Sample records for suppressor cell derived

  1. Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances the Anti-Tumor Activity of PD-1 Blockade in Melanoma.

    PubMed

    Kim, Sun Hye; Li, Man; Trousil, Sebastian; Zhang, Yaqing; Pasca di Magliano, Marina; Swanson, Kenneth D; Zheng, Bin

    2017-08-01

    Biguanides, such as the diabetes therapeutics metformin and phenformin, have shown antitumor activity both in vitro and in vivo. However, their potential effects on the tumor microenvironment are largely unknown. Here we report that phenformin selectively inhibits granulocytic myeloid-derived suppressor cells in spleens of tumor-bearing mice and ex vivo. Phenformin induces production of reactive oxygen species in granulocytic myeloid-derived suppressor cells, whereas the antioxidant N-acetylcysteine attenuates the inhibitory effects of phenformin. Co-treatment of phenformin enhances the effect of anti-PD-1 antibody therapy on inhibiting tumor growth in the BRAF V600E/PTEN-null melanoma mouse model. Combination of phenformin and anti PD-1 cooperatively induces CD8 + T-cell infiltration and decreases levels of proteins that are critical for immune suppressive activities of myeloid-derived suppressor cells. Our findings show a selective, inhibitory effect of phenformin on granulocytic myeloid-derived suppressor cell-driven immune suppression and support that phenformin improves the anti-tumor activity of PD-1 blockade immunotherapy in melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Myeloid derived suppressor cells enhance IgE-mediated mast cell responses

    USDA-ARS?s Scientific Manuscript database

    We previously demonstrated that enhanced development of myeloid derived suppressor cells (MDSC) in ADAM10 transgenic mice yielded resistance to infection with Nippostrongylus brasiliensis infection, and that co-culturing MDSC with IgE-activated mast cells enhanced cytokine production. In the current...

  3. Mechanisms of regulation of cell-mediated immunity. III. The characterization of azobenzenearsonate-specific suppressor T-cell- derived-suppressor factors

    PubMed Central

    1979-01-01

    Delayed type hypersensitivity to the hapten azobenzenearsonate (ABA) can be induced and suppressed by the administration of hapten-coupled syngeneic spleen cells by the appropriate route. Suppressor T cells stimulated by the intravenous administration of ABA-coupled spleen cells have been shown to produce a discrete subcellular factor(s) which is capable of suppressing delayed type hypersensitivity to azobenzenearsonate in the mouse. Such suppressor factors may be produced by the mechanical disruption of suppressor cells or by placing such suppressor cells in culture for 24 h. The suppressor factor(s) (SF) derived from ABA-specific suppressor cells exhibit biological specificity for the suppression of ABA delayed type hypersensitivity (DTH), but not trinitro-phenyl DTH, as well as the capacity to bind to ABA immunoadsorbents. Passage of suppressor factor(s) over reverse immunoadsorbents utilizing a rabbit anti-mouse F(ab')2 antiserum demonstrated that the antigen-specific T-cell derived SF does not bear conventional immunoglobulin markers. The suppressor factor(s) are not immunoglobulin molecules was further demonstrated by the inability of anti-ABA antibodies to suppress ABA DTH. Gel filtration of ABA suppressor factor(s) showed that the majority of the suppressive activity was present in a fraction with molecular weight ranging between 6.8 x 10(4) and 3.3 x 10(4) daltons. We also analyzed for the presence of determinants encoded by the H-2 major histocompatibility complex (MHC) and found that immunoadsorbents prepared utilizing antisera capable of interacting with gene products of the whole or selected gene regions of H-2 MHC, i.e., B10.D2 anti-B10.A and B10 anti- B10.A immunoadsorbents, retained the suppressive activity of ABA-SF. Elution of such columns with glycine HCl buffers (pH 2.8) permitted recovery of specific suppressive activity. Taken collectively such data supports the notion that suppressor T-cell-derived ABA suppressor factors have antigen-binding specificity as well as determinants controlled by the K end of the H-2 MHC. The distribution of strains capable of making SF has also been analyzed. The relationship of the antigen-binding specificity to VH gene products is discussed in this and the companion paper. PMID:312894

  4. Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs

    PubMed Central

    2012-01-01

    Several types of myeloid suppressor cell are currently being developed as cell-based immunosuppressive agents. Despite detailed knowledge about the molecular and cellular functions of these cell types, expert opinions differ on how to best implement such therapies in solid organ transplantation. Efforts in our laboratory to develop a cell-based medicinal product for promoting tolerance in renal transplant patients have focused on a type of suppressor macrophage, which we call the regulatory macrophage (M reg). Our favoured clinical strategy is to administer donor-derived M regs to recipients one week prior to transplantation. In contrast, many groups working with tolerogenic dendritic cells (DCs) advocate post-transplant administration of recipient-derived cells. A third alternative, using myeloid-derived suppressor cells, presumably demands that cells are given around the time of transplantation, so that they can infiltrate the graft to create a suppressive environment. On present evidence, it is not possible to say which cell type and treatment strategy might be clinically superior. This review seeks to position our basic scientific and early-stage clinical studies of human regulatory macrophages within the broader context of myeloid suppressor cell therapy in transplantation. PMID:23369628

  5. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation

    PubMed Central

    Nikolaev, Alexander

    2016-01-01

    To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074

  6. Myeloid-Derived Suppressor Cells in Bacterial Infections

    PubMed Central

    Ost, Michael; Singh, Anurag; Peschel, Andreas; Mehling, Roman; Rieber, Nikolaus; Hartl, Dominik

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate immune cells with the capability of suppressing T- and NK-cell responses. While the role of MDSCs has been studied in depth in malignant diseases, the understanding of their regulation and function in infectious disease conditions has just begun to evolve. Here we summarize and discuss the current view how MDSCs participate in bacterial infections and how this knowledge could be exploited for potential future therapeutics. PMID:27066459

  7. Breast Cancer Vaccines That Overcome Tolerance and Immune Suppression

    DTIC Science & Technology

    2011-01-01

    activate healthy donor T cells” American Associaiton of Immunolgists 98th Annual meeting. San- Francisco , CA. May 13-17, 2011, abstract submitted. 9...Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67, 4507-4513 12. Rodriguez , P.C., Hernandez, C.P., Quiceno... Santo , J.P., Apte, R.N. and Vosshenrich, C.A. (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development

  8. SOCS3 Deficiency in Myeloid Cells Promotes Tumor Development: Involvement of STAT3 Activation and Myeloid-Derived Suppressor Cells

    PubMed Central

    Yu, Hao; Liu, Yudong; McFarland, Braden C.; Deshane, Jessy S.; Hurst, Douglas R.; Ponnazhagan, Selvarangan; Benveniste, Etty N.; Qin, Hongwei

    2015-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of the JAK/STAT pathway, and generally function as tumor suppressors. The absence of SOCS3 in particular leads to heightened activation of the STAT3 transcription factor, which has a striking ability to promote tumor survival while suppressing antitumor immunity. We report for the first time that genetic deletion of SOCS3 specifically in myeloid cells significantly enhances tumor growth, which correlates with elevated levels of myeloid-derived suppressor cells (MDSC) in the tumor microenvironment, and diminished CD8+ T-cell infiltration in tumors. The importance of MDSCs in promoting tumor growth is documented by reduced tumor growth upon depletion of MDSCs. Furthermore, SOCS3-deficient bone-marrow-derived cells exhibit heightened STAT3 activation and preferentially differentiate into the Gr-1+CD11b+Ly6G+ MDSC phenotype. Importantly, we identify granulocyte colony-stimulating factor (G-CSF) as a critical factor secreted by the tumor microenvironment that promotes development of MDSCs via a STAT3-dependent pathway. Abrogation of tumor-derived G-CSF reduces the proliferation and accumulation of Gr-1+CD11b+ MDSCs and inhibits tumor growth. These findings highlight the critical function of SOCS3 as a negative regulator of MDSC development and function, via inhibition of STAT3 activation. PMID:25649351

  9. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    PubMed

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Myeloid-derived suppressor cells modulate B-cell responses.

    PubMed

    Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. History of myeloid-derived suppressor cells.

    PubMed

    Talmadge, James E; Gabrilovich, Dmitry I

    2013-10-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.

  12. The emerging role of myeloid-derived suppressor cells in lung diseases.

    PubMed

    Kolahian, Saeed; Öz, Hasan Halit; Zhou, Benyuan; Griessinger, Christoph M; Rieber, Nikolaus; Hartl, Dominik

    2016-03-01

    Myeloid-derived suppressor cells (MDSCs) are innate immune cells characterised by their potential to control T-cell responses and to dampen inflammation. While the role of MDSCs in cancer has been studied in depth, our understanding of their relevance for infectious and inflammatory disease conditions has just begun to evolve. Recent studies highlight an emerging and complex role for MDSCs in pulmonary diseases. In this review, we discuss the potential contribution of MDSCs as biomarkers and therapeutic targets in lung diseases, particularly lung cancer, tuberculosis, chronic obstructive pulmonary disease, asthma and cystic fibrosis. Copyright ©ERS 2016.

  13. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells.

    PubMed

    Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young

    2013-05-01

    Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.

  14. History of myeloid derived suppressor cells (MDSCs) in the macro- and micro-environment of tumour-bearing hosts

    PubMed Central

    Talmadge, James E.; Gabrilovich, Dmitry I.

    2015-01-01

    Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T-cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies revealed that this hyperplasia was associated with populations of multi-potent progenitor cells identified as myeloid-derived suppressor cells (MDSCs). The discovery and study of MDSCs have provided a wealth of information regarding tumour pathobiology, extended our understanding of neoplastic progression, and modified our approaches to immune adjuvant therapy. In this perspective, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs, and the host macroenvironment. PMID:24060865

  15. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy.

    PubMed

    Draghiciu, Oana; Lubbers, Joyce; Nijman, Hans W; Daemen, Toos

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.

  16. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected.

    PubMed

    Marvel, Douglas; Gabrilovich, Dmitry I

    2015-09-01

    Our understanding of the role of myeloid-derived suppressor cells (MDSCs) in cancer is becoming increasingly complex. In addition to their eponymous role in suppressing immune responses, they directly support tumor growth, differentiation, and metastasis in a number of ways that are only now beginning to be appreciated. It is because of this increasingly complex role that these cells may become an important factor in the treatment of human cancer. In this Review, we discuss the most pertinent and controversial issues of MDSC biology and their role in promoting cancer progression and highlight how these cells may be used in the clinic, both as prognostic factors and as therapeutic targets.

  17. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade.

    PubMed

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S; Cowell, John K; Korkaya, Hasan

    2017-04-06

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced 'metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression.

  18. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade

    PubMed Central

    Ouzounova, Maria; Lee, Eunmi; Piranlioglu, Raziye; El Andaloussi, Abdeljabar; Kolhe, Ravindra; Demirci, Mehmet F.; Marasco, Daniela; Asm, Iskander; Chadli, Ahmed; Hassan, Khaled A.; Thangaraju, Muthusamy; Zhou, Gang; Arbab, Ali S.; Cowell, John K.; Korkaya, Hasan

    2017-01-01

    It is widely accepted that dynamic and reversible tumour cell plasticity is required for metastasis, however, in vivo steps and molecular mechanisms are poorly elucidated. We demonstrate here that monocytic (mMDSC) and granulocytic (gMDSC) subsets of myeloid-derived suppressor cells infiltrate in the primary tumour and distant organs with different time kinetics and regulate spatiotemporal tumour plasticity. Using co-culture experiments and mouse transcriptome analyses in syngeneic mouse models, we provide evidence that tumour-infiltrated mMDSCs facilitate tumour cell dissemination from the primary site by inducing EMT/CSC phenotype. In contrast, pulmonary gMDSC infiltrates support the metastatic growth by reverting EMT/CSC phenotype and promoting tumour cell proliferation. Furthermore, lung-derived gMDSCs isolated from tumour-bearing animals enhance metastatic growth of already disseminated tumour cells. MDSC-induced ‘metastatic gene signature' derived from murine syngeneic model predicts poor patient survival in the majority of human solid tumours. Thus spatiotemporal MDSC infiltration may have clinical implications in tumour progression. PMID:28382931

  19. T cell chronic lymphocytic leukaemia with suppressor phenotype.

    PubMed Central

    Hofman, F M; Smith, D; Hocking, W

    1982-01-01

    The peripheral blood cells from a patient with T cell chronic lymphocytic leukaemia were examined for surface marker and functional characteristics. Eighty-91% of the peripheral blood cells formed SRBC rosettes and 22-49% possessed Fc receptors; 73% of the peripheral blood cells were reactive with the OKT8 antiserum and 61% expressed DR antigens. Response to PHA stimulation was markedly reduced, whereas allogeneic responsiveness in mixed leucocyte culture was intact. The ability of Con A-stimulated peripheral blood cells to generate suppressor activity in a mixed leucocyte reaction was deficient, whereas suppression of in vitro immunoglobulin synthesis was greater than normal. The leukaemic peripheral blood cell population expressed a T suppressor phenotype. Functional studies suggest that these cells were derived from the subset of T lymphocytes with regulatory activity for immunoglobulin synthesis as opposed to mitogenic responsiveness. PMID:6215199

  20. Myeloid-derived suppressor cells

    PubMed Central

    Chandra, Dinesh; Gravekamp, Claudia

    2013-01-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases. PMID:24427545

  1. Myeloid-derived suppressor cells: Cellular missiles to target tumors.

    PubMed

    Chandra, Dinesh; Gravekamp, Claudia

    2013-11-01

    While conventional anticancer therapies, including surgical resection, radiotherapy, and/or chemotherapy, are relatively efficient at eliminating primary tumors, these treatment modalities are largely ineffective against metastases. At least in part, this reflects the rather inefficient delivery of conventional anticancer agents to metastatic lesions. We have recently demonstrated that myeloid-derived suppressor cells (MDSCs) can be used as cellular missiles to selectively deliver a radioisotope-coupled attenuated variant of Listeria monocytogenes to both primary and metastatic neoplastic lesions in mice with pancreatic cancer. This novel immunotherapeutic intervention robustly inhibited tumor growth while promoting a dramatic decrease in the number of metastases.

  2. Modulating glioma-mediated myeloid-derived suppressor cell development with sulforaphane

    PubMed Central

    Kumar, Ravi; de Mooij, Tristan; Peterson, Timothy E.; Kaptzan, Tatiana; Johnson, Aaron J.; Daniels, David J.; Parney, Ian F.

    2017-01-01

    Glioblastoma is the most common primary tumor of the brain and has few long-term survivors. The local and systemic immunosuppressive environment created by glioblastoma allows it to evade immunosurveillance. Myeloid-derived suppressor cells (MDSCs) are a critical component of this immunosuppression. Understanding mechanisms of MDSC formation and function are key to developing effective immunotherapies. In this study, we developed a novel model to reliably generate human MDSCs from healthy-donor CD14+ monocytes by culture in human glioma-conditioned media. Monocytic MDSC frequency was assessed by flow cytometry and confocal microscopy. The resulting MDSCs robustly inhibited T cell proliferation. A cytokine array identified multiple components of the GCM potentially contributing to MDSC generation, including Monocyte Chemoattractive Protein-1, interleukin-6, interleukin-8, and Macrophage Migration Inhibitory Factor (MIF). Of these, Macrophage Migration Inhibitory Factor is a particularly attractive therapeutic target as sulforaphane, a naturally occurring MIF inhibitor derived from broccoli sprouts, has excellent oral bioavailability. Sulforaphane inhibits the transformation of normal monocytes to MDSCs by glioma-conditioned media in vitro at pharmacologically relevant concentrations that are non-toxic to normal leukocytes. This is associated with a corresponding increase in mature dendritic cells. Interestingly, sulforaphane treatment had similar pro-inflammatory effects on normal monocytes in fresh media but specifically increased immature dendritic cells. Thus, we have used a simple in vitro model system to identify a novel contributor to glioblastoma immunosuppression for which a natural inhibitor exists that increases mature dendritic cell development at the expense of myeloid-derived suppressor cells when normal monocytes are exposed to glioma conditioned media. PMID:28666020

  3. Pseudomonas aeruginosa Airway Infection Recruits and Modulates Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Öz, Hasan H.; Zhou, Benyuan; Voss, Pina; Carevic, Melanie; Schroth, Carolin; Frey, Nina; Rieber, Nikolaus; Hector, Andreas; Hartl, Dominik

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF) lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK)-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (CF transmembrane conductance regulator, CFTR) modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo. PMID:27965936

  4. Specific suppression of anti-DNA production in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebling, M.R.; Wong, C.; Radosevich, J.

    1988-09-01

    To investigate the regulation of anti-DNA antibody production, we generated anti-DNA-specific suppressor cells by exposing normal human T cells and a small percentage of adherent cells to high concentrations of DNA. These cells suppressed the production of anti-DNA by both autologous peripheral blood mononuclear cells (PBMC) and allogeneic PBMC derived from systemic lupus erythematosus (SLE) patients. Anti-DNA production was suppressed significantly more than anti-RNA, antitetanus, or total immunoglobulin production. Specific suppression was enhanced by increasing the numbers of DNA-primed CD8+ cells and was obliterated by irradiation of the DNA-primed cells. In contrast to T cells from normal individuals, T cellsmore » obtained from two intensively studied SLE patients were unable to generate specific suppressor cells for anti-DNA production in both autologous and allogeneic test systems. Despite this defect, these patients were still capable of generating specific suppressor cells for antibody production directed against an exogenous antigen, tetanus toxoid.« less

  5. Dominant suppressor mutation bypasses the sphingolipid requirement for growth of Saccharomyces cells at low pH: role of the CWP2 gene.

    PubMed

    Skrzypek, M; Lester, R L; Spielmann, P; Zingg, N; Shelling, J; Dickson, R C

    2000-11-01

    Strains of Saccharomyces cerevisiae termed sphingolipid compensatory (SLC) do not grow at low pH when the cells lack sphingolipids. To begin to understand why sphingolipids are required for growth at low pH, we isolated derivatives of SLC strains, termed low pH resistant (LprR), carrying the LPR suppressor gene that allows growth at pH 4.1 when cells lack sphingolipids. Suppression is due to mutation of a single nuclear gene. The LPR suppressor gene functions, at least in part, by enhancing the ability of cells lacking sphingolipids to generate a net efflux of protons in suspension fluid with a pH range of 4.0-6.0. The LPR suppressor gene also enables cells lacking sphingolipids to maintain their intracellular pH near neutrality when the pH of the suspension fluid is low, unlike cells lacking the suppressor gene, which cannot maintain their intracellular pH in the face of a low external pH. These results demonstrate that some functions(s) of sphingolipids necessary for growth at low pH can be bypassed by a suppressor mutation. Attempts to clone the LPR suppressor gene were not successful, but they led to the isolation of the CWP2 gene, which encodes a major mannoprotein component of the outer cell wall. It was isolated because an increased copy number has the unusual property of increasing the frequency at which LprR strains arise. As we show here, part of the reason for this effect is that the CWP2 gene is essential for generating a net efflux of protons and for controlling intracellular pH in LprR strains that lack sphingolipids. These results suggest new cellular functions for the Cwp2 protein.

  6. Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery

    PubMed Central

    Ilegems, Erwin; Pick, Horst M.; Vogel, Horst

    2002-01-01

    A reporter assay was developed to detect and quantify nonsense codon suppression by chemically aminoacylated tRNAs in mammalian cells. It is based on the cellular expression of the enhanced green fluorescent protein (EGFP) as a reporter for the site-specific amino acid incorporation in its sequence using an orthogonal suppressor tRNA derived from Escherichia coli. Suppression of an engineered amber codon at position 64 in the EGFP run-off transcript could be achieved by the incorporation of a leucine via an in vitro aminoacylated suppressor tRNA. Microinjection of defined amounts of mutagenized EGFP mRNA and suppressor tRNA into individual cells allowed us to accurately determine suppression efficiencies by measuring the EGFP fluorescence intensity in individual cells using laser-scanning confocal microscopy. Control experiments showed the absence of natural suppression or aminoacylation of the synthetic tRNA by endogenous aminoacyl-tRNA synthetases. This reporter assay opens the way for the optimization of essential experimental parameters for expanding the scope of the suppressor tRNA technology to different cell types. PMID:12466560

  7. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells

    PubMed Central

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression. PMID:28107450

  8. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells.

    PubMed

    Domenis, Rossana; Cesselli, Daniela; Toffoletto, Barbara; Bourkoula, Evgenia; Caponnetto, Federica; Manini, Ivana; Beltrami, Antonio Paolo; Ius, Tamara; Skrap, Miran; Di Loreto, Carla; Gri, Giorgia

    2017-01-01

    A major contributing factor to glioma development and progression is its ability to evade the immune system. Nano-meter sized vesicles, exosomes, secreted by glioma-stem cells (GSC) can act as mediators of intercellular communication to promote tumor immune escape. Here, we investigated the immunomodulatory properties of GCS-derived exosomes on different peripheral immune cell populations. Healthy donor peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3, anti-CD28 and IL-2, were treated with GSC-derived exosomes. Phenotypic characterization, cell proliferation, Th1/Th2 cytokine secretion and intracellular cytokine production were analysed by distinguishing among effector T cells, regulatory T cells and monocytes. In unfractionated PBMCs, GSC-derived exosomes inhibited T cell activation (CD25 and CD69 expression), proliferation and Th1 cytokine production, and did not affect cell viability or regulatory T-cell suppression ability. Furthermore, exosomes were able to enhance proliferation of purified CD4+ T cells. In PBMCs culture, glioma-derived exosomes directly promoted IL-10 and arginase-1 production and downregulation of HLA-DR by unstimulated CD14+ monocytic cells, that displayed an immunophenotype resembling that of monocytic myeloid-derived suppressor cells (Mo-MDSCs). Importantly, the removal of CD14+ monocytic cell fraction from PBMCs restored T-cell proliferation. The same results were observed with exosomes purified from plasma of glioblastoma patients. Our results indicate that glioma-derived exosomes suppress T-cell immune response by acting on monocyte maturation rather than on direct interaction with T cells. Selective targeting of Mo-MDSC to treat glioma should be considered with regard to how immune cells allow the acquirement of effector functions and therefore counteracting tumor progression.

  9. MITOSTATIN, a putative tumor suppressor on chromosome 12q24.1, is downregulated in human bladder and breast cancer.

    PubMed

    Vecchione, A; Fassan, M; Anesti, V; Morrione, A; Goldoni, S; Baldassarre, G; Byrne, D; D'Arca, D; Palazzo, J P; Lloyd, J; Scorrano, L; Gomella, L G; Iozzo, R V; Baffa, R

    2009-01-15

    Allelic deletions on human chromosome 12q24 are frequently reported in a variety of malignant neoplasms, indicating the presence of a tumor suppressor gene(s) in this chromosomal region. However, no reasonable candidate has been identified so far. In this study, we report the cloning and functional characterization of a novel mitochondrial protein with tumor suppressor activity, henceforth designated MITOSTATIN. Human MITOSTATIN was found within a 3.2-kb transcript, which encoded a approximately 62 kDa, ubiquitously expressed protein with little homology to any known protein. We found homozygous deletions and mutations of MITOSTATIN gene in approximately 5 and approximately 11% of various cancer-derived cells and solid tumors, respectively. When transiently overexpressed, MITOSTATIN inhibited colony formation, tumor cell growth and was proapoptotic, all features shared by established tumor suppressor genes. We discovered a specific link between MITOSTATIN overexpression and downregulation of Hsp27. Conversely, MITOSTATIN knockdown cells showed an increase in cell growth and cell survival rates. Finally, MITOSTATIN expression was significantly reduced in primary bladder and breast tumors, and its reduction was associated with advanced tumor stages. Our findings support the hypothesis that MITOSTATIN has many hallmarks of a classical tumor suppressor in solid tumors and may play an important role in cancer development and progression.

  10. Granulocytic Myeloid Derived Suppressor Cells Expansion during Active Pulmonary Tuberculosis Is Associated with High Nitric Oxide Plasma Level

    PubMed Central

    El Daker, Sary; Sacchi, Alessandra; Tempestilli, Massimo; Carducci, Claudia; Goletti, Delia; Vanini, Valentina; Colizzi, Vittorio; Lauria, Francesco Nicola; Martini, Federico; Martino, Angelo

    2015-01-01

    Tuberculosis (TB) is still the principal cause of death caused by a single infectious agent, and the balance between the bacillus and host defense mechanisms reflects the different manifestations of the pathology. The aim of this work was to study the role of myeloid-derived suppressor cells (MDSCs) during active pulmonary tuberculosis at the site of infection. We observed an expansion of MDSCs in the lung and blood of patients with active TB, which are correlated with an enhanced amount of nitric oxide in the plasma. We also found that these cells have the remarkable ability to suppress T-cell response, suggesting an important role in the modulation of the immune response against TB. Interestingly, a trend in the diminution of MDSCs was found after an efficacious anti-TB therapy, suggesting that these cells may be used as a potential biomarker for monitoring anti-TB therapy efficacy. PMID:25879532

  11. Reversal of infectious mononucleosis-associated suppressor T cell activity by D-mannose

    PubMed Central

    1983-01-01

    Epstein-Barr virus-induced infectious mononucleosis (IM) is associated with the activation of suppressor T lymphocytes that profoundly inhibit immunoglobulin (Ig) production in vitro. We have examined the nature of signals operating in the interaction between IM suppressor T cells and their targets, and explored the possibility that a lectin-like receptor molecule and its specific sugar might provide specificity to this interaction. When D-mannose or some of its derivatives, including alpha- methyl-D-mannoside, mannose-6-phosphate, and mannan, were added to suppressed cultures containing IM T lymphocytes and pokeweed mitogen (PWM)-stimulated normal mononuclear cells, a significant enhancement of Ig production was observed. These sugars had little or no effect on Ig production by the PWM-stimulated responder cells alone and thus the enhanced Ig production could be attributed to the reversal of suppression in the co-cultures by these sugars. This was further confirmed by the observation that the sugars were effective only if present during the first 24 h of culture, a time when IM suppressor T cells exert their principal effect. The effect of sugars on Ig production by suppressed cultures was similar to that achieved by decreasing by about fourfold the number of IM T cells in culture. The effect of the sugars is unlikely to represent a form of nonspecific toxicity, since inhibited cultures become responders in the presence of the sugar. Furthermore, toxicity restricted to the suppressor T cells is unlikely, since preincubation of the T cells with the sugars did not reduce their subsequent ability to suppress in secondary indicator cultures. In addition, there was no correlation between the effect of the sugars on T cell proliferation and their effect on T cell-mediated suppression. The reversal of suppression by sugars was dose dependent and demonstrated stereo-specificity in that L-mannose was without effect while D-mannose reversed suppression. These data indicate that D- mannose and some of its derivatives consistently reverse suppression of Ig production by IM T cells and strongly suggest a role for saccharides as critical components in the cellular receptors involved in certain physiologic immune cell interactions. PMID:6225821

  12. Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function.

    PubMed

    Shi, Y; Ouyang, P; Sugrue, S P

    2000-01-13

    Several cell adhesion-related proteins have been shown to act as tumor-suppressors (TS) in the neoplastic progression of epithelial-derived tumors. Pinin/DRS/memA was first identified in our laboratory and it was shown to be a cell adhesion-related molecule. Our previous study demonstrated that restoration of pinin expression in transformed cells not only positively influenced cellular adhesive properties but also reversed the transformed phenotype to more epithelial-like. Here, we show by FISH analysis that the gene locus for pinin is within 14q13. The alignment of the pinin gene with STS markers localized the gene to the previously identified TS locus D14S75-D14S288. Northern analyses revealed diminished pinin mRNA in renal cell carcinomas (RCC) and certain cancer cell lines. Immunohistochemical examination of tumor samples demonstrated absent or greatly reduced pinin in transitional cell carcinoma (TCC) and RCC tumors. TCC-derived J82 cells as well as EcR-293 cells transfected with full-length pinin cDNA demonstrated inhibition of anchorage-independent growth of cells in soft agar. Furthermore, methylation analyses revealed that aberrant methylation of pinin CpG islands was correlated with decreased/absent pinin expression in a subset of tumor tissues. These data lend significant support to the hypothesis that pinin/DRS/memA may act as a tumor suppressor in certain types of cancers.

  13. Targeting myeloid-derived suppressor cells for cancer immunotherapy.

    PubMed

    Liu, Yijun; Wei, Guowei; Cheng, Wesley A; Dong, Zhenyuan; Sun, Han; Lee, Vincent Y; Cha, Soung-Chul; Smith, D Lynne; Kwak, Larry W; Qin, Hong

    2018-05-31

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with an immune suppressive phenotype. They represent a critical component of the immune suppressive niche described in cancer, where they support immune escape and tumor progression through direct effects on both the innate and adaptive immune responses, largely by contributing to maintenance of a high oxidative stress environment. The number of MDSCs positively correlates with protumoral activity, and often diminishes the effectiveness of immunotherapies, which is particularly problematic with the emergence of personalized medicine. Approaches targeting MDSCs showed promising results in preclinical studies and are under active investigation in clinical trials in combination with various immune checkpoint inhibitors. In this review, we discuss MDSC targets and therapeutic approaches targeting MDSC that have the aim of enhancing the existing tumor therapies.

  14. Metastasis Suppressor Gene Inactivates Actin-Based Mechanism of Tumor Cell Motility | Center for Cancer Research

    Cancer.gov

    Metastasis is responsible for up to 90 percent of all cancer-related deaths. Though proteins derived from nearly a dozen metastasis suppressor genes have been discovered over the past 15 years, strategies for exploiting the proteins in metastasis-prevention therapies has been hampered by the lack of knowledge regarding the mechanisms underlying the proteins’ interactions with

  15. A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene.

    PubMed

    Gobeil, Stephane; Zhu, Xiaochun; Doillon, Charles J; Green, Michael R

    2008-11-01

    Metastasis suppressor genes inhibit one or more steps required for metastasis without affecting primary tumor formation. Due to the complexity of the metastatic process, the development of experimental approaches for identifying genes involved in metastasis prevention has been challenging. Here we describe a genome-wide RNAi screening strategy to identify candidate metastasis suppressor genes. Following expression in weakly metastatic B16-F0 mouse melanoma cells, shRNAs were selected based upon enhanced satellite colony formation in a three-dimensional cell culture system and confirmed in a mouse experimental metastasis assay. Using this approach we discovered 22 genes whose knockdown increased metastasis without affecting primary tumor growth. We focused on one of these genes, Gas1 (Growth arrest-specific 1), because we found that it was substantially down-regulated in highly metastatic B16-F10 melanoma cells, which contributed to the high metastatic potential of this mouse cell line. We further demonstrated that Gas1 has all the expected properties of a melanoma tumor suppressor including: suppression of metastasis in a spontaneous metastasis assay, promotion of apoptosis following dissemination of cells to secondary sites, and frequent down-regulation in human melanoma metastasis-derived cell lines and metastatic tumor samples. Thus, we developed a genome-wide shRNA screening strategy that enables the discovery of new metastasis suppressor genes.

  16. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice.

    PubMed

    Schmid, Maximilian; Zimara, Nicole; Wege, Anja Kathrin; Ritter, Uwe

    2014-11-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of CD11b+ cells. According to the surface molecules Ly6G and Ly6C (where Ly6G and Ly6C are lymphocyte antigen 6, locus G and C, respectively), MDSCs are further divided into monocytic (Mo-MDSCs, CD11b+ /Ly6C(high) /Ly6G-) and polymorphonucleated suppressor cells (PMN-MDSCs, CD11b+ /Ly6C(int) /Ly6G+). Most published manuscripts focus on the suppressive role of MDSCs in cancer, whereas their impact on adaptive immunity against obligatory intracellular parasites is not well understood. Furthermore, it is not clear how the genetic background of mice influences MDSC functionality. Therefore, we implemented an experimental model of leishmaniasis, and analyzed MDSC maturation and the impact of MDSCs on the parasite-specific T-cell responses in resistant C57BL/6 and susceptible BALB/c mice. This experimental setup demonstrated the impaired ability of BALB/c mice to produce Mo-MDSCs when compared with C57BL/6 mice. This phenotype is detectable after subcutaneous infection with parasites and is specifically represented by a reduced accumulation of Mo-MDSCs at the site of infection in BALB/c mice. Moreover, infected C57BL/6-derived MDSCs were able to suppress Leishmania-specific CD4+ -cell proliferation, whereas BALB/c-derived MDSCs harboring parasites lost this suppressive function. In conclusion, we demonstrate that (i) genetic background defines MDSC differentiation; and (ii) Leishmania major parasites are able to modulate the suppressive effect of MDSCs in a strain-dependent manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity.

    PubMed

    Vo, Manh-Cuong; Lee, Hyun-Ju; Kim, Jong-Seok; Hoang, My-Dung; Choi, Nu-Ri; Rhee, Joon Haeng; Lakshmanan, Vinoth-Kumar; Shin, Sung-Jae; Lee, Je-Jung

    2015-10-20

    Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response.

  18. The mechanism of lithium carbonate-induced augmentation of colony-stimulating activity elaboration in man.

    PubMed

    Verma, D S; Johnston, D A; Spitzer, G; Zander, A R; Dicke, K A; McCredie, K B

    1982-01-01

    Lithium carbonate (Li) has been reported to elevate granulocyte counts in patients with certain neutropenic disorders and to improve chemotherapy-induced granulocytopenia. To investigate the mechanisms involved in the increase in myelopoiesis, the effect of Li on monocytemacrophage (M phi)- and T-lymphocyte (TL)-derived colony-stimulating activity (CSA) were studied in vitro. Li induced a dose-related increase in both M phi- and TL-derived CSA over that in non-Li-stimulated cell populations. However, the increase was significant (p less than 0.007) only at a higher concentration of Li (2 mEq/l). The results of co-incubating TL with M phi with or without Li indicated that Li significantly enhanced synergistic CSA production by the two cell populations (p less than 0.02). We further demonstrated the presence of a larger proportion of M phi with TL rosettes in the presence of Li (62%) than in its absence (21%). Further experiments with concanavalin A (Con-A)-inducible suppressor TL suggested that Li effectively blocks the suppressor TL-mediated suppression of CSA. These data suggest that Li enhances M phi and TL interaction which results in an augmented CSA elaboration. Further, Li would be more effective in those neutropenic disorders associated with enhanced suppressor TL activity. For an optimal effect, however, Li would require appropriately functioning M phi and non-suppressor subsets of TL and an intact stem cell pool.

  19. Epigenetics in myeloid derived suppressor cells: a sheathed sword towards cancer

    PubMed Central

    Zhang, Chao; Wang, Shuo; Liu, Yufeng; Yang, Cheng

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells composed of progenitors and precursors to myeloid cells, are deemed to participate in the development of tumor-favoring immunosuppressive microenvironment. Thus, the regulatory strategies targeting MDSCs' expansion, differentiation, accumulation and function could possibly be effective “weapons” in anti-tumor immunotherapies. Epigenetic mechanisms, which involve DNA modification, covalent histone modification and RNA interference, result in the heritable down-regulation or silencing of gene expression without a change in DNA sequences. Epigenetic modification of MDSC's functional plasticity leads to the remodeling of its characteristics, therefore reframing the microenvironment towards countering tumor growth and metastasis. This review summarized the pertinent findings on the DNA methylation, covalent histone modification, microRNAs and small interfering RNAs targeting MDSC in cancer genesis, progression and metastasis. The potentials as well as possible obstacles in translating into anti-cancer therapeutics were also discussed. PMID:27458169

  20. Metastasis Suppressor Gene Inactivates Actin-Based Mechanism of Tumor Cell Motility | Center for Cancer Research

    Cancer.gov

    Metastasis is responsible for up to 90 percent of all cancer-related deaths. Though proteins derived from nearly a dozen metastasis suppressor genes have been discovered over the past 15 years, strategies for exploiting the proteins in metastasis-prevention therapies has been hampered by the lack of knowledge regarding the mechanisms underlying the proteins’ interactions with other proteins.

  1. Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

    PubMed

    Kehrmann, Angela; Truong, Ha; Repenning, Antje; Boger, Regina; Klein-Hitpass, Ludger; Pascheberg, Ulrich; Beckmann, Alf; Opalka, Bertram; Kleine-Lowinski, Kerstin

    2013-01-01

    The fusion between human tumorigenic cells and normal human diploid fibroblasts results in non-tumorigenic hybrid cells, suggesting a dominant role for tumor suppressor genes in the generated hybrid cells. After long-term cultivation in vitro, tumorigenic segregants may arise. The loss of tumor suppressor genes on chromosome 11q13 has been postulated to be involved in the induction of the tumorigenic phenotype of human papillomavirus (HPV)18-positive cervical carcinoma cells and their derived tumorigenic hybrid cells after subcutaneous injection in immunocompromised mice. The aim of this study was the identification of novel cellular genes that may contribute to the suppression of the tumorigenic phenotype of non-tumorigenic hybrid cells in vivo. We used cDNA microarray technology to identify differentially expressed cellular genes in tumorigenic HPV18-positive hybrid and parental HeLa cells compared to non-tumorigenic HPV18-positive hybrid cells. We detected several as yet unknown cellular genes that play a role in cell differentiation, cell cycle progression, cell-cell communication, metastasis formation, angiogenesis, antigen presentation, and immune response. Apart from the known differentially expressed genes on 11q13 (e.g., phosphofurin acidic cluster sorting protein 1 (PACS1) and FOS ligand 1 (FOSL1 or Fra-1)), we detected novel differentially expressed cellular genes located within the tumor suppressor gene region (e.g., EGF-containing fibulin-like extracellular matrix protein 2 (EFEMP2) and leucine rich repeat containing 32 (LRRC32) (also known as glycoprotein-A repetitions predominant (GARP)) that may have potential tumor suppressor functions in this model system of non-tumorigenic and tumorigenic HeLa x fibroblast hybrid cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. An approach to the unification of suppressor T cell circuits: a simplified assay for the induction of suppression by T cell-derived, antigen-binding molecules (T-ABM).

    PubMed

    Chue, B; Ferguson, T A; Beaman, K D; Rosenman, S J; Cone, R E; Flood, P M; Green, D R

    1989-01-01

    A system is presented in which the in vitro response to sheep red blood cells (SRBC) can be regulated using antigenic determinants coupled to SRBC and T cell-derived antigen-binding molecules (T-ABM) directed against the coupled determinants. T suppressor-inducer factors (TsiF's) are composed of two molecules, one of which is a T-ABM and one which bears I-J determinants (I-J+ molecule). Using two purified T-ABM which have not previously been shown to have in vitro activity, we produced antigen-specific TsiF's which were capable of inducing the suppression of the anti-SRBC response. Suppression was found to require both the T-ABM and the I-J+ molecule, SRBC conjugated with the antigen for which the T-ABM was specific, and a population of Ly-2+ T cells in the culture. Two monoclonal TsiF (or TsF1) were demonstrated to induce suppression of the anti-SRBC response in this system, provided the relevant antigen was coupled to the SRBC in culture. The results are discussed in terms of the general functions of T-ABM in the immune system. This model will be useful in direct, experimental comparisons of the function of T-ABM and suppressor T cell factors under study in different systems and laboratories.

  3. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  4. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality.

    PubMed

    Kalathil, Suresh; Lugade, Amit A; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-04-15

    The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. We documented augmented numbers of Tregs, MDSC, PD-1(+)-exhausted T cells, and increased levels of immunosuppressive cytokines in patients with HCC, compared with normal controls, revealing a network of potential mechanisms of immune dysregulation in patients with HCC. In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations. ©2013 AACR.

  5. Development and Function of Myeloid-Derived Suppressor Cells Generated From Mouse Embryonic and Hematopoietic Stem Cells

    PubMed Central

    Zhou, Zuping; French, Deborah L.; Ma, Ge; Eisenstein, Samuel; Chen, Ying; Divino, Celia M.; Keller, Gordon; Chen, Shu-Hsia; Pan, Ping-Ying

    2015-01-01

    Emerging evidence suggests that myeloid-derived suppressor cells (MDSCs) have great potential as a novel immune intervention modality in the fields of transplantation and autoimmune diseases. Thus far, efforts to develop MDSC-based therapeutic strategies have been hampered by the lack of a reliable source of MDSCs. Here we show that functional MDSCs can be efficiently generated from mouse embryonic stem (ES) cells and bone marrow hematopoietic stem (HS) cells. In vitro-derived MDSCs encompass two homogenous subpopulations: CD115+Ly-6C+ and CD115+Ly-6C− cells. The CD115+Ly-6C+ subset is equivalent to the monocytic Gr-1+CD115+F4/80+ MDSCs found in tumor-bearing mice. In contrast, the CD115+Ly-6C− cells, a previously unreported population of MDSCs, resemble the granulocyte/macrophage progenitors developmentally. In vitro, ES- and HS-MDSCs exhibit robust suppression against T-cell proliferation induced by polyclonal stimuli or alloantigens via multiple mechanisms involving nitric oxide synthase-mediated NO production and interleukin (IL)-10. Impressively, they display even stronger suppressive activity and significantly enhance ability to induce CD4+CD25+Foxp3+ regulatory T-cell development compared with tumor-derived MDSCs. Furthermore, adoptive transfer of ES-MDSCs can effectively prevent alloreactive T-cell-mediated lethal graft-versus-host disease, leading to nearly 82% long-term survival among treated mice. The successful in vitro generation of MDSCs may represent a critical step toward potential clinical application of MDSCs. PMID:20073041

  6. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    PubMed

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  8. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.

    PubMed

    Wu, Tiancong; Liu, Wen; Guo, Wenjie; Zhu, Xixu

    2016-07-01

    In this study, we investigated the antitumor activity of Silymarin in a mouse model of colon cancer xenograft of Lewis lung cancer (LLC) cells. Silymarin significantly suppressed tumor growth and induced apoptosis of cells in tumor tissues at a dose of 25 and 50mg/kg. Silymarin treatment enhanced the infiltration and function of CD8(+) T cells. In the meantime, Silymarin decreased the level of IL-10 while elevated the level of IL-2 and IFN-γ in the serum of tumor-bearing mice. Finally, Silymarin reduced the proportion of myeloid-derived suppressor cells (MDSC) in the tumor tissue and also the mRNA expressions of inducible nitric oxide synthases-2 (iNOS2), arginase-1 (Arg-1) and MMP9, which indicated that the function of MDSC in tumor tissues were suppressed. Altogether, our data here showed that Silymarin inhibited the MDSC and promoted the infiltration and function of CD8(+) T cells thus suppressed the growth of LLC xenografts, which provides evidence for the possible use of Silymarin against lung cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies.

    PubMed

    Duffy, Austin; Zhao, Fei; Haile, Lydia; Gamrekelashvili, Jaba; Fioravanti, Suzanne; Ma, Chi; Kapanadze, Tamar; Compton, Kathryn; Figg, William D; Greten, Tim F

    2013-02-01

    Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.

  10. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma

    PubMed Central

    Stringer, Brett W.; Bunt, Jens; Day, Bryan W.; Barry, Guy; Jamieson, Paul R.; Ensbey, Kathleen S.; Bruce, Zara C.; Goasdoué, Kate; Vidal, Hélène; Charmsaz, Sara; Smith, Fiona M.; Cooper, Leanne T.; Piper, Michael

    2016-01-01

    Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects. PMID:27083054

  11. Rethinking the role of myeloid-derived suppressor cells in adoptive T-cell therapy for cancer

    PubMed Central

    Arina, Ainhoa

    2014-01-01

    The expansion of cancer-induced myeloid cells is thought to be one of the main obstacles to successful immunotherapy. Nevertheless, in murine tumors undergoing immune-mediated destruction by adoptively transferred T cells, we have recently shown that such cells maintain their immunosuppressive properties. Therefore, adoptive T-cell therapy can, under certain conditions, overcome myeloid cell immunosuppression. PMID:25050213

  12. Expression of checkpoint molecules on myeloid-derived suppressor cells.

    PubMed

    Ballbach, Marlene; Dannert, Angelika; Singh, Anurag; Siegmund, Darina M; Handgretinger, Rupert; Piali, Luca; Rieber, Nikolaus; Hartl, Dominik

    2017-12-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population expanded in cancer, infection and autoimmunity capable of suppressing T-cell functions. Checkpoint inhibitors have emerged as a key therapeutic strategy in immune-oncology. While checkpoint molecules were initially associated with T cell functions, recent evidence suggests a broader expression and function in innate myeloid cells. Previous studies provided first evidence for a potential role for checkpoints on MDSCs, yet the human relevance remained poorly understood. Therefore, we investigated the expression and functional relevance of checkpoint molecules in human MDSC-T-cell interactions. Our studies demonstrate that programmed death-ligand 1 (PD-L1) is expressed on granulocytic MDSCs upon co-culture with T cells. Transwell experiments showed that cell-to-cell contact was required for MDSC-T-cell interactions and antibody blocking studies showed that targeting PD-L1 partially impaired MDSC-mediated T-cell suppression. Collectively, these studies suggest a role for PD-L1 in human MDSC function and thereby expand the functionality of this checkpoint beyond T cells, which could pave the way for further understanding and therapeutic targeting of PD-1/PD-L1 in innate immune-mediated diseases. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Mast cells boost myeloid-derived suppressor cell activity and contribute to the development of tumor-favoring microenvironment.

    PubMed

    Danelli, Luca; Frossi, Barbara; Gri, Giorgia; Mion, Francesca; Guarnotta, Carla; Bongiovanni, Lucia; Tripodo, Claudio; Mariuzzi, Laura; Marzinotto, Stefania; Rigoni, Alice; Blank, Ulrich; Colombo, Mario P; Pucillo, Carlo E

    2015-01-01

    Inflammation plays crucial roles at different stages of tumor development and may lead to the failure of immune surveillance and immunotherapy. Myeloid-derived suppressor cells (MDSC) are one of the major components of the immune-suppressive network that favors tumor growth, and their interaction with mast cells is emerging as critical for the outcome of the tumor-associated immune response. Herein, we showed the occurrence of cell-to-cell interactions between MDSCs and mast cells in the mucosa of patients with colon carcinoma and in the colon and spleen of tumor-bearing mice. Furthermore, we demonstrated that the CT-26 colon cancer cells induced the accumulation of CD11b(+)Gr1(+) immature MDSCs and the recruitment of protumoral mast cells at the tumor site. Using ex vivo analyses, we showed that mast cells have the ability to increase the suppressive properties of spleen-derived monocytic MDSCs, through a mechanism involving IFNγ and nitric oxide production. In addition, we demonstrated that the CD40:CD40L cross-talk between the two cell populations is responsible for the instauration of a proinflammatory microenvironment and for the increase in the production of mediators that can further support MDSC mobilization and tumor growth. In light of these results, interfering with the MDSC:mast cell axis could be a promising approach to abrogate MDSC-related immune suppression and to improve the antitumor immune response. ©2014 American Association for Cancer Research.

  14. Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells

    PubMed Central

    Lee, Cho-Rong; Lee, Wongeun; Cho, Steve K.; Park, Sung-Gyoo

    2018-01-01

    Myeloid-derived suppressor cells (MDSCs) regulate T cell immunity, and this population is a new therapeutic target for immune regulation. A previous study showed that transforming growth factor-β (TGF-β) is involved in controlling MDSC differentiation and immunoregulatory function in vivo. However, the direct effect of TGF-β on MDSCs with various cytokines has not previously been tested. Thus, we examined the effect of various cytokine combinations with TGF-β on MDSCs derived from bone marrow cells. The data show that different cytokine combinations affect the differentiation and immunosuppressive functions of MDSCs in different ways. In the presence of TGF-β, interleukin-6 (IL-6) was the most potent enhancer of MDSC function, whereas granulocyte colony-stimulating factors (G-CSF) was the most potent in the absence of TGF-β. In addition, IL-4 maintained MDSCs in an immature state with an increased expression of arginase 1 (Arg1). However, regardless of the cytokine combinations, TGF-β increased expansion of the monocytic MDSC (Mo-MDSC) population, expression of immunosuppressive molecules by MDSCs, and the ability of MDSCs to suppress CD4+ T cell proliferation. Thus, although different cytokine combinations affected the MDSCs in different ways, TGF-β directly affects monocytic-MDSCs (Mo-MDSCs) expansion and MDSCs functions. PMID:29543758

  15. Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells

    PubMed Central

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N.; Weber, Alexander N.R.; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D.; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-01-01

    Summary Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  16. Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes.

    PubMed

    Casacuberta-Serra, Sílvia; Parés, Marta; Golbano, Arantxa; Coves, Elisabet; Espejo, Carmen; Barquinero, Jordi

    2017-07-01

    Myeloid-derived suppressor cells (MDSCs) have an important role in controlling inflammation. As such, they are both a therapeutic target and, based on the administration of ex vivo-generated MDSCs, a therapeutic tool. However, there are relatively few reports describing methods to generate human MDSCs, and most of them rely on cells obtained from peripheral blood monocytes. We investigated alternative approaches to the generation of MDSCs from hematopoietic progenitors and monocytes. Purified CD34 + hematopoietic progenitors from apheresis products and CD14 + cells isolated from buffy coats were cultured in the presence of different combinations of cytokines. The resulting myeloid cell populations were then characterized phenotypically and functionally. Progenitor cells cultured in the presence of SCF+TPO+FLT3-L+GM-CSF+IL-6 gave rise to both monocytic (M)- and granulocytic (G)-MDSCs but production of the latter was partially inhibited by IL-3. M-MDSCs but not G-MDSCs were obtained by culturing peripheral blood monocytes with GM-CSF+IL-6 or GM-CSF+TGF-β1 for 6 days. CD14 expression was downregulated in the cultured cells. PD-L1 expression at baseline was lower in hematopoietic progenitor cell-derived than in monocyte-derived MDSCs, but was markedly increased in response to stimulation with LPS+IFN-γ. The functionality of the two MDSC subtypes was confirmed in studies of the suppression of allogeneic and mitogen-induced proliferation and by cytokine profiling. Here we describe both the culture conditions that allow the generation of MDSCs and the phenotypical and functional characterization of these cell populations.

  17. Tumor-induced CD11b(+) Gr-1(+) myeloid-derived suppressor cells exacerbate immune-mediated hepatitis in mice in a CD40-dependent manner.

    PubMed

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M; Wiltrout, Robert H; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A; Manns, Michael P; Wang, Ena; Marincola, Francesco M; Korangy, Firouzeh; Greten, Tim F

    2015-04-01

    Immunosuppressive CD11b(+) Gr-1(+) myeloid-derived suppressor cells (MDSCs) accumulate in the livers of tumor-bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune-mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α-galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor-free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b(+) Gr-1(+) cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN-γ-dependent upregulation of CD40 on hepatic CD11b(+) Gr-1(+) cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor-induced CD11b(+) Gr-1(+) MDSCs as well as enhanced reactive oxygen species (ROS)-mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40(-/-) tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. [Exosomes and Immune Cells].

    PubMed

    Seo, Naohiro

    2017-05-01

    In addition to the cytokines and cytotoxic granules, exosomes have been known as the intercellular communicator and cytotoxic missile of immune cells for the past decade. It has been well known that mature dendritic cell(DC)-derived exosomes participate in the T cell and natural killer(NK)cell activation, while immature DCs secrete tolerogenic exosomes for regulatory T(Treg)cell generation. Treg cell-derived EVs act as a suppressor against pathogenic type-1 T helper(Th1)cell responses. CD8+ T cells produce tumoricidal exosomes for preventing tumor invasion and metastasis transiently after T cell receptor(TCR)-mediated stimulation. Thus, immune cells produce functional exosomes in the activation state- and/or differentiation stage-dependent manner. In this review, the role of immune cell-derived exosomes will be introduced, focusing mainly on immune reaction against tumor.

  19. Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid derived suppressor cells with a selective inhibitor of PI3Kδ/γ

    PubMed Central

    Davis, Ruth J.; Moore, Ellen C.; Clavijo, Paul E.; Friedman, Jay; Cash, Harrison; Chen, Zhong; Silvin, Chris; Van Waes, Carter; Allen, Clint

    2017-01-01

    Checkpoint inhibitors are relatively inefficacious in head and neck cancers, despite an abundance of genetic alterations and a T cell-inflamed phenotype. One significant barrier to efficacy may be the recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment. Here we demonstrate functional inhibition of MDSC with IPI-145, an inhibitor of PI3Kδ and PI3Kγ isoforms which enhances responses to PD-L1 blockade. Combination therapy induced CD8+ T lymphocyte-dependent primary tumor growth delay and prolonged survival only in T cell-inflamed tumor models of head and neck cancers. However, higher doses of IPI-145 reversed the observed enhancement of anti-PD-L1 efficacy due to off-target suppression of the activity f tumor-infiltrating T lymphocytes. Together, our results offer a preclinical proof of concept for the low dose use of isoform-specific PI3Kδ/γ inhibitors to suppress MDSC to enhance responses to immune checkpoint blockade. PMID:28364000

  20. The stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumors.

    PubMed

    Thevenot, Paul T; Sierra, Rosa A; Raber, Patrick L; Al-Khami, Amir A; Trillo-Tinoco, Jimena; Zarreii, Parisa; Ochoa, Augusto C; Cui, Yan; Del Valle, Luis; Rodriguez, Paulo C

    2014-09-18

    Adaptation of malignant cells to the hostile milieu present in tumors is an important determinant of their survival and growth. However, the interaction between tumor-linked stress and antitumor immunity remains poorly characterized. Here, we show the critical role of the cellular stress sensor C/EBP-homologous protein (Chop) in the accumulation and immune inhibitory activity of tumor-infiltrating myeloid-derived suppressor cells (MDSCs). MDSCs lacking Chop had decreased immune-regulatory functions and showed the ability to prime T cell function and induce antitumor responses. Chop expression in MDSCs was induced by tumor-linked reactive oxygen and nitrogen species and regulated by the activating-transcription factor-4. Chop-deficient MDSCs displayed reduced signaling through CCAAT/enhancer-binding protein-β, leading to a decreased production of interleukin-6 (IL-6) and low expression of phospho-STAT3. IL-6 overexpression restored immune-suppressive activity of Chop-deficient MDSCs. These findings suggest the role of Chop in tumor-induced tolerance and the therapeutic potential of targeting Chop in MDSCs for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastad, Jessica L.

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other,more » soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.« less

  2. Mn complex-mediated enhancement of antitumor response through modulating myeloid-derived suppressor cells in drug-resistant tumor.

    PubMed

    Das, Satyajit; Banerjee, Kaushik; Roy, Susmita; Majumder, Saikat; Chatterjee, Mitali; Majumdar, Subrata; Choudhuri, Soumitra Kumar

    2014-01-01

    The tumor microenvironment (TME) renders tumor cells more resistant to chemotherapy. However, effective immunomodulators for cancer therapy are still elusive. We hypothesized that Mn-N-(2-hydroxyacetophenone) glycinate (MnNG), reported to be an antitumor agent, can modulate the TME. Immunomodulatory effects of MnNG were performed through assessing Myeloid Derived Suppressor Cells (MDSCs), Interferon-γ (Ifnγ)- and Interleukin-4 (Il4)-secreting Cluster of Differentiation 4 (Cd4)(+) T-cells by annexin V-binding assay in drug-resistant TME and T-cell proliferation following in vitro co-culture assay by flow cytometry. MnNG induced infiltration of Ifnγ-secreting Cd4(+) T-cells and reduces MDSC numbers in vivo. Furthermore, it modulated differentiation of MDSCs towards dendritic cells with up-regulation of co-stimulatory molecules and reversed the suppressive function of MDSC's that enhances T-helper cell 1 (Th1) response. MnNG treatment resulted in reduced expression of IL4, but enhanced expression of Ifnγ when Cd4(+) T-cells were co-cultured with MDSCs. MnNG modulates MDSCs differentiaton towards dendritic cells and enhances Th1 response in drug-resistant TME, leading to immunomodulatory efficacy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Novel Therapeutic Approaches Targeting MDSC in Myelodysplastic Syndrome

    DTIC Science & Technology

    2016-09-01

    hematopoiesis and a propensity for progression to acute myeloid leukemia (AML). MDS are senescence-dependent myeloid malignancies with a rising prevalence owing... myeloid -derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells, which play a critical role in MDS pathogenesis. A key...cell death of myeloid progenitors. MDSC-mediated suppressive activity is stimulated by the danger-associated molecular pattern (DAMP) heterodimer

  4. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis.

    PubMed

    Trabanelli, Sara; Chevalier, Mathieu F; Martinez-Usatorre, Amaia; Gomez-Cadena, Alejandra; Salomé, Bérengère; Lecciso, Mariangela; Salvestrini, Valentina; Verdeil, Grégory; Racle, Julien; Papayannidis, Cristina; Morita, Hideaki; Pizzitola, Irene; Grandclément, Camille; Bohner, Perrine; Bruni, Elena; Girotra, Mukul; Pallavi, Rani; Falvo, Paolo; Leibundgut, Elisabeth Oppliger; Baerlocher, Gabriela M; Carlo-Stella, Carmelo; Taurino, Daniela; Santoro, Armando; Spinelli, Orietta; Rambaldi, Alessandro; Giarin, Emanuela; Basso, Giuseppe; Tresoldi, Cristina; Ciceri, Fabio; Gfeller, David; Akdis, Cezmi A; Mazzarella, Luca; Minucci, Saverio; Pelicci, Pier Giuseppe; Marcenaro, Emanuela; McKenzie, Andrew N J; Vanhecke, Dominique; Coukos, George; Mavilio, Domenico; Curti, Antonio; Derré, Laurent; Jandus, Camilla

    2017-09-19

    Group 2 innate lymphoid cells (ILC2s) are involved in human diseases, such as allergy, atopic dermatitis and nasal polyposis, but their function in human cancer remains unclear. Here we show that, in acute promyelocytic leukaemia (APL), ILC2s are increased and hyper-activated through the interaction of CRTH2 and NKp30 with elevated tumour-derived PGD2 and B7H6, respectively. ILC2s, in turn, activate monocytic myeloid-derived suppressor cells (M-MDSCs) via IL-13 secretion. Upon treating APL with all-trans retinoic acid and achieving complete remission, the levels of PGD2, NKp30, ILC2s, IL-13 and M-MDSCs are restored. Similarly, disruption of this tumour immunosuppressive axis by specifically blocking PGD2, IL-13 and NKp30 partially restores ILC2 and M-MDSC levels and results in increased survival. Thus, using APL as a model, we uncover a tolerogenic pathway that may represent a relevant immunosuppressive, therapeutic targetable, mechanism operating in various human tumour types, as supported by our observations in prostate cancer.Group 2 innate lymphoid cells (ILC2s) modulate inflammatory and allergic responses, but their function in cancer immunity is still unclear. Here the authors show that, in acute promyelocytic leukaemia, tumour-activated ILC2s secrete IL-13 to induce myeloid-derived suppressor cells and support tumour growth.

  5. Reciprocal relationship of T regulatory cells and monocytic myeloid-derived suppressor cells in LP-BM5 murine retrovirus-induced immunodeficiency.

    PubMed

    O'Connor, Megan A; Vella, Jennifer L; Green, William R

    2016-02-01

    Immunomodulatory cellular subsets, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs), contribute to the immunosuppressive tumour microenvironment and are targets of immunotherapy, but their role in retroviral-associated immunosuppression is less well understood. Due to known crosstalk between Tregs and MDSCs in the tumour microenvironment, and also their hypothesized involvement during human immunodeficiency virus/simian immunodeficiency virus infection, studying the interplay between these immune cells during LP-BM5 retrovirus-induced murine AIDS is of interest. IL-10-producing FoxP3+ Tregs expanded after LP-BM5 infection. Following in vivo adoptive transfer of natural Treg (nTreg)-depleted CD4+T-cells, and subsequent LP-BM5 retroviral infection, enriched monocytic MDSCs (M-MDSCs) from these nTreg-depleted mice displayed altered phenotypic subsets. In addition, M-MDSCs from LP-BM5-infected nTreg-depleted mice exhibited increased suppression of T-cell, but not B-cell, responses, compared with M-MDSCs derived from non-depleted LP-BM5-infected controls. Additionally, LP-BM5-induced M-MDSCs modulated the production of IL-10 by FoxP3+ Tregs in vitro. These collective data highlight in vitro and for the first time, to the best of our knowledge, in vivo reciprocal modulation between retroviral-induced M-MDSCs and Tregs, and may provide insight into the immunotherapeutic targeting of such regulatory cells during retroviral infection.

  6. Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine.

    PubMed

    Ko, Hyun-Jeong; Lee, Jung-Mi; Kim, Yeon-Jeong; Kim, Yun-Sun; Lee, Kyoo-A; Kang, Chang-Yuil

    2009-02-15

    Myeloid-derived suppressor cells (MDSCs), which are known to be accumulated in the blood, spleen, and bone marrow of tumor-bearing mice and cancer patients, were tested as APCs for a cellular vaccine because they have phenotypical similarity with inflammatory monocytes and may be differentiated from the same precursors as monocytes. Although MDSCs have immunosuppressive properties, in vivo transferred MDSCs, which present tumor Ag and NKT cell ligand (alpha-galactosylceramide), significantly prolonged survival time in metastatic tumor-bearing mice in a CD8(+) cell-, NK cell-, and NKT cell-dependent manner vs a CD4(+) T cell- and host dendritic cell-independent manner. Major concerns about using MDSCs as APCs in a vaccine are their suppression of CTLs and their induction of Foxp3(+) regulatory T cells. However, alpha-galactosylceramide-loaded MDSCs did not suppress CD4(+) and CD8(+) T cells and allowed for the generation of Ag-specific CTL immunity without increasing the generation of regulatory T cells. Furthermore, stimulation with activated NKT cells induced changes on MDSCs in phenotypical or maturation markers, including CD11b, CD11c, and CD86. Taken together, these findings suggest that NKT cells facilitate the conversion of immunosuppressive MDSCs into immunogenic APCs, eliciting successful antitumor immunity and providing the basis for alternative cell-based vaccines.

  7. Induction of suppressor cells in vitro by Candida albicans.

    PubMed

    Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J

    1986-06-01

    Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.

  8. Mast cell-deficient Kit(W-sh) "Sash" mutant mice display aberrant myelopoiesis leading to the accumulation of splenocytes that act as myeloid-derived suppressor cells.

    PubMed

    Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael

    2013-06-01

    Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.

  9. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition.

    PubMed

    Fernandes, Janaina

    2016-01-01

    The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death.

  10. Induction of Myeloid-Derived Suppressor Cells in Cryopyrin-Associated Periodic Syndromes.

    PubMed

    Ballbach, Marlene; Hall, Tobias; Brand, Alina; Neri, Davide; Singh, Anurag; Schaefer, Iris; Herrmann, Eva; Hansmann, Sandra; Handgretinger, Rupert; Kuemmerle-Deschner, Jasmin; Hartl, Dominik; Rieber, Nikolaus

    2016-01-01

    Cryopyrin-associated periodic syndromes (CAPS) are caused by mutations in the NLRP3 gene leading to overproduction of IL-1β and other NLRP3 inflammasome products. Myeloid-derived suppressor cells (MDSCs) represent a novel innate immune cell subset capable of suppressing T-cell responses. As inflammasome products were previously found to induce MDSCs, we hypothesized that NLRP3 inflammasome-dependent factors induce the generation of MDSCs in CAPS. We studied neutrophilic MDSCs, their clinical relevance, and MDSC-inducing factors in a unique cohort of CAPS patients under anti-IL-1 therapy. Despite anti-IL-1 therapy and low clinical disease activity, CAPS patients showed significantly elevated MDSCs compared to healthy controls. MDSCs were functionally competent, as they suppressed polyclonal T-cell proliferation, as well as Th1 and Th17 responses. In addition, MDSCs decreased monocytic IL-1β secretion. Multiplex assays revealed a distinct pattern of MDSC-inducing cytokines, chemokines, and growth factors. Experimental analyses demonstrated that IL-1 cytokine family members and autoinflammation-associated alarmins differentially induced human MDSCs. Increased MDSCs might represent a novel autologous anti-inflammatory mechanism in autoinflammatory conditions and may serve as a future therapeutic target. © 2016 S. Karger AG, Basel.

  11. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.

    PubMed

    Rui, Ke; Tian, Jie; Tang, Xinyi; Ma, Jie; Xu, Ping; Tian, Xinyu; Wang, Yungang; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2016-08-01

    Tumor-elicited immunosuppression is one of the essential mechanisms for tumor evasion of immune surveillance. It is widely thought to be one of the main reasons for the failure of tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of cells that play an important role in tumor-induced immunosuppression. These cells expand in tumor-bearing individuals and suppress T cell responses via various mechanisms. Curdlan, the linear (1 → 3)-β-glucan from Agrobacterium, has been applied in the food industry and other sectors. The anti-tumor property of curdlan has been recognized for a long time although the underlying mechanism still needs to be explored. In this study, we investigated the effect of curdlan on MDSCs and found that curdlan could promote MDSCs to differentiate into a more mature state and then significantly reduce the suppressive function of MDSCs, decrease the MDSCs in vivo and down-regulate the suppression in tumor-bearing mice, thus leading to enhanced anti-tumor immune responses. We, therefore, increase the understanding of further mechanisms by which curdlan achieves anti-tumor effects.

