Sample records for supramolecular framework based

  1. Three-dimensional periodic supramolecular organic framework ion sponge in water and microcrystals

    DOE PAGES

    Tian, Jia; Zhou, Tian-You; Zhang, Shao-Chen; ...

    2014-12-02

    Self-assembly has emerged as a powerful approach to generating complex supramolecular architectures. Despite there being many crystalline frameworks reported in the solid state, the construction of highly soluble periodic supramolecular networks in a three-dimensional space is still a challenge. In this paper we demonstrate that the encapsulation motif, which involves the dimerization of two aromatic units within cucurbit[8]uril, can be used to direct the co-assembly of a tetratopic molecular block and cucurbit[8]uril into a periodic three-dimensional supramolecular organic framework in water. The periodicity of the supramolecular organic framework is supported by solution-phase small-angle X-ray-scattering and diffraction experiments. Upon evaporating themore » solvent, the periodicity of the framework is maintained in porous microcrystals. Lastly, as a supramolecular 'ion sponge', the framework can absorb different kinds of anionic guests, including drugs, in both water and microcrystals, and drugs absorbed in microcrystals can be released to water with selectivity.« less

  2. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid.

    PubMed

    Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin

    2016-06-18

    A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.

  3. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production

    NASA Astrophysics Data System (ADS)

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; Wang, Hui; Xie, Song-Hai; Xu, Da-Wen; Ren, Yuan-Hang; Wang, Hao; Liu, Yi; Li, Zhan-Ting

    2016-05-01

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit[8]uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-Dawson-type polyoxometalates (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy)3]2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.

  4. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H 2 production

    DOE PAGES

    Tian, Jia; Xu, Zi-Yue; Zhang, Dan-Wei; ...

    2016-05-10

    Self-assembly has a unique presence when it comes to creating complicated, ordered supramolecular architectures from simple components under mild conditions. Here, we describe a self-assembly strategy for the generation of the first homogeneous supramolecular metal-organic framework (SMOF-1) in water at room temperature from a hexaarmed [Ru(bpy) 3 ] 2+ -based precursor and cucurbit[8] uril (CB[8]). The solution-phase periodicity of this cubic transition metal-cored supramolecular organic framework (MSOF) is confirmed by small-angle X-ray scattering and diffraction experiments, which, as supported by TEM imaging, is commensurate with the periodicity in the solid state. We further demonstrate that SMOF-1 adsorbs anionic Wells-'Dawson-type polyoxometalatesmore » (WD-POMs) in a one-cage-one-guest manner to give WD-POM@SMOF-1 hybrid assemblies. Upon visible-light (500 nm) irradiation, such hybrids enable fast multi-electron injection from photosensitive [Ru(bpy) 3 ] 2+ units to redox-active WD-POM units, leading to efficient hydrogen production in aqueous media and in organic media. The demonstrated strategy opens the door for the development of new classes of liquid-phase and solid-phase ordered porous materials.« less

  5. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.

    PubMed

    Tian, Jia; Chen, Lan; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-05-11

    The development of homogeneous, water-soluble periodic self-assembled structures comprise repeating units that produce porosity in two-dimensional (2D) or three-dimensional (3D) spaces has become a topic of growing interest in the field of supramolecular chemistry. Such novel self-assembled entities, known as supramolecular organic frameworks (SOFs), are the result of programmed host-guest interactions, which allows for the thermodynamically controlled generation of monolayer sheets or a diamondoid architecture with regular internal cavities or pores under mild conditions. This feature article aims at propagating the conceptually novel SOFs as a new entry into conventional supramolecular polymers. In the first section, we will describe the background of porous solid frameworks and supramolecular polymers. We then introduce the self-assembling behaviour of several multitopic flexible molecules, which is closely related to the design of periodic SOFs from rigid multitopic building blocks. This is followed by a brief discussion of cucurbit[8]uril (CB[8])-encapsulation-enhanced aromatic stacking in water. The three-component host-guest pattern based on this stacking motif has been utilized to drive the formation of most of the new SOFs. In the following two sections, we will highlight the main advances in the construction of 2D and 3D SOFs and the related functional aspects. Finally, we will offer our opinions on future directions for both structures and functions. We hope that this article will trigger the interest of researchers in the field of chemistry, physics, biology and materials science, which should help accelerate the applications of this new family of soft self-assembled organic frameworks.

