may be possible at high field or at temperatures below 10 K. The suppression of the J c(H//ab) performance is not related to a decrease of the J c anisotropy as found in other superconductors. Instead it is due to the presence of PD that decrease the efficiency of the ab-plane intrinsic pinning typical of materials with a layered structure.
Guo, Jing; Valdesueiro, David; Yuan, Shaojun; Liang, Bin; van Ommen, J. Ruud
2018-01-01
This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development. PMID:29364840
NASA Astrophysics Data System (ADS)
Luo, Laihui; Dietze, Matthias; Solterbeck, Claus-Henning; Luo, Haosu; Es-Souni, Mohammed
2013-12-01
Single crystals based on solid solutions of lead-magnesium-niobate (PMN) and lead titanate (PT) have emerged as highly promising multifunctional systems combining piezoelectric, pyroelectric, and electro-optic properties that surpass by far those of the best known lead-zirkonium-titanate ceramics. In this paper we present new findings on how the phase transition temperature and the dielectric and ferroelectric properties can be tuned depending on crystal composition, orientation, and thermoelectrical treatment. Mn-doped and pure 0.72PbMg1/3Nb2/3O3-0.28PbTiO3 (0.72PMN-0.28PT) single crystals with ⟨111⟩ and ⟨001⟩ orientations were investigated. A special attention was devoted to field cooling (FC), i.e., cooling under electric field from different temperatures. The results illustrate different findings that were not reported before: the Curie temperature, i.e., ferroelectric-paraelectric transition temperature, is enhanced after field cooling of the Mn-doped, ⟨001⟩-oriented crystal while such a shift is not observed in the ⟨111⟩-oriented and the non-doped crystals. In addition, substantial polarization suppression occurs in the Mn-doped crystals upon FC from high temperature regardless of orientation. Based on piezoforce microscopy of the domain structure that shows suppression of domain growth following field cooling from 200 °C, we propose a mechanism for polarization suppression based on domain pinning by charged defects. The practical importance of our results lies in showing the opportunity offered by a proper choice of crystal composition and poling conditions for tuning the functional properties of PMN-PT single crystals for a specific application. This should contribute to the understanding of their properties towards advanced sensor and transducers devices.
NASA Astrophysics Data System (ADS)
Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko
2018-05-01
We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.
Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.
Lau, On Sun; Song, Zhuojun; Zhou, Zimin; Davies, Kelli A; Chang, Jessica; Yang, Xin; Wang, Shenqi; Lucyshyn, Doris; Tay, Irene Hui Zhuang; Wigge, Philip A; Bergmann, Dominique C
2018-04-23
Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor. Copyright © 2018 Elsevier Ltd. All rights reserved.
Vlachakis, Georgios; Chatterjee, Sayantani; Arroyo-Mateos, Manuel; Wackers, Paul F. K.; Jonker, Martijs J.
2018-01-01
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1. PMID:29357355
First-year postfire and postharvest soil temperatures in aspen and conifer stands
Michael C. Amacher; Amber D. Johnson; Debra E. Kutterer; Dale L. Bartos
2001-01-01
Aspen (Populus tremuloides Michx.) stands are in decline throughout the Interior Western United States because of fire suppression, overbrowsing by domestic livestock and native ungulates, and forest succession. We measured summertime soil temperatures in stable aspen, decadent aspen, and mixed aspen/conifer stands; a mixed aspen/conifer clearcut;...
Pressure effects in the itinerant antiferromagnetic metal TiAu
Wolowiec, C. T.; Fang, Y.; McElroy, C. A.; ...
2017-06-07
Here, we report the pressure dependence of the Néel temperature T N up to P ≈ 27 GPa for the recently discovered itinerant antiferromagnet (IAFM) TiAu. The T N(P) phase boundary exhibits unconventional behavior in which the Néel temperature is enhanced from T N ≈ 33 K at ambient pressure to a maximum of T N ≈ 35 K occurring at P ≈ 5.5 GPa. Upon a further increase in pressure, T N is monotonically suppressed to ~22 K at P ≈ 27 GPa. We also find a crossover in the temperature dependence of the electrical resistivity ρ in themore » antiferromagnetic (AFM) phase that is coincident with the peak in T N(P), such that the temperature dependence of ρ = ρ 0 + A nT n changes from n≈3 during the enhancement of T N to n ≈ 2 during the suppression of T N. Based on an extrapolation of the T N(P) data to a possible pressure-induced quantum critical point, we estimate the critical pressure to be P c ≈ 45 GPa.« less
Quasiparticle recombination dynamics in the model cuprate superconductor HgBa2CuO4+δ
NASA Astrophysics Data System (ADS)
Hinton, J. P.; Thewalt, E.; Koralek, J. D.; Orenstein, J.; Barisic, N.; Xhao, X.; Chan, M.; Dorow, C.; Veit, M.; Ji, L.; Greven, M.
2014-03-01
The cuprate family of high temperature superconductors is characterized by a variety of electronic phases which emerge when charge carriers are added to the antiferromagnetic parent compound. The structural simplicity of the single layer cuprate system HgBa2CuO4+δ (Hg1201) is advantageous for experimentally detecting subtle features of these phases. In this work, we investigate the recombination dynamics of photo-excited quasiparticles in Hg1201 as a function of doping, temperature, and magnetic field using pump-probe optical reflectivity. We observe two distinct onset temperatures above TC in the underdoped part of the phase diagram, corresponding to T* and T** as observed in transport and neutron scattering experiments. We also measure a suppression of the recombination rate near TC which peaks at 8% hole concentration. We associate this suppression with coherence effects. Lastly, we observe a complex, non-monotonic temperature dependence in the dynamics around optimal doping, providing evidence for reentrant phase transitions near the apex of the superconducting dome. Work supported by DOE-BES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Subhanjoy; Stassun, Keivan G., E-mail: s.mohanty@imperial.ac.uk, E-mail: keivan.stassun@vanderbilt.edu
2012-10-10
We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy inmore » surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.« less
Physiological work demands of Spanish wildland firefighters during wildfire suppression.
Rodríguez-Marroyo, Jose A; López-Satue, Jorge; Pernía, Raul; Carballo, Belén; García-López, Juan; Foster, Carl; Villa, José G
2012-02-01
The aim of this study was to analyze the physiological demands and thermal strain of wildland firefighters during real wildfire suppression. The response of core temperature and heart rate (HR) were analyzed in 200 wildland firefighters during wildfire suppression activities of different duration: <1 h (n = 52), 1-3 h (n = 70), 3-5 h (n = 44), and >5 h (n = 34). The exercise workload (TRIMP), the physiological strain index (PSI), and cumulative heat strain index (CHSI) were calculated using the time spent in different intensity zones, the HR, and core temperature. Mean HR was significantly higher (P < 0.05) in wildfires <1 h (133 ± 2 bpm) and 1-3 h (128 ± 1 bpm) versus 3-5 h (120 ± 3 bpm) and >5 h (116 ± 32 bpm). The time spent in higher intensity zones increased (P < 0.05) when wildfire duration increased. TRIMP accumulation increased with wildfire duration (54.9 ± 3.2, 167.4 ± 5.9, 296.0 ± 8.3, 511.7 ± 12.8 in <1, 1-3, 3-5, and >5 h, respectively). Neither core temperature (37.4 ± 0.1°C) nor PSI (4.5 ± 0.2) were influenced by wildfire duration. The CHSI increased (p < 0.05) in the following order: <1 h (104 ± 23), 1-3 h (1,396 ± 275), 3-5 h (4,586 ± 387), and >5 h (10,703 ± 710). The results demonstrate the high work strain sustained by Spanish wildland firefighters during wildfire suppression. Both workload and CHSI increased with the wildfires duration although the pace of work was faster in wildfires of a shorter duration.
Horn, Gavin P; Kesler, Richard M; Kerber, Steve; Fent, Kenneth W; Schroeder, Tad J; Scott, William S; Fehling, Patricia C; Fernhall, Bo; Smith, Denise L
2018-03-01
Firefighters' thermal burden is generally attributed to high heat loads from the fire and metabolic heat generation, which may vary between job assignments and suppression tactic employed. Utilising a full-sized residential structure, firefighters were deployed in six job assignments utilising two attack tactics (1. Water applied from the interior, or 2. Exterior water application before transitioning to the interior). Environmental temperatures decreased after water application, but more rapidly with transitional attack. Local ambient temperatures for inside operation firefighters were higher than other positions (average ~10-30 °C). Rapid elevations in skin temperature were found for all job assignments other than outside command. Neck skin temperatures for inside attack firefighters were ~0.5 °C lower when the transitional tactic was employed. Significantly higher core temperatures were measured for the outside ventilation and overhaul positions than the inside positions (~0.6-0.9 °C). Firefighters working at all fireground positions must be monitored and relieved based on intensity and duration. Practitioner Summary: Testing was done to characterise the thermal burden experienced by firefighters in different job assignments who responded to controlled residential fires (with typical furnishings) using two tactics. Ambient, skin and core temperatures varied based on job assignment and tactic employed, with rapid elevations in core temperature in many roles.
NASA Astrophysics Data System (ADS)
Hasegawa, Y.; Kawaoka, H.; Yamada, T.; Matsushima, M.; Kawabe, T.; Shikida, M.
2017-12-01
We previously proposed an evaluation method for detecting both respiration and heartbeat signals from the airflow at the mouth (Kawaoka et al 201518th Int. Conf. on Solid-State Sensors, Actuators and Microsystems; Kawaoka et al 2015 IEEE Sensors; Kawaoka et al 2016 Technical Digest IEEE Micro Electro Mechanical Systems Conf.). In the current study, we developed a catheter flow sensor with temperature compensation that uses MEMS technologies and used it to directly detect the breathing airflow in the airway of a rat. The temperature sensors were integrated with the catheter flow sensor. Heaters working as airflow and temperature sensors were produced on polymer film by using the same fabrication process so that the temperature coefficients of their resistances would coincide. As a result, the variation in sensor outputs due to the airflow temperature changes ranging from 20 °C to 34 °C was suppressed to less than 2.5%. The developed catheter flow sensor was inserted into the airway of a rat to detect both respiration and heartbeat signals. The accuracy of the breathing airflow measurements was improved thanks to the temperature compensation. The tidal volume variations between the expired and inspired air were suppressed to within 5%. Heartbeat signal information was extracted from the measured breathing waveforms by applying a discrete Fourier transform.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
Deconfinement as an entropic self-destruction: A solution for the quarkonium suppression puzzle?
Kharzeev, Dmitri E.
2014-10-02
The entropic approach to dissociation of bound states immersed in strongly coupled systems is developed. In such systems, the excitations of the bound state are often delocalized and characterized by a large entropy, so that the bound state is strongly entangled with the rest of the statistical system. If this entropy S increases with the separation r between the constituents of the bound state, S=S(r), then the resulting entropic force F=T ∂S/∂r (T is temperature) can drive the dissociation process. As a specific example, we consider the case of heavy quarkonium in strongly coupled quark-gluon plasma, where lattice QCD indicatesmore » a large amount of entropy associated with the heavy quark pair at temperatures 0.9T c ≤ T ≤ 1.5T c (T c is the deconfinement temperature); this entropy S(r) grows with the interquark distance r. We argue that the entropic mechanism results in an anomalously strong quarkonium suppression in the temperature range near T c. This entropic self-destruction may thus explain why the experimentally measured quarkonium nuclear modification factor at RHIC (lower energy density) is smaller than at LHC (higher energy density), possibly resolving the “quarkonium suppression puzzle”—all of the previously known mechanisms of quarkonium dissociation operate more effectively at higher energy densities, and this contradicts the data. As a result, we find that near T c the entropic force leads to delocalization of the bound hadron states; we argue that this delocalization may be the mechanism underlying deconfinement.« less
Arsene, I. C.
2016-07-20
Tmore » he BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons, and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at s NN = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. he temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p + p collisions. his suppression, which increases as the collisions become more central, is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities, initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. In conclusion, the ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.« less
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila
Kroll, Jason R.; Wong, Karen G.; Siddiqui, Faria M.; Tanouye, Mark A.
2015-01-01
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure–sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shits1 mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders. PMID:26341658
Cerebral monitoring during cardiopulmonary bypass in children.