  12. Breaking bad habits: Targeting MDSCs to alleviate immunosuppression in prostate cancer.

    PubMed

    Pal, Sumanta K; Kortylewski, Marcin

    2016-02-01

    The myeloid-derived suppressor cells (MDSCs) contribute to tumor immune evasion and still remain an elusive therapeutic target. Our study identified granulocytic MDSCs accumulating in prostate cancer patients during disease progression. We demonstrate the feasibility of using STAT3siRNA-based strategy for targeting MDSCs to alleviate arginase-dependent suppression of T cell activity.

  13. Yeast-derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-derived Suppressor Cells by Inducing PMN-MDSC Apoptosis and M-MDSC Differentiation to APC in Cancer

    PubMed Central

    Albeituni, Sabrin H.; Ding, Chuanlin; Liu, Min; Hu, Xiaoling; Luo, Fengling; Kloecker, Goetz; Bousamra, Micahel; Zhang, Huang-ge; Yan, Jun

    2016-01-01

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. Herein, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole β-glucan particles (WGP), a ligand to engage and activate dectin-1, oral treatment in vivo significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of PMN-MDSC but not M-MDSC, and decreased PMN-MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80+CD11c+ cells in vitro that served as potent antigen-presenting cells (APC) to induce Ag-specific CD4+ and CD8+ T cell responses in a dectin-1 dependent manner. In addition, ERK1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c+ cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated subcutaneously with LLC cells. This effect was dependent of the dectin-1 receptor. Strikingly, patients with non-small cell lung cancer (NSCLC) that had received WGP treatment for 10–14 days prior to any other treatment had a decreased frequency of CD14−HLA-DR−CD11b+CD33+ MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer. PMID:26810222

  14. Glycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosis

    PubMed Central

    Jian, Shiou-Ling; Chen, Wei-Wei; Su, Yu-Chia; Su, Yu-Wen; Chuang, Tsung-Hsien; Hsu, Shu-Ching; Huang, Li-Rung

    2017-01-01

    Immunotherapy aiming to rescue or boost antitumor immunity is an emerging strategy for treatment of cancers. The efficacy of immunotherapy is strongly controlled by the immunological milieu of cancer patients. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cell populations with immunosuppressive functions accumulating in individuals during tumor progression. The signaling mechanisms of MDSC activation have been well studied. However, there is little known about the metabolic status of MDSCs and the physiological role of their metabolic reprogramming. In this study, we discovered that myeloid cells upregulated their glycolytic genes when encountered with tumor-derived factors. MDSCs exhibited higher glycolytic rate than their normal cell compartment did, which contributed to the accumulation of the MDSCs in tumor-bearing hosts. Upregulation of glycolysis prevented excess reactive oxygen species (ROS) production by MDSCs, which protected MDSCs from apoptosis. Most importantly, we identified the glycolytic metabolite, phosphoenolpyruvate (PEP), as a vital antioxidant agent able to prevent excess ROS production and therefore contributed to the survival of MDSCs. These findings suggest that glycolytic metabolites have important roles in the modulation of fitness of MDSCs and could be potential targets for anti-MDSC strategy. Targeting MDSCs with analogs of specific glycolytic metabolites, for example, 2-phosphoglycerate or PEP may diminish the accumulation of MDSCs and reverse the immunosuppressive milieu in tumor-bearing individuals. PMID:28492541

  15. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells

    PubMed Central

    Win, Stephanie J.; Bauer, Michael

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions. PMID:29466409

  16. IL-7 treatment augments and prolongs sepsis-induced expansion of IL-10-producing B lymphocytes and myeloid-derived suppressor cells.

    PubMed

    Kulkarni, Upasana; Herrmenau, Christoph; Win, Stephanie J; Bauer, Michael; Kamradt, Thomas

    2018-01-01

    Immunological dysregulation in sepsis is associated with often lethal secondary infections. Loss of effector cells and an expansion of immunoregulatory cell populations both contribute to sepsis-induced immunosuppression. The extent and duration of this immunosuppression are unknown. Interleukin 7 (IL-7) is important for the maintenance of lymphocytes and can accelerate the reconstitution of effector lymphocytes in sepsis. How IL-7 influences immunosuppressive cell populations is unknown. We have used the mouse model of peritoneal contamination and infection (PCI) to investigate the expansion of immunoregulatory cells as long-term sequelae of sepsis with or without IL-7 treatment. We analysed the frequencies and numbers of regulatory T cells (Tregs), double negative T cells, IL-10 producing B cells and myeloid-derived suppressor cells (MDSCs) for 3.5 months after sepsis induction. Sepsis induced an increase in IL-10+ B cells, which was enhanced and prolonged by IL-7 treatment. An increased frequency of MDSCs in the spleen was still detectable 3.5 months after sepsis induction and this was more pronounced in IL-7-treated mice. MDSCs from septic mice were more potent at suppressing T cell proliferation than MDSCs from control mice. Our data reveal that sepsis induces a long lasting increase in IL-10+ B cells and MDSCs. Late-onset IL-7 treatment augments this increase, which should be relevant for clinical interventions.

  17. Blood-based analyses of cancer: Circulating myeloid-derived suppressor cells - is a new era coming?

    PubMed

    Okla, Karolina; Wertel, Iwona; Wawruszak, Anna; Bobiński, Marcin; Kotarski, Jan

    2018-06-21

    Progress in cancer treatment made by the beginning of the 21st century has shifted the paradigm from one-size-fits-all to tailor-made treatment. The popular vision, to study solid tumors through the relatively noninvasive sampling of blood, is one of the most thrilling and rapidly advancing fields in global cancer diagnostics. From this perspective, immune-cell analysis in cancer could play a pivotal role in oncology practice. This approach is driven both by rapid technological developments, including the analysis of circulating myeloid-derived suppressor cells (cMDSCs), and by the increasing application of (immune) therapies, the success or failure of which may depend on effective and timely measurements of relevant biomarkers. Although the implementation of these powerful noninvasive diagnostic capabilities in guiding precision cancer treatment is poised to change the ways in which we select and monitor cancer therapy, challenges remain. Here, we discuss the challenges associated with the analysis and clinical aspects of cMDSCs and assess whether the problems in implementing tumor-evolution monitoring as a global tool in personalized oncology can be overcome.

  18. Tropomyosin-1, A Putative Tumor-Suppressor and a Biomarker of Human Breast Cancer

    DTIC Science & Technology

    2004-10-01

    al., 1990; Cooper cells, is significantly increased in TMI-expressing cells, et al., 1985, 1987; Hendricks and Weintraub, 1981; without detectable...are very potently transformed, and penicillin and streptomycin. Cell lines derived from DT were supplemented with appropriate drugs, depending on the...3112. Ben-Ze’ev A. (1997). Curr. Opin. Cell Biol., 9, 99- 108. Hendricks M and Weintraub H. (1981). Proc. Natl. Acad. Bhattacharya B, Prasad GL

  19. Presence of S100A8/Gr1-Positive Myeloid-Derived Suppressor Cells in Primary Tumors and Visceral Organs Invaded by Breast Carcinoma Cells.

    PubMed

    Tanriover, Gamze; Eyinc, Mehmet Berk; Aliyev, Elnur; Dilmac, Sayra; Erin, Nuray

    2018-04-26

    Increased S100A8/A9 expression in Gr1-positive cells has been shown in myeloid-derived suppressor cells and may play a role in the formation of a metastatic milieu. We aimed to determine S100A8/A9 expression alone and with coexpression of Gr1 (a myeloid marker) in primary tumor and visceral tissues invaded by metastatic breast carcinoma. Female BALB/c mice were injected with 4TLM, 4THM, and 67NR orthotopically. Confluent cells (75%-80%) were used. Primary tumor, lung, liver, and spleen tissue samples were removed 26 days after injection. Peripheral blood smears and metastasis assay were performed, as was immunohistochemistry and staining. S100A8/A9 immunoreactivity alone or coexpressed with Gr1 was found in primary tumors formed by 4TLM and 4THM cells, which was markedly higher than in primary tumors formed by nonmetastatic 67NR cells. Similarly, liver and lung tissues obtained from mice injected with 4TLM or 4THM cells were invaded by S100A8/A9-positive and Gr1-positive cells. Double-positive cells were markedly fewer in liver and lung tissues of animals injected with 67NR cells. S100A8/A9-positive cells were mostly localized in red pulp of spleens. We observed an increased number of neutrophils in the peripheral blood of mice injected with metastatic breast carcinoma cells. Tumor-derived factors may increase S100A8/A9-positive cells locally and systemically, and S100A8/A9-positive cells may provide an appropriate milieu for the formation of metastasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Tropomyosin-1: A Putative Tumor-Suppressor and a Biomarker of Human Breast Cancer

    DTIC Science & Technology

    2001-10-01

    malignant cell types (Bhattacharya et al., 1990; Cooper cells, is significantly increased in TM1-expressing cells, et al., 1985, 1987; Hendricks and... penicillin and streptomycin. Cell lines derived from DT weretion is that DT cells are very potently transformed, and supplemented with appropriate drugs...10, 3097 --3112. Ben-Zc’ev A. (1997). Czur. Opit. Ce/l Bin!.. 9, 99 -108. Hendricks M atnd Weintraub H. (1981). Proc. Nall. Acead. Bhiattateharyat B

  1. Activated T cells sustain myeloid-derived suppressor cell-mediated immune suppression

    PubMed Central

    Damuzzo, Vera; Francescato, Samuela; Pozzuoli, Assunta; Berizzi, Antonio; Mocellin, Simone; Rossi, Carlo Riccardo; Bronte, Vincenzo; Mandruzzato, Susanna

    2016-01-01

    The expansion of myeloid derived suppressor cells (MDSCs), a suppressive population able to hamper the immune response against cancer, correlates with tumor progression and overall survival in several cancer types. We have previously shown that MDSCs can be induced in vitro from precursors present in the bone marrow and observed that these cells are able to actively proliferate in the presence of activated T cells, whose activation level is critical to drive the suppressive activity of MDSCs. Here we investigated at molecular level the mechanisms involved in the interplay between MDSCs and activated T cells. We found that activated T cells secrete IL-10 following interaction with MDSCs which, in turn, activates STAT3 phosphorylation on MDSCs then leading to B7-H1 expression. We also demonstrated that B7-H1+ MDSCs are responsible for immune suppression through a mechanism involving ARG-1 and IDO expression. Finally, we show that the expression of ligands B7-H1 and MHC class II both on in vitro-induced MDSCs and on MDSCs in the tumor microenvironment of cancer patients is paralleled by an increased expression of their respective receptors PD-1 and LAG-3 on T cells, two inhibitory molecules associated with T cell dysfunction. These findings highlight key molecules and interactions responsible for the extensive cross-talk between MDSCs and activated T cells that are at the basis of immune suppression. PMID:26700461

  2. Neutrophils confer T cell resistance to myeloid-derived suppressor cell-mediated suppression to promote chronic inflammation.

    PubMed

    Ryan, Sean O; Johnson, Jenny L; Cobb, Brian A

    2013-05-15

    Low-grade chronic inflammation can persist in aging humans unnoticed for years or even decades, inflicting continuous damage that can culminate later in life as organ dysfunction, physical frailty, and some of the most prominent debilitating and deadly age-associated diseases, including rheumatoid arthritis, diabetes, heart disease, and cancer. Despite the near universal acceptance of these associations, the mechanisms underlying unresolved inflammation remain poorly understood. In this study, we describe a novel inducible method to examine systemic chronic inflammation using susceptible animal models. Induced inflammation results in unresolved innate cellular responses and persistence of the same serum proinflammatory molecules used as diagnostic biomarkers and therapeutic targets for chronic inflammation in humans. Surprisingly, we found long-term persistence of an inflammation-associated neutrophil cell population constitutively producing the proinflammatory IFN-γ cytokine, which until now has only been detected transiently in acute inflammatory responses. Interestingly, these cells appear to confer T cell resistance to the otherwise potent anti-inflammatory function of myeloid-derived suppressor cells, revealing a novel mechanism for the maintenance of chronic inflammatory responses over time. This discovery represents an attractive target to resolve inflammation and prevent the inflammation-induced pathologies that are of critical concern for the well-being of the aging population.

  3. Hit-to-lead optimization of phenylsulfonyl hydrazides for a potent suppressor of PGE2 production: Synthesis, biological activity, and molecular docking study.

    PubMed

    Kim, Minju; Lee, Sunhoe; Park, Eun Beul; Kim, Kwang Jong; Lee, Hwi Ho; Shin, Ji-Sun; Fischer, Katrin; Koeberle, Andreas; Werz, Oliver; Lee, Kyung-Tae; Lee, Jae Yeol

    2016-01-01

    Preliminary hit-to-lead optimization of a novel series of phenylsulfonyl hydrazide derivatives, which were derived from the high throughput screening hit compound 1 (IC50=5700nM against PGE2 production), for a potent suppressor of PGE2 production is described. Subsequent optimization led to the identification of the potent lead compound 8n with IC50 values of 4.5 and 6.9nM, respectively, against LPS-induced PGE2 production and NO production in RAW 264.7 macrophage cells. In addition, 8n was about 30- and >150-fold more potent against mPGES-1 enzyme in a cell-free assay (IC50=70nM) than MK-886 and hit compound 1, respectively. Molecular docking suggests that compound 8n could inhibit PGE2 production by blocking the PGH2 binding site of human mPGES-1 enzyme. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Myeloid-derived suppressor cells in breast cancer.

    PubMed

    Markowitz, Joseph; Wesolowski, Robert; Papenfuss, Tracey; Brooks, Taylor R; Carson, William E

    2013-07-01

    Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.

  5. Polymorphonuclear neutrophils and granulocytic myeloid-derived suppressor cells inhibit natural killer cell activity toward Aspergillus fumigatus.

    PubMed

    Mueller-Leisse, Johanna; Brueggemann, Sabrina; Bouzani, Maria; Schmitt, Anna-Lena; Einsele, Hermann; Loeffler, Juergen

    2015-08-01

    Invasive aspergillosis is a devastating infectious disease in immunocompromised patients. Besides neutrophils and macrophages, natural killer (NK) cells have recently emerged as important players in immunity to this infection. It was shown that NK cells comprise an essential role in the clearance of Aspergillus fumigatus (A. fumigatus) in neutropenic but not in nonneutropenic mice. However, the antifungal activity of NK cells and their regulation have not been fully characterized. In this study, we investigated the interplay between polymorphonuclear neutrophils (PMNs) or granulocyte myeloid-derived suppressor cells (Gr-MDSCs) with NK cells. Both cell types exhibited an equal inhibitory effect on NK cell activation through downregulation of NKp30 expression on the cell surface and cytotoxicity towards the cell line K562. Furthermore, we showed that NK cell activation and antifungal cytotoxicity were impaired when NK cells had been cultured in the presence of PMNs or Gr-MDSCs before fungal stimulation. Besides the reduced cytotoxicity a decreased release of interferon gamma (IFNγ), a key player in the clearance of an A. fumigatus infection, was observed. Thus, inhibition of NK cell activity by PMNs or Gr-MDSCs might impair an effective anti-fungal immune response during recovery from conditions such as hematopoietic stem cell transplantation. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The significance of G-CSF expression and myeloid-derived suppressor cells in the chemoresistance of uterine cervical cancer.

    PubMed

    Kawano, Mahiru; Mabuchi, Seiji; Matsumoto, Yuri; Sasano, Tomoyuki; Takahashi, Ryoko; Kuroda, Hiromasa; Kozasa, Katsumi; Hashimoto, Kae; Isobe, Aki; Sawada, Kenjiro; Hamasaki, Toshimitsu; Morii, Eiichi; Kimura, Tadashi

    2015-12-15

    Granulocyte-colony stimulating factor (G-CSF) producing malignant tumor has been reported to occur in various organs, and has been associated with poor clinical outcome. The aim of this study is to investigate the significance of tumor G-CSF expression in the chemosensitivity of uterine cervical cancer. The clinical data of recurrent or advanced cervical cancer patients who were treated with platinum-based chemotherapy were analyzed. Clinical samples, cervical cancer cell lines, and a mouse model of cervical cancer were employed to examine the mechanisms responsible for the development of chemoresistance in G-CSF-producing cervical cancer, focusing on myeloid-derived suppressor cells (MDSC). As a result, the tumor G-CSF expression was significantly associated with increased MDSC frequencies and compromised survival. In vitro and in vivo experiments demonstrated that the increased MDSC induced by tumor-derived G-CSF is involved in the development of chemoresistance. The depletion of MDSC via splenectomy or the administration of anti-Gr-1 antibody sensitized G-CSF-producing cervical cancer to cisplatin. In conclusion, tumor G-CSF expression is an indicator of an extremely poor prognosis in cervical cancer patients that are treated with chemotherapy. Combining MDSC-targeting treatments with current standard chemotherapies might have therapeutic efficacy as a treatment for G-CSF-producing cervical cancer.

  7. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis

    PubMed Central

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J.; Markowitz, Sanford D.; Kusner, Linda L.; Kaminski, Henry J.; Lu, Lina; Lin, Feng

    2016-01-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T-cell-dependent and B-cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptors (AChR)-specific T-cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 antibodies inhibited the proliferation of these in vitro activated B cells. Administering MDSCs into mice immunized with a T-cell-independent antigen inhibited the antigen-specific antibody production in vivo. MDSCs directly inhibit B cells through multiple mechanisms including prostaglandin E2, inducible nitric oxide synthase and arginase. Interestingly, MDSC treatment in EMAG mice does not appear to significantly inhibit their immune response to a non-relevant antigen, ovalbumin. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T- and B- cell autoimmunity, leading to effective treatment of established EAMG; and that the MDSCs inhibit AChR-specific immune responses at least partially in an antigen-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. PMID:25057008

  8. Circulating CD14+ HLA-DR-/low myeloid-derived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery.

    PubMed

    Gao, Xing-Hui; Tian, Lu; Wu, Jiong; Ma, Xiao-Lu; Zhang, Chun-Yan; Zhou, Yan; Sun, Yun-Fan; Hu, Bo; Qiu, Shuang-Jian; Zhou, Jian; Fan, Jia; Guo, Wei; Yang, Xin-Rong

    2017-09-01

    Myeloid-derived suppressor cells (MDSCs) play an important role in tumor progression. The aim of the present study was to investigate the prognostic value of MDSCs for early recurrence of hepatocellular carcinoma (HCC) in patients undergoing curative resection. Myeloid-derived suppressor cells were measured by flow cytometry. The correlation between MDSCs and tumor recurrence was analyzed using a cohort of 183 patients who underwent curative resection between February 2014 and July 2015. Prognostic significance was further assessed using Kaplan-Meier survival estimates and log-rank tests. In vivo, CD14 + HLA-DR -/low MDSCs inhibit T cell proliferation and secretion. The frequency of CD14 + HLA-DR -/low MDSCs was significantly higher in HCC patients (3.7 ± 5.3%, n = 183) than in chronic hepatitis patients (1.4 ± 0.6%, n = 25) and healthy controls (1.1 ± 0.5%, n = 50). High frequency of MDSCs was significantly correlated with recurrence (time to recurrence) (P < 0.001) and overall survival (P = 0.034). Patients with HCC in the high MDSC group were prone to more vascular invasion (P = 0.018) and high systemic immune-inflammation index (SII) (P = 0.009) than those in the low MDSC group. Scatter-plot analyses revealed a significant positive correlation between the SII level and the frequency of MDSCs (r = 0.188, P = 0.011). Patients with HCC with a high MDSC frequency and high SII level had significantly shorter time to recurrence (P < 0.001) and overall survival (P = 0.028) than those with a low MDSC frequency and low SII. An increased frequency of MDSCs was correlated with early recurrence and predicted the prognosis of patients with HCC undergoing curative resection. The HCC patients with high frequency of MDSCs should be provided more advanced management and frequent monitoring. © 2016 The Japan Society of Hepatology.

  9. Separation of concanavalin A-induced human suppressor and helper T cells by the autologous erythrocyte rosette technique.

    PubMed

    Sakane, T; Honda, M; Taniguchi, Y; Kotani, H

    1981-08-01

    Very few normal human peripheral blood T cells are capable of binding autologous erythrocytes to form rosettes, whereas in the T cell population activated by concanavalin A (Con A) the autorosette levels are markedly enhanced. Fractionation of the Con A-activated T cells with autologous erythrocytes into autorosetting and nonrosetting cells demonstrates that suppressor, but not helper, activity resides in the autorosetting population, whereas the reverse is true of the nonrosetting population. Both these activities are found to be Con A dependent. The Con A-induced human suppressor cells can be identified and separated from the Con A-induced human helper cells by the autorosette technique. Studies on the surface properties of autorosetting and nonrosetting T cells indicate that there is little correlation between the activated suppressor and helper T cell subsets defined by autorosette technique and either those defined by monoclonal antibodies (which are able to distinguish these subsets in the resting but not activated T cells) or those defined by Fc receptors. Since the autorosetting T cell population (which acts as suppressor cells) bears receptors for peanut agglutinin, the nature of Con A-induced human suppressor cells appears to be analogous to that of Con A-induced murine suppressor cells.

  10. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells

    PubMed Central

    Prima, Victor; Kaliberova, Lyudmila N.; Kaliberov, Sergey; Curiel, David T.; Kusmartsev, Sergei

    2017-01-01

    In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)–mediated inhibition of activated PD-1+ T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti–PD-L1 and –PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow–derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80+ macrophages and Ly-6C+ myeloid-derived suppressor cells. These PD-L1–expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1+ cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host. PMID:28096371

  11. T Cell Stimulatory Effects of Korean Red Ginseng through Modulation of Myeloid-Derived Suppressor Cells.

    PubMed

    Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung

    2011-11-01

    Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation.

  12. Concanavalin A-induced and spontaneous suppressor cell activities in peripheral blood lymphocytes and spleen cells from gastric cancer patients.

    PubMed

    Toge, T; Hamamoto, S; Itagaki, E; Yajima, K; Tanada, M; Nakane, H; Kohno, H; Nakanishi, K; Hattori, T

    1983-11-01

    In 173 gastric cancer patients, activities of Concanavalin-A-induced suppressor cells (Con-AS) and spontaneous suppressor cells (SpS) in peripheral blood lymphocytes (PBL), splenic vein lymphocytes (SVL), and spleen cells (SCs) were investigated. Suppressions by Con-AS in PBL were significantly effective in patients of Stages III and IV, while suppressions by SpS were effective in patients with recurrent tumors. Thus, in PBLs of cancer patients, suppressor precursors, which are considered to be activated in vitro by Concanavalin-A, seemed to appear with the advances of the disease, and SpS activities, which could be already activated in vivo, seemed to increase in the terminal stage. In SCs, increased activities of Con-AS, but normal activities of SpS, were observed, and these suppressor-cell populations consisted of glass nonadherent cells. Suppressor activities of SCs would be due to suppressor T-cells, not to other types of cells. Furthermore, Con-AS existed in the medium-sized lymphocytes, which were fractionated on the basis of cell size, while SpS in the large-sized lymphocytes. A higher proportion of T-cells, bearing Fc receptors for IgG, was observed in the larger-sized lymphocyte fractions. Cell numbers in the large-sized lymphocyte fraction tended to increase with the advances of tumors. From these results, it is suggested that higher presence of suppressor precursors and the increase of SpS activities may occur in cancer patients, depending on the tumor advancing.

  13. Targeting CD81 to Prevent Metastases in Breast Cancer

    DTIC Science & Technology

    2015-10-01

    exosome uptake by mesenchymal stem cells (57). In view of these studies it is intriguing that while naïve CD81KO and WT Tregs suppressed T cell ...Kusmartsev S, Sotomayor E, et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells . J Immunol. 2009 May...KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T- cell function. Nature. 2007 Nov 22;450(7169):566-9. 52. Yan Z, Garg SK, Banerjee

  14. Myeloid-Derived Suppressor Cells Are Involved in Lysosomal Acid Lipase Deficiency-Induced Endothelial Cell Dysfunctions

    PubMed Central

    Zhao, Ting; Ding, Xinchun; Du, Hong; Yan, Cong

    2014-01-01

    The underlying mechanisms that lysosomal acid lipase (LAL) deficiency causes infiltration of myeloid-derived suppressor cells (MDSCs) in multiple organs and subsequent inflammation remain incompletely understood. Endothelial cells (ECs), lining the inner layer of blood vessels, constitute barriers regulating leukocytes transmigration to the site of inflammation. Therefore, we hypothesized that ECs are dysfunctional in LAL-deficient (lal−/−) mice. We found that Ly6G+ cells transmigrated more efficiently across lal−/− ECs than wild-type (lal+/+) ECs, which was associated with increased level of platelet endothelial cell adhesion molecule-1 (PECAM-1) and monocyte chemoattractant protein-1 (MCP-1) in lal−/− ECs. In addition, lal−/−ECs showed enhanced migration and proliferation, decreased apoptosis, but impaired tube formation and angiogenesis. lal−/− ECs also suppressed T cell proliferation in vitro. Interestingly, lal−/− Ly6G+ cells promoted in vivo angiogenesis (including a tumor model), EC tube formation and proliferation. Finally, the mammalian target of rapamycin (mTOR) pathway was activated in lal−/− ECs, and inhibition of mTOR reversed EC dysfunctions, including decreasing Ly6G+ cell transmigration, delaying migration, and relieving suppression of T cell proliferation, which was mediated by decreasing production of reactive oxygen species (ROS). Our results indicate that LAL regulates EC functions through interaction with MDSCs and modulation of the mTOR pathway, which may provide a mechanistic basis for targeting MDSCs or mTOR to rejuvenate EC functions in LAL-deficiency related diseases. PMID:25000979

  15. Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+), radiosensitive suppressor cell from resting, human OKT8(-) T cells.

    PubMed Central

    Atluru, D; Goodwin, J S

    1984-01-01

    We report that leukotriene B4 (LTB4), a 5-lipoxygenase metabolite of arachidonic acid, is a potent suppressor of polyclonal Ig production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood lymphocytes, while LTC4 and LTD4 have little activity in this system. Preincubation of T cells with LTB4 in nanomolar to picomolar concentrations rendered these cells suppressive of Ig production in subsequent PWM-stimulated cultures of fresh, autologous B + T cells. This LTB4-induced suppressor cell was radiosensitive, and its generation could be blocked by cyclohexamide but not by mitomycin C. The LTB4-induced suppressor cell was OKT8(+), while the precursor for the cell could be OKT8(-). The incubation of OKT8(-) T cells with LTB4 for 18 h resulted in the appearance of the OKT8(+) on 10-20% of the cells, and this could be blocked by cyclohexamide but not by mitomycin C. Thus, LTB4 in very low concentrations induces a radiosensitive OKT8(+) suppressor cell from OKT8(-) cells. In this regard, LTB4 is three to six orders of magnitude more potent than any endogenous hormonal inducer of suppressor cells previously described. Glucocorticosteroids, which block suppressor cell induction in many systems, may act by inhibiting endogenous production of LTB4. Images PMID:6090503

  16. AZD1480 delays tumor growth in a melanoma model while enhancing the suppressive activity of myeloid-derived suppressor cells

    PubMed Central

    Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.

    2014-01-01

    AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535

  17. Myeloid-Derived Suppressor Cells Ameliorate Cyclosporine A-Induced Hypertension in Mice.

    PubMed

    Chiasson, Valorie L; Bounds, Kelsey R; Chatterjee, Piyali; Manandhar, Lochana; Pakanati, Abhinandan R; Hernandez, Marcos; Aziz, Bilal; Mitchell, Brett M

    2018-01-01

    The calcineurin inhibitor cyclosporine A (CsA) suppresses the immune system but promotes hypertension, vascular dysfunction, and renal damage. CsA decreases regulatory T cells and this contributes to the development of hypertension. However, CsA's effects on another important regulatory immune cell subset, myeloid-derived suppressor cells (MDSCs), is unknown. We hypothesized that augmenting MDSCs would ameliorate the CsA-induced hypertension and vascular and renal injury and dysfunction and that CsA reduces MDSCs in mice. Daily interleukin-33 treatment, which increased MDSC levels, completely prevented CsA-induced hypertension and vascular and renal toxicity. Adoptive transfer of MDSCs from control mice into CsA-treated mice after hypertension was established dose-dependently reduced blood pressure and vascular and glomerular injury. CsA treatment of aortas and kidneys isolated from control mice for 24 hours decreased relaxation responses and increased inflammation, respectively, and these effects were prevented by the presence of MDSCs. MDSCs also prevented the CsA-induced increase in fibronectin in microvascular and glomerular endothelial cells. Last, CsA dose-dependently reduced the number of MDSCs by inhibiting calcineurin and preventing cell proliferation, as other direct calcineurin signaling pathway inhibitors had the same dose-dependent effect. These data suggest that augmenting MDSCs can reduce the cardiovascular and renal toxicity and hypertension caused by CsA. © 2017 American Heart Association, Inc.

  18. The Calcineurin-NFAT Axis Controls Allograft Immunity in Myeloid-Derived Suppressor Cells through Reprogramming T Cell Differentiation

    PubMed Central

    Wang, Xiao; Bi, Yujing; Xue, Lixiang; Liao, Jiongbo; Chen, Xi; Lu, Yun; Zhang, Zhengguo; Wang, Jian; Liu, Huanrong; Yang, Hui

    2014-01-01

    While cyclosporine (CsA) inhibits calcineurin and is highly effective in prolonging rejection for transplantation patients, the immunological mechanisms remain unknown. Herein, the role of calcineurin signaling was investigated in a mouse allogeneic skin transplantation model. The calcineurin inhibitor CsA significantly ameliorated allograft rejection. In CsA-treated allograft recipient mice, CD11b+ Gr1+ myeloid-derived suppressor cells (MDSCs) were functional suppressive immune modulators that resulted in fewer gamma interferon (IFN-γ)-producing CD8+ T cells and CD4+ T cells (TH1 T helper cells) and more interleukin 4 (IL-4)-producing CD4+ T cells (TH2) and prolonged allogeneic skin graft survival. Importantly, the expression of NFATc1 is significantly diminished in the CsA-induced MDSCs. Blocking NFAT (nuclear factor of activated T cells) with VIVIT phenocopied the CsA effects in MDSCs and increased the suppressive activities and recruitment of CD11b+ Gr1+ MDSCs in allograft recipient mice. Mechanistically, CsA treatment enhanced the expression of indoleamine 2,3-dioxygenase (IDO) and the suppressive activities of MDSCs in allograft recipients. Inhibition of IDO nearly completely recovered the increased MDSC suppressive activities and the effects on T cell differentiation. The results of this study indicate that MDSCs are an essential component in controlling allograft survival following CsA or VIVIT treatment, validating the calcineurin-NFAT-IDO signaling axis as a potential therapeutic target in transplantation. PMID:25452304

  19. Reduction of myeloid-derived suppressor cells and lymphoma growth by a natural triterpenoid.

    PubMed

    Radwan, Faisal F Y; Hossain, Azim; God, Jason M; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2015-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A's anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen (Ag) presentation and CD4+ T cell recognition of lymphoma cells in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. © 2014 Wiley Periodicals, Inc.

  20. RB mutation and RAS overexpression induce resistance to NK cell-mediated cytotoxicity in glioma cells.

    PubMed

    Orozco-Morales, Mario; Sánchez-García, Francisco Javier; Golán-Cancela, Irene; Hernández-Pedro, Norma; Costoya, Jose A; de la Cruz, Verónica Pérez; Moreno-Jiménez, Sergio; Sotelo, Julio; Pineda, Benjamín

    2015-01-01

    Several theories aim to explain the malignant transformation of cells, including the mutation of tumor suppressors and proto-oncogenes. Deletion of Rb (a tumor suppressor), overexpression of mutated Ras (a proto-oncogene), or both, are sufficient for in vitro gliomagenesis, and these genetic traits are associated with their proliferative capacity. An emerging hallmark of cancer is the ability of tumor cells to evade the immune system. Whether specific mutations are related with this, remains to be analyzed. To address this issue, three transformed glioma cell lines were obtained (Rb(-/-), Ras(V12), and Rb(-/-)/Ras(V12)) by in vitro retroviral transformation of astrocytes, as previously reported. In addition, Ras(V12) and Rb(-/-)/Ras(V12) transformed cells were injected into SCID mice and after tumor growth two stable glioma cell lines were derived. All these cells were characterized in terms of Rb and Ras gene expression, morphology, proliferative capacity, expression of MHC I, Rae1δ, and Rae1αβγδε, mult1, H60a, H60b, H60c, as ligands for NK cell receptors, and their susceptibility to NK cell-mediated cytotoxicity. Our results show that transformation of astrocytes (Rb loss, Ras overexpression, or both) induced phenotypical and functional changes associated with resistance to NK cell-mediated cytotoxicity. Moreover, the transfer of cell lines of transformed astrocytes into SCID mice increased resistance to NK cell-mediated cytotoxicity, thus suggesting that specific changes in a tumor suppressor (Rb) and a proto-oncogene (Ras) are enough to confer resistance to NK cell-mediated cytotoxicity in glioma cells and therefore provide some insight into the ability of tumor cells to evade immune responses.

  1. An integrated view of suppressor T cell subsets in immunoregulation

    PubMed Central

    Jiang, Hong; Chess, Leonard

    2004-01-01

    The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses. PMID:15520848

  2. A mutual activation loop between breast cancer cells and myeloid-derived suppressor cells facilitates spontaneous metastasis through IL-6 trans-signaling in a murine model.

    PubMed

    Oh, Keunhee; Lee, Ok-Young; Shon, Suh Youn; Nam, Onyou; Ryu, Po Mee; Seo, Myung Won; Lee, Dong-Sup

    2013-01-01

    Tumor cell interactions with the microenvironment, especially those of bone-marrow-derived myeloid cells, are important in various aspects of tumor metastasis. Myeloid-derived suppressor cells (MDSCs) have been suggested to constitute tumor-favoring microenvironments. In this study, we elucidated a novel mechanism by which the MDSCs can mediate spontaneous distant metastasis of breast cancer cells. Murine breast cancer cells, 4T1 and EMT6, were orthotopically grafted into the mammary fat pads of syngeneic BALB/c mice. CD11b(+)Gr-1(+) MDSCs in the spleen, liver, lung and primary tumor mass were analyzed. To evaluate the role of MDSCs in the distant metastasis, MDSCs were depleted or reconstituted in tumor-bearing mice. To evaluate whether MDSCs in the metastasizing tumor microenvironment affect breast cancer cell behavior, MDSCs and cancer cells were co-cultivated. To investigate the role of MDSCs in in vivo metastasis, we blocked the interactions between MDSCs and cancer cells. Using a murine breast cancer cell model, we showed that murine breast cancer cells with high IL-6 expression recruited more MDSCs and that the metastasizing capacity of cancer cells paralleled MDSC recruitment in tumor-bearing mice. Metastasizing, but not non-metastasizing, tumor-derived factors induced MDSCs to increase IL-6 production and full activation of recruited MDSCs occurred in the primary tumor site and metastatic organ in the vicinity of metastasizing cancer cells, but not in lymphoid organs. In addition, tumor-expanded MDSCs expressed Adam-family proteases, which facilitated shedding of IL-6 receptor, thereby contributing to breast cancer cell invasiveness and distant metastasis through IL-6 trans-signaling. The critical role of IL-6 trans-signaling was confirmed in both the afferent and efferent pathways of metastasis. In this study, we showed that metastasizing cancer cells induced higher MDSCs infiltration and prompted them to secret exaggerated IL-6 as well as soluble IL-6Ra, which, in turn, triggered a persistent increase of pSTAT3 in tumor cells. This potential tumor-MDSC axis involving IL-6 trans-signaling directly affected breast cancer cell aggressiveness, leading to spontaneous metastasis.

  3. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma

    PubMed Central

    Cai, Ting-Ting; Ye, Shu-Biao; Liu, Yi-Na; He, Jia; Chen, Qiu-Yan; Mai, Hai-Qiang; Zhang, Chuan-Xia; Cui, Jun; Zhang, Xiao-Shi; Zeng, Yi-Xin

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) are expanded in tumor microenvironments, including that of Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC). The link between MDSC expansion and EBV infection in NPC is unclear. Here, we show that EBV latent membrane protein 1 (LMP1) promotes MDSC expansion in the tumor microenvironment by promoting extra-mitochondrial glycolysis in malignant cells, which is a scenario for immune escape initially suggested by the frequent, concomitant detection of abundant LMP1, glucose transporter 1 (GLUT1) and CD33+ MDSCs in tumor sections. The full process has been reconstituted in vitro. LMP1 promotes the expression of multiple glycolytic genes, including GLUT1. This metabolic reprogramming results in increased expression of the Nod-like receptor family protein 3 (NLRP3) inflammasome, COX-2 and P-p65 and, consequently, increased production of IL-1β, IL-6 and GM-CSF. Finally, these changes in the environment of malignant cells result in enhanced NPC-derived MDSC induction. One key step is the physical interaction of LMP1 with GLUT1 to stabilize the GLUT1 protein by blocking its K48-ubiquitination and p62-dependent autolysosomal degradation. This work indicates that LMP1-mediated glycolysis regulates IL-1β, IL-6 and GM-CSF production through the NLRP3 inflammasome, COX-2 and P-p65 signaling pathways to enhance tumor-associated MDSC expansion, which leads to tumor immunosuppression in NPC. PMID:28732079

  4. Myeloid-derived suppressor cells as a potential therapy for experimental autoimmune myasthenia gravis.

    PubMed

    Li, Yan; Tu, Zhidan; Qian, Shiguang; Fung, John J; Markowitz, Sanford D; Kusner, Linda L; Kaminski, Henry J; Lu, Lina; Lin, Feng

    2014-09-01

    We recently demonstrated that hepatic stellate cells induce the differentiation of myeloid-derived suppressor cells (MDSCs) from myeloid progenitors. In this study, we found that adoptive transfer of these MDSCs effectively reversed disease progression in experimental autoimmune myasthenia gravis (EAMG), a T cell-dependent and B cell-mediated model for myasthenia gravis. In addition to ameliorated disease severity, MDSC-treated EAMG mice showed suppressed acetylcholine receptor (AChR)-specific T cell responses, decreased levels of serum anti-AChR IgGs, and reduced complement activation at the neuromuscular junctions. Incubating MDSCs with B cells activated by anti-IgM or anti-CD40 Abs inhibited the proliferation of these in vitro-activated B cells. Administering MDSCs into mice immunized with a T cell-independent Ag inhibited the Ag-specific Ab production in vivo. MDSCs directly inhibit B cells through multiple mechanisms, including PGE2, inducible NO synthase, and arginase. Interestingly, MDSC treatment in EAMG mice does not appear to significantly inhibit their immune response to a nonrelevant Ag, OVA. These results demonstrated that hepatic stellate cell-induced MDSCs concurrently suppress both T and B cell autoimmunity, leading to effective treatment of established EAMG, and that the MDSCs inhibit AChR-specific immune responses at least partially in an Ag-specific manner. These data suggest that MDSCs could be further developed as a novel approach to treating myasthenia gravis and, even more broadly, other diseases in which T and B cells are involved in pathogenesis. Copyright © 2014 by The American Association of Immunologists, Inc.

  5. Contact-dependent depletion of hydrogen peroxide by catalase is a novel mechanism of myeloid-derived suppressor cell induction operating in human hepatic stellate cells.

    PubMed

    Resheq, Yazid J; Li, Ka-Kit; Ward, Stephen T; Wilhelm, Annika; Garg, Abhilok; Curbishley, Stuart M; Blahova, Miroslava; Zimmermann, Henning W; Jitschin, Regina; Mougiakakos, Dimitrios; Mackensen, Andreas; Weston, Chris J; Adams, David H

    2015-03-15

    Myeloid-derived suppressor cells (MDSC) represent a unique cell population with distinct immunosuppressive properties that have been demonstrated to shape the outcome of malignant diseases. Recently, human hepatic stellate cells (HSC) have been reported to induce monocytic-MDSC from mature CD14(+) monocytes in a contact-dependent manner. We now report a novel and unexpected mechanism by which CD14(+)HLADR(low/-) suppressive cells are induced by catalase-mediated depletion of hydrogen peroxide (H2O2). Incubation of CD14(+) monocytes with catalase led to a significant induction of functional MDSC compared with media alone, and H2O2 levels inversely correlated with MDSC frequency (r = -0.6555, p < 0.05). Catalase was detected in primary HSC and a stromal cell line, and addition of the competitive catalase inhibitor hydroxylamine resulted in a dose-dependent impairment of MDSC induction and concomitant increase of H2O2 levels. The NADPH-oxidase subunit gp91 was significantly increased in catalase-induced MDSC as determined by quantitative PCR outlining the importance of oxidative burst for the induction of MDSC. These findings represent a so far unrecognized link between immunosuppression by MDSC and metabolism. Moreover, this mechanism potentially explains how stromal cells can induce a favorable immunological microenvironment in the context of tissue oxidative stress such as occurs during cancer therapy. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Reduction of Myeloid-derived Suppressor Cells and Lymphoma Growth by a Natural Triterpenoid

    PubMed Central

    Radwan, Faisal F. Y.; Hossain, Azim; God, Jason M.; Leaphart, Nathan; Elvington, Michelle; Nagarkatti, Mitzi; Tomlinson, Stephen; Haque, Azizul

    2016-01-01

    Lymphoma is a potentially life threatening disease. The goal of this study was to investigate the therapeutic potential of a natural triterpenoid, Ganoderic acid A (GA-A) in controlling lymphoma growth both in vitro and in vivo. Here, we show that GA-A treatment induces caspase-dependent apoptotic cell death characterized by a dose-dependent increase in active caspases 9 and 3, up-regulation of pro-apoptotic BIM and BAX proteins, and a subsequent loss of mitochondrial membrane potential with release of cytochrome c. In addition to GA-A’s anti-growth activity, we show that lower doses of GA-A enhance HLA class II-mediated antigen presentation and CD4+ T cell recognition of lymphoma in vitro. The therapeutic relevance of GA-A treatment was also tested in vivo using the EL4 syngeneic mouse model of metastatic lymphoma. GA-A-treatment significantly prolonged survival of EL4 challenged mice and decreased tumor metastasis to the liver, an outcome accompanied by a marked down-regulation of STAT3 phosphorylation, reduction myeloid-derived suppressor cells (MDSCs), and enhancement of cytotoxic CD8+ T cells in the host. Thus, GA-A not only selectively induces apoptosis in lymphoma cells, but also enhances cell-mediated immune responses by attenuating MDSCs, and elevating Ag presentation and T cell recognition. The demonstrated therapeutic benefit indicates that GA-A is a candidate for future drug design for the treatment of lymphoma. PMID:25142864

  7. Proteomic Analysis of Excretory-Secretory Products of Mesocestoides corti Metacestodes Reveals Potential Suppressors of Dendritic Cell Functions

    PubMed Central

    Vendelova, Emilia; Camargo de Lima, Jeferson; Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Mueller, Thomas; Veepaschit, Jyotishman; Grimm, Clemens; Brehm, Klaus; Hrčková, Gabriela; Lutz, Manfred B.; Ferreira, Henrique B.

    2016-01-01

    Accumulating evidences have assigned a central role to parasite-derived proteins in immunomodulation. Here, we report on the proteomic identification and characterization of immunomodulatory excretory-secretory (ES) products from the metacestode larva (tetrathyridium) of the tapeworm Mesocestoides corti (syn. M. vogae). We demonstrate that ES products but not larval homogenates inhibit the stimuli-driven release of the pro-inflammatory, Th1-inducing cytokine IL-12p70 by murine bone marrow-derived dendritic cells (BMDCs). Within the ES fraction, we biochemically narrowed down the immunosuppressive activity to glycoproteins since active components were lipid-free, but sensitive to heat- and carbohydrate-treatment. Finally, using bioassay-guided chromatographic analyses assisted by comparative proteomics of active and inactive fractions of the ES products, we defined a comprehensive list of candidate proteins released by M. corti tetrathyridia as potential suppressors of DC functions. Our study provides a comprehensive library of somatic and ES products and highlight some candidate parasite factors that might drive the subversion of DC functions to facilitate the persistence of M. corti tetrathyridia in their hosts. PMID:27736880

  8. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  9. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  10. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer.

    PubMed

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-04-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b(+) Gr-1(+) MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b(+) Gr-1(+) MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  11. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer

    PubMed Central

    Forghani, Parvin; Khorramizadeh, Mohammad R; Waller, Edmund K

    2014-01-01

    Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs. PMID:24574320

  12. Radiation combined with thermal injury induces immature myeloid cells.

    PubMed

    Mendoza, April Elizabeth; Neely, Crystal Judith; Charles, Anthony G; Kartchner, Laurel Briane; Brickey, Willie June; Khoury, Amal Lina; Sempowski, Gregory D; Ting, Jenny P Y; Cairns, Bruce A; Maile, Robert

    2012-11-01

    The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.

  13. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma

    PubMed Central

    Lacotte, Stéphanie; Slits, Florence; Orci, Lorenzo A.; Meyer, Jeremy; Oldani, Graziano; Gonelle-Gispert, Carmen; Morel, Philippe; Toso, Christian

    2016-01-01

    ABSTRACT Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver. PMID:27999748

  14. Role of chromosome 3p12-p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis.

    PubMed

    Martinez, A; Fullwood, P; Kondo, K; Kishida, T; Yao, M; Maher, E R; Latif, F

    2000-06-01

    Chromosome 3p deletions and loss of heterozygosity (LOH) for 3p markers are features of clear cell renal cell carcinoma but are rare in non-clear cell renal cell carcinoma. The VHL tumour suppressor gene, which maps to 3p25, is a major gatekeeper gene for clear cell renal cell carcinoma and is inactivated in most sporadic cases of this disease. However, it has been suggested that inactivation of other 3p tumour suppressor genes might be crucial for clear cell renal cell carcinoma tumorigenesis, with inactivation (VHL negative) and without inactivation (VHL positive) of the VHL tumour suppressor gene. This study set out to investigate the role of non-VHL tumour suppressor genes in VHL negative and VHL positive clear cell renal cell carcinoma. Eighty two clear cell renal cell carcinomas of known VHL inactivation status were analysed for LOH at polymorphic loci within the candidate crucial regions for chromosome 3p tumour suppressor genes (3p25, LCTSGR1 at 3p21.3, LCTSGR2 at 3p12 and at 3p14.2). Chromosome 3p12-p21 LOH was frequent both in VHL negative and VHL positive clear cell renal cell carcinoma. However, although the frequency of 3p25 LOH in VHL negative clear cell renal cell carcinoma was similar to that at 3p12-p21, VHL positive tumours demonstrated significantly less LOH at 3p25 than at 3p12-p21. Although there was evidence of LOH for clear cell renal cell carcinoma tumour suppressor genes at 3p21, 3p14.2, and 3p12, both in VHL negative and VHL positive tumours, the major clear cell renal cell carcinoma LOH region mapped to 3p21.3, close to the lung cancer tumour suppressor gene region 1 (LCTSGR1). There was no association between tumour VHL status and tumour grade and stage. These findings further indicate that VHL inactivation is not sufficient to initiate clear cell renal cell carcinoma and that loss of a gatekeeper 3p21 tumour suppressor gene is a crucial event for renal cell carcinoma development in both VHL negative and VHL positive clear cell renal cell carcinoma.

  15. The Biodistribution and Immune Suppressive Effects of Breast Cancer-Derived Exosomes.

    PubMed

    Wen, Shu Wen; Sceneay, Jaclyn; Lima, Luize Goncalves; Wong, Christina S F; Becker, Melanie; Krumeich, Sophie; Lobb, Richard J; Castillo, Vanessa; Wong, Ke Ni; Ellis, Sarah; Parker, Belinda S; Möller, Andreas

    2016-12-01

    Small membranous secretions from tumor cells, termed exosomes, contribute significantly to intercellular communication and subsequent reprogramming of the tumor microenvironment. Here, we use optical imaging to determine that exogenously administered fluorescently labeled exosomes derived from highly metastatic murine breast cancer cells distributed predominantly to the lung of syngeneic mice, a frequent site of breast cancer metastasis. At the sites of accumulation, exosomes were taken up by CD45 + bone marrow-derived cells. Subsequent long-term conditioning of naïve mice with exosomes from highly metastatic breast cancer cells revealed the accumulation of myeloid-derived suppressor cells in the lung and liver. This favorable immune suppressive microenvironment was capable of promoting metastatic colonization in the lung and liver, an effect not observed from exosomes derived from nonmetastatic cells and liposome control vesicles. Furthermore, we determined that breast cancer exosomes directly suppressed T-cell proliferation and inhibited NK cell cytotoxicity, and hence likely suppressed the anticancer immune response in premetastatic organs. Together, our findings provide novel insight into the tissue-specific outcomes of breast cancer-derived exosome accumulation and their contribution to immune suppression and promotion of metastases. Cancer Res; 76(23); 6816-27. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Activation of Myeloid-Derived Suppressor Cells in Bone Marrow

    DTIC Science & Technology

    2013-12-01

    tumormodelwas utilized to establish the causal relationship between PTHrP and CD11bþGr1þ cells. Ace-1 prostate cancer cells produce predominantly osteoblas...2012;19:243–54. 20. Park SI, Kim SJ, McCauley LK, Gallick GE. Pre-clinical mouse models of human prostate cancer and their utility in drug discovery...microenvironment. Clin Cancer Res 2010; 16:924–35. 33. Huang YF, Harrison JR, Lorenzo JA, Kream BE. Parathyroid hor- mone induces interleukin-6

  17. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

    PubMed Central

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2016-01-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496

  18. Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities.

    PubMed

    Botta, Cirino; Gullà, Annamaria; Correale, Pierpaolo; Tagliaferri, Pierosandro; Tassone, Pierfrancesco

    2014-01-01

    Immunosuppressive cells have been reported to play an important role in tumor-progression mainly because of their capability to promote immune-escape, angiogenesis, and metastasis. Among them, myeloid-derived suppressor cells (MDSCs) have been recently identified as immature myeloid cells, induced by tumor-associated inflammation, able to impair both innate and adaptive immunity. While murine MDSCs are usually identified by the expression of CD11b and Gr1, human MDSCs represent a more heterogeneous population characterized by the expression of CD33 and CD11b, low or no HLA-DR, and variable CD14 and CD15. In particular, the last two may alternatively identify monocyte-like or granulocyte-like MDSC subsets with different immunosuppressive properties. Recently, a substantial increase of MDSCs has been found in peripheral blood and bone marrow (BM) of multiple myeloma (MM) patients with a role in disease progression and/or drug resistance. Pre-clinical models recapitulating the complexity of the MM-related BM microenvironment (BMM) are major tools for the study of the interactions between MM cells and cells of the BMM (including MDSCs) and for the development of new agents targeting MM-associated immune-suppressive cells. This review will focus on current strategies for human MDSCs generation and investigation of their immunosuppressive function in vitro and in vivo, taking into account the relevant relationship occurring within the MM-BMM. We will then provide trends in MDSC-associated research and suggest potential application for the treatment of MM.

  19. T Cell Stimulatory Effects of Korean Red Ginseng through Modulation of Myeloid-Derived Suppressor Cells

    PubMed Central

    Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation. PMID:23717093

  20. Transmembrane Tumor Necrosis Factor Controls Myeloid-Derived Suppressor Cell Activity via TNF Receptor 2 and Protects from Excessive Inflammation during BCG-Induced Pleurisy

    PubMed Central

    Chavez-Galan, Leslie; Vesin, Dominique; Uysal, Husnu; Blaser, Guillaume; Benkhoucha, Mahdia; Ryffel, Bernhard; Quesniaux, Valérie F. J.; Garcia, Irene

    2017-01-01

    Pleural tuberculosis (TB) is a form of extra-pulmonary TB observed in patients infected with Mycobacterium tuberculosis. Accumulation of myeloid-derived suppressor cells (MDSC) has been observed in animal models of TB and in human patients but their role remains to be fully elucidated. In this study, we analyzed the role of transmembrane TNF (tmTNF) in the accumulation and function of MDSC in the pleural cavity during an acute mycobacterial infection. Mycobacterium bovis BCG-induced pleurisy was resolved in mice expressing tmTNF, but lethal in the absence of tumor necrosis factor. Pleural infection induced MDSC accumulation in the pleural cavity and functional MDSC required tmTNF to suppress T cells as did pleural wild-type MDSC. Interaction of MDSC expressing tmTNF with CD4 T cells bearing TNF receptor 2 (TNFR2), but not TNFR1, was required for MDSC suppressive activity on CD4 T cells. Expression of tmTNF attenuated Th1 cell-mediated inflammatory responses generated by the acute pleural mycobacterial infection in association with effective MDSC expressing tmTNF and interacting with CD4 T cells expressing TNFR2. In conclusion, this study provides new insights into the crucial role played by the tmTNF/TNFR2 pathway in MDSC suppressive activity required during acute pleural infection to attenuate excessive inflammation generated by the infection. PMID:28890718

  1. Inhibition of nuclear factor-kappa B enhances the tumor growth of ovarian cancer cell line derived from a low-grade papillary serous carcinoma in p53-independent pathway.

    PubMed

    Xiao, Xue; Yang, Gong; Bai, Peng; Gui, Shunping; Nyuyen, Tri M Bui; Mercado-Uribe, Imelda; Yang, Mei; Zou, Juan; Li, Qintong; Xiao, Jianguo; Chang, Bin; Liu, Guangzhi; Wang, He; Liu, Jinsong

    2016-08-02

    NF-kB can function as an oncogene or tumor suppressor depending on cancer types. The role of NF-kB in low-grade serous ovarian cancer, however, has never been tested. We sought to elucidate the function of NF-kB in the low-grade serous ovarian cancer. The ovarian cancer cell line, HOC-7, derived from a low-grade papillary serous carcinoma. Introduction of a dominant negative mutant, IkBαM, which resulted in decrease of NF-kB function in ovarian cancer cell lines. The transcription ability, tumorigenesis, cell proliferation and apoptosis were observed in derivative cell lines in comparison with parental cells. Western blot analysis indicated increased expression of the anti-apoptotic proteins Bcl-xL and reduced expression of the pro-apoptotic proteins Bax, Bad, and Bid in HOC-7/IĸBαM cell. Further investigations validate this conclusion in KRAS wildtype cell line SKOV3. Interesting, NF-kB can exert its pro-apoptotic effect by activating mitogen-activated protein kinase (MAPK) phosphorylation in SKOV3 ovarian cancer cell, whereas opposite changes detected in p-MEK in HOC-7 ovarian cancer cell, the same as some chemoresistant ovarian cancer cell lines. In vivo animal assay performed on BALB/athymic mice showed that injection of HOC-7 induced subcutaneous tumor growth, which was completely regressed within 7 weeks. In comparison, HOC-7/IĸBαM cells caused sustained tumor growth and abrogated tumor regression, suggesting that knock-down of NF-kB by IĸBαM promoted sustained tumor growth and delayed tumor regression in HOC-7 cells. Our results demonstrated that NF-kB may function as a tumor suppressor by facilitating regression of low grade ovarian serous carcinoma through activating pro-apoptotic pathways.

  2. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli.

    PubMed

    Ponmani, Thangaraj; Munavar, M Hussain

    2014-06-01

    The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  3. The secretion and biological function of tumor suppressor maspin as an exosome cargo protein.

    PubMed

    Dean, Ivory; Dzinic, Sijana H; Bernardo, M Margarida; Zou, Yi; Kimler, Vickie; Li, Xiaohua; Kaplun, Alexander; Granneman, James; Mao, Guangzhao; Sheng, Shijie

    2017-01-31

    Maspin is an epithelial-specific tumor suppressor shown to exert its biological effects as an intracellular, cell membrane-associated, and secreted free molecule. A recent study suggests that upon DNA-damaging g-irradiation, tumor cells can secrete maspin as an exosome-associated protein. To date, the biological significance of exosomal secretion of maspin is unknown. The current study aims at addressing whether maspin is spontaneously secreted as an exosomal protein to regulate tumor/stromal interactions. We prepared exosomes along with cell extracts and vesicle-depleted conditioned media (VDCM) from normal epithelial (CRL2221, MCF-10A and BEAS-2B) and cancer (LNCaP, PC3 and SUM149) cell lines. Atomic force microscopy and dynamic light scattering analysis revealed similar size distribution patterns and surface zeta potentials between the normal cells-derived and tumor cells-derived exosomes. Electron microscopy revealed that maspin was encapsulated by the exosomal membrane as a cargo protein. While western blotting revealed that the level of exosomal maspin from tumor cell lines was disproportionally lower relative to the levels of corresponding intracellular and VDCM maspin, as compared to that from normal cell lines, maspin knockdown in MCF-10A cells led to maspin-devoid exosomes, which exhibited significantly reduced suppressive effects on the chemotaxis activity of recipient NIH3T3 fibroblast cells. These data are the first to demonstrate the potential of maspin delivered by exosomes to block tumor-induced stromal response, and support the clinical application of exosomal maspin in cancer diagnosis and treatment.

  4. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia.

    PubMed

    Salem, Mohamed Labib; El-Shanshory, Mohamed R; Abdou, Said H; Attia, Mohamed S; Sobhy, Shymaa M; Zidan, Mona F; Zidan, Abdel-Aziz A

    2018-04-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children. The precise mechanism behind the relapse in this disease is not clearly known. One possible mechanism could be the accumulation of immunosuppressive cells, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (T regs ) which we and others have reported to mediate suppression of anti-tumor immune responses. In this study, we aimed to analyze the numbers of these cells in a population of B-ALL pediatric patients. Peripheral blood samples withdrawn from B-ALL pediatric patients (n = 45 before, during and after the induction phase of chemotherapy. Using multi parametric flow cytometric analysis. MDSCs were identified as Lin - HLA-DR - CD33 + CD11b + ; and T reg cells were defined as CD4 + CD25 + CD127 -/low . Early diagnosed B-ALL patients showed significant increases in the numbers of MDSCs and T regs as compared to healthy volunteers. During induction of chemotherapy, however, the patients showed higher and lower numbers of MDSCs and T reg cells, respectively as compared to early diagnosed patients (i.e., before chemotherapy). After induction of chemotherapy, the numbers of MDSCs and T reg cells showed higher increases and decreases, respectively as compared to the numbers in patients during chemotherapy. Our results indicate that B-ALL patients harbor high numbers of both MDSCs and T regs cells. This pilot study opens a new avenue to investigate the mechanism mediating the emergence of these cells on larger number of B-ALL patients at different treatment stages.

  5. Induction of suppression through human T cell interactions.

    PubMed

    Lydyard, P M; Hayward, A R

    1980-02-01

    Concanavalin A (Con A) activated T cells, devoid of cells bearing Fc receptors for IgG (T - TG) help human B lymphocytes to differentiate into plasma cells (PC) in response to pokeweed mitogen (PWM). PC differentiation is reduced when adult T cells are added to such cultures. The radiosensitivity of suppression and the radioresistance of help enabled us to show that adult T cells include a suppressor-precursor which is activated by irradiated Con A-precultured T cells. Newborn T cells which include active suppressors, are both poor stimulators of suppressor-precursors and poor helpers of B cells. Our results suggest that at least two cells may mediate Con A-induced suppression, one which suppresses directly and is radiosensitive and another which is radioresistant and stimulates suppressor-precursors in a target population of T cells.

  6. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients.

    PubMed

    Zhuo, Minglei; Chen, Hanxiao; Zhang, Tianzhuo; Yang, Xue; Zhong, Jia; Wang, Yuyan; An, Tongtong; Wu, Meina; Wang, Ziping; Huang, Jing; Zhao, Jun

    2018-05-04

    The PD-L1 antibody atezolizumab has shown promising efficacy in patients with advanced non-small cell lung cancer. But the predictive marker of clinical benefit has not been identified. This study aimed to search for potential predictive factors in circulating blood of patients receiving atezolizumab. Ten patients diagnosed with advanced non-small cell lung cancer were enrolled in this open-label observing study. Circulating immune cells and plasma tumor markers were examined in peripheral blood from these patients before and after atezolizumab treatment respectively. Relation between changes in circulating factors and anti-tumor efficacy were analyzed. Blood routine test showed that atezolizumab therapy induced slightly elevation of white blood cells count generally. The lymphocyte ratio was increased slightly in disease controlled patients but decreased prominently in disease progressed patients in response to atezolizumab therapy. Flow cytometric analysis revealed changes in percentage of various immune cell types, including CD4+ T cell, CD8+ T cell, myeloid-derived suppressor cell, regulatory T cell and PD-1 expressing T cell after atezolizumab. Levels of plasma tumor marker CEA, CA125 and CA199 were also altered after anti-PD-L1 therapy. In comparison with baseline, the disease progressed patients showed sharp increase in tumor marker levels, while those disease controlled patients were seen with decreased regulatory T cell and myeloid-derived suppressor cell ratios. The circulating immune cell ratios and plasma tumor marker levels were related with clinical efficacy of atezolizumab therapy. These factors could be potential predictive marker for anti-PD-L1 therapy in advanced non-small cell lung cancer.

  7. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function

    PubMed Central

    Gielen, Paul R.; Schulte, Barbara M.; Kers-Rebel, Esther D.; Verrijp, Kiek; Bossman, Sandra A.J.F.H.; ter Laan, Mark; Wesseling, Pieter

    2016-01-01

    Background Gliomas are primary brain tumors that are associated with a poor prognosis. The introduction of new treatment modalities (including immunotherapy) for these neoplasms in the last 3 decades has resulted in only limited improvement in survival. Gliomas are known to create an immunosuppressive microenvironment that hampers the efficacy of (immuno)therapy. One component of this immunosuppressive environment is the myeloid-derived suppressor cell (MDSC). Methods We set out to analyze the presence and activation state of MDSCs in blood (n = 41) and tumor (n = 20) of glioma patients by measuring S100A8/9 and arginase using flow cytometry and qPCR. Inhibition of T cell proliferation and cytokine production after stimulation with anti-CD3/anti-CD28 coated beads was used to measure in vitro MDSC suppression capacity. Results We report a trend toward a tumor grade-dependent increase of both monocytic (M-) and polymorphonuclear (PMN-) MDSC subpopulations in the blood of patients with glioma. M-MDSCs of glioma patients have increased levels of intracellular S100A8/9 compared with M-MDSCs in healthy controls (HCs). Glioma patients also have increased S100A8/9 serum levels, which correlates with increased arginase activity in serum. PMN-MDSCs in both blood and tumor tissue demonstrated high expression of arginase. Furthermore, we assessed blood-derived PMN-MDSC function and showed that these cells have potent T cell suppressive function in vitro. Conclusions These data indicate a tumor grade-dependent increase of MDSCs in the blood of patients with a glioma. These MDSCs exhibit an increased activation state compared with MDSCs in HCs, independent of tumor grade. PMID:27006175

  8. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Ming; Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, Jiangsu; Gao, Wen

    Graphical abstract: - Highlights: • H19 regulates gastric cancer cell proliferation phenotype via miR-675. • MiR-675 modulates cell proliferation of gastric cancer cells by targeting tumor suppressor RUNX1. • The H19/miR-675/RUNX1 axis plays an important role in the tumorigenesis of gastric cancer. - Abstract: The lncRNA H19 has been recently shown to be upregulated and play important roles in gastric cancer tumorigenesis. However, the precise molecular mechanism of H19 and its mature product miR-675 in the carcinogenesis of gastric cancer remains unclear. In this study, we found that miR-675 was positively expressed with H19 and was a pivotal mediator inmore » H19-induced gastric cancer cell growth promotion. Subsequently, the tumor suppressor Runt Domain Transcription Factor1 (RUNX1) was confirmed to be a direct target of miR-675 using a luciferase reporter assay and Western blotting analyses. A series of rescue assays indicated that RUNX1 mediated H19/miR-67-induced gastric cancer cell phenotypic changes. Moreover, the inverse relationship between the expression of RUNX1 and H19/miR-675 was also revealed in gastric cancer tissues and gastric cancer cell lines. Taken together, our study demonstrated that the novel pathway H19/miR-675/RUNX1 regulates gastric cancer development and may serve as a potential target for gastric cancer therapy.« less

  9. Induction of human antigen-specific suppressor factors in vitro.

    PubMed Central

    Kontiainen, S; Woody, J N; Rees, A; Feldmann, M

    1981-01-01

    Based on methods used for the in vitro induction of antigen-specific suppressor cells in the mouse, we have cultured Ficoll-Isopaque-separated human blood cells with high dose of antigen (100 microgram/ml) in Marbrook culture vessels for 4 days. The resulting cells, when further recultured for 24 hr with a low dose of antigen (1 microgram/ml), released into the supernatant material, termed 'suppressor factor', which inhibited, in an antigen-specific manner, the antibody response of mouse spleen cells in culture. The suppressor factor was analysed using immunoabsorbents, and was bound to and eluted from specific antigen, concanavalin A and lentil lectin, anti-human Ia antibodies, and anti-mouse suppressor factor antibodies, but was not bound to antibodies against human IgG. PMID:6169475

  10. Oncogenic activation of c-Abl in non-small cell lung cancer cells lacking FUS1 expression: inhibition of c-Abl by the tumor suppressor gene product Fus1.