  6. [Zn(INO) 2(DMF)]·DMF: A new three-dimensional supramolecular open framework containing one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Hong, Jun

    2006-02-01

    A three-dimensional supramolecular compound, [Zn(INO) 2(DMF)]·DMF (1) (INO=isonicotinic acid N-oxide), has been prepared in the DMF solution at room temperature, and characterized by elemental analysis, TG and single crystal X-ray diffraction. The three-dimensional supramolecular open framework of 1 contains rectangular channels with the dimensions of 9.02×10.15 Å, assembled from one-dimensional helical chains via hydrogen-bonding and π-π stacking interactions. Furthermore, compound 1 shows blue photoluminescence at room temperature.

  7. A new heterometallic hybrid based on polymeric iodoplumbate and lanthanide metal-carboxylic coordination polycation

    NASA Astrophysics Data System (ADS)

    Gong, An-Weng; Wu, Hong-Yan; Lian, Zhao-Xun; Dong, Hai-Jun; Li, Hao-Hong; Chen, Zhi-Rong

    2013-03-01

    A 3-D supramolecular hybrid {[La(EPC)3(H2O)3]2(Pb6I18)}n (EPC+ = N-ethyl-pyridium-4-carboxylate) (1) has been structurally determined, which assume significance for its incorporating lanthanide metal-carboxylic coordination polycation into polymeric iodoplumbate to get heterometallics. 1 consists of 1-D (PbI)n6n- zigzag-like anion chains with lanthanide metalcarboxylic [La(EPC)3(HO)3]n3n+ polycations, which arrange in a criss-cross configuration. C-H⋯I and C-H⋯O hydrogen bonds among inorganic anions and polycations contribute to the formation of a 3-D supramolecular framework. Moreover, the framework displays an absorption edge at 2.46 eV which is comparable to PbI2's absorption edge.

  8. Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li-Li; Zhu, Youlong; Long, Hai

    2017-01-01

    We report the high hydrocarbon storage capacity and adsorption selectivity of two low-density pillar[n]arene-based SOFs. Our study would open new perspectives in the development of pillar[n]arene-based SOFs and study of their great potential in gas-storage and gas-separation applications.

  9. Structure and photoluminescence of a benzil nanocolumn in a C-methylcalix[4]resorcinarene-based framework.

    PubMed

    Ma, Bao-Qing; Vieira Ferreira, Luis F; Coppens, Philip

    2004-04-01

    A new framework based on C-methylcalix[4]resorcinarene and the flexible nonconjugated spacer 1,4-bis(imidazol-1yl-methyl)benzene encloses a large one-dimensional channel, containing benzil nanocolumns. Unlike in a previously reported series of benzil-containing supramolecular solids with conjugated linker molecules, benzil luminescence is observed, but the lifetime of 580 ns at 77 K is considerably shorter than the 145 micros reported for neat benzil at room temperature.

  10. Cooperativity of anion⋯π and π⋯π interactions regulates the self-assembly of a series of carbene proligands: Towards quantitative analysis of intermolecular interactions with Hirshfeld surface

    NASA Astrophysics Data System (ADS)

    Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar

    2014-06-01

    The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.

  11. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    NASA Astrophysics Data System (ADS)

    Lehn, Jean-Marie

    2004-03-01

    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as supramolecular polymers and liquid crystals, and provide an original approach to nanoscience and nanotechnology. In particular, the spontaneous but controlled generation of well-defined, functional supramolecular architectures of nanometric size through self-organization represents a means of performing programmed engineering and processing of nanomaterials. Supramolecular chemistry is intrinsically a dynamic chemistry, in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when a molecular entity contains covalent bonds that may form and break reversibly, so as to make possible a continuous change in constitution and structure by reorganization and exchange of building blocks. This behaviour defines a constitutional dynamic chemistry that allows self-organization by selection as well as by design at both the molecular and supramolecular levels. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization by selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation in a Darwinistic fashion. The merging of the features, information and programmability, dynamics and reversibility, constitution and structural diversity, points towards the emergence of adaptative and evolutionary chemistry. Together with the corresponding fields of physics and biology, it constitutes a science of informed matter, of organized, adaptative complex matter. This article was originally published in 2003 by the Israel Academy of Sciences and Humanities in the framework of its Albert Einstein Memorial Lectures series. Reprinted by permission of the Israel Academy of Sciences and Humanities.