Kern, F H; Schell, R M; Greeley, W J
1993-07-01
Although cerebral monitoring during CPB remains primarily investigational, recent data support its clinical utility. In particular, it is cerebral metabolic monitoring that provides meaningful information in terms of preparing the brain for dhCPB and dhCA. Cerebral blood flow or cerebral blood flow velocity monitoring is less beneficial due to the presence of luxuriant cerebral blood flow at deep hypothermic temperatures. Conventional temperature monitoring can be improved upon by adding jugular venous oxygen saturation monitoring to satisfy the primary goal of cerebral protection--uniform cerebral cooling and metabolic suppression. Although online measures of cerebral cellular metabolism are not widely available, early experience with near infrared technology suggests that it is a feasible and reliable monitor of cerebral metabolic activity and is likely to represent an important noninvasive continuous monitor in the near future. CMRO2 recovery data have suggested that cerebral metabolic suppression is more severe the longer the period of dhCA. Cerebral protection strategies, such as intermittent cerebral perfusion have demonstrated less metabolic suppression of dhCA in animal models and are currently undergoing clinical evaluation in our institution. Finally, the postoperative period remains a high-risk period for neurologic injury because temperatures are normothermic, cardiac output is reduced, cerebral autoregulation is impaired, and management strategies, such as hyperventilation, are commonly used to increase pulmonary blood flow with little knowledge on its effects on cerebral perfusion.
Coating Thermoelectric Devices To Suppress Sublimation
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey; Caillat, Thierry; Fleurial, Jean-Pierre; Snyder, G. Jeffrey
2007-01-01
A technique for suppressing sublimation of key elements from skutterudite compounds in advanced thermoelectric devices has been demonstrated. The essence of the technique is to cover what would otherwise be the exposed skutterudite surface of such a device with a thin, continuous film of a chemically and physically compatible metal. Although similar to other sublimation-suppression techniques, this technique has been specifically tailored for application to skutterudite antimonides. The primary cause of deterioration of most thermoelectric materials is thermal decomposition or sublimation - one or more elements sublime from the hot side of a thermoelectric couple, changing the stoichiometry of the device. Examples of elements that sublime from their respective thermoelectric materials are Ge from SiGe, Te from Pb/Te, and now Sb from skutterudite antimonides. The skutterudite antimonides of primary interest are CoSb3 [electron-donor (n) type] and CeFe(3-x)Co(x)Sb12 [electron-acceptor (p) type]. When these compounds are subjected to typical operating conditions [temperature of 700 C and pressure <10(exp -5) torr (0.0013 Pa)], Sb sublimes from their surfaces, with the result that Sb depletion layers form and advance toward their interiors. As the depletion layer advances in a given device, the change in stoichiometry diminishes the thermal-to-electric conversion efficiency of the device. The problem, then, is to prevent sublimation, or at least reduce it to an acceptably low level. In preparation for an experiment on suppression of sublimation, a specimen of CoSb3 was tightly wrapped in a foil of niobium, which was selected for its chemical stability. In the experiment, the wrapped specimen was heated to a temperature of 700 C in a vacuum of residual pressure <10(exp -5) torr (0.0013 Pa), then cooled and sectioned. Examination of the sectioned specimen revealed that no depletion layer had formed, indicating the niobium foil prevented sublimation of antimony at 700 C. This was a considerable improvement, considering that uncoated CoSb3 had been found to decompose to form the lowest antimonide at the surface at only 600 C. Evidently, because the mean free path of Sb at the given temperature and pressure was of the order of tens of centimeters, any barrier closer than tens of centimeters (as was the niobium foil) would have suppressed transport of Sb vapor, thereby suppressing sublimation of Sb
A Multiple-range Self-balancing Thermocouple Potentiometer
NASA Technical Reports Server (NTRS)
Warshawsky, I; Estrin, M
1951-01-01
A multiple-range potentiometer circuit is described that provides automatic measurement of temperatures or temperature differences with any one of several thermocouple-material pairs. Techniques of automatic reference junction compensation, span adjustment, and zero suppression are described that permit rapid selection of range and wire material, without the necessity for restandardization, by setting of two external tap switches.
Magnetothermopower of δ-doped LaTiO3/SrTiO3 interfaces in the Kondo regime
NASA Astrophysics Data System (ADS)
Das, Shubhankar; Joshi, P. C.; Rastogi, A.; Hossain, Z.; Budhani, R. C.
2014-08-01
Measurements of magnetothermopower [S (H,T)] of interfacial δ-doped LaTiO3/SrTiO3 (LTO/STO) heterostructure by an isostructural antiferromagnetic perovskite LaCrO3 are reported. The thermoelectric power of the pure LTO/STO interface at 300 K is ≈118 μV /K, but increases dramatically on δ doping. The observed linear temperature dependence of S (T) over the temperature range 100 to 300 K is in agreement with the theory of diffusion thermopower of a two-dimensional electron gas. The S (T) displays a distinct enhancement in the temperature range (T < 100 K) where the sheet resistance shows a Kondo-type minimum. We attributed this maximum in S (T) to Kondo scattering of conduction electron by localized impurity spins at the interface. The suppression of S by a magnetic field and the isotropic nature of the suppression in out-of-plane and in-plane field geometries further strengthen the Kondo-model-based interpretation of S (H,T).
Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field
NASA Astrophysics Data System (ADS)
Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser
2018-02-01
Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.
Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.
Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa
2007-09-01
Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO
NASA Astrophysics Data System (ADS)
Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2014-03-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO
NASA Astrophysics Data System (ADS)
Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2013-08-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO.
Guo, Jing; Simonson, J W; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian
2013-01-01
The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.
Shot-noise at a Fermi-edge singularity: Non-Markovian dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubbelohde, N.; Maire, N.; Haug, R. J.
2013-12-04
For an InAs quantum dot we study the current shot noise at a Fermi-edge singularity in low temperature cross-correlation measurements. In the regime of the interaction effect the strong suppression of noise observed at zero magnetic field and the sequence of enhancement and suppression in magnetic field go beyond a Markovian master equation model. Qualitative and quantitative agreement can however be achieved by a generalized master equation model taking non-Markovian dynamics into account.
An Inviscid Decoupled Method for the Roe FDS Scheme in the Reacting Gas Path of FUN3D
NASA Technical Reports Server (NTRS)
Thompson, Kyle B.; Gnoffo, Peter A.
2016-01-01
An approach is described to decouple the species continuity equations from the mixture continuity, momentum, and total energy equations for the Roe flux difference splitting scheme. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This work lays the foundation for development of an efficient adjoint solution procedure for high speed reacting flow.
Field Demonstration for P-D-680 Solvent Replacement (Part II)
1998-05-12
jo \\ Ji o < s NJ £. ° 8? Q- 3* £?. «" «< o Ö- 8" 03 O C O ~ e O 3 re *i re re w8 g 3 2> 8 = er ^ o 3 ^ fS Ni O...34 3 3. 3. n_ £ 2. O 2- e. re Z. 2 3 v! 3 oso,o,<f)( ji «s S?3re-t930.Q3^. «o.03rt3-3c"o=; 1 » < 3 -•■n O -t33^c«^3ga3 re...soWfirtH T^ skd uiEita, ox^fifk^. 4. KrflTjTS, SAFETY 0? ALTERATIVE F-D-S80 SOLVENT Have you, cr did you have knowledge of ethers
NASA Astrophysics Data System (ADS)
Sláma, Libor; Dobeš, Josef; Boštík, Tomáš; Vejražka, František
2018-03-01
An analysis of the L-probe fed patch antenna with an extraordinary parasitic patch is described. The element of the antenna is fed by the L-probe partially implemented in PCB. An excellent impedance matching is obtained (< ‑26 dB in the design frequency band 4.4–5 GHz). The radiation characteristics are also very good (gain > 10 dBi). For the numerical analyses, the Full Wave—CST Microwave Studio software was used in both frequency and time domains, and a very good agreement between the Time Domain Solver (TDS) and Frequency Domain Solver (FDS) was obtained. Real antenna samples have been created and measured as well as eight-element antenna arrays designed by the Dolph-Chebyshev method.
Bolat, Nurullah; Yalçin, Özhan
2017-03-01
A factitious disorder (FD) is a diagnostic entity in which patients intentionally act physically or mentally ill without obvious benefits and without being consciously aware of a clear underlying motive. Most pediatric FD cases have been reported as Munchausen syndrome by Proxy; however, pediatric disease symptoms can also be intentionally falsified by child and adolescent patients. To our knowledge, in the medical literature, an FD patient presenting with stuttering has not been previously reported. In this case report, we aimed to discuss the diagnosis and treatment process of FDs in children and adolescents by reporting the cases of two FD patients presenting with stuttering according to the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition. Both patients improved with psychoeducation and early confrontation.
Low Temperature Resistive Switching Behavior in a Manganite
NASA Astrophysics Data System (ADS)
Salvo, Christopher; Lopez, Melinda; Tsui, Stephen
2012-02-01
The development of new nonvolatile memory devices remains an important field of consumer electronics. A possible candidate is bipolar resistive switching, a method by which the resistance of a material changes when a voltage is applied. Although there is a great deal of research on this topic, not much has been done at low temperatures. In this work, we compare the room temperature and low temperature behaviors of switching in a manganite thin film. The data indicates that the switching is suppressed upon cooling to cryogenic temperatures, and the presence of crystalline charge traps is tied to the physical mechanism.
Effect of alcohol addition on shock-initiated formation of soot from benzene
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Yuan, Tony
1988-01-01
Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.
NASA Astrophysics Data System (ADS)
Borisov, V. M.; Trofimov, V. N.; Sapozhkov, A. Yu.; Kuzmenko, V. A.; Mikhaylov, V. B.; Cherkovets, V. Ye.; Yakushkin, A. A.; Yakushin, V. L.; Dzhumayev, P. S.
2016-12-01
The treatment conditions of fuel claddings of the E110 alloy by using powerful UV or IR laser radiation, which lead to the increase in the corrosion resistance at the high-temperature ( T = 1100°C) oxidation simulating a loss-of-coolant accident, are determined. The possibility of the complete suppression of corrosion under these conditions by using pulsed laser deposition of a Cr layer is demonstrated. The behavior of protective coatings of Al, Al2O3, and Cr planted on steel EP823 by pulsed laser deposition, which is planned to be used in the BREST-OD-300, is studied. The methods of the almost complete suppression of corrosion in liquid lead to the temperature of 720°C are shown.
Development of Low Alloy Ti-B Steels for High Temperature Service Applications
1952-04-01
Ti-B steels . Ordinarily, martensite or a hardened acicular ferrite structure in steel is associated with extremely low creep strength. However, the...12000 F. The ability of the Ti-B sheet steels to suppress the ferrite transformation to the martensite or lower bainite temperature range upon air...APPROVED FOR PUBLIC mEESX_ DISTRIBUTION UNjfljarT, • WJADC TECHNICAL REPORT 52-77 DEVELOPMENT OF LOW ALLOY Ti-B STEELS FOR HIGH TEMPERATURE SERVICE
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-01-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761
NASA Astrophysics Data System (ADS)
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-04-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems.
Pore-size dependence and characteristics of water diffusion in slitlike micropores
Diallo, S. O.
2015-07-16
The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less
NASA Astrophysics Data System (ADS)
Jauhari, Mrinal; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.
2017-12-01
We present results obtained from a combination of dielectric and x-ray diffraction measurements for compositional design of (1 -x )NaNb O3-x BaTi O3(NNBT x ) , which can induce interferroelectric phase transitions. Anomalies are observed in dielectric measurements performed for various compositions at 300 K, as well as at different temperatures for NNBT03. We observed the appearance(disappearance) of the superlattice reflections along with change in the intensities of the main perovskite peaks in the powder x-ray diffraction data, which provide clear evidences for structural phase transitions with composition and temperature. We found that increasing the concentration of BaTi O3 leads to the suppression of out-of-phase rotation of octahedra and an increment in tetragonality (c /a ratio), which promotes the polar mode at room temperature. The temperature-dependent powder diffraction study shows that the ferroelectric rhombohedral phase of pure sodium niobate gets suppressed for the composition x =0.03 , and the monoclinic phase C c gets stabilized at low temperature. The monoclinic phase is believed to provide for a flexible polarization rotation and is considered to be directly linked to the high-performance piezoelectricity in materials due to presence of more easy axes for spontaneous polarizations than the rhombohedral phase.
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
ELM suppression in helium plasmas with 3D magnetic fields
Evans, T. E.; Loarte, A.; Orlov, D. M.; ...
2017-06-21
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
ELM suppression in helium plasmas with 3D magnetic fields
NASA Astrophysics Data System (ADS)
Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.
2017-08-01
Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.
Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy
NASA Astrophysics Data System (ADS)
Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika
2018-01-01
Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.
NASA Astrophysics Data System (ADS)
Goltz, D. M.; Grégoire, D. C.; Byrne, J. P.; Chakrabarti, C. L.