    PubMed

    Lin, J; Sun, T; Ji, L; Deng, W; Roth, J; Minna, J; Arlinghaus, R

    2007-10-25

    In lung cancer, frequent loss of one allele of chromosome 3p is seen in both small cell lung cancer and non-small cell lung cancer (NSCLC), providing evidence of tumor suppressor genes (TSGs) in this chromosomal region. The mechanism of Fus1 tumor suppressor activity is unknown. We have found that a Fus1 peptide inhibits the Abl tyrosine kinase in vitro (IC(50) 35 microM). The inhibitory Fus1 sequence was derived from a region that was deleted in a mutant FUS1 gene (FUS1 (1-80)) detected in some lung cancer cell lines. Importantly, a stearic acid-modified form of this peptide was required for the inhibition, but stearic acid alone was not inhibitory. Two NSCLC cell lines, which lack expression of wild-type Fus1, contain activated c-Abl. Forced expression of an inducible FUS1 cDNA in H1299 NSCLC cells decreased levels of activated c-Abl and inhibited its tyrosine kinase activity. Similarly, treatment of c-Abl immune complexes with the inhibitory Fus1 peptide also reduced the level of c-Abl in these immune complexes. The size and number of colonies of the NSCLC cell line, H1,299, in soft agar was strongly inhibited by the Abl kinase inhibitor imatinib mesylate. Co-expression of FUS1 and c-ABL in COS1 cells blocked activation of c-Abl tyrosine kinase. In contrast, co-expression of mutant FUS1 (1-80) with c-ABL had little inhibitory activity against c-Abl. These findings provide strong evidence that c-Abl is a possible target in NSCLC patients that have reduced expression of Fus1 in their tumor cells.

  11. Short Stat5-Interacting Peptide Derived from Phospholipase C-β3 Inhibits Hematopoietic Cell Proliferation and Myeloid Differentiation

    PubMed Central

    Yasudo, Hiroki; Ando, Tomoaki; Xiao, Wenbin; Kawakami, Yuko; Kawakami, Toshiaki

    2011-01-01

    Constitutive activation of the transcription factor Stat5 in hematopoietic stem/progenitor cells leads to various hematopoietic malignancies including myeloproliferative neoplasm (MPN). Our recent study found that phospholipase C (PLC)-β3 is a novel tumor suppressor involved in MPN, lymphoma and other tumors. Stat5 activity is negatively regulated by the SH2 domain-containing protein phosphatase SHP-1 in a PLC-β3-dependent manner. PLC-β3 can form the multimolecular SPS complex together with SHP-1 and Stat5. The close physical proximity of SHP-1 and Stat5 brought about by interacting with the C-terminal segment of PLC-β3 (PLC-β3-CT) accelerates SHP-1-mediated dephosphorylation of Stat5. Here we identify the minimal sequences within PLC-β3-CT required for its tumor suppressor function. Two of the three Stat5-binding noncontiguous regions, one of which also binds SHP-1, substantially inhibited in vitro proliferation of Ba/F3 cells. Surprisingly, an 11-residue Stat5-binding peptide (residues 988-998) suppressed Stat5 activity in Ba/F3 cells and in vivo proliferation and myeloid differentiation of hematopoietic stem/progenitor cells. Therefore, this study further defines PLC-β3-CT as the Stat5- and SHP-1-binding domain by identifying minimal functional sequences of PLC-β3 for its tumor suppressor function and implies their potential utility in the control of hematopoietic malignancies. PMID:21949826

  12. In this issue of the International Reviews of Immunology.

    PubMed

    Bot, Adrian

    2012-06-01

    This issue hosts diverse topics, from myeloid derived suppressor cells (MDSC) with their mechanism and role in cancer, the interplay between diet and emerging allergies studied in a genetically closed population, the pleiotropic anti-inflammatory effects of resveratrol, to the quest to achieve more reliable immune correlates of protection against the hepatitis C virus (HCV).

  13. Tumor-Derived G-CSF Facilitates Neoplastic Growth through a Granulocytic Myeloid-Derived Suppressor Cell-Dependent Mechanism

    PubMed Central

    Waight, Jeremy D.; Hu, Qiang; Miller, Austin; Liu, Song; Abrams, Scott I.

    2011-01-01

    Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy. PMID:22110722

  14. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth.

    PubMed

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C; Yang, Chung S

    2012-02-01

    Myeloid-derived suppressor cells (MDSC) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis, and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells, and related tumor growth. Treatment with curcumin in the diet or by intraperitoneal injection significantly inhibited tumorigenicity and tumor growth, decreased the percentages of MDSCs in the spleen, blood, and tumor tissues, reduced interleukin (IL)-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine IL-6 by MDSCs in a coculture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs, when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results show that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. ©2011 AACR.

  15. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth

    PubMed Central

    Tu, Shui Ping; Jin, Huanyu; Shi, Jin Dong; Zhu, Li Ming; Suo, Ya; Lu, Gang; Liu, Anna; Wang, Timothy C.; Yang, Chung S.

    2011-01-01

    Myeloid-derived suppressor cells (MDSCs) accumulate in the spleen and tumors and contribute to tumor growth, angiogenesis and progression. In this study, we examined the effects of curcumin on the activation and differentiation of MDSCs, their interaction with human cancer cells and related tumor growth. Treatment with curcumin in the diet or by i.p. injection significantly inhibited tumorigenecity and tumor growth, decreased the percentages of MDSCs in the spleen, blood and tumor tissues, reduced IL-6 levels in the serum and tumor tissues in a human gastric cancer xenograft model and a mouse colon cancer allograft model. Curcumin treatment significantly inhibited cell proliferation and colony formation of cancer cells and decreased the secretion of murine interleukin (IL)-6 by MDSCs in a co-culture system. Curcumin treatment inhibited the expansion of MDSCs, the activation of Stat3 and NF-κB in MDSCs, and the secretion of IL-6 by MDSCs when MDSCs were cultured in the presence of IL-1β, or with cancer cell- or myofibroblast-conditioned medium. Furthermore, curcumin treatment polarized MDSCs toward a M1-like phenotype with an increased expression of CCR7 and decreased expression of dectin 1 in vivo and in vitro. Our results demonstrate that curcumin inhibits the accumulation of MDSCs and their interaction with cancer cells and induces the differentiation of MDSCs. The induction of MDSC differentiation and inhibition of the interaction of MDSCs with cancer cells are potential strategies for cancer prevention and therapy. PMID:22030090

  16. VGLL3 expression is associated with a tumor suppressor phenotype in epithelial ovarian cancer.

    PubMed

    Gambaro, Karen; Quinn, Michael C J; Wojnarowicz, Paulina M; Arcand, Suzanna L; de Ladurantaye, Manon; Barrès, Véronique; Ripeau, Jean-Sébastien; Killary, Ann M; Davis, Elaine C; Lavoie, Josée; Provencher, Diane M; Mes-Masson, Anne-Marie; Chevrette, Mario; Tonin, Patricia N

    2013-06-01

    Previous studies have implicated vestigial like 3 (VGLL3), a chromosome 3p12.3 gene that encodes a putative transcription co-factor, as a candidate tumor suppressor gene (TSG) in high-grade serous ovarian carcinomas (HGSC), the most common type of epithelial ovarian cancer. A complementation analysis based on microcell-mediated chromosome transfer (MMCT) using a centric fragment of chromosome 3 (der3p12-q12.1) into the OV-90 ovarian cancer cell line haploinsufficient for 3p and lacking VGLL3 expression was performed to assess the effect on tumorigenic potential and growth characteristics. Genetic characterization of the derived MMCT hybrids revealed that only the hybrid that contained an intact VGLL3 locus exhibited alterations of tumorigenic potential in a nude mouse xenograft model and various in vitro growth characteristics. Only stable OV-90 transfectant clones expressing low levels of VGLL3 were derived. These clones exhibited an altered cytoplasmic morphology characterized by numerous single membrane bound multivesicular-bodies (MVB) that were not attributed to autophagy. Overexpression of VGLL3 in OV-90 was achieved using a lentivirus-based tetracycline inducible gene expression system, which also resulted in MVB formation in the infected cell population. Though there was no significant differences in various in vitro and in vivo growth characteristics in a comparison of VGLL3-expressing clones with empty vector transfectant controls, loss of VGLL3 expression was observed in tumors derived from mouse xenograft models. VGLL3 gene and protein expression was significantly reduced in HGSC samples (>98%, p < 0.05) relative to either normal ovarian surface epithelial cells or epithelial cells of the fallopian tube, possible tissues of origin of HGSC. Also, there appeared to be to be more cases with higher staining levels in stromal tissue component from HGSC cases that had a prolonged disease-free survival. The results taken together suggest that VGLL3 is involved in tumor suppressor pathways, a feature that is characterized by the absence of VGLL3 expression in HGSC samples. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth

    PubMed Central

    Li, Xiaoping; Cheng, Lu; Han, Mutian; Zhang, Miaomiao; Liu, Xia; Xu, Huaxi; Zhang, Minghui; Shao, Qixiang; Qi, Ling

    2014-01-01

    Omega-3 polyunsaturated fatty acids enriched fish oil exerts beneficial anti-inflammatory effects in animal models with acute and chronic inflammatory diseases. Myeloid-derived suppressor cells (MDSCs), comprised of myeloid progenitors and precursors of myeloid cells, play vital roles in cancer. How fish oil affects the generation of MDSCs and the tumor development remains largely unexplored. Here, we show that dietary intake of high fish oil diet suppresses CD8+ T cells activation and proliferation in vivo via elevated levels of MDSCs. Mechanistically, high fish oil diet induces the expression of immunosuppressive cytokine IL-10 and promotes myelopoiesis in the spleen as well as other peripheral tissues. The immature myeloid cells in the spleen exhibit morphological and functional characteristics of MDSCs with the capability to downregulate CD8+ T cells activation. Depletion of MDSCs using anti-Gr-1 antibody decreases the growth of subcutaneously transferred B16 melanoma in mice on high fish oil diet. Interestingly, diet-induced production of MDSCs is not solely dependent of the spleen, as splenectomy has no effect on the tumor progress. Our data show that the liver functions as an alternative extramedullary hematopoiesis organ to support MDSCs differentiation and maintain tumor growth. Taken together, our study provides a novel insight into the physiological effects of fish oil and points to MDSCs as a possible mediator linking dietary fish oil intake and immunosuppression in cancer immunosurveillance. PMID:24691944

  18. Cysteine Dioxygenase 1 Is a Tumor Suppressor Gene Silenced by Promoter Methylation in Multiple Human Cancers

    PubMed Central

    Brait, Mariana; Ling, Shizhang; Nagpal, Jatin K.; Chang, Xiaofei; Park, Hannah Lui; Lee, Juna; Okamura, Jun; Yamashita, Keishi; Sidransky, David; Kim, Myoung Sook

    2012-01-01

    The human cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinate, and plays a key role in taurine biosynthesis. In our search for novel methylated gene promoters, we have analyzed differential RNA expression profiles of colorectal cancer (CRC) cell lines with or without treatment of 5-aza-2′-deoxycytidine. Among the genes identified, the CDO1 promoter was found to be differentially methylated in primary CRC tissues with high frequency compared to normal colon tissues. In addition, a statistically significant difference in the frequency of CDO1 promoter methylation was observed between primary normal and tumor tissues derived from breast, esophagus, lung, bladder and stomach. Downregulation of CDO1 mRNA and protein levels were observed in cancer cell lines and tumors derived from these tissue types. Expression of CDO1 was tightly controlled by promoter methylation, suggesting that promoter methylation and silencing of CDO1 may be a common event in human carcinogenesis. Moreover, forced expression of full-length CDO1 in human cancer cells markedly decreased the tumor cell growth in an in vitro cell culture and/or an in vivo mouse model, whereas knockdown of CDO1 increased cell growth in culture. Our data implicate CDO1 as a novel tumor suppressor gene and a potentially valuable molecular marker for human cancer. PMID:23028699

  19. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes.

    PubMed

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2015-10-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

  20. Role of chromosome 3p12–p21 tumour suppressor genes in clear cell renal cell carcinoma: analysis of VHL dependent and VHL independent pathways of tumorigenesis

    PubMed Central

    Martinez, A; Fullwood, P; Kondo, K; Kishida, T; Yao, M; Maher, E R; Latif, F

    2000-01-01

    Aims—Chromosome 3p deletions and loss of heterozygosity (LOH) for 3p markers are features of clear cell renal cell carcinoma but are rare in non-clear cell renal cell carcinoma. The VHL tumour suppressor gene, which maps to 3p25, is a major gatekeeper gene for clear cell renal cell carcinoma and is inactivated in most sporadic cases of this disease. However, it has been suggested that inactivation of other 3p tumour suppressor genes might be crucial for clear cell renal cell carcinoma tumorigenesis, with inactivation (VHL negative) and without inactivation (VHL positive) of the VHL tumour suppressor gene. This study set out to investigate the role of non-VHL tumour suppressor genes in VHL negative and VHL positive clear cell renal cell carcinoma. Methods—Eighty two clear cell renal cell carcinomas of known VHL inactivation status were analysed for LOH at polymorphic loci within the candidate crucial regions for chromosome 3p tumour suppressor genes (3p25, LCTSGR1 at 3p21.3, LCTSGR2 at 3p12 and at 3p14.2). Results—Chromosome 3p12–p21 LOH was frequent both in VHL negative and VHL positive clear cell renal cell carcinoma. However, although the frequency of 3p25 LOH in VHL negative clear cell renal cell carcinoma was similar to that at 3p12–p21, VHL positive tumours demonstrated significantly less LOH at 3p25 than at 3p12–p21. Although there was evidence of LOH for clear cell renal cell carcinoma tumour suppressor genes at 3p21, 3p14.2, and 3p12, both in VHL negative and VHL positive tumours, the major clear cell renal cell carcinoma LOH region mapped to 3p21.3, close to the lung cancer tumour suppressor gene region 1 (LCTSGR1). There was no association between tumour VHL status and tumour grade and stage. Conclusions—These findings further indicate that VHL inactivation is not sufficient to initiate clear cell renal cell carcinoma and that loss of a gatekeeper 3p21 tumour suppressor gene is a crucial event for renal cell carcinoma development in both VHL negative and VHL positive clear cell renal cell carcinoma. PMID:10897333

  1. Critical role of dendritic cell-derived IL-27 in antitumor immunity through regulating the recruitment and activation of NK and NKT cells.

    PubMed

    Wei, Jun; Xia, Siyuan; Sun, Huayan; Zhang, Song; Wang, Jingya; Zhao, Huiyuan; Wu, Xiaoli; Chen, Xi; Hao, Jianlei; Zhou, Xinglong; Zhu, Zhengmao; Gao, Xiang; Gao, Jian-xin; Wang, Puyue; Wu, Zhenzhou; Zhao, Liqing; Yin, Zhinan

    2013-07-01

    Critical roles of IL-27 in autoimmune diseases and infections have been reported; however, the contribution of endogenous IL-27 to tumor progression remains elusive. In this study, by using IL-27p28 conditional knockout mice, we demonstrate that IL-27 is critical in protective immune response against methyl-cholanthrene-induced fibrosarcoma and transplanted B16 melanoma, and dendritic cells (DCs) are the primary source. DC-derived IL-27 is required for shaping tumor microenvironment by inducing CXCL-10 expression in myeloid-derived suppressor cells and regulating IL-12 production from DCs, which lead to the recruitment and activation of NK and NKT cells resulting in immunological control of tumors. Indeed, reconstitution of IL-27 or CXCL-10 in tumor site significantly inhibits tumor growth and restores the number and activation of NK and NKT cells. In summary, our study identifies a previous unknown critical role of DC-derived IL-27 in NK and NKT cell-dependent antitumor immunity through shaping tumor microenvironment, and sheds light on developing novel therapeutic approaches based on IL-27.

  2. Granulocytic myeloid-derived suppressor cells from human cord blood modulate T-helper cell response towards an anti-inflammatory phenotype.

    PubMed

    Köstlin, Natascha; Vogelmann, Margit; Spring, Bärbel; Schwarz, Julian; Feucht, Judith; Härtel, Christoph; Orlikowsky, Thorsten W; Poets, Christian F; Gille, Christian

    2017-09-01

    Infections are a leading cause of perinatal morbidity and mortality. The outstandingly high susceptibility to infections early in life is mainly attributable to the compromised state of the neonatal immune system. One important difference to the adult immune system is a bias towards T helper type 2 (Th2) responses in newborns. However, mechanisms regulating neonatal T-cell responses are incompletely understood. Granulocytic myeloid-derived suppressor cells (GR-MDSC) are myeloid cells with a granulocytic phenotype that suppress various functions of other immune cells and accumulate under physiological conditions during pregnancy in maternal and fetal blood. Although it has been hypothesized that GR-MDSC accumulation during fetal life could be important for the maintenance of maternal-fetal tolerance, the influence of GR-MDSC on the immunological phenotype of neonates is still unclear. Here, we investigated the impact of GR-MDSC isolated from cord blood (CB-MDSC) on the polarization of Th cells. We demonstrate that CB-MDSC inhibit Th1 responses and induced Th2 responses and regulatory T (Treg) cells. Th1 inhibition was cell-contact dependent and occurred independent of other cell types, while Th2 induction was mediated independently of cell contact through expression of ArgI and reactive oxygen species by CB-MDSC and partially needed the presence of monocytes. Treg cell induction by CB-MDSC also occurred cell-contact independently but was partially mediated through inducible nitric oxide synthase. These results point towards a role of MDSC in regulating neonatal immune responses. Targeting MDSC function in neonates could be a therapeutic opportunity to improve neonatal host defence. © 2017 John Wiley & Sons Ltd.

  3. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    PubMed

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  4. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma

    PubMed Central

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922

  5. Construction of a 780-kb PAC, BAC, and cosmid contig encompassing the minimal critical deletion involved in B cell lymphocytic leukemia at 13q14.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouyge-Moreau, I.; Rondeau, G.; Andre, M.T.

    A putative tumor suppressor gene involved in B cell chronic lymphocytic leukemia (B-CLL) was mapped to human chromosome 13q14.3 close to the genetic markers D13S25 and D13S319. We constructed a 780-kb-long contig composed of cosmids, bacterial artificial chromosomes, and bacteriophage PI-derived artificial chromosomes that provides essential information and tools for the positional cloning of this gene. The contig contains both flanking markers as well as several additional genetic markers, three ESTs, and one potential CpG island. In addition, using one B-CLL patient, we characterized a small internal deleted region of 550 kb. Comparing this deletion with other recently published deletionsmore » narrows the minimally deleted area to less than 100 kb in our physical map. This deletion core region should contain all or part of the disrupted in B cell malignancies tumor suppressor gene. 27 refs., 3 figs.« less

  6. Myeloid-Derived Suppressor Cells Prevent Type 1 Diabetes in Murine Models

    DTIC Science & Technology

    2010-11-01

    participating in anti-CD28- mediated tolerance in allo-kidney transplantation ( 15), and ame- lioration of symptoms in the inflammatory bowel disease ...Zhou,* George X. Wang,* Celia M. Divino/ Sofia Casares,§ Shu-Hsia Chen,*’, Wen-Chin Yang/’* and Ping-Ying Pan* Effective immunotherapy for type 1...cell-based tolerogenic therapy in the control of TID and other autoimmune diseases . The Journal of Immunology, 2010, 185: 5828-5834. T ype I

  7. Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.

    PubMed

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.

  8. Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage

    PubMed Central

    Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.

    2014-01-01

    Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795

  9. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction

    PubMed Central

    Danilin, Sabrina; Merkel, Alyssa R.; Johnson, Joshua R.; Johnson, Rachelle W.; Edwards, James R.; Sterling, Julie A.

    2012-01-01

    Myeloid-derived suppressor cells (MDSCs), identified as Gr1+CD11b+ cells in mice, expand during cancer and promote tumor growth, recurrence and burden. However, little is known about their role in bone metastases. We hypothesized that MDSCs may contribute to tumor-induced bone disease, and inoculated breast cancer cells into the left cardiac ventricle of nude mice. Disease progression was monitored weekly by X-ray and fluorescence imaging and MDSCs expansion by fluorescence-activated cell sorting. To explore the contribution of MDSCs to bone metastasis, we co-injected mice with tumor cells or PBS into the left cardiac ventricle and Gr1+CD11b+ cells isolated from healthy or tumor-bearing mice into the left tibia. MDSCs didn’t induce bone resorption in normal mice, but increased resorption and tumor burden significantly in tumor-bearing mice. In vitro experiments showed that Gr1+CD11b+ cells isolated from normal and tumor-bearing mice differentiate into osteoclasts when cultured with RANK ligand and macrophage colony-stimulating factor, and that MDSCs from tumor-bearing mice upregulate parathyroid hormone-related protein (PTHrP) mRNA levels in cancer cells. PTHrP upregulation is likely due to the 2-fold increase in transforming growth factor β expression that we observed in MDSCs isolated from tumor-bearing mice. Importantly, using MDSCs isolated from GFP-expressing animals, we found that MDSCs differentiate into osteoclast-like cells in tumor-bearing mice as evidenced by the presence of GFP+TRAP+ cells. These results demonstrate that MDSCs expand in breast cancer bone metastases and induce bone destruction. Furthermore, our data strongly suggest that MDSCs are able to differentiate into osteoclasts in vivo and that this is stimulated in the presence of tumors. PMID:23264895

  10. HPV16 integration probably contributes to cervical oncogenesis through interrupting tumor suppressor genes and inducing chromosome instability.

    PubMed

    Zhao, Jun-Wei; Fang, Fang; Guo, Yi; Zhu, Tai-Lin; Yu, Yun-Yun; Kong, Fan-Fei; Han, Ling-Fei; Chen, Dong-Sheng; Li, Fang

    2016-11-25

    The integration of human papilloma virus (HPV) into host genome is one of the critical steps that lead to the progression of precancerous lesion into cancer. However, the mechanisms and consequences of such integration events are poorly understood. This study aims to explore those questions by studying high risk HPV16 integration in women with cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (SCC). Specifically, HPV integration status of 13 HPV16-infected patients were investigated by ligation-mediated PCR (DIPS-PCR) followed by DNA sequencing. In total, 8 HPV16 integration sites were identified inside or around genes associated with cancer development. In particular, the well-studied tumor suppressor genes SCAI was found to be integrated by HPV16, which would likely disrupt its expression and therefore facilitate the migration of tumor. On top of that, we observed several cases of chromosome translocation events coincide with HPV integration, which suggests the existence of chromosome instability. Additionally, short overlapping sequences were observed between viral derived and host derived fragments in viral-cellular junctions, indicating that integration was mediated by micro homology-mediated DNA repair pathway. Overall, our study suggests a model in which HPV16 might contribute to oncogenesis not only by disrupting tumor suppressor genes, but also by inducing chromosome instability.

  11. Myeloid derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications

    PubMed Central

    Diaz-Montero, C. Marcela; Finke, Jim; Montero, Alberto J.

    2014-01-01

    Immune evasion is a hallmark of cancer. While, there are multiple different mechanisms that cancer cells employ, myeloid deriver suppressor cells (MDSCs) are one of the key drivers of tumor mediated immune evasion. MDSCs begin as myeloid cells recruited to the tumor microenvironment where they are transformed into potent immunosuppressive cells. Our understanding of the clinical relevance of MDSCs in cancer patients, however has significantly lagged behind the preclinical literature in part due to the absence of a cognate molecule present in mice, as well as the considerable heterogeneity of MDSCs. However, if one evaluates the clinical literature through the filter of clinically robust endpoints, such as overall survival, three important phenotypes have emerged: promyelocytic, monocytic, and granulocytic. Based on these studies, MDSCs have clear prognostic importance in multiple solid tumors, and emerging data supports the utility of circulating MDSCs as a predictive marker for cancer immunotherapy, and even as an early leading marker for predicting clinical response to systemic chemotherapy in patients with advanced solid tumors. More recent preclinical data in immunosuppressed murine models suggest that MDSCs play an important role in tumor progression and the metastatic process that is independent of their immunosuppressive properties. Consequently, targeting MDSCs either in combination with cancer immunotherapy or independently as part of an approach to inhibit the metastatic process, appears to be a very clinically promising strategy. We review different approaches to target MDSCs that could potentially be tested in future clinical trials in cancer patients. PMID:24787291

  12. Lenalidomide Synergistically Enhances the Effect of Dendritic Cell Vaccination in a Model of Murine Multiple Myeloma.

    PubMed

    Nguyen-Pham, Thanh-Nhan; Jung, Sung-Hoon; Vo, Manh-Cuong; Thanh-Tran, Huong-Thi; Lee, Youn-Kyung; Lee, Hyun-Ju; Choi, Nu-Ri; Hoang, My-Dung; Kim, Hyeoung-Joon; Lee, Je-Jung

    2015-10-01

    We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone. A cytotoxic assay revealed that the anticancer effects of DC vaccination plus LEN involved not only generation of antigen-specific cytotoxic T lymphocytes but also NK cells. Vaccinated mice had reduced numbers of suppressor cells, including both myeloid-derived suppressor cells and regulatory T cells, in the spleen. The proportions of CD4+ and CD8+ T cells increased in the spleen, and a Th1 cytokine (interferon-γ) rather than a Th2 cytokine (interleukin-10) was synthesized in response to tumor antigens. LEN enhanced the innate immune response by modulating NK cell numbers and function. In addition, LEN reduced the production levels of angiogenesis-inducing factors in tumor-bearing mice. Together, these results suggest that a combination of LEN and DC vaccination may synergistically enhance anticancer immunity in the murine myeloma model, by inhibiting immunosuppressor cells and stimulating effector cells, as well as effectively polarizing the Th1/Th2 balance in favor of a Th1-specific immune response.

  13. Enhanced susceptibility of cancer cells to oncolytic rhabdo-virotherapy by expression of Nodamura virus protein B2 as a suppressor of RNA interference.

    PubMed

    Bastin, Donald; Aitken, Amelia S; Pelin, Adrian; Pikor, Larissa A; Crupi, Mathieu J F; Huh, Michael S; Bourgeois-Daigneault, Marie-Claude; Bell, John C; Ilkow, Carolina S

    2018-06-19

    Antiviral responses are barriers that must be overcome for efficacy of oncolytic virotherapy. In mammalian cells, antiviral responses involve the interferon pathway, a protein-signaling cascade that alerts the immune system and limits virus propagation. Tumour-specific defects in interferon signaling enhance viral infection and responses to oncolytic virotherapy, but many human cancers are still refractory to oncolytic viruses. Given that invertebrates, fungi and plants rely on RNA interference pathways for antiviral protection, we investigated the potential involvement of this alternative antiviral mechanism in cancer cells. Here, we detected viral genome-derived small RNAs, indicative of RNAi-mediated antiviral responses, in human cancer cells. As viruses may encode suppressors of the RNA interference pathways, we engineered an oncolytic vesicular stomatitis virus variant to encode the Nodamura virus protein B2, a known inhibitor of RNAi-mediated immune responses. B2-expressing oncolytic virus showed enhanced viral replication and cytotoxicity, impaired viral genome cleavage and altered microRNA processing in cancer cells. Our data establish the improved therapeutic potential of our novel virus which targets the RNAi-mediated antiviral defense of cancer cells.

  14. Functional involvement of human discs large tumor suppressor in cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unno, Kenji; Hanada, Toshihiko; Chishti, Athar H.

    2008-10-15

    Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited amore » similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.« less

  15. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells.

    PubMed

    Gallego-Ortega, David; Ledger, Anita; Roden, Daniel L; Law, Andrew M K; Magenau, Astrid; Kikhtyak, Zoya; Cho, Christina; Allerdice, Stephanie L; Lee, Heather J; Valdes-Mora, Fatima; Herrmann, David; Salomon, Robert; Young, Adelaide I J; Lee, Brian Y; Sergio, C Marcelo; Kaplan, Warren; Piggin, Catherine; Conway, James R W; Rabinovich, Brian; Millar, Ewan K A; Oakes, Samantha R; Chtanova, Tatyana; Swarbrick, Alexander; Naylor, Matthew J; O'Toole, Sandra; Green, Andrew R; Timpson, Paul; Gee, Julia M W; Ellis, Ian O; Clark, Susan J; Ormandy, Christopher J

    2015-12-01

    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis-free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer.

  16. ELF5 Drives Lung Metastasis in Luminal Breast Cancer through Recruitment of Gr1+ CD11b+ Myeloid-Derived Suppressor Cells

    PubMed Central

    Gallego-Ortega, David; Ledger, Anita; Roden, Daniel L.; Law, Andrew M. K.; Magenau, Astrid; Kikhtyak, Zoya; Cho, Christina; Allerdice, Stephanie L.; Lee, Heather J.; Valdes-Mora, Fatima; Herrmann, David; Salomon, Robert; Young, Adelaide I. J.; Lee, Brian Y.; Sergio, C. Marcelo; Kaplan, Warren; Piggin, Catherine; Conway, James R. W.; Rabinovich, Brian; Millar, Ewan K. A.; Oakes, Samantha R.; Chtanova, Tatyana; Swarbrick, Alexander; Naylor, Matthew J.; O’Toole, Sandra; Green, Andrew R.; Timpson, Paul; Gee, Julia M. W.; Ellis, Ian O.; Clark, Susan J.; Ormandy, Christopher J.

    2015-01-01

    During pregnancy, the ETS transcription factor ELF5 establishes the milk-secreting alveolar cell lineage by driving a cell fate decision of the mammary luminal progenitor cell. In breast cancer, ELF5 is a key transcriptional determinant of tumor subtype and has been implicated in the development of insensitivity to anti-estrogen therapy. In the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT) model of luminal breast cancer, induction of ELF5 levels increased leukocyte infiltration, angiogenesis, and blood vessel permeability in primary tumors and greatly increased the size and number of lung metastasis. Myeloid-derived suppressor cells, a group of immature neutrophils recently identified as mediators of vasculogenesis and metastasis, were recruited to the tumor in response to ELF5. Depletion of these cells using specific Ly6G antibodies prevented ELF5 from driving vasculogenesis and metastasis. Expression signatures in luminal A breast cancers indicated that increased myeloid cell invasion and inflammation were correlated with ELF5 expression, and increased ELF5 immunohistochemical staining predicted much shorter metastasis–free and overall survival of luminal A patients, defining a group who experienced unexpectedly early disease progression. Thus, in the MMTV-PyMT mouse mammary model, increased ELF5 levels drive metastasis by co-opting the innate immune system. As ELF5 has been previously implicated in the development of antiestrogen resistance, this finding implicates ELF5 as a defining factor in the acquisition of the key aspects of the lethal phenotype in luminal A breast cancer. PMID:26717410

  17. Tumor suppressor molecules and methods of use

    DOEpatents

    Welch, Peter J.; Barber, Jack R.

    2004-09-07

    The invention provides substantially pure tumor suppressor nucleic acid molecules and tumor suppressor polypeptides. The invention also provides hairpin ribozymes and antibodies selective for these tumor suppressor molecules. Also provided are methods of detecting a neoplastic cell in a sample using detectable agents specific for the tumor suppressor nucleic acids and polypeptides.

  18. Regulatory T Cells and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Undergo Fas-Dependent Cell Death during IL-2/αCD40 Therapy

    PubMed Central

    Weiss, Jonathan M.; Subleski, Jeff J.; Back, Tim; Chen, Xin; Watkins, Stephanie K.; Yagita, Hideo; Sayers, Thomas J.; Murphy, William J.

    2014-01-01

    Fas ligand expression in certain tumors has been proposed to contribute to immunosuppression and poor prognosis. However, immunotherapeutic approaches may elicit the Fas-mediated elimination of immunosuppressive regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) within tumors that represent major obstacles for cancer immunotherapy. Previously, we showed that IL-2 and agonistic CD40 Ab (αCD40) elicited synergistic antitumor responses coincident with the efficient removal of Tregs and MDSCs. We demonstrate in this study in two murine tumor models that Treg and MDSC loss within the tumor microenvironment after IL-2/αCD40 occurs through a Fas-dependent cell death pathway. Among tumor-infiltrating leukocytes, CD8+ T cells, neutrophils, and immature myeloid cells expressed Fas ligand after treatment. Fas was expressed by tumor-associated Tregs and immature myeloid cells, including MDSCs. Tregs and MDSCs in the tumor microenvironment expressed active caspases after IL-2/αCD40 therapy and, in contrast with effector T cells, Tregs significantly downregulated Bcl-2 expression. In contrast, Tregs and MDSCs proliferated and expanded in the spleen after treatment. Adoptive transfer of Fas-deficient Tregs or MDSCs into wild-type, Treg-, or MDSC-depleted hosts resulted in the persistence of Tregs or MDSCs and the loss of antitumor efficacy in response to IL-2/αCD40. These results demonstrate the importance of Fas-mediated Treg/MDSC removal for successful antitumor immunotherapy. Our results suggest that immunotherapeutic strategies that include exploiting Treg and MDSC susceptibility to Fas-mediated apoptosis hold promise for treatment of cancer. PMID:24808361

  19. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells.

    PubMed

    Gualde, N; Weinberger, O; Ratnofsky, S; Benacerraf, B; Burakoff, S J

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observed with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.

  20. In vitro generation of helper T cells and suppressor T cells that regulate the cytolytic T lymphocyte response to trinitrophenyl-modified syngeneic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Weinberger, O.; Ratnofsky, S.

    1982-04-01

    Helper T cells and suppressor T cells have been generated in vitro that regulate the cytolytic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified syngeneic cells. B6D2F1 helper cells generated to TNP-modified parental (P1) cells augment the CTL response to those P1-TNP-modified antigens but not to P2-TNP-modified antigens. The generation of these helper T cells requires the presence of splenic adherent cells and these helper T cells are radioresistant. A soluble factor can be obtained from the helper T cell cultures that can also augment the CTL response. The suppressor T cells generated in culture do not demonstrate the specificity observedmore » with the helper T cells; however, they are antigen-dependent in their induction. Whether helper or suppressor activity is obtained depends upon the length of time cells are cultured in vitro.« less

  1. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    PubMed

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The role of the 2H4 molecule in the generation of suppressor function in Con A-activated T cells.

    PubMed

    Morimoto, C; Letvin, N L; Rudd, C E; Hagan, M; Takeuchi, T; Schlossman, S F

    1986-11-15

    The molecular basis for the suppression generated in a concanavalin A (Con A)-activated T cell culture remains unknown. In this study, we have attempted to determine whether the 2H4 and 4B4 molecules on Con A-activated T cells play some role in the generation of suppression by such cells. We have shown that Con A-activated suppressor cells belong to the 2H4+ subset of T cells but not the 4B4+ (2H4-) subset. Con A-activated T cells exerted their optimal suppressor function on day 2 in culture, a time at which the expression of 2H4 on such cells was maximal and 4B4 was minimal. Furthermore, the stimulation of T cells with the higher concentration of Con A generated the stronger suppressor function. At the same time, both 2H4 expression and density were increased and 4B4 expression and density were decreased on such Con A-activated T cells. More importantly, the treatment of Con A-activated T cells with anti-2H4 antibody but not with anti-4B4, anti-TQ1, or anti-T4 antibodies can block the suppressor function of such cells. Taken together, the above results strongly suggest that the 2H4 molecule itself may be involved in the generation of suppressor function in Con A-activated T cells. The 2H4 antigen on such cells was shown to be comprised of 220,000 and 200,000 m.w. glycoproteins. Thus this study indicates that the 220,000 and 200,000 m.w. structure of the 2H4 molecule may itself play a crucial role in the generation of suppressor signals of Con A-activated cells.

  3. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma.

    PubMed

    Schuller, Hildegard M; Al-Wadei, Hussein A N; Majidi, Mourad

    2008-10-01

    Pulmonary adenocarcinoma (PAC) is the leading type of lung cancer in smokers and non-smokers that arises in most cases from small airway epithelial cells. PAC has a high mortality due to its aggressive behavior and resistance to cancer therapeutics. We have shown previously that the proliferation of human PAC cells NCI-H322 and immortalized human small airway epithelial cells HPL1D is stimulated by cyclic adenosine monophosphate (cAMP)/protein kinase A-dependent phosphorylation of cyclic adenosine monophosphate response element-binding (CREB) protein and transactivation of the epidermal growth factor receptor and that this pathway is activated by beta-1-adrenoreceptors (beta(1)-ARs) and the non-genomic estrogen receptor beta. Our current in vitro studies with HPL1D and NCI-H322 cells showed that signaling via the gamma-amino butyric acid receptor (GABA(B)R) strongly inhibited base level and isoproterenol-induced cAMP, p-CREB, cyclic adenosine monophosphate response element-luciferase activity and p-extracellular regulated kinase-1 (ERK1)/2 and effectively blocked DNA synthesis and cell migration. The inhibitory effects of gamma-amino butyric acid (GABA) were disinhibited by the GABA(B)R antagonist CGP-35348 or GABA(B)R knockdown. Immunohistochemical investigation of hamster lungs showed significant underexpression of GABA in animals with small airway-derived PACs induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These findings suggest that GABA may have tumor suppressor function in small airway epithelia and the PACs derived from them and that downregulation of GABA by NNK may contribute to the development of this cancer in smokers. Our findings suggest that marker-guided treatment with GABA or a GABA(B)R agonist of individuals with downregulated pulmonary GABA may provide a novel targeted approach for the prevention of PAC in smokers.

  4. Id1 suppresses anti-tumour immune responses and promotes tumour progression by impairing myeloid cell maturation.

    PubMed

    Papaspyridonos, Marianna; Matei, Irina; Huang, Yujie; do Rosario Andre, Maria; Brazier-Mitouart, Helene; Waite, Janelle C; Chan, April S; Kalter, Julie; Ramos, Ilyssa; Wu, Qi; Williams, Caitlin; Wolchok, Jedd D; Chapman, Paul B; Peinado, Hector; Anandasabapathy, Niroshana; Ocean, Allyson J; Kaplan, Rosandra N; Greenfield, Jeffrey P; Bromberg, Jacqueline; Skokos, Dimitris; Lyden, David

    2015-04-29

    A central mechanism of tumour progression and metastasis involves the generation of an immunosuppressive 'macroenvironment' mediated in part through tumour-secreted factors. Here we demonstrate that upregulation of the Inhibitor of Differentiation 1 (Id1), in response to tumour-derived factors, such as TGFβ, is responsible for the switch from dendritic cell (DC) differentiation to myeloid-derived suppressor cell expansion during tumour progression. Genetic inactivation of Id1 largely corrects the myeloid imbalance, whereas Id1 overexpression in the absence of tumour-derived factors re-creates it. Id1 overexpression leads to systemic immunosuppression by downregulation of key molecules involved in DC differentiation and suppression of CD8 T-cell proliferation, thus promoting primary tumour growth and metastatic progression. Furthermore, advanced melanoma patients have increased plasma TGFβ levels and express higher levels of ID1 in myeloid peripheral blood cells. This study reveals a critical role for Id1 in suppressing the anti-tumour immune response during tumour progression and metastasis.

  5. Circulating CD14(+) HLA-DR(-/low) myeloid-derived suppressor cells in leukemia patients with allogeneic hematopoietic stem cell transplantation: novel clinical potential strategies for the prevention and cellular therapy of graft-versus-host disease.

    PubMed

    Yin, Jin; Wang, Chunyan; Huang, Min; Mao, Xia; Zhou, Jianfeng; Zhang, Yicheng

    2016-07-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population that includes immature myeloid cells and the progenitor cells of macrophages, dendritic cells (DCs), monocytes, and neutrophils. The expansion and functional importance of MDSCs in patients with cancer and noncancer pathogenic conditions has been recognized. As a result, there has been growing interest in understanding their roles in acute graft-versus-host disease (aGVHD) after allogenetic hematopoietic stem cell transplantation (allo-HSCT). In order to evaluate possible effects of MDSCs on aGVHD development and clinical outcomes, this study systematically detected the dynamic changes of MDSCs accumulation in patients during the first 100 days after allo-HSCT, and investigated the levels of other cell types and relative cytokines during MDSCs accumulation. Results showed that accumulation of MDSCs in the graft and in peripheral blood when engraftment might contribute to patients' overall immune suppression and result in the successful control of severe aGVHD and long-term survival without influence on risk of recurrence after allo-HSCT. But MDSCs levels in the graft had more favorable predictive abilities. Furthermore, MDSCs proportion significantly increased in patients developing aGVHD after allo-HSCT. It might be caused by secondary inflammatory response, especially related to high concentrations of IL-6 and TNF-α. But this accumulation would not be able to counterbalance the aggravation of aGVHD and would not have influence on clinical outcomes and risk of relapse. Overall, MDSCs might be considered as potential new therapeutic option for aGVHD and achieve long-term immunological tolerance and survival. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  6. Myeloid-derived suppressor cells express Bruton’s tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment

    PubMed Central

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A.; Byrd, John C.; Carson, William E.

    2016-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immature myeloid cells that expand in tumor bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton’s tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wildtype mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo. Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. PMID:26880800

  7. Myeloid-Derived Suppressor Cells Express Bruton's Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment.

    PubMed

    Stiff, Andrew; Trikha, Prashant; Wesolowski, Robert; Kendra, Kari; Hsu, Vincent; Uppati, Sarvani; McMichael, Elizabeth; Duggan, Megan; Campbell, Amanda; Keller, Karen; Landi, Ian; Zhong, Yiming; Dubovsky, Jason; Howard, John Harrison; Yu, Lianbo; Harrington, Bonnie; Old, Matthew; Reiff, Sean; Mace, Thomas; Tridandapani, Susheela; Muthusamy, Natarajan; Caligiuri, Michael A; Byrd, John C; Carson, William E

    2016-04-15

    Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function

    PubMed Central

    Charles, Julia F.; Hsu, Lih-Yun; Niemi, Erene C.; Weiss, Arthur; Aliprantis, Antonios O.; Nakamura, Mary C.

    2012-01-01

    Increased osteoclastic bone resorption leads to periarticular erosions and systemic osteoporosis in RA patients. Although a great deal is known about how osteoclasts differentiate from precursors and resorb bone, the identity of an osteoclast precursor (OCP) population in vivo and its regulatory role in RA remains elusive. Here, we report the identification of a CD11b–/loLy6Chi BM population with OCP activity in vitro and in vivo. These cells, which can be distinguished from previously characterized precursors in the myeloid lineage, display features of both M1 and M2 monocytes and expand in inflammatory arthritis models. Surprisingly, in one mouse model of RA (adoptive transfer of SKG arthritis), cotransfer of OCP with SKG CD4+ T cells diminished inflammatory arthritis. Similar to monocytic myeloid-derived suppressor cells (M-MDSCs), OCPs suppressed CD4+ and CD8+ T cell proliferation in vitro through the production of NO. This study identifies a BM myeloid precursor population with osteoclastic and T cell–suppressive activity that is expanded in inflammatory arthritis. Therapeutic strategies that prevent the development of OCPs into mature bone-resorbing cells could simultaneously prevent bone resorption and generate an antiinflammatory milieu in the RA joint. PMID:23114597

  9. The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer

    PubMed Central

    Nishikawa, Jun; Iizasa, Hisashi; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao

    2017-01-01

    The Epstein–Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC. PMID:28757548

  10. The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer.

    PubMed

    Nishikawa, Jun; Iizasa, Hisashi; Yoshiyama, Hironori; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao

    2017-07-25

    The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC.

  11. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    PubMed

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The APC tumor suppressor is required for epithelial cell polarization and three-dimensional morphogenesis

    PubMed Central

    Lesko, Alyssa C.; Goss, Kathleen H.; Yang, Frank F.; Schwertner, Adam; Hulur, Imge; Onel, Kenan; Prosperi, Jenifer R.

    2015-01-01

    The Adenomatous Polyposis Coli (APC) tumor suppressor has been previously implicated in the control of apical-basal polarity; yet, the consequence of APC loss-of-function in epithelial polarization and morphogenesis has not been characterized. To test the hypothesis that APC is required for the establishment of normal epithelial polarity and morphogenesis programs, we generated APC-knockdown epithelial cell lines. APC depletion resulted in loss of polarity and multi-layering on permeable supports, and enlarged, filled spheroids with disrupted polarity in 3D culture. Importantly, these effects of APC knockdown were independent of Wnt/β-catenin signaling, but were rescued with either full-length or a carboxy (c)-terminal segment of APC. Moreover, we identified a gene expression signature associated with APC knockdown that points to several candidates known to regulate cell-cell and cell-matrix communication. Analysis of epithelial tissues from mice and humans carrying heterozygous APC mutations further support the importance of APC as a regulator of epithelial behavior and tissue architecture. These data also suggest that the initiation of epithelial-derived tumors as a result of APC mutation or gene silencing may be driven by loss of polarity and dysmorphogenesis. PMID:25578398

  13. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model.

    PubMed

    Vo, Manh-Cuong; Nguyen-Pham, Thanh-Nhan; Lee, Hyun-Ju; Jaya Lakshmi, Thangaraj; Yang, Seoyun; Jung, Sung-Hoon; Kim, Hyeoung-Joon; Lee, Je-Jung

    2017-04-18

    In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.

  14. Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies.

    PubMed

    Shariatpanahi, Seyed Peyman; Shariatpanahi, Seyed Pooya; Madjidzadeh, Keivan; Hassan, Moustapha; Abedi-Valugerdi, Manuchehr

    2018-04-07

    Myeloid-derived suppressor cells (MDSCs) belong to immature myeloid cells that are generated and accumulated during the tumor development. MDSCs strongly suppress the anti-tumor immunity and provide conditions for tumor progression and metastasis. In this study, we present a mathematical model based on ordinary differential equations (ODE) to describe tumor-induced immunosuppression caused by MDSCs. The model consists of four equations and incorporates tumor cells, cytotoxic T cells (CTLs), natural killer (NK) cells and MDSCs. We also provide simulation models that evaluate or predict the effects of anti-MDSC drugs (e.g., l-arginine and 5-Fluorouracil (5-FU)) on the tumor growth and the restoration of anti-tumor immunity. The simulated results obtained using our model were in good agreement with the corresponding experimental findings on the expansion of splenic MDSCs, immunosuppressive effects of these cells at the tumor site and effectiveness of l-arginine and 5-FU on the re-establishment of antitumor immunity. Regarding this latter issue, our predictive simulation results demonstrated that intermittent therapy with low-dose 5-FU alone could eradicate the tumors irrespective of their origins and types. Furthermore, at the time of tumor eradication, the number of CTLs prevailed over that of cancer cells and the number of splenic MDSCs returned to the normal levels. Finally, our predictive simulation results also showed that the addition of l-arginine supplementation to the intermittent 5-FU therapy reduced the time of the tumor eradication and the number of iterations for 5-FU treatment. Thus, the present mathematical model provides important implications for designing new therapeutic strategies that aim to restore antitumor immunity by targeting MDSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Myeloid-Derived Suppressor Cells in Checkpoint Protein Inhibition for Melanoma

    DTIC Science & Technology

    2017-09-01

    Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release...official Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved...6402 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort

  16. The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7.

    PubMed

    Szalmás, Anita; Tomaić, Vjekoslav; Basukala, Om; Massimi, Paola; Mittal, Suruchi; Kónya, József; Banks, Lawrence

    2017-04-01

    Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays. IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor. Copyright © 2017 American Society for Microbiology.

  17. Adoptive cell transfer in autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2015-06-01

    Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.

  18. Anticancer effects of garlic and garlic-derived compounds for breast cancer control.

    PubMed

    Tsubura, Airo; Lai, Yen-Chang; Kuwata, Maki; Uehara, Norihisa; Yoshizawa, Katsuhiko

    2011-03-01

    Garlic and garlic-derived compounds reduce the development of mammary cancer in animals and suppress the growth of human breast cancer cells in culture. Oil-soluble compounds derived from garlic, such as diallyl disulfide (DADS), are more effective than water-soluble compounds in suppressing breast cancer. Mechanisms of action include the activation of metabolizing enzymes that detoxify carcinogens, the suppression of DNA adduct formation, the inhibition of the production of reactive oxygen species, the regulation of cell-cycle arrest and the induction of apoptosis. Selenium-enriched garlic or organoselenium compounds provide more potent protection against mammary carcinogenesis in rats and greater inhibition of breast cancer cells in culture than natural garlic or the respective organosulfur analogues. DADS synergizes the effect of eicosapentaenoic acid, a breast cancer suppressor, and antagonizes the effect of linoleic acid, a breast cancer enhancer. Moreover, garlic extract reduces the side effects caused by anti-cancer agents. Thus, garlic and garlic-derived compounds are promising candidates for breast cancer control.

  19. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma

    PubMed Central

    Kapanadze, Tamar; Gamrekelashvili, Jaba; Ma, Chi; Chan, Carmen; Zhao, Fei; Hewitt, Stephen; Zender, Lars; Kapoor, Veena; Felsher, Dean W.; Manns, Michael P.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Background and aims Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity. They accumulate in tumor-bearing mice and humans with different types of cancer, including hepatocellular carcinoma (HCC). The aim of this study was to examine the biology of MDSC in murine HCC models and to identify a model, which mimics the human disease. Methods: The comparative analysis of MDSC was performed in mice, bearing transplantable, diethylnitrosoamine (DEN)-induced and MYC-expressing HCC at different ages. Results: An accumulation of MDSC was found in mice with HCC irrespectively of the model tested. Transplantable tumors rapidly induced systemic recruitment of MDSC, in contrast to slow-growing DEN-induced or MYC-expressing HCC, where MDSC numbers only increased intra-hepatically in mice with advanced tumors. MDSC derived from mice with subcutaneous tumors were more suppressive than those from mice with DEN-induced HCC. Enhanced expression of genes associated with MDSC generation (GM-CSF, VEGF, IL-6, IL-1β) and migration (MCP-1, KC, S100A8, S100A9) was observed in mice with subcutaneous tumors. In contrast, only KC levels increased in mice with DEN-induced HCC. Both KC and GM-CSF over-expression or anti-KC and anti-GM-CSF treatment controlled MDSC frequency in mice with HCC. Finally, the frequency of MDSC decreased upon successful anti-tumor treatment with sorafenib. Conclusions: Our data indicate that MDSC accumulation is a late event during hepatocarcinogenesis and differs significantly depending on the tumor model studied. PMID:23796475

  20. Regulation of accumulation and function of myeloid derived suppressor cells in different murine models of hepatocellular carcinoma.

    PubMed

    Kapanadze, Tamar; Gamrekelashvili, Jaba; Ma, Chi; Chan, Carmen; Zhao, Fei; Hewitt, Stephen; Zender, Lars; Kapoor, Veena; Felsher, Dean W; Manns, Michael P; Korangy, Firouzeh; Greten, Tim F

    2013-11-01

    Myeloid derived suppressor cells (MDSC) are immature myeloid cells with immunosuppressive activity. They accumulate in tumor-bearing mice and humans with different types of cancer, including hepatocellular carcinoma (HCC). The aim of this study was to examine the biology of MDSC in murine HCC models and to identify a model, which mimics the human disease. The comparative analysis of MDSC was performed in mice, bearing transplantable, diethylnitrosoamine (DEN)-induced and MYC-expressing HCC at different ages. An accumulation of MDSC was found in mice with HCC irrespective of the model tested. Transplantable tumors rapidly induced systemic recruitment of MDSC, in contrast to slow-growing DEN-induced or MYC-expressing HCC, where MDSC numbers only increased intra-hepatically in mice with advanced tumors. MDSC derived from mice with subcutaneous tumors were more suppressive than those from mice with DEN-induced HCC. Enhanced expression of genes associated with MDSC generation (GM-CSF, VEGF, IL6, IL1β) and migration (MCP-1, KC, S100A8, S100A9) was observed in mice with subcutaneous tumors. In contrast, only KC levels increased in mice with DEN-induced HCC. Both KC and GM-CSF overexpression or anti-KC and anti-GM-CSF treatment controlled MDSC frequency in mice with HCC. Finally, the frequency of MDSC decreased upon successful anti-tumor treatment with sorafenib. Our data indicate that MDSC accumulation is a late event during hepatocarcinogenesis and differs significantly depending on the tumor model studied. Published by Elsevier B.V.

  1. Effects of emodin on the demethylation of tumor-suppressor genes in pancreatic cancer PANC-1 cells.

    PubMed

    Zhang, Hao; Chen, Liang; Bu, He-Qi; Yu, Qing-Jiang; Jiang, Dan-Dan; Pan, Feng-Ping; Wang, Yu; Liu, Dian-Lei; Lin, Sheng-Zhang

    2015-06-01

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum, has been reported to inhibit the growth of pancreatic cancer cells through different modes of action; yet, the detailed mechanism remains unclear. In the present study, we hypothesized that emodin exerts its antitumor effect by participating in the regulation of the DNA methylation level. Our research showed that emodin inhibited the growth of pancreatic cancer PANC-1 cells in a dose- and time-dependent manner. Dot-blot results showed that 40 µM emodin significantly inhibited genomic 5 mC expression in the PANC-1 cells, and mRNA-Seq showed that different concentrations of emodin could alter the gene expression profile in the PANC-1 cells. BSP confirmed that the methylation levels of P16, RASSF1A and ppENK were decreased, while concomitantly the unmethylated status was increased. RT-PCR and western blotting results confirmed that the low expression or absence of expression of mRNA and protein in the PANC-1 cells was re-expressed following treatment with emodin. In conclusion, our study for the first time suggests that emodin inhibits pancreatic cancer cell growth, which may be related to the demethylation of tumor-suppressor genes. The related mechanism may be through the inhibition of methyltransferase expression.

  2. Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Akira; Shime, Hiroaki, E-mail: shime@med.hokudai.ac.jp; Takeda, Yohei

    2015-02-13

    Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4more » systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment. - Highlights: • Pam2CSK4 administration induces systemic accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • TLR2 is essential for Pam2CSK4-induced accumulation of CD11b{sup +}Gr1{sup +} MDSCs. • Pam2CSK4 supports survival of CD11b{sup +}Gr1{sup +} MDSCs in vivo.« less

  3. Epigenetic deregulation of TCF21 inhibits metastasis suppressor KISS1 in metastatic melanoma.

    PubMed

    Arab, Khelifa; Smith, Laura T; Gast, Andreas; Weichenhan, Dieter; Huang, Joseph Po-Hsien; Claus, Rainer; Hielscher, Thomas; Espinosa, Allan V; Ringel, Matthew D; Morrison, Carl D; Schadendorf, Dirk; Kumar, Rajiv; Plass, Christoph

    2011-10-01

    Metastatic melanoma is a fatal disease due to the lack of successful therapies and biomarkers for early detection and its incidence has been increasing. Genetic studies have defined recurrent chromosomal aberrations, suggesting the location of either tumor suppressor genes or oncogenes. Transcription factor 21 (TCF21) belongs to the class A of the basic helix-loop-helix family with reported functions in early lung and kidney development as well as tumor suppressor function in the malignancies of the lung and head and neck. In this study, we combined quantitative DNA methylation analysis in patient biopsies and in their derived cell lines to demonstrate that TCF21 expression is downregulated in metastatic melanoma by promoter hypermethylation and TCF21 promoter DNA methylation is correlated with decreased survival in metastatic skin melanoma patients. In addition, the chromosomal location of TCF21 on 6q23-q24 coincides with the location of a postulated metastasis suppressor in melanoma. Functionally, TCF21 binds the promoter of the melanoma metastasis-suppressing gene, KiSS1, and enhances its gene expression through interaction with E12, a TCF3 isoform and with TCF12. Loss of TCF21 expression results in loss of KISS1 expression through loss of direct interaction of TCF21 at the KISS1 promoter. Finally, overexpression of TCF21 inhibits motility of C8161 melanoma cells. These data suggest that epigenetic downregulation of TCF21 is functionally involved in melanoma progression and that it may serve as a biomarker for aggressive tumor behavior.

  4. APC+/− alters colonic fibroblast proteome in FAP

    PubMed Central

    Dixon, Maketa P.; Blagoi, Elena L.; Nicolas, Emmanuelle; Seeholzer, Steven H.; Cheng, David; He, Yin A.; Coudry, Renata A.; Howard, Sharon D.; Riddle, Dawn M.; Cooper, Harry S.; Boman, Bruce M.; Conrad, Peggy; Crowell, James A.; Bellacosa, Alfonso; Knudson, Alfred; Yeung, Anthony T.; Kopelovich, Levy

    2011-01-01

    Here we compared the proteomes of primary fibroblast cultures derived from morphologically normal colonic mucosa of familial adenomatous polyposis (FAP) patients with those obtained from unaffected controls. The expression signature of about 19% of total fibroblast proteins separates FAP mutation carriers from unaffected controls (P < 0.01). More than 4,000 protein spots were quantified by 2D PAGE analysis, identifying 368 non-redundant proteins and 400 of their isoforms. Specifically, all three classes of cytoskeletal filaments and their regulatory proteins were altered as were oxidative stress response proteins. Given that FAP fibroblasts showed heightened sensitivity to transformation by KiMSV and SV40 including elevated levels of the p53 protein, events controlled in large measure by the Ras suppressor protein-1 (RSU-1) and oncogenic DJ-1, here we show decreased RSU1 and augmented DJ-1 expression in both fibroblasts and crypt-derived epithelial cells from morphologically normal colonic mucosa of FAP gene-carriers. The results indicate that heterozygosity for a mutant APC tumor suppressor gene alters the proteomes of both colon-derived normal fibroblasts in a gene-specific manner, consistent with a “one-hit” effect. PMID:21411865

  5. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications.

    PubMed

    Kamada, Rui; Toguchi, Yu; Nomura, Takao; Imagawa, Toshiaki; Sakaguchi, Kazuyasu

    2016-11-04

    Tetramer formation of p53 is essential for its tumor suppressor function. p53 not only acts as a tumor suppressor protein by inducing cell cycle arrest and apoptosis in response to genotoxic stress, but it also regulates other cellular processes, including autophagy, stem cell self-renewal, and reprogramming of differentiated cells into stem cells, immune system, and metastasis. More than 50% of human tumors have TP53 gene mutations, and most of them are missense mutations that presumably reduce tumor suppressor activity of p53. This review focuses on the role of the tetramerization (oligomerization), which is modulated by the protein concentration of p53, posttranslational modifications, and/or interactions with its binding proteins, in regulating the tumor suppressor function of p53. Functional control of p53 by stabilizing or inhibiting oligomer formation and its bio-applications are also discussed. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 598-612, 2016. © 2015 Wiley Periodicals, Inc.

  6. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    PubMed Central

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  7. Lack of NF1 gene expression in a sporadic schwannoma from a patient without neurofibromatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, K.K.; Dowton, B.; Silow-Santiago, I.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. We examined one spinal schwannoma from a patient without clinical features of neurofibromatosis type 1 or 2. The tumor was a typical schwannoma confirmed by standard neuropathologic criteria and expressed S100 by immunocytochemistry. NF1 gene expression in this tumor was examined by in situ hybridization using anmore » NF1-specific riboprobe, Northern blot analysis and reverse-transcribed (RT) PCR. Little or no expression of NF1 RNA could be detected using these methods whereas abundant expression of S100, cyclophilin and beta-action RNA was found in the tumor. Fibroblast and Schwann cells were then individually cultured from this schwannoma and the RNA extracted for Northern blot and RT-PCR analysis. In these cultured Schwann cells both from early and late passages, abundant expression of NF1 RNA could be detected. It is unlikely that our culture technique preferentially expanded {open_quotes}normal{close_quotes} Schwann cells, since NF1 acts as a tumor suppressor gene and its presence would not confer any growth advantage over the tumor-derived, neurofibromin-negative Schwann cells which presumably have an increased proliferation rate. Similarly, the conditions used to expand these Schwann cells do not result in increased NF1 gene expression as shown in previous studies. These results suggest that, in some tumors, expression of the NF1 gene can be downregulated by factors produced within the tumor and that this type of tumor suppressor gene downregulation may represent another mechanism other than mutation for turning off the expression of these growth-suppressing genes and allowing for cell proliferation in tumors.« less

  8. Agonist anti-GITR antibody significantly enhances the therapeutic efficacy of Listeria monocytogenes-based immunotherapy.

    PubMed

    Shrimali, Rajeev; Ahmad, Shamim; Berrong, Zuzana; Okoev, Grigori; Matevosyan, Adelaida; Razavi, Ghazaleh Shoja E; Petit, Robert; Gupta, Seema; Mkrtichyan, Mikayel; Khleif, Samir N

    2017-08-15

    We previously demonstrated that in addition to generating an antigen-specific immune response, Listeria monocytogenes (Lm)-based immunotherapy significantly reduces the ratio of regulatory T cells (Tregs)/CD4 + and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. Since Lm-based immunotherapy is able to inhibit the immune suppressive environment, we hypothesized that combining this treatment with agonist antibody to a co-stimulatory receptor that would further boost the effector arm of immunity will result in significant improvement of anti-tumor efficacy of treatment. Here we tested the immune and therapeutic efficacy of Listeria-based immunotherapy combination with agonist antibody to glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) in TC-1 mouse tumor model. We evaluated the potency of combination on tumor growth and survival of treated animals and profiled tumor microenvironment for effector and suppressor cell populations. We demonstrate that combination of Listeria-based immunotherapy with agonist antibody to GITR synergizes to improve immune and therapeutic efficacy of treatment in a mouse tumor model. We show that this combinational treatment leads to significant inhibition of tumor-growth, prolongs survival and leads to complete regression of established tumors in 60% of treated animals. We determined that this therapeutic benefit of combinational treatment is due to a significant increase in tumor infiltrating effector CD4 + and CD8 + T cells along with a decrease of inhibitory cells. To our knowledge, this is the first study that exploits Lm-based immunotherapy combined with agonist anti-GITR antibody as a potent treatment strategy that simultaneously targets both the effector and suppressor arms of the immune system, leading to significantly improved anti-tumor efficacy. We believe that our findings depicted in this manuscript provide a promising and translatable strategy that can enhance the overall efficacy of cancer immunotherapy.

  9. In vitro effects of 4-hydroperoxycyclophosphamide on human immunoregulatory T subset function. I. Selective effects on lymphocyte function in T-B cell collaboration.

    PubMed

    Ozer, H; Cowens, J W; Colvin, M; Nussbaum-Blumenson, A; Sheedy, D

    1982-01-01

    The alkylating agent cyclophosphamide may suppress or enhance immune responses in vivo but is inactive in vitro unless metabolized by microsomal enzyme activation. 4-hydroperoxycyclophosphamide (4-HC) is a synthetic compound that is spontaneously converted in aqueous solution to the active metabolites. In this report, we examined the in vitro sensitivity of functional human T cell subsets to 4-HC in a polyclonal B cell differentiation assay and in the generation of mitogen-induced suppressor cells for effector B cell function. Con A-induced T suppression of B cell differentiation is completely abrogated by a 1-h pretreatment of T cells at very low concentrations of between 10(-2) and 20 nmol/ml, whereas inducer T cell function is sensitive only to concentrations in greater than 40 nmol/ml. The effects of 4-HC on suppressor T cells appear to occur at concentrations that do not result in DNA cross-linking or decreased blastogenesis. Con A-induced T suppressors are generated from within the OKT4+, OKT8- subset and are sensitive to low-dose 4-HC only before activation, whereas differentiated suppressor cells are resistant to concentrations in greater than 80 nmol/ml. Low-dose 4-HC pretreatment of the B cell population results in abrogation of immunoglobulin secretion when treated B cells are cocultured with unfractionated T cells, however, this effect is completely reversible if pretreated B cells are cocultured with T cells devoid of suppressor activity. These results demonstrate that human presuppressor cells for B-effector function differentiate in response to Con A from the OKT4+, OKT8- subset and are exquisitely sensitive to low concentrations of CYP whereas mature suppressor and inducer functions are resistant to all but very high concentrations in vitro. The differential sensitivity of functional T and B cell subsets to 4-HC in vitro can be a very useful probe in dissecting immunoregulatory interactions with man.