  12. Self-assembled 1D infinite inorganic [2]catenane and 2D sheet framework with calix[8]phenylazoimidazole and [4+4]metallomacrocyclic motifs based on silver and ditopic bis(imidazolyl)methane ligands

    NASA Astrophysics Data System (ADS)

    Jin, Tianqi; Zhou, Junqiang; Pan, Yangyang; Huang, Yu; Jin, Chuanming

    2018-05-01

    Three novel supramolecular complexes, [Ag4(2-mBIM)4](ClO4)4(H2O) (1), [Ag2(2-mBIM)2](PF6)2 (2) and [Ag2(PA-BIM)2](ClO4)2(CH2Cl2) (3) (2-mBIM = bis(2-methyl- imidazol-1-yl)methane; PA-BIM = 1,1-bis[(2-phenylazo)imidazol-1-yl]methane), have been prepared and structurally characterized. The reported complexes bear [4+4]metallomacrocyclic motifs comprising four silver atoms and four ditopic bis(imidazolyl)methane ligands. Complex 1 exhibits a rare 1D infinite inorganic [2]catenane structure, which was self-assembled by the interlocking action of [4+4]metallomacrocyclic units. Complex 2 is a 2D layered supramolecular motif containing [4+4]macrometallacycle units with π-π interaction between imidazole rings. Complex 3 has a 2D sheet supramolecular framework through Ag-Ag interactions in [4+4]macrometallacyclic calix [8]phenylazoimidazole with a nanocavity. The results suggest that the bisimidazolium ligands and anions play crucial roles in the formation of the different host structures. The thermal stability and photoluminescence spectra of the synthesized complexes have also been discussed.

  13. Zn(2+)-Triggered Drug Release from Biocompatible Zirconium MOFs Equipped with Supramolecular Gates.

    PubMed

    Tan, Li-Li; Li, Haiwei; Zhou, Yue; Zhang, Yuanyuan; Feng, Xiao; Wang, Bo; Yang, Ying-Wei

    2015-08-01

    A new theranostic nanoplatform, comprising of monodisperse zirconium metal-organic frameworks (MOFs) as drug carriers and carboxylatopillar[5]arene-based supramolecular switches as gating entities, is constructed, and controlled drug release triggered by bio-friendly Zn(2+) ions (abundant in synaptic vesicles) and auxiliary thermal stimulus is realized. This on-command drug delivery system exhibits large pore sizes for drug encapsulation, excellent biodegradability and biocompatibility, extremely low cytotoxicity and premature drug release, and superior dual-stimuli responsiveness, opening a new avenue in targeted drug delivery and controlled release of therapeutic agents, especially in the treatment of central nervous system diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supramolecular ferroelectrics.

    PubMed

    Tayi, Alok S; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics - materials with a spontaneous and electrically reversible polarization - are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  15. Helically structured metal–organic frameworks fabricated by using supramolecular assemblies as templates† †Electronic supplementary information (ESI) available: Detailed TEM images and other extensive figures. See DOI: 10.1039/c4sc03278k Click here for additional data file.

    PubMed Central

    Wang, Hui; Zhu, Wei; Li, Jian; Tian, Tian; Lan, Yue; Gao, Ning; Wang, Chen; Zhang, Meng; Faul, Charl F. J.

    2015-01-01

    The controlled formation of MOF-based superstructures with well-defined nanoscale sizes and exquisite morphologies represents a big challenge, but can trigger a new set of properties distinct from their bulk counterparts. Here we report on the use of a self-assembled organic object to template the first example of a nanoscale metal–organic framework (MOF) with a helical morphology. Two prototypical MOFs (HKUST-1 and MIL-100) were used to exemplify the growth of such materials on supramolecular assemblies. Interestingly, it was found that, dependent on the nature of the precursors, not only could well-defined helical MOF nanotubes be facilely fabricated, but novel helical bundle nanostructures could also be formed. These resultant MOF superstructures show additional optical properties and could be used as precursors for the preparation of chiral nanocarbons. PMID:28757993

  16. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  17. Supramolecular luminescence from oligofluorenol-based supramolecular polymer semiconductors.

    PubMed

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-11-13

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics.