1995-07-01
The mechanism of vaporization and atomization of U in a graphite tube electrothermal vaporizer was studied using graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Graphite furnace AAS studies indicate U atoms are formed at temperatures above 2400°C. Using ETV-ICP-MS, an appearance temperature of 1100°C was obtained indicating that some U vaporizes as U oxide. Although U carbides form at temperatures above 2000°C, ETV-ICP-MS studies show that they do not vaporize until 2600°C. In the temperature range between 2200°C and 2600°C, U atoms in GFAAS are likely formed by thermal dissociation of U oxide, whereas at higher temperatures, U atoms are formed via thermal dissociation of U carbide. The origin of U signal suppression in ETV-ICP-MS by NaCl was also investigated. At temperatures above 2000°C, signal suppression may be caused by the accelerated rate of formation of carbide species while at temperatures below 2000°C, the presence of NaCl may cause intercalation of the U in the graphite layers resulting in partial retention of U during the vaporization step. The use of 0.3% freon-23 (CHF 3) mixed with the argon carrier gas was effective in preventing the intercalation of U in graphite and U carbide formation at 2700°C.
The effects of mild hypothermia on thiopental-induced electroencephalogram burst suppression.
Kim, J H; Kim, S H; Yoo, S K; Kim, J Y; Nam, Y T
1998-07-01
Thiopental intravenous injections before temporary clipping and mild hypothermia have protective effects in the setting of cerebral ischemia, and are used clinically in some centers. However, it is not known whether mild hypothermia affects thiopental-induced electroencephalogram (EEG) burst suppression. In this study, the authors compared the onset and duration of EEG suppression by thiopental in normothermic (n=10) and mildly hypothermic (n=10) patients undergoing cerebral aneurysm surgery. Spectral analysis was used to compare the prethiopentonal continuous EEG patterns in normothermic and mild hypothermic patients. The patients' body temperatures were controlled by a circulating water mattress and intravenous fluids (normothermia = 36.4+/-0.1 degrees C, mild hypothermia = 33.3+/-0.1 degrees C). Immediately before temporary clipping, thiopental sodium (5 mg/kg) was administered intravenously. Onset time (the amount of time from thiopental injection to the first complete EEG suppression), duration of suppression (the amount of time from the first complete EEG suppression to recovery on continuous EEG from burst suppression), and maximum duration of isoelectric EEG (the longest time interval between two bursts during burst suppression) were measured. Onset time was shortened (25.8+/-1.4 versus 43.5+/-5.6 seconds), and duration of suppression (531.0+/-56.6 versus 165.0+/-16.9 seconds) and the maximum duration of isoelectric EEG (47.7+/-5.8 versus 22.8+/-2.0 seconds) were prolonged in the patients with mild hypothermia. In two normothermic patients, the standard dose of thiopental did not produce burst suppression, but only a mild decrease in spectral edge frequency. The authors concluded that the effects of mild hypothermia on thiopental-induced EEG suppression are not simply additive, but synergistic.
Foxman, Ellen F; Storer, James A; Vanaja, Kiran; Levchenko, Andre; Iwasaki, Akiko
2016-07-26
Most strains of rhinovirus (RV), the common cold virus, replicate better at cool temperatures found in the nasal cavity (33-35 °C) than at lung temperature (37 °C). Recent studies found that although 37 °C temperature suppressed RV growth largely by engaging the type 1 IFN response in infected epithelial cells, a significant temperature dependence to viral replication remained in cells devoid of IFN induction or signaling. To gain insight into IFN-independent mechanisms limiting RV replication at 37 °C, we studied RV infection in human bronchial epithelial cells and H1-HeLa cells. During the single replication cycle, RV exhibited temperature-dependent replication in both cell types in the absence of IFN induction. At 37 °C, earlier signs of apoptosis in RV-infected cells were accompanied by reduced virus production. Furthermore, apoptosis of epithelial cells was enhanced at 37 °C in response to diverse stimuli. Dynamic mathematical modeling and B cell lymphoma 2 (BCL2) overexpression revealed that temperature-dependent host cell death could partially account for the temperature-dependent growth observed during RV amplification, but also suggested additional mechanisms of virus control. In search of a redundant antiviral pathway, we identified a role for the RNA-degrading enzyme RNAseL. Simultaneous antagonism of apoptosis and RNAseL increased viral replication and dramatically reduced temperature dependence. These findings reveal two IFN-independent mechanisms active in innate defense against RV, and demonstrate that even in the absence of IFNs, temperature-dependent RV amplification is largely a result of host cell antiviral restriction mechanisms operating more effectively at 37 °C than at 33 °C.
NASA Astrophysics Data System (ADS)
Ansari, Meenhaz; Ashraf, S. S. Z.
2017-10-01
We investigate the energy dependent electron-phonon relaxation rate, energy loss rate, and phonon drag thermopower in single layer graphene (SLG) and bilayer graphene (BLG) under the Bloch-Gruneisen (BG) regime through coupling to acoustic phonons interacting via the Deformation potential in the Boltzmann transport equation approach. We find that the consideration of the chiral nature of electrons alters the temperature dependencies in two-dimensional structures of SLG and BLG from that shown by other conventional 2DEG system. Our investigations indicate that the BG analytical results are valid for temperatures far below the BG limit (˜TBG/4) which is in conformity with a recent experimental investigation for SLG [C. B. McKitterick et al., Phys. Rev. B 93, 075410 (2016)]. For temperatures above this renewed limit (˜TBG/4), there is observed a suppression in energy loss rate and thermo power in SLG, but enhancement is observed in relaxation rate and thermopower in BLG, while a suppression in the energy loss rate is observed in BLG. This strong nonmonotonic temperature dependence in SLG has also been experimentally observed within the BG limit [Q. Ma et al., Phys. Rev. Lett. 112, 247401 (2014)].
Effects of catechin-enriched ion beverage intake on thermoregulatory function in a hot environment.
Nishimura, Rumiko; Nishimura, Naoki; Iwase, Satoshi; Takeshita, Masao; Katashima, Mitsuhiro; Katsuragi, Yoshihisa; Sato, Motohiko
2018-04-23
We examined the effect of intake of a catechin-enriched ion beverage (Cat-I) on the thermoregulatory response in a hot environment. Eight healthy men were exposed to a hot environment for 90 min at an ambient temperature of 35 °C (relative humidity: 75%) combined with lower leg water immersion at 40 °C. At that time, either Cat-I, an ion beverage (Ion), or mineral water (Placebo) was consumed at three points: (1) at the start of lower leg immersion, (2) at 30 min after immersion, and (3) at 60 min after immersion. In all conditions, tympanic temperature (Tty) increased gradually during lower leg water immersion. However, the rate of increase of Tty tended to be suppressed after 30 min. The effect of drinking Cat-I had a limited detection period of approximately 60-70 min, and the rate of sweating was clearly increased with Cat-I compared with Ion and Placebo. Cat-I also tended to decrease the body temperature threshold at which sweating was induced compared with Ion or Placebo. These findings suggest that Cat-I efficiently suppressed the increase of body temperature in a hot environment.
Lipping, Tarmo; Rorarius, Michael; Jäntti, Ville; Annala, Kari; Mennander, Ari; Ferenets, Rain; Toivonen, Tommi; Toivo, Tim; Värri, Alpo; Korpinen, Leena
2009-01-01
Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed. PMID:19615084
Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho
2018-06-01
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
NASA Astrophysics Data System (ADS)
Sung, Choongki
2017-10-01
It has been observed, for the first time, that suppression of Edge Localized Modes (ELMs) in tokamak plasmas is accompanied by an increase in electron temperature turbulence. A correlation electron cyclotron emission technique has been utilized to quantify the observed increase: 40% increase in Quiescent H-mode (QH-mode) and 70% increase in 3D field ELM suppressed H-mode. Since reliable ELM-free H-mode operation is essential for future burning plasma experiments, it is crucial to develop a validated predictive capability for these plasmas. Linear stability analysis using TGLF has provided an explanation for the observations and has indicated that the underlying physical mechanisms are different in the two regimes. In QH-mode, profile gradients and the associated linear growth rate are decreased compared to ELMing H-mode. However, the ExB shearing rate is reduced by an even greater factor such that turbulent transport is no longer suppressed by flow shear. In contrast, during 3D field ELM suppressed H-mode, gradients are increased and TGLF predicts that a large increase in linear growth rate is primarily responsible for the increased turbulence. Power balance analysis using ONETWO is also consistent with the changes in electron thermal transport being due to the increased turbulence. These new findings are significant since they i) provide a physics explanation of these changes via TGLF analysis and enable validation of the model in the key pedestal region, and ii) support the hypothesis that turbulent transport partially replaces ELM-dominated transport during ELM-free operation. These results form a basis to develop a predictive understanding of pedestal regulation in ELM suppressed regimes. Supported by the US DOE under DE-FG02-08ER54984, DE-FC02-04ER54698.
McFarlane, Sarah V; Mathers, Katherine E; Staples, James F
2017-03-01
Although seasonal modifications of brown adipose tissue (BAT) in hibernators are well documented, we know little about functional regulation of BAT in different phases of hibernation. In the 13-lined ground squirrel, liver mitochondrial respiration is suppressed by up to 70% during torpor. This suppression is reversed during arousal and interbout euthermia (IBE), and corresponds with patterns of maximal activities of electron transport system (ETS) enzymes. Uncoupling of BAT mitochondria is controlled by free fatty acid release stimulated by sympathetic activation of adipocytes, so we hypothesized that further regulation at the level of the ETS would be of little advantage. As predicted, maximal ETS enzyme activities of isolated BAT mitochondria did not differ between torpor and IBE. In contrast to this pattern, respiration rates of mitochondria isolated from torpid individuals were suppressed by ~60% compared with rates from IBE individuals when measured at 37°C. At 10°C, however, mitochondrial respiration rates tended to be greater in torpor than IBE. As a result, the temperature sensitivity (Q 10 ) of mitochondrial respiration was significantly lower in torpor (~1.4) than IBE (~2.4), perhaps facilitating energy savings during entrance into torpor and thermogenesis at low body temperatures. Despite the observed differences in isolated mitochondria, norepinephrine-stimulated respiration rates of isolated BAT adipocytes did not differ between torpor and IBE, perhaps because the adipocyte isolation requires lengthy incubation at 37°C, potentially reversing any changes that occur in torpor. Such changes may include remodeling of BAT mitochondrial membrane phospholipids, which could change in situ enzyme activities and temperature sensitivities. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita
2018-05-01
Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.
Acute central effects of alarin on the regulation on energy homeostasis.
Mikó, Alexandra; Füredi, Nóra; Tenk, Judit; Rostás, Ildikó; Soós, Szilvia; Solymár, Margit; Székely, Miklós; Balaskó, Márta; Brunner, Susanne M; Kofler, Barbara; Pétervári, Erika
2017-08-01
Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soler, Jean K; Corrigan, Derek; Kazienko, Przemyslaw; Kajdanowicz, Tomasz; Danger, Roxana; Kulisiewicz, Marcin; Delaney, Brendan
2015-05-16
Analysis of encounter data relevant to the diagnostic process sourced from routine electronic medical record (EMR) databases represents a classic example of the concept of a learning healthcare system (LHS). By collecting International Classification of Primary Care (ICPC) coded EMR data as part of the Transition Project from Dutch and Maltese databases (using the EMR TransHIS), data mining algorithms can empirically quantify the relationships of all presenting reasons for encounter (RfEs) and recorded diagnostic outcomes. We have specifically looked at new episodes of care (EoC) for two urinary system infections: simple urinary tract infection (UTI, ICPC code: U71) and pyelonephritis (ICPC code: U70). Participating family doctors (FDs) recorded details of all their patient contacts in an EoC structure using the ICPC, including RfEs presented by the patient, and the FDs' diagnostic labels. The relationships between RfEs and episode titles were studied using probabilistic and data mining methods as part of the TRANSFoRm project. The Dutch data indicated that the presence of RfE's "Cystitis/Urinary Tract Infection", "Dysuria", "Fear of UTI", "Urinary frequency/urgency", "Haematuria", "Urine symptom/complaint, other" are all strong, reliable, predictors for the diagnosis "Cystitis/Urinary Tract Infection" . The Maltese data indicated that the presence of RfE's "Dysuria", "Urinary frequency/urgency", "Haematuria" are all strong, reliable, predictors for the diagnosis "Cystitis/Urinary Tract Infection". The Dutch data indicated that the presence of RfE's "Flank/axilla symptom/complaint", "Dysuria", "Fever", "Cystitis/Urinary Tract Infection", "Abdominal pain/cramps general" are all strong, reliable, predictors for the diagnosis "Pyelonephritis" . The Maltese data set did not present any clinically and statistically significant predictors for pyelonephritis. We describe clinically and statistically significant diagnostic associations observed between UTIs and pyelonephritis presenting as a new problem in family practice, and all associated RfEs, and demonstrate that the significant diagnostic cues obtained are consistent with the literature. We conclude that it is possible to generate clinically meaningful diagnostic evidence from electronic sources of patient data.