  10. Effect of lipoxygenase metabolites of arachidonic acid on proliferation of human T cells and T cell subsets.

    PubMed

    Gualde, N; Atluru, D; Goodwin, J S

    1985-02-01

    The lipoxygenase products LTB4 and 15 HPETE have been reported to stimulate T suppressor cell function and also to inhibit [3H]thymidine incorporation into mitogen-stimulated T cells. This present report documents that although these compounds do indeed inhibit [3H]thymidine incorporation into unfractionated T cells, they significantly enhance [3H]thymidine incorporation into T cell preparation enriched for cells bearing the cytotoxic suppressor cell phenotype identified by the OKT8 monoclonal antibody. The mitogen response of T cells enriched for OKT4+ helper-inducer cells is inhibited in manner similar to the response of unfractionated T cells. Thus, LTB4 and 15 HPETE stimulate both the function and the proliferation of the cytotoxic-suppressor T cell subset.

  11. Off and back-on again: a tumor suppressor's tale.

    PubMed

    Acosta, Jonuelle; Wang, Walter; Feldser, David M

    2018-06-01

    Tumor suppressor genes play critical roles orchestrating anti-cancer programs that are both context dependent and mechanistically diverse. Beyond canonical tumor suppressive programs that control cell division, cell death, and genome stability, unexpected tumor suppressor gene activities that regulate metabolism, immune surveillance, the epigenetic landscape, and others have recently emerged. This diversity underscores the important roles these genes play in maintaining cellular homeostasis to suppress cancer initiation and progression, but also highlights a tremendous challenge in discerning precise context-specific programs of tumor suppression controlled by a given tumor suppressor. Fortunately, the rapid sophistication of genetically engineered mouse models of cancer has begun to shed light on these context-dependent tumor suppressor activities. By using techniques that not only toggle "off" tumor suppressor genes in nascent tumors, but also facilitate the timely restoration of gene function "back-on again" in disease specific contexts, precise mechanisms of tumor suppression can be revealed in an unbiased manner. This review discusses the development and implementation of genetic systems designed to toggle tumor suppressor genes off and back-on again and their potential to uncover the tumor suppressor's tale.

  12. Cellular Innate Immunity: An Old Game with New Players.

    PubMed

    Gasteiger, Georg; D'Osualdo, Andrea; Schubert, David A; Weber, Alexander; Bruscia, Emanuela M; Hartl, Dominik

    2017-01-01

    Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases. © 2016 S. Karger AG, Basel.

  13. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer

    PubMed Central

    Leal, Ana S.; Sporn, Michael B.; Pioli, Patricia A.; Liby, Karen T.

    2016-01-01

    Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4–8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. PMID:27659181

  14. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4.

    PubMed

    Llitjos, Jean-François; Auffray, Cédric; Alby-Laurent, Fanny; Rousseau, Christophe; Merdji, Hamid; Bonilla, Nelly; Toubiana, Julie; Belaïdouni, Nadia; Mira, Jean-Paul; Lucas, Bruno; Chiche, Jean-Daniel; Pène, Frédéric

    2016-08-01

    Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  15. Deficiency of Kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells

    PubMed Central

    Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden

    2013-01-01

    Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434

  16. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

    PubMed Central

    Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.

    2015-01-01

    The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446

  17. Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency.

    PubMed

    Green, Kathy A; Cook, W James; Green, William R

    2013-02-01

    Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b(+) Gr-1(+) Ly6C(+)) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1-PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6G(low/±) Ly6C(+) CD11b(+)-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.

  18. Enhancement of Recombinant Protein Production in Transgenic Nicotiana benthamiana Plant Cell Suspension Cultures with Co-Cultivation of Agrobacterium Containing Silencing Suppressors.

    PubMed

    Huang, Ting-Kuo; Falk, Bryce W; Dandekar, Abhaya M; McDonald, Karen A

    2018-05-24

    We have previously demonstrated that the inducible plant viral vector (CMViva) in transgenic plant cell cultures can significantly improve the productivity of extracellular functional recombinant human alpha-1-antiryspin (rAAT) compared with either a common plant constitutive promoter ( Cauliflower mosaic virus (CaMV) 35S) or a chemically inducible promoter (estrogen receptor-based XVE) system. For a transgenic plant host system, however, viral or transgene-induced post-transcriptional gene silencing (PTGS) has been identified as a host response mechanism that may dramatically reduce the expression of a foreign gene. Previous studies have suggested that viral gene silencing suppressors encoded by a virus can block or interfere with the pathways of transgene-induced PTGS in plant cells. In this study, the capability of nine different viral gene silencing suppressors were evaluated for improving the production of rAAT protein in transgenic plant cell cultures (CMViva, XVE or 35S system) using an Agrobacterium -mediated transient expression co-cultivation process in which transgenic plant cells and recombinant Agrobacterium carrying the viral gene silencing suppressor were grown together in suspension cultures. Through the co-cultivation process, the impacts of gene silencing suppressors on the rAAT production were elucidated, and promising gene silencing suppressors were identified. Furthermore, the combinations of gene silencing suppressors were optimized using design of experiments methodology. The results have shown that in transgenic CMViva cell cultures, the functional rAAT as a percentage of total soluble protein is increased 5.7 fold with the expression of P19, and 17.2 fold with the co-expression of CP, P19 and P24.

  19. Differentiation of lymphoid cells: evidence for a B-cell specific serum suppressor.

    PubMed Central

    Kern, M

    1978-01-01

    The induction of immunoglobulin production by rabbit spleen cells is markedly inhibited by the presence of normal rabbit serum during cell culture. A similar inhibition is observed when spleen cell populations in which T cells have been inactivated are temporarily incubated with normal rabbit serum before being reconstituted with T cells by adding thymocytes. In contrast, no inhibition was observed upon temporary incubation of thymocytes with normal serum prior to addition of T cell-inactivated spleen cell populations. Removal of adherent cells did not affect the induction of immunoglobulin production or its inhibition by normal serum. Lipopolysaccharide-enhanced immunoglobin production was also inhibited by normal serum, thereby providing additional confidence that bone-marrow derived (B) cells are the target of the normal serum inhibitor. PMID:308042

  20. Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function.

    PubMed

    Nam, Sorim; Kang, Kyeongah; Cha, Jae Seon; Kim, Jung Woo; Lee, Hee Gu; Kim, Yonghwan; Yang, Young; Lee, Myeong-Sok; Lim, Jong-Seok

    2016-12-01

    Myeloid-derived suppressor cells (MDSCs) are immature cells that do not differentiate into mature myeloid cells. Two major populations of PMN-MDSCs (Ly6G high Ly6C low Gr1 high CD11b + ) and MO-MDSCs (Ly6G - Ly6C high Gr-1 int CD11b + ) have an immune suppressive function. Interferon regulatory factor 4 (IRF4) has a role in the negative regulation of TLR signaling and is associated with lymphoid cell development. However, the roles of IRF4 in myeloid cell differentiation are unclear. In this study, we found that IRF4 expression was remarkably suppressed during the development of MDSCs in the tumor microenvironment. Both the mRNA and protein levels of IRF4 in MDSCs were gradually reduced, depending on the development of tumors in the 4T1 model. siRNA-mediated knockdown of IRF4 in bone marrow cells promoted the differentiation of PMN-MDSCs. Similarly, IRF4 inhibition in bone marrow cells using simvastatin, which has been known to inhibit IRF4 expression, increased PMN-MDSC numbers. In contrast, IRF4 overexpression in bone marrow cells inhibited the total numbers of MDSCs, especially PMN-MDSCs. Notably, treatment with IL-4, an upstream regulator of IRF4, induced IRF4 expression in the bone marrow cells, and consequently, IL-4-induced IRF4 expression resulted in a decrease in PMN-MDSC numbers. Finally, we confirmed that IRF4 expression in MDSCs can modulate their activity to inhibit T cell proliferation through IL-10 production and ROS generation, and myeloid-specific deletion of IRF4 leads to the increase of MDSC differentiation. Our present findings indicate that IRF4 reduction induced by tumor formation can increase the number of MDSCs, and increases in the IRF4 expression in MDSCs may infringe on the immune-suppressive function of MDSCs. © Society for Leukocyte Biology.

  1. Metastasis Suppressor Genes: At the Interface Between the Environment and Tumor Cell Growth

    PubMed Central

    Hurst, Douglas R.; Welch, Danny R.

    2013-01-01

    The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this review, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to–from microenvironments. PMID:21199781

  2. CD14+ CD15- HLA-DR- myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure.

    PubMed

    Bernsmeier, Christine; Triantafyllou, Evangelos; Brenig, Robert; Lebosse, Fanny J; Singanayagam, Arjuna; Patel, Vishal C; Pop, Oltin T; Khamri, Wafa; Nathwani, Rooshi; Tidswell, Robert; Weston, Christopher J; Adams, David H; Thursz, Mark R; Wendon, Julia A; Antoniades, Charalambos Gustav

    2018-06-01

    Immune paresis in patients with acute-on-chronic liver failure (ACLF) accounts for infection susceptibility and increased mortality. Immunosuppressive mononuclear CD14 + HLA-DR - myeloid-derived suppressor cells (M-MDSCs) have recently been identified to quell antimicrobial responses in immune-mediated diseases. We sought to delineate the function and derivation of M-MDSC in patients with ACLF, and explore potential targets to augment antimicrobial responses. Patients with ACLF (n=41) were compared with healthy subjects (n=25) and patients with cirrhosis (n=22) or acute liver failure (n=30). CD14 + CD15 - CD11b + HLA-DR - cells were identified as per definition of M-MDSC and detailed immunophenotypic analyses were performed. Suppression of T cell activation was assessed by mixed lymphocyte reaction. Assessment of innate immune function included cytokine expression in response to Toll-like receptor (TLR-2, TLR-4 and TLR-9) stimulation and phagocytosis assays using flow cytometry and live cell imaging-based techniques. Circulating CD14 + CD15 - CD11b + HLA-DR - M-MDSCs were markedly expanded in patients with ACLF (55% of CD14+ cells). M-MDSC displayed immunosuppressive properties, significantly decreasing T cell proliferation (p=0.01), producing less tumour necrosis factor-alpha/interleukin-6 in response to TLR stimulation (all p<0.01), and reduced bacterial uptake of Escherichia coli (p<0.001). Persistently low expression of HLA-DR during disease evolution was linked to secondary infection and 28-day mortality. Recurrent TLR-2 and TLR-4 stimulation expanded M-MDSC in vitro. By contrast, TLR-3 agonism reconstituted HLA-DR expression and innate immune function ex vivo. Immunosuppressive CD14 + HLA-DR - M-MDSCs are expanded in patients with ACLF. They were depicted by suppressing T cell function, attenuated antimicrobial innate immune responses, linked to secondary infection, disease severity and prognosis. TLR-3 agonism reversed M-MDSC expansion and innate immune function and merits further evaluation as potential immunotherapeutic agent. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Reversing Breast Cancer-Induced Immune Suppression

    DTIC Science & Technology

    2014-09-01

    Species MDSC: Myeloid-Derived Suppressor Cells PI: Propidium iodide xC-: System xC- xCT: Cystine/Glutamate Antiporter Project Summary Aim 1- In...animals may live longer due to enhanced resistance to metastasis. Resistance to metastasis requires a competent immune system [27]. Since Nrf2...Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Boulden J, Sutanto-Ward E, Soler AP, Laury-Kleintop LD, Mandik-Nayak L, Metz R, Ostrand

  4. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2018-06-08

    Traditional herbal medicine has provided natural remedies against cancers and many age-related inflammatory diseases for thousands of years. Modern drug discovery techniques have revealed several active ingredients and their medicinal targets have been characterized. Concurrently, there has been great progress in understanding the pathological mechanisms underpinning cancers and inflammatory diseases. These studies have demonstrated that immature myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of cancer cells thus promoting tumor growth. Inflammatory factors stimulate the recruitment, expansion, and activation of MDSCs in tumors and inflamed tissues. The immunosuppression generated by MDSCs has an important role in the resolution of acute inflammation but in chronic inflammatory disorders, the activation of MDSCs suppresses the innate and adaptive immune responses thus aggravating the disease processes in association with tumors, chronic infections, and many degenerative diseases. Currently, MDSCs are important drug discovery targets in cancers and chronic inflammatory diseases. Interestingly, there are promising reports that certain phytochemicals can function as potent inhibitors of the immunosuppressive MDSCs that could partially explain the therapeutic benefits of herbal medicine. We will briefly describe the immune suppressive functions of MDSCs in cancers and age-related inflammatory diseases and then review in detail the chemically characterized phytochemicals of different herbal categories, e.g. flavonoids, terpenoids, retinoids, curcumins, and β-glucans, which possess the MDSC-dependent antitumor and anti-inflammatory properties. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. No Evidence That Genetic Variation in the Myeloid-Derived Suppressor Cell Pathway Influences Ovarian Cancer Survival.

    PubMed

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I; Etter, John Lewis; Eng, Kevin H; Liu, Song; Battaglia, Sebastiano; Hu, Qiang; Szender, J Brian; Minlikeeva, Albina; Joseph, Janine M; Mayor, Paul; Abrams, Scott I; Segal, Brahm H; Wallace, Paul K; Soh, Kah Teong; Zsiros, Emese; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bjorge, Line; Bruegl, Amanda; Campbell, Ian G; Campbell, Shawn Patrice; Chenevix-Trench, Georgia; Cramer, Daniel W; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Diergaarde, Brenda; Doerk, Thilo; Doherty, Jennifer A; du Bois, Andreas; Eccles, Diana; Engelholm, Svend Aage; Fasching, Peter A; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind M; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemmanns, Peter; Høgdall, Claus; Høgdall, Estrid V S; Huzarski, Tomasz; Jensen, Allan; Johnatty, Sharon E; Jung, Audrey; Karlan, Beth Y; Klapdor, Reudiger; Kluz, Tomasz; Konopka, Bożena; Kjær, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lester, Jenny; Lubiński, Jan; Levine, Douglas A; Lundvall, Lene; McGuire, Valerie; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Ness, Roberta B; Orsulic, Sandra; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pharoah, Paul; Ramus, Susan J; Rothstein, Joseph; Rossing, Mary Anne; Rübner, Matthias; Schildkraut, Joellen M; Schmalfeldt, Barbara; Schwaab, Ira; Siddiqui, Nadeem; Sieh, Weiva; Sobiczewski, Piotr; Song, Honglin; Terry, Kathryn L; Van Nieuwenhuysen, Els; Vanderstichele, Adriaan; Vergote, Ignace; Walsh, Christine S; Webb, Penelope M; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Ziogas, Argyrios; Odunsi, Kunle; Chang-Claude, Jenny; Goode, Ellen L; Moysich, Kirsten B

    2017-03-01

    Background: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immunosuppressive/protumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be a prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. Methods: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association Study and the admixture likelihood method were used to test gene and pathway associations with survival. Results: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing ( P < 3.5 × 10 -5 ), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. Conclusions: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. Impact: Common inherited variation in genes relevant to MDSCs was not associated with survival in women diagnosed with invasive EOC. Cancer Epidemiol Biomarkers Prev; 26(3); 420-4. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice

    DOE PAGES

    Jeanbart, Laura; Kourtis, Iraklis C.; van der Vlies, André J.; ...

    2015-05-16

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c hi Ly6g ₋monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 daysmore » post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c lo Ly6g + granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1 int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c hi macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8 + T cells in melanoma cells expressing OVA. Ultimately, these findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.« less

  7. 6-Thioguanine-loaded polymeric micelles deplete myeloid-derived suppressor cells and enhance the efficacy of T cell immunotherapy in tumor-bearing mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanbart, Laura; Kourtis, Iraklis C.; van der Vlies, André J.

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress effector T cell responses and can reduce the efficacy of cancer immunotherapies. We previously showed that ultra-small polymer nanoparticles efficiently drain to the lymphatics after intradermal injection and target antigen-presenting cells, including Ly6c hi Ly6g ₋monocytic MDSCs (Mo-MDSCs), in skin-draining lymph nodes (LNs) and spleen. Here, we developed ultra-small polymer micelles loaded with 6-thioguanine (MC-TG), a cytotoxic drug used in the treatment of myelogenous leukemia, with the aim of killing Mo-MDSCs in tumor-bearing mice and thus enhancing T cell-mediated anti-tumor responses. We found that 2 daysmore » post-injection in tumor-bearing mice (B16-F10 melanoma or E.G7-OVA thymoma), MC-TG depleted Mo-MDSCs in the spleen, Ly6c lo Ly6g + granulocytic MDSCs (G-MDSCs) in the draining LNs, and Gr1 int Mo-MDSCs in the tumor. In both tumor models, MC-TG decreased the numbers of circulating Mo- and G-MDSCs, as well as of Ly6c hi macrophages, for up to 7 days following a single administration. MDSC depletion was dose dependent and more effective with MC-TG than with equal doses of free TG. Finally, we tested whether this MDSC-depleting strategy might enhance cancer immunotherapies in the B16-F10 melanoma model. We found that MC-TG significantly improved the efficacy of adoptively transferred, OVA-specific CD8 + T cells in melanoma cells expressing OVA. Ultimately, these findings highlight the capacity of MC-TG in depleting MDSCs in the tumor microenvironment and show promise in promoting anti-tumor immunity when used in combination with T cell immunotherapies.« less

  8. Tadalafil Reduces Myeloid-Derived Suppressor Cells and Regulatory T Cells and Promotes Tumor Immunity in Patients with Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Vella, Jennifer L.; Reis, Isildinha M.; De la fuente, Adriana C.; Gomez, Carmen; Sargi, Zoukaa; Nazarian, Ronen; Califano, Joseph; Borrello, Ivan

    2015-01-01

    Purpose Myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) play a key role in the progression of head and neck squamous cell carcinoma (HNSCC). On the basis of our preclinical data demonstrating that phosphodiesterase-5 (PDE5) inhibition can modulate these cell populations, we evaluated whether the PDE5 inhibitor tadalafil can revert tumor-induced immunosuppression and promote tumor immunity in patients with HNSCC. Experimental Design First, we functionally and phenotypically characterized MDSCs in HNSCCs and determined, retrospectively, whether their presence at the tumor site correlates with recurrence. Then, we performed a prospective single-center, double-blinded, randomized, three-arm study in which patients with HNSCC undergoing definitive surgical resection of oral and oropharyngeal tumors were treated with tadalafil 10 μg/day, 20 μg/day, or placebo for at least 20 days preoperatively. Blood and tumor MDSC and Treg presence and CD8+ T-cell reactivity to tumor antigens were evaluated before and after treatment. Results MDSCs were characterized in HNSCC and their intratumoral presence significantly correlates with recurrence. Tadalafil treatment was well tolerated and significantly reduced both MDSCs and Treg concentrations in the blood and in the tumor (P < 0.05). In addition, the concentration of blood CD8+ T cells reactive to autologous tumor antigens significantly increased after treatment (P < 0.05). Tadalafil immunomodulatory activity was maximized at an intermediate dose but not at higher doses. Mechanistic analysis suggests a possible off-target effect on PDE11 at high dosages that, by increasing intracellular cAMP, may negatively affect antitumor immunity. Conclusions Tadalafil seems to beneficially modulate the tumor micro- and macro-environment in patients with HNSCC by lowering MDSCs and Tregs and increasing tumor-specific CD8+ T cells in a dose-dependent fashion. PMID:25320361

  9. Critical role of mast cells and peroxisome proliferator-activated receptor gamma (PPARγ) in the induction of myeloid-derived suppressor cells by marijuana cannabidiol in vivo

    PubMed Central

    Hegde, Venkatesh L.; Singh, Udai P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2015-01-01

    Cannabidiol (CBD) is a natural non-psychotropic cannabinoid from marijuana (Cannabis sativa) with anti-epileptic and anti-inflammatory properties. Effect of CBD on naïve immune system is not precisely understood. In this study, we observed that administering CBD into naïve mice triggers robust induction of CD11b+Gr-1+ MDSC in the peritoneum, which expressed functional Arg1, and potently suppressed T cell proliferation ex vivo. Further, CBD-MDSC suppressed LPS-induced acute inflammatory response upon adoptive transfer in vivo. CBD-induced suppressor cells were comprised of CD11b+Ly6-G+Ly6-C+ granulocytic and CD11b+Ly6-G−Ly6-C+ monocytic subtypes, with monocytic MDSC exhibiting higher T cell suppressive function. Induction of MDSC by CBD was markedly attenuated in Kit-mutant (KitW/W-v) mast cell-deficient mice. MDSC response was reconstituted upon transfer of WT bone marrow-derived mast cells in KitW/W-v mice suggesting the key role of cKit (CD117) as well as mast cells. Moreover, mast cell activator compound 48/80 induced significant levels of MDSC in vivo. CBD administration in mice induced G-CSF, CXCL1 and M-CSF, but not GM-CSF. G-CSF was found to play a key role in MDSC mobilization inasmuch as neutralizing G-CSF caused a significant decrease in MDSC. Lastly, CBD enhanced the transcriptional activity of PPARγ in luciferase reporter assay, and PPARγ selective antagonist completely inhibited MDSC induction in vivo suggesting its critical role. Together, the results suggest that CBD may induce activation of PPARγ in mast cells leading to secretion of G-CSF and consequent MDSC mobilization. CBD being a major component of Cannabis, our study indicates that marijuana may modulate or dysregulate the immune system by mobilizing MDSC. PMID:25917103

  10. Novel role of prostate apoptosis response-4 tumor suppressor in B-cell chronic lymphocytic leukemia.

    PubMed

    McKenna, Mary K; Noothi, Sunil K; Alhakeem, Sara S; Oben, Karine Z; Greene, Joseph T; Mani, Rajeswaran; Perry, Kathryn L; Collard, James P; Rivas, Jacqueline R; Hildebrandt, Gerhard; Fleischman, Roger; Durbin, Eric B; Byrd, John C; Wang, Chi; Muthusamy, Natarajan; Rangnekar, Vivek M; Bondada, Subbarao

    2018-04-25

    Prostate apoptosis response-4 (Par-4), a pro-apoptotic tumor suppressor protein, is down regulated in many cancers including renal cell carcinoma, glioblastoma, endometrial and breast cancer. Par-4 induces apoptosis selectively in various types of cancer cells but not normal cells. We found that chronic lymphocytic leukemia (CLL) cells from human patients and from the Eµ-Tcl1 mice constitutively express Par-4 in greater amounts than normal B-1 or B-2 cells. Interestingly, knockdown of Par-4 in human CLL derived Mec-1 cells results in a robust increase in p21/WAF1 expression and decreased growth due to delayed G1 to S cell cycle transition. Lack of Par-4 also increased the expression of p21 and delayed CLL growth in Eμ-Tcl1 mice. Par-4 expression in CLL cells required constitutively active B-cell receptor (BCR) signaling, as inhibition of BCR signaling with FDA approved drugs caused a decrease in Par-4 mRNA and protein, and an increase in apoptosis. In particular, activities of Lyn, a Src family kinase, spleen tyrosine kinase and Bruton's tyrosine kinase are required for Par-4 expression in CLL cells, suggesting a novel regulation of Par-4 through BCR signaling. Together, these results suggest that Par-4 may play a novel pro-growth rather than pro-apoptotic role in CLL and could be targeted to enhance the therapeutic effects of BCR signaling inhibitors. Copyright © 2018 American Society of Hematology.

  11. Human Myeloid-derived Suppressor Cells are Associated With Chronic Immune Suppression After Severe Sepsis/Septic Shock.

    PubMed

    Mathias, Brittany; Delmas, Amber L; Ozrazgat-Baslanti, Tezcan; Vanzant, Erin L; Szpila, Benjamin E; Mohr, Alicia M; Moore, Frederick A; Brakenridge, Scott C; Brumback, Babette A; Moldawer, Lyle L; Efron, Philip A

    2017-04-01

    We hypothesized that after sepsis in humans, MDSCs will be persistently increased, functionally immunosuppressive, and associated with adverse clinical outcomes. Cancer and sepsis have surprisingly similar immunologic responses and equally dismal long term consequences. In cancer, increased myeloid-derived suppressor cells (MDSCs) induce detrimental immunosuppression, but little is known about the role of MDSCs after sepsis. Blood was obtained from 74 patients within 12 hours of severe sepsis/septic shock (SS/SS), and at set intervals out to 28 days, and also in 18 healthy controls. MDSCs were phenotyped for cell surface receptor expression and enriched by cell sorting. Functional and genome-wide expression analyses were performed. Multiple logistic regression analysis was conducted to determine if increased MDSC appearance was associated with in-hospital and long-term outcomes. After SS/SS, CD33CD11bHLA-DR MDSCs were dramatically increased out to 28 days (P < 0.05). When co-cultured with MDSCs from SS/SS patients, antigen-driven T-cell proliferation and TH1/TH2 cytokine production were suppressed (P < 0.05). Additionally, septic MDSCs had suppressed HLA gene expression and up-regulated ARG1 expression (P < 0.05). Finally, SS/SS patients with persistent increased percentages of blood MDSCs had increased nosocomial infections, prolonged intensive care unit stays, and poor functional status at discharge (P < 0.05). After SS/SS in humans, circulating MDSCs are persistently increased, functionally immunosuppressive, and associated with adverse outcomes. This novel observation warrants further studies. As observed in cancer immunotherapy, MDSCs could be a novel component in multimodality immunotherapy targeting detrimental inflammation and immunosuppression after SS/SS to improve currently observed dismal long-term outcomes.

  12. Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells predict response to neoadjuvant short-course radiotherapy in rectal cancer patients

    PubMed Central

    Napolitano, Maria; D'Alterio, Crescenzo; Cardone, Eleonora; Trotta, Anna Maria; Pecori, Biagio; Rega, Daniela; Pace, Ugo; Scala, Dario; Scognamiglio, Giosuè; Tatangelo, Fabiana; Cacciapuoti, Carmela; Pacelli, Roberto; Delrio, Paolo; Scala, Stefania

    2015-01-01

    Short-course preoperative radiotherapy (SC-RT) followed by total mesorectal excision (TME) is one therapeutic option for locally advanced rectal cancer (LARC) patients. Since radio-induced DNA damage may affect tumor immunogenicity, Myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs) were evaluated in 13 patients undergoing SC-RT and TME for LARC. Peripheral Granulocytic-MDSCs (G-MDSC) [LIN−/HLA-DR−/CD11b+/CD14−/CD15+/CD33+], Monocytic (M-MDSC) [CD14+/HLA-DR−/lowCD11b+/CD33+] and Tregs [CD4+/CD25hi+/FOXP3+- CTLA-4/PD1] basal value was significantly higher in LARC patients compared to healthy donors (HD). Peripheral MDSC and Tregs were evaluated at time 0 (T0), after 2 and 5 weeks (T2-T5) from radiotherapy; before surgery (T8) and 6–12 months after surgery (T9, T10). G-MDSC decreased at T5 and further at T8 while M-MDSC cells decreased at T5; Tregs reached the lowest value at T5. LARC poor responder patients displayed a major decrease in M-MDSC after SC-RT and an increase of Treg-PD-1. In this pilot study MDSCs and Tregs decrease during the SC-RT treatment could represent a biomarker of response in LARC patients. Further studies are needed to confirm that the deepest M-MDSC reduction and increase in Treg-PD1 cells within 5–8 weeks from the beginning of treatment could discriminate LARC patients poor responding to SC-RT. PMID:25823653

  13. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence.

    PubMed

    Heim, Cortney E; Vidlak, Debbie; Odvody, Jessica; Hartman, Curtis W; Garvin, Kevin L; Kielian, Tammy

    2017-11-15

    Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33 + HLA-DR - CD66b + CD14 -/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. A novel role for an RCAN3-derived peptide as a tumor suppressor in breast cancer.

    PubMed

    Martínez-Høyer, Sergio; Solé-Sánchez, Sònia; Aguado, Fernando; Martínez-Martínez, Sara; Serrano-Candelas, Eva; Hernández, José Luis; Iglesias, Mar; Redondo, Juan Miguel; Casanovas, Oriol; Messeguer, Ramon; Pérez-Riba, Mercè

    2015-07-01

    The members of the human regulators of calcineurin (RCAN) protein family are endogenous regulators of the calcineurin (CN)-cytosolic nuclear factor of activated T-cells (NFATc) pathway activation. This function is explained by the presence of a highly conserved calcipressin inhibitor of calcineurin (CIC) motif in RCAN proteins, which has been shown to compete with NFATc for the binding to CN and therefore are able to inhibit NFATc dephosphorylation and activation by CN. Very recently, emerging roles for NFATc proteins in transformation, tumor angiogenesis and metastasis have been described in different cancer cell types. In this work, we report that the overexpression of RCAN3 dramatically inhibits tumor growth and tumor angiogenesis in an orthotopic human breast cancer model. We suggest that RCAN3 exerts these effects in a CN-dependent manner, as mutation of the CIC motif in RCAN3 abolishes the tumor suppressor effect. Moreover, the expression of the EGFP-R3(178-210) peptide, spanning the CIC motif of RCAN3, is able to reproduce all the antitumor effects of RCAN3 full-length protein. Finally, we show that RCAN3 and the EGFP-R3(178-210) peptide inhibit the CN-NFATc signaling pathway and the induction of the NFATc-dependent gene cyclooxygenase-2. Our work suggests that the EGFP-R3(178-210) peptide possess potent tumor suppressor properties and therefore constitutes a novel lead for the development of potent and specific antitumoral agents. Moreover, we propose the targeting of the CN-NFATc pathway in the tumor cells constitutes an effective way to hamper tumor progression by impairing the paracrine network among tumor, endothelial and polymorphonucleated cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss.

    PubMed

    Cunningham, Steven C; Gallmeier, Eike; Hucl, Tomas; Dezentje, David A; Calhoun, Eric S; Falco, Geppino; Abdelmohsen, Kotb; Gorospe, Myriam; Kern, Scott E

    2006-06-01

    Tumor-suppressors have commanded attention due to the selection for their inactivating mutations in human tumors. However, relatively little is understood about the inverse, namely, that tumors do not select for a large proportion of seemingly favorable mutations in tumor-suppressor genes. This could be explained by a detrimental phenotype accruing in a cell type-specific manner to most cells experiencing a biallelic loss. For example, MKK4, a tumor suppressor gene distinguished by a remarkably consistent mutational rate across diverse tumor types and an unusually high rate of loss of heterozygosity, has the surprisingly low rate of genetic inactivation of only approximately 5%. To explore this incongruity, we engineered a somatic gene knockout of MKK4 in human cancer cells. Although the null cells resembled the wild-type cells regarding in vitro viability and proliferation in plastic dishes, there was a marked difference in a more relevant in vivo model of experimental metastasis and tumorigenesis. MKK4(-/-) clones injected i.v. produced fewer lung metastases than syngeneic MKK4-competent cells (P = 0.0034). These findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.

  16. PHTS, a novel putative tumor suppressor, is involved in the transformation reversion of HeLaHF cells independently of the p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Dehua; Fan, Wufang; Liu, Guohong

    2006-04-01

    HeLaHF is a non-transformed revertant of HeLa cells, likely resulting from the activation of a putative tumor suppressor(s). p53 protein was stabilized in this revertant and reactivated for certain transactivation functions. Although p53 stabilization has not conclusively been linked to the reversion, it is clear that the genes in p53 pathway are involved. The present study confirms the direct role of p53 in HeLaHF reversion by demonstrating that RNAi-mediated p53 silencing partially restores anchorage-independent growth potential of the revertant through the suppression of anoikis. In addition, we identified a novel gene, named PHTS, with putative tumor suppressor properties, and showedmore » that this gene is also involved in HeLaHF reversion independently of the p53 pathway. Expression profiling revealed that PHTS is one of the genes that is up-regulated in HeLaHF but not in HeLa. It encodes a putative protein with CD59-like domains. RNAi-mediated PHTS silencing resulted in the partial restoration of transformation (anchorage-independent growth) in HeLaHF cells, similar to that of p53 gene silencing, implying its tumor suppressor effect. However, the observed increased transformation potential by PHTS silencing appears to be due to an increased anchorage-independent proliferation rate rather than suppression of anoikis, unlike the effect of p53 silencing. p53 silencing did not affect PHTS gene expression, and vice versa, suggesting PHTS may function in a new and p53-independent tumor suppressor pathway. Furthermore, over-expression of PHTS in different cancer cell lines, in addition to HeLa, reduces cell growth likely via induced apoptosis, confirming the broad PHTS tumor suppressor properties.« less

  17. Spatially selective depleting tumor-associated negative regulatory T-(Treg) cells with near infrared photoimmunotherapy (NIR-PIT): A new cancer immunotherapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new type of molecularly-targeted photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (MAb) targeting target-specific cell-surface molecules. When exposed to NIR light, the conjugate rapidly induces a highly-selective cell death only in receptor-positive, MAb-IR700-bound cells. Current immunotherapies for cancer seek to modulate the balance among different immune cell populations, thereby promoting anti-tumor immune responses. However, because these are systemic therapies, they often cause treatment-limiting autoimmune adverse effects. It would be ideal to manipulate the balance between suppressor and effector cells within the tumor without disturbing homeostasis elsewhere in the body. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are well-known immune-suppressor cells that play a key role in tumor immuno-evasion and have been the target of systemic immunotherapies. We used CD25-targeted NIR-PIT to selectively deplete Tregs, thus activating CD8+ T and NK cells and restoring local anti-tumor immunity. This not only resulted in regression of the treated tumor but also induced responses in separate untreated tumors of the same cell-line derivation. We conclude that CD25-targeted NIR-PIT causes spatially selective depletion of Tregs, thereby providing an alternative approach to cancer immunotherapy that can treat not only local tumors but also distant metastatic tumors.

  18. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy.

    PubMed

    Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo . Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.

  19. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy

    PubMed Central

    Liechtenstein, Therese; Perez-Janices, Noemi; Blanco-Luquin, Idoia; Goyvaerts, Cleo; Schwarze, Julia; Dufait, Ines; Lanna, Alessio; Ridder, Mark De; Guerrero-Setas, David; Breckpot, Karine; Escors, David

    2014-01-01

    Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities. PMID:25954597

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.A.; Chaput, A.; Tutton, D.

    The mammalian fetus has been viewed as an unusually successful type of allograft and unexplained spontaneous abortion as a possible example of maternal rejection. Previous studies have shown the presence of small lymphocytic suppressor cells in the murine decidua which block the generation and reactivation of anti-paternal cytotoxic T lymphocytes (CTL) and lymphokine-activated killer cells (LAK) by elaborating a factor that inhibits the response to interleukin 2 (IL 2). A deficiency of these suppressor cells was associated with implants of xenogeneic Mus caroli embryos in the Mus musculus uterus which are infiltrated by maternal lymphoid cells and aborted. A deficiencymore » of such suppressor cells in the lymph nodes draining the uterus of CBA/J females in the process of aborting their semi-allogeneic CBA x DBA/2 F/sub 1/ progeny has also been shown. CBA/J females possess significantly lower levels of decidua-associated non-T suppressor cells on day 8.5 to 10.5 of allopregnancy than do mothers that will produce large litters of live babies. The F/sub 1/ embryos are infiltrated by maternal lymphocytes prior to abortion, and the infiltration and abortion rate appears to be augmented by pre-immunization with paternal DBA/2 spleen cells. The CBA/J x DBA/2J mating combination provides a model of spontaneous abortion in which immunologic factors play an important role and demonstrates that the association between deficiency of decidua-associated suppressor cells and xenopregnancy failure also holds true for the failure of allopregnancies resulting from natural within-species mating.« less

  1. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.

    PubMed

    Sica, Antonio; Porta, Chiara; Amadori, Alberto; Pastò, Anna

    2017-08-01

    Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.

  2. Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment.

    PubMed

    Nakamura, Kyohei; Kassem, Sahar; Cleynen, Alice; Chrétien, Marie-Lorraine; Guillerey, Camille; Putz, Eva Maria; Bald, Tobias; Förster, Irmgard; Vuckovic, Slavica; Hill, Geoffrey R; Masters, Seth L; Chesi, Marta; Bergsagel, P Leif; Avet-Loiseau, Hervé; Martinet, Ludovic; Smyth, Mark J

    2018-04-09

    Tumor-promoting inflammation and avoiding immune destruction are hallmarks of cancer. Here, we demonstrate that the pro-inflammatory cytokine interleukin (IL)-18 is critically involved in these hallmarks in multiple myeloma (MM). Mice deficient for IL-18 were remarkably protected from Vk ∗ MYC MM progression in a CD8 + T cell-dependent manner. The MM-niche-derived IL-18 drove generation of myeloid-derived suppressor cells (MDSCs), leading to accelerated disease progression. A global transcriptome analysis of the immune microenvironment in 73 MM patients strongly supported the negative impact of IL-18-driven MDSCs on T cell responses. Strikingly, high levels of bone marrow plasma IL-18 were associated with poor overall survival in MM patients. Furthermore, our preclinical studies suggested that IL-18 could be a potential therapeutic target in MM. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Problems in mechanistic theoretical models for cell transformation by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, A.; Holley, W.R.

    1991-10-01

    A mechanistic model based on yields of double strand breaks has been developed to determine the dose response curves for cell transformation frequencies. At its present stage the model is applicable to immortal cell lines and to various qualities (X-rays, Neon and Iron) of ionizing radiation. Presently, we have considered four types of processes which can lead to activation phenomena: (1) point mutation events on a regulatory segment of selected oncogenes, (2) inactivation of suppressor genes, through point mutation, (3) deletion of a suppressor gene by a single track, and (4) deletion of a suppressor gene by two tracks.

  4. The metastasis suppressor RARRES3 as an endogenous inhibitor of the immunoproteasome expression in breast cancer cells

    NASA Astrophysics Data System (ADS)

    Anderson, Alison M.; Kalimutho, Murugan; Harten, Sarah; Nanayakkara, Devathri M.; Khanna, Kum Kum; Ragan, Mark A.

    2017-01-01

    In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.

  5. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Heyu; Nan, Xu; Li, Xuefen

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 wasmore » down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.« less

  6. Human monocyte-derived suppressor cells control graft-versus-host disease by inducing regulatory forkhead box protein 3-positive CD8+ T lymphocytes.

    PubMed

    Janikashvili, Nona; Trad, Malika; Gautheron, Alexandrine; Samson, Maxime; Lamarthée, Baptiste; Bonnefoy, Francis; Lemaire-Ewing, Stéphanie; Ciudad, Marion; Rekhviashvili, Khatuna; Seaphanh, Famky; Gaugler, Béatrice; Perruche, Sylvain; Bateman, Andrew; Martin, Laurent; Audia, Sylvain; Saas, Philippe; Larmonier, Nicolas; Bonnotte, Bernard

    2015-06-01

    Adoptive transfer of immunosuppressive cells has emerged as a promising strategy for the treatment of immune-mediated disorders. However, only a limited number of such cells can be isolated from in vivo specimens. Therefore efficient ex vivo differentiation and expansion procedures are critically needed to produce a clinically relevant amount of these suppressive cells. We sought to develop a novel, clinically relevant, and feasible approach to generate ex vivo a subpopulation of human suppressor cells of monocytic origin, referred to as human monocyte-derived suppressive cells (HuMoSCs), which can be used as an efficient therapeutic tool to treat inflammatory disorders. HuMoSCs were generated from human monocytes cultured for 7 days with GM-CSF and IL-6. The immune-regulatory properties of HuMoSCs were investigated in vitro and in vivo. The therapeutic efficacy of HuMoSCs was evaluated by using a graft-versus-host disease (GvHD) model of humanized mice (NOD/SCID/IL-2Rγc(-/-) [NSG] mice). CD33+ HuMoSCs are highly potent at inhibiting the proliferation and activation of autologous and allogeneic effector T lymphocytes in vitro and in vivo. The suppressive activity of these cells depends on signal transducer and activator of transcription 3 activation. Of therapeutic relevance, HuMoSCs induce long-lasting memory forkhead box protein 3-positive CD8+ regulatory T lymphocytes and significantly reduce GvHD induced with human PBMCs in NSG mice. Ex vivo-generated HuMoSCs inhibit effector T lymphocytes, promote the expansion of immunosuppressive forkhead box protein 3-positive CD8+ regulatory T cells, and can be used as an efficient therapeutic tool to prevent GvHD. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Georgy, Smitha R.; Cangkrama, Michael; Srivastava, Seema; Partridge, Darren; Auden, Alana; Dworkin, Sebastian; McLean, Catriona A.; Darido, Charbel

    2015-01-01

    Background: The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). Methods: We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 ∆/– /K14Cre +) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student’s t tests. Results: Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 103 vs GRHL3-kd, 1194±44 X 103, P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 103, P = .003) and human HNSCC cells. Conclusions: We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network. PMID:26063791

  8. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells

    PubMed Central

    Xiao, Peng; Wan, Xiaopeng; Cui, Bijun; Liu, Yang; Qiu, Chenyang; Rong, Jiabing; Zheng, Mingzhu; Song, Yinjing; Chen, Luoquan; He, Jia; Tan, Qinchun; Wang, Xiaojia; Shao, Xiying; Liu, Yuhua; Cao, Xuetao; Wang, Qingqing

    2016-01-01

    ABSTRACT Tumor-induced, myeloid-derived suppressor cells (MDSCs)-mediated immune dysfunction is an important mechanism that leads to tumor immune escape and the inefficacy of cancer immunotherapy. Importantly, tumor-infiltrating MDSCs have much stronger ability compared to MDSCs in the periphery. However, the mechanisms that tumor microenvironment induces the accumulation and function of MDSCs are poorly understood. Here, we report that Interleukin-33 (IL-33) – a cytokine which can be abundantly released in tumor tissues both in 4T1-bearing mice and breast cancer patients, is crucial for facilitating the expansion of MDSCs. IL-33 in tumor microenvironment reduces the apoptosis and sustains the survival of MDSCs through induction of autocrine secretion of GM-CSF, which forms a positive amplifying loop for MDSC accumulation. This is in conjunction with IL-33-driven induction of arginase-1 expression and activation of NF-κB and MAPK signaling in MDSCs which augments their immunosuppressive ability, and histone modifications were involved in IL-33 signaling in MDSCs. In ST2−/− mice, the defect of IL-33 signaling in MDSCs attenuates the immunosuppressive and pro-tumoral capacity of MDSCs. Our results identify IL-33 as a critical mediator that contributes to the abnormal expansion and enhanced immunosuppressive function of MDSCs within tumor microenvironment, which can be potentially targeted to reverse MDSC-mediated tumor immune evasion. PMID:26942079

  9. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Desai, Omkar; Winkler, Julia; Minasyan, Maksym; Herzog, Erica L.

    2018-01-01

    The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area. PMID:29616220

  10. Characteristics of DTH suppressor cells in mice infected with Candida albicans.

    PubMed

    Valdez, J C; Mesón, O E; Sirena, A; de Alderete, N G

    1987-05-01

    Inoculation of 10(8) C. albicans intraperitoneally into Balb/c mice at given dosage was reported to induce suppression of antigen-specific delayed-type hypersensitivity. Adoptive transfer of spleen cells into normal syngeneic mice pre-treated with Cyclophosphamide confirmed the existence of suppressor cells in mice. Such cells were sensitive to treatment with anti-theta serum and complement, non-adherent to Sephadex G-10. A pretreatment of the mice with Cyclophosphamide eliminated DTH suppression. Treatment with antimacrophage agents via intraperitoneal abrogated suppression only if being effected before inoculation of alive 10(8) Candida albicans. It is concluded that the spleen suppressor cell is a T-lymphocyte whose precursor is Cyclophosphamide-sensitive, requiring the macrophage to be induced.

  11. The roles of cell adhesion molecules in tumor suppression and cell migration: a new paradox.

    PubMed

    Moh, Mei Chung; Shen, Shali

    2009-01-01

    In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.

  12. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis | Center for Cancer Research

    Cancer.gov

    We demonstrate a novel tumor-promoting role of myeloid immune suppressor Gr+CD11b+ cells, which are evident in cancer patients and tumor-bearing animals. These cells constitute approximately 5% of total cells in tumors. Tumors coinjected with Gr+CD11b+ cells exhibited increased vascular density, vascular maturation, and decreased necrosis. These immune cells produce high

  13. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  14. Suppression of unprimed T and B cells in antibody responses by irradiation-resistant and plastic-adherent suppressor cells in Toxoplasma gondii-infected mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Y.; Kobayashi, A.

    1983-04-01

    In the acute phase of Toxoplasma infection, the function of both helper T and B cells was suppressed in primary antibody responses to dinitrophenol (DNP)-conjugated protein antigens. During the course of infection, the suppressive effect on T cells seems to continue longer than that on B cells, since suppression in responses to sheep erythrocytes, a T-dependent antigen, persisted longer than those to DNP-Ficoll, a T-independent antigen. Plastic-adherent cells from the spleens of Toxoplasma-infected and X-irradiated (400 rads) mice had strong suppressor activity in primary anti-sheep erythrocyte antibody responses of normal mouse spleen cells in vitro. These data suggest that themore » activation of irradiation-resistant and plastic-adherent suppressor cells causes the suppression of both T and B cells in Toxoplasma-infected mice.« less

  15. IRF-8 Controls Melanoma Progression by Regulating the Cross Talk between Cancer and Immune Cells within the Tumor Microenvironment12

    PubMed Central

    Mattei, Fabrizio; Schiavoni, Giovanna; Sestili, Paola; Spadaro, Francesca; Fragale, Alessandra; Sistigu, Antonella; Lucarini, Valeria; Spada, Massimo; Sanchez, Massimo; Scala, Stefania; Battistini, Angela; Belardelli, Filippo; Gabriele, Lucia

    2012-01-01

    The transcription factor interferon regulatory factor-8 (IRF-8) is crucial for myeloid cell development and immune response and also acts as a tumor suppressor gene. Here, we analyzed the role of IRF-8 in the cross talk between melanoma cells and tumor-infiltrating leukocytes. B16-F10 melanoma cells transplanted into IRF-8-deficient (IRF-8-/-) mice grow more rapidly, leading to higher numbers of lung metastasis, with respect to control animals. These events correlated with reduced dendritic cell and T cell infiltration, accumulation of myeloid-derived suppressor cells and a chemokine/chemokine receptor expression profile within the tumor microenvironment supporting tumor growth, angiogenesis, and metastasis. Noticeably, primary tumors developing in IRF-8-/- mice displayed a clear-cut inhibition of IRF-8 expression in melanoma cells. Injection of the demethylating agent 5-aza-2′-deoxycytidine into melanoma-bearing IRF-8-/- animals induced intratumoral IRF-8 expression and resulted in the re-establishment of a chemokine/ chemokine receptor pattern favoring leukocyte infiltration and melanoma growth arrest. Importantly, intrinsic IRF-8 expression was progressively down-modulated during melanoma growth in mice and in human metastatic melanoma cells with respect to primary tumors. Lastly, IRF-8 expression in melanoma cells was directly modulated by soluble factors, among which interleukin-27 (IL-27), released by immune cells from tumor-bearing mice. Collectively, these results underscore a key role of IRF-8 in the cross talk between melanoma and immune cells, thus revealing its critical function within the tumor microenvironment in regulating melanoma progression and invasiveness. PMID:23308054

  16. Cellular basis for neonatally induced T-suppressor activity. Primary B cell maturation is blocked by suppressor-helper interactions restricted by loci on chromosome 12

    PubMed Central

    1985-01-01

    The cellular mechanism and genetic restriction of neonatally induced HA- specific suppressor T (Ts) cells have been examined. The in vivo effect of these Ts cells on antibody production, primary B cell proliferation, B cell surface marker changes, and helper T (Th) cell priming during primary responses to HA have been determined. The results indicate that, although antigen-induced B cell proliferative responses and surface marker changes occur in the presence of Ts cells, differentiation to Ig secretion, and long-lived memory B cell production are prevented. Further, antigen-specific Th cell priming is completely ablated by Ts cells, suggesting that Ts act by preventing the delivery of Th signals required for both the later stages of primary B cell maturation, and the formation of memory B cell populations. Finally, in vivo cell mixing experiments using congenic mice indicate that this Ts-Th interaction is restricted by loci on mouse chromosome 12. PMID:2580040

  17. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro.

    PubMed

    Kitamura, Hiroshi; Saito, Natsuko; Fujimoto, Junpei; Nakashima, Ken-Ichi; Fujikura, Daisuke

    2018-05-02

    Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. Intraperitoneal treatment of PEE induces CD11b + , Gr-1 + myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation. Given the strong anti-inflammatory action of MDSCs, the induction of MDSCs by PEE and kaempferol is expected to be useful for anti-diabetic and anti-inflammatory therapies.

  18. PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells

    PubMed Central

    He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi

    2012-01-01

    Human FOXP3+CD25+CD4+ regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4+ T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function. PMID:23169000

  19. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

    PubMed

    Keckesova, Zuzana; Donaher, Joana Liu; De Cock, Jasmine; Freinkman, Elizaveta; Lingrell, Susanne; Bachovchin, Daniel A; Bierie, Brian; Tischler, Verena; Noske, Aurelia; Okondo, Marian C; Reinhardt, Ferenc; Thiru, Prathapan; Golub, Todd R; Vance, Jean E; Weinberg, Robert A

    2017-03-30

    Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  20. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    PubMed

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway.

    PubMed

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-11-01

    Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs. © 2015 John Wiley & Sons Ltd.

  2. Immunodeficiency with thymoma: failure to induce Ig production in immunodeficient lymphocytes cocultured with normal T cells. [X radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, S.D.

    Blood mononuclear cells of two individuals having immunodeficiency with thymoma (ID-THY) were cocultured with normal mononuclear cells or treated mononuclear cell fractions in an attempt to correct an imbalance of regulatory cells postulated to be responsible for the failure of pokeweed mitogen-induced Ig synthesis in vitro. Treatment included abrogation of suppressor cell activity by irradiation or incubation with prednisolone in vitro. T cell help was provided by cocultivating lymphocytes of related and unrelated persons, and in some cases autologous treated cells. Ig secretion failed to be induced by any experimental maneuver suggesting that the primary problem in the above ID-THYmore » cells was related to defective or deficient B cells rather than an imbalance of T regulatory cells. Prednisolone treatment in vitro decreased suppressor cell activity in allogeneic cocultures of two ID-THY persons (S1 and S2) but not of an individual (S3) with variable immunodeficiency suggesting heterogeneity of suppressor cells.« less

  3. Psychological stress is associated with altered levels of myeloid-derived suppressor cells in breast cancer patients.

    PubMed

    Mundy-Bosse, Bethany L; Thornton, Lisa M; Yang, Hae-Chung; Andersen, Barbara L; Carson, William E

    2011-01-01

    Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stages II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 μg/dl vs. 9.74 μg/dl). Levels of IL-1Rα were also significantly elevated in the higher IES group (45.09 pg/ml vs. 97.16 pg/ml; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, vs. 27.3% in patients with low IES scores. Additional analyzes of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = 0.064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Psychological Stress is Associated with Altered Levels of Myeloid-Derived Suppressor cells in Breast Cancer Patients

    PubMed Central

    Mundy-Bosse, Bethany L.; Thornton, Lisa M.; Yang, Hae-Chung; Andersen, Barbara L.; Carson, William E.

    2011-01-01

    Our group has shown in a randomized clinical trial that psychological intervention to reduce stress in patients with stage II and III breast cancer led to enhanced immune function, fewer recurrences and improved overall survival. We hypothesized that patients with high levels of stress would have alterations in myeloid-derived suppressor cells (MDSC) compared to patients with lower stress. PBMC from 16 patients with high stress (n = 8) or with low stress (n = 8) after surgery as measured by the Impact of Event Scale (IES) questionnaire were evaluated for the presence of MDSC. Patients with higher IES scores had significantly elevated salivary cortisol levels (P = 0.013; 13 µg/dl vs. 9.74 µg/dl). Levels of IL-1Rα were also significantly elevated in the higher IES group (45.09 pg/mL vs. 97.16 pg/mL; P = 0.010). IP 10, G-CSF, and IL-6 were all higher in the high stress group although not to a significant degree. Flow cytometric analysis for CD33+/HLA-DR-neg/CD15+/CD11b+ MDSC revealed increased MDSC in patients with lower IES scores (P = 0.009). CD11b+/CD15+ cells constituted 9.4% of the CD33+/HLA DR-neg cell population in patients with high IES, versus 27.3% in patients with low IES scores. Additional analyses of the number of stressful events that affected the patients in addition to their cancer diagnosis revealed that this type of stress measure correlated with elevated levels of MDSC (P = .064). These data indicate the existence of a complex relationship between stress and immune function in breast cancer patients. PMID:21600570

  5. A methoxyflavanone derivative from the Asian medicinal herb (Perilla frutescens) induces p53-mediated G2/M cell cycle arrest and apoptosis in A549 human lung adenocarcinoma.

    PubMed

    Abd El-Hafeez, Amer Ali; Fujimura, Takashi; Kamei, Rikiya; Hirakawa, Noriko; Baba, Kenji; Ono, Kazuhisa; Kawamoto, Seiji

    2017-07-14

    Perilla frutescens is an Asian dietary herb consumed as an essential seasoning in Japanese cuisine as well as used for a Chinese medicine. Here, we report that a newly found methoxyflavanone derivative from P. frutescens (Perilla-derived methoxyflavanone, PDMF; 8-hydroxy-5,7-dimethoxyflavanone) shows carcinostatic activity on human lung adenocarcinoma, A549. We found that treatment with PDMF significantly inhibited cell proliferation and decreased viability through induction of G 2 /M cell cycle arrest and apoptosis. The PDMF stimulation induces phosphorylation of tumor suppressor p53 on Ser15, and increases its protein amount in conjunction with up-regulation of downstream cyclin-dependent kinase inhibitor p21 Cip1/Waf1 and proapoptotic caspases, caspase-9 and caspase-3. We also found that small interfering RNA knockdown of p53 completely abolished the PDMF-induced G 2 /M cell cycle arrest, and substantially abrogated its proapoptotic potency. These results suggest that PDMF represents a useful tumor-preventive phytochemical that triggers p53-driven G 2 /M cell cycle arrest and apoptosis.

  6. Gastrin-releasing peptide-induced down-regulation of tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) in neuroblastomas.

    PubMed

    Qiao, Jingbo; Kang, Junghee; Cree, Jeremy; Evers, B Mark; Chung, Dai H

    2005-05-01

    To evaluate whether aggressive, undifferentiated neuroblastomas express tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) and to examine the effects of gastrin-releasing peptide (GRP) on PTEN gene and protein expression. We have previously shown that neuroblastomas secrete GRP, which binds to its cell surface receptor (GRP-R) to stimulate cell growth in an autocrine fashion. However, the effects of GRP on expression of the tumor suppressor gene PTEN have not been elucidated in neuroblastomas. Paraffin-embedded sections from human neuroblastomas were analyzed for PTEN and phospho-Akt protein expression by immunohistochemistry. Human neuroblastoma cell lines (SK-N-SH and SH-SY5Y) were stably transfected with the plasmid pEGFP-GRP-R to establish GRP-R overexpression cell lines, and the effects of GRP on PTEN gene and protein expression were determined. A decrease in the ratio of PTEN to phospho-Akt protein expression was identified in poorly differentiated neuroblastomas. An increase in GRP binding capacity was confirmed in GRP-R overexpressing cells, which demonstrated an accelerated constitutive cell growth rate. PTEN gene and protein expression was significantly decreased in GRP-R overexpressing cells when compared with controls. Our findings demonstrate decreased expression of the tumor suppressor protein PTEN in more aggressive undifferentiated neuroblastomas. An increase in GRP binding capacity, as a result of GRP-R overexpression, down-regulates PTEN expression. These findings suggest that an inhibition of the tumor suppressor gene PTEN may be an important regulatory mechanism involved in GRP-induced cell proliferation in neuroblastomas.

  7. p53 mediated transcriptional regulation of long non-coding RNA by 1-hydroxy-1-norresistomycin triggers intrinsic apoptosis in adenocarcinoma lung cancer.

    PubMed

    Ramalingam, Vaikundamoorthy; Varunkumar, Krishnamoorthy; Ravikumar, Vilwanathan; Rajaram, Rajendran

    2018-05-01

    Over a few decades, systemic chemotherapy and surgery are the only treatment options for lung cancer. Due to limited efficacy and overall poor survival of patients, it is necessary to develop a newer therapeutic strategy which specifically targets cancer cell proliferation pathway. Deciphering the role of long non-coding RNAs (lncRNAs) in tumorigenesis and pathogenesis of cancer cells has recently emerged. In the present study, marine actinomycetes derived 1-hydroxy-1-norresistomycin (HNM) was used to enhance the expression of lncRNAs through p53 transcriptional regulation and induced intrinsic apoptosis in non-small cell lung cancer cells. Initially, concentration dependent treatment with HNM has increased the ROS generation in mitochondria and sensitizes the mitochondrial membrane potential. Further, HNM downregulates the numerous oncogenes which regulate cancer cell proliferation, metastasis and invasion and tumor suppressor genes which are involved in intrinsic apoptosis confirmed with adopting techniques such as RT-PCR and western blot analysis. Moreover, ChIP assay results showed that HNM upregulates the p53 mediated transcriptional regulation of lncRNAs lead to apoptosis of cancer cells through cell cycle arrest and inhibition of proliferation. In conclusion, HNM found to be a potential therapeutic agent for treatment of lung cancer via suppression of oncogenes and expression of wide range of tumor suppressor genes are might have significant implications in cancer treatment and drug development. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Allelotype analysis of chemically induced squamous cell carcinomas in F(1) hybrids of two inbred mouse strains with different susceptibility to tumor progression.

    PubMed

    Stern, M C; Benavides, F; Klingelberger, E A; Conti, C J

    2000-07-01

    Loss of heterozygosity (LOH) at specific chromosomal loci is generally considered indirect evidence for the presence of putative suppressor genes. Allelotyping of tumors using polymorphic markers distributed throughout the entire genome allows the analysis of specific allelic losses. In the field of chemical carcinogenesis, the outbred SENCAR mouse has been commonly used to analyze the multistage nature of skin tumor development. In the study reported here we generated F(1) hybrids between two inbred strains (SENCARB/Pt and SSIN/Sprd) derived from the SENCAR stock that differ in their susceptibility to tumor progression. We typed 24 7, 12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate-induced squamous cell carcinomas for LOH using 56 microsatellite markers distributed among all autosomal chromosomes. The highest percentage of LOH, 78%, was found on chromosome 7, but there was no preferential loss of one particular allele, indicating that the putative suppressor genes found in this area are not involved in genetic susceptibility. High levels of LOH were also found on chromosomes 16 (39%), 6 (29%), 4 (25%), 9 (25%), 14 (22%), 10 (20%) and 19 (20%), but with no preferential loss of the alleles of one strain. The chromosomal regions with LOH on mouse chromosomes 4, 6, 7, 9, 10, 14, 16 and 19 correspond to regions in the human genome where LOH has been reported and have been suggested to harbor tumor suppressor genes.

  9. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications.

    PubMed

    Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal

    2016-01-01

    Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Inhibition of IL-18-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy against osteosarcoma cancer.

    PubMed

    Guan, Ying; Zhang, Rui; Peng, Zhibin; Dong, Daming; Wei, Guojun; Wang, Yansong

    2017-11-01

    Myeloid derived suppressor cells (MDSC) are very important in tumor immune evasion and they dramatically increased in peripheral blood of patients with osteosarcoma cancer. The association between MDSC and various cytokines has been studied in the peripheral blood. However, little is known about the mechanism drawing MDSC into tumor parenchyma. This study was to analyze the correlation between MDSC subsets and interleukin 18 (IL-18) level in osteosarcoma tumor model and its effect on the immunotherapy. MDSC were isolated from the blood and parenchyma and analyzed in the osteosarcoma tumor model. IL-18 levels were detected by enzyme-linked immunosorbent assay (ELISA) assay, real-time PCR, western blot and flow cytometry. Moreover, combination treatment with IL-18 inhibition and anti-PD1 was conducted to assess the therapeutic effects of IL-18 blockade. Results showed MDSC levels had a positive correlation with IL-18, suggesting IL-18 may attract MDSC into the parenchyma. IL-18 gene and protein expression significantly increased in blood and tumor lysates of tumor-bearing mice. Anti-IL-18 treatment significantly decreased G-MDSC and M-MDSC in the peripheral blood and tumor. Furthermore, combination therapy decreased the tumor burden and increased CD4 + and CD8 + T cell infiltration, as well as the production of interferon gamma (IFNγ) and granzyme B. Our study revealed a possible correlation between MDSC subsets and IL-18 inducing MDSC migration into the tumor tissue, in addition to provide the potential target to enhance the efficacy of immunotherapy in patients with osteosarcoma.

  11. PML tumor suppressor protein is required for HCV production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroki, Misao; Research Fellow of the Japan Society for the Promotion of Science; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown.more » To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.« less

  12. A matrix metalloproteinase inhibitor enhances anti-cytotoxic T lymphocyte antigen-4 antibody immunotherapy in breast cancer by reprogramming the tumor microenvironment

    PubMed Central

    LI, MINGYUE; XING, SHUGANG; ZHANG, HAIYING; SHANG, SIQI; LI, XIANGXIANG; REN, BO; LI, GAIYUN; CHANG, XIAONA; LI, YILEI; LI, WEI

    2016-01-01

    Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) treatment is effective for the treatment of primary tumors, but not sufficient for the treatment of metastatic tumors, likely owing to the effects of the tumor microenvironment. In this study, we aimed to determine the therapeutic effects of combined treatment with a matrix metalloproteinase (MMP) inhibitor (MMPI) and anti-CTLA-4 antibody in a breast cancer model in mice. Interestingly, combined treatment with MMPI and anti-CTLA-4 antibody delayed tumor growth and reduced lung and liver metastases compared with anti-CTLA-4 alone or vehicle treatment. The functions of the liver and kidney in mice in the different groups did not differ significantly compared with that in normal mice. The CD8+/CD4+ ratio in T cells in the spleen and tumor were increased after monotherapy or combined anti-CTLA-4 antibody plus MMPI therapy compared with that in vehicle-treated mice. Anti-CTLA-4 antibody plus MMPI therapy reduced the percentage of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and decreased the Treg/Th17 cell ratio in the spleen compared with those in the vehicle-treated group. Additionally, anti-CTLA-4 antibody plus MMPI therapy reduced the percentages of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and Th17 cells in tumors compared with that in the vehicle-treated group. Moreover, combined treatment with MMPI and anti-CTLA-4 antibody reduced the microvessel density (MVD) in tumors compared with that in vehicle or MMPI-treated mice. There was a negative correlation between MVD and the CD8+ T cell percentage, CD4+ T cell percentage, and CD8+/CD4+ T cell ratio, but a positive correlation with Tregs, Th17 cells, Treg/Th17 cell ratio, and MDSCs. Thus, these data demonstrated that addition of MMPI enhanced the effects of anti-CTLA-4 antibody treatment in a mouse model of breast cancer by delaying tumor growth and reducing metastases. PMID:26752000

  13. Elucidation of Chromatin Remodeling Machinery Involved in Regulation of Estrogen Receptor Alpha Expression in Human Breast Cancer Cells

    DTIC Science & Technology

    2006-08-01

    depsipeptide with 5-aza-dC has been shown to synergistically reactivate silenced tumor suppressor genes in human cancer cells, including MLH1 , TIMP3...depsipeptide with 5- aza-dC has been shown to synergistically reactivate silenced tumor suppressor genes in human cancer cells, including MLH1 , TIMP3

  14. New Chimeric Antigen Receptor Design for Solid Tumors

    PubMed Central

    Wang, Yuedi; Luo, Feifei; Yang, Jiao; Zhao, Chujun; Chu, Yiwei

    2017-01-01

    In recent years, chimeric antigen receptor (CAR) T-cell therapy has become popular in immunotherapy, particularly after its tremendous success in the treatment of lineage-restricted hematologic cancers. However, the application of CAR T-cell therapy for solid tumors has not reached its full potential because of the lack of specific tumor antigens and inhibitory factors in suppressive tumor microenvironment (TME) (e.g., programmed death ligand-1, myeloid-derived suppressor cells, and transforming growth factor-β). In this review, we include some limitations in CAR design, such as tumor heterogeneity, indefinite spatial distance between CAR T-cell and its target cell, and suppressive TME. We also summarize some new approaches to overcome these hurdles, including targeting neoantigens and/or multiple antigens at once and depleting some inhibitory factors. PMID:29312360

  15. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein

    PubMed Central

    Giovannini, Marco; Robanus-Maandag, Els; Niwa-Kawakita, Michiko; van der Valk, Martin; Woodruff, James M.; Goutebroze, Laurence; Mérel, Philippe; Berns, Anton; Thomas, Gilles

    1999-01-01

    Specific mutations in some tumor suppressor genes such as p53 can act in a dominant fashion. We tested whether this mechanism may also apply for the neurofibromatosis type-2 gene (NF2) which, when mutated, leads to schwannoma development. Transgenic mice were generated that express, in Schwann cells, mutant NF2 proteins prototypic of natural mutants observed in humans. Mice expressing a NF2 protein with an interstitial deletion in the amino-terminal domain showed high prevalence of Schwann cell-derived tumors and Schwann cell hyperplasia, whereas those expressing a carboxy-terminally truncated protein were normal. Our results indicate that a subset of mutant NF2 alleles observed in patients may encode products with dominant properties when overexpressed in specific cell lineages. PMID:10215625

  16. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  17. F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner

    PubMed Central

    Yumimoto, Kanae; Akiyoshi, Sayuri; Ueo, Hiroki; Sagara, Yasuaki; Onoyama, Ichiro; Ueo, Hiroaki; Ohno, Shinji; Mori, Masaki; Mimori, Koshi; Nakayama, Keiichi I.

    2015-01-01

    The gene encoding F-box protein FBXW7 is frequently mutated in many human cancers. Although most previous studies have focused on the tumor-suppressive capacity of FBXW7 in tumor cells themselves, we determined that FBXW7 in the host microenvironment also suppresses cancer metastasis. Deletion of Fbxw7 in murine BM-derived stromal cells induced accumulation of NOTCH and consequent transcriptional activation of Ccl2. FBXW7-deficient mice exhibited increased serum levels of the chemokine CCL2, which resulted in the recruitment of both monocytic myeloid-derived suppressor cells and macrophages, thereby promoting metastatic tumor growth. Administration of a CCL2 receptor antagonist blocked the enhancement of metastasis in FBXW7-deficient mice. Furthermore, in human breast cancer patients, FBXW7 expression in peripheral blood was associated with serum CCL2 concentration and disease prognosis. Together, these results suggest that FBXW7 antagonizes cancer development in not only a cell-autonomous manner, but also a non-cell-autonomous manner, and that modulation of the FBXW7/NOTCH/CCL2 axis may provide a potential approach to suppression of cancer metastasis. PMID:25555218

  18. Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James

    2004-12-23

    We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor bymore » expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.« less

  19. Epigenetic Targeting of Granulin in Hepatoma Cells by Synthetic CRISPR dCas9 Epi-suppressors.

    PubMed

    Wang, Hong; Guo, Rui; Du, Zhonghua; Bai, Ling; Li, Lingyu; Cui, Jiuwei; Li, Wei; Hoffman, Andrew R; Hu, Ji-Fan

    2018-06-01

    The CRISPR-associated Cas9 system can modulate disease-causing alleles both in vivo and ex vivo, raising the possibility of therapeutic genome editing. In addition to gene targeting, epigenetic modulation by the catalytically inactive dCas9 may also be a potential form of cancer therapy. Granulin (GRN), a potent pluripotent mitogen and growth factor that promotes cancer progression by maintaining self-renewal of hepatic stem cancer cells, is upregulated in hepatoma tissues and is associated with decreased tumor survival in patients with hepatoma. We synthesized a group of dCas9 epi-suppressors to target GRN by tethering the C terminus of dCas9 with three epigenetic suppressor genes: DNMT3a (DNA methyltransferase), EZH2 (histone 3 lysine 27 methyltransferase), and KRAB (the Krüppel-associated box transcriptional repression domain). In conjunction with guide RNAs (gRNAs), the dCas9 epi-suppressors caused significant decreases in GRN mRNA abundance in Hep3B hepatoma cells. These dCas9 epi-suppressors initiated de novo CpG DNA methylation in the GRN promoter, and they produced histone codes that favor gene suppression, including decreased H3K4 methylation, increased H3K9 methylation, and enhanced HP1a binding. Epigenetic knockdown of GRN led to the inhibition of cell proliferation, decreased tumor sphere formation, and reduced cell invasion. These changes were achieved at least partially through the MMP/TIMP pathway. This study thus demonstrates the potential utility of using dCas9 epi-suppressors in the development of epigenetic targeting against tumors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. The triterpenoid CDDO-imidazolide reduces immune cell infiltration and cytokine secretion in the KrasG12D;Pdx1-Cre (KC) mouse model of pancreatic cancer.

    PubMed

    Leal, Ana S; Sporn, Michael B; Pioli, Patricia A; Liby, Karen T

    2016-12-01

    Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras G12D/+ ;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Black Raspberry-Derived Anthocyanins Demethylate Tumor Suppressor Genes Through the Inhibition of DNMT1 and DNMT3B in Colon Cancer Cells

    PubMed Central

    Wang, Li-Shu; Kuo, Chieh-Ti; Cho, Seung-Ju; Seguin, Claire; Siddiqui, Jibran; Stoner, Kristen; Weng, Yu-I; Huang, Tim H.-M.; Tichelaar, Jay; Yearsley, Martha; Stoner, Gary D.; Huang, Yi-Wen

    2013-01-01

    We previously reported that oral administration of black raspberry powder decreased promoter methylation of tumor suppressor genes in tumors from patients with colorectal cancer. The anthocyanins (ACs) in black raspberries are responsible, at least in part, for their cancer-inhibitory effects. In the present study, we asked if ACs are responsible for the demethylation effects observed in colorectal cancers. Three days of treatment of ACs at 0.5, 5, and 25 μg/ml suppressed activity and protein expression of DNMT1 and DNMT3B in HCT116, Caco2 and SW480 cells. Promoters of CDKN2A, and SFRP2, SFRP5, and WIF1, upstream of Wnt pathway, were demethylated by ACs. mRNA expression of some of these genes was increased. mRNA expression of β-catenin and c-Myc, downstream of Wnt pathway, and cell proliferation were decreased; apoptosis was increased. ACs were taken up into HCT116 cells and were differentially localized with DNMT1 and DNMT3B in the same cells visualized using confocal laser scanning microscopy. Although it was reported that DNMT3B is regulated by c-Myc in mouse lymphoma, DNMT3B did not bind with c-Myc in HCT116 cells. In conclusion, our results suggest that ACs are responsible, at least in part, for the demethylation effects of whole black raspberries in colorectal cancers. PMID:23368921

  2. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    PubMed

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  3. Functional and quantitative alterations in T lymphocyte subpopulations in acute toxoplasmosis.

    PubMed

    Luft, B J; Kansas, G; Engleman, E G; Remington, J S

    1984-11-01

    The cellular immune response to Toxoplasma gondii has been studied in 23 patients with acute toxoplasma infection. Abnormalities of T cell subpopulations included a marked and significant elevation in suppressor (Leu 2) T cells in patients with prolonged symptoms due to acute infection and either a decrease in the number of T helper cells or an increase in the number of suppressor cells--or both--in patients with asymptomatic lymphadenopathy. There was no significant difference in lymphocyte proliferation to phytohemagglutinin or pokeweed mitogen among the various groups tested. The peak lymphocyte response to toxoplasma antigen, however, was significantly depressed in patients with acute infection compared with that in chronically infected control patients. The kinetics of the depression were consistent with the induction of a non-Leu 2 suppressor cell. These results demonstrate marked quantitative alterations in T lymphocyte subpopulations and functional alterations of T cells to toxoplasma antigen during infection with T. gondii.

  4. [Comparative immunophenotypic characterization of human and monkey permanent lymphoid culture cells].

    PubMed

    Agrba, V Z; Lapin, B A; Medvedeva, N M; Ignatova, I E; Karal-Ogly, D D

    2007-01-01

    The aim of the study was to define the comparative immunophenotypic characteristics ofwidely spread lymphoid cell cultures, derived from Burkett's lymphoma named as Raji and P3HR-1 in comparison with analogous monkey cultures. It has been shown that P3HR-1 culture consists of similar type cells - activated B-lymphocytes CD23 with k phenotype, which demonstrates its monoclonality. Raji culture includes cells with markers of immature B-lymphocytes CD10 and CD24, as well as elements expressing CD10 antigens. T-cell markers were found in none of the cultures. In contrast to human cells, monkey lymphoid culture expressed both B- and T-cell markers. Moreover, in one of them, obtained from a green monkey, T-cells of suppressor type (CD8) prevailed. The immunophenotypic characteristics of primate lymphoid cell cultures, revealed by the study, are of great importance for their proper application to medical and biological studies.

  5. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    PubMed Central

    McCorkle, Sean R; McCombie, WR; Dunn, John J

    2011-01-01

    Here, we report genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIP-seq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells. PMID:22127205

  6. Induction of suppressor cells from peripheral blood T cells by 15-hydroperoxyeicosatetraenoic acid (15-HPETE).

    PubMed

    Gualde, N; Rigaud, M; Goodwin, J S

    1985-11-01

    15-hydroperoxyeicosetetraenoic acid (15-HPETE), a lipoxygenase metabolite of arachidonic acid, inhibited polyclonal IgG and IgM production in pokeweed mitogen (PWM)-stimulated cultures of human peripheral blood mononuclear cells, whereas 15-hydroxyeicosetetraenoic acid (15-HETE) had little effect in this system. T cells preincubated for 18 hr with 15-HPETE caused substantial inhibition of IgG and IgM production of fresh, autologous B and T cells stimulated by PWM. The suppressive effect of the 15-HPETE-treated cells was lost if the cells were irradiated before the PWM culture, but not by treatment with mitomycin C. The suppressive effect was also lost if OKT8+ T cells were removed after, but not before, preincubation of the T cells with 15-HPETE. OKT8- T cells incubated with 15-HPETE for 18 hr showed a large increase in the percentage of cells staining with directly fluoresceinated Leu-2, another marker for suppressor cells. Thus, 15-HPETE induces functional and phenotypic suppressor cells from resting human peripheral blood T cells.

  7. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  8. Oral supplementation with areca-derived polyphenols attenuates food allergic responses in ovalbumin-sensitized mice

    PubMed Central

    2013-01-01

    Background Arecae semen, the dried slice of areca nuts, is a traditional Chinese medicine used to treat intestinal parasitosis, rectal tenesmus and diarrhea. Areca nuts contain a rich amount of polyphenols that have been shown to modulate the functionality of mast cells and T cells. The objective of this study is to investigate the effect of polyphenol-enriched areca nut extracts (PANE) against food allergy, a T cell-mediated immune disorder. Methods BALB/c mice were left untreated or administered with PANE (0.05% and 0.1%) via drinking water throughout the entire experiment. The mice were sensitized with ovalbumin (OVA) twice by intraperitoneal injection, and then repeatedly challenged with OVA by gavage to induce food allergic responses. Results PANE administration attenuated OVA-induced allergic responses, including the occurrence of diarrhea and the infiltration and degranulation of mast cells in the duodenum. The serum level of OVA-specific IgE and the expression of interleukin-4 in the duodenum were suppressed by PANE treatment. In addition, PANE administration induced Gr-1+, IL-10+ and Gr-1+IL-10+ cells in the duodenum. Conclusion These results demonstrate that oral intake of areca-derived polyphenols attenuates food allergic responses accompanied with a decreased Th2 immunity and an enhanced induction of functional myeloid-derived suppressor cells. PMID:23816049

  9. A novel genome-wide in vivo screen for metastatic suppressors in human colon cancer identifies the positive WNT-TCF pathway modulators TMED3 and SOX12

    PubMed Central

    Duquet, Arnaud; Melotti, Alice; Mishra, Sonakshi; Malerba, Monica; Seth, Chandan; Conod, Arwen; Ruiz i Altaba, Ariel

    2014-01-01

    The progression of tumors to the metastatic state involves the loss of metastatic suppressor functions. Finding these, however, is difficult as in vitro assays do not fully predict metastatic behavior, and the majority of studies have used cloned cell lines, which do not reflect primary tumor heterogeneity. Here, we have designed a novel genome-wide screen to identify metastatic suppressors using primary human tumor cells in mice, which allows saturation screens. Using this unbiased approach, we have tested the hypothesis that endogenous colon cancer metastatic suppressors affect WNT-TCF signaling. Our screen has identified two novel metastatic suppressors: TMED3 and SOX12, the knockdown of which increases metastatic growth after direct seeding. Moreover, both modify the type of self-renewing spheroids, but only knockdown of TMED3 also induces spheroid cell spreading and lung metastases from a subcutaneous xenograft. Importantly, whereas TMED3 and SOX12 belong to different families involved in protein secretion and transcriptional regulation, both promote endogenous WNT-TCF activity. Treatments for advanced or metastatic colon cancer may thus not benefit from WNT blockers, and these may promote a worse outcome. PMID:24920608

  10. Microarray analysis of long non-coding RNA expression profiles in monocytic myeloid-derived suppressor cells in Echinococcus granulosus-infected mice.

    PubMed

    Yu, Aiping; Wang, Ying; Yin, Jianhai; Zhang, Jing; Cao, Shengkui; Cao, Jianping; Shen, Yujuan

    2018-05-30

    Cystic echinococcosis is a worldwide chronic zoonotic disease caused by infection with the larval stage of Echinococcus granulosus. Previously, we found significant accumulation of myeloid-derived suppressor cells (MDSCs) in E. granulosus infection mouse models and that they play a key role in immunosuppressing T lymphocytes. Here, we compared the long non-coding RNA (lncRNA) and mRNA expression patterns between the splenic monocytic MDSCs (M-MDSCs) of E. granulosus protoscoleces-infected mice and normal mice using microarray analysis. LncRNA functions were predicted using Gene Ontology enrichment and the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Cis- and trans-regulation analyses revealed potential relationships between the lncRNAs and their target genes or related transcription factors. We found that 649 lncRNAs were differentially expressed (fold change ≥ 2, P < 0.05): 582 lncRNAs were upregulated and 67 lncRNAs were downregulated; respectively, 28 upregulated mRNAs and 1043 downregulated mRNAs were differentially expressed. The microarray data was validated by quantitative reverse transcription-PCR. The results indicated that mRNAs co-expressed with the lncRNAs are mainly involved in regulating the actin cytoskeleton, Salmonella infection, leishmaniasis, and the vascular endothelial growth factor (VEGF) signaling pathway. The lncRNA NONMMUT021591 was predicted to cis-regulate the retinoblastoma gene (Rb1), whose expression is associated with abnormal M-MDSCs differentiation. We found that 372 lncRNAs were predicted to interact with 60 transcription factors; among these, C/EBPβ (CCAAT/enhancer binding protein beta) was previously demonstrated to be a transcription factor of MDSCs. Our study identified dysregulated lncRNAs in the M-MDSCs of E. granulosus infection mouse models; they might be involved in M-MDSC-derived immunosuppression in related diseases.

  11. Cervical cancer cell supernatants induce a phenotypic switch from U937-derived macrophage-activated M1 state into M2-like suppressor phenotype with change in Toll-like receptor profile.

    PubMed

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  12. Curcumin and treatment of melanoma: The potential role of microRNAs.

    PubMed

    Lelli, Diana; Pedone, Claudio; Sahebkar, Amirhosssein

    2017-04-01

    Melanoma is the most aggressive type of skin cancer and is characterized by poor prognosis in its advanced stages because treatments are poorly effective and burdened with severe adverse effects. MicroRNAs (miRNAs) are small non-coding RNAs that are implicated in several cellular processes; they are categorized as oncogenic and tumor suppressor miRNAs. Several miRNAs are implicated in the pathogenesis and progression of melanoma, such as the tumor suppressor miR-let7b that targets cyclin D and regulates cell cycle. Curcumin is a natural compound derived from Curcuma longa L. (turmeric) with anti-cancer properties, documented also in melanoma, and is well tolerated in humans. Pharmacological activity of curcumin is mediated by modulation of several pathways, such as JAK-2/STAT3, thus inhibiting melanoma cell migration and invasion and enhancing apoptosis of these cells. The low oral bioavailability of curcumin has led to the development of curcumin analogues, such as EF24, with greater anti-tumor efficacy and metabolic stability. Potential anti-cancer activity of curcumin and its analogues is also mediated by modulation of miRNAs such as miR21, that is implicated in cell cycle regulation and apoptosis through down-regulation of PTEN and PDCD4 proteins. Curcumin has a potential role in the treatment of melanoma, though further studies are necessary to explore its clinical efficacy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    PubMed

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Breast carcinoma metastasis suppressor gene 1 (BRMS1): update on its role as the suppressor of cancer metastases.

    PubMed

    Kodura, Magdalena Anna; Souchelnytskyi, Serhiy

    2015-12-01

    BRMS1 was discovered over a decade ago as a potential tumor suppressor gene. In this review, we summarize the recent findings about the structure of BRMS1, mechanisms of its action and a role of BRMS1 in the cancer progression. As a suppressor of metastasis, BRMS1 has demonstrated a variety of ways to act on the cell functions, such as cell migration, invasiveness, angiogenesis, cell survival, cytoskeleton rearrangements, cell adhesion, and immune recognition. This variety of effects is a likely reason behind the robustness of anti-metastatic influence of BRMS1. Intracellular signaling mechanisms employed by BRMS1 include regulation of transcription, EGF/HER2 signaling, and expression of NF-kB, fascin, osteopontin, and IL-6. Recently reported clinical studies confirm that BRMS1 can indeed be used as a prognostic marker. Approaches to employ BRMS1 in a development of anti-cancer treatment have also been made. The studies reviewed here with respect to BRMS1 structure, cellular effects, intracellular signaling, and clinical value consolidate the importance of BRMS1 in the development of metastasis.

  15. Rapamycin Prolongs Cardiac Allograft Survival in a Mouse Model by Inducing Myeloid-Derived Suppressor Cells.

    PubMed

    Nakamura, T; Nakao, T; Yoshimura, N; Ashihara, E

    2015-09-01

    Mammalian target of rapamycin (mTOR) inhibitors are the main immunosuppressive drugs for organ transplant recipients. Nevertheless, the mechanisms by which mTOR inhibitors induce immunosuppression is not fully understood. Myeloid-derived suppressor cells (MDSCs) maintain host immunity; however, the relationship between mTOR inhibitors and MDSCs is unclear. Here, the results from a murine cardiac transplantation model revealed that rapamycin treatment (3 mg/kg, intraperitoneally on postoperative days 0, 2, 4, and 6) led to the recruitment of MDSCs and increased their expression of inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed that rapamycin induced the migration of iNOS-expressing MDSCs into the subintimal space within the allograft vessels, resulting in a significant prolongation of graft survival compared with that in the untreated group (67 days vs. 7 days, respectively). These effects were counterbalanced by the administration of an anti-Gr-1, which reduced allograft survival to 21 days. Moreover, adoptive transcoronary arterial transfer of MDSCs from rapamycin-treated recipients prolonged allograft survival; this increase was reversed by the anti-Gr-1 antibody. Finally, co-administration of rapamycin and a mitogen-activated protein kinase kinase (MEK) inhibitor trametinib reversed rapamycin-mediated MDSC recruitment. Thus, the mTOR and Raf/MEK/extracellular signal regulated kinase (ERK) signaling pathways appear to play an important role in MDSC expansion. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mack, Hildegard I.D.; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in knownmore » LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.« less

  17. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  18. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.

    PubMed

    Kamran, Neha; Chandran, Mayuri; Lowenstein, Pedro R; Castro, Maria G

    2018-04-01

    Various preclinical studies have demonstrated that the success of immunotherapeutic strategies in inhibiting tumor progression in animal models of Glioblastoma multiforme (GBM). It is also evident that tumor-induced immune suppression drastically impacts the efficacy of immune based therapies. Among the mechanisms employed by GBM to induce immunosuppression is the accumulation of regulatory T cells (Tregs) and Myeloid derived suppressor cells (MDSCs). Advancing our understanding about the pathways regulating the expansion, accumulation and activity of MDSCs will allow for the development of therapies aimed at abolishing the inhibitory effect of these cells on immunotherapeutic approaches. In this review, we have focused on the origin, expansion and immunosuppressive mechanisms of MDSCs in animal models and human cancer, in particular GBM. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation.

    PubMed

    Xu, J G; Gong, T; Wang, Y Y; Zou, T; Heng, B C; Yang, Y Q; Zhang, C F

    2018-02-01

    Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.

  20. Notch signaling: switching an oncogene to a tumor suppressor

    PubMed Central

    Lobry, Camille; Oh, Philmo; Mansour, Marc R.; Look, A. Thomas

    2014-01-01

    The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway’s oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies. PMID:24608975

  1. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73.

    PubMed

    van Doorn, Remco; Zoutman, Willem H; Dijkman, Remco; de Menezes, Renee X; Commandeur, Suzan; Mulder, Aat A; van der Velden, Pieter A; Vermeer, Maarten H; Willemze, Rein; Yan, Pearlly S; Huang, Tim H; Tensen, Cornelis P

    2005-06-10

    To analyze the occurrence of promoter hypermethylation in primary cutaneous T-cell lymphoma (CTCL) on a genome-wide scale, focusing on epigenetic alterations with pathogenetic significance. DNA isolated from biopsy specimens of 28 patients with CTCL, including aggressive CTCL entities (transformed mycosis fungoides and CD30-negative large T-cell lymphoma) and an indolent entity (CD30-positive large T-cell lymphoma), were investigated. For genome-wide DNA methylation screening, differential methylation hybridization using CpG island microarrays was applied, which allows simultaneous detection of the methylation status of 8640 CpG islands. Bisulfite sequence analysis was applied for confirmation and detection of hypermethylation of eight selected tumor suppressor genes. The DNA methylation patterns of CTCLs emerging from differential methylation hybridization analysis included 35 CpG islands hypermethylated in at least four of the 28 studied CTCL samples when compared with benign T-cell samples. Hypermethylation of the putative tumor suppressor genes BCL7a (in 48% of CTCL samples), PTPRG (27%), and thrombospondin 4 (52%) was confirmed and demonstrated to be associated with transcriptional downregulation. BCL7a was hypermethylated at a higher frequency in aggressive (64%) than in indolent (14%) CTCL entities. In addition, the promoters of the selected tumor suppressor genes p73 (48%), p16 (33%), CHFR (19%), p15 (10%), and TMS1 (10%) were hypermethylated in CTCL. Malignant T cells of patients with CTCL display widespread promoter hypermethylation associated with inactivation of several tumor suppressor genes involved in DNA repair, cell cycle, and apoptosis signaling pathways. In view of this, CTCL may be amenable to treatment with demethylating agents.

  2. Ssb1 chaperone is a [PSI+] prion-curing factor.

    PubMed

    Chacinska, A; Szczesniak, B; Kochneva-Pervukhova, N V; Kushnirov, V V; Ter-Avanesyan, M D; Boguta, M

    2001-04-01

    Yeast SUP7' or SUP11 nonsense suppressors have no phenotypic expression in strains deficient in the isopentenylation of A37 in tRNA. Here we show that such strains spontaneously produce cells with a nonsense suppressor phenotype which is related to the cytoplasmically inherited determinant and manifests all the key features of the [PSI+] prion. A screen of a multicopy yeast genomic library for genes that inactivate the [PSI+]-related suppressor phenotype resulted in the isolation of the SSB1 gene. Moreover, we demonstrate that multicopy plasmid encoding the Ssb1 chaperone cures cells of the [PSI+] prion.

  3. The Ubiquitin Ligase COP1 Promotes Glioma Cell Proliferation by Preferentially Downregulating Tumor Suppressor p53.

    PubMed

    Zou, Shenshan; Zhu, Yufu; Wang, Bin; Qian, Fengyuan; Zhang, Xiang; Wang, Lei; Fu, Chunling; Bao, Hanmo; Xie, Manyi; Gao, Shangfeng; Yu, Rutong; Shi, Hengliang

    2017-09-01

    Human glioma causes substantial morbidity and mortality worldwide. However, the molecular mechanisms underlying glioma progression are still largely unknown. COP1 (constitutively photomorphogenic 1), an E3 ubiquitin ligase, is important in cell survival, development, cell growth, and cancer biology by regulating different substrates. As is well known, both tumor suppressor p53 and oncogenic protein c-JUN could be ubiquitinated and degraded by ubiquitin ligase COP1, which may be the reason that COP1 serves as an oncogene or a tumor suppressor in different cancer types. Up to now, the possible role of COP1 in human glioma is still unclear. In the present study, we found that the expression of COP1 was upregulated in human glioma tissues. The role of COP1 in glioma cell proliferation was investigated using COP1 loss- and gain-of-function. The results showed that downregulation of COP1 by short hairpin RNA (shRNA) inhibited glioma cell proliferation, while overexpression of COP1 significantly promoted it. Furthermore, we demonstrated that COP1 only interacted with and regulated p53, but not c-JUN. Taken together, these results indicate that COP1 may play a role in promoting glioma cell proliferation by interacting with and downregulating tumor suppressor p53 rather than oncogenic protein c-JUN.

  4. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma.

    PubMed

    Huang, Yujie; Rajappa, Prajwal; Hu, Wenhuo; Hoffman, Caitlin; Cisse, Babacar; Kim, Joon-Hyung; Gorge, Emilie; Yanowitch, Rachel; Cope, William; Vartanian, Emma; Xu, Raymond; Zhang, Tuo; Pisapia, David; Xiang, Jenny; Huse, Jason; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Holland, Eric; Ding, Bi-Sen; Rafii, Shahin; Lyden, David; Greenfield, Jeffrey

    2017-05-01

    Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas.

  5. A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma

    PubMed Central

    Huang, Yujie; Rajappa, Prajwal; Hu, Wenhuo; Hoffman, Caitlin; Cisse, Babacar; Kim, Joon-Hyung; Gorge, Emilie; Yanowitch, Rachel; Cope, William; Vartanian, Emma; Xu, Raymond; Pisapia, David; Xiang, Jenny; Huse, Jason; Matei, Irina; Peinado, Hector; Bromberg, Jacqueline; Holland, Eric; Ding, Bi-sen; Rafii, Shahin; Lyden, David; Greenfield, Jeffrey

    2017-01-01

    Tumors are capable of coopting hematopoietic cells to create a suitable microenvironment to support malignant growth. Here, we have demonstrated that upregulation of kinase insert domain receptor (KDR), also known as VEGFR2, in a myeloid cell sublineage is necessary for malignant progression of gliomas in transgenic murine models and is associated with high-grade tumors in patients. KDR expression increased in myeloid cells as myeloid-derived suppressor cells (MDSCs) accumulated, which was associated with the transformation and progression of low-grade fibrillary astrocytoma to high-grade anaplastic gliomas. KDR deficiency in murine BM-derived cells (BMDCs) suppressed the differentiation of myeloid lineages and reduced granulocytic/monocytic populations. The depletion of myeloid-derived KDR compromised its proangiogenic function, which inhibited the angiogenic switch necessary for malignant progression of low-grade to high-grade tumors. We also identified inhibitor of DNA binding protein 2 (ID2) as a key upstream regulator of KDR activation during myeloid differentiation. Deficiency of ID2 in BMDCs led to downregulation of KDR, suppression of proangiogenic myeloid cells, and prevention of low-grade to high-grade transition. Tumor-secreted TGF-β and granulocyte-macrophage CSF (GM-CSF) enhanced the KDR/ID2 signaling axis in BMDCs. Our results suggest that modulation of KDR/ID2 signaling may restrict tumor-associated myeloid cells and could potentially be a therapeutic strategy for preventing transformation of premalignant gliomas. PMID:28394259

  6. A comparative meta-genomic analysis of HPV strains: A step towards the design, synthesis and characterization of noval quenazoline derivative for antiviral activity.

    PubMed

    Dhanaraj, Premnath; Devadas, Akila; Muthiah, Indiraleka

    2018-04-01

    Epigenetic characterization studies have clearly shown that the association of genital Human Papilloma Virus (HPV) with cervical cancer is strong, independent of other risk factors, and consistent in several countries. Even though all the strains of Human Papilloma Virus can cause cancer, the high-risk strains can cause severe cancer in a human. The E6 and E7 protein are responsible for the carcinogenic property of HPV. Among these two proteins, the HPV E7 protein plays a major role in the viral life cycle by allowing the virus to replicate in differentiating epithelial cells. All the strains of HPV are variants (High risk and low risk). A computational analysis study is done to find which low-risk strain is showing most similarity with the high risk there by predicting that this low-risk strain can be converted to high-risk if a mutation occurs in future. Through mutation, a normal strain will get converted to low-risk and a low-risk to high-risk. So the mutations are important and it can affect the viruses to a greater extent because of their smaller size. In order to inhibit the expression of Type 11 low-risk strain a noval suppressor molecule is synthesized and characterized using UV, FTIR and NMR spectrometry. The suppressor molecule is a quinazoline derivative, as it can act as an anti-cancer agent to inhibit the expression of the E7 protein in Type 11 strain. The efficiency of binding of type 11 E7 protein with quinazoline derivative is calculated through docking studies using G-Score (Schrodinger). Thus proposing this noval suppressor molecule can be lead against cervical cancer caused by HPV Type 11 strain after further in-vitro and in vivo characterization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. CTNNA3 is a tumor suppressor in hepatocellular carcinomas and is inhibited by miR-425

    PubMed Central

    Liu, Fang-E; Chen, Xue-Mei; Zhao, Jing; Lin, Song; Liu, Zhi-Zhen; Zhang, Hu-Qin

    2016-01-01

    Hepatocellular carcinoma (HCC) is a common and leading cause of death worldwide. Here, we identified that a cell-cell adhesion gene, CTNNA3, is a tumor suppressor in HCC. CTNNA3 inhibited the proliferation, migration and invasion of HCC cell lines. In these cells, CTNNA3 inhibited Akt signal, and in turn decreased the proliferating cell nuclear antigen (PCNA) and the matrix metallopeptidase MMP-9, and increased the cell cycle inhibitor p21Cip1/Waf1. Meanwhile, CTNNA3 is inhibited by miR-425 in HCC. The miR-425 directly bound to the 3′UTR of CTNNA3 and inhibited its expression. The tumor suppressor function of CTNNA3 and the oncogenic function of miR-425 were further confirmed in HCC cell xenograft in nude mice. The miR-425/CTNNA3 axis may provide insights into the mechanisms underlying HCC, and contribute to potential therapeutic strategy of HCC. PMID:26882563

  8. The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis

    PubMed Central

    Singh, Shree Ram; Liu, Ying; Zhao, Jiangsha; Zeng, Xiankun; Hou, Steven X.

    2016-01-01

    Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hopTum−l) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals. PMID:26792023

  9. The novel tumour suppressor Madm regulates stem cell competition in the Drosophila testis.

    PubMed

    Singh, Shree Ram; Liu, Ying; Zhao, Jiangsha; Zeng, Xiankun; Hou, Steven X

    2016-01-21

    Stem cell competition has emerged as a mechanism for selecting fit stem cells/progenitors and controlling tumourigenesis. However, little is known about the underlying molecular mechanism. Here we identify Mlf1-adaptor molecule (Madm), a novel tumour suppressor that regulates the competition between germline stem cells (GSCs) and somatic cyst stem cells (CySCs) for niche occupancy. Madm knockdown results in overexpression of the EGF receptor ligand vein (vn), which further activates EGF receptor signalling and integrin expression non-cell autonomously in CySCs to promote their overproliferation and ability to outcompete GSCs for niche occupancy. Conversely, expressing a constitutively activated form of the Drosophila JAK kinase (hop(Tum-l)) promotes Madm nuclear translocation, and suppresses vn and integrin expression in CySCs that allows GSCs to outcompete CySCs for niche occupancy and promotes GSC tumour formation. Tumour suppressor-mediated stem cell competition presented here could be a mechanism of tumour initiation in mammals.

  10. AICAR Antiproliferative Properties Involve the AMPK-Independent Activation of the Tumor Suppressors LATS 1 and 2.

    PubMed

    Philippe, Chloé; Pinson, Benoît; Dompierre, Jim; Pantesco, Véronique; Viollet, Benoît; Daignan-Fornier, Bertrand; Moenner, Michel

    2018-06-01

    AICAR (Acadesine) is a pharmacological precursor of purine nucleotide biosynthesis with anti-tumoral properties. Although recognized as an AMP mimetic activator of the protein kinase AMPK, the AICAR monophosphate derivative ZMP was also shown to mediate AMPK-independent effects. In order to unveil these AMPK-independent functions, we performed a transcriptomic analysis in AMPKα1/α2 double knockout murine embryonic cells. Kinetic analysis of the cellular response to AICAR revealed the up-regulation of the large tumor suppressor kinases (Lats) 1 and 2 transcripts, followed by the repression of numerous genes downstream of the transcriptional regulators Yap1 and Taz. This transcriptional signature, together with the observation of increased levels in phosphorylation of Lats1 and Yap1 proteins, suggested that the Hippo signaling pathway was activated by AICAR. This effect was observed in both fibroblasts and epithelial cells. Knockdown of Lats1/2 prevented the cytoplasmic delocalization of Yap1/Taz proteins in response to AICAR and conferred a higher resistance to the drug. These results indicate that activation of the most downstream steps of the Hippo cascade participates to the antiproliferative effects of AICAR. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Early Expansion of Circulating Granulocytic Myeloid-derived Suppressor Cells Predicts Development of Nosocomial Infections in Patients with Sepsis.

    PubMed

    Uhel, Fabrice; Azzaoui, Imane; Grégoire, Murielle; Pangault, Céline; Dulong, Joelle; Tadié, Jean-Marc; Gacouin, Arnaud; Camus, Christophe; Cynober, Luc; Fest, Thierry; Le Tulzo, Yves; Roussel, Mikael; Tarte, Karin

    2017-08-01

    Sepsis induces a sustained immune dysfunction responsible for poor outcome and nosocomial infections. Myeloid-derived suppressor cells (MDSCs) described in cancer and inflammatory processes may be involved in sepsis-induced immune suppression, but their clinical impact remains poorly defined. To clarify phenotype, suppressive activity, origin, and clinical impact of MDSCs in patients with sepsis. Peripheral blood transcriptomic analysis was performed on 29 patients with sepsis and 15 healthy donors. A second cohort of 94 consecutive patients with sepsis, 11 severity-matched intensive care patients, and 67 healthy donors was prospectively enrolled for flow cytometry and functional experiments. Genes involved in MDSC suppressive functions, including S100A12, S100A9, MMP8, and ARG1, were up-regulated in the peripheral blood of patients with sepsis. CD14 pos HLA-DR low/neg monocytic (M)-MDSCs were expanded in intensive care unit patients with and without sepsis and CD14 neg CD15 pos low-density granulocytes/granulocytic (G)-MDSCs were more specifically expanded in patients with sepsis (P < 0.001). Plasma levels of MDSC mediators S100A8/A9, S100A12, and arginase 1 were significantly increased. In vitro, CD14 pos - and CD15 pos -cell depletion increased T-cell proliferation in patients with sepsis. G-MDSCs, made of immature and mature granulocytes expressing high levels of degranulation markers, were specifically responsible for arginase 1 activity. High initial levels of G-MDSCs, arginase 1, and S100A12 but not M-MDSCs were associated with subsequent occurrence of nosocomial infections. M-MDSCs and G-MDSCs strongly contribute to T-cell dysfunction in patients with sepsis. More specifically, G-MDSCs producing arginase 1 are associated with a higher incidence of nosocomial infections and seem to be major actors of sepsis-induced immune suppression.

  12. Application of advanced cytometric and molecular technologies to minimal residual disease monitoring

    NASA Astrophysics Data System (ADS)

    Leary, James F.; He, Feng; Reece, Lisa M.

    2000-04-01

    Minimal residual disease monitoring presents a number of theoretical and practical challenges. Recently it has been possible to meet some of these challenges by combining a number of new advanced biotechnologies. To monitor the number of residual tumor cells requires complex cocktails of molecular probes that collectively provide sensitivities of detection on the order of one residual tumor cell per million total cells. Ultra-high-speed, multi parameter flow cytometry is capable of analyzing cells at rates in excess of 100,000 cells/sec. Residual tumor selection marker cocktails can be optimized by use of receiver operating characteristic analysis. New data minimizing techniques when combined with multi variate statistical or neural network classifications of tumor cells can more accurately predict residual tumor cell frequencies. The combination of these techniques can, under at least some circumstances, detect frequencies of tumor cells as low as one cell in a million with an accuracy of over 98 percent correct classification. Detection of mutations in tumor suppressor genes requires insolation of these rare tumor cells and single-cell DNA sequencing. Rare residual tumor cells can be isolated at single cell level by high-resolution single-cell cell sorting. Molecular characterization of tumor suppressor gene mutations can be accomplished using a combination of single- cell polymerase chain reaction amplification of specific gene sequences followed by TA cloning techniques and DNA sequencing. Mutations as small as a single base pair in a tumor suppressor gene of a single sorted tumor cell have been detected using these methods. Using new amplification procedures and DNA micro arrays it should be possible to extend the capabilities shown in this paper to screening of multiple DNA mutations in tumor suppressor and other genes on small numbers of sorted metastatic tumor cells.

  13. Cross-talk between T Cells and Hematopoietic Stem Cells during Adoptive Cellular Therapy for Malignant Glioma.

    PubMed

    Wildes, Tyler J; Grippin, Adam; Dyson, Kyle A; Wummer, Brandon M; Damiani, David J; Abraham, Rebecca S; Flores, Catherine T; Mitchell, Duane A

    2018-04-30

    Purpose: Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy. Herein, we demonstrate that cellular interactions between adoptively transferred tumor-reactive T cells and bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) lead to the generation of potent intratumoral DCs within the CNS compartment. Experimental Design: We evaluated HSPC differentiation during ACT in vivo in glioma-bearing hosts and HSPC proliferation and differentiation in vitro using a T-cell coculture system. We utilized FACS, ELISAs, and gene expression profiling to study the phenotype and function of HSPC-derived cells ex vivo and in vivo. To demonstrate the impact of HSPC differentiation and function on antitumor efficacy, we performed survival experiments. Results: Transfer of HSPCs with concomitant ACT led to the production of activated CD86 + CD11c + MHCII + cells consistent with DC phenotype and function within the brain tumor microenvironment. These intratumoral DCs largely supplanted abundant host myeloid-derived suppressor cells. We determined that during ACT, HSPC-derived cells in gliomas rely on T-cell-released IFNγ to differentiate into DCs, activate T cells, and reject intracranial tumors. Conclusions: Our data support the use of HSPCs as a novel cellular therapy. Although DC vaccines induce robust immune responses in the periphery, our data demonstrate that HSPC transfer uniquely generates intratumoral DCs that potentiate T-cell responses and promote glioma rejection in situ Clin Cancer Res; 1-12. ©2018 AACR. ©2018 American Association for Cancer Research.

  14. T suppressor cells are required for the maintenance of the antigen-induced B-cell unresponsive state in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benveniste, E.; Stevens, R.H.

    1983-04-01

    Tetanus toxoid immunization of humans generates circulating B cells which secrete IgG anti-tetanus toxoid antibodies (IgG-Tet) when stimulated in vitro with T cells and pokeweed mitogen (PWM). A unique property of these cells is the inhibition of maturation into antibody-secreting plasma cells following a 1-hr in vitro pulse with tetanus toxoid. Studies were undertaken to determine if different T-cell subsets could modulate the in vitro generated B-cell unresponsive state. The addition of OKT4+/OKT8- cells to antigen-treated B cells resulted in a partial reversal of the antigen-induced inhibition of IgG-Tet synthesis. The addition of OKT4-/OKT8+ cells to the treated B cellsmore » caused a suppression of IgG-Tet synthesis comparable to that seen in cultures containing unfractionated T cells. These results indicate that (1) the B-cell unresponsive state generated by antigen treatment is not absolute, (2) the degree of B-cell unresponsiveness results from a balance of suppressor and helper signals, and (3) T-suppressor cells need to be present to induce and maintain the B-cell unresponsive state.« less

  15. USC-HN2, A NEW MODEL CELL LINE FOR RECURRENT ORAL CAVITY SQUAMOUS CELL CARCINOMA WITH IMMUNOSUPPRESSIVE CHARACTERISTICS

    PubMed Central

    Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J.; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L

    2011-01-01

    Objectives Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. Materials and Methods A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Results and Conclusion Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR+CD44v6+FABP5+Keratin+ and HPV−). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to 7 previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. PMID:21719345

  16. USC-HN2, a new model cell line for recurrent oral cavity squamous cell carcinoma with immunosuppressive characteristics.

    PubMed

    Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L

    2011-09-01

    Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression, and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR(+)CD44v6(+)FABP5(+)Keratin(+) and HPV(-)). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to seven previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Hyperforin and aristoforin inhibit lymphatic endothelial cell proliferation in vitro and suppress tumor-induced lymphangiogenesis in vivo.

    PubMed

    Rothley, Melanie; Schmid, Anja; Thiele, Wilko; Schacht, Vivien; Plaumann, Diana; Gartner, Michael; Yektaoglu, Aybike; Bruyère, Françoise; Noël, Agnès; Giannis, Athanassios; Sleeman, Jonathan P

    2009-07-01

    The phloroglucinol derivative hyperforin, a major bioactive constituent of St. John's wort, is increasingly recognized as being able to regulate a variety of pathobiological processes and, thus, to possess potential therapeutic properties. In the context of cancer, hyperforin induces the apoptosis of cancer cells, inhibits angiogenesis and suppresses metastasis formation. Here, we report a new pharmacological function of hyperforin and its stabilized derivative aristoforin, namely the suppression of lymphatic endothelial cell (LEC) growth and lymphangiogenesis. At concentrations less than 10 microM, we found that these compounds induce cell cycle arrest of LECs, and at higher concentrations induce apoptosis. The loss of mitochondrial membrane potential and the activation of caspase-9 during the induction of apoptosis indicate that the intrinsic pathway of apoptosis is stimulated by these compounds, similar to the situation in tumor cells. In thoracic duct ring outgrowth assays, hyperforin and aristoforin both inhibited lymphangiogenesis, as evidenced by the suppression of lymphatic capillary outgrowth. In an in vivo animal model, both compounds were able to inhibit tumor-induced lymphangiogenesis. Together these data substantiate a new role for hyperforin and its derivatives as suppressors of lymphangiogenesis, and support their further investigation as potential anticancer drugs that target tumor growth and metastasis at multiple levels.

  18. Reprogramming retinal neurons and standardized quantification of their differentiation in 3-dimensional retinal cultures

    PubMed Central

    Hiler, Daniel J.; Barabas, Marie E.; Griffiths, Lyra M.; Dyer, Michael A.

    2017-01-01

    Postmitotic differentiated neurons are among the most difficult cells to reprogram into induced pluripotent stem cells (iPSCs) because they have poor viability when cultured as dissociated cells. Other protocols to reprogram postmitotic neurons have required the inactivation of the p53 tumor suppressor. We describe a method that does not require p53 inactivation and induces reprogramming in cells purified from the retinae of reprogrammable mice in aggregates with wild-type retinal cells. After the first 10 days of reprogramming, the aggregates are then dispersed and plated on irradiated feeder cells to propagate and isolate individual iPSC clones. The reprogramming efficiency of different neuronal populations at any stage of development can be quantitated using this protocol. Reprogramming retinal neurons with this protocol will take 56 days, and these retina-derived iPSCs can undergo retinal differentiation to produce retinae in 34 days. In addition, we describe a quantitative assessment of retinal differentiation from these neuron-derived iPSCs called STEM-RET. The procedure quantitates eye field specification, optic cup formation, and retinal differentiation in 3-dimensional cultures using molecular, cellular and morphological criteria. An advanced level of cell culture experience is required to carry out this protocol. PMID:27658012

  19. ARF tumor suppression in the nucleolus.

    PubMed

    Maggi, Leonard B; Winkeler, Crystal L; Miceli, Alexander P; Apicelli, Anthony J; Brady, Suzanne N; Kuchenreuther, Michael J; Weber, Jason D

    2014-06-01

    Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF's basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Physical and functional mapping of a tumor suppressor locus for renal cell carcinoma within chromosome 3p12.

    PubMed

    Lott, S T; Lovell, M; Naylor, S L; Killary, A M

    1998-08-15

    Using a functional genetic approach, we previously identified a novel genetic locus, NRC-1 (Nonpapillary Renal Cell Carcinoma 1), that mediated tumor suppression and rapid cell death of renal cell carcinoma (RCC) cells in vivo. For these experiments, a defined subchromosomal fragment of human chromosome 3p was transferred into a sporadic RCC cell line via microcell fusion, and microcell hybrid clones were tested for tumorigenicity in vivo. The results indicated functional evidence for a novel tumor suppressor locus within the 3p14-p12 interval known to contain the most common fragile site of the human genome (FRA3B), the FHIT gene, and the breakpoint region associated with the familial form of RCC. We now report the physical mapping of the NRC-1 critical region by detailed microsatellite analyses of novel microcell hybrid clones containing transferred fragments of chromosome 3p in the RCC cell background that were phenotypically suppressed or unsuppressed for tumorigenicity in vivo. The results limit the region containing the tumor suppressor locus within chromosome 3p12. The FHIT gene, FRA3B, and the familial RCC breakpoint region were excluded from the NRC-1 critical region. Furthermore, the NRC-1 locus falls within a well-characterized homozygous deletion region of 5-7 Mb associated with a small cell lung carcinoma cell line, U2020, suggesting that a more general tumor suppressor gene may reside in this region.

  1. Modulator of Apoptosis 1 (MOAP-1) Is a Tumor Suppressor Protein Linked to the RASSF1A Protein*

    PubMed Central

    Law, Jennifer; Salla, Mohamed; Zare, Alaa; Wong, Yoke; Luong, Le; Volodko, Natalia; Svystun, Orysya; Flood, Kayla; Lim, Jonathan; Sung, Miranda; Dyck, Jason R. B.; Tan, Chong Teik; Su, Yu-Chin; Yu, Victor C.; Mackey, John; Baksh, Shairaz

    2015-01-01

    Modulator of apoptosis 1 (MOAP-1) is a BH3-like protein that plays key roles in cell death or apoptosis. It is an integral partner to the tumor suppressor protein, Ras association domain family 1A (RASSF1A), and functions to activate the Bcl-2 family pro-apoptotic protein Bax. Although RASSF1A is now considered a bona fide tumor suppressor protein, the role of MOAP-1 as a tumor suppressor protein has yet to be determined. In this study, we present several lines of evidence from cancer databases, immunoblotting of cancer cells, proliferation, and xenograft assays as well as DNA microarray analysis to demonstrate the role of MOAP-1 as a tumor suppressor protein. Frequent loss of MOAP-1 expression, in at least some cancers, appears to be attributed to mRNA down-regulation and the rapid proteasomal degradation of MOAP-1 that could be reversed utilizing the proteasome inhibitor MG132. Overexpression of MOAP-1 in several cancer cell lines resulted in reduced tumorigenesis and up-regulation of genes involved in cancer regulatory pathways that include apoptosis (p53, Fas, and MST1), DNA damage control (poly(ADP)-ribose polymerase and ataxia telangiectasia mutated), those within the cell metabolism (IR-α, IR-β, and AMP-activated protein kinase), and a stabilizing effect on microtubules. The loss of RASSF1A (an upstream regulator of MOAP-1) is one of the earliest detectable epigenetically silenced tumor suppressor proteins in cancer, and we speculate that the additional loss of function of MOAP-1 may be a second hit to functionally compromise the RASSF1A/MOAP-1 death receptor-dependent pathway and drive tumorigenesis. PMID:26269600

  2. Identification of a Novel Proto-oncogenic Network in Head and Neck Squamous Cell Carcinoma.

    PubMed

    Georgy, Smitha R; Cangkrama, Michael; Srivastava, Seema; Partridge, Darren; Auden, Alana; Dworkin, Sebastian; McLean, Catriona A; Jane, Stephen M; Darido, Charbel

    2015-09-01

    The developmental transcription factor Grainyhead-like 3 (GRHL3) plays a critical tumor suppressor role in the mammalian epidermis through direct regulation of PTEN and the PI3K/AKT/mTOR signaling pathway. GRHL3 is highly expressed in all tissues derived from the surface ectoderm, including the oral cavity, raising a question about its potential role in suppression of head and neck squamous cell carcinoma (HNSCC). We explored the tumor suppressor role of Grhl3 in HNSCC using a conditional knockout (Grhl3 (∆/-) /K14Cre (+) ) mouse line (n = 26) exposed to an oral chemical carcinogen. We defined the proto-oncogenic pathway activated in the HNSCC derived from these mice and assessed it in primary human HNSCC samples, normal oral epithelial cell lines carrying shRNA to GRHL3, and human HNSCC cell lines. Data were analyzed with two-sided chi square and Student's t tests. Deletion of Grhl3 in oral epithelium in mice did not perturb PTEN/PI3K/AKT/mTOR signaling, but instead evoked loss of GSK3B expression, resulting in stabilization and accumulation of c-MYC and aggressive HNSCC. This molecular signature was also evident in a subset of primary human HNSCC and HNSCC cell lines. Loss of Gsk3b in mice, independent of Grhl3, predisposed to chemical-induced HNSCC. Restoration of GSK3B expression blocked proliferation of normal oral epithelial cell lines carrying shRNA to GRHL3 (cell no., Day 8: Scramble ctl, 616±21.8 x 10(3) vs GRHL3-kd, 1194±44 X 10(3), P < .001; GRHL3-kd vs GRHL3-kd + GSK3B, 800±98.84 X 10(3), P = .003) and human HNSCC cells. We defined a novel molecular signature in mammalian HNSCC, suggesting new treatment strategies targeting the GRHL3/GSK3B/c-MYC proto-oncogenic network. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Investigation of Immunoregulatory Alphaglobulin (IRA) in Shock and Trauma.

    DTIC Science & Technology

    1980-07-01

    rice whose limbs were amputated 2 days earlier Were fraction by adherence to glass Petri dishes or nylon wool columns (2 cycl,7), or by treatin Wi...to alloantigens. suggesting the presence of suppressor cells. The suppressor cells were found to adhere to glass and to nylon wool columns. They were...negative cell population capable of adhering to glass and nylon wool, Presumably macrophages. was responsible for inhibiting the response of lymphocytes

  4. T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus

    PubMed Central

    Shuda, Masahiro; Feng, Huichen; Kwun, Hyun Jin; Rosen, Steven T.; Gjoerup, Ole; Moore, Patrick S.; Chang, Yuan

    2008-01-01

    Merkel cell polyomavirus (MCV) is a virus discovered in our laboratory at the University of Pittsburgh that is monoclonally integrated into the genome of ≈80% of human Merkel cell carcinomas (MCCs). Transcript mapping was performed to show that MCV expresses transcripts in MCCs similar to large T (LT), small T (ST), and 17kT transcripts of SV40. Nine MCC tumor-derived LT genomic sequences have been examined, and all were found to harbor mutations prematurely truncating the MCV LT helicase. In contrast, four presumed episomal viruses from nontumor sources did not possess this T antigen signature mutation. Using coimmunoprecipitation and origin replication assays, we show that tumor-derived virus mutations do not affect retinoblastoma tumor suppressor protein (Rb) binding by LT but do eliminate viral DNA replication capacity. Identification of an MCC cell line (MKL-1) having monoclonal MCV integration and the signature LT mutation allowed us to functionally test both tumor-derived and wild type (WT) T antigens. Only WT LT expression activates replication of integrated MCV DNA in MKL-1 cells. Our findings suggest that MCV-positive MCC tumor cells undergo selection for LT mutations to prevent autoactivation of integrated virus replication that would be detrimental to cell survival. Because these mutations render the virus replication-incompetent, MCV is not a “passenger virus” that secondarily infects MCC tumors. PMID:18812503

  5. Indoleamine 2,3 Dioxygenase (IDO) as a Mediator of Myeloid Derived Suppressor Cell Function in Breast Cancer

    DTIC Science & Technology

    2009-10-31

    activation. 4 1a: Test the suppressive activity of MDSC from IDO1-/- BALB/c mice carrying TS/A or EMT 6 mammary tumors. 1b: Using IDO-/- NeuT ...mice test if MDSC induced by spontaneous mammary tumors in NeuT +/- or NeuNT+/- mice use IDO to mediate suppression. 1c: Determine if MDSC...mechanism by which IDO-IL-6 enhances MDSC suppressive activity. References 1. Ehrlich, P . Über den jetzigen stand der karzinom forschung. Ned. T

  6. Tetramethoxychalcone, a chalcone derivative, suppresses proliferation, blocks cell cycle progression, and induces apoptosis of human ovarian cancer cells.

    PubMed

    Qi, Zihao; Liu, Mingming; Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3',4',5'- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer.

  7. Tetramethoxychalcone, a Chalcone Derivative, Suppresses Proliferation, Blocks Cell Cycle Progression, and Induces Apoptosis of Human Ovarian Cancer Cells

    PubMed Central

    Liu, Yang; Zhang, Meiqin; Yang, Gong

    2014-01-01

    In the present study, we investigated the in vitro antitumor functions of a synthetic chalcone derivative 4,3′,4′,5′- tetramethoxychalcone (TMOC) in ovarian cancer cells. We found that TMOC inhibited the proliferation and colony formation of cisplatin sensitive cell line A2780 and resistant cell line A2780/CDDP, as well as ovarian cancer cell line SKOV3 in a time- and dose-dependent manner. Treatment of A2780 cells with TMOC resulted in G0/G1 cell cycle arrest through the down-regulation of cyclin D1 and CDK4, and the up-regulation of p16, p21 and p27 proteins. We demonstrated that TMOC might induce cell apoptosis through suppressing Bcl-2 and Bcl-xL, but enhancing the expression of Bax and the cleavage of PARP-1. Treatment of TMOC also reduced the invasion and migration of A2780 cells. Finally, we found that TMOC inhibited the constitutive activation of STAT3 signaling pathway and induced the expression of the tumor suppressor PTEN regardless of the p53 status in cell lines. These data suggest that TMOC may be developed as a potential chemotherapeutic agent to effectively treat certain cancers including ovarian cancer. PMID:25180593

  8. Immunity to herpes simplex virus type 2. Suppression of virus-induced immune responses in ultraviolet B-irradiated mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasumoto, S.; Hayashi, Y.; Aurelian, L.

    1987-10-15

    Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, andmore » their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.« less

  9. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of Tumors

    PubMed Central

    Sheng, Yuqiao; Li, Feng; Qin, Zhihai

    2018-01-01

    Tumor necrosis factor (TNF) is widely accepted as a tumor-suppressive cytokine via its ubiquitous receptor TNF receptor 1 (TNFR1). The other receptor, TNFR2, is not only expressed on some tumor cells but also on suppressive immune cells, including regulatory T cells and myeloid-derived suppressor cells. In contrast to TNFR1, TNFR2 diverts the tumor-inhibiting TNF into a tumor-advocating factor. TNFR2 directly promotes the proliferation of some kinds of tumor cells. Also activating immunosuppressive cells, it supports immune escape and tumor development. Hence, TNFR2 may represent a potential target of cancer therapy. Here, we focus on expression and role of TNFR2 in the tumor microenvironment. We summarize the recent progress in understanding how TNFR2-dependent mechanisms promote carcinogenesis and tumor growth and discuss the potential value of TNFR2 in cancer treatment. PMID:29892300

  10. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer.

    PubMed

    Su, Ke; Hu, Pengchao; Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-07-19

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent.

  11. Tumor suppressor berberine binds VASP to inhibit cell migration in basal-like breast cancer

    PubMed Central

    Wang, Xiaolan; Kuang, Changchun; Xiang, Qingmin; Yang, Fang; Xiang, Jin; Zhu, Shan; Wei, Lei; Zhang, Jingwei

    2016-01-01

    Berberine is a plant-derived compound used in traditional Chinese medicine, which has been shown to inhibit cell proliferation and migration in breast cancer. On the other hand, vasodilator-stimulated phosphoprotein (VASP) promotes actin filament elongation and cell migration. We previously showed that VASP is overexpressed in high-motility breast cancer cells. Here we investigated whether the anti-tumorigenic effects of berberine are mediated by binding VASP in basal-like breast cancer. Our results show that berberine suppresses proliferation and migration of MDA-MB-231 cells as well as tumor growth in MDA-MB-231 nude mouse xenografts. We also show that berberine binds to VASP, inducing changes in its secondary structure and inhibits actin polymerization. Our study reveals the mechanism underlying berberine's inhibition of cell proliferation and migration in basal-like breast cancer, highlighting the use of berberine as a potential adjuvant therapeutic agent. PMID:27322681

  12. 3D view to tumor suppression: Lkb1, polarity and the arrest of oncogenic c-Myc.

    PubMed

    Partanen, Johanna I; Nieminen, Anni I; Klefstrom, Juha

    2009-03-01

    Machiavelli wrote, in his famous political treatise Il Principe, about disrupting organization by planting seeds of dissension or by eliminating necessary support elements. Tumor cells do exactly that by disrupting the organized architecture of epithelial cell layers during progression from contained benign tumor to full-blown invasive cancer. However, it is still unclear whether tumor cells primarily break free by activating oncogenes powerful enough to cause chaos or by eliminating tumor suppressor genes guarding the order of the epithelial organization. Studies in Drosophila have exposed genes that encode key regulators of the epithelial apicobasal polarity and which, upon inactivation, cause disorganization of the epithelial layers and promote unscheduled cell proliferation. These polarity regulator/tumor suppressor proteins, which include products of neoplastic tumor suppressor genes (nTSGs), are carefully positioned in polarized epithelial cells to maintain the order of epithelial structures and to impose a restraint on cell proliferation. In this review, we have explored the presence and prevalence of somatic mutations in the human counterparts of Drosophila polarity regulator/tumor suppressor genes across the human cancers. The screen points out LKB1, which is a causal genetic lesion in Peutz-Jeghers cancer syndrome, a gene mutated in certain sporadic cancers and a human homologue of the fly polarity gene par-4. We review the evidence linking Lkb1 protein to polarity regulation in the scope of our recent results suggesting a coupled role for Lkb1 as an architect of organized acinar structures and a suppressor of oncogenic c-Myc. We finally present models to explain how Lkb1-dependent formation of epithelial architecture is coupled to suppression of normal and oncogene-induced proliferation.

  13. Peripheral T cell lymphomas: an immunological study of seven unusual cases.

    PubMed

    Raziuddin, S; Latif, A B; Arif, S; Ahad, A; Zaidi, A Z

    1988-05-01

    A multiparameter study of malignant lymph node cells and peripheral blood lymphocytes of seven patients with peripheral T cell lymphoma is presented. The results of monoclonal marker studies showed three cases of helper-suppressor T cell lymphoma (OKT4+, OKT8+), one case of suppressor T cell lymphoma (OKT8+), and three cases of helper T cell lymphoma (OKT4+). Immunophenotypic heterogeneity of neoplastic T cells with expression of pan-T antigens, OKT3+, and OKT11+ (erythrocyte rosetting+) was observed in most patients. Six of the seven cases tested showed Ia and DR antigens. No relationship was detected between patterns of reactivity with T cell reagents and histological types. When tested, the in-vitro malignant T cells of five patients proliferated in response to concanavalin A (Con A), but had poor response to phytohaemagglutinin. The interleukin 2 receptors showed maximum expression on Con A-activated T cells of five patients, and phytohaemagglutinin-activated T cells of one patient. The neoplastic T cells (OKT4+, OKT8+) of one patient studied had suppressor activity for IgG and IgA, and helper activity for IgM synthesis on pokeweed mitogen-induced normal B cell differentiations.

  14. Adoptively transferred immune T cells eradicate established tumors in spite of cancer-induced immune suppression

    PubMed Central

    Arina, Ainhoa; Schreiber, Karin; Binder, David C.; Karrison, Theodore; Liu, Rebecca B.; Schreiber, Hans

    2014-01-01

    Myeloid-derived CD11b+Gr1+ suppressor cells (MDSC) and tumor-associated macrophages (TAM) are considered a major obstacle for effective adoptive T cell therapy. Myeloid cells suppress naive T cell proliferation ex vivo and can prevent the generation of T cell responses in vivo. We find, however, that immune T cells adoptively transferred eradicate well-established tumors in the presence of MDSC and TAM which are strongly immunosuppressive ex vivo. These MDSC and TAM were comparable in levels and immunosuppression among different tumor models. Longitudinal microscopy of tumors in vivo revealed that after T cell transfer tumor vasculature and cancer cells disappeared simultaneously. During T-cell mediated tumor destruction, the tumor stroma contained abundant myeloid cells (mainly TAM) that retained their suppressive properties. Preimmunized but not naive mice resisted immune suppression caused by an unrelated tumor-burden supporting the idea that in vivo, myeloid immunosuppressive cells can suppress naive but not memory T cell responses. PMID:24367029

  15. TNF{alpha} induced FOXP3-NF{kappa}B interaction dampens the tumor suppressor role of FOXP3 in gastric cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Li, Weina; Zhang, Cun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer FOXP3 inhibition of cell proliferation is p21-dependent under basal conditions. Black-Right-Pointing-Pointer Inflammation induced by TNF{alpha} inhibits the tumor suppressor role of FOXP3. Black-Right-Pointing-Pointer Interaction between p65 and FOXP3 inhibits p21 transcription activation. -- Abstract: Controversial roles of FOXP3 in different cancers have been reported previously, while its role in gastric cancer is largely unknown. Here we found that FOXP3 is unexpectedly upregulated in some gastric cancer cells. To test whether increased FOXP3 remains the tumor suppressor role in gastric cancer as seen in other cancers, we test its function in cell proliferation both at basal and TNF{alpha} mimickedmore » inflammatory condition. Compared with the proliferation inhibitory role observed in basal condition, FOXP3 is insufficient to inhibit the cell proliferation under TNF{alpha} treatment. Molecularly, we found that TNF{alpha} induced an interaction between FOXP3 and p65, which in turn drive the FOXP3 away from the promoter of the well known target p21. Our data here suggest that although FOXP3 is upregulated in gastric cancer, its tumor suppressor role has been dampened due to the inflammation environment.« less

  16. Defective immunoregulatory T-cell function in chronic lymphocytic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, T.; Ozer, H.; Henderson, E.S.