Automated selection of trabecular bone regions in knee radiographs.
Podsiadlo, P; Wolski, M; Stachowiak, G W
2008-05-01
Osteoarthritic (OA) changes in knee joints can be assessed by analyzing the structure of trabecular bone (TB) in the tibia. This analysis is performed on TB regions selected manually by a human operator on x-ray images. Manual selection is time-consuming, tedious, and expensive. Even if a radiologist expert or highly trained person is available to select regions, high inter- and intraobserver variabilities are still possible. A fully automated image segmentation method was, therefore, developed to select the bone regions for numerical analyses of changes in bone structures. The newly developed method consists of image preprocessing, delineation of cortical bone plates (active shape model), and location of regions of interest (ROI). The method was trained on an independent set of 40 x-ray images. Automatically selected regions were compared to the "gold standard" that contains ROIs selected manually by a radiologist expert on 132 x-ray images. All images were acquired from subjects locked in a standardized standing position using a radiography rig. The size of each ROI is 12.8 x 12.8 mm. The automated method results showed a good agreement with the gold standard [similarity index (SI) = 0.83 (medial) and 0.81 (lateral) and the offset =[-1.78, 1.27]x[-0.65,0.26] mm (medial) and [-2.15, 1.59]x[-0.58, 0.52] mm (lateral)]. Bland and Altman plots were constructed for fractal signatures, and changes of fractal dimensions (FD) to region offsets calculated between the gold standard and automatically selected regions were calculated. The plots showed a random scatter and the 95% confidence intervals were (-0.006, 0.008) and (-0.001, 0.011). The changes of FDs to region offsets were less than 0.035. Previous studies showed that differences in FDs between non-OA and OA bone regions were greater than 0.05. ROIs were also selected by a second radiologist and then evaluated. Results indicated that the newly developed method could replace a human operator and produces bone regions with an accuracy that is sufficient for fractal analyses of bone texture.
Enhancing the resonance stability of a high-Q micro/nanoresonator by an optical means
NASA Astrophysics Data System (ADS)
Sun, Xuan; Luo, Rui; Zhang, Xi-Cheng; Lin, Qiang
2016-02-01
High-quality optical resonators underlie many important applications ranging from optical frequency metrology, precision measurement, nonlinear/quantum photonics, to diverse sensing such as detecting single biomolecule, electromagnetic field, mechanical acceleration/rotation, among many others. All these applications rely essentially on the stability of optical resonances, which, however, is ultimately limited by the fundamental thermal fluctuations of the devices. The resulting thermo-refractive and thermo-elastic noises have been widely accepted for nearly two decades as the fundamental thermodynamic limit of an optical resonator, limiting its resonance uncertainty to a magnitude 10-12 at room temperature. Here we report a novel approach that is able to significantly improve the resonance stability of an optical resonator. We show that, in contrast to the common belief, the fundamental temperature fluctuations of a high-Q micro/nanoresonator can be suppressed remarkably by pure optical means without cooling the device temperature, which we term as temperature squeezing. An optical wave with only a fairly moderate power launched into the device is able to produce strong photothermal backaction that dramatically suppresses the spectral intensity of temperature fluctuations by five orders of magnitudes and squeezes the overall level (root-mean-square value) of temperature fluctuations by two orders of magnitude. The proposed approach is universally applicable to various micro/nanoresonator platforms and the optimal temperature squeezing can be achieved with an optical Q around 106-107 that is readily available in various current devices. The proposed photothermal temperature squeezing is expected to have profound impact on broad applications of high-Q cavities in sensing, metrology, and integrated nonlinear/quantum photonics.
Tanaka, Tomoharu; Wakamatsu, Takuhiko; Daijo, Hiroki; Oda, Seiko; Kai, Shinichi; Adachi, Takehiko; Kizaka-Kondoh, Shinae; Fukuda, Kazuhiko; Hirota, Kiichi
2010-03-01
The transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in regulating gene expression in response to hypoxia-ischemia. Ischemia causes the tissue not only to be hypoxic but also to be hypothermic because of the hypoperfusion under certain circumstances. On the other hand, the induced hypothermia is one of the most common therapeutic modalities to extend tolerance to hypoxia. Although hypoxia elicits a variety of cellular and systemic responses at different organizational levels in the body, little is known about how hypoxia-induced responses are affected by low temperature. We examined the influence of mild hypothermic conditions (28-32 degrees C) on HIF-1 in both in vitro and in vivo settings. In vitro experiments adopting cultured cells elucidated that hypoxia-induced HIF-1 activation was resistant to 4-h exposure to the low temperature. In contrast, exposure to the low temperature as long as 24 h suppressed HIF-1 activation and the subsequent upregulation of HIF-1 target genes such as VEGF or GLUT-1. HIF-1alpha protein stability in the cell was not affected by hypothermic treatment. Furthermore, intracellular ATP content was reduced under 1% O(2) conditions but was not largely affected by hypothermic treatment. The evidence indicates that reduction of oxygen consumption is not largely involved in suppression of HIF-1. In addition, we demonstrated that HIF-1 DNA-binding activity and HIF-1-dependent gene expressions induced under 10% O(2) atmosphere in mouse brain were not influenced by treatment under 3-h hypothermic temperature but were inhibited under 5-h treatment. On the other hand, we indicated that warming ischemic legs of mice for 24 h preserved HIF-1 activity. In this report we describe for the first time that persisting low temperature significantly reduced HIF-1alpha neosynthesis under hypoxic conditions, leading to a decrease in gene expression for adaptation to hypoxia in both in vitro and in vivo settings.
Raines, Jenni; Snow, Rodney; Nichols, David; Aisbett, Brad
2015-06-01
(i) To evaluate firefighters' pre- and post-shift hydration status across two shifts of wildfire suppression work in hot weather conditions. (ii) To document firefighters' fluid intake during and between two shifts of wildfire suppression work. (iii) To compare firefighters' heart rate, activity, rating of perceived exertion (RPE), and core temperature across the two consecutive shifts of wildfire suppression work. Across two consecutive days, 12 salaried firefighters' hydration status was measured immediately pre- and post-shift. Hydration status was also measured 2h post-shift. RPE was also measured immediately post-shift on each day. Work activity, heart rate, and core temperature were logged continuously during each shift. Ten firefighters also manually recorded their food and fluid intake before, during, and after both fireground shifts. Firefighters were not euhydrated at all measurement points on Day one (292±1 mOsm l(-1)) and euhydrated across these same time points on Day two (289±0.5 mOsm l(-1)). Fluid consumption following firefighters' shift on Day one (1792±1134ml) trended (P = 0.08) higher than Day two (1108±1142ml). Daily total fluid intake was not different (P = 0.27), averaging 6443±1941ml across both days. Core temperature and the time spent ≥ 70%HRmax were both elevated on Day one (when firefighters were not euhydrated). Firefighters' work activity profile was not different between both days of work. There was no difference in firefighters' pre- to post-shift hydration within each shift, suggesting ad libitum drinking was at least sufficient to maintain pre-shift hydration status, even in hot conditions. Firefighters' relative hypohydration on Day one (despite a slightly lower ambient temperature) may have been associated with elevations in core temperature, more time in the higher heart rate zones, and 'post-shift' RPE. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Relaxation of a High-Energy Quasiparticle in a One-Dimensional Bose Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina; Glazman, Leonid I.; Pustilnik, Michael
2010-08-27
We evaluate the relaxation rate of high-energy quasiparticles in a weakly interacting one-dimensional Bose gas. Unlike in higher dimensions, the rate is a nonmonotonic function of temperature, with a maximum at the crossover to the state of suppressed density fluctuations. At the maximum, the relaxation rate may significantly exceed its zero-temperature value. We also find the dependence of the differential inelastic scattering rate on the transferred energy. This rate yields information about temperature dependence of local pair correlations.
Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures
2012-01-01
Background One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C. Conclusion Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner. PMID:22296883
Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Lekh; May, Andrew F.; Koehler, Michael R.
2016-11-30
In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less
NASA Astrophysics Data System (ADS)
Utz, Yannic; Hammerath, Franziska; Nishimoto, Satoshi; Hess, Christian; Beesetty, Neela Sekhar; Saint-Martin, Romuald; Revcolevschi, Alexandre; Büchner, Bernd; Grafe, Hans-Joachim
2015-08-01
The S =1 /2 antiferromagnetic Heisenberg spin chain compound Sr2CuO3 doped with 1 % and 2 % of Ni impurities has been studied by means of 63Cu nuclear magnetic resonance. A strong decrease of the spin-lattice relaxation rate T1-1 at low temperatures points toward a spin gap, while a stretching exponent λ <1 and a frequency dependence of T1-1 indicate that this spin gap varies spatially and should rather be characterized as a spin pseudogap. The magnitude of the spin pseudogap scales with doping level. Our results therefore evidence the finite-size character of this phenomenon. Moreover, an unusual narrowing of the low-temperature NMR lines reveals the suppression of the impurity-induced staggered paramagnetic response with increasing doping level.
Anisotropic stress inhibits crystallization in Cu-Zr glass-forming liquids
NASA Astrophysics Data System (ADS)
Pang, H. H.; Bi, Q. L.; Huang, H. S.; Lü, Y. J.
2017-12-01
Liquids attain a metastable state without crystallizing by cooling rapidly to a given temperature below the melting point. With increasing supercooling, the nucleation rate would show an increase based on the prediction of the classical nucleation theory. It is generally thought that the nucleation rate will reach the maximum upon approaching the glass transition temperature, Tg, for glass-forming liquids. We report that there exists a supercooled region above Tg in which the crystallization has actually been severely suppressed. Our molecular dynamics simulations show that the growth of embryos in the supercooled Cu60Zr40 melt is subjected to a strong anisotropic stress associated with the dynamic heterogeneity. Its long-range effect drives the embryo to grow into a ramified morphology so that the interface energy dominates over the embryo growth, leading to the suppression of nucleation.
Chemical substitution study on magnetism and superconductivity in Ce1-xSmxCoIn5
NASA Astrophysics Data System (ADS)
Jang, Sooyoung; White, B. D.; Yazici, D.; Wong, A. S.; Maple, M. B.
2015-03-01
We have investigated the system Ce1-xSmxCoIn5 (0 < x < 1) by means of x-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. We observe a crossover from a coherent Kondo lattice exhibiting superconductivity to a single-ion impurity Kondo effect coexisting with magnetic order on the Sm-rich side of the phase diagram. The superconducting transition temperature, Tc, and Kondo lattice coherence temperature, Tcoh, are suppressed near x ~ 0.2 and x ~ 0.5, respectively, which is consistent with the effect of substitution with other rare-earth (RE) ions on CeCoIn5. After Tcoh is suppressed to 0 K, a single-ion impurity Kondo effect is observed for 0.5 < x <= 0.85. The compound SmCoIn5 exhibits three distinct magnetic phase transitions at roughly 8, 10, and 12 K, which are presumably associated with magnetic order; similar features are observed in the related compound SmIn3. These transition temperatures are gradually suppressed by Ce substitution and completely vanish near x ~ 0.2. We establish the phase diagram of the system Ce1-xSmxCoIn5 and compare our results with those obtained from chemical substitution studies of CeCoIn5 involving other RE ions. Research at UCSD was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Material Science and Engineering under Grant No. DE-FG02-04-ER46105.
Heat shock suppresses mating and sperm transfer in the rice leaf folder Cnaphalocrocis medinalis.
Liao, H J; Qian, Q; Liu, X D
2014-06-01
Temperature is a key environmental factor in determining the population size of Cnaphalocrocis medinalis in summer. High temperatures inhibit survival, development and fecundity of this insect. However, biological responses of female and male adults to heat shock, and physiological mechanism of high temperature suppressing population development are still ambiguous. We experimentally tested the impact of heat shock (5 h day-1) on biological traits, spermatogenesis and sperm transfer of adults of C. medinalis. The result showed that heat exposure to 39 and 40 °C for 5 h reduced longevity and copulation frequency of adults, and hatchability of eggs. Immediate survival rate of males was lower than that of females after 3 days of exposure to 41 °C. The oviposition period, copulation frequency, fecundity of adults and hatchability of eggs were significantly lower when male adults were exposed to 40 or 41 °C for 3 days. Heat shock decreased frequency and success rate of mating when males were exposed, and it also resulted in postponement of mating behaviour and prolongation of mating duration as both the female and male adults were exposed. Heat shock did not affect spermatogenesis, but significantly inhibited sperms maturation. Moreover, males could not ejaculate sperm into females during copulation when these male moths received heat shock. Heat shock remarkably suppressed mating behaviour and sperm transfer, which led to a dramatic decline of rice leaf folder populations.