    Chronic lymphocytic leukemia (CLL) of B-cell origin results in the malignant proliferation of small immunoglobulin-bearing lymphocytes. There is currently a controversy in the literature regarding both the ability of this leukemic population to differentiate into mature plasma cells, as well as the ability of apparently normal T cells from these patients to regulate allogeneic B-cell differentiation. In the present study we have examined the lymphocytes of CLL patients in various clinical stages of their disease and with different surface phenotypes of their leukemic B-cell population. Our results show that leukemic CLL B cells from all 20 patients (including one patientmore » with a monoclonal IgM paraprotein and another with a monoclonal IgG paraprotein) are incapable of further differentiation even in the absence of suppressor T cells and the presence of helper T lymphocytes. This lack of capacity to differentiate is unaffected by clinical stage, by therapy, or by the phenotype of the malignant population. Since the leukemic B population did not suppress normal allogeneic B-cell differentiation, the maturation deficit is evidently intrinsic to the leukemic clone rather than a result of activity of non-T suppressor cells. T helper function was also variably depressed in the blood of some patients with CLL, and this depression did not correlate with clinical stage, with therapy, or with the degree of lymphocytosis. Dysfunction of radiosensitive T suppressor cells was found to be the most consistent regulatory deficit of CLL T cells. Each of 11 patients whose leukemic cell population was of the ..mu..delta, ..mu cap alpha.., or ..mu.. phenotype had both helper and suppressor cell defects.« less

  17. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Danny C.T.; Rudduck, Christina; Chin, Koei

    2008-05-06

    Deletion of 11q23-q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We show here that LARG, from 11q23, has functional characteristics of a tumor suppressor. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, utilizing both loss of heterozygosity (LOH) analysis and microarray comparative genomic hybridization (CGH). LARG (also called ARHGEF12), identified from the analyzed region, was underexpressed in 34% of primary breast carcinomas and 80% of breast cancer cell lines including the MCF-7 line. Multiplex ligation-dependent probe amplification on 30more » primary breast cancers and six breast cancer cell lines showed that LARG had the highest frequency of deletion compared to the BCSC-1 and TSLC1 genes, two known candidate tumor suppressor genes from 11q. In vitro analysis of breast cancer cell lines that underexpress LARG showed that LARG could be reactivated by trichostatin A, a histone deacetylase inhibitor, but not by 5-Aza-2{prime}-deoxycytidine, a demethylating agent. Bisulfite sequencing and quantitative high-throughput analysis of DNA methylation confirmed the lack of CpG island methylation in LARG in breast cancer. Restoration of LARG expression in MCF-7 cells by stable transfection resulted in reduced proliferation and colony formation, suggesting that LARG has functional characteristics of a tumor suppressor gene.« less

  18. Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1+ pre–B ALL

    PubMed Central

    Aghajanirefah, Ali; McLaughlin, Jami; Cheng, Donghui; Geng, Huimin; Eggesbø, Linn M.; Smale, Stephen T.; Müschen, Markus

    2017-01-01

    Inactivation of the tumor suppressor gene encoding the transcriptional regulator Ikaros (IKZF1) is a hallmark of BCR-ABL1+ precursor B cell acute lymphoblastic leukemia (pre–B ALL). However, the mechanisms by which Ikaros functions as a tumor suppressor in pre–B ALL remain poorly understood. Here, we analyzed a mouse model of BCR-ABL1+ pre–B ALL together with a new model of inducible expression of wild-type Ikaros in IKZF1 mutant human BCR-ABL1+ pre–B ALL. We performed integrated genome-wide chromatin and expression analyses and identified Ikaros target genes in mouse and human BCR-ABL1+ pre–B ALL, revealing novel conserved gene pathways associated with Ikaros tumor suppressor function. Notably, genetic depletion of different Ikaros targets, including CTNND1 and the early hematopoietic cell surface marker CD34, resulted in reduced leukemic growth. Our results suggest that Ikaros mediates tumor suppressor function by enforcing proper developmental stage–specific expression of multiple genes through chromatin compaction at its target genes. PMID:28190001

  19. The Role of Myeloid-Derived Suppressor Cells in the Immunotherapy of HER2/neu-Positive Breast Carcinomas

    DTIC Science & Technology

    2009-10-01

    recombinant cytokines/chemokines were used in cultures instead of MMC- conditioned medium with blocking antibodies, since conditioned medium may contain...other un-identified factors. % total M DSC in spleen 0 3 6 9 P erce ntag e of MDS C in the to ta l sple en P er ce nt ag e R P M I C M *p =0 . 00...a l B M 0 20 40 60 R PM I C M P erce ntag e o f MDS C in tota l b on e ma rro w P er ce nt ag e R PM I C M *p = 0. 0 18 6 Figure 1: MMC-derived

  20. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway

    PubMed Central

    Liu, Yi; Zhang, Lingyun; Zhu, Xiangxiang; Wang, Yuehua; Liu, WenWei; Gong, Wei

    2015-01-01

    Gr-1+ CD11b+ myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1+ CD11b+ monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1+ CD11b+ MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1+ CD11b+ MDSCs by pAbM treatment had less ability to convert the CD4+ CD25− cells into CD4+ CD25+ phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1+ CD11b+ monocytes, nether CD8+ T cells nor CD4+ T cells. In addition to, pAbM did not inhibit tumour growth in TLR2–/– mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1+ CD11b+ MDSCs. PMID:26194418

  1. Immunological dysregulation in multiple myeloma microenvironment.

    PubMed

    Romano, Alessandra; Conticello, Concetta; Cavalli, Maide; Vetro, Calogero; La Fauci, Alessia; Parrinello, Nunziatina Laura; Di Raimondo, Francesco

    2014-01-01

    Multiple Myeloma (MM) is a systemic hematologic disease due to uncontrolled proliferation of monoclonal plasma cells (PC) in bone marrow (BM). Emerging in other solid and liquid cancers, the host immune system and the microenvironment have a pivotal role for PC growth, proliferation, survival, migration, and resistance to drugs and are responsible for some clinical manifestations of MM. In MM, microenvironment is represented by the cellular component of a normal bone marrow together with extracellular matrix proteins, adhesion molecules, cytokines, and growth factors produced by both stromal cells and PC themselves. All these components are able to protect PC from cytotoxic effect of chemo- and radiotherapy. This review is focused on the role of immunome to sustain MM progression, the emerging role of myeloid derived suppressor cells, and their potential clinical implications as novel therapeutic target.

  2. Identification of 12/15-lipoxygenase as a suppressor of myeloproliferative disease

    PubMed Central

    Middleton, Melissa Kristine; Zukas, Alicia Marie; Rubinstein, Tanya; Jacob, Michele; Zhu, Peijuan; Zhao, Liang; Blair, Ian; Puré, Ellen

    2006-01-01

    Though Abl inhibitors are often successful therapies for the initial stages of chronic myelogenous leukemia (CML), refractory cases highlight the need for novel molecular insights. We demonstrate that mice deficient in the enzyme 12/15-lipoxygenase (12/15-LO) develop a myeloproliferative disorder (MPD) that progresses to transplantable leukemia. Although not associated with dysregulation of Abl, cells isolated from chronic stage 12/15-LO–deficient (Alox15) mice exhibit increased activation of the phosphatidylinositol 3–kinase (PI3-K) pathway, as indicated by enhanced phosphorylation of Akt. Furthermore, the transcription factor interferon consensus sequence binding protein (ICSBP) is hyperphosphorylated and displays decreased nuclear accumulation, translating into increased levels of expression of the oncoprotein Bcl-2. The ICSBP defect, exaggerated levels of Bcl-2, and prolonged leukemic cell survival associated with chronic stage Alox15 MPD are all reversible upon treatment with a PI3-K inhibitor. Remarkably, the evolution of Alox15 MPD to leukemia is associated with additional regulation of ICSBP on an RNA level, highlighting the potential usefulness of the Alox15 model for understanding the transition of CML to crisis. Finally, 12/15-LO expression suppresses the growth of a human CML–derived cell line. These data identify 12/15-LO as an important suppressor of MPD via its role as a critical upstream effector in the regulation of PI3-K–dependent ICSBP phosphorylation. PMID:17043146

  3. RASSF10 is epigenetically silenced and functions as a tumor suppressor in gastric cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ziran; Chen, Xia; Chen, Ji

    2013-03-22

    Highlights: ► Epigenetic silencing of RASSF10 gene expression in GC cells. ► RASSF10 overexpression inhibits cell growth in vitro and in vivo. ► RASSF10 induces apoptosis in GC cells. ► RASSF10 inhibits Wnt/β-catenin signaling pathway. -- Abstract: Ras association domain family (RASSF) proteins are encoded by several tumor suppressor genes that are frequently silenced in human cancers. In this study, we investigated RASSF10 as a target of epigenetic inactivation and examined its functions as a tumor suppressor in gastric cancer. RASSF10 was silenced in six out of eight gastric cancer cell lines. Loss or downregulation of RASSF10 expression was associatedmore » with promoter hypermethylation, and could be restored by a demethylating agent. Overexpression of RASSF10 in gastric cancer cell lines (JRST, BGC823) suppressed cell growth and colony formation, and induced apoptosis, whereas RASSF10 depletion promoted cell growth. In xenograft animal experiments, RASSF10 overexpression effectively repressed tumor growth. Mechanistic investigations revealed that RASSF10 inhibited tumor growth by blocking activation of β-catenin and its downstream targets including c-Myc, cyclinD1, cyclinE1, peroxisome proliferator-activated receptor δ, transcription factor 4, transcription factor 1 and CD44. In conclusion, the results of this study provide insight into the role of RASSF10 as a novel functional tumor suppressor in gastric cancer through inhibition of the Wnt/β-catenin signaling pathway.« less

  4. Stromal loss of TGFβ drives cancer growth in the epithelium via inflammation | Center for Cancer Research

    Cancer.gov

    Interactions between epithelial and stromal cells play an important role in cancer development and progression. Epithelial cancers develop when changes occur to tumor suppressor genes in stromal fibroblast cells. For example, loss of tumor suppressor, p53, in stromal fibroblasts leads to p53 inactivation in the epithelium in a prostate cancer model, and disruption of the

  5. Activation of VIP signaling enhances immunosuppressive effect of MDSCs on CMV-induced adaptive immunity.

    PubMed

    Forghani, Parvin; Petersen, Christopher T; Waller, Edmund K

    2017-10-10

    Vasoactive intestinal peptide (VIP) is recognized as a potent anti-inflammatory factor which affects both the innate and adaptive arms of the immune system. These effects include, but are not limited to, inhibition of T cell proliferation and disruption of immune homeostasis. Myeloid-derived suppressor cells (MDSC) are an immune regulatory cell type that has been described in settings of cancer and infectious disease._Here we demonstrate a reduced circulating monocytic MDSCs in the VIP -/- vs. wild type MCMV. VIP-/- MDSCs secretes less NO upon stimulation with LPS and interferon that relatively lose the ability to suppress T cells activation in vitro compared to wild type MDSCs._Considering the importance of VIP in immunomodulation, the possible effect of VIP in the suppressive function of MDSC populations following CMV infection remains unknown. We describe the possible role of VIP in the regulation of anti-CMV activity of T cells through the activation of MDSCs.

  6. Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer.

    PubMed

    Wesolowski, Robert; Duggan, Megan C; Stiff, Andrew; Markowitz, Joseph; Trikha, Prashant; Levine, Kala M; Schoenfield, Lynn; Abdel-Rasoul, Mahmoud; Layman, Rachel; Ramaswamy, Bhuvaneswari; Macrae, Erin R; Lustberg, Maryam B; Reinbolt, Raquel E; Mrozek, Ewa; Byrd, John C; Caligiuri, Michael A; Mace, Thomas A; Carson, William E

    2017-11-01

    This study sought to evaluate whether myeloid-derived suppressor cells (MDSC) could be affected by chemotherapy and correlate with pathologic complete response (pCR) in breast cancer patients receiving neo-adjuvant chemotherapy. Peripheral blood levels of granulocytic (G-MDSC) and monocytic (M-MDSC) MDSC were measured by flow cytometry prior to cycle 1 and 2 of doxorubicin and cyclophosphamide and 1st and last administration of paclitaxel or paclitaxel/anti-HER2 therapy. Of 24 patients, 11, 6 and 7 patients were triple negative, HER2+ and hormone receptor+, respectively. 45.8% had pCR. Mean M-MDSC% were <1. Mean G-MDSC% and 95% confidence intervals were 0.88 (0.23-1.54), 5.07 (2.45-7.69), 9.32 (4.02-14.61) and 1.97 (0.53-3.41) at draws 1-4. The increase in G-MDSC by draw 3 was significant (p < 0.0001) in all breast cancer types. G-MDSC levels at the last draw were numerically lower in patients with pCR (1.15; 95% CI 0.14-2.16) versus patients with no pCR (2.71; 95% CI 0-5.47). There was no significant rise in G-MDSC from draw 1 to 3 in African American patients, and at draw 3 G-MDSC levels were significantly lower in African Americans versus Caucasians (p < 0.05). It was concluded that G-MDSC% increased during doxorubicin and cyclophosphamide therapy, but did not significantly differ between patients based on pathologic complete response.

  7. Synthesis and Functional Investigations of Computer Designed Novel Cladribine-Like Compounds for the Treatment of Multiple Sclerosis.

    PubMed

    Yavuz, Serkan; Çetin, Aysu; Akdemir, Atilla; Doyduk, Doğukan; Dişli, Ali; Çelik Turgut, Gurbet; Şen, Alaattin; Yıldırır, Yılmaz

    2017-11-01

    Cladribine (2-CdA) is used as an anti-cancer drug but is currently studied as a potential treatment for use in relapsing-remitting multiple sclerosis (MS). In this study, we computer designed, synthesized, and characterized two novel derivatives of 2-CdA, K1-5d and K2-4c, and investigated their underlying mechanism of beneficial effect using the CCRF-CEM and RAJI cell lines. For this purpose, we first determined their effect on MS and DNA damage and repair-related gene expression profiles using custom arrays along with 2-CdA treatment at non-toxic doses. Then, we determined whether cells underwent apoptosis after treatment with 2-CdA, K1-5d, and K2-4c in CCRF-CEM and RAJI cells, using the DNA fragmentation assay. It was found that both derivatives modulated the expression of the pathway-related genes that are important in inflammatory signaling, apoptosis, ATM/ATR, double-strand break repair, and the cell cycle. Furthermore, 2-CdA, K1-5d, and K2-4c significantly activated apoptosis in both cell lines. In summary, our data demonstrate that although both derivatives act as anti-inflammatory and apoptotic agents, inducing the accumulation of DNA strand breaks and activating the ultimate tumor suppressor p53 in T and B lymphocytes, the K1-5d derivative has shown more promising activities for further studies. © 2017 Deutsche Pharmazeutische Gesellschaft.

  8. Antihelminthic drug niclosamide inhibits CIP2A and reactivates tumor suppressor protein phosphatase 2A in non-small cell lung cancer cells.

    PubMed

    Kim, Myeong-Ok; Choe, Min Ho; Yoon, Yi Na; Ahn, Jiyeon; Yoo, Minjin; Jung, Kwan-Young; An, Sungkwan; Hwang, Sang-Gu; Oh, Jeong Su; Kim, Jae-Sung

    2017-11-15

    Protein phosphatase 2A (PP2A) is a critical tumor suppressor complex responsible for the inactivation of various oncogenes. Recently, PP2A reactivation has emerged asan anticancer strategy. Cancerous inhibitor of protein phosphatase 2A (CIP2A), an endogenous inhibitor of PP2A, is upregulated in many cancer cells, including non-small cell lung cancer (NSCLC) cells. We demonstrated that the antihelminthic drug niclosamide inhibited the expression of CIP2A and reactivated the tumor suppressor PP2A in NSCLC cells. We performed a drug-repurposing screen and identified niclosamide asa CIP2A suppressor in NSCLC cells. Niclosamide inhibited cell proliferation, colony formation, and tumor sphere formation, and induced mitochondrial dysfunction through increased mitochondrial ROS production in NSCLC cells; however, these effects were rescued by CIP2A overexpression, which indicated that the antitumor activity of niclosamide was dependent on CIP2A. We found that niclosamide increased PP2A activity through CIP2A inhibition, which reduced the phosphorylation of several oncogenic proteins. Moreover, we found that a niclosamide analog inhibited CIP2A expression and increased PP2A activity in several types of NSCLC cells. Finally, we showed that other well-known PP2A activators, including forskolin and FTY720, did not inhibit CIP2A and that their activities were not dependent on CIP2A. Collectively, our data suggested that niclosamide effectively suppressed CIP2A expression and subsequently activated PP2A in NSCLC cells. This provided strong evidence for the potential use of niclosamide asa PP2A-activating drug in the clinical treatment of NSCLC. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    PubMed

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  10. Simvastatin induces derepression of PTEN expression via NFkappaB to inhibit breast cancer cell growth.

    PubMed

    Ghosh-Choudhury, Nayana; Mandal, Chandi Charan; Ghosh-Choudhury, Nandini; Ghosh Choudhury, Goutam

    2010-05-01

    Sustained activation of Akt kinase acts as a focal regulator to increase cell growth and survival, which causes tumorigenesis including breast cancer. Statins, potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, display anticancer activity. The molecular mechanisms by which statins block cancer cell growth are poorly understood. We demonstrate that in the tumors derived from MDA-MB-231 human breast cancer cell xenografts, simvastatin significantly inhibited phosphorylation of Akt with concomitant attenuation of the expression of the anti-apoptotic protein Bcl(XL). In many cancer cells, Bcl(XL) is a target of NFkappaB. Simvastatin inhibited the DNA binding and transcriptional activities of NFkappaB resulting in marked reduction in transcription of Bcl(XL). Signals transmitted by anti-neoplastic mechanism implanted in the cancer cells serve to obstruct the initial outgrowth of tumors. One such mechanism represents the action of the tumor suppressor protein PTEN, which negatively regulates Akt kinase activity. We provide the first evidence for significantly increased levels of PTEN in the tumors of simvastatin-administered mice. Importantly, simvastatin markedly prevented binding of NFkappaB to the two canonical recognition elements, NFRE-1 and NFRE-2 present in the PTEN promoter. Contrary to the transcriptional suppression of Bcl(XL), simvastatin significantly increased the transcription of PTEN. Furthermore, expression of NFkappaB p65 subunit inhibited transcription of PTEN, resulting in reduced protein expression, which leads to enhanced phosphorylation of Akt. Taken together, our data present a novel bifaceted mechanism where simvastatin acts on a nodal transcription factor NFkappaB, which attenuates the expression of anti-apoptotic Bcl(XL) and simultaneously derepresses the expression of anti-proliferative/proapoptotic tumor suppressor PTEN to prevent breast cancer cell growth. Published by Elsevier Inc.

  11. Combinations of Ashwagandha Leaf Extracts Protect Brain-Derived Cells against Oxidative Stress and Induce Differentiation

    PubMed Central

    Shah, Navjot; Singh, Rumani; Sarangi, Upasana; Saxena, Nishant; Chaudhary, Anupama; Kaur, Gurcharan; Kaul, Sunil C.; Wadhwa, Renu

    2015-01-01

    Background Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. Methodology/Principal Findings We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. Conclusion Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health. PMID:25789768

  12. ET-33PLACENTA-DERIVED MESENCHYMAL STEM CELLS AND THEIR SECRETED EXOSOMES INHIBIT THE SELF-RENEWAL AND STEMNESS OF GLIOMA STEM CELLS IN VITRO AND IN VIVO

    PubMed Central

    Lee, Hae Kyung; Buchris, Efrat; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila; Brodie, Chaya

    2014-01-01

    Mesenchymal stromal cells (MSCs) are multipotent stem cells that can be obtained from bone marrow and adipose tissues or from other sources such as placenta and umbilical cord. The latter allow the potential use of universal, allogeneic cell therapy because to reduced antigenicity due to low expression of MHC class II molecules. MSCs can be easily expanded in vitro for therapeutic applications and their safety and therapeutic impact have been demonstrated in various pre-clinical and clinical studies. MSCs have been shown to cross the blood brain barrier and migrate to sites of experimental GBM and can deliver cytotoxic compounds that exert anti-tumor effects. In this study we examined the effects of placenta-derived MSCs and their secreted exosomes on GSCs in vitro and in vivo. Conditioned medium of placenta MSCs or their derived exosomes decreased the self-renewal, stemness markers, Sox2 and Oct4 and the migration of these cells. Similarly, intracranial administration of the MSCs decreased the tumor volume of GSC-derived xenografts and prolonged animal survival. miRNA sequencing analysis of placenta MSC-derived exosomes revealed a set of specific miRNAs that were downregulated in GSCs and that acted as tumor suppressor in these cells. We demonstrated delivery of some of these miRNAs to GSCs following treatments with MSC-derived exosomes. We further demonstrated that MSCs or exosomes that were loaded with exogenous miR-124 delivered high levels of this miRNA into glioma cells as detected by a novel quantitative miRNA reporter. Moreover, administration of placenta MSCs loaded with exogenous miR-124 exerted a strong inhibitory effect on GSC-derived xenograft growth. These results demonstrate that placenta-derived MSCs may have important clinical applications in stem cell-based glioma therapeutics. Moreover, these studies provide a novel approach for the targeted delivery of endogenous and exogenous anti-tumor miRNAs to glioma cells as a miRNA replacement therapy for GBM.

  13. Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals.

    PubMed

    Qiu, Yang; Xu, Yanpeng; Zhang, Yao; Zhou, Hui; Deng, Yong-Qiang; Li, Xiao-Feng; Miao, Meng; Zhang, Qiang; Zhong, Bo; Hu, Yuanyang; Zhang, Fu-Chun; Wu, Ligang; Qin, Cheng-Feng; Zhou, Xi

    2017-06-20

    RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Downregulation of MTSS1 expression is an independent prognosticator in squamous cell carcinoma of the lung.

    PubMed

    Kayser, G; Csanadi, A; Kakanou, S; Prasse, A; Kassem, A; Stickeler, E; Passlick, B; Zur Hausen, A

    2015-03-03

    The metastasis suppressor 1 (MTSS1) is a newly discovered protein putatively involved in tumour progression and metastasis. Immunohistochemical expression of MTSS1 was analysed in 264 non-small-cell lung carcinomas (NSCLCs). The metastasis suppressor 1 was significantly overexpressed in NSCLC compared with normal lung (P=0.01). Within NSCLC, MTSS1 expression was inversely correlated with pT-stage (P=0.019) and histological grading (P<0.001). NSCLC with MTSS1 downregulation (<20%) showed a significantly worse outcome (P=0.007). This proved to be an independent prognostic factor in squamous cell carcinomas (SCCs; P=0.041), especially in early cancer stages (P=0.006). The metastasis suppressor 1 downregulation could thus serve as a stratifying marker for adjuvant therapy in early-stage SCC of the lung.

  15. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  16. High-calorie diet exacerbates prostate neoplasia in mice with haploinsufficiency of Pten tumor suppressor gene.

    PubMed

    Liu, Jehnan; Ramakrishnan, Sadeesh K; Khuder, Saja S; Kaw, Meenakshi K; Muturi, Harrison T; Lester, Sumona Ghosh; Lee, Sang Jun; Fedorova, Larisa V; Kim, Andrea J; Mohamed, Iman E; Gatto-Weis, Cara; Eisenmann, Kathryn M; Conran, Philip B; Najjar, Sonia M

    2015-03-01

    Association between prostate cancer and obesity remains controversial. Allelic deletions of PTEN, a tumor suppressor gene, are common in prostate cancer in men. Monoallelic Pten deletion in mice causes low prostatic intraepithelial neoplasia (mPIN). This study tested the effect of a hypercaloric diet on prostate cancer in Pten (+/-) mice. 1-month old mice were fed a high-calorie diet deriving 45% calories from fat for 3 and 6 months before prostate was analyzed histologically and biochemically for mPIN progression. Because Pten (+/-) mice are protected against diet-induced insulin resistance, we tested the role of insulin on cell growth in RWPE-1 normal human prostatic epithelial cells with siRNA knockdown of PTEN. In addition to activating PI3 kinase/Akt and Ras/MAPkinase pathways, high-calorie diet causes neoplastic progression, angiogenesis, inflammation and epithelial-mesenchymal transition. It also elevates the expression of fatty acid synthase (FAS), a lipogenic gene commonly elevated in progressive cancer. SiRNA-mediated downregulation of PTEN demonstrates increased cell growth and motility, and soft agar clonicity in addition to elevation in FAS in response to insulin in RWPE-1 normal human prostatic cells. Downregulating FAS in addition to PTEN, blunted the proliferative effect of insulin (and IL-6) in RWPE-1 cells. High-calorie diet promotes prostate cancer progression in the genetically susceptible Pten haploinsufficient mouse while preserving insulin sensitivity. This appears to be partly due to increased inflammatory response to high-caloric intake in addition to increased ability of insulin to promote lipogenesis.

  17. Regulatory Myeloid Cells in Transplantation

    PubMed Central

    Rosborough, Brian R.; Raïch-Regué, Dàlia; Turnquist, Heth R.; Thomson, Angus W.

    2013-01-01

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages (Mreg), regulatory dendritic cells (DCreg) and myeloid-derived suppressor cells (MDSC) to regulate alloimmunity, their potential as cellular therapeutic agents and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity following RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and usher in a new era of immune modulation exploiting cells of myeloid origin. PMID:24092382

  18. A tumor suppressor locus within 3p14-p12 mediates rapid cell death of renal cell carcinoma in vivo.

    PubMed Central

    Sanchez, Y; el-Naggar, A; Pathak, S; Killary, A M

    1994-01-01

    High frequency loss of alleles and cytogenetic aberrations on the short arm of chromosome 3 have been documented in renal cell carcinoma (RCC). Potentially, three distinct regions on 3p could encode tumor suppressor genes involved in the genesis of this cancer. We report that the introduction of a centric fragment of 3p, encompassing 3p14-q11, into a highly malignant RCC cell line resulted in a dramatic suppression of tumor growth in athymic nude mice. Another defined deletion hybrid contained the region 3p12-q24 of the introduced human chromosome and failed to suppress tumorigenicity. These data functionally define a tumor suppressor locus, nonpapillary renal carcinoma-1 (NRC-1), within 3p14-p12, the most proximal region of high frequency allele loss in sporadic RCC as well as the region containing the translocation breakpoint in familial RCC. Furthermore, we provide functional evidence that NRC-1 controls the growth of RCC cells by inducing rapid cell death in vivo. Images PMID:8159756

  19. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

    PubMed

    Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido

    2015-10-01

    The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.

  20. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development

    PubMed Central

    Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido

    2015-01-01

    The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710

  1. Antigen induced inhibition of autoimmune response to rat male accessory glands: role of thymocytes on the efferent phase of the suppression.

    PubMed

    Ferro, M E; Romero-Piffiguer, M; Rivero, V; Yranzo-Volonte, N; Correa, S; Riera, C M

    1991-01-01

    In the present study, we report that Cy-sensitive, MRAG-adherent spleen mononuclear (SpM) inductor-phase T suppressor (Ts) cells obtained from rats pretreated with low doses of a purified fraction (FI) of rat male accessory gland antigens (RAG) are mainly OX19+ and W3/25+. Furthermore, thymocytes from rats pretreated with FI of RAG restore the suppression of the autoimmune response to RAG autoantigens in irradiated recipients of SpM inductor-phase Ts cells. In contrast, thymocytes from rats pretreated with rat heart saline extract (unrelated antigen) did not recuperate the suppression of the autoimmune response detected by macrophage migration inhibitory factor (MIF) and delayed-type hypersensitivity. The suppressor thymocytes did not directly exert their inhibitory effect because they were not effective to suppress the autoimmune response to RAG autoantigens when irradiated recipients did not receive SpM inductor-phase Ts cells. The effect of these thymocytes was found in PNA--but not in PNA+ thymic cell population. The perithymic injection of Toxoplasma gondii did block their suppressor activity. The present report clearly shows an active participation of thymus in the efferent phase of the suppressor circuit that controls the autoimmune response to MRAG. The implications of these findings are discussed.

  2. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma.

    PubMed

    Song, Hai; Lin, Chuwen; Yao, Erica; Zhang, Kuan; Li, Xiaoling; Wu, Qingzhe; Chuang, Pao-Tien

    2017-03-03

    Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRP CreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53 , Rb , and Pten , in mature parafollicular C cells via an inducible Cre recombinase from CGRP CreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53 / Rb -induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRP CreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effect of duct shape, Mach number, and lining construction on measured suppressor attenuation and comparison with theory

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Krejsa, E. A.; Coats, J. W.

    1972-01-01

    Noise attenuation was measured for several types of cylindrical suppressors that use a duct lining composed of honeycomb cells covered with a perforated plate. The experimental technique used gave attenuation data that were repeatable and free of noise floors and other sources of error. The suppressor length, the effective acoustic diameter, suppressor shape and flow velocity were varied. The agreement among the attenuation data and two widely used analytical models was generally satisfactory. Changes were also made in the construction of the acoustic lining to measure their effect on attenuation. One of these produced a very broadband muffler.

  4. Infrared suppressor effect on T63 turboshaft engine performance

    NASA Technical Reports Server (NTRS)

    Bailey, E. E.; Civinskas, K. C.; Walker, C. L.

    1978-01-01

    Tests were conducted to determine if there are performance penalties associated with the installation of infrared (IR) suppressors on the T63-A-700 turboshaft engine. The testing was done in a sea-level, static test cell. The same engine (A-E402808 B) was run with the standard OH-58 aircraft exhaust stacks and with the ejector-type IR suppressors in order to make a valid comparison. Repeatability of the test results for the two configurations was verified by rerunning the conditions over a period of days. Test results showed no measurable difference in performance between the standard exhaust stacks and the IR suppressors.

  5. MiR-339 and especially miR-766 reactivate the expression of tumor suppressor genes in colorectal cancer cell lines through DNA methyltransferase 3B gene inhibition.

    PubMed

    Afgar, Ali; Fard-Esfahani, Pezhman; Mehrtash, Amirhosein; Azadmanesh, Kayhan; Khodarahmi, Farnaz; Ghadir, Mahdis; Teimoori-Toolabi, Ladan

    2016-11-01

    It is observed that upregulation of DNMT3B enzyme in some cancers, including colon cancer, could lead to silencing of tumor suppressor genes. MiR-339 and miR-766 have been predicted to target 3'UTR of DNMT3B gene. Luciferase reporter assay validated that individual and co-transfection of miR-766 and miR-339 into the HEK293T cell reduced luciferase activity to 26% ± 0.41%, 43% ± 0.42 and 64% ± 0.52%, respectively, compared to the control (P < 0.05). Furthermore, transduction of miR-339 and miR-766 expressing viruses into colon cancer cell lines (SW480 and HCT116) decreased DNMT3B expression (1.5, 3-fold) and (3, 4-fold), respectively. In addition, DNA methylation of some tumor suppressor genes decreased. Expression of these genes such as SFRP1 (2 and 1.6-fold), SFRP2 (0.07 and 4-fold), WIF1 (0.05 and 4-fold), and DKK2 (2 and 4-fold) increased in SW-339 and SW-766 cell lines; besides, expression increments for these genes in HCT-339 and HCT-766 cell lines were (2.8, 4-fold), (0.005, 1.5-fold), (1.7 and 3-fold) and (0.04, 1.7-fold), respectively. Also, while in SW-766, cell proliferation reduced to 2.8% and 21.7% after 24 and 48 hours, respectively, SW-339 showed no reduced proliferation. Meanwhile, HCT-766 and HCT-339 showed (3.5%, 12.8%) and (18.8%, 33.9%) reduced proliferation after 24 and 48 hours, respectively. Finally, targeting DNMT3B by these miRs, decreased methylation of tumor suppressor genes such as SFRP1, SFRP2, WIF1 and DKK2 in the mentioned cell lines, and returned the expression of these tumor suppressor genes which can contribute to lethal effect on colon cancer cells and reducing tumorigenicity of these cells.

  6. The novel GrCEP12 peptide from the plant-parasitic nematode Globodera rostochiensis suppresses flg22-mediated PTI.

    PubMed

    Chen, Shiyan; Chronis, Demosthenis; Wang, Xiaohong

    2013-09-01

    The potato cyst nematode Globodera rostochiensis is a biotrophic pathogen that secretes effector proteins into host root cells to promote successful plant parasitism. In addition to the role in generating within root tissue the feeding cells essential for nematode development, (1) nematode secreted effectors are becoming recognized as suppressors of plant immunity. (2)(-) (4) Recently we reported that the effector ubiquitin carboxyl extension protein (GrUBCEP12) from G. rostochiensis is processed into free ubiquitin and a 12-amino acid GrCEP12 peptide in planta. Transgenic potato lines overexpressing the derived GrCEP12 peptide showed increased susceptibility to G. rostochiensis and to an unrelated bacterial pathogen Streptomyces scabies, suggesting that GrCEP12 has a role in suppressing host basal defense or possibly pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) during the parasitic interaction. (3) To determine if GrCEP12 functions as a PTI suppressor we evaluated whether GrCEP12 suppresses flg22-induced PTI responses in Nicotiana benthamiana. Interestingly, we found that transient expression of GrCEP12 in N. benthamiana leaves suppressed reactive oxygen species (ROS) production and the induction of two PTI marker genes triggered by the bacterial PAMP flg22, providing direct evidence that GrCEP12 indeed has an activity in PTI suppression.

  7. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress.

    PubMed

    Su, Chen-Ming; Chen, Chien-Yu; Lu, Tingting; Sun, Yi; Li, Weimin; Huang, Yuan-Li; Tsai, Chun-Hao; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-12-13

    Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.

  8. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  9. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  10. Hypoxic Conditioned Medium From Human Adipose-Derived Stem Cells Promotes Mouse Liver Regeneration Through JAK/STAT3 Signaling

    PubMed Central

    Lee, Sang Chul; Jeong, Hye Jin; Lee, Sang Kuon

    2016-01-01

    Adipose-derived stem cells (ASCs) mainly exert their function by secreting materials that are collectively termed the secretome. Despite recent attention to the secretome as an alternative to stem cell therapy, the culture conditions for generating optimal secretome contents have not been determined. Therefore, we investigated the role of hypoxic-conditioned media (HCM) from ASCs. Normoxic-conditioned media (NCM) and HCM were obtained after culturing ASCs in 20% O2 or 1% O2 for 24 hours, respectively. Subsequently, partially hepatectomized mice were infused with saline, control medium, NCM, or HCM, and then sera and liver specimens were obtained for analyses. Hypoxia (1% O2) significantly increased mRNA expression of mediators from ASCs, including interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). HCM infusion significantly increased the number of Ki67-positive cells in the liver (p < .05). HCM infusion significantly increased phospho-signal transducer and activator of transcription 3 (STAT3) and decreased suppressor of cytokine signaling 3 (SOCS3) expression in the liver (p < .05). To determine the role of IL-6 in liver regeneration, we then performed IL-6 RNA interference study. Conditioned media (CM) obtained from ASCs, which were transfected with either siIL-6 or siControl, were administered to partially hepatectomized mice. The siIL-6 CM groups exhibited lower liver proliferation (Ki67-positive cells) and markers of regeneration (protein expression of proliferating cell nuclear antigen, p-STAT3, HGF, and VEGF and liver weights) than the siControl CM groups (p < .05). Taken together, hypoxic preconditioning of ASCs increased expression of mediators promoting anti-inflammatory and regenerative responses. The liver regenerative effects of HCM appear to be mediated by persistent and uninhibited expression of STAT3 in the liver, which results from decreased expression of SOCS3. Significance In this study, it was found that treatment with the medium from hypoxic-preconditioned adipose-derived stem cells (ASCs) increased the viability of hepatotoxic hepatocytes and enhance liver regeneration in partially hepatectomized mice. In addition, the researchers first revealed that the hepatoprotective effects of hypoxic-conditioned media are mediated by persistent and uninhibited expression of signal transducer and activator of transcription 3 in the liver, which result from a decreased expression of suppressor of cytokine signaling 3. Therefore, the hypoxic preconditioning of ASCs is expected to play a crucial role in regenerative medicine by optimizing the production of a highly effective secretome from ASCs. PMID:27102647

  11. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    PubMed Central

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  12. Esculetin Inhibits the Survival of Human Prostate Cancer Cells by Inducing Apoptosis and Arresting the Cell Cycle.

    PubMed

    Turkekul, Kader; Colpan, R Dilsu; Baykul, Talha; Ozdemir, Mehmet D; Erdogan, Suat

    2018-03-01

    Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c , p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed.

  13. Esculetin Inhibits the Survival of Human Prostate Cancer Cells by Inducing Apoptosis and Arresting the Cell Cycle

    PubMed Central

    Turkekul, Kader; Colpan, R. Dilsu; Baykul, Talha; Ozdemir, Mehmet D.

    2018-01-01

    Background Prostate cancer (PCa) is one of the most important causes of death in men and thus new therapeutic approaches are needed. In this study, antiproliferative and anti-migration properties of a coumarin derivative esculetin were evaluated. Methods Human PCa cell lines PC3, DU145, and LNCaP were treated with various concentrations of esculetin for 24 to 72 hours, and cell viability was determined by the MTT test. Cell cycle and apoptosis were analyzed by using cell-based cytometer. Gene expression levels were assessed by reverse transcription and quantitative real-time PCR, cell migration was determined by the wound healing assay. The protein expression was measured by Western blotting. Results Esculetin inhibited cell proliferation in a dose- and time-dependent manner. Cell migration was inhibited by esculetin treatment. Administration of esculetin significantly reduced the cells survival, induced apoptosis and caused the G1 phase cell cycle arrest shown by image-based cytometer. The induced expression of cytochrome c, p53, p21 and p27, and down-regulated CDK2 and CDK4 may be the underlying molecular mechanisms of esculetin effect. Esculetin suppressed phosphorylation of Akt and enhanced protein expression of tumor-suppressor phosphatase and tensin homologue. Conclusions Our findings showed that the coumarin derivative esculetin could be used in the management of PCa. However, further in vivo research is needed. PMID:29629344

  14. TUSC2 Immunogene Therapy Synergizes with Anti-PD-1 through Enhanced Proliferation and Infiltration of Natural Killer Cells in Syngeneic Kras-Mutant Mouse Lung Cancer Models.

    PubMed

    Meraz, Ismail M; Majidi, Mourad; Cao, Xiaobo; Lin, Heather; Li, Lerong; Wang, Jing; Baladandayuthapani, Veera; Rice, David; Sepesi, Boris; Ji, Lin; Roth, Jack A

    2018-02-01

    Expression of the multikinase inhibitor encoded by the tumor suppressor gene TUSC2 (also known as FUS1 ) is lost or decreased in non-small cell lung carcinoma (NSCLC). TUSC2 delivered systemically by nanovesicles has mediated tumor regression in clinical trials. Because of the role of TUSC2 in regulating immune cells, we assessed TUSC2 efficacy on antitumor immune responses alone and in combination with anti-PD-1 in two Kras -mutant syngeneic mouse lung cancer models. TUSC2 alone significantly reduced tumor growth and prolonged survival compared with anti-PD-1. When combined, this effect was significantly enhanced, and correlated with a pronounced increases in circulating and splenic natural killer (NK) cells and CD8 + T cells, and a decrease in regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and T-cell checkpoint receptors PD-1, CTLA-4, and TIM-3. TUSC2 combined with anti-PD-1 induced tumor infiltrating more than NK and CD8 + T cells and fewer MDSCs and Tregs than each agent alone, both in subcutaneous tumor and in lung metastases. NK-cell depletion abrogated the antitumor effect and Th1-mediated immune response of this combination, indicating that NK cells mediate TUSC2/anti-PD-1 synergy. Release of IL15 and IL18 cytokines and expression of the IL15Rα chain and IL18R1 were associated with NK-cell activation by TUSC2. Immune response-related gene expression in the tumor microenvironment was altered by combination treatment. These data provide a rationale for immunogene therapy combined with immune checkpoint blockade in the treatment of NSCLC. Cancer Immunol Res; 6(2); 163-77. ©2018 AACR . ©2018 American Association for Cancer Research.

  15. Human papillomavirus oncogenic E6 protein regulates human β-defensin 3 (hBD3) expression via the tumor suppressor protein p53

    PubMed Central

    Yue, Hong; Wang, Liming; Jin, Jessica; Ghosh, Santosh K.; Kawsar, Hameem I.; Zender, Chad; Androphy, Elliot J.; Weinberg, Aaron; McCormick, Thomas S.; Jin, Ge

    2016-01-01

    Human β-defensin-3 (hBD3) is an epithelial cell-derived innate immune regulatory molecule overexpressed in oral dysplastic lesions and fosters a tumor-promoting microenvironment. Expression of hBD3 is induced by the epidermal growth factor receptor signaling pathway. Here we describe a novel pathway through which the high-risk human papillomavirus type-16 (HPV-16) oncoprotein E6 induces hBD3 expression in mucosal keratinocytes. Ablation of E6 by siRNA induces the tumor suppressor p53 and diminishes hBD3 in HPV-16 positive CaSki cervical cancer cells and UM-SCC-104 head and neck cancer cells. Malignant cells in HPV-16-associated oropharyngeal cancer overexpress hBD3. HPV-16 E6 induces hBD3 mRNA expression, peptide production and gene promoter activity in mucosal keratinocytes. Reduction of cellular levels of p53 stimulates hBD3 expression, while activation of p53 by doxorubicin inhibits its expression in primary oral keratinocytes and CaSki cells, suggesting that p53 represses hBD3 expression. A p53 binding site in the hBD3 gene promoter has been identified by using electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP). In addition, the p63 protein isoform ΔNp63α, but not TAp63, stimulated transactivation of the hBD3 gene and was co-expressed with hBD3 in head and neck cancer specimens. Therefore, high-risk HPV E6 oncoproteins may stimulate hBD3 expression in tumor cells to facilitate tumorigenesis of HPV-associated head and neck cancer. PMID:27034006

  16. The PDZ domain binding motif (PBM) of human T-cell leukemia virus type 1 Tax can be substituted by heterologous PBMs from viral oncoproteins during T-cell transformation.

    PubMed

    Aoyagi, Tomoya; Takahashi, Masahiko; Higuchi, Masaya; Oie, Masayasu; Tanaka, Yuetsu; Kiyono, Tohru; Aoyagi, Yutaka; Fujii, Masahiro

    2010-04-01

    Several tumor viruses, such as human T-cell leukemia virus (HTLV), human papilloma virus (HPV), human adenovirus, have high-oncogenic and low-oncogenic subtypes, and such subtype-specific oncogenesis is associated with the PDZ-domain binding motif (PBM) in their transforming proteins. HTLV-1, the causative agent of adult T-cell leukemia, encodes Tax1 with PBM as a transforming protein. The Tax1 PBM was substituted with those from other oncoviruses, and the transforming activity was examined. Tax1 mutants with PBM from either HPV-16 E6 or adenovirus type 9 E4ORF1 are fully active in the transformation of a mouse T-cell line from interleukin-2-dependent growth into independent growth. Interestingly, one such Tax1 PBM mutant had an extra amino acid insertion derived from E6 between PBM and the rest of Tax1, thus suggesting that the amino acid sequences of the peptides between PBM and the rest of Tax1 and the numbers only slightly affect the function of PBM in the transformation. Tax1 and Tax1 PBM mutants interacted with tumor suppressors Dlg1 and Scribble with PDZ-domains. Unlike E6, Tax1 PBM mutants as well as Tax1 did not or minimally induced the degradations of Dlg1 and Scribble, but instead induced their subcellular translocation from the detergent-soluble fraction into the insoluble fraction, thus suggesting that the inactivation mechanism of these tumor suppressor proteins is distinct. The present results suggest that PBMs of high-risk oncoviruses have a common function(s) required for these three tumor viruses to transform cells, which is likely associated with the subtype-specific oncogenesis of these tumor viruses.

  17. SIRT3 functions as a tumor suppressor in hepatocellular carcinoma.

    PubMed

    Zeng, Xianchun; Wang, Nanzhu; Zhai, Hui; Wang, Rongpin; Wu, Jiahong; Pu, Wei

    2017-03-01

    Hepatocellular carcinoma is one of the leading causes for cancer-related mortality worldwide. SIRT3 may function as either oncogene or tumor suppressor in a panel of cancers; however, the role of SIRT3 in hepatocellular carcinoma remains unclear. In this study, we assayed the expression level of SIRT3 in hepatocellular carcinoma tissues by quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. A loss-of-function approach was used to examine the effects of SIRT3 on biological activity, including cell proliferative activity and invasive potential. The results demonstrated that the expression levels of SIRT3 protein in hepatocellular carcinoma tissues were significantly downregulated compared with those in adjacent non-cancerous tissues. Furthermore, SIRT3 could decrease cell proliferation and inhibit cell migration/invasion in hepatocellular carcinoma cell line. Taken together, these results elucidated the function of SIRT3 in hepatocellular carcinoma development and suggested that SIRT3 might function as tumor suppressor in hepatocellular carcinoma by targeting PI3K/Akt pathway.

  18. Stromal loss of TGFβ drives cancer growth in the epithelium via inflammation | Center for Cancer Research

    Cancer.gov

    Interactions between epithelial and stromal cells play an important role in cancer development and progression. Epithelial cancers develop when changes occur to tumor suppressor genes in stromal fibroblast cells. For example, loss of tumor suppressor, p53, in stromal fibroblasts leads to p53 inactivation in the epithelium in a prostate cancer model, and disruption of the transforming growth factor-b receptor II (TGF-βRII) in stromal fibroblasts results in intraepithelial dysplasia in prostate cancer and invasive squamous cell carcinoma (SCC) in mouse forestomach.

  19. [Current strategies in the treatment of renal-cell cancer: targeted therapies].

    PubMed

    Trigo, José Manuel; Bellmunt, Joaquim

    2008-03-22

    Renal-cell carcinoma represents 95% of all renal tumours. The Von Hippel-Lindau (VHL) tumor-suppressor gene is mutated or silenced in most clear cell renal carcinomas. pVHL loss results in the stabilization of the heterodimeric transcription factor hypoxia-inducible factor (HIF) and enhanced transactivation of HIF target genes. HIF itself has been difficult to inhibit with drug-like molecules although a number of agents that indirectly inhibit HIF, including mTOR (mammalian target of rapamycin) inhibitors, have been identified. Moreover, a number of drugs have been developed that target HIF-responsive gene products, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), implicated in tumor angiogenesis. Many of these targeted therapies, especially sunitinib, have demonstrated significant activity in kidney cancer clinical trials and represent a substantive advance in the treatment of this disease.

  20. p53 Hypersensitivity Is the Predominant Mechanism of the Unique Responsiveness of Testicular Germ Cell Tumor (TGCT) Cells to Cisplatin

    PubMed Central

    Gutekunst, Matthias; Oren, Moshe; Weilbacher, Andrea; Dengler, Michael A.; Markwardt, Christiane; Thomale, Jürgen; Aulitzky, Walter E.; van der Kuip, Heiko

    2011-01-01

    Consistent with the excellent clinical results in testicular germ cell tumors (TGCT), most cell lines derived from this cancer show an exquisite sensitivity to Cisplatin. It is well accepted that the high susceptibility of TGCT cells to apoptosis plays a central role in this hypersensitive phenotype. The role of the tumor suppressor p53 in this response, however, remains controversial. Here we show that siRNA-mediated silencing of p53 is sufficient to completely abrogate hypersensitivity not only to Cisplatin but also to non-genotoxic inducers of p53 such as the Mdm2 antagonist Nutlin-3 and the proteasome inhibitor Bortezomib. The close relationship between p53 protein levels and induction of apoptosis is lost upon short-term differentiation, indicating that this predominant pro-apoptotic function of p53 is unique in pluripotent embryonal carcinoma (EC) cells. RNA interference experiments as well as microarray analysis demonstrated a central role of the pro-apoptotic p53 target gene NOXA in the p53-dependent apoptotic response of these cells. In conclusion, our data indicate that the hypersensitivity of TGCT cells is a result of their unique sensitivity to p53 activation. Furthermore, in the very specific cellular context of germ cell-derived pluripotent EC cells, p53 function appears to be limited to induction of apoptosis. PMID:21532991

  1. Peptide B12: emerging trends at the interface of inorganic chemistry, chemical biology and medicine.

    PubMed

    Zelder, Felix; Zhou, Kai; Sonnay, Marjorie

    2013-01-28

    The sophisticated and efficient delivery of vitamin B(12) ("B(12)") into cells offers promise for B(12)-bioconjugates in medicinal diagnosis and therapy. It is therefore surprising that rather little attention is presently paid to an alternative strategy in drug design: the development of structurally perfect, but catalytically inactive semi-artificial B(12) surrogates. Vitamin B(12) cofactors catalyse important biological transformations and are indispensible for humans and most other forms of life. This strong metabolic dependency exhibits enormous medicinal opportunities. Inhibitors of B(12) dependent enzymes are potential suppressors of fast proliferating cancer cells. This perspective article focuses on the design and study of backbone modified B(12) derivatives, particularly on peptide B(12) derivatives. Peptide B(12) is a recently introduced class of biomimetic cobalamins bearing an artificial peptide backbone with adjustable coordination and redox-properties. Pioneering biological studies demonstrated reduced catalytic activity, combined with inhibitory potential that is encouraging for future efforts in turning natural cofactors into new anti-proliferative agents.

  2. miR-448 is a novel prognostic factor of lung squamous cell carcinoma and regulates cells growth and metastasis by targeting DCLK1.

    PubMed

    Shan, Changting; Fei, Fan; Li, Fengzhu; Zhuang, Bo; Zheng, Yulong; Wan, Yufeng; Chen, Jianhui

    2017-05-01

    MicroRNA-448 (miR-448) has been showed to be low-expressed and function as tumor suppressor in most human cancers. However, there are limited reports on the clinical significance and biological function of miR-448 in lung squamous cell carcinoma. In this study, we observed that miR-448 expression was decreased in lung squamous cell carcinoma tissues and cell lines. Meanwhile, miR-448 expression associated with differentiated degree, T classification (tumor size), N classification (lymph node metastasis), M classification (distant metastasis), clinical stage and prognosis of lung squamous cell carcinoma patients. In survival analysis, low expression of miR-448 was a poor independent prognostic factor for lung squamous cell carcinoma patients. Moreover, gain-of-function and loss-of-function studies showed miR-448 acted as a tumor suppressor regulating lung squamous cell carcinoma cells growth and metastasis. Furthermore, DCLK1 has been identified as a potential target for miR-448 to regulate lung squamous cell carcinoma cells growth and metastasis. In conclusion, miR-448 low-expression was a poor prognostic factor for lung squamous cell carcinoma patients, and miR-448 served as a tumor suppressor in lung squamous cell carcinoma cells via targeting DCLK1. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Opposite Effects of Coinjection and Distant Injection of Mesenchymal Stem Cells on Breast Tumor Cell Growth.

    PubMed

    Zheng, Huilin; Zou, Weibin; Shen, Jiaying; Xu, Liang; Wang, Shu; Fu, Yang-Xin; Fan, Weimin

    2016-09-01

    : Mesenchymal stem cells (MSCs) usually promote tumor growth and metastasis. By using a breast tumor 4T1 cell-based animal model, this study determined that coinjection and distant injection of allogeneic bone marrow-derived MSCs with tumor cells could exert different effects on tumor growth. Whereas the coinjection of MSCs with 4T1 cells promoted tumor growth, surprisingly, the injection of MSCs at a site distant from the 4T1 cell inoculation site suppressed tumor growth. We further observed that, in the distant injection model, MSCs decreased the accumulation of myeloid-derived suppressor cells and regulatory T cells in tumor tissues by enhancing proinflammatory factors such as interferon-γ, tumor necrosis factor-α, Toll-like receptor (TLR)-3, and TLR-4, promoting host antitumor immunity and inhibiting tumor growth. Unlike previous reports, this is the first study reporting that MSCs may exert opposite roles on tumor growth in the same animal model by modulating the host immune system, which may shed light on the potential application of MSCs as vehicles for tumor therapy and other clinical applications. Mesenchymal stem cells (MSCs) have been widely investigated for their potential roles in tissue engineering, autoimmune diseases, and tumor therapeutics. This study explored the impact of coinjection and distant injection of allogeneic bone marrow-derived MSCs on mouse 4T1 breast cancer cells. The results showed that the coinjection of MSCs and 4T1 cells promoted tumor growth. MSCs might act as the tumor stromal precursors and cause immunosuppression to protect tumor cells from immunosurveillance, which subsequently facilitated tumor metastasis. Interestingly, the distant injection of MSCs and 4T1 cells suppressed tumor growth. Together, the results of this study revealed the dual functions of MSCs in immunoregulation. ©AlphaMed Press.

  4. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide.

    PubMed

    Sy, M S; Miller, S D; Claman, H N

    1977-07-01

    Immunologic suppression was induced in a mouse model of contact sensitization to DNFB by using supraoptimal doses of antigen. In these studies, in vivo measurement of ear swelling as an indication of immunologic responsiveness correlated well with measurement of in vitro antigen-induced cell proliferation. This unresponsiveness was specific, since supraoptimal doses of DNFB did not interfere with the development of contact sensitivity to another contactant, oxazolone. The decrease in responsiveness is a form of active suppression, as lymphoid cells from supraoptimally sensitized donors transferred suppression to normal recipients. Furthermore, pretreatment with cyclophosphamide (Cy) reversed the suppression seen in supraoptimally sensitized animals but had no effect on the optimal sensitization regimen. These results indicate that supraoptimal doses of contactants can activate suppressor cells and that precursors of these cells are sensitive to Cy. Such suppressors regenerate within 7 to 14 days after Cy treatment. The ability of Cy pretreatment to affect supraoptimal sensitization without affecting optimal sensitization confirms other reports indicating that the observed results of Cy treatment depend critically upon the dose of antigen used.

  5. The Putative PAX8/PPARγ Fusion Oncoprotein Exhibits Partial Tumor Suppressor Activity through Up-Regulation of Micro-RNA-122 and Dominant-Negative PPARγ Activity.

    PubMed

    Reddi, Honey V; Madde, Pranathi; Milosevic, Dragana; Hackbarth, Jennifer S; Algeciras-Schimnich, Alicia; McIver, Bryan; Grebe, Stefan K G; Eberhardt, Norman L

    2011-01-01

    In vitro studies have demonstrated that the PAX8/PPARγ fusion protein (PPFP), which occurs frequently in follicular thyroid carcinomas (FTC), exhibits oncogenic activity. However, paradoxically, a meta-analysis of extant tumor outcome studies indicates that 68% of FTC-expressing PPFP are minimally invasive compared to only 32% of those lacking PPFP (χ(2) = 6.86, P = 0.008), suggesting that PPFP favorably impacts FTC outcomes. In studies designed to distinguish benign thyroid neoplasms from thyroid carcinomas, the previously identified tumor suppressor miR-122, a major liver micro-RNA (miR) that is decreased in hepatocellular carcinoma, was increased 8.9-fold (P < 0.05) in all FTC versus normal, 9.2-fold in FTC versus FA (P < 0.05), and 16.8-fold (P < 0.001) in FTC + PPFP versus FTC - PPFP. Constitutive expression of PPFP in the FTC-derived cell line WRO (WRO-PPFP) caused a 5-fold increase of miR-122 expression (P < 0.05) and a striking 5.1-fold reduction (P < 0.0001) in tumor progression compared to WRO-vector cells in a mouse xenograft model. Constitutive expression of either miR-122 or a dominant-negative PPARγ mutant in WRO cells was less effective than PPFP at inhibiting xenograft tumor progression (1.8-fold [P < 0.001] and 1.7-fold [P < 0.03], respectively). PPFP-induced up-regulation of miR-122 expression was independent of its known dominant-negative PPARγ activity. Up-regulation of miR-122 negatively regulates ADAM-17, a known downstream target, in thyroid cells, suggesting an antiangiogenic mechanism in thyroid carcinoma. This latter inference is directly supported by reduced CD-31 expression in WRO xenografts expressing PPFP, miR-122, and DN-PPARγ. We conclude that, in addition to its apparent oncogenic potential in vitro, PPFP exhibits paradoxical tumor suppressor activity in vivo, mediated by multiple mechanisms including up-regulation of miR-122 and dominant-negative inhibition of PPARγ activity.

  6. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less

  7. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development.

    PubMed

    Zhang, Bao-gui; Hu, Lei; Zang, Ming-de; Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2016-03-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway.

  8. Helicobacter pylori CagA induces tumor suppressor gene hypermethylation by upregulating DNMT1 via AKT-NFκB pathway in gastric cancer development

    PubMed Central

    Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2016-01-01

    Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521

  9. SPARC Overexpression Inhibits Cell Proliferation in Neuroblastoma and Is Partly Mediated by Tumor Suppressor Protein PTEN and AKT

    PubMed Central

    Bhoopathi, Praveen; Gorantla, Bharathi; Sailaja, G. S.; Gondi, Christopher S.; Gujrati, Meena; Klopfenstein, Jeffrey D.; Rao, Jasti S.

    2012-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is also known as BM-40 or Osteonectin, a multi-functional protein modulating cell–cell and cell–matrix interactions. In cancer, SPARC is not only linked with a highly aggressive phenotype, but it also acts as a tumor suppressor. In the present study, we sought to characterize the function of SPARC and its role in sensitizing neuroblastoma cells to radio-therapy. SPARC overexpression in neuroblastoma cells inhibited cell proliferation in vitro. Additionally, SPARC overexpression significantly suppressed the activity of AKT and this suppression was accompanied by an increase in the tumor suppressor protein PTEN both in vitro and in vivo. Restoration of neuroblastoma cell radio-sensitivity was achieved by overexpression of SPARC in neuroblastoma cells in vitro and in vivo. To confirm the role of the AKT in proliferation inhibited by SPARC overexpression, we transfected neuroblastoma cells with a plasmid vector carrying myr-AKT. Myr-AKT overexpression reversed SPARC-mediated PTEN and increased proliferation of neuroblastoma cells in vitro. PTEN overexpression in parallel with SPARC siRNA resulted in decreased AKT phosphorylation and proliferation in vitro. Taken together, these results establish SPARC as an effector of AKT-PTEN-mediated inhibition of proliferation in neuroblastoma in vitro and in vivo. PMID:22567126

  10. Chemical suppressors of mlo-mediated powdery mildew resistance

    PubMed Central

    Wu, Hongpo; Kwaaitaal, Mark; Strugala, Roxana; Schaffrath, Ulrich; Bednarek, Paweł

    2017-01-01

    Loss-of-function of barley mildew locus o (Mlo) confers durable broad-spectrum penetration resistance to the barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). Given the importance of mlo mutants in agriculture, surprisingly few molecular components have been identified to be required for this type of resistance in barley. With the aim to identify novel cellular factors contributing to mlo-based resistance, we devised a pharmacological inhibitor screen. Of the 41 rationally chosen compounds tested, five caused a partial suppression of mlo resistance in barley, indicated by increased levels of Bgh host cell entry. These chemicals comprise brefeldin A (BFA), 2′,3′-dideoxyadenosine (DDA), 2-deoxy-d-glucose, spermidine, and 1-aminobenzotriazole. Further inhibitor analysis corroborated a key role for both anterograde and retrograde endomembrane trafficking in mlo resistance. In addition, all four ribonucleosides, some ribonucleoside derivatives, two of the five nucleobases (guanine and uracil), some guanine derivatives as well as various polyamines partially suppress mlo resistance in barley via yet unknown mechanisms. Most of the chemicals identified to be effective in partially relieving mlo resistance in barley also to some extent compromised powdery mildew resistance in an Arabidopsis mlo2 mlo6 double mutant. In summary, our study identified novel suppressors of mlo resistance that may serve as valuable probes to unravel further the molecular processes underlying this unusual type of disease resistance. PMID:29127104

  11. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation.

    PubMed

    Zeng, Kaixuan; Chen, Xiaoxiang; Hu, Xiuxiu; Liu, Xiangxiang; Xu, Tao; Sun, Huiling; Pan, Yuqin; He, Bangshun; Wang, Shukui

    2018-06-13

    Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53 -/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.

  12. Suppressors of dGTP Starvation in Escherichia coli

    PubMed Central

    Itsko, Mark

    2017-01-01

    ABSTRACT dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coli gpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions. IMPORTANCE Concentrations of the four precursors for DNA synthesis (2′-deoxynucleoside-5′-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels. PMID:28373271

  13. Cord blood derived CD4+ CD25(high) T cells become functional regulatory T cells upon antigen encounter.

    PubMed

    Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A; Szépfalusi, Zsolt; Eiwegger, Thomas

    2012-01-01

    Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these "excessive" responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([(3)H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4(+)CD25(high)FoxP3(+) T cells were characterized by mRNA analysis and flow cytometry. Cord blood derived CD4(+)CD25(high) cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4(+)CD25(high) cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3(+)CD4(+)CD25(high)cells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4(+)CD25(+)CD127(low)) is highly suppressive even without prior antigen exposure. Cord blood harbors a very small subset of CD4(+)CD25(high) Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs.

  14. The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins.

    PubMed

    Mizejewski, G J

    2016-09-01

    The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the "in silico" findings.

  15. Distinct MicroRNA Expression Profile and Targeted Biological Pathways in Functional Myeloid-derived Suppressor Cells Induced by Δ9-Tetrahydrocannabinol in Vivo

    PubMed Central

    Hegde, Venkatesh L.; Tomar, Sunil; Jackson, Austin; Rao, Roshni; Yang, Xiaoming; Singh, Udai P.; Singh, Narendra P.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2013-01-01

    Δ9-Tetrahydrocannabinol (THC), the major bioactive component of marijuana, has been shown to induce functional myeloid-derived suppressor cells (MDSCs) in vivo. Here, we studied the involvement of microRNA (miRNA) in this process. CD11b+Gr-1+ MDSCs were purified from peritoneal exudates of mice administered with THC and used for genome-wide miRNA profiling. Expression of CD31 and Ki-67 confirmed that the THC-MDSCs were immature and proliferating. THC-induced MDSCs exhibited distinct miRNA expression signature relative to various myeloid cells and BM precursors. We identified 13 differentially expressed (>2-fold) miRNA in THC-MDSCs relative to control BM precursors. In silico target prediction for these miRNA and pathway analysis using multiple bioinformatics tools revealed significant overrepresentation of Gene Ontology clusters within hematopoiesis, myeloid cell differentiation, and regulation categories. Insulin-like growth factor 1 signaling involved in cell growth and proliferation, and myeloid differentiation pathways were among the most significantly enriched canonical pathways. Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSCs (∼16-fold). Transcription factor CCAAT/enhancer-binding protein α (C/EBPα) was identified as a potential functional target of miR-690. Supporting this, C/EBPα expression was attenuated in THC-MDSCs as compared with BM precursors and exhibited an inverse relation with miR-690. miR-690 knockdown using peptide nucleic acid-antagomiR was able to unblock and significantly increase C/EBPα expression establishing the functional link. Further, CD11b+Ly6G+Ly6C+ and CD11b+Ly6G−Ly6C+ purified subtypes showed high levels of miR-690 with attenuated C/EBPα expression. Moreover, EL-4 tumor-elicited MDSCs showed increased miR-690 expression. In conclusion, miRNA are significantly altered during the generation of functional MDSC from BM. Select miRNA such as miR-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression. PMID:24202177

  16. Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway

    PubMed Central

    Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.

    2012-01-01

    SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603

  17. Effects of SASH1 on melanoma cell proliferation and apoptosis in vitro.

    PubMed

    Lin, Sheyu; Zhang, Junyu; Xu, Jiawei; Wang, Honglian; Sang, Qing; Xing, Qinghe; He, Lin

    2012-12-01

    The SAM and SH3 domain containing 1 (SASH1) gene was originally identified as a potential tumor suppressor gene in breast cancer, mapped on chromosome 6q24.3. The expression of SASH1 plays a prognostic role in human colon cancer. Its expression is frequently downregulated in several human malignancies. However, the biological function of SASH1 in melanoma cells is yet to be determined. In this study, in order to investigate the tumor suppressive effects of the SASH1 gene, an A-375 stable melanoma cell line was established, overexpressing the SASH1 gene. The stable cell line was examined using proliferation assay, apoptosis assay, cell cycle analysis and real-time PCR. The results indicated that the tumor suppressive activity of SASH1 derived from G2/M arrest in A-375 cells, and that the phosphorylation of Cdc2 or the disruption of cyclin B-Cdc2 binding may be responsible for the G2/M arrest.

  18. Identification and Characterization of Genes That Interact with Lin-12 in Caenorhabditis Elegans

    PubMed Central

    Tax, F. E.; Thomas, J. H.; Ferguson, E. L.; Horvitz, H. R.

    1997-01-01

    We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1. PMID:9409830

  19. Potential role of TRIM3 as a novel tumour suppressor in colorectal cancer (CRC) development.

    PubMed

    Piao, Mei-Yu; Cao, Hai-Long; He, Na-Na; Xu, Meng-Que; Dong, Wen-Xiao; Wang, Wei-Qiang; Wang, Bang-Mao; Zhou, Bing

    2016-01-01

    Colorectal cancer (CRC) is the third leading cause of cancer-related mortality in the United States. Recent cancer genome-sequencing efforts and complementary functional studies have led to the identification of a collection of candidate 'driver' genes involved in CRC tumorigenesis. Tripartite motif (TRIM3) is recently identified as a tumour suppressor in glioblastoma but this tumour-suppressive function has not been investigated in CRC. In this study, we investigated the potential role of TRIM3 as a tumour suppressor in CRC development by manipulating the expression of TRIM3 in two authentic CRC cell lines, HCT116 and DLD1, followed by various functional assays, including cell proliferation, colony formation, scratch wound healing, soft agar, and invasion assays. Xenograft experiment was performed to examine in vivo tumour-suppressive properties of TRIM3. Small-interfering RNA (siRNA) mediated knockdown of TRIM3 conferred growth advantage in CRC cells. In contrast, overexpression of TRIM3 affected cell survival, cell migration, anchorage independent growth and invasive potential in CRC cells. In addition, TRIM3 was found to be down-regulated in human colon cancer tissues compared with matched normal colon tissues. Overexpression of TRIM3 significantly inhibited tumour growth in vivo using xenograft mouse models. Mechanistic investigation revealed that TRIM3 can regulate p53 protein level through its stabilisation. TRIM3 functions as a tumour suppressor in CRC progression. This tumour-suppressive function is exerted partially through regulation of p53 protein. Therefore, this protein may represent a novel therapeutic target for prevention or intervention of CRC.

  20. Long non-coding RNA tumor suppressor candidate 7 functions as a tumor suppressor and inhibits proliferation in osteosarcoma.

    PubMed

    Cong, Menglin; Li, Jianmin; Jing, Rui; Li, Zhenzhong

    2016-07-01

    Osteosarcoma is the most common malignant tumor of bone. Recent studies have proven long non-coding RNAs (lncRNAs) play important roles in the tumorigenesis and progression of cancer. However, few lncRNAs have been investigated in osteosarcoma. Here, we reported a novel lncRNA, tumor suppressor candidate 7 (TUSC7), was significantly downregulated in osteosarcoma tissues compared with paired non-tumor tissues and low expression of TUSC7 indicated poor survival (HR = 0.313, 95 % confidence interval (CI) 0.092-0.867) of osteosarcoma patients. Further analysis revealed that loss copy number of TUSC7 was correlated with low expression of TUSC7, and additionally, loss of TUSC7 copy number also indicated poor prognosis (HR = 3.994, 95 % CI 1.147-13.91) of osteosarcoma patients. Two osteosarcoma cell lines, HOS and MG63, were utilized to investigate biological function of TUSC7. Cell counting kit 8 (CCK-8) assay revealed that after silence of TUSC7, cell proliferation ability increased and the colony formation ability also increased. Further results showed that cell cycle was not affected by treatment of si-TUSC7, while the percentage of apoptotic cells decreased. Western blot showed that after silence of TUSC7, the proapoptotic Bcl2 expression was downregulated. Finally, we established xenograft tumor models in nude mice with MG63 cells. Compared with negative control group, silence of TUSC7 significantly promoted tumor growth in vivo. Thus, we demonstrated that TUSC7 could be a potential tumor suppressor in osteosarcoma.

  1. Excess Circulating Alternatively Activated Myeloid (M2) Cells Accelerate ALS Progression While Inhibiting Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Miller, Omer; Butovsky, Oleg; Bukshpan, Shay; Beers, David R.; Henkel, Jenny S.; Yoles, Eti; Appel, Stanley H.; Schwartz, Michal

    2011-01-01

    Background Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease. Methods and Findings We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN−/LowHLA-DR−CD33+) compared to controls. Conclusions Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage. PMID:22073221

  2. Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshihara, Takashi; Collado, Denise; Hamaguchi, Masaaki

    2007-07-13

    The expression of tumor suppressor gene DBC2 causes certain breast cancer cells to stop growing [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. Recently, DBC2 was found to participate in diverse cellular functions such as protein transport, cytoskeleton regulation, apoptosis, and cell cycle control [V. Siripurapu, J.L. Meth, N. Kobayashi, M. Hamaguchi, DBC2 significantly influences cell cycle, apoptosis, cytoskeleton, and membrane trafficking pathways. J. Mol. Biol. 346more » (2005) 83-89]. Its tumor suppression mechanism, however, remains unclear. In this paper, we demonstrate that DBC2 suppresses breast cancer proliferation through down-regulation of Cyclin D1 (CCND1). Additionally, the constitutional overexpression of CCND1 prevented the negative impact of DBC2 expression on their growth. Under a CCND1 promoter, the expression of CCNE1 exhibited the same protective effect. Our results indicate that the down-regulation of CCND1 is an essential step for DBC2's growth suppression of cancer cells. We believe that this discovery contributes to a better understanding of DBC2's tumor suppressor function.« less

  3. Dynamic analysis of periodic vibration suppressors with multiple secondary oscillators

    NASA Astrophysics Data System (ADS)

    Ma, Jiangang; Sheng, Meiping; Guo, Zhiwei; Qin, Qi

    2018-06-01

    A periodic vibration suppressor with multiple secondary oscillators is examined in this paper to reduce the low-frequency vibration. The band-gap properties of infinite periodic structure and vibration transmission properties of finite periodic structure attached with secondary oscillators with arbitrary degree of freedom are thoroughly analyzed by the plane-wave-expansion method. A simply supported plate with a periodic rectangular array of vibration suppressors is considered. The dynamic model of this periodic structure is established and the equation of harmonic vibration response is theoretically derived and numerically examined. Compared with the simply supported plate without attached suppressors, the proposed plate can obtain better vibration control, and the vibration response can be effectively reduced in several frequency bands owing to the multiple band-gap property. By analyzing the modal properties of the periodic vibration suppressors, the relationship between modal frequencies and the parameters of spring stiffness and mass is established. With the numerical results, the design guidance of the locally resonant structure with multiple secondary oscillators is proposed to provide practical guidance for application. Finally, a practical periodic specimen is designed and fabricated, and then an experiment is carried out to validate the effectiveness of periodic suppressors in the reality. The results show that the experimental band gaps have a good coincidence with those in the theoretical model, and the low-frequency vibration of the plate with periodic suppressors can be effectively reduced in the tuned band gaps. Both the theoretical results and experimental results prove that the design method is effective and the structure with periodic suppressors has a promising application in engineering.

  4. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis.

    PubMed

    Han, Ying; Yue, Lanzhu; Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L; Epling-Burnette, Pearlie K

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs.

  5. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis

    PubMed Central

    Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L.; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs. PMID:28135282

  6. Tumor Suppressor Genes: A Key to the Cancer Puzzle?

    ERIC Educational Resources Information Center

    Oppenheimer, Steven B.

    1991-01-01

    Author describes developments in understanding of tumor suppressor genes or antioncogenes that he feels is most important breakthrough in solving cancer problem. Describes 1969 starting work of Harris with mouse fibroblast genes and later work of Knudson with retinoblastoma cells. Provides evidence that deletion of chromosome that results in the…

  7. Metastasis suppressor KISS1 seems to reverse the Warburg effect by enhancing mitochondrial biogenesis

    USDA-ARS?s Scientific Manuscript database

    Cancer cells tend to utilize aerobic glycolysis even under normoxic conditions, commonly called the "Warburg Effect." Aerobic glycolysis often directly correlates with malignancy, but its purpose, if any, in metastasis remains unclear. When wild-type KISS1 metastasis suppressor is expressed, aerob...

  8. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines

    PubMed Central

    Long, Jia; Shen, Danbei; Zhou, Wuqing; Zhou, Qiyan; Yang, Jia; Jiang, Mingjun

    2015-01-01

    In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers. PMID:26329329

  9. Defective heat shock factor 1 inhibits the growth of fibrosarcoma derived from simian virus 40/T antigen-transformed MEF cells

    PubMed Central

    JIANG, QIYING; ZHANG, ZHI; LI, SHULIAN; WANG, ZHAOYANG; MA, YUANFANG; HU, YANZHONG

    2015-01-01

    Heat shock factor 1 (Hsf1) serves an important role in regulating the proliferation of human tumor cell lines in vitro and tissue specific tumorigenesis in certain mouse models. However, its role in viral-oncogenesis remains to be fully elucidated. In the current study, the role of Hsf1 in fibroblastoma derived from simian virus 40/T antigen (SV40/TAG)-transformed mouse embryonic fibroblast (MEF) cell lines was investigated. Knockout of Hsf1 inhibited MEF cell proliferation in vitro and fibroblastoma growth and metastasis to the lungs in vivo in nude mice. Knockout of Hsf1 increased the protein expression levels of p53 and phosphorylated retinoblastoma protein (pRb), however reduced the expression of heat shock protein 25 (Hsp25) in addition to the expression of the angiogenesis markers vascular endothelial growth factor, cluster of differentiation 34 and factor VIII related antigen. Furthermore, immunoprecipitation indicated that knockout of Hsf1 inhibited the association between SV40/TAG and p53 or pRb. These data suggest that Hsf1 is involved in the regulation of SV40/TAG-derived fibroblastoma growth and metastasis by modulating the association between SV40/TAG and tumor suppressor p53 and pRb. The current study provides further evidence that Hsf1 may be a novel therapeutic target in the treatment of cancer. PMID:26352782

  10. DNA Fragmentation Factor 45 (DFF45) Gene at 1p36.2 Is Homozygously Deleted and Encodes Variant Transcripts in Neuroblastoma Cell Line1

    PubMed Central

    Yang, Hong Wei; Chen, Ying Zhang; Piao, Hui Ying; Takita, Junko; Soeda, Eiichi; Hayashi, Yasuhide

    2001-01-01

    Abstract Recently, loss of heterozygosity (LOH) studies suggest that more than two tumor suppressor genes lie on the short arm of chromosome 1 (1p) in neuroblastoma (NB). To identify candidate tumor suppressor genes in NB, we searched for homozygous deletions in 20 NB cell lines using a high-density STS map spanning chromosome 1p36, a common LOH region in NB. We found that the 45-kDa subunit of the DNA fragmentation factor (DFF45) gene was homozygously deleted in an NB cell line, NB-1. DFF45 is the chaperon of DFF40, and both molecules are necessary for caspase 3 to induce apoptosis. DFF35, a splicing variant of DFF45, is an inhibitor of DFF40. We examined 20 NB cell lines for expression and mutation of DFF45 gene by reverse transcription (RT)-polymerase chain reaction (PCR) and RT-PCR-single-strand conformation polymorphism. Some novel variant transcripts of the DFF45 gene were found in NB cell lines, but not in normal adrenal gland and peripheral blood. These variants may not serve as chaperons of DFF40, but as inhibitors like DFF35, thus disrupting the balance between DFF45 and DFF40. No mutations of the DFF45 gene were found in any NB cell line, suggesting that the DFF45 is not a tumor suppressor gene for NB. However, homozygous deletion of the DFF45 gene in the NB-1 cell line may imply the presence of unknown tumor suppressor genes in this region. PMID:11420752

  11. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans

    PubMed Central

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2016-01-01

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. PMID:28007841

  12. A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans.

    PubMed

    Erdelyi, Peter; Wang, Xing; Suleski, Marina; Wicky, Chantal

    2017-02-09

    Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans , the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and functions in larval development, vulval morphogenesis, lifespan regulation, and cell fate determination. To explore the mechanisms involved in the action of LET-418/Mi2, we performed a genome-wide RNA interference (RNAi) screen for suppressors of early larval arrest associated with let-418 mutations. We identified 29 suppressor genes, of which 24 encode chromatin regulators, mostly orthologs of proteins present in transcriptional activator complexes. The remaining five genes vary broadly in their predicted functions. All suppressor genes could suppress multiple aspects of the let-418 phenotype, including developmental arrest and ectopic expression of germline genes in the soma. Analysis of available transcriptomic data and quantitative PCR revealed that LET-418 and the suppressors of early larval arrest are regulating common target genes. These suppressors might represent direct competitors of LET-418 complexes for chromatin regulation of crucial genes involved in the transition to postembryonic development. Copyright © 2017 Erdelyi et al.

  13. The Cardioprotective Role of Myeloid-derived Suppressor Cells in Heart Failure.

    PubMed

    Zhou, Ling; Miao, Kun; Yin, Bingjiao; Li, Huaping; Fan, Jiahui; Zhu, Yazhen; Ba, Hongping; Zhang, Zunyue; Chen, Fang; Wang, Jing; Zhao, Chunxia; Li, Zhuoya; Wang, Dao Wen

    2018-02-01

    Background -Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that expand in cancer, inflammation, and infection and negatively regulate inflammation and the immune response. Heart failure (HF) is a complex clinical syndrome, wherein inflammation induction and incomplete resolution can potentially contribute to HF development and progression. However, the role of MDSCs in HF remains unclear. Methods -The percentage of MDSCs in HF patients and in mice with pressure overload-induced HF using isoproterenol (ISO) infusion or transverse aortic constriction (TAC), was detected by flow cytometry. The effects of MDSCs on ISO- or TAC-induced HF were observed upon depleting MDSCs with 5-fluorouracil (50 mg/kg) or gemcitabine (120 mg/kg), transferring purified MDSCs, or enhancing endogenous MDSCs with rapamycin (2 mg/kg/day). Hypertrophic markers and inflammatory factors were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction, or western blot. Cardiac functions were determined by echocardiography and hemodynamic analysis. Results -The percentage of human leukocyte antigen-D-related (HLA-DR)-CD33 + CD11b + MDSCs in the blood of HF patients was significantly increased and positively correlated with the disease severity and increased plasma levels of cytokines, including interleukin (IL)-6, IL-10, and transforming growth factor-β. Furthermore, HF patient-derived MDSCs inhibited T-cell proliferation and interferon-γ secretion. Similar results were observed in TAC- and ISO-induced HF in mice. Importantly, pharmaceutical depletion of MDSCs significantly exacerbated ISO- and TAC-induced pathological cardiac remodeling and inflammation, whereas adoptive transfer of MDSCs prominently rescued ISO- and TAC-induced HF. Consistently, administration of rapamycin significantly increased endogenous MDSCs by suppressing their differentiation and improved ISO- and TAC-induced HF, but MDSC depletion mostly blocked beneficial rapamycin-mediated effects. Mechanistically, MDSC-secreted molecules suppressed ISO-induced hypertrophy and proinflammatory genes expression in cardiomyocytes in a co-culture system. Neutralization of IL-10 blunted both monocytic MDSC (M-MDSC)- and granulocytic MDSC (G-MDSC)-mediated anti-inflammatory and antihypertrophic effects, but treatment with a nitric oxide (NO) inhibitor only partially blocked the antihypertrophic effect of M-MDSCs. Conclusions -Our findings revealed a cardioprotective role of MDSCs in HF by their antihypertrophic effects on cardiomyocytes and anti-inflammatory effects through IL-10 and NO. Pharmacological targeting of MDSCs by rapamycin constitutes a promising therapeutic strategy for HF.

  14. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression

    PubMed Central

    Chu, Dake; Wei, Li; Li, Xia; Yang, Guodong; Liu, Xinping; Yao, Libo; Zhang, Jian; Shen, Lan

    2015-01-01

    Cancer cells use glucose and glutamine as the major sources of energy and precursor intermediates, and enhanced glycolysis and glutamimolysis are the major hallmarks of metabolic reprogramming in cancer. Oncogene activation and tumor suppressor gene inactivation alter multiple intracellular signaling pathways that affect glycolysis and glutaminolysis. N-Myc downstream regulated gene 2 (NDRG2) is a tumor suppressor gene inhibiting cancer growth, metastasis and invasion. However, the role and molecular mechanism of NDRG2 in cancer metabolism remains unclear. In this study, we discovered the role of the tumor suppressor gene NDRG2 in aerobic glycolysis and glutaminolysis of cancer cells. NDRG2 inhibited glucose consumption and lactate production, glutamine consumption and glutamate production in colorectal cancer cells. Analysis of glucose transporters and the catalytic enzymes involved in glycolysis revealed that glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase M2 isoform (PKM2) and lactate dehydrogenase A (LDHA) was significantly suppressed by NDRG2. Analysis of glutamine transporter and the catalytic enzymes involved in glutaminolysis revealed that glutamine transporter ASC amino-acid transporter 2 (ASCT2) and glutaminase 1 (GLS1) was also significantly suppressed by NDRG2. Transcription factor c-Myc mediated inhibition of glycolysis and glutaminolysis by NDRG2. More importantly, NDRG2 inhibited the expression of c-Myc by suppressing the expression of β-catenin, which can transcriptionally activate C-MYC gene in nucleus. In addition, the growth and proliferation of colorectal cancer cells were suppressed significantly by NDRG2 through inhibition of glycolysis and glutaminolysis. Taken together, these findings indicate that NDRG2 functions as an essential regulator in glycolysis and glutaminolysis via repression of c-Myc, and acts as a suppressor of carcinogenesis through coordinately targeting glucose and glutamine transporter, multiple catalytic enzymes involved in glycolysis and glutaminolysis, which fuels the bioenergy and biomaterials needed for cancer proliferation and progress. PMID:26317652

  15. Antiangiogenic therapy improves the antitumor effect of adoptive cell immunotherapy by normalizing tumor vasculature.

    PubMed

    Shi, Shujing; Chen, Longbang; Huang, Guichun

    2013-12-01

    Abnormal tumor vasculature and subsequent tumor hypoxia contribute to immune tolerance of tumor cells by impeding the homing of cytotoxic T cells into tumor parenchyma and inhibiting their antitumor efficacy. These obstacles might explain why the promising approach of adoptive cell immunotherapy does not exert significant antitumor activity. Hypoxia contributes to immune suppression by activating hypoxia-inducible factor (HIF-1) and the vascular endothelial growth factor pathway, which plays a determining role in promoting tumor cell growth and survival. Tumor hypoxia creates an immunosuppressive microenvironment via the accumulation and subsequent polarization of inflammatory cells toward immune suppression phenotypes, such as myeloid-derived suppressor cells, tumor-associated macrophages, and dendritic cells. Antiangiogenic therapy could normalize tumor vasculature and decrease hypoxic tumor area and thus may be an effective modality to potentiate immunotherapy. Adoptive cell immunotherapy alone is not efficient enough to decrease tumor growth as its antitumor effect is inhibited by the immunosuppressive hypoxic tumor microenvironment. This review describes that combination of antiangiogenic therapy with adoptive cell immunotherapy can exert synergistic antitumor effect, which will contribute to improve strategies for future anticancer therapies.

  16. Montanide, Poly I:C and nanoparticle based vaccines promote differential suppressor and effector cell expansion: a study of induction of CD8 T cells to a minimal Plasmodium berghei epitope.

    PubMed

    Wilson, Kirsty L; Xiang, Sue D; Plebanski, Magdalena

    2015-01-01

    The development of practical and flexible vaccines to target liver stage malaria parasites would benefit from an ability to induce high levels of CD8 T cells to minimal peptide epitopes. Herein we compare different adjuvant and carrier systems in a murine model for induction of interferon gamma (IFN-γ) producing CD8 T cells to the minimal immuno-dominant peptide epitope from the circumsporozoite protein (CSP) of Plasmodium berghei, pb9 (SYIPSAEKI, referred to as KI). Two pro-inflammatory adjuvants, Montanide and Poly I:C, and a non-classical, non-inflammatory nanoparticle based carrier (polystyrene nanoparticles, PSNPs), were compared side-by-side for their ability to induce potentially protective CD8 T cell responses after two immunizations. KI in Montanide (Montanide + KI) or covalently conjugated to PSNPs (PSNPs-KI) induced such high responses, whereas adjuvanting with Poly I:C or PSNPs without conjugation was ineffective. This result was consistent with an observed induction of an immunosuppressed environment by Poly I:C in the draining lymph node (dLN) 48 h post injection, which was reflected by increased frequencies of myeloid derived suppressor cells (MDSCs) and a proportion of inflammation reactive regulatory T cells (Treg) expressing the tumor necrosis factor receptor 2 (TNFR2), as well as decreased dendritic cell (DC) maturation. The other inflammatory adjuvant, Montanide, also promoted proportional increases in the TNFR2(+) Treg subpopulation, but not MDSCs, in the dLN. By contrast, injection with non-inflammatory PSNPs did not cause these changes. Induction of high CD8 T cell responses, using minimal peptide epitopes, can be achieved by non-inflammatory carrier nanoparticles, which in contrast to some conventional inflammatory adjuvants, do not expand either MDSCs or inflammation reactive Tregs at the site of priming.

  17. Novel Therapy for Glioblastoma Multiforme by Restoring LRRC4 in Tumor Cells: LRRC4 Inhibits Tumor-Infitrating Regulatory T Cells by Cytokine and Programmed Cell Death 1-Containing Exosomes

    PubMed Central

    Li, Peiyao; Feng, Jianbo; Liu, Yang; Liu, Qiang; Fan, Li; Liu, Qing; She, Xiaoling; Liu, Changhong; Liu, Tao; Zhao, Chunhua; Wang, Wei; Li, Guiyuan; Wu, Minghua

    2017-01-01

    Glioblastoma multiforme (GBM) is a heterogeneous malignant brain tumor, the pathological incidence of which induces the accumulation of tumor-infiltrating lymphocytes (TILs). As a tumor suppressor gene, LRRC4 is absent in GBM cells. Here, we report that the recovery of LRRC4 in GBM cells inhibited the infiltration of tumor-infiltrating regulatory T cells (Ti-Treg), promoted the expansion of tumor-infiltrating effector T (Ti-Teff) cells and CD4+CCR4+ T cells, and enhanced the chemotaxis of CD4+CCR4+ T cells in the GBM immune microenvironment. LRRC4 was not transferred into TILs from GBM cells through exosomes but mainly exerted its inhibiting function on Ti-Treg cell expansion by directly promoting cytokine secretion. GBM cell-derived exosomes (cytokine-free and programmed cell death 1 containing) also contributed to the modulation of LRRC4 on Ti-Treg, Ti-Teff, and CD4+CCR4+ T cells. In GBM cells, LRRC4 directly bound to phosphoinositide-dependent protein kinase 1 (PDPK1), phosphorylated IKKβser181, facilitated NF-κB activation, and promoted the secretion of interleukin-6 (IL-6), CCL2, and interferon gamma. In addition, HSP90 was required to maintain the interaction between LRRC4 and PDPK1. However, the inhibition of Ti-Treg cell expansion and promotion of CD4+CCR4+ T cell chemotaxis by LRRC4 could be blocked by anti-IL-6 antibody or anti-CCL2 antibody, respectively. miR-101 is a suppressor gene in GBM. Our previous studies have shown that EZH2, EED, and DNMT3A are direct targets of miR-101. Here, we showed that miR-101 reversed the hypermethylation of the LRRC4 promoter and induced the re-expression of LRRC4 in GBM cells by directly targeting EZH2, EED, and DNMT3A. Our results reveal a novel mechanism underlying GBM microenvironment and provide a new therapeutic strategy using re-expression of LRRC4 in GBM cells to create a permissive intratumoral environment. PMID:29312296

  18. Construction and Characterization of Human Mammary Epithelial Cell Lines Containing Mutations in the p53 or BRCA1 Genes

    DTIC Science & Technology

    1999-01-01

    development of breast cancers. To study the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway, we have...the effects of inactivating mutations in these tumor suppressor genes early in the breast-cancer pathway. The consequences of transduction of these...proposed three approaches for constructing p53-deficient cells; i.e., by mutating the p53 gene directly, by abrogating the protein’s normal cellular

  19. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis.

    PubMed

    Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario

    2017-10-17

    Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4 , deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4 -dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3- SMAD4 +) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3- SMAD4 +, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs ( p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4- associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4 -associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3- SMAD4 + Exo. PDAC-derived Exo from cells with , but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4 -related differentially expressed miRNAs and proteins.

  20. PDAC-derived exosomes enrich the microenvironment in MDSCs in a SMAD4-dependent manner through a new calcium related axis

    PubMed Central

    Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario

    2017-01-01

    Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins. PMID:29156694

  1. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates

    PubMed Central

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy

    2012-01-01

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  2. Unfurling of the band 4.1, ezrin, radixin, moesin (FERM) domain of the merlin tumor suppressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogesha, S.D.; Sharff, Andrew J.; Giovannini, Marco

    The merlin-1 tumor suppressor is encoded by the Neurofibromatosis-2 (Nf2) gene and loss-of-function Nf2 mutations lead to nervous system tumors in man and to several tumor types in mice. Merlin is an ERM (ezrin, radixin, moesin) family cytoskeletal protein that interacts with other ERM proteins and with components of cell-cell adherens junctions (AJs). Merlin stabilizes the links of AJs to the actin cytoskeleton. Thus, its loss destabilizes AJs, promoting cell migration and invasion, which in Nf2{sup +/-} mice leads to highly metastatic tumors. Paradoxically, the 'closed' conformation of merlin-1, where its N-terminal four-point-one, ezrin, radixin, moesin (FERM) domain binds tomore » its C-terminal tail domain, directs its tumor suppressor functions. Here we report the crystal structure of the human merlin-1 head domain when crystallized in the presence of its tail domain. Remarkably, unlike other ERM head-tail interactions, this structure suggests that binding of the tail provokes dimerization and dynamic movement and unfurling of the F2 motif of the FERM domain. We conclude the 'closed' tumor suppressor conformer of merlin-1 is in fact an 'open' dimer whose functions are disabled by Nf2 mutations that disrupt this architecture.« less

  3. Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors*

    PubMed Central

    Lara, Haydee; Wang, Yuhua; Beltran, Adriana S.; Juárez-Moreno, Karla; Yuan, Xinni; Kato, Sumie; Leisewitz, Andrea V.; Cuello Fredes, Mauricio; Licea, Alexei F.; Connolly, Denise C.; Huang, Leaf; Blancafort, Pilar

    2012-01-01

    Ovarian cancer is the leading cause of death among gynecological malignancies. It is detected at late stages when the disease is spread through the abdominal cavity in a condition known as peritoneal carcinomatosis. Thus, there is an urgent need to develop novel therapeutic interventions to target advanced stages of ovarian cancer. Mammary serine protease inhibitor (Maspin) represents an important metastasis suppressor initially identified in breast cancer. Herein we have generated a sequence-specific zinc finger artificial transcription factor (ATF) to up-regulate the Maspin promoter in aggressive ovarian cancer cell lines and to interrogate the therapeutic potential of Maspin in ovarian cancer. We found that although Maspin was expressed in some primary ovarian tumors, the promoter was epigenetically silenced in cell lines derived from ascites. Transduction of the ATF in MOVCAR 5009 cells derived from ascitic cultures of a TgMISIIR-TAg mouse model of ovarian cancer resulted in tumor cell growth inhibition, impaired cell invasion, and severe disruption of actin cytoskeleton. Systemic delivery of lipid-protamine-RNA nanoparticles encapsulating a chemically modified ATF mRNA resulted in inhibition of ovarian cancer cell growth in nude mice accompanied with Maspin re-expression in the treated tumors. Gene expression microarrays of ATF-transduced cells revealed an exceptional specificity for the Maspin promoter. These analyses identified novel targets co-regulated with Maspin in human short-term cultures derived from ascites, such as TSPAN12, that could mediate the anti-metastatic phenotype of the ATF. Our work outlined the first targeted, non-viral delivery of ATFs into tumors with potential clinical applications for metastatic ovarian cancers. PMID:22782891

  4. Increased Levels of Pro-Inflammatory and Anti-Inflammatory Cellular Responses in Parkinson's Disease Patients: Search for a Disease Indicator.

    PubMed

    Yang, Likun; Guo, Changfeng; Zhu, Jie; Feng, Yi; Chen, Weiliang; Feng, Zhizhong; Wang, Dan; Sun, Shibai; Lin, Wei; Wang, Yuhai

    2017-06-18

    BACKGROUND Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder and it arises when most of the dopaminergic neurons of substantia nigra region die. Several mechanisms have been postulated as the causative event in PD pathology, and neuroinflammation is most crucial among them. MATERIAL AND METHODS We analyzed T-helper 17 (Th17) cells and myeloid-derived suppressor cells (MDSCs) from 80 PD patients to assess inflammatory processes and to find a cost-effective means to evaluate PD prognosis. RESULTS We found significantly increased numbers of Th17 cells and MDSCs count in peripheral circulation in PD patients compared with controls (p<0.001). A positive correlation was found between Th17 cells and MDSCs in PD patients (r=0.421, p<0.05). CONCLUSIONS Our results show the effector role of Th17 cells and MDSCs in PD pathology and shows their utility as effective biomarkers for PD diagnosis.

  5. Viral Infection-Homograft Interactions in a Murine Model

    PubMed Central

    Hamilton, John D.; Fitzwilliam, James F.; Cheung, K. S.; Shelburne, John; Lang, David J.; Amos, D. B.

    1978-01-01

    The effects on some host defenses of murine cytomegalovirus (MCMV) and(or) EL4, a mouse ascites homograft, were studied in mice. Assays of cellular and humoral immunity in response to either or both of these perturbations were carried out by quantitation of various immune activities. Limited studies demonstrated no effect of EL4 inoculation on the host response to MCMV by organ viral titer, duration of viral persistence, or anti MCMV complement-fixing antibody titer. Prior infection with MCMV, however, resulted in greatly reduced numbers of splenocytes, the source in this study of immune effector cells. Residual splenocytes demonstrated less response to both phyto-hemagglutinin and lipopolysaccharide, particularly in the 2-3-wk interval after infection. Similarly, responder cells in mixed lymphocyte cultures were less reactive when derived from infected animals. Lymphocyte-mediated cytolysis of EL4 was significantly less in mice infected on the day of and 7, 14, and 21 days before the tumor homograft with a return to control levels by 28 days. 90% of the cell-mediated cytolysis could be eliminated by treatment with anti-theta serum. Serum-mediated cytolysis of EL4 was also reduced in infected animals. No suppressor cells or serum inhibitory factors could be identified in infected animals. Although alternative explanations exist, this study suggests that in infected animals there is a significant reduction in both the number and function of bone marrow-derived and thymus-derived cells directed against the alloantigens in EL4. PMID:219027

  6. Transducer of ERBB2.1 (TOB1) as a Tumor Suppressor: A Mechanistic Perspective.

    PubMed

    Lee, Hun Seok; Kundu, Juthika; Kim, Ryong Nam; Shin, Young Kee

    2015-12-15

    Transducer of ERBB2.1 (TOB1) is a tumor-suppressor protein, which functions as a negative regulator of the receptor tyrosine-kinase ERBB2. As most of the other tumor suppressor proteins, TOB1 is inactivated in many human cancers. Homozygous deletion of TOB1 in mice is reported to be responsible for cancer development in the lung, liver, and lymph node, whereas the ectopic overexpression of TOB1 shows anti-proliferation, and a decrease in the migration and invasion abilities on cancer cells. Biochemical studies revealed that the anti-proliferative activity of TOB1 involves mRNA deadenylation and is associated with the reduction of both cyclin D1 and cyclin-dependent kinase (CDK) expressions and the induction of CDK inhibitors. Moreover, TOB1 interacts with an oncogenic signaling mediator, β-catenin, and inhibits β-catenin-regulated gene transcription. TOB1 antagonizes the v-akt murine thymoma viral oncogene (AKT) signaling and induces cancer cell apoptosis by activating BCL2-associated X (BAX) protein and inhibiting the BCL-2 and BCL-XL expressions. The tumor-specific overexpression of TOB1 results in the activation of other tumor suppressor proteins, such as mothers against decapentaplegic homolog 4 (SMAD4) and phosphatase and tensin homolog-10 (PTEN), and blocks tumor progression. TOB1-overexpressing cancer cells have limited potential of growing as xenograft tumors in nude mice upon subcutaneous implantation. This review addresses the molecular basis of TOB1 tumor suppressor function with special emphasis on its regulation of intracellular signaling pathways.

  7. Suppressor Analysis of the Fusogenic Lambda Spanins.

    PubMed

    Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry

    2017-07-15

    The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such investigations have been reported. Here, we report a suppressor analysis of lambda spanin function. To our knowledge this is the first suppression analysis of a class I-like complex and also the first such analysis of a prokaryote membrane fusion system. Copyright © 2017 American Society for Microbiology.

  8. Expression of metastasis suppressor BRMS1 in breast cancer cells results in a marked delay in cellular adhesion to matrix

    USDA-ARS?s Scientific Manuscript database

    Metastatic dissemination is a multi-step process that depends on cancer cells’ ability to respond to microenvironmental cues by adapting adhesion abilities and undergoing cytoskeletal rearrangement. Breast Cancer Metastasis Suppressor 1 (BRMS1) affects several steps of the metastatic cascade: it dec...

  9. STAT1 in cancer: friend or foe?

    PubMed

    Zhang, Ying; Liu, Zhaoyong

    2017-08-01

    The first STAT family member, STAT1, is an essential component of interferon (IFN)-signaling, which mediates several cellular functions in response to stimulation by cytokines, growth factors, and hormones, such as the IFNs and IL-6. The role and significance of STAT1 in cancer biology have been studied for a decade. The majority of evidence shows that activating STAT1 plays a tumor suppressor role in cancer cells. Nevertheless, results from some experiments and clinical studies suggest that STAT1 also exerts tumor promoter effects under specific conditions. In some malignant phenotypes, STAT1 can function either as an oncoprotein or tumor suppressor in the same cell type, depending on the specific genetic background. Thus, the function of STAT1 in cancer biology remains a mystery. In this review, we discuss both the "friend" and "foe" features of STAT1 by summarizing its tumor suppressor or oncogenic functions and mechanisms. To explain how STAT1 may mediate its tumor suppressor effects, we discuss several possible mechanisms, one of which is linked to the role of STAT1β, an isoform of STAT1.

  10. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics

    PubMed Central

    2012-01-01

    Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens. PMID:22727066

  11. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress

    PubMed Central

    Su, Chen-Ming; Chen, Chien-Yu; Lu, Tingting; Sun, Yi; Li, Weimin; Huang, Yuan-Li; Tsai, Chun-Hao; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-01-01

    Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo. PMID:27835579

  12. CXCL12 Chemokine Expression Suppresses Human Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Roy, Ishan; Zimmerman, Noah P.; Mackinnon, A. Craig; Tsai, Susan; Evans, Douglas B.; Dwinell, Michael B.

    2014-01-01

    Pancreatic ductal adenocarcinoma is an unsolved health problem with nearly 75% of patients diagnosed with advanced disease and an overall 5-year survival rate near 5%. Despite the strong link between mortality and malignancy, the mechanisms behind pancreatic cancer dissemination and metastasis are poorly understood. Correlative pathological and cell culture analyses suggest the chemokine receptor CXCR4 plays a biological role in pancreatic cancer progression. In vivo roles for the CXCR4 ligand CXCL12 in pancreatic cancer malignancy were investigated. CXCR4 and CXCR7 were consistently expressed in normal and cancerous pancreatic ductal epithelium, established cell lines, and patient-derived primary cancer cells. Relative to healthy exocrine ducts, CXCL12 expression was pathologically repressed in pancreatic cancer tissue specimens and patient-derived cell lines. To test the functional consequences of CXCL12 silencing, pancreatic cancer cell lines stably expressingthe chemokine were engineered. Consistent with a role for CXCL12 as a tumor suppressor, cells producing the chemokine wereincreasingly adherent and migration deficient in vitro and poorly metastatic in vivo, compared to control cells. Further, CXCL12 reintroduction significantly reduced tumor growth in vitro, with significantly smaller tumors in vivo, leading to a pronounced survival advantage in a preclinical model. Together, these data demonstrate a functional tumor suppressive role for the normal expression of CXCL12 in pancreatic ducts, regulating both tumor growth andcellulardissemination to metastatic sites. PMID:24594697

  13. Unique pathway of expression of an opal suppressor phosphoserine tRNA.

    PubMed Central

    Lee, B J; de la Peña, P; Tobian, J A; Zasloff, M; Hatfield, D

    1987-01-01

    An opal suppressor phosphoserine tRNA gene is present in single copy in the genomes of higher vertebrates. We have shown that the product of this gene functions as a suppressor in an in vitro assay, and we have proposed that it may donate a modified amino acid directly to protein in response to specific UGA codons. In this report, we show through in vitro and in vivo studies that the human and Xenopus opal suppressor phosphoserine tRNAs are synthesized by a pathway that is, to the best of our knowledge, unlike that of any known eukaryotic tRNA. The primary transcript of this gene does not contain a 5'-leader sequence; and, therefore, transcription of this suppressor is initiated at the first nucleotide within the coding sequence. The 5'-terminal triphosphate, present on the primary transcript, remains intact through 3'-terminal maturation and through subsequent transport of the tRNA to the cytoplasm. The unique biosynthetic pathway of this opal suppressor may underlie its distinctive role in eukaryotic cells. Images PMID:3114749

  14. Identification and characterization of suppressors of plant cell death (SPD) effectors from Magnaporthe oryzae.

    PubMed

    Sharpee, William; Oh, Yeonyee; Yi, Mihwa; Franck, William; Eyre, Alex; Okagaki, Laura H; Valent, Barbara; Dean, Ralph A

    2017-08-01

    Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX-mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re-sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  15. MicroRNA-187 regulates gastric cancer progression by targeting the tumor suppressor CRMP1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Lian; Li, Fang; Di, Maojun

    Aberrant expression of microRNAs contributes to the initiation and progression of numerous human cancers. The underlying effects and molecular mechanisms of microRNA-187 (miR-187) in gastric cancer (GC) remain unclear. The present study reports that miR-187 was significantly overexpressed in GC tissues compared to that in non-tumor tissues and was associated with malignant clinical factors such as depth of invasion (P = 0.005), tumor size (P = 0.024), lymph node metastasis (P = 0.048), and TNM stage (P = 0.035). Additionally, miR-187 promoted tumor growth in vivo, and significantly increased migration, invasion, and proliferation, but inhibited apoptosis in GC cells. It was found that collapsin response mediator protein 1 (CRMP1),more » a tumor suppressor, was a direct downstream target of miR-187 in GC. Furthermore, CRMP1 silencing resulted in similar effects on cell proliferation, migration, and apoptosis as those of miR-187 overexpressing GC cells. Additionally, the effects of miR-187 inhibitor on cell migration and cell apoptosis were reversed by CRMP1 downregulation. In summary, miR-187 promotes tumor progression by regulating CRMP1 expression in GC and may thus be a potential prognostic marker and a therapeutic target in GC. - Highlights: • miR-187 was significantly overexpressed in GC tissues and associated with malignant clinical factors. • miR-187 significantly increased migration, invasion, and proliferation, but inhibited apoptosis in GC cells. • CRMP1 tumor suppressor is a direct target of miR-187 in GC. • Overexpression of miR-187 promoted GC progression by targeting tumor suppressor gene CRMP1.« less

  16. Nature of "basal" and "reserve" cells in oviductal and cervical epithelium in man.

    PubMed Central

    Peters, W M

    1986-01-01

    The epithelium of the human fallopian tube (oviduct) and cervix were studied by histological, immunohistological, and ultrastructural methods with a view to establishing the nature of the so called "basal" and "reserve" cells. The results indicated that the "basal" cells of the oviductal epithelia were T lymphocytes, with a predominance of T cytotoxic and suppressor cells. A more heterogeneous inflammatory cell population was present in cervical epithelium, although once again T cytotoxic and suppressor cells were the most numerous subtype. The intraepithelial inflammatory cells were quite distinct from the cells commonly referred to as "reserve" cells (reserve cell hyperplasia), which have epithelial characteristics. The origin of the "reserve" cells is unclear, but they seem to arise within the epithelium. They probably represent an early sign of squamous metaplasia. The lymphoid tissue of fallopian tube and endocervix shows similarities with that of the endometrium and mucosal associated lymphoid tissue in general. Images PMID:2937810

  17. Production of migration inhibitory factor in response to bacterial and fungal antigens in patients with untreated Graves' disease

    PubMed Central

    Wall, Jack R.; Ryan, E. Ann

    1980-01-01

    Tests for the production of migration inhibitory factor by peripheral blood leukocytes in response to ubiquitous bacterial and fungal antigens were carried out in patients with untreated Graves' disease and in healthy control subjects. Dose-response studies, tests for the production of this factor after 72 hours' stimulation with phytohemagglutinin as a test for reserve, and tests before and after 24 hours' preculture to deplete suppressor cells were also performed in some patients. The antigens used were Candida, Trichophyton-Oidiomyces-Epidermophyton, mumps live attenuated virus and purified protein derivative of tuberculin. The production of migration inhibitory factor was measured by the agarose microdroplet method. The production of migration inhibitory factor in response to all the antigens except mumps virus was slightly greater in the patients than in the control subjects, although the differences were not significant. The dose-response characteristics and the production of migration inhibitory factor after stimulation with phytohemagglutinin were similar in the two groups. The production of migration inhibitory factor in response to suboptimal concentrations of Candida, Trichophyton-Oidiomyces-Epidermophyton and mumps virus was not enhanced in either group after 24 hours' preculture apart from a slight increase in response to mumps virus in the patients. These results fail to support the suggestion that patients with Graves' disease have a deficiency of suppressor cells. PMID:6446374

  18. Reversal of hypermethylation and reactivation of glutathione S-transferase pi 1 gene by curcumin in breast cancer cell line.

    PubMed

    Kumar, Umesh; Sharma, Ujjawal; Rathi, Garima

    2017-02-01

    One of the mechanisms for epigenetic silencing of tumor suppressor genes is hypermethylation of cytosine residue at CpG islands at their promoter region that contributes to malignant progression of tumor. Therefore, activation of tumor suppressor genes that have been silenced by promoter methylation is considered to be very attractive molecular target for cancer therapy. Epigenetic silencing of glutathione S-transferase pi 1, a tumor suppressor gene, is involved in various types of cancers including breast cancer. Epigenetic silencing of tumor suppressor genes can be reversed by several molecules including natural compounds such as polyphenols that can act as a hypomethylating agent. Curcumin has been found to specifically target various tumor suppressor genes and alter their expression. To check the effect of curcumin on the methylation pattern of glutathione S-transferase pi 1 gene in MCF-7 breast cancer cell line in dose-dependent manner. To check the reversal of methylation pattern of hypermethylated glutathione S-transferase pi 1, MCF-7 breast cancer cell line was treated with different concentrations of curcumin for different time periods. DNA and proteins of treated and untreated cell lines were isolated, and methylation status of the promoter region of glutathione S-transferase pi 1 was analyzed using methylation-specific polymerase chain reaction assay, and expression of this gene was analyzed by immunoblotting using specific antibodies against glutathione S-transferase pi 1. A very low and a nontoxic concentration (10 µM) of curcumin treatment was able to reverse the hypermethylation and led to reactivation of glutathione S-transferase pi 1 protein expression in MCF-7 cells after 72 h of treatment, although the IC 50 value of curcumin was found to be at 20 µM. However, curcumin less than 3 µM of curcumin could not alter the promoter methylation pattern of glutathione S-transferase pi 1. Treatment of breast cancer MCF-7 cells with curcumin causes complete reversal of glutathione S-transferase pi 1 promoter hypermethylation and leads to re-expression of glutathione S-transferase pi 1, suggesting it to be an excellent nontoxic hypomethylating agent.

  19. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma.

    PubMed

    Caicedo-Granados, Emiro; Lin, Rui; Fujisawa, Caitlin; Yueh, Bevan; Sangwan, Veena; Saluja, Ashok

    2014-12-01

    The incidence of high-risk human papillomavirus (HR-HPV) head and neck squamous cell carcinoma (HNSCC) continues to increase, particularly oropharyngeal squamous cell carcinoma (OPSCC) cases. The inactivation of the p53 tumor suppressor gene promotes a chain of molecular events, including cell cycle progression and apoptosis resistance. Reactivation of wild-type p53 function is an intriguing therapeutic strategy. The aim of this study was to investigate whether a novel compound derived from diterpene triepoxide (Minnelide™) can reactivate wild-type p53 function in HPV-positive HNSCC. For all of our in vitro experiments, we used 2 HPV-positive HNSCC cell lines, University of Michigan squamous cell carcinoma (UM-SCC) 47 and 93-VU-147, and 2 HPV-positive human cervical cancer cell lines, SiHa and CaSki. Cells were treated with different concentrations of triptolide and analyzed for p53 activation. Mice bearing UM-SCC 47 subcutaneous xenografts and HPV-positive patient-derived tumor xenografts were treated with Minnelide and evaluated for tumor growth and p53 activation. In HPV-positive HNSCC, Minnelide reactivated p53 by suppressing E6 oncoprotein. Activation of apoptosis followed, both in vitro and in vivo. In 2 preclinical HNSCC animal models (a subcutaneous xenograft model and a patient-derived tumor xenograft model), Minnelide reactivated p53 function and significantly decreased tumor progression and tumor volume. Triptolide and Minnelide caused cell death in vitro and in vivo in HPV-positive HNSCC by reactivating wild-type p53 and thus inducing apoptosis. In addition, in 2 HPV-positive HNSCC animal models, Minnelide decreased tumor progression and induced apoptosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    PubMed

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  1. Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer

    PubMed Central

    SUZUKI, SHINICHI; SHIBATA, MASAHIKO; GONDA, KENJI; KANKE, YASUYUKI; ASHIZAWA, MAI; UJIIE, DAISUKE; SUZUSHINO, SEIKO; NAKANO, KEIICHI; FUKUSHIMA, TOSHIHIKO; SAKURAI, KENICHI; TOMITA, RYOUICHI; KUMAMOTO, KENSUKE; TAKENOSHITA, SEIICHI

    2013-01-01

    Anaplastic thyroid carcinoma (ATC) is one of the most aggressive neoplasms in humans and myeloid-derived suppressor cells (MDSCs) contribute to the negative regulation of immune responses in the context of cancer and inflammation. In order to investigate the pathophysiology of thyroid cancer, peripheral blood mononuclear cells (PBMCs) were obtained from 49 patients with thyroid cancer, 18 patients with non-cancerous thyroid diseases and 22 healthy volunteers. The MDSC levels were found to be higher in patients with any type of thyroid cancer (P<0.05), patients with ATC (P<0.001) and patients with medullary thyroid carcinoma (P<0.05), when compared to patients with non-cancerous thyroid diseases. The MDSC levels were also higher in patients with stage III–IV thyroid cancer compared to those in patients with non-cancerous thyroid diseases (P<0.05). The stimulation index (SI) of phytohemagglutinin (PHA)-induced lymphocyte blastogenesis was significantly lower, the C-reactive protein (CRP) levels were significantly higher and the serum albumin levels were significantly lower in patients with ATC compared to those in patients with non-cancerous thyroid diseases. The SI was significantly lower in stage III and IV thyroid cancer compared to that in non-cancerous thyroid disease (P<0.05). Furthermore, the CRP levels were higher and the concentration of albumin was lower in stage IV thyroid cancer compared to those in non-cancerous thyroid disease (P<0.05). Patients with thyroid carcinoma were then classified into one of two groups according to a %PBMC of MDSC cut-off level of 1.578, which was the average %PBMC of MDSC of patients with any type of thyroid carcinoma. In patients with higher MDSC levels, the production of CRP and interleukin (IL)-10 was significantly higher (P<0.05) and the albumin levels were significantly lower (P<0.05) compared to those in patients with lower MDSC levels. These data indicate that MDSCs are increased in patients with ATC. Furthermore, these patients exhibited suppression of cell-mediated immune responses, chronic inflammation and nutritional impairment. PMID:24649277

  2. A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis.

    PubMed

    Rho, Seung Bae; Park, Young Gyo; Park, Kyoungsook; Lee, Seung-Hoon; Lee, Je-Ho

    2006-07-24

    Promyelocytic leukemia zinc finger protein (PLZF) is a sequence-specific, DNA binding, transcriptional repressor differentially expressed during embryogenesis and in adult tissues. PLZF is known to be a negative regulator of cell cycle progression. We used PLZF as bait in a yeast two-hybrid screen with a cDNA library from the human ovary tissue. A novel cervical cancer suppressor 3 (CCS-3) was identified as a PLZF interacting partner. Further characterization revealed the BTB domain as an interacting domain of PLZF. Interaction of CCS-3 with PLZF in mammalian cells was also confirmed by co-immunoprecipitation and in vitro binding assays. It was found that, although CCS-3 shares similar homology with eEF1A, the study determined CCS-3 to be an isoform. CCS-3 was observed to be downregulated in human cervical cell lines as well as in cervical tumors when compared to those from normal tissues. Overexpression of CCS-3 in human cervical cell lines inhibits cell growth by inducing apoptosis and suppressing human cyclin A2 promoter activity. These combined results suggest that the potential tumor suppressor activity of CCS-3 may be mediated by its interaction with PLZF.

  3. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives.

    PubMed

    Hückelhoven, R

    2004-05-01

    BAX Inhibitor-1 (BI-1) was originally described as testis enhanced gene transcript in mammals. Functional screening in yeast for human proteins that can inhibit the cell death provoking function of BAX, a proapoptotic Bcl-2 family member, led to functional characterisation and renaming of BI-1. The identification of functional homologues of BI-1 in plants and yeast widened the understanding of BI-1 function as an ancient suppressor of programmed cell death. BI-1 is one of the few cell death suppressors conserved in animals and plants. Computer predictions and experimental data together suggest that BI-1 is a membrane spanning protein with 6 to 7 transmembrane domains and a cytoplasmic C-terminus sticking in the endoplasmatic reticulum and nuclear envelope. Proteins similar to BI-1 are present in other eukaryotes, bacteria, and even viruses encode BI-1 like proteins. BI-1 is involved in development, response to biotic and abiotic stress and probably represents an indispensable cell protectant. BI-1 appears to suppress cell death induced by mitochondrial dysfunction, reactive oxygen species or elevated cytosolic Ca(2+) levels. This review focuses on the present understanding about BI-1 and suggests potential directions for further analyses of this increasingly noticed protein.

  4. A robust screening method for dietary agents that activate tumour-suppressor microRNAs

    PubMed Central

    Hagiwara, Keitaro; Gailhouste, Luc; Yasukawa, Ken; Kosaka, Nobuyoshi; Ochiya, Takahiro

    2015-01-01

    Certain dietary agents, such as natural products, have been reported to show anti-cancer effects. However, the underlying mechanisms of these substances in human cancer remain unclear. We recently found that resveratrol exerts an anti-cancer effect by upregulating tumour-suppressor microRNAs (miRNAs). In the current study, we aimed to identify new dietary products that have the ability to activate tumour-suppressor miRNAs and that therefore may serve as novel tools for the prevention and treatment of human cancers. We describe the generation and use of an original screening system based on a luciferase-based reporter vector for monitoring miR-200c tumour-suppressor activity. By screening a library containing 139 natural substances, three natural compounds — enoxolone, magnolol and palmatine chloride — were identified as being capable of inducing miR-200c expression in breast cancer cells at 10 μM. Moreover, these molecules suppressed the invasiveness of breast cancer cells in vitro. Next, we identified a molecular pathway by which the increased expression of miR-200c induced by natural substances led to ZEB1 inhibition and E-cadherin induction. These results indicate that our method is a valuable tool for a fast identification of natural molecules that exhibit tumour-suppressor activity in human cancer through miRNA activation. PMID:26423775

  5. Merlin Isoforms 1 and 2 Both Act as Tumour Suppressors and Are Required for Optimal Sperm Maturation

    PubMed Central

    Zoch, Ansgar; Mayerl, Steffen; Schulz, Alexander; Greither, Thomas; Frappart, Lucien; Rübsam, Juliane; Heuer, Heike; Giovannini, Marco; Morrison, Helen

    2015-01-01

    The tumour suppressor Merlin, encoded by the gene NF2, is frequently mutated in the autosomal dominant disorder neurofibromatosis type II, characterised primarily by the development of schwannoma and other glial cell tumours. However, NF2 is expressed in virtually all analysed human and rodent organs, and its deletion in mice causes early embryonic lethality. Additionally, NF2 encodes for two major isoforms of Merlin of unknown functionality. Specifically, the tumour suppressor potential of isoform 2 remains controversial. In this study, we used Nf2 isoform-specific knockout mouse models to analyse the function of each isoform during development and organ homeostasis. We found that both isoforms carry full tumour suppressor functionality and can completely compensate the loss of the other isoform during development and in most adult organs. Surprisingly, we discovered that spermatogenesis is strictly dependent on the presence of both isoforms. While the testis primarily expresses isoform 1, we noticed an enrichment of isoform 2 in spermatogonial stem cells. Deletion of either isoform was found to cause decreased sperm quality as observed by maturation defects and head/midpiece abnormalities. These defects led to impaired sperm functionality as assessed by decreased sperm capacitation. Thus, we describe spermatogenesis as a new Nf2-dependent process. Additionally, we provide for the first time in vivo evidence for equal tumour suppressor potentials of Merlin isoform 1 and isoform 2. PMID:26258444

  6. Defining the Role of Autophagy Kinase ULK1 Signaling in Therapeutic Response of Tuberous Sclerosis Complex to mTOR Inhibitors

    DTIC Science & Technology

    2014-04-01

    Neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J Biol Chem 273: 7757-64. 25. Shaw, R.J...McClatchey, A.I., and Jacks, T. (1998) Localization and functional domains of the Neurofibromatosis type II tumor suppressor, merlin. Cell Growth Diff 9

  7. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids.

    PubMed

    Matano, Mami; Date, Shoichi; Shimokawa, Mariko; Takano, Ai; Fujii, Masayuki; Ohta, Yuki; Watanabe, Toshiaki; Kanai, Takanori; Sato, Toshiro

    2015-03-01

    Human colorectal tumors bear recurrent mutations in genes encoding proteins operative in the WNT, MAPK, TGF-β, TP53 and PI3K pathways. Although these pathways influence intestinal stem cell niche signaling, the extent to which mutations in these pathways contribute to human colorectal carcinogenesis remains unclear. Here we use the CRISPR-Cas9 genome-editing system to introduce multiple such mutations into organoids derived from normal human intestinal epithelium. By modulating the culture conditions to mimic that of the intestinal niche, we selected isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, and in the oncogenes KRAS and/or PIK3CA. Organoids engineered to express all five mutations grew independently of niche factors in vitro, and they formed tumors after implantation under the kidney subcapsule in mice. Although they formed micrometastases containing dormant tumor-initiating cells after injection into the spleen of mice, they failed to colonize in the liver. In contrast, engineered organoids derived from chromosome-instable human adenomas formed macrometastatic colonies. These results suggest that 'driver' pathway mutations enable stem cell maintenance in the hostile tumor microenvironment, but that additional molecular lesions are required for invasive behavior.

  8. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  9. Dynamics of Tumor Heterogeneity Derived from Clonal Karyotypic Evolution.

    PubMed

    Laughney, Ashley M; Elizalde, Sergi; Genovese, Giulio; Bakhoum, Samuel F

    2015-08-04

    Numerical chromosomal instability is a ubiquitous feature of human neoplasms. Due to experimental limitations, fundamental characteristics of karyotypic changes in cancer are poorly understood. Using an experimentally inspired stochastic model, based on the potency and chromosomal distribution of oncogenes and tumor suppressor genes, we show that cancer cells have evolved to exist within a narrow range of chromosome missegregation rates that optimizes phenotypic heterogeneity and clonal survival. Departure from this range reduces clonal fitness and limits subclonal diversity. Mapping of the aneuploid fitness landscape reveals a highly favorable, commonly observed, near-triploid state onto which evolving diploid- and tetraploid-derived populations spontaneously converge, albeit at a much lower fitness cost for the latter. Finally, by analyzing 1,368 chromosomal translocation events in five human cancers, we find that karyotypic evolution also shapes chromosomal translocation patterns by selecting for more oncogenic derivative chromosomes. Thus, chromosomal instability can generate the heterogeneity required for Darwinian tumor evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Mobility of the maize suppressor-mutator element in transgenic tobacco cells.

    PubMed Central

    Masson, P; Fedoroff, N V

    1989-01-01

    Maize Suppressor-mutator (Spm) transposable elements have been introduced into tobacco cells and a visual assay for Spm activity has been developed using a bacterial beta-glucuronidase gene. The Spm element is mobile in tobacco and can trans-activate excision of a transposition-defective Spm (dSpm) element either from a different site on the same transforming Ti plasmid or from a second plasmid. An Spm element expressed from the stronger cauliflower mosaic virus 35S promoter trans-activates transposition of a dSpm element earlier after its introduction into tobacco cells than an element expressed from its own promoter. Images PMID:2538837

  11. p53-Mediated Cellular Response to DNA Damage in Cells with Replicative Hepatitis B Virus

    NASA Astrophysics Data System (ADS)

    Puisieux, Alain; Ji, Jingwei; Guillot, Celine; Legros, Yann; Soussi, Thierry; Isselbacher, Kurt; Ozturk, Mehmet

    1995-02-01

    Wild-type p53 acts as a tumor suppressor gene by protecting cells from deleterious effects of genotoxic agents through the induction of a G_1/S arrest or apoptosis as a response to DNA damage. Transforming proteins of several oncogenic DNA viruses inactivate tumor suppressor activity of p53 by blocking this cellular response. To test whether hepatitis B virus displays a similar effect, we studied the p53-mediated cellular response to DNA damage in 2215 hepatoma cells with replicative hepatitis B virus. We demonstrate that hepatitis B virus replication does not interfere with known cellular functions of p53 protein.

  12. Rh2E2, a novel metabolic suppressor, specifically inhibits energy-based metabolism of tumor cells

    PubMed Central

    Bai, Li-Ping; Jiang, Zhi-Hong; Guo, Yue; Kong, Ah-Ng Tony; Wang, Rui; Kam, Richard Kin Ting; Law, Betty Yuen Kwan; Hsiao, Wendy Wen Luen; Chan, Ka Man; Wang, Jingrong; Chan, Rick Wai Kit; Guo, Jianru; Zhang, Wei; Yen, Feng Gen; Zhou, Hua; Leung, Elaine Lai Han; Yu, Zhiling; Liu, Liang

    2016-01-01

    Energy metabolism in cancer cells is often increased to meet their higher proliferative rate and biosynthesis demands. Suppressing cancer cell metabolism using agents like metformin has become an attractive strategy for treating cancer patients. We showed that a novel ginsenoside derivative, Rh2E2, is as effective as aspirin in preventing the development of AOM/DSS-induced colorectal cancer and suppresses tumor growth and metastasis in a LLC-1 xenograft. A sub-chronic and acute toxicity LD50 test of Rh2E2 showed no harmful reactions at the maximum oral dosage of 5000 mg/kg body weight in mice. Proteomic profiling revealed that Rh2E2 specifically inhibited ATP production in cancer cells via down-regulation of metabolic enzymes involving glycolysis, fatty acid β-oxidation and the tricarboxylic acid cycle, leading to specific cytotoxicity and S-phase cell cycle arrest in cancer cells. Those findings suggest that Rh2E2 possesses a novel and safe anti-metabolic agent for cancer patients by specific reduction of energy-based metabolism in cancer cells. PMID:26799418

  13. Tumor suppressor BRCA1 is expressed in prostate cancer and controls IGF-I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner

    PubMed Central

    Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim

    2010-01-01

    Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505

  14. MicroRNA 203 Modulates Glioma Cell Migration via Robo1/ERK/MMP-9 Signaling

    PubMed Central

    Dontula, Ranadheer; Dinasarapu, Ashok; Chetty, Chandramu; Pannuru, Padmavathi; Herbert, Engelhard; Ozer, Howard

    2013-01-01

    Glioblastoma (GBM) is the most common and malignant primary adult brain cancer. Allelic deletion on chromosome 14q plays an important role in the pathogenesis of GBM, and this site was thought to harbor multiple tumor suppressor genes associated with GBM, a region that also encodes microRNA-203 (miR-203). In this study, we sought to identify the role of miR-203 as a tumor suppressor in the pathogenesis of GBM. We analyzed the miR-203 expression data of GBM patients in 10 normal and 495 tumor tissue samples derived from The Cancer Genome Atlas data set. Quantitative real-time PCR and in situ hybridization in 10 high-grade GBM and 10 low-grade anaplastic astrocytoma tumor samples showed decreased levels of miR-203 expression in anaplastic astrocytoma and GBM tissues and cell lines. Exogenous expression of miR-203 using a plasmid expressing miR-203 precursor (pmiR-203) suppressed glioma cell proliferation, migration, and invasion. We determined that one relevant target of miR-203 was Robo1, given that miR-203 expression decreased mRNA and protein levels as determined by RT-PCR and Western blot analysis. Moreover, cotransfection experiments using a luciferase-based transcription reporter assay have shown direct regulation of Robo1 by miR-203. We also show that Robo1 mediates miR-203 mediated antimigratory functions as up-regulation of Robo1 abrogates miR-203 mediated antimigratory effects. We also show that miR-203 expression suppressed ERK phosphorylation and MMP-9 expression in glioma cells. Furthermore, we demonstrate that miR-203 inhibits migration of the glioma cells by disrupting the Robo1/ERK/MMP-9 signaling axis. Taken together, these studies demonstrate that up-regulation of Robo1 in response to the decrease in miR-203 in glioma cells is responsible for glioma tumor cell migration and invasion. PMID:24167656

  15. The G1 phase Cdks regulate the centrosome cycle and mediate oncogene-dependent centrosome amplification

    PubMed Central

    2011-01-01

    Because centrosome amplification generates aneuploidy and since centrosome amplification is ubiquitous in human tumors, a strong case is made for centrosome amplification being a major force in tumor biogenesis. Various evidence showing that oncogenes and altered tumor suppressors lead to centrosome amplification and aneuploidy suggests that oncogenes and altered tumor suppressors are a major source of genomic instability in tumors, and that they generate those abnormal processes to initiate and sustain tumorigenesis. We discuss how altered tumor suppressors and oncogenes utilize the cell cycle regulatory machinery to signal centrosome amplification and aneuploidy. PMID:21272329

  16. The tumour suppressor CDKN2A/p16INK4a regulates adipogenesis and bone marrow-dependent development of perivascular adipose tissue

    PubMed Central

    Wouters, Kristiaan; Deleye, Yann; Hannou, Sarah A; Vanhoutte, Jonathan; Maréchal, Xavier; Coisne, Augustin; Tagzirt, Madjid; Derudas, Bruno; Bouchaert, Emmanuel; Duhem, Christian; Vallez, Emmanuelle; Schalkwijk, Casper G; Pattou, François; Montaigne, David; Staels, Bart; Paumelle, Réjane

    2017-01-01

    The genomic CDKN2A/B locus, encoding p16INK4a among others, is linked to an increased risk for cardiovascular disease and type 2 diabetes. Obesity is a risk factor for both cardiovascular disease and type 2 diabetes. p16INK4a is a cell cycle regulator and tumour suppressor. Whether it plays a role in adipose tissue formation is unknown. p16INK4a knock-down in 3T3/L1 preadipocytes or p16INK4a deficiency in mouse embryonic fibroblasts enhanced adipogenesis, suggesting a role for p16INK4a in adipose tissue formation. p16INK4a-deficient mice developed more epicardial adipose tissue in response to the adipogenic peroxisome proliferator activated receptor gamma agonist rosiglitazone. Additionally, adipose tissue around the aorta from p16INK4a-deficient mice displayed enhanced rosiglitazone-induced gene expression of adipogenic markers and stem cell antigen, a marker of bone marrow-derived precursor cells. Mice transplanted with p16INK4a-deficient bone marrow had more epicardial adipose tissue compared to controls when fed a high-fat diet. In humans, p16INK4a gene expression was enriched in epicardial adipose tissue compared to other adipose tissue depots. Moreover, epicardial adipose tissue from obese humans displayed increased expression of stem cell antigen compared to lean controls, supporting a bone marrow origin of epicardial adipose tissue. These results show that p16INK4a modulates epicardial adipose tissue development, providing a potential mechanistic link between the genetic association of the CDKN2A/B locus and cardiovascular disease risk. PMID:28868898

  17. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    PubMed

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  18. Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors.

    PubMed

    Lai, Xiulan; Stiff, Andrew; Duggan, Megan; Wesolowski, Robert; Carson, William E; Friedman, Avner

    2018-05-07

    CTLA-4 is an immune checkpoint expressed on active anticancer T cells. When it combines with its ligand B7 on dendritic cells, it inhibits the activity of the T cells. The Bromo- and Extra-Terminal (BET) protein family includes proteins that regulate the expression of key oncogenes and antiapoptotic proteins. BET inhibitor (BETi) has been shown to reduce the expression of MYC by suppressing its transcription factors and to down-regulate the hypoxic transcriptome response to VEGF-A. This paper develops a mathematical model of the treatment of cancer by combination therapy of BETi and CTLA-4 inhibitor. The model shows that the two drugs are positively correlated in the sense that the tumor volume decreases as the dose of each of the drugs is increased. The model also considers the effect of the combined therapy on levels of myeloid-derived suppressor cells (MDSCs) and the overexpression of TNF-[Formula: see text], which may predict gastrointestinal side effects of the combination.

  19. Targeting interlukin-6 to relieve immunosuppression in tumor microenvironment.

    PubMed

    Liu, Qian; Yu, Shengnan; Li, Anping; Xu, Hanxiao; Han, Xinwei; Wu, Kongming

    2017-06-01

    Immunotolerance is one of the hallmarks of malignant tumors. Tumor cells escape from host immune surveillance through various mechanisms resulting in tumor progression and therapeutic resistance. Interlukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes by integrating with multiple intracellular signaling pathways. Aberrant expression of interlukin-6 is associated with the growth, metastasis, and chemotherapeutic resistance in a wide range of cancers. Interlukin-6 exerts immunosuppressive capacity mostly by stimulating the infiltrations of myeloid-derived suppressor cells, tumor-associated neutrophils, and cancer stem-like cells via Janus-activated kinase/signal transducer and activator of transcription 3 pathway in tumor microenvironment. On this foundation, blockage of interlukin-6 signal may provide potential approaches to novel therapies. In this review, we introduced interlukin-6 pathways and summarized molecular mechanisms related to interlukin-6-induced immunosuppression of tumor cell. We also concluded recent clinical studies targeting interlukin-6 as an immune-based therapeutic intervention in patients with cancer.

  20. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy

    PubMed Central

    Wang, Liantang; Chen, Shangwu

    2016-01-01

    Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy. PMID:26918353

  1. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy.

    PubMed

    Yu, Li; Chen, Xun; Wang, Liantang; Chen, Shangwu

    2016-06-21

    Metabolic change is one of the hallmarks of tumor, which has recently attracted a great of attention. One of main metabolic characteristics of tumor cells is the high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in glycolysis pathway than that in tricarboxylic acid cycle. The molecular mechanism of a high glycolytic flux in tumor cells remains unclear. A large amount of intermediates derived from glycolytic pathway could meet the biosynthetic requirements of the proliferating cells. Hypoxia-induced HIF-1α, PI3K-Akt-mTOR signaling pathway, and many other factors, such as oncogene activation and tumor suppressor inactivation, drive cancer cells to favor glycolysis over mitochondrial oxidation. Several small molecules targeting glycolytic pathway exhibit promising anticancer activity both in vitro and in vivo. In this review, we will focus on the latest progress in the regulation of aerobic glycolysis and discuss the potential targets for the tumor therapy.