Estimated vapor pressure for WTP process streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, J.; Poirier, M.
Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused bymore » organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.« less
NASA Astrophysics Data System (ADS)
Jung, Soon-Gil; Shin, Soohyeon; Jang, Harim; Mikheenko, Pavlo; Johansen, Tom H.; Park, Tuson
2017-08-01
We investigate the effects of magnetic impurities on the upper critical field (μ 0 H c2) in La-doped CaFe2As2 (LaCa122) single crystals. The magnetic field dependency of the superconducting transition temperature (T c) for LaCa122 is rapidly suppressed at low fields up to ˜1 kOe despite its large μ 0 H c2(0) value on the order of tens of Tesla, resulting in a large positive curvature of μ 0 H c2(T) near T c. The magnetization hysteresis (M-H) loop at temperatures above T c shows a ferromagnetic-like signal and the M(H) value rapidly increases with increasing magnetic field up to ˜1 kOe. Taken together with the linear suppression of T c with the magnetization in the normal state, these results suggest that the large upward curvature of μ 0 H c2(T) near T c in La-doped CaFe2As2 mainly originates from the suppression of superconductivity due to the presence of magnetic impurities.
Koštál, Vladimír; Rozsypal, Jan; Pech, Pavel; Zahradníčková, Helena; Šimek, Petr
2013-08-01
The pulmonate snail Chondrina avenacea lives on exposed rock walls where it experiences drastic daily and seasonal fluctuations of abiotic conditions and food availability. We found that tolerance to dry conditions was maintained at a very high level throughout the year and was mainly based on the snails' ability to promptly enter into estivation (quiescence) whenever they experienced drying out of their environment. Snails rapidly suppressed their metabolism and minimized their water loss using discontinuous gas exchange pattern. The metabolic suppression probably included periods of tissue hypoxia and anaerobism as indicated by accumulation of typical end products of anaerobic metabolism: lactate, alanine and succinate. Though the drought-induced metabolic suppression was sufficient to stimulate moderate increase of supercooling capacity, the seasonally highest levels of supercooling capacity and the highest tolerance to subzero temperatures were tightly linked to hibernation (diapause). Hibernating snails did not survive freezing of their body fluids and instead relied on supercooling strategy which allowed them to survive when air temperatures dropped to as low as -21 °C. No accumulation of low-molecular weight compounds (potential cryoprotectants) was detected in hibernating snails except for small amounts of the end products of anaerobic metabolism.
Wood crib fire free burning test in ISO room
NASA Astrophysics Data System (ADS)
Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince
2006-04-01
In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.
NASA Astrophysics Data System (ADS)
Schwuttke, Ursula M.; Veregge, John, R.; Angelino, Robert; Childs, Cynthia L.
1990-10-01
The Monitor/Analyzer of Real-time Voyager Engineering Link (MARVEL) is described. It is the first automation tool to be used in an online mode for telemetry monitoring and analysis in mission operations. MARVEL combines standard automation techniques with embedded knowledge base systems to simultaneously provide real time monitoring of data from subsystems, near real time analysis of anomaly conditions, and both real time and non-real time user interface functions. MARVEL is currently capable of monitoring the Computer Command Subsystem (CCS), Flight Data Subsystem (FDS), and Attitude and Articulation Control Subsystem (AACS) for both Voyager spacecraft, simultaneously, on a single workstation. The goal of MARVEL is to provide cost savings and productivity enhancement in mission operations and to reduce the need for constant availability of subsystem expertise.
Investigations of Forbush decreases in the PAMELA experiment
NASA Astrophysics Data System (ADS)
Lagoida, I. A.; Voronov, S. A.; Mikhailov, V. V.
2017-01-01
A phenomenon in cosmic ray physics now called Forbush decrease (FD), or Forbush effect was discovered by S. Forbush in 1937 [1], it is a sudden decrease of galactic cosmic ray (GCR) intensity near the Earth. However, despite of the long term investigations the nature of this phenomenon is still not completely understood. Today this effect is studied mostly by the neutron monitors and muon hodoscopes, which are located on the Earth’s surface. But these monitors can detect only products of GCR interaction with the Earth atmosphere. Satellite detectors allow to obtain more accurate information about the characteristics of FD. Examples of FDs registered by the PAMELA telescope and observed with Oulu neutron monitor are presented. About 10 events with amplitude more than 3% have been registered from 2006 till 2016 with the PAMELA experiment.
Uriarte-Duque, Juan; Hernández-Riverab, Gabriela
2006-01-01
Survival in patients with acquired immunodeficiency syndrome (AIDS) related non-Hodgkin's Lymphoma has improved with the use of High Active Antiretroviral Therapy (HAART) and less toxic chemotherapy. Clinical characteristics and outcome among patients treated for AIDS related non-Hodgkin's Lymphoma are described. Nine patients were studied retrospectively. Overall survival (OS) and Free Disease Survival (FDS) using a Kaplan-Meier model were analyzed. Patients received (DA-EPOCH) etoposide, prednisone, vincristine, doxorubicin and cyclophosphamide. The overall Survival was 18 months and 13 month Free Disease Survival with a median follow-up of 16 months showing full response in 8/9 patients was observed. A very satisfactory treatment response in this group of patients expressed as an increased Overall Survival was noted.
NASA Astrophysics Data System (ADS)
Hayashi, Motoki; Tameda, Yuichiro; Tomida, Takayuki; Tsunesada, Yoshiki; Seki, Terutsugu; Saito, Yoshinori
We are developing a unmanned aerial vehicle (UAV), which is called "Opt-copter", carrying a calibrated light source for fluorescence detector (FD) calibration of the Telescope Array (TA) experiment. Opt-copter is equipped with a high accuracy GPS device and a LED light source in the shape of a dodecahedron. A positioning accuracy of the GPS mounted on the UAV is 0.1 m, which meets the requirement for the calibration of the FDs at the distance of 100 m. The light source consists of 12 UV LEDs attached on each side of the dodecahedron, and it is covered with a spherical diffuser to improve the spatial uniformity of the light intensity. We report the status of Opt-copter development and the results of its test at the TA site.
Geoffrey Layton Slack OBE (Mil), CBE, TD, BDS DDS, FDSRCS, FDS Glas, FFDRCSI, Dip Bact (1912-1991).
Gelbier, Stanley
2014-02-01
It is with some pride that the author worked in Geoffrey Slack's department from 1963 to 1967 and even retained a working relationship with him after that time. Slack was Professor of Dental Surgery (1959-1976) and later Professor of Community Dental Health (1976-1977) at The London Hospital Medical College, within the University of London. The change in titles came about as a result of recognition of his contribution to developments in public health and community dental care and services, for many of which he was directly responsible. He was Dental Dean from 1965 until 1969. Upon retirement in 1977 he became Emeritus Professor. In addition, he was Dean of the Faculty of Dental Surgery at the Royal College of Surgeons of England from 1974 to 1977.
Coupling of electronic and magnetic properties in Fe1+y(Te1-xSex)
NASA Astrophysics Data System (ADS)
Hu, J.; Liu, T. J.; Qian, B.; Mao, Z. Q.
2013-09-01
We have studied the coupling of electronic and magnetic properties in Fe1+y(Te1-xSex) via systematic specific heat, magnetoresistivity (MR), and Hall coefficient measurements on two groups of samples with y=0.02 and 0.1. In the y=0.02 series, we find that the 0.09
Deep Chandra Observation and Numerical Studies of the Nearest Cluster Cold Front in the Sky
NASA Technical Reports Server (NTRS)
Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.;
2015-01-01
We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are approximately 10 per cent brighter than the surrounding gas and are separated by approximately 15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches approximately 5-10 per cent of the thermal pressure, reducing the gas density between the bright features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, K; Konczykowski, M; Murphy, Jason
2014-09-01
Irradiation with 2.5 MeV electrons at doses up to 5.2×1019 electrons/cm2 was used to introduce pointlike defects in single crystals of Ba1-xKxFe2As2 with x=0.19 (Tc=14K),0.26 (Tc=32K), 0.32 (Tc=37K), and 0.34 (Tc=39K) to study the superconducting gap structure by probing the effect of nonmagnetic scattering on electrical resistivity ρ(T) and London penetration depth λ(T). For all compositions, the irradiation suppressed the superconducting transition temperature Tc and increased resistivity. The low-temperature behavior of λ(T) is best described by the power-law function, Δλ(T)=A(T/Tc)n. While substantial suppression of Tc supports s± pairing, in samples close to the optimal doping, x=0.26, 0.32, and 0.34, themore » exponent n remained high (n≥3), indicating almost exponential attenuation and thus a robust full superconducting gap. For the x=0.19 composition, which exhibits coexistence of superconductivity and long-range magnetism, the suppression of Tc was much more rapid, and the exponent n decreased toward the s± dirty limit of n=2. In this sample, the irradiation also suppressed the temperature of structural/magnetic transition Tsm from 103 to 98 K, consistent with the itinerant nature of the long-range magnetic order. Our results suggest that underdoped compositions, especially in the coexisting regime, are most susceptible to nonmagnetic scattering and imply that in multiband Ba1-xKxFe2As2 superconductors, the ratio of the interband to intraband pairing strength, as well as the related gap anisotropy, increases upon the departure from the optimal doping.« less
Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej
2017-05-01
Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.
Suppression of Electron Thermal Conduction in the Intracluster Medium
NASA Astrophysics Data System (ADS)
Roberg-Clark, Gareth; Drake, James; Swisdak, M.; Reynolds, Christopher S.
2017-08-01
The Intracluster Medium (ICM) contains high-temperature dilute plasma in which the quantity beta, defined as the ratio of the thermal pressure of the gas to the local magnetic field pressure, is much larger than unity. In addition, the collisional mean free path of particles in the ICM is typically large compared to the magnetic gyro-radius of individual particles. These conditions allow for the growth of robust microinstabilities that can significantly alter the transport of particles and heat along the local magnetic field line. Here we explore such an instability using driven two-dimensional Particle-In-Cell simulations of a magnetized plasma with a temperature gradient imposed at the boundaries. The system is highly unstable and develops large-amplitude magnetic fluctuations that effectively scatter the orbits of electrons crossing the simulation domain, resulting in a collisionless suppression of thermal conduction across the temperature gradient and magnetic field. The results suggest that the spontaneous development of small-scale plasma turbulence in the ICM may play a pivotal role in determining the thermal conductivity of ICM-like plasmas.
Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Kim, C. H.; Jang, Y. H.; Seo, S. J.; Song, C. H.; Son, J. Y.; Yang, Y. S.; Cho, J. H.
2012-06-01
We report dielectric properties and dielectric relaxation behaviors of Mn-substituted CaCu3Ti4O12 (CCTO) on Cu sites. While CCTO exhibits the giant dielectric constant and low dielectric loss in a wide temperature range, drastic suppression of the dielectric constant in Mn-doped CCTO (CCMTO) samples have been observed in temperature and frequency dependencies of dielectric properties with two possible origins as Mn doping increases. The observed suppression of dielectric response in the low Mn doping differs from the heavy doping of Mn in CCMTO samples. The low-Mn-doped CCMTO samples (x=0.01 and 0.02) show that the relaxation time and the activation energy Ea were slightly reduced due to a decreased contribution from the density of the dipolar effect. However, in heavily doped CCMTO samples (x=0.03, 0.04, and 0.05), the dielectric response, relaxation time, and Ea were significantly decreased, suggesting Mn doping plays a significant role in the destruction of the intrinsic dipolar effect.
Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume
2014-01-01
Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845
NASA Astrophysics Data System (ADS)
Materne, Philipp; Kamusella, Sirko; Sarkar, Rajib; Goltz, Til; Spehling, Johannes; Maeter, Hemke; Harnagea, Luminita; Wurmehl, Sabine; Büchner, Bernd; Luetkens, Hubertus; Timm, Carsten; Klauss, Hans-Henning
2015-10-01
We present a detailed investigation of the magnetic and superconducting properties of Ca1 -xNaxFe2As2 single crystals with x =0.00 , 0.35, 0.50, and 0.67 by means of the local probe techniques Mössbauer spectroscopy and muon spin relaxation experiments. With increasing Na-substitution level, the magnetic order parameter is suppressed. For x =0.50 we find a microscopic coexistence of magnetic and superconducting phases accompanied by a reduction of the magnetic order parameter below the superconducting transition temperature Tc. A systematic comparison with other 122 pnictides reveals a square-root correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures Tc/TN , which can be understood in the framework of a Landau theory. In the optimally doped sample with Tc≈34 K, diluted magnetism is found and the temperature dependence of the penetration depth and superfluid density are obtained, proving the presence of two superconducting s -wave gaps.
Arant, Ryan J; Goo, Marisa S; Gill, Phoebe D; Nguyen, Yen; Watson, Katherine D; Hamilton, Jock S; Horowitz, John M; Horwitz, Barbara A
2011-08-01
Previous studies in hibernating species have characterized two forms of neural plasticity in the hippocampus, long-term potentiation (LTP) and its reversal, depotentiation, but not de novo long-term depression (LTD), which is also associated with memory formation. Studies have also shown that histamine injected into the hippocampus prolonged hibernation bout duration. However, spillover into the ventricles may have affected brain stem regions, not the hippocampus. Here, we tested the hypothesis that decreased brain temperature shifts the major function of the hippocampus in the Syrian hamster (Mesocricetus auratus) from one of memory formation (via LTP, depotentiation, and de novo LTD) to increasing hibernation bout duration. We found reduced evoked responses in hippocampal CA1 pyramidal neurons following low-frequency stimulation in young (<30 days old) and adult (>60 days old) hamsters, indicating that de novo LTD was generated in hippocampal slices from both pups and adults at temperatures >20°C. However, at temperatures below 20°C, synchronization of neural assemblies (a requirement for LTD generation) was markedly degraded, implying that de novo LTD cannot be generated in hibernating hamsters. Nonetheless, even at temperatures below 16°C, pyramidal neurons could still generate action potentials that may traverse a neural pathway, suppressing the ascending arousal system (ARS). In addition, histamine increased the excitability of these pyramidal cells. Taken together, these findings are consistent with the hypothesis that hippocampal circuits remain operational at low brain temperatures in Syrian hamsters and suppress the ARS to prolong bout duration, even though memory formation is muted at these low temperatures.
A hypothalamic circuit that controls body temperature.
Zhao, Zheng-Dong; Yang, Wen Z; Gao, Cuicui; Fu, Xin; Zhang, Wen; Zhou, Qian; Chen, Wanpeng; Ni, Xinyan; Lin, Jun-Kai; Yang, Juan; Xu, Xiao-Hong; Shen, Wei L
2017-02-21
The homeostatic control of body temperature is essential for survival in mammals and is known to be regulated in part by temperature-sensitive neurons in the hypothalamus. However, the specific neural pathways and corresponding neural populations have not been fully elucidated. To identify these pathways, we used cFos staining to identify neurons that are activated by a thermal challenge and found induced expression in subsets of neurons within the ventral part of the lateral preoptic nucleus (vLPO) and the dorsal part of the dorsomedial hypothalamus (DMD). Activation of GABAergic neurons in the vLPO using optogenetics reduced body temperature, along with a decrease in physical activity. Optogenetic inhibition of these neurons resulted in fever-level hyperthermia. These GABAergic neurons project from the vLPO to the DMD and optogenetic stimulation of the nerve terminals in the DMD also reduced body temperature and activity. Electrophysiological recording revealed that the vLPO GABAergic neurons suppressed neural activity in DMD neurons, and fiber photometry of calcium transients revealed that DMD neurons were activated by cold. Accordingly, activation of DMD neurons using designer receptors exclusively activated by designer drugs (DREADDs) or optogenetics increased body temperature with a strong increase in energy expenditure and activity. Finally, optogenetic inhibition of DMD neurons triggered hypothermia, similar to stimulation of the GABAergic neurons in the vLPO. Thus, vLPO GABAergic neurons suppressed the thermogenic effect of DMD neurons. In aggregate, our data identify vLPO→DMD neural pathways that reduce core temperature in response to a thermal challenge, and we show that outputs from the DMD can induce activity-induced thermogenesis.
Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto
2015-08-01
Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31°C) triggers both an increment in mglc and suppression of μmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40°C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
29Si nuclear magnetic resonance study of URu 2Si 2 under pressure
Shirer, K. R.; Dioguardi, A. P.; Bush, B. T.; ...
2015-12-01
Here, we report 29Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu 2Si 2 under pressure in the hidden order and paramagnetic phases. We find evidence for a reduction of the Knight shift with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. Here, we find that the temperature at which this suppression occurs is enhanced with applied pressure.
Troitzsch, R Z; Vass, H; Hossack, W J; Martyna, G J; Crain, J
2008-04-10
Free proline amino acid is a natural cryoprotectant expressed by numerous organisms under low-temperature stress. Previous reports have suggested that complex assemblies underlie its functional properties. We investigate here aqueous proline solutions as a function of temperature using combinations of Raman spectroscopy, Rayleigh-Brillouin light scattering, and molecular dynamics simulations with the view to revealing the molecular origins of the mixtures' functionality as a cryoprotectant. The evolution of the Brillouin frequency shifts and line widths with temperature shows that, above a critical proline concentration, the water-like dynamics is suppressed and viscoelastic behavior emerges: Here, the Landau-Placzek ratio also shows a temperature-independent maximum arising from concentration fluctuations. Molecular dynamics simulations reveal that the water-water correlations in the mixtures depend much more weakly on temperature than does bulk water. By contrast, the water OH Raman bands exhibit strong red-shifts on cooling similar to those seen in ices; however, no evidence of ice lattice phonons is observed in the low-frequency spectrum. We attribute this primarily to enhanced proline-water hydrogen bonding. In general, the picture that emerges is that aqueous proline is a heterogeneous mixture on molecular length scales (characterized by significant concentration fluctuations rather than well-defined aggregates). Simulations reveal that proline also appears to suppress the normal dependence of water structure on temperature and preserves the ambient-temperature correlations even in very cold solutions. The water structure in cold proline solutions therefore appears to be similar to that at a higher effective temperature. This, coupled with the emergence of glassy dynamics offers a molecular explanation for the functional properties of proline as a cryoprotectant without the need to invoke previously proposed complex aggregates.
Haraguchi, Tamami; Yoshida, Miyako; Hazekawa, Mai; Uchida, Takahiro
2011-01-01
Aminoleban® EN, a nutritional product for patients with liver failure, contains three branched-chain amino acids (BCAAs): L-leucine, L-isoleucine, and L-valine. As BCAAs are extremely bitter, Aminoleban® EN has a low palatability, which is a major cause of patient noncompliance. Nutrients for liver failure often need to be taken for long periods, and poor medication compliance can cause serious problems, such as encephalopathy. Therefore it is important to suppress the bitter taste of Aminoleban® EN and thereby improve patient compliance. There are already six different flavoured powders (coffee, green-tea, apple, fruit, plum and pineapple) which can be added to Aminoleban® EN to reduce its unpleasant taste and smell, but it is possible that other factors, such as temperature, may also improve the palatability of Aminoleban® EN. In this study, flavours alone significantly decreased the bitterness intensity of Aminoleban® EN. It was thought that the sweetness and sourness of the flavoured powder would be the main factors involved in decreasing the bitterness. However, low temperature (0-5 °C) decreased the bitterness intensity of Aminoleban® EN, with or without the flavoured powders, compared with normal room temperature (25-30 °C). The sourness intensity of flavoured powders was not decreased at low temperatures, but the sweetness intensity of some flavoured powders did decrease. These results suggest that sourness can be tasted even at low temperatures. As not only the addition of flavoured powders but also low temperatures can reduce the bitterness of Aminioleban® EN, the combination of a sour-flavoured powder and a low temperature will improve the palatability of Aminoleban® EN the most.
Serial and parallel power equipment with high-temperature superconducting elements
NASA Technical Reports Server (NTRS)
Bencze, Laszlo; Goebl, Nandor; Palotas, Bela; Vajda, Istvan
1995-01-01
One of the prospective, practical applications of high-temperature superconductors is the fault-current limitation in electrical energy networks. The development and testing of experimental HTSC serial current limiters have been reported in the literature. A Hungarian electric power company has proposed the development of a parallel equipment for arc suppressing both in the industrial and customers' networks. On the basis of the company's proposal the authors have outlined the scheme of a compound circuit that can be applied both for current limitation and arc suppressing. In this paper the design principles and methods of the shunt equipment are presented. These principles involve the electrical, mechanical and cryogenic aspects with the special view on the electrical and mechanical connection between the HTSC material and the current lead. Preliminary experiments and tests have been carried out to demonstrate the validity of the design principles developed. The results of the experiments and of the technological investigations are presented.
Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes
NASA Astrophysics Data System (ADS)
Taranto, Philip; Modi, Kavan; Pollock, Felix A.
2018-05-01
In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.
Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T
2017-01-01
The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308
High temperature degradation mechanism of a red phosphor, CaAlSiN3:Eu for solid-state lighting
NASA Astrophysics Data System (ADS)
Oishi, Masatsugu; Shiomi, Shohei; Yamamoto, Takashi; Ueki, Tomoyuki; Kai, Yoichiro; Chichibu, Shigefusa F.; Takatori, Aiko; Kojima, Kazunobu
2017-09-01
Thermal properties of a red phosphor CaAlSiN3:Eu (CASN) at elevated temperatures were evaluated. A heat treatment at 800 °C degraded the photoluminescence property of CASN and caused irreversible changes in both the excitation and emission intensities. The heat treatment in air simultaneously decreased the N elements and increased the O elements. Consequently, the Eu2+ luminescence center was oxidized and CASN lost its photoluminescence property. Although the crystal structure of CASN host was stable even after the heat treatments, the local structure change around the Eu2+ ions is the origin of the thermal degradation of CASN. We found that the heat treatment in N2 atmosphere suppresses the thermal degradation. This is due to the suppression of N evolutions and the incorporation of O elements, which sustains the optically active Eu2+ state.
Crack Formation in Powder Metallurgy Carbon Nanotube (CNT)/Al Composites During Post Heat-Treatment
NASA Astrophysics Data System (ADS)
Chen, Biao; Imai, Hisashi; Li, Shufeng; Jia, Lei; Umeda, Junko; Kondoh, Katsuyoshi
2015-12-01
After the post heat-treatment (PHT) process of powder metallurgy carbon nanotubes (CNT)/Al composites, micro-cracks were observed in the composites, leading to greatly degraded mechanical properties. To understand and suppress the crack formation, an in situ observation of CNT/Al composites was performed at elevated temperatures. PHT was also applied to various bulk pure Al and CNT/Al composites fabricated under different processes. It was observed that the composites consolidated by hot-extrusion might form micro-cracks, but those consolidated by spark plasma sintering (SPS) showed no crack after PHT. A high-temperature SPS process before hot-extrusion was effective to prevent crack formation. The release of residual stress in severe plastic deformed (SPD) materials was responsible for the cracking phenomena during the PHT process. Furthermore, a good particle bonding was essential and effective to suppress cracks for SPD materials in the PHT process.
Method of Suppressing Sublimation in Advanced Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Sakamoto, Jeffrey S. (Inventor); Caillat, Thierry (Inventor); Fleurial, Jean-Pierre (Inventor); Snyder, G. Jeffrey (Inventor)
2009-01-01
A method of applying a physical barrier to suppress thermal decomposition near a surface of a thermoelectric material including applying a continuous metal foil to a predetermined portion of the surface of the thermoelectric material, physically binding the continuous metal foil to the surface of the thermoelectric material using a binding member, and heating in a predetermined atmosphere the applied and physically bound continuous metal foil and the thermoelectric material to a sufficient temperature in order to promote bonding between the continuous metal foil and the surface of the thermoelectric material. The continuous metal foil forms a physical barrier to enclose a predetermined portion of the surface. Thermal decomposition is suppressed at the surface of the thermoelectric material enclosed by the physical barrier when the thermoelectric element is in operation.
Inelastic Light Scattering Measurements of a Pressure-Induced Quantum Liquid in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J. T.; Lee, J. C. T.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-11-01
Pressure-dependent, low-temperature inelastic light (Raman) scattering measurements of KCuF3 show that applied pressure above P*˜7kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF3, resulting in the development of a fluctuational (quasielastic) response near T˜0K. This pressure-induced fluctuational response—which we associate with slow fluctuations of the CuF6 octahedral orientation—is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF6 octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3.