  2. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation

    PubMed Central

    Forzati, Floriana; Federico, Antonella; Pallante, Pierlorenzo; Colamaio, Marianna; Esposito, Francesco; Sepe, Romina; Gargiulo, Sara; Luciano, Antonio; Arra, Claudio; Palma, Giuseppe; Bon, Giulia; Bucher, Stefania; Falcioni, Rita; Brunetti, Arturo; Battista, Sabrina; Fedele, Monica; Fusco, Alfredo

    2014-01-01

    ABSTRACT We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation. PMID:25190058

  3. The Hypoxia-Inducible Epigenetic Regulators Jmjd1a and G9a Provide a Mechanistic Link between Angiogenesis and Tumor Growth

    PubMed Central

    Ho, Jolene Caifeng; Lee, Kian Leong; Kitajima, Shojiro; Yang, Henry; Sun, Wendi; Fukuhara, Noriko; Zaiden, Norazean; Chan, Shing Leng; Tachibana, Makoto; Shinkai, Yoichi; Kato, Hiroyuki

    2014-01-01

    Hypoxia promotes stem cell maintenance and tumor progression, but it remains unclear how it regulates long-term adaptation toward these processes. We reveal a striking downregulation of the hypoxia-inducible histone H3 lysine 9 (H3K9) demethylase JMJD1A as a hallmark of clinical human germ cell-derived tumors, such as seminomas, yolk sac tumors, and embryonal carcinomas. Jmjd1a was not essential for stem cell self-renewal but played a crucial role as a tumor suppressor in opposition to the hypoxia-regulated oncogenic H3K9 methyltransferase G9a. Importantly, loss of Jmjd1a resulted in increased tumor growth, whereas loss of G9a produced smaller tumors. Pharmacological inhibition of G9a also resulted in attenuation of tumor growth, offering a novel therapeutic strategy for germ cell-derived tumors. Finally, Jmjd1a and G9a drive mutually opposing expression of the antiangiogenic factor genes Robo4, Igfbp4, Notch4, and Tfpi accompanied by changes in H3K9 methylation status. Thus, we demonstrate a novel mechanistic link whereby hypoxia-regulated epigenetic changes are instrumental for the control of tumor growth through coordinated dysregulation of antiangiogenic gene expression. PMID:25071150

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltomaeki, Paeivi, E-mail: Paivi.Peltomaki@Helsinki.Fi

    Cancer is traditionally viewed as a disease of abnormal cell proliferation controlled by a series of mutations. Mutations typically affect oncogenes or tumor suppressor genes thereby conferring growth advantage. Genomic instability facilitates mutation accumulation. Recent findings demonstrate that activation of oncogenes and inactivation of tumor suppressor genes, as well as genomic instability, can be achieved by epigenetic mechanisms as well. Unlike genetic mutations, epimutations do not change the base sequence of DNA and are potentially reversible. Similar to genetic mutations, epimutations are associated with specific patterns of gene expression that are heritable through cell divisions. Knudson's hypothesis postulates that inactivationmore » of tumor suppressor genes requires two hits, with the first hit occurring either in somatic cells (sporadic cancer) or in the germline (hereditary cancer) and the second one always being somatic. Studies on hereditary and sporadic forms of colorectal carcinoma have made it evident that, apart from genetic mutations, epimutations may serve as either hit or both. Furthermore, recent next-generation sequencing studies show that epigenetic genes, such as those encoding histone modifying enzymes and subunits for chromatin remodeling systems, are themselves frequent targets of somatic mutations in cancer and can act like tumor suppressor genes or oncogenes. This review discusses genetic vs. epigenetic origin of cancer, including cancer susceptibility, in light of recent discoveries. Situations in which mutations and epimutations occur to serve analogous purposes are highlighted.« less

  5. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland

    PubMed Central

    Hernández-Ramírez, Laura C.; Morgan, Rhodri M.L.; Barry, Sayka; D’Acquisto, Fulvio; Prodromou, Chrisostomos; Korbonits, Márta

    2018-01-01

    Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP. PMID:29507682

  6. LARG at chromosome 11q23 has functional characteristics of a tumor suppressor in human breast and colorectal cancer

    PubMed Central

    Ong, DCT; Ho, YM; Rudduck, C; Chin, K; Kuo, W-L; Lie, DKH; Chua, CLM; Tan, PH; Eu, KW; Seow-Choen, F; Wong, CY; Hong, GS; Gray, JW; Lee, ASG

    2010-01-01

    Deletion of 11q23–q24 is frequent in a diverse variety of malignancies, including breast and colorectal carcinoma, implicating the presence of a tumor suppressor gene at that chromosomal region. We examined a 6-Mb region on 11q23 by high-resolution deletion mapping, using both loss of heterozygosity analysis and customized microarray comparative genomic hybridization. LARG (leukemia-associated Rho guanine-nucleotide exchange factor) (also called ARHGEF12), identified from the analysed region, is frequently underexpressed in breast and colorectal carcinomas with a reduced expression observed in all breast cancer cell lines (n=11), in 12 of 38 (32%) primary breast cancers, 5 of 10 (50%) colorectal cell lines and in 20 of 37 (54%) primary colorectal cancers. Underexpression of the LARG transcript was significantly associated with genomic loss (P=0.00334). Hypermethylation of the LARG promoter was not detected in either breast or colorectal cancer, and treatment of four breast and four colorectal cancer cell lines with 5-aza-2′-deoxycytidine and/or trichostatin A did not result in a reactivation of LARG. Enforced expression of LARG in breast and colorectal cancer cells by stable transfection resulted in reduced cell proliferation and colony formation, as well as in a markedly slower cell migration rate in colorectal cancer cells, providing functional evidence for LARG as a candidate tumor suppressor gene. PMID:19734946

  7. p53-dependent and p53-independent anticancer activity of a new indole derivative in human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappadone, C., E-mail: concettina.cappadone@unibo.it; Stefanelli, C.; Malucelli, E.

    2015-11-13

    Osteosarcoma (OS) is the most common primary malignant tumor of bone, occurring most frequently in children and adolescents. The mechanism of formation and development of OS have been studied for a long time. Tumor suppressor pathway governed by p53 gene are known to be involved in the pathogenesis of osteosarcoma. Moreover, loss of wild-type p53 activity is thought to be a major predictor of failure to respond to chemotherapy in various human cancers. In previous studies, we described the activity of a new indole derivative, NSC743420, belonging to the tubulin inhibitors family, capable to induce apoptosis and arrest of themore » cell cycle in the G2/M phase of various cancer cell lines. However, this molecule has never been tested on OS cell line. Here we address the activity of NSC743420 by examine whether differences in the p53 status could influence its effects on cell proliferation and death of OS cells. In particular, we compared the effect of the tested molecule on p53-wild type and p53-silenced U2OS cells, and on SaOS2 cell line, which is null for p53. Our results demonstrated that NSC743420 reduces OS cell proliferation by p53-dependent and p53-independent mechanisms. In particular, the molecule induces proliferative arrest that culminate to apoptosis in SaOS2 p53-null cells, while it brings a cytostatic and differentiating effect in U2OS cells, characterized by the cell cycle arrest in G0/G1 phase and increased alkaline phosphatase activity. - Highlights: • The indole derivative NSC743420 induces antitumor effects on osteosarcoma cells. • p53 status could drive the activity of antitumor agents on osteosarcoma cells. • NSC743420 induces cytostatic and differentiating effects on U2OS cells. • NSC743420 causes apoptosis on p53-null SaOS2 cells.« less

  8. Relevance of miR-21 in regulation of tumor suppressor gene PTEN in human cervical cancer cells.

    PubMed

    Peralta-Zaragoza, Oscar; Deas, Jessica; Meneses-Acosta, Angélica; De la O-Gómez, Faustino; Fernández-Tilapa, Gloria; Gómez-Cerón, Claudia; Benítez-Boijseauneau, Odelia; Burguete-García, Ana; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo; Madrid-Marina, Vicente; Rodríguez-Dorantes, Mauricio; Hidalgo-Miranda, Alfredo; Pérez-Plasencia, Carlos

    2016-03-14

    Expression of the microRNA miR-21 has been found to be altered in almost all types of cancers and it has been classified as an oncogenic microRNA or oncomir. Due to the critical functions of its target proteins in various signaling pathways, miR-21 is an attractive target for genetic and pharmacological modulation in various cancers. Cervical cancer is the second most common cause of death from cancer in women worldwide and persistent HPV infection is the main etiologic agent. This malignancy merits special attention for the development of new treatment strategies. In the present study we analyze the role of miR-21 in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression in a cervical intraepithelial neoplasia-derived cell lines using siRNAs. The effect of miR-21 on gene expression was assessed in cervical cancer cells transfected with the siRNA expression plasmid pSIMIR21. We identified the tumor suppressor gene PTEN as a target of miR-21 and determined the mechanism of its regulation throughout reporter construct plasmids. Using this model, we analyzed the expression of miR-21 and PTEN as well as functional effects such as autophagy and apoptosis induction. In SiHa cells, there was an inverse correlation between miR-21 expression and PTEN mRNA level as well as PTEN protein expression in cervical cancer cells. Transfection with the pSIMIR21 plasmid increased luciferase reporter activity in construct plasmids containing the PTEN-3'-UTR microRNA response elements MRE21-1 and MRE21-2. The role of miR-21 in cell proliferation was also analyzed in SiHa and HeLa cells transfected with the pSIMIR21 plasmid, and tumor cells exhibited markedly reduced cell proliferation along with autophagy and apoptosis induction. We conclude that miR-21 post-transcriptionally down-regulates the expression of PTEN to promote cell proliferation and cervical cancer cell survival. Therefore, it may be a potential therapeutic target in gene therapy for cervical cancer.

  9. ABERRANT SPLICING OF A BRAIN-ENRICHED ALTERNATIVE EXON ELIMINATES TUMOR SUPPRESSOR FUNCTION AND PROMOTES ONCOGENE FUNCTION DURING BRAIN TUMORIGENESIS

    PubMed Central

    Bredel, Markus; Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; Elverfeldt, Dominik v.; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.

    2014-01-01

    BACKGROUND: Tissue-specific alternative splicing is known to be critical to emergence of tissue identity during development, yet its role in malignant transformation is undefined. Tissue-specific splicing involves evolutionary-conserved, alternative exons, which represent only a minority of total alternative exons. Many, however, have functional features that influence activity in signaling pathways to profound biological effect. Given that tissue-specific splicing has a determinative role in brain development and the enrichment of genes containing tissue-specific exons for proteins with roles in signaling and development, it is thus plausible that changes in such exons could rewire normal neurogenesis towards malignant transformation. METHODS: We used integrated molecular genetic and cell biology analyses, computational biology, animal modeling, and clinical patient profiles to characterize the effect of aberrant splicing of a brain-enriched alternative exon in the membrane-binding tumor suppressor Annexin A7 (ANXA7) on oncogene regulation and brain tumorigenesis. RESULTS: We show that aberrant splicing of a tissue-specific cassette exon in ANXA7 diminishes endosomal targeting and consequent termination of the signal of the EGFR oncoprotein during brain tumorigenesis. Splicing of this exon is mediated by the ribonucleoprotein Polypyrimidine Tract-Binding Protein 1 (PTBP1), which is normally repressed during brain development but, we find, is excessively expressed in glioblastomas through either gene amplification or loss of a neuron-specific microRNA, miR-124. Silencing of PTBP1 attenuates both malignancy and angiogenesis in a stem cell-derived glioblastoma animal model characterized by a high native propensity to generate tumor endothelium or vascular pericytes to support tumor growth. We show that EGFR amplification and PTBP1 overexpression portend a similarly poor clinical outcome, further highlighting the importance of PTBP1-mediated activation of EGFR. CONCLUSIONS: Our data illustrate how anomalous splicing of a tissue-regulated exon in a constituent of an oncogenic signaling pathway eliminates its tumor suppressor function and promotes tumorigenesis. This paradigm of malignant glial transformation as a consequence of tissue-specific alternative exon splicing in a tumor suppressor, may have widespread applicability in explaining how changes in critical tissue-specific regulatory mechanisms reprogram normal development to oncogenesis. SECONDARY CATEGORY: n/a.

  10. Suppression of human monocyte tissue factor induction by red wine phenolics and synthetic derivatives of resveratrol.

    PubMed

    Kaur, Gurjeet; Roberti, Marinella; Raul, Francis; Pendurthi, Usha R

    2007-01-01

    Prevention of cardiovascular disease through nutritional supplements is growing in popularity throughout the world. Multiple epidemiologic studies found that moderate consumption of alcohol, particularly red wine, lowers mortality rates from coronary heart diseases (CHD). Chronic inflammation and atherosclerosis associated with CHD culminate in aberrant intravascular expression of tissue factor (TF), which triggers blood coagulation leading to thrombosis, a major cause for heart attack. We showed earlier that two red wine phenolics, resveratrol and quercetin, suppressed TF induction in endothelial cells. In the present study, we investigated efficacy of seven resveratrol derivatives, which were shown to be effective in regulating cancer cell growth in vitro at much lower concentrations than the parent compound resveratrol, in inhibiting TF induction in peripheral blood mononuclear cells (PBMCs). We also tested possible synergistic effects of resveratrol and quercetin with the other major red wine phenolics in suppression of lipopolysaccharide-induced TF expression in human PBMCs. We found that several resveratrol derivatives were 2- to 10-fold more efficient than resveratrol in inhibiting TF induction. Our study found no evidence for synergism among red wine polyphenolics. These data suggest that structural alterations of resveratrol can be effective in producing potent antithrombotic agents that will have therapeutic potential in the improvement of cardiovascular health and prevention of CHD. Among major red wine phenolics, quercetin appears to be the predominant suppressor of TF induction.

  11. NZB/NZW F1 mouse nephritis and immune response are not changed by treatment with a 15-lipoxygenase derivative.

    PubMed

    Aldigier, J C; Cook, J; Delebassée, S; Guibert, F; Touchard, G; Juzan, M; Gualde, N

    1992-10-01

    15-HETE is an arachidonic acid derivative issued from the 15 lipoxygenase pathway. This fatty acid possesses immunomodulatory capabilities since it was reported that it generates CD8 + suppressor T-cells either in vitro or ex vivo. The aim of the present report was to study if the suppressive capabilities of 15-HETE were able to influence the onset of the NZB/NZW Fl auto-immune disease. For that purpose we produced 15-HETE and injected the eicosanoid twice a week to NZB/WFI mice for 40 weeks. During the 15-HETE treatment of the animals it was observed an augmentation of the proliferative response of lectin-stimulated splenocytes (at weeks 20 and 30) then the thymidine uptake decreased (at week 40). In fact we observed that among 15-HETE treated mice the evolution of the nephropathy was not changed, the 'glomerular activity score' remained the same for the treated animals compared to controls. On the contrary antinuclear antibodies occurred earlier even if in some experiments the generation of CD8 + cells was demonstrated.

  12. Loss of Elongation-Like Factor 1 Spontaneously Induces Diverse, RNase H-Related Suppressor Mutations in Schizosaccharomyces pombe.

    PubMed

    Marayati, Bahjat F; Drayton, Alena L; Tucker, James F; Huckabee, Reid H; Anderson, Alicia M; Pease, James B; Zeyl, Clifford W; Zhang, Ke

    2018-05-29

    A healthy individual may carry a detrimental genetic trait that is masked by another genetic mutation. Such suppressive genetic interactions, in which a mutant allele either partially or completely restores the fitness defect of a particular mutant, tend to occur between genes that have a confined functional connection. Here we investigate a self-recovery phenotype in Schizosaccharomyces pombe , mediated by suppressive genetic interactions that can be amplified during cell culture. Cells without Elf1, an AAA+ family ATPase, have severe growth defects initially, but quickly recover growth rates near to those of wild-type strains by acquiring suppressor mutations. elf1Δ cells accumulate RNAs within the nucleus and display effects of genome instability such as sensitivity to DNA damage, increased incidence of lagging chromosomes, and mini-chromosome loss. Notably, the rate of phenotypic recovery was further enhanced in elf1Δ cells when RNase H activities were abolished and significantly reduced upon overexpression of RNase H1, suggesting that loss of Elf1-related genome instability can be resolved by RNase H activities, likely through eliminating the potentially mutagenic DNA-RNA hybrids caused by RNA nuclear accumulation. Using whole genome sequencing, we mapped a few consistent suppressors of elf1Δ including mutated Cue2, Rpl2702, and SPBPJ4664.02, suggesting previously unknown functional connections between Elf1 and these proteins. Our findings describe a mechanism by which cells bearing mutations that cause fitness defects and genome instability may accelerate the fitness recovery of their population through quickly acquiring suppressors. We propose that this mechanism may be universally applicable to all microorganisms in large-population cultures. Copyright © 2018, Genetics.

  13. Use of Prior Vaccinations for the Development of New Vaccines

    NASA Astrophysics Data System (ADS)

    Etlinger, H. M.; Gillessen, D.; Lahm, H.-W.; Matile, H.; Schonfeld, H.-J.; Trzeciak, A.

    1990-07-01

    There is currently a need for vaccine development to improve the immunogenicity of protective epitopes, which themselves are often poorly immunogenic. Although the immunogenicity of these epitopes can be enhanced by linking them to highly immunogenic carriers, such carriers derived from current vaccines have not proven to be generally effective. One reason may be related to epitope-specific suppression, in which prior vaccination with a protein can inhibit the antibody response to new epitopes linked to the protein. To circumvent such inhibition, a peptide from tetanus toxoid was identified that, when linked to a B cell epitope and injected into tetanus toxoid-primed recipients, retained sequences for carrier but not suppressor function. The antibody response to the B cell epitope was enhanced. This may be a general method for taking advantage of previous vaccinations in the development of new vaccines.

  14. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.

    PubMed

    Klochendler-Yeivin, A; Fiette, L; Barra, J; Muchardt, C; Babinet, C; Yaniv, M

    2000-12-01

    The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types.

  15. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression

    PubMed Central

    Klochendler-Yeivin, Agnes; Fiette, Laurence; Barra, Jaqueline; Muchardt, Christian; Babinet, Charles; Yaniv, Moshe

    2000-01-01

    The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types. PMID:11263494

  16. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery.

    PubMed

    Angka, Leonard; Khan, Sarwat T; Kilgour, Marisa K; Xu, Rebecca; Kennedy, Michael A; Auer, Rebecca C

    2017-08-17

    The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery.

  17. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery

    PubMed Central

    Khan, Sarwat T.; Kilgour, Marisa K.; Xu, Rebecca; Kennedy, Michael A.; Auer, Rebecca C.

    2017-01-01

    The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery. PMID:28817109

  18. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes.

    PubMed

    Aravindhan, Vivekanandhan; Anand, Gowrishankar

    2017-12-01

    Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4 + ] cells, cytotoxic T [CD8 + ] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.

  19. Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing.

    PubMed

    Gupta, Adarsh K; Hein, Gary L; Graybosch, Robert A; Tatineni, Satyanarayana

    2018-05-01

    High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed the transitive pathway of RNA silencing. Additionally, a Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) mutant lacking the suppressor of RNA silencing (ΔP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient WSMV. Furthermore, HPWMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV encodes two suppressors of RNA silencing. Published by Elsevier Inc.

  20. β-Arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-κB activation

    PubMed Central

    Luan, Bing; Zhang, Zhenning; Wu, Yalan; Kang, Jiuhong; Pei, Gang

    2005-01-01

    NF-κB activation is an important mechanism of mammalian UV response to protect cells. UV-induced NF-κB activation depends on the casein kinase II (CK2) phosphorylation of IκBα at a cluster of C-terminal sites, but how it is regulated remains unclear. Here we demonstrate that β-arrestin2 can function as an effective suppressor of UV-induced NF-κB activation through its direct interaction with IκBα. CK2 phosphorylation of β-arrestin2 blocks its interaction with IκBα and abolishes its suppression of NF-κB activation, indicating that the β-arrestin2 phosphorylation is critical. Moreover, stimulation of β2-adrenergic receptors, a representative of G-protein-coupled receptors in epidermal cells, promotes dephosphorylation of β-arrestin2 and its suppression of NF-κB activation. Consequently, the β-arrestin2 suppression leads to promotion of UV-induced cell death, which is also under regulation of β-arrestin2 phosphorylation. Thus, β-arrestin2 is identified as a phosphorylation-regulated suppressor of UV response and this may play a functional role in the response of epidermal cells to UV. PMID:16308565

  1. The deubiquitination enzyme USP46 functions as a tumor suppressor by controlling PHLPP-dependent attenuation of Akt signaling in colon cancer

    PubMed Central

    Li, Xin; Stevens, Payton D.; Yang, Haihua; Gulhati, Pat; Wang, Wei; Evers, B. Mark; Gao, Tianyan

    2012-01-01

    PHLPP is a family of Ser/Thr protein phosphatases that serve as tumor suppressors by negatively regulating Akt. Our recent studies have demonstrated that the ubiquitin proteasome pathway plays an important role in the downregulation of PHLPP in colorectal cancer. In this study, we show that the deubiquitinase USP46 stabilizes the expression of both PHLPP isoforms by reducing the rate of PHLPP degradation. USP46 binds to PHLPP and directly removes the polyubiquitin chains from PHLPP in vitro and in cells. Increased USP46 expression correlates with decreased ubiquitination and upregulation of PHLPP proteins in colon cancer cells, whereas knockdown of USP46 has the opposite effect. Functionally, USP46-mediated stabilization of PHLPP and the subsequent inhibition of Akt result in a decrease in cell proliferation and tumorigenesis of colon cancer cells in vivo. Moreover, reduced USP46 protein level is found associated with poor PHLPP expression in colorectal cancer patient specimens. Taken together, these results indentify a tumor suppressor role of USP46 in promoting PHLPP expression and inhibiting Akt signaling in colon cancer. PMID:22391563

  2. Downregulated microRNA-510-5p acts as a tumor suppressor in renal cell carcinoma.

    PubMed

    Chen, Duqun; Li, Yuchi; Yu, Zuhu; Li, Yifan; Su, Zhengming; Ni, Liangchao; Yang, Shangqi; Gui, Yaoting; Lai, Yongqing

    2015-08-01

    MicroRNA (miR)-510-5p has been demonstrated to be involved in a number of types of malignancy; however, the function of miR-510-5p in renal cancer remains unclear. The present study aimed to determine the expression of miR-510-5p in renal cell carcinoma (RCC) specimens and analyzed the impact of miR-510-5p on renal cancer by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound scratch and apoptosis assays. The results showed that miR-510-5p was significantly downregulated in RCC specimens compared with normal renal specimens. Overexpression of miR-510-5p by synthetic mature mimics reduced cell proliferation and migration and induced an increase in cell apoptosis, indicating that miR-510-5p may act as a tumor suppressor in RCC. The present study firstly revealed that downregulated miR-510-5p functioned as a tumor suppressor by reducing cellular proliferation and migration, and inducing apoptosis in RCC. Further research is required to define target genes of miR-510-5p to determine the cellular mechanism of miR-510-5p in the carcinogenesis of RCC.

  3. Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells.

    PubMed

    Nalaskowski, Marcus M; Ehm, Patrick; Rehbach, Christoph; Nelson, Nina; Täger, Maike; Modest, Kathrin; Jücker, Manfred

    2018-05-28

    The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Genome-wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma.

    PubMed

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J; Almutairi, Bader; Etchevers, Heather C; McConville, Carmel; Malik, Karim T A; Brown, Keith W

    2017-04-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome-wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome-wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down-regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest-expressing tumors had reduced relapse-free survival. Our functional studies showed that knock-down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc.

  5. Genome‐wide DNA methylation analysis identifies MEGF10 as a novel epigenetically repressed candidate tumor suppressor gene in neuroblastoma

    PubMed Central

    Charlet, Jessica; Tomari, Ayumi; Dallosso, Anthony R.; Szemes, Marianna; Kaselova, Martina; Curry, Thomas J.; Almutairi, Bader; Etchevers, Heather C.; McConville, Carmel; Malik, Karim T. A.

    2016-01-01

    Neuroblastoma is a childhood cancer in which many children still have poor outcomes, emphasising the need to better understand its pathogenesis. Despite recent genome‐wide mutation analyses, many primary neuroblastomas do not contain recognizable driver mutations, implicating alternate molecular pathologies such as epigenetic alterations. To discover genes that become epigenetically deregulated during neuroblastoma tumorigenesis, we took the novel approach of comparing neuroblastomas to neural crest precursor cells, using genome‐wide DNA methylation analysis. We identified 93 genes that were significantly differentially methylated of which 26 (28%) were hypermethylated and 67 (72%) were hypomethylated. Concentrating on hypermethylated genes to identify candidate tumor suppressor loci, we found the cell engulfment and adhesion factor gene MEGF10 to be epigenetically repressed by DNA hypermethylation or by H3K27/K9 methylation in neuroblastoma cell lines. MEGF10 showed significantly down‐regulated expression in neuroblastoma tumor samples; furthermore patients with the lowest‐expressing tumors had reduced relapse‐free survival. Our functional studies showed that knock‐down of MEGF10 expression in neuroblastoma cell lines promoted cell growth, consistent with MEGF10 acting as a clinically relevant, epigenetically deregulated neuroblastoma tumor suppressor gene. © 2016 The Authors. Molecular Carcinogenesis Published by Wiley Periodicals, Inc. PMID:27862318

  6. OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation.

    PubMed

    Cui, Yan; Ying, Ying; van Hasselt, Andrew; Ng, Ka Man; Yu, Jun; Zhang, Qian; Jin, Jie; Liu, Dingxie; Rhim, Johng S; Rha, Sun Young; Loyo, Myriam; Chan, Anthony T C; Srivastava, Gopesh; Tsao, George S W; Sellar, Grant C; Sung, Joseph J Y; Sidransky, David; Tao, Qian

    2008-08-20

    Identification of tumor suppressor genes (TSGs) silenced by CpG methylation uncovers the molecular mechanism of tumorigenesis and potential tumor biomarkers. Loss of heterozygosity at 11q25 is common in multiple tumors including nasopharyngeal carcinoma (NPC). OPCML, located at 11q25, is one of the downregulated genes we identified through digital expression subtraction. Semi-quantitative RT-PCR showed frequent OPCML silencing in NPC and other common tumors, with no homozygous deletion detected by multiplex differential DNA-PCR. Instead, promoter methylation of OPCML was frequently detected in multiple carcinoma cell lines (nasopharyngeal, esophageal, lung, gastric, colon, liver, breast, cervix, prostate), lymphoma cell lines (non-Hodgkin and Hodgkin lymphoma, nasal NK/T-cell lymphoma) and primary tumors, but not in any non-tumor cell line and seldom weakly methylated in normal epithelial tissues. Pharmacological and genetic demethylation restored OPCML expression, indicating a direct epigenetic silencing. We further found that OPCML is stress-responsive, but this response is epigenetically impaired when its promoter becomes methylated. Ecotopic expression of OPCML led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells with endogenous silencing. Thus, through functional epigenetics, we identified OPCML as a broad tumor suppressor, which is frequently inactivated by methylation in multiple malignancies.

  7. ARLTS1 and Prostate Cancer Risk - Analysis of Expression and Regulation

    PubMed Central

    Siltanen, Sanna; Fischer, Daniel; Rantapero, Tommi; Laitinen, Virpi; Mpindi, John Patrick; Kallioniemi, Olli; Wahlfors, Tiina; Schleutker, Johanna

    2013-01-01

    Prostate cancer (PCa) is a heterogeneous trait for which several susceptibility loci have been implicated by genome-wide linkage and association studies. The genomic region 13q14 is frequently deleted in tumour tissues of both sporadic and familial PCa patients and is consequently recognised as a possible locus of tumour suppressor gene(s). Deletions of this region have been found in many other cancers. Recently, we showed that homozygous carriers for the T442C variant of the ARLTS1 gene (ADP-ribosylation factor-like tumour suppressor protein 1 or ARL11, located at 13q14) are associated with an increased risk for both unselected and familial PCa. Furthermore, the variant T442C was observed in greater frequency among malignant tissue samples, PCa cell lines and xenografts, supporting its role in PCa tumourigenesis. In this study, 84 PCa cases and 15 controls were analysed for ARLTS1 expression status in blood-derived RNA. A statistically significant (p = 0.0037) decrease of ARLTS1 expression in PCa cases was detected. Regulation of ARLTS1 expression was analysed with eQTL (expression quantitative trait loci) methods. Altogether fourteen significant cis-eQTLs affecting the ARLTS1 expression level were found. In addition, epistatic interactions of ARLTS1 genomic variants with genes involved in immune system processes were predicted with the MDR program. In conclusion, this study further supports the role of ARLTS1 as a tumour suppressor gene and reveals that the expression is regulated through variants localised in regulatory regions. PMID:23940804

  8. Pancreatic ductal cells acquire mesenchymal characteristics through cell fusion with bone marrow-derived mesenchymal stem cells and SIRT1 attenuates the apoptosis of hybrid cells.

    PubMed

    Gou, Shanmiao; Liu, Tao; Li, Xiangsheng; Cui, Jing; Wan, Chidan; Wang, Chunyou

    2012-01-01

    Bone marrow-derived mesenchymal stem cells (bMSCs) contribute to tissue repair and regeneration. Cell fusion between somatic cells and bMSCs to form hybrid cells may have an important role in tissue repair through the subsequent reprogramming of the somatic cell nucleus. Few studies have assessed the mesenchymal characteristics of fusion-induced hybrid cells and their survival mechanisms. In this study, we investigated the effect of cell fusion on the biological characteristics of pancreatic ductal cells (PDCs) and on the survival mechanism of hybrid cells. To this end, we generated mouse-mouse hybrid cells in vitro by polyethylene glycol-mediated fusion of primary mouse bMSCs with primary mouse PDCs. Hybrid cells showed an enhanced capacity for proliferation and self-renewal compared with PDCs. No PDC had the capacity for anchorage-independent growth or invasion into Matrigel, but some hybrid cells were able to form colonies in soft agar and invade Matrigel. Expression of the tumor suppressor protein p53, which initiates apoptosis, was detected in hybrid cells but not in PDCs or bMSCs. However, the p53 deacetylase, sirtuin 1 (SIRT1), was also detected in hybrid cells, and the level of acetylated p53, the active form, was low. The addition of nicotinamide (Nam) inhibited the deacetylation activity of SIRT1 on p53 and induced cell apoptosis in hybrid cells. This study demonstrated that PDCs could obtain high proliferation rates, self-renewal capabilities, and mesenchymal characteristics by fusion with bMSCs. SIRT1 expression in the hybrid cells attenuated their apoptosis. Copyright © 2012 S. Karger AG, Basel.

  9. Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.

    PubMed

    Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F

    2016-01-01

    The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.

  10. [Overexpression of tumor metastasis suppressor gene 1 suppresses proliferation and invasion, but enhances apoptosis of human breast cancer cells MDA-MB-231 cells].

    PubMed

    Su, Jing; You, Jiang-feng; Wang, Jie-liang; Cui, Xiang-lin; Fang, Wei-gang; Zheng, Jie

    2007-10-01

    To investigate the effects of tumor metastasis suppressor gene 1 (TMSG-1) overexpression on the proliferation, invasion and apoptosis of breast cancer cells and to determine possible correlations of TMSG-1 and metastasis of breast cancer. Full-length human TMSG-1 coding sequences were cloned into plasmid pcDNA3.0-FLAG. The recombinant plasmids constructs were transfeced into MDA-MB-231, a highly malignant breast cancer cell line. Parental, vector-only stable transfectant and TMSG-1 stable transfectant clones were tested by MTT, soft agar colony formation and Boyden chamber assays. At twenty-four hours and forty-eight hours post transient transfection, double staining with Annexin-V-FITC and PI were employed to distinguish apoptotic cells from living cells by flow cytometry analysis. Three TMSG-1 overexpression clones were selected. Compared with the control cells, TMSG-1 overexpression MDA-MB-231 cells showed strong inhibition of proliferation and decreased clonogenicity in soft agar (P<0.05). Transfection of TMSG-1 into MDA-MB-231 cells significantly suppressed the cell invasion ability in vitro (decreased numbers of cells trespassing the matrigel in three experiments: 72.3+/-8.1, 85.0+/-4.2, and 73.5+/-7.8) in comparison with nave cells without transfection (187.5+/-2.1) and cells transfected with the control vector (162.3+/-6.8) (P<0.01). Transient transfection of TMSG-1 into MDA-MB-231 cells could promote cell apoptosis at 24 and 48 hours after transfection (P<0.05). TMSG-1 protein may have multiple functions in the regulation of proliferation, invasion and apoptosis of metastatic breast cancer cells, likely as a metastasis suppressor gene.

  11. Expression of the 12-oxophytodienoic acid 10,11-reductase gene in the compatible interaction between pea and fungal pathogen.

    PubMed

    Ishiga, Yasuhiro; Funato, Akiko; Tachiki, Tomoyuki; Toyoda, Kazuhiro; Shiraishi, Tomonori; Yamada, Tetsuji; Ichinose, Yuki

    2002-10-01

    Suppressors produced by Mycosphaerella pinodes are glycopeptides to block pea defense responses induced by elicitors. A clone, S64, was isolated as cDNA for suppressor-inducible gene from pea epicotyls. The treatment of pea epicotyls with suppressor alone induced an increase of S64 mRNA within 1 h, and it reached a maximum level at 3 h after treatment. The induction was not affected by application of the elicitor, indicating that the suppressor has a dominant action to regulate S64 gene expression. S64 was also induced by inoculation with a virulent pathogen, M. pinodes, but not by inoculation with a non-pathogen, Ascochyta rabiei, nor by treatment with fungal elicitor. The deduced structure of S64 showed high homology to 12-oxophytodienoic acid reductase (OPR) in Arabidopsis thaliana. A recombinant protein derived from S64 had OPR activity, suggesting compatibility-specific activation of the octadecanoid pathway in plants. Treatment with jasmonic acid (JA) or methyl jasmonic acid, end products of the octadecanoid pathway, inhibited the elicitor-induced accumulation of PAL mRNA in pea. These results indicate that the suppressor-induced S64 gene expression leads to the production of JA or related compounds, which might contribute to the establishment of compatibility by inhibiting the phenylpropanoid biosynthetic pathway.

  12. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3.

    PubMed

    Desai, Avanti; Jung, Mi-Yeon; Olivera, Ana; Gilfillan, Alasdair M; Prussin, Calman; Kirshenbaum, Arnold S; Beaven, Michael A; Metcalfe, Dean D

    2016-06-01

    IL-6, levels of which are reported to be increased in association with mastocytosis, asthma, and urticaria, is used in conjunction with stem cell factor to generate CD34(+) cell-derived primary human mast cell (HuMC) cultures. Despite these associations, the effects on and mechanisms by which prolonged exposure to IL-6 alters HuMC numbers and function are not well understood. We sought to study the effect of IL-6 on HuMC function, the mechanisms by which IL-6 exerts its effects, and the relationship of these findings to mastocytosis. HuMCs were cultured in stem cell factor with or without IL-6. Responses to FcεRI aggregation and expression of proteases and receptors, including the soluble IL-6 receptor (sIL-6R), were then quantitated. Epigenetic changes in suppressor of cytokine signaling 3 (SOCS3) were determined by using methylation-specific PCR. Serum samples from healthy control subjects and patients with mastocytosis were assayed for IL-6, tryptase, and sIL-6R. IL-6 enhanced mast cell (MC) proliferation, maturation, and reactivity after FcεRI aggregation. IL-6 reduced expression of SOCS3, which correlated with methylation of the SOCS3 promoter and increased expression and activation of signal transducer and activator of transcription 3. IL-6 also suppressed constitutive production of sIL-6R, and serum levels of sIL-6R were similarly reduced in patients with mastocytosis. IL-6 increases MC proliferation and formation of a more reactive phenotype enabled by suppressing proteolytic cleavage of sIL-6R from IL-6R and downregulation of the SOCS3 autoinhibitory pathway. We suggest IL-6 blockade might ameliorate MC-related symptoms and pathology in patients with MC-related diseases associated with increased IL-6 levels, including mastocytosis. Published by Elsevier Inc.

  13. SALL2 represses cyclins D1 and E1 expression and restrains G1/S cell cycle transition and cancer-related phenotypes.

    PubMed

    E Hermosilla, Viviana; Salgado, Ginessa; Riffo, Elizabeth; Escobar, David; Hepp, Matías I; Farkas, Carlos; Galindo, Mario; Morín, Violeta; García-Robles, María A; Castro, Ariel F; Pincheira, Roxana

    2018-04-24

    SALL2 is a poorly characterized transcription factor that belongs to the Spalt-like family involved in development. Mutations on SALL2 have been associated with ocular coloboma and cancer. In cancers, SALL2 is deregulated and is proposed as a tumor suppressor in ovarian cancer. SALL2 has been implicated in stemness, cell death, proliferation, and quiescence. However, mechanisms underlying roles of SALL2 related to cancer remain largely unknown. Here, we investigated the role of SALL2 in cell proliferation using mouse embryo fibroblasts (MEFs) derived from Sall2 -/- mice. Compared to Sall2 +/+ MEFs, Sall2 -/- MEFs exhibit enhanced cell proliferation and faster postmitotic progression through G1 and S phases. Accordingly, Sall2 -/- MEFs exhibit higher mRNA and protein levels of cyclins D1 and E1. Chromatin immunoprecipitation and promoter reporter assays showed that SALL2 binds and represses CCND1 and CCNE1 promoters, identifying a novel mechanism by which SALL2 may control cell cycle. In addition, the analysis of tissues from Sall2 +/+ and Sall2 -/- mice confirmed the inverse correlation between expression of SALL2 and G1-S cyclins. Consistent with an antiproliferative function of SALL2, immortalized Sall2 -/- MEFs showed enhanced growth rate, foci formation, and anchorage-independent growth, confirming tumor suppressor properties for SALL2. Finally, cancer data analyses show negative correlations between SALL2 and G1-S cyclins' mRNA levels in several cancers. Altogether, our results demonstrated that SALL2 is a negative regulator of cell proliferation, an effect mediated in part by repression of G1-S cyclins' expression. Our results have implications for the understanding and significance of SALL2 role under physiological and pathological conditions. © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  14. A Combination of Immune Checkpoint Inhibition with Metronomic Chemotherapy as a Way of Targeting Therapy-Resistant Cancer Cells.

    PubMed

    Kareva, Irina

    2017-10-13

    Therapeutic resistance remains a major obstacle in treating many cancers, particularly in advanced stages. It is likely that cytotoxic lymphocytes (CTLs) have the potential to eliminate therapy-resistant cancer cells. However, their effectiveness may be limited either by the immunosuppressive tumor microenvironment, or by immune cell death induced by cytotoxic treatments. High-frequency low-dose (also known as metronomic) chemotherapy can help improve the activity of CTLs by providing sufficient stimulation for cytotoxic immune cells without excessive depletion. Additionally, therapy-induced removal of tumor cells that compete for shared nutrients may also facilitate tumor infiltration by CTLs, further improving prognosis. Metronomic chemotherapy can also decrease the number of immunosuppressive cells in the tumor microenvironment, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Immune checkpoint inhibition can further augment anti-tumor immune responses by maintaining T cells in an activated state. Combining immune checkpoint inhibition with metronomic administration of chemotherapeutic drugs may create a synergistic effect that augments anti-tumor immune responses and clears metabolic competition. This would allow immune-mediated elimination of therapy-resistant cancer cells, an effect that may be unattainable by using either therapeutic modality alone.

  15. Two SHIPs passing in the middle of the immune system.

    PubMed

    Corey, Seth J; Mehta, Hrishikesh M; Stein, Paul L

    2012-07-01

    Immunity requires a complex, multiscale system of molecules, cells, and cytokines. In this issue of the European Journal of Immunology, Collazo et al. [Eur. J. Immunol. 2012. 42: 1785-1796] provide evidence that links the lipid phosphatase SHIP1 with the coordination of interactions between regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSCs). Using conditional knockouts of SHIP1 in either the myeloid or T-cell-lineage of mice, the authors show that the regulated development of Treg cells is controlled directly by cell-intrinsic SHIP1, and indirectly by extrinsic SHIP1 control of an unknown myeloid cell. Regulation of MDSCs is also determined by SHIP1 in an extrinsic manner, again via an as-yet-unknown myeloid cell. Furthermore, this extrinsic control of Treg cells and MDSCs is mediated in part by increased production of G-CSF, a growth factor critical for the production of neutrophils, in SHIP1-deficient mice. Thus, a physiologically important implication of this report is the collaboration between the innate and adaptive immune systems in fine tuning of Treg cells as discussed in this commentary. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL.

    PubMed

    Della Gatta, Giusy; Palomero, Teresa; Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Bansal, Mukesh; Carpenter, Zachary W; De Keersmaecker, Kim; Sole, Xavier; Xu, Luyao; Paietta, Elisabeth; Racevskis, Janis; Wiernik, Peter H; Rowe, Jacob M; Meijerink, Jules P; Califano, Andrea; Ferrando, Adolfo A

    2012-02-26

    The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL). Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

  17. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  18. Oxidative DNA damage induced by a hydroperoxide derivative of cyclophosphamide.

    PubMed

    Murata, Mariko; Suzuki, Toshinari; Midorikawa, Kaoru; Oikawa, Shinji; Kawanishi, Shosuke

    2004-09-15

    Interstrand DNA cross-linking has been considered to be the primary action mechanism of cyclophosphamide (CP) and its hydroperoxide derivative, 4-hydroperoxycyclophosphamide (4-HC). To clarify the mechanism of anti-tumor effects by 4-HC, we investigated DNA damage in a human leukemia cell line, HL-60, and its H(2)O(2)-resistant clone HP100. Apoptosis DNA ladder formation was detected in HL-60 cells treated with 4-HC, whereas it was not observed in HP100 cells. 4-HC significantly increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, a marker of oxidative DNA damage, in HL-60 cells. On the other hand, CP did not significantly induce 8-oxodG formation and apoptosis in HL-60 cells under the same conditions as did 4-HC. Using (32)P-labeled DNA fragments from the human p53 tumor suppressor gene, 4-HC was found to cause Cu(II)-mediated oxidative DNA damage, but CP did not. Catalase inhibited 4-HC-induced DNA damage, including 8-oxodG formation, suggesting the involvement of H(2)O(2). The generation of H(2)O(2) during 4-HC degradation was ascertained by procedures using scopoletin and potassium iodide. We conclude that, in addition to DNA cross-linking, oxidative DNA damage through H(2)O(2) generation may participate in the anti-tumor effects of 4-HC.

  19. mSEL-1L (Suppressor/Enhancer Lin12-like) Protein Levels Influence Murine Neural Stem Cell Self-renewal and Lineage Commitment*

    PubMed Central

    Cardano, Marina; Diaferia, Giuseppe R.; Cattaneo, Monica; Dessì, Sara S.; Long, Qiaoming; Conti, Luciano; DeBlasio, Pasquale; Cattaneo, Elena; Biunno, Ida

    2011-01-01

    Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L−/− NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L+/+ NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination. PMID:21454627

  20. mSEL-1L (Suppressor/enhancer Lin12-like) protein levels influence murine neural stem cell self-renewal and lineage commitment.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Cattaneo, Monica; Dessì, Sara S; Long, Qiaoming; Conti, Luciano; Deblasio, Pasquale; Cattaneo, Elena; Biunno, Ida

    2011-05-27

    Murine SEL-1L (mSEL-1L) is a key component of the endoplasmic reticulum-associated degradation pathway. It is essential during development as revealed by the multi-organ dysfunction and in uterus lethality occurring in homozygous mSEL-1L-deficient mice. Here we show that mSEL-1L is highly expressed in pluripotent embryonic stem cells and multipotent neural stem cells (NSCs) but silenced in all mature neural derivatives (i.e. astrocytes, oligodendrocytes, and neurons) by mmu-miR-183. NSCs derived from homozygous mSEL-1L-deficient embryos (mSEL-1L(-/-) NSCs) fail to proliferate in vitro, show a drastic reduction of the Notch effector HES-5, and reveal a significant down-modulation of the early neural progenitor markers PAX-6 and OLIG-2, when compared with the wild type (mSEL-1L(+/+) NSCs) counterpart. Furthermore, these cells are almost completely deprived of the neural marker Nestin, display a significant decrease of SOX-2 expression, and rapidly undergo premature astrocytic commitment and apoptosis. The data suggest severe self-renewal defects occurring in these cells probably mediated by misregulation of the Notch signaling. The results reported here denote mSEL-1L as a primitive marker with a possible involvement in the regulation of neural progenitor stemness maintenance and lineage determination.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growthmore » in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.« less

  2. Enhanced Transgene Expression in Sugarcane by Co-Expression of Virus-Encoded RNA Silencing Suppressors

    PubMed Central

    Park, Jong-Won; Beyene, Getu; Buenrostro-Nava, Marco T.; Molina, Joe; Wang, Xiaofeng; Ciomperlik, Jessica J.; Manabayeva, Shuga A.; Alvarado, Veria Y.; Rathore, Keerti S.; Scholthof, Herman B.; Mirkov, T. Erik

    2013-01-01

    Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48–96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane. PMID:23799071

  3. Z-100, a lipid-arabinomannan extracted from Mycobacterium tuberculosis, improves the resistance of thermally injured mice to herpes virus infections.

    PubMed

    Kobayashi, M; Herndon, D N; Pollard, R B; Suzuki, F

    1994-06-01

    The effect of Z-100, a lipid-arabinomannan extracted from Mycobacterium tuberculosis strain Aoyama B, was investigated on the resistance of thermally injured mice (TI-mice) to herpes simplex virus type 1 (HSV) infections. The susceptibility of TI mice to infection was about 100 times greater than it was in normal mice (N mice). However, the increased susceptibility of TI mice to infection was effectively counteracted to the levels observed in N mice when treated with Z-100 (10 mg/kg i.p.; 1, 3 and 5 days after thermal injury). Adoptive transfer of burn-associated CD8+ CD11b+ TCR gamma/delta + suppressor T (BAST) cells, prepared from TI mice, increased the susceptibility of N mice to infection by HSV, while the susceptibility of N mice, inoculated with the CD8+ T-cell fraction prepared from Z-100-treated TI mice (ZTC), to infection was not changed. In addition, the suppressor cell activity of BAST cells was not demonstrated when they were assayed in vitro in the presence of anti-IL-4 monoclonal antibody (mAb). BAST cells released IL-4 into their culture fluids without stimulation. The suppressor cell activity of ZTC and IL-4 production by ZTC were minimal. These results suggest that Z-100 may improve the resistance of TI mice to HSV infection through the regulation of BAST cells and/or the release of IL-4 from these cells.

  4. Control of female gamete formation by a small RNA pathway in Arabidopsis.

    PubMed

    Olmedo-Monfil, Vianey; Durán-Figueroa, Noé; Arteaga-Vázquez, Mario; Demesa-Arévalo, Edgar; Autran, Daphné; Grimanelli, Daniel; Slotkin, R Keith; Martienssen, Robert A; Vielle-Calzada, Jean-Philippe

    2010-03-25

    In the ovules of most sexual flowering plants female gametogenesis is initiated from a single surviving gametic cell, the functional megaspore, formed after meiosis of the somatically derived megaspore mother cell (MMC). Because some mutants and certain sexual species exhibit more than one MMC, and many others are able to form gametes without meiosis (by apomixis), it has been suggested that somatic cells in the ovule are competent to respond to a local signal likely to have an important function in determination. Here we show that the Arabidopsis protein ARGONAUTE 9 (AGO9) controls female gamete formation by restricting the specification of gametophyte precursors in a dosage-dependent, non-cell-autonomous manner. Mutations in AGO9 lead to the differentiation of multiple gametic cells that are able to initiate gametogenesis. The AGO9 protein is not expressed in the gamete lineage; instead, it is expressed in cytoplasmic foci of somatic companion cells. Mutations in SUPPRESSOR OF GENE SILENCING 3 and RNA-DEPENDENT RNA POLYMERASE 6 exhibit an identical defect to ago9 mutants, indicating that the movement of small RNA (sRNAs) silencing out of somatic companion cells is necessary for controlling the specification of gametic cells. AGO9 preferentially interacts with 24-nucleotide sRNAs derived from transposable elements (TEs), and its activity is necessary to silence TEs in female gametes and their accessory cells. Our results show that AGO9-dependent sRNA silencing is crucial to specify cell fate in the Arabidopsis ovule, and that epigenetic reprogramming in companion cells is necessary for sRNA-dependent silencing in plant gametes.

  5. Regulation of ozone-induced lung inflammation and injury by the β-galactoside-binding lectin galectin-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu; Francis, Mary, E-mail: maryfranrutgers@gmail.com; Vayas, Kinal N., E-mail: kinalv5@gmail.com

    Macrophages play a dual role in ozone toxicity, contributing to both pro- and anti-inflammatory processes. Galectin-3 (Gal-3) is a lectin known to regulate macrophage activity. Herein, we analyzed the role of Gal-3 in the response of lung macrophages to ozone. Bronchoalveolar lavage (BAL) and lung tissue were collected 24–72 h after exposure (3 h) of WT and Gal-3{sup -/-} mice to air or 0.8 ppm ozone. In WT mice, ozone inhalation resulted in increased numbers of proinflammatory (Gal-3{sup +}, iNOS{sup +}) and anti-inflammatory (MR-1{sup +}) macrophages in the lungs. While accumulation of iNOS{sup +} macrophages was attenuated in Gal-3{sup -/-}more » mice, increased numbers of enlarged MR-1{sup +} macrophages were noted. This correlated with increased numbers of macrophages in BAL. Flow cytometric analysis showed that these cells were CD11b{sup +} and consisted mainly (> 97%) of mature (F4/80{sup +}CD11c{sup +}) proinflammatory (Ly6GLy6C{sup hi}) and anti-inflammatory (Ly6GLy6C{sup lo}) macrophages. Increases in both macrophage subpopulations were observed following ozone inhalation. Loss of Gal-3 resulted in a decrease in Ly6C{sup hi} macrophages, with no effect on Ly6C{sup lo} macrophages. CD11b{sup +}Ly6G{sup +}Ly6C{sup +} granulocytic (G) and monocytic (M) myeloid derived suppressor cells (MDSC) were also identified in the lung after ozone. In Gal-3{sup -/-} mice, the response of G-MDSC to ozone was attenuated, while the response of M-MDSC was heightened. Changes in inflammatory cell populations in the lung of ozone treated Gal-3{sup -/-} mice were correlated with reduced tissue injury as measured by cytochrome b5 expression. These data demonstrate that Gal-3 plays a role in promoting proinflammatory macrophage accumulation and toxicity in the lung following ozone exposure. - Highlights: • Multiple monocytic-macrophage subpopulations accumulate in the lung after ozone inhalation. • Galectin-3 plays a proinflammatory role in ozone-induced lung injury. • In the absence of gal-3, inflammatory cells with a myeloid derived suppressor cell phenotype contribute to tissue repair.« less

  6. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells.

    PubMed

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H; Morton, Derrick J; Patel, Divya; Joshi, Jugal; Upadhyay, Sunil; Chaudhary, Jaideep

    2016-09-09

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, we examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Specificity of a Rust Resistance Suppressor on 7DL in the Spring Wheat Cultivar Canthatch.

    PubMed

    Talajoor, Mina; Jin, Yue; Wan, Anmin; Chen, Xianming; Bhavani, Sridhar; Tabe, Linda; Lagudah, Evans; Huang, Li

    2015-04-01

    The spring wheat 'Canthatch' has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. However, it is unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe rust. In this study, we investigated the specificity of the resistance suppression. To determine whether the suppression is genome origin specific, chromosome location specific, or rust species or race specific, we introduced 11 known rust resistance genes into the Canthatch background, including resistance to leaf, stripe, or stem rusts, originating from A, B, or D genomes and located on different chromosome homologous groups. F1 plants of each cross were tested with the corresponding rust race, and the infection types were scored and compared with the parents. Our results show that the Canthatch 7DL suppressor only suppressed stem rust resistance genes derived from either the A or B genome, and the pattern of the suppression is gene specific and independent of chromosomal location.

  8. Secretory IgM Exacerbates Tumor Progression by Inducing Accumulations of MDSCs in Mice.

    PubMed

    Tang, Chih-Hang Anthony; Chang, Shiun; Hashimoto, Ayumi; Chen, Yi-Ju; Kang, Chang Won; Mato, Anthony R; Del Valle, Juan R; Gabrilovich, Dmitry I; Hu, Chih-Chi Andrew

    2018-06-01

    Chronic lymphocytic leukemia (CLL) cells can secrete immunoglobulin M. However, it is not clear whether secretory IgM (sIgM) plays a role in disease progression. We crossed the Eμ-TCL1 mouse model of CLL, in which the expression of human TCL1 oncogene was driven by the V(H) promoter-Ig(H)-Eμ enhancer, with MD4 mice whose B cells produced B-cell receptor (membrane-bound IgM) and sIgM with specificity for hen egg lysozyme (HEL). CLL cells that developed in these MD4/Eμ-TCL1 mice reactivated a parental Ig gene allele and secreted IgM, and did not recognize HEL. The MD4/Eμ-TCL1 mice had reduced survival, increased myeloid-derived suppressor cells (MDSC), and decreased numbers of T cells. We tested whether sIgM could contribute to the accumulation of MDSCs by crossing μS -/- mice, which could not produce sIgM, with Eμ-TCL1 mice. The μS -/- /Eμ-TCL1 mice survived longer than Eμ-TCL1 mice and developed decreased numbers of MDSCs which were less able to suppress proliferation of T cells. We targeted the synthesis of sIgM by deleting the function of XBP-1s and showed that targeting XBP-1s genetically or pharmacologically could lead to decreased sIgM, accompanied by decreased numbers and reduced functions of MDSCs in MD4/Eμ-TCL1 mice. Additionally, MDSCs from μS -/- mice grafted with Lewis lung carcinoma were inefficient suppressors of T cells, resulting in slower tumor growth. These results demonstrate that sIgM produced by B cells can upregulate the functions of MDSCs in tumor-bearing mice to aggravate cancer progression. In a mouse model of CLL, production of secretory IgM led to more MDSCs, fewer T cells, and shorter survival times for the mice. Thus, secretory IgM may aggravate the progression of this cancer. Cancer Immunol Res; 6(6); 696-710. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. Exome-wide Mutation Profile in Benzo[a]pyrene-derived Post-stasis and Immortal Human Mammary Epithelial Cells

    PubMed Central

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-01-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  10. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells.

    PubMed

    Severson, Paul L; Vrba, Lukas; Stampfer, Martha R; Futscher, Bernard W

    2014-12-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells

    DOE PAGES

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; ...

    2014-11-04

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and toward immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutationsmore » were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. In conclusion, the results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). Wemore » found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin cancer cells. ►Grape seed proanthocyanidins can prevent skin cancer through epigenetic modulation.« less

  13. Thymus-Derived Regulatory T Cell Development Is Regulated by C-Type Lectin-Mediated BIC/MicroRNA 155 Expression

    PubMed Central

    Sánchez-Díaz, Raquel; Blanco-Dominguez, Rafael; Lasarte, Sandra; Tsilingiri, Katerina; Martín-Gayo, Enrique; Linillos-Pradillo, Beatriz; de la Fuente, Hortensia; Sánchez-Madrid, Francisco; Nakagawa, Rinako; Toribio, María L.

    2017-01-01

    ABSTRACT Thymus-derived regulatory T (tTreg) cells are key to preventing autoimmune diseases, but the mechanisms involved in their development remain unsolved. Here, we show that the C-type lectin receptor CD69 controls tTreg cell development and peripheral Treg cell homeostasis through the regulation of BIC/microRNA 155 (miR-155) and its target, suppressor of cytokine signaling 1 (SOCS-1). Using Foxp3-mRFP/cd69+/− or Foxp3-mRFP/cd69−/− reporter mice and short hairpin RNA (shRNA)-mediated silencing and miR-155 transfection approaches, we found that CD69 deficiency impaired the signal transducer and activator of transcription 5 (STAT5) pathway in Foxp3+ cells. This results in BIC/miR-155 inhibition, increased SOCS-1 expression, and severely impaired tTreg cell development in embryos, adults, and Rag2−/− γc−/− hematopoietic chimeras reconstituted with cd69−/− stem cells. Accordingly, mirn155−/− mice have an impaired development of CD69+ tTreg cells and overexpression of the miR-155-induced CD69 pathway, suggesting that both molecules might be concomitantly activated in a positive-feedback loop. Moreover, in vitro-inducible CD25+ Treg (iTreg) cell development is inhibited in Il2rγ−/−/cd69−/− mice. Our data highlight the contribution of CD69 as a nonredundant key regulator of BIC/miR-155-dependent Treg cell development and homeostasis. PMID:28167605

  14. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion.

    PubMed

    Patterson, Dillon G; Roberts, Justin T; King, Valeria M; Houserova, Dominika; Barnhill, Emmaline C; Crucello, Aline; Polska, Caroline J; Brantley, Lucas W; Kaufman, Garrett C; Nguyen, Michael; Santana, Megann W; Schiller, Ian A; Spicciani, Julius S; Zapata, Anastasia K; Miller, Molly M; Sherman, Timothy D; Ma, Ruixia; Zhao, Hongyou; Arora, Ritu; Coley, Alexander B; Zeidan, Melody M; Tan, Ming; Xi, Yaguang; Borchert, Glen M

    2017-01-01

    Genetic searches for tumor suppressors have recently linked small nucleolar RNA misregulations with tumorigenesis. In addition to their classically defined functions, several small nucleolar RNAs are now known to be processed into short microRNA-like fragments called small nucleolar RNA-derived RNAs. To determine if any small nucleolar RNA-derived RNAs contribute to breast malignancy, we recently performed a RNA-seq-based comparison of the small nucleolar RNA-derived RNAs of two breast cancer cell lines (MCF-7 and MDA-MB-231) and identified small nucleolar RNA-derived RNAs derived from 13 small nucleolar RNAs overexpressed in MDA-MB-231s. Importantly, we find that inhibiting the most differentially expressed of these small nucleolar RNA-derived RNAs (sdRNA-93) in MDA-MB-231 cells results primarily in a loss of invasiveness, whereas increased sdRNA-93 expression in either cell line conversely results in strikingly enhanced invasion. Excitingly, we recently determined sdRNA-93 expressions in small RNA-seq data corresponding to 116 patient tumors and normal breast controls, and while we find little sdRNA-93 expression in any of the controls and only sporadic expression in most subtypes, we find robust expression of sdRNA-93 in 92.8% of Luminal B Her2+tumors. Of note, our analyses also indicate that at least one of sdRNA-93's endogenous roles is to regulate the expression of Pipox, a sarcosine metabolism-related protein whose expression significantly correlates with distinct molecular subtypes of breast cancer. We find sdRNA-93 can regulate the Pipox 3'UTR via standard reporter assays and that manipulating endogenous sdRNA-93 levels inversely correlates with altered Pipox expression. In summary, our results strongly indicate that sdRNA-93 expression actively contributes to the malignant phenotype of breast cancer through participating in microRNA-like regulation.

  15. Merlin negative regulation by miR-146a promotes cell transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez-García, Erick I.; Meza-Sosa, Karla F.; López-Sevilla, Yaxem

    2015-12-25

    Inactivation of the tumor suppressor Merlin, by deleterious mutations or by protein degradation via sustained growth factor receptor signaling-mediated mechanisms, results in cell transformation and tumor development. In addition to these mechanisms, here we show that, miRNA-dependent negative regulation of Merlin protein levels also promotes cell transformation. We provide experimental evidences showing that miR-146a negatively regulates Merlin protein levels through its interaction with an evolutionary conserved sequence in the 3´ untranslated region of the NF2 mRNA. Merlin downregulation by miR-146a in A549 lung epithelial cells resulted in enhanced cell proliferation, migration and tissue invasion. Accordingly, stable miR-146a-transfectant cells formed tumorsmore » with metastatic capacity in vivo. Together our results uncover miRNAs as yet another negative mechanism controlling Merlin tumor suppressor functions.« less

  16. MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway.

    PubMed

    Li, Nan; Tang, Anliu; Huang, Shuo; Li, Zeng; Li, Xiayu; Shen, Shourong; Ma, Jian; Wang, Xiaoyan

    2013-08-01

    Recent data strongly suggests the profound role of miRNAs in cancer progression. Here, we showed miR-126 expression was much lower in HCT116, SW620 and HT-29 colon cancer cells with highly metastatic potential and miR-126 downregulation was more frequent in colorectal cancers with metastasis. Restored miR-126 expression inhibited HT-29 cell growth, cell-cycle progression and invasion. Mechanically, microarray results combined with bioinformatic and experimental analysis demonstrated miR-126 exerted cancer suppressor role via inhibiting RhoA/ROCK signaling pathway. These results suggest miR-126 function as a potential tumor suppressor in colon cancer progression and miR-126/RhoA/ROCK may be a novel candidate for developing rational therapeutic strategies.

  17. BXSB/long-lived is a recombinant inbred strain containing powerful disease suppressor loci.

    PubMed

    Haywood, Michelle E K; Gabriel, Luisa; Rose, S Jane; Rogers, Nicola J; Izui, Shozo; Morley, Bernard J

    2007-08-15

    The BXSB strain of recombinant inbred mice develops a spontaneous pathology that closely resembles the human disease systemic lupus erythematosus. Six non-MHC loci, Yaa, Bxs1-4, and Bxs6, have been linked to the development of aspects of the disease while a further locus, Bxs5, may be a BXSB-derived disease suppressor. Disease development is delayed in a substrain of BXSB, BXSB/MpJScr-long-lived (BXSB/ll). We compared the genetic derivation of BXSB/ll mice to the original strain, BXSB/MpJ, using microsatellite markers and single nucleotide polymorphisms across the genome. These differences were clustered and included two regions known to be important in the disease-susceptibility of these mice, Bxs5 and 6, as well as regions on chromosomes 5, 6, 9, 11, 12, and 13. We compared BXSB/ll to >20 strains including the BXSB parental SB/Le and C57BL/6 strains. This revealed that BXSB/ll is a separate recombinant inbred line derived from SB/Le and C57BL/6, but distinctly different from BXSB, that most likely arose due to residual heterozygosity in the BXSB stock. Despite the continued presence of the powerful disease-susceptibility locus Bxs3, BXSB/ll mice do not develop disease. We propose that the disappearance of the disease phenotype in the BXSB/ll mice is due to the inheritance of one or more suppressor loci in the differentially inherited intervals between the BXSB/ll and BXSB strains.

  18. A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans

    PubMed Central

    Gustafson, Michael P.; Lin, Yi; Maas, Mary L.; Van Keulen, Virginia P.; Johnston, Patrick B.; Peikert, Tobias; Gastineau, Dennis A.; Dietz, Allan B.

    2015-01-01

    The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies. PMID:25799053

  19. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway

    PubMed Central

    Matushansky, Igor; Hernando, Eva; Socci, Nicholas D.; Mills, Joslyn E.; Matos, Tulio A.; Edgar, Mark A.; Singer, Samuel; Maki, Robert G.; Cordon-Cardo, Carlos

    2007-01-01

    Malignant fibrous histiocytoma (MFH), now termed high-grade undifferentiated pleomorphic sarcoma, is a commonly diagnosed mesenchymal tumor, yet both the underlying molecular mechanisms of tumorigenesis and cell of origin remain unidentified. We present evidence demonstrating that human mesenchymal stem cells (hMSCs) are the progenitors of MFH. DKK1, a Wnt inhibitor and mediator of hMSC proliferation, is overexpressed in MFH. Using recombinant proteins, antibody depletion, and siRNA knockdown strategies of specific Wnt elements, we show that DKK1 inhibits hMSC commitment to differentiation via Wnt2/β-catenin canonical signaling and that Wnt5a/JNK noncanonical signaling regulates a viability checkpoint independent of Dkk1. Finally, we illustrate that hMSCs can be transformed via inhibition of Wnt signaling to form MFH-like tumors in nude mice, and conversely, MFH cells in which Wnt signaling is appropriately reestablished can differentiate along mature connective tissue lineages. Our results provide mechanistic insights regarding the cell of origin of MFH, establish what we believe is a novel tumor suppressor role for Wnt signaling, and identify a potential therapeutic differentiation strategy for sarcomas. PMID:17948129

  20. Inhibition of CSF1 Receptor Improves the Anti-tumor Efficacy of Adoptive Cell Transfer Immunotherapy

    PubMed Central

    Tsui, Christopher; Xu, Jingying; Robert, Lídia; Wu, Lily; Graeber, Thomas; West, Brian L.; Bollag, Gideon; Ribas, Antoni

    2013-01-01

    Colony stimulating factor-1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIMs) that suppress tumor immunity, including M2 macrophages and myeloid derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive T-cell therapy (ACT). In this model, we found that combined treatment produced superior anti-tumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCIIlow to MHCIIhi macrophages was observed. Further, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TILs) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immune suppressive macrophages. PMID:24247719

Top