Low temperature specific heat of frustrated antiferromagnet HoInCu4
NASA Astrophysics Data System (ADS)
Weickert, Franziska; Fritsch, Veronika; Bambaugh, Ryan; Sarrao, John; Thompson, Joe D.; Movshovich, Roman
2014-03-01
We present low temperature specific heat measurements of single crystal HoInCu4, down to 35 mK and in magnetic field up to 12 Tesla. Ho atoms are arranged in an FCC lattice of the edge-sharing tetrahedra, and undergo an antiferromagnetic ordering at TN = 0.76 K, with the frustration parameter f = -ΘCW /TN of 14.3. Magnetic AF order is suppressed in field H0 ~ 4 T. The low temperature Schottky anomaly due to Ho evolves smoothly as a function of field through H0 and TN. The peak value of the anomaly remains roughly constant from 0 T to 12 T. The temperature of the anomaly's peak remains constant at TSch ~ 170 mK for H
Chaimanonart, Nattapon; Young, Darrin J
2009-01-01
A wireless, batteryless, and implantable EKG and core body temperature sensing microsystem with adaptive RF powering for untethered genetically engineered mice real-time monitoring is designed, implemented, and in vivo characterized. A packaged microsystem, exhibiting a total size of 9 mm x 7 mm x 3 mm with a weight of 400 mg including a pair of stainless-steel EKG electrodes, is implanted in a mouse abdomen for real-time monitoring. A low power 2 mm x 2 mm ASIC, consisting of an EKG amplifier, a proportional-to-absolute-temperature (PTAT)-based temperature sensor, an RF power sensing circuit, an RF-DC power converter, an 8-bit ADC, digital control circuitry, and a 433 MHz FSK transmitter, is powered by an adaptively controlled external RF energy source at 4 MHz to ensure a stable 2V supply with 156microA current driving capability for the overall microsystem. An electrical model for analyzing 60 Hz interference based on 2-electrode and 3-electrode configurations is proposed and compared with in vivo evaluation results. Due to the small laboratory animal chest area, a 60 Hz suppression technique by employing input termination resistors is chosen for two-EKG-electrode implant configuration.
Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.
Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T
2007-09-28
Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.
General Suppression of Escherichia coli O157:H7 in Sand-Based Dairy Livestock Bedding▿ †
Westphal, Andreas; Williams, Michele L.; Baysal-Gurel, Fulya; LeJeune, Jeffrey T.; McSpadden Gardener, Brian B.
2011-01-01
Sand bedding material is frequently used in dairy operations to reduce the occurrence of mastitis and enhance cow comfort. One objective of this work was to determine if sand-based bedding also supported the microbiologically based suppression of an introduced bacterial pathogen. Bedding samples were collected in summer, fall, and winter from various locations within a dairy operation and tested for their ability to suppress introduced populations of Escherichia coli O157:H7. All sources of bedding displayed a heat-sensitive suppressiveness to the pathogen. Differences in suppressiveness were also noted between different samples at room temperature. At just 1 day postinoculation (dpi), the recycled sand bedding catalyzed up to a 1,000-fold reduction in E. coli counts, typically 10-fold greater than the reduction achieved with other substrates, depending on the sampling date. All bedding substrates were able to reduce E. coli populations by over 10,000-fold within 7 to 15 dpi, regardless of sampling date. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to identify bacterial populations potentially associated with the noted suppression of E. coli O157:H7 in sand bedding. Eleven terminal restriction fragments (TRFs) were overrepresented in paired comparisons of suppressive and nonsuppressive specimens at multiple sampling points, indicating that they may represent environmentally stable populations of pathogen-suppressing bacteria. Cloning and sequencing of these TRFs indicated that they represent a diverse subset of bacteria, belonging to the Cytophaga-Flexibacter-Bacteroidetes, Gammaproteobacteria, and Firmicutes, only a few of which have previously been identified in livestock manure. Such data indicate that microbial suppression may be harnessed to develop new options for mitigating the risk and dispersal of zoonotic bacterial pathogens on dairy farms. PMID:21257815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br
Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) onmore » α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.« less
Differences in xylogenesis between dominant and suppressed trees.
Liu, Shushan; Li, Xiaoxia; Rossi, Sergio; Wang, Lily; Li, Wei; Liang, Eryuan; Leavitt, Steven W
2018-05-01
Most dendroecological studies focus on dominant trees, but little is known about the growing season of trees belonging to different size classes and their sensitivity to biotic factors. The objective of this study was to compare the dynamics of xylem formation between dominant and suppressed trees of Abies fabri of similar age growing in the Gongga Mountains, southeastern Tibetan Plateau, and to identify the association between xylem growth and climate. The timing and duration of xylogenesis in histological sections were investigated weekly during the 2013-2015 growing seasons. Our investigation found that timing and duration of xylogenesis varied with canopy position and its associated tree size. Xylogenesis started 6-14 days earlier, and ended 5-11 days later in dominant trees than in suppressed trees, resulting in a significantly longer growing season. Dominant trees also exhibited higher temperature sensitivity of tracheid production rate than suppressed trees. The observed differences in xylogenesis among trees suggested that competition affects tree growth by reducing the growing period in suppressed trees. Representative climate-growth relationships should involve trees of all size classes when evaluating the effects of the environment on forest dynamics. © 2018 Botanical Society of America.
Hashimoto, Hideki; Ishijima, Toshimichi; Suzuki, Katsuhiko; Higuchi, Mitsuru
2016-09-01
Reproductive hormones are likely to be involved in thermoregulation through body fluid dynamics. In the present study, we aimed to investigate the effect of the menstrual cycle and water consumption on physiological responses to prolonged exercise at moderate intensity in hot conditions. Eight healthy young women with regular menstrual cycles performed cycling exercise for 90 minutes at 50% V̇O2peak intensity during the low progesterone (LP) level phase and high progesterone (HP) level phase, with or without water consumption, under hot conditions (30°C, 50% relative humidity). For the water consumption trials, subjects ingested water equivalent to the loss in body weight that occurred in the earlier non-consumption trial. For all four trials, rectal temperature, cardiorespiratory responses, and ratings of perceived exertion (RPE) were measured. Throughout the 90-minute exercise period, rectal temperatures during HP were higher than during LP by an average of 0.4 °C in the non-consumption trial (P<0.01) and 0.2 °C in the water consumption trial (P<0.05). During exercise, water consumption affected the changes in rectal temperature and heat rate (HR) during HP, but it did not exert these effects during LP. Furthermore, we found a negative correlation between estradiol levels and rectal temperature during LP. During prolonged exercise at moderate intensity under hot conditions, water consumption is likely to be useful for suppressing the associated increase in body temperature and HR, particularly during HP, whereas estradiol appears to be useful for suppressing the increase in rectal temperature during LP.
de Menezes, Rodrigo C A; Zaretsky, Dmitry V; Fontes, Marco A P; DiMicco, Joseph A
2006-05-30
Microinjection of the neuronal inhibitor muscimol into the midbrain lateral/dorsolateral periaqueductal gray (l/dlPAG) suppresses increases in heart rate (HR) and mean arterial pressure (MAP) evoked by microinjection of the GABA(A) receptor antagonist bicuculline methiodide (BMI) into the dorsomedial hypothalamus (DMH) in rats. Injection of BMI into the DMH also increases body temperature (Tco) and motor activity. Here, our goal was to extend previous findings by examining the effect of microinjection of muscimol into the PAG on these thermogenic and behavioral responses in conscious freely moving rats. Microinjection of muscimol (300 pmol and 1 nmol) alone into the l/dlPAG reduced baseline Tco without affecting activity, HR, or MAP. Similar injection of a dose that failed to alter baseline Tco (100 pmol) suppressed the increases in Tco evoked from the DMH and significantly attenuated DMH-induced increases in locomotor activity. Whereas microinjection of 1 nmol muscimol into the ldlPAG abolished the increases in Tco evoked from the DMH and in fact lowered body temperature to a degree similar to that seen after this dose of muscimol alone, 1 nmol muscimol at adjacent sites outside the targeted region of the PAG had no significant effect on DMH-induced increases in Tco or any other parameter. These results indicate a role for neuronal activity in the l/dlPAG in (1) the temperature and behavioral responses to disinhibition of neurons in the DMH, and (2) the maintenance of basal body temperature in conscious freely moving rats.
Temperature in the anterior chamber during phacoemulsification.
Suzuki, Hisaharu; Oki, Kotaro; Igarashi, Tsutomu; Shiwa, Toshihiko; Takahashi, Hiroshi
2014-05-01
To evaluate changes in the aqueous humor temperature using 2 phacoemulsification units (Stellaris 28.5 kHz device and Whitestar Signature 40 kHz device). Nippon Medical School, Musashikosugi Hospital, Kawasaki City, Kanagawa, Japan. Experimental study. Aqueous humor temperatures were measured with a temperature probe set in the anterior chamber during ultrasound (US) oscillation in porcine eyes under 5 conditions. Continuous longitudinal oscillation caused a rapid rise in aqueous humor temperature, while the pulse and elliptical modes suppressed temperature elevation. Reducing the number of US tip vibrations did not reduce the temperature in the anterior chamber. However, raising the vacuum setting allowed the aspirations to rise to the set value, thereby lowering the temperature in the anterior chamber. Because differences in the phacoemulsification settings can lead to temperature elevations in the anterior chamber, surgeons must carefully monitor these settings to prevent corneal tissue damage. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
High Temperature Electronics Technology
1984-05-01
the hidrogen in the gold layer apparently was successful in suppressing the gold crystal growth. Since tape tests removed almost none of the...with others in the industry is that gold adhz-#s well to Ti-W. This refers to the undoped (no nitrogen stuffing) variety not the Ti-W diffusion...passivaiion film. The keys to v’. success were the production of a dense, slightly compreveive film, deposited at a temperature less than 330* C and the
Sacépé, B; Chapelier, C; Baturina, T I; Vinokur, V M; Baklanov, M R; Sanquer, M
2008-10-10
Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.
A Partially-Stirred Batch Reactor Model for Under-Ventilated Fire Dynamics
NASA Astrophysics Data System (ADS)
McDermott, Randall; Weinschenk, Craig
2013-11-01
A simple discrete quadrature method is developed for closure of the mean chemical source term in large-eddy simulations (LES) and implemented in the publicly available fire model, Fire Dynamics Simulator (FDS). The method is cast as a partially-stirred batch reactor model for each computational cell. The model has three distinct components: (1) a subgrid mixing environment, (2) a mixing model, and (3) a set of chemical rate laws. The subgrid probability density function (PDF) is described by a linear combination of Dirac delta functions with quadrature weights set to satisfy simple integral constraints for the computational cell. It is shown that under certain limiting assumptions, the present method reduces to the eddy dissipation concept (EDC). The model is used to predict carbon monoxide concentrations in direct numerical simulation (DNS) of a methane slot burner and in LES of an under-ventilated compartment fire.
Fractal evaluation of drug amorphicity from optical and scanning electron microscope images
NASA Astrophysics Data System (ADS)
Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.
2013-09-01
Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.
Chawla, Aseem; Stobdan, Tsering; Srivastava, Ravi B; Jaiswal, Varun; Chauhan, Rajinder S; Kant, Anil
2015-01-01
Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn.
Chawla, Aseem; Stobdan, Tsering; Srivastava, Ravi B.; Jaiswal, Varun; Chauhan, Rajinder S.; Kant, Anil
2015-01-01
Seabuckthorn is an economically important dioecious plant in which mechanism of sex determination is unknown. The study was conducted to identify seabuckthorn homologous genes involved in floral development which may have role in sex determination. Forty four putative Genes involved in sex determination (GISD) reported in model plants were shortlisted from literature survey, and twenty nine seabuckthorn homologous sequences were identified from available seabuckthorn genomic resources. Of these, 21 genes were found to differentially express in either male or female flower bud stages. HrCRY2 was significantly expressed in female flower buds only while HrCO had significant expression in male flowers only. Among the three male and female floral development stages (FDS), male stage II had significant expression of most of the GISD. Information on these sex-specific expressed genes will help in elucidating sex determination mechanism in seabuckthorn. PMID:25915052
High-precision determination of the pi, K, D, and Ds decay constants from lattice QCD.
Follana, E; Davies, C T H; Lepage, G P; Shigemitsu, J
2008-02-15
We determine D and D(s) decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: f(D(s))=241(3) MeV, f(D)=207(4) MeV, and fD(s))/f(D)=1.164(11). We also obtain f(K)/f(pi)=1.189(7) and (f(D(s))/f(D))/(f(K)/f(pi))=0.979(11). Combining with experiment gives V(us)=0.2262(14) and V(cs)/V(cd) of 4.43(41). We use a highly improved quark discretization on MILC gluon fields that include realistic sea quarks, fixing the u/d, s, and c masses from the pi, K, and eta(c) meson masses. This allows a stringent test against experiment for D and D(s) masses for the first time (to within 7 MeV).
Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Abu Zayyad, Tareq
2014-03-01
The chemical composition of ultra-high-energy cosmic rays (UHECRs) is an important constraint on models of UHECR production and propagation, and must be determined experimentally. A UHECR-induced extensive air shower's longitudinal development is dictated by the energy per nucleon of the primary particle. The observed distribution of atmospheric slant depths (Xmax) is therefore sensitive to the composition, facilitating measurement of the relative abundances of ``light'' (proton-like) and ``heavy'' (iron-like) primary UHECR particles. The Telescope Array (TA) experiment, the northern hemisphere's largest UHECR detector, includes three fluorescence detector (FD) stations that record the longitudinal development of the extensive air showers produced by UHECR arrivals. ``Stereo'' observation of individual showers by multiple FDs tightly constrains the trajectory reconstruction, allowing a precise measurement of Xmax as well as energy. We will present the stereo TA data from six years of operation and progress toward a measurement of chemical composition.
Photosynthesis and isoprene emission from trees along an urban-rural gradient in Texas.
Lahr, Eleanor C; Schade, Gunnar W; Crossett, Caitlin C; Watson, Matthew R
2015-11-01
Isoprene emission is an important mechanism for improving the thermotolerance of plant photosystems as temperatures increase. In this study, we measured photosynthesis and isoprene emission in trees along an urban-rural gradient that serves as a proxy for climate change, to understand daily and seasonal responses to changes in temperature and other environmental variables. Leaf-level gas exchange and basal isoprene emission of post oak (Quercus stellata) and sweet gum (Liquidambar styraciflua) were recorded at regular intervals over an entire growing season at urban, suburban, and rural sites in eastern Texas. In addition, the temperature and atmospheric carbon dioxide concentration experienced by leaves were experimentally manipulated in spring, early summer, and late summer. We found that trees experienced lower stomatal conductance and photosynthesis and higher isoprene emission, at the urban and suburban sites compared to the rural site. Path analysis indicated a daily positive effect of isoprene emission on photosynthesis, but unexpectedly, higher isoprene emission from urban trees was not associated with improved photosynthesis as temperatures increased during the growing season. Furthermore, urban trees experienced relatively higher isoprene emission at high CO2 concentrations, while isoprene emission was suppressed at the other sites. These results suggest that isoprene emission may be less beneficial in urban, and potentially future, environmental conditions, particularly if higher temperatures override the suppressive effects of high CO2 on isoprene emission. These are important considerations for modeling future biosphere-atmosphere interactions and for understanding tree physiological responses to climate change. © 2015 John Wiley & Sons Ltd.
Seasonality and mechanisms of tropical intraseasonal oscillations
NASA Astrophysics Data System (ADS)
Hazra, Abheera; Krishnamurthy, V.
2018-01-01
This study has compared the monsoon intraseasonal oscillation (MISO) during the boreal summer and Madden Julian Oscillation (MJO) during the boreal winter. Based on MISO and MJO in high-resolution three-dimensional diabatic heating, the possible mechanisms are discussed through observational analyses of dynamical and thermodynamical variables. The MISO and MJO are extracted as nonlinear oscillations during boreal summer and winter, respectively, by applying multi-channel singular spectrum analysis on daily anomalies of diabatic heating over the Indo-Pacific region. Lead and lag relations among moisture, temperature and surface fields relative to diabatic heating are analyzed to compare the mechanisms of MISO and MJO. While both the oscillations show eastward propagation, MISO has a strong northward propagation and MJO has a weak southward propagation as well. The analysis shows that MJO and MISO are essentially driven by the same mechanisms but with some difference in the meridional propagation. The westerly shear leads the diabatic heating, while the vorticity has weak correlation. Large-scale circulation creates positive moisture preconditioning before convection and negative moisture preconditioning before suppressed conditions. A positive lower level horizontal advection of temperature and upper level temperature tendencies lead the convective state while a negative lower level horizontal advection of temperature and upper level temperature tendencies lead the suppressed state. There is positive feedback from the SST to atmosphere. The difference in the meridional propagation of MISO and MJO is hypothesized to be because of the different differential heating meridionally during the two seasons.
Study on GaN nanostructures: Growth and the suppression of the yellow emission
NASA Astrophysics Data System (ADS)
Wang, Ting; Chen, Fei; Ji, Xiaohong; Zhang, Qinyuan
2018-07-01
GaN nanostructures were synthesized via a simple chemical vapor deposition using Ga2O3 and NH3 as precursors. Structural and morphological properties were systematically characterized by field emission scanning electron microscopy, X-ray diffractometer, transmission electron microscopy, and Raman spectroscopy. The configuration of GaN nanostructures was found to be strongly dependent on the growth temperature and the NH3 flow rate. Photoluminescence analysis revealed that all the fabricated GaN NSs exhibited a strong ultra-violet emission (∼364 nm), and the yellow emission of GaN nanorods can be suppressed at appropriate III/V ratio. The suppression of the yellow emission was attributed to the low density of surface or the VGa defect. The work demonstrates that the GaN nanostructures have potential applications in the optoelectronic and nanoelectronic devices.
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Sang-Geun; Han, Sang-Myeon; Han, Min-Koo; Park, Kee-Chan
2008-03-01
New PMOS LTPS (low temperature polycrystalline silicon)-thin film transistor (TFT) pixel circuit, which can suppress an OLED current error caused by the hysteresis of LTPS-TFT for active matrix organic light emitting diode (AMOLED) display, is proposed and fabricated. The proposed pixel circuit employs a reset voltage driving so that the sweep direction of gate voltage in the current driving TFT is not altered by the gate voltage in the previous frame. Our experimental results show that OLED current error of the proposed pixel is successfully suppressed because a reset voltage can enable the starting gate voltage for a desired one not to be varied, while that of the conventional 2-TFT pixel exceeds over 15% due to the hysteresis of LTPS-TFT.
Solvation suppression of ion recombination in gas discharge afterglow
NASA Astrophysics Data System (ADS)
Amirov, R. Kh.; Lankin, A. V.; Norman, G. E.
2018-03-01
An effect which suppresses recombination in ion plasmas is considered both theoretically and experimentally. Experimental results are presented for the ion recombination rate in fluorine plasma, which are obtained from data for the gas discharge afterglow. To interpret them, a suppression factor is considered: ion solvation in weakly ionized plasma. It is shown that the recombination process has a two-stage character with the formation of intermediate metastable ion pairs. The pairs consist of negative and positive ion-molecular clusters. A theoretical explanation is given for the slowing down of the ion recombination with the increase of the Coulomb coupling compared to the ion recombination rate calculated in the ideal plasma approximation. The approximate similarity of the recombination rate of the ion temperature and concentration and reasons for the slight deviation from the similarity are elucidated.
Partially suppressed shot noise in hopping conduction: observation in SiGe quantum wells
Kuznetsov; Mendez; Zuo; Snider; Croke
2000-07-10
We have observed shot noise in the hopping conduction of two-dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4 K. Moreover, shot noise is suppressed relative to its "classical" value 2eI by an amount that depends on the length of the sample and the carrier density. We have found a suppression factor to the classical value of about one-half for a 2 &mgr;m long sample, and of one-fifth for a 5 &mgr;m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ( approximately 1 &mgr;m in our case) of the inherent inhomogeneity of hopping transport, obtained from percolation theory.
NASA Astrophysics Data System (ADS)
Cronin, T.; Tziperman, E.; Li, H.
2015-12-01
High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Pinki; Gupta, D. N., E-mail: dngupta@physics.du.ac.in; Avinash, K.
2016-01-15
Stimulated Brillouin instability of a beat-wave of two lasers in plasmas with multiple-ion-species (negative-ions) was studied. The inclusion of negative-ions affects the growth of ion-acoustic wave in Brillouin scattering. Thus, the growth rate of instability is suppressed significantly by the density of negative-ions. To obey the phase-matching condition, the growth rate of the instability attains a maxima for an appropriate scattering angle (angle between the pump and scattered sideband waves). This study would be technologically important to have diagnostics in low-temperature plasmas.
Inactivation of ascaris lumbricoides eggs by heat, radiation, and thermoradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannen, J. P.; Garst, D. M.; Langley, S.
1975-07-01
It is desirable to eliminate the public health hazards associated with land application of municipal sewage sludge as a fertilizer or soil conditioner. This report describes experimentation to determine the effects of heat, radiation, and thermoradiation on the suppression of embryonation of Ascaris lumbricoides ova, a parasite commonly found in sewage sludge. Heat effects were observed at a minimum temperature of 51°C and radiation effects at doses in excess of 15 krads of ionizing gamma radiation. Thermoradiation at 47°C suppressed embryonation at less than half the total dose required by radiation alone.
Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure
NASA Astrophysics Data System (ADS)
Tong, Peng; Louca, Despina; Llobet, Anna; Yan, Jiaqiang; Arita, Ryotaro
2012-02-01
Superconductivity in FeTe1-xSex can be controlled by annealing, in the absence of extrinsic influences. Using neutron diffraction, we show that TC sensitively depends on the atomic configurations of the Te and Se ions. Low temperature annealing not only homogenizes the Te and Se ion distribution as previously observed, it suppresses TC because of changes in the chalcogen ions' z-parameter. In particular, the height of Te from the Fe basal plane is much reduced while that for Se shows a modest increase. These trends are reverse of the effects induced by pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; In, Y.; Jeon, Y. M.
The change of tokamak plasma behavior by supersonic molecular beam injection (SMBI) was investigated by applying a three-dimensional magnetic perturbation that could suppress edge localized modes (ELMs). From the time trace of decreasing electron temperature and with increasing plasma density keeping the total confined energy constant, the SMBI seems to act as a cold pulse on the plasma. However, the ELM behaviors were changed drastically (i.e., the symptom of ELM suppression has disappeared). The plasma collisionality in the edge-pedestal region could play a role in the change of the ELM behaviors.
Making Ceramic Components For Advanced Aircraft Engines
NASA Technical Reports Server (NTRS)
Franklin, J. E.; Ezis, A.
1994-01-01
Lightweight, oxidation-resistant silicon nitride components containing intricate internal cooling and hydraulic passages and capable of withstanding high operating temperatures made by ceramic-platelet technology. Used to fabricate silicon nitride test articles of two types: components of methane-cooled regenerator for air turbo ramjet engine and components of bipropellant injector for rocket engine. Procedures for development of more complex and intricate components established. Technology has commercial utility in automotive, aircraft, and environmental industries for manufacture of high-temperature components for use in regeneration of fuels, treatment of emissions, high-temperature combustion devices, and application in which other high-temperature and/or lightweight components needed. Potential use in fabrication of combustors and high-temperature acoustic panels for suppression of noise in future high-speed aircraft.
Pressure-temperature phase diagrams of CaK(Fe1 -xNix)4As4 superconductors
NASA Astrophysics Data System (ADS)
Xiang, Li; Meier, William R.; Xu, Mingyu; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.
2018-05-01
The pressure dependence of the magnetic and superconducting transitions and that of the superconducting upper critical field are reported for CaK (Fe1-xNix) 4As4 , the first example of an Fe-based superconductor with spin-vortex-crystal-type magnetic ordering. Resistance measurements were performed on single crystals with two substitution levels (x =0.033 ,0.050 ) under hydrostatic pressures up to 5.12 GPa and in magnetic fields up to 9 T. Our results show that, for both compositions, magnetic transition temperatures TN are suppressed upon applying pressure; the superconducting transition temperatures Tc are suppressed by pressure as well, except for x =0.050 in the pressure region where TN and Tc cross. Furthermore, the pressure associated with the crossing of the TN and Tc lines also coincides with a minimum in the normalized slope of the superconducting upper critical field, consistent with a likely Fermi-surface reconstruction associated with the loss of magnetic ordering. Finally, at p ˜4 GPa, both Ni-substituted CaK (Fe1-xNix) 4As4 samples likely go through a half-collapsed-tetragonal phase transition, similar to the parent compound CaKFe4As4 .
Unconventional resistivity at the border of metallic antiferromagnetism in NiS2
NASA Astrophysics Data System (ADS)
Niklowitz, P. G.; Alireza, P. L.; Steiner, M. J.; Lonzarich, G. G.; Braithwaite, D.; Knebel, G.; Flouquet, J.; Wilson, J. A.
2008-03-01
We report low-temperature and high-pressure measurements of the electrical resistivity ρ(T) of the antiferromagnetic compound NiS2 in its high-pressure metallic state. The form of ρ(T,p) suggests the presence of a quantum phase transition at a critical pressure pc=76±5kbar . Near pc , the temperature variation of ρ(T) is similar to that observed in NiS2-xSex near the critical composition x=1 , where metallic antiferromagnetism is suppressed at ambient pressure. In both cases, ρ(T) varies approximately as T1.5 over a wide range below 100K . This lets us assume that the high-pressure metallic phase of stoichiometric NiS2 also develops itinerant antiferromagnetism, which becomes suppressed at pc . However, on closer analysis, the resistivity exponent in NiS2 exhibits an undulating variation with temperature not seen in NiSSe (x=1) . This difference in behavior may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS2 .