  18. Supramolecular Luminescence from Oligofluorenol-Based Supramolecular Polymer Semiconductors

    PubMed Central

    Zhang, Guang-Wei; Wang, Long; Xie, Ling-Hai; Lin, Jin-Yi; Huang, Wei

    2013-01-01

    Supramolecular luminescence stems from non-covalent exciton behaviors of active π-segments in supramolecular entities or aggregates via intermolecular forces. Herein, a π-conjugated oligofluorenol, containing self-complementary double hydrogen bonds, was synthesized using Suzuki coupling as a supramolecular semiconductor. Terfluorenol-based random supramolecular polymers were confirmed via concentration-dependent nuclear magnetic resonance (NMR) and dynamic light scattering (DLS). The photoluminescent spectra of the TFOH-1 solution exhibit a green emission band (g-band) at approximately ~520 nm with reversible features, as confirmed through titration experiments. Supramolecular luminescence of TFOH-1 thin films serves as robust evidence for the aggregates of g-band. Our results suggest that the presence of polyfluorene ketone defects is a sufficient condition, rather than a sufficient-necessary condition for the g-band. Supramolecular electroluminescence will push organic devices into the fields of supramolecular optoelectronics, spintronics, and mechatronics. PMID:24232455

  19. Supramolecular Pharmaceutical Sciences: A Novel Concept Combining Pharmaceutical Sciences and Supramolecular Chemistry with a Focus on Cyclodextrin-Based Supermolecules.

    PubMed

    Higashi, Taishi; Iohara, Daisuke; Motoyama, Keiichi; Arima, Hidetoshi

    2018-01-01

    Supramolecular chemistry is an extremely useful and important domain for understanding pharmaceutical sciences because various physiological reactions and drug activities are based on supramolecular chemistry. However, it is not a major domain in the pharmaceutical field. In this review, we propose a new concept in pharmaceutical sciences termed "supramolecular pharmaceutical sciences," which combines pharmaceutical sciences and supramolecular chemistry. This concept could be useful for developing new ideas, methods, hypotheses, strategies, materials, and mechanisms in pharmaceutical sciences. Herein, we focus on cyclodextrin (CyD)-based supermolecules, because CyDs have been used not only as pharmaceutical excipients or active pharmaceutical ingredients but also as components of supermolecules.

  20. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics.

    PubMed

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-10-11

    A self-catenated Zn(II)-organic framework formulated as [Zn 2 (3,3'-bpeab)(oba) 2 ]·DMF (1) exhibiting a six-connected 4 4 ·6 10 ·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3'-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3'-bpeab) and 4,4'-oxybis-benzoic acid (H 2 oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO 2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media.

  1. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics

    PubMed Central

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-01-01

    A self-catenated Zn(II)-organic framework formulated as [Zn2(3,3′-bpeab)(oba)2]·DMF (1) exhibiting a six-connected 44·610·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3′-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3′-bpeab) and 4,4′-oxybis-benzoic acid (H2oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media. PMID:27725711

  2. Recent Advances in Cyclodextrin-Based Light-Responsive Supramolecular Systems.

    PubMed

    Zhang, Xiaojin; Ma, Xin; Wang, Kang; Lin, Shijun; Zhu, Shitai; Dai, Yu; Xia, Fan

    2018-06-01

    Cyclodextrins (CDs), one of the host molecules in supramolecular chemistry, can host guest molecules to form inclusion complexes via non-covalent and reversible host-guest interactions. CD-based light-responsive supramolecular systems are typically constructed using CDs and guest molecules with light-responsive moieties, including azobenzene, arylazopyrazole, o-nitrobenzyl ester, pyrenylmethyl ester, coumarin, and anthracene. To date, numerous efforts have been reported on the topic of CD-based light-responsive supramolecular systems, but these have not yet been highlighted in a separated review. This review summarizes the efforts reported over the past ten years. The main text of this review is divided into five sections (vesicles, micelles, gels, capturers, and nanovalves) according to the formation of self-assemblies. This feature article aims to afford a comprehensive understanding of the light-responsive moieties used in the construction of CD-based light-responsive supramolecular systems and to provide a helpful guide for the further design of CD-based light-responsive supramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Two new Ni(II) supramolecular complexes based on ethyl isonicotinate and ethyl nicotinate for removal of acid blue 92 dye

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Marie, Hassan

    2018-03-01

    Two new luminescent supramolecular complexes (SC); [Ni(EIN)4(NCS)2] SC1 and [Ni2(EN)8(NCS)4] SC2, (EIN = ethyl isonicotinate, EN = ethyl nicotinate), have been synthesized by self-assembly method and structurally characterized by X-ray single crystal, FT-IR and UV-Vis spectra, PXRD, elemental and thermogravimetric analyses. Both SC1 and SC2 are monoclinic crystals however, they have different asymmetric units. Ni(II) atoms in both SC are isostructural and have similar hexa-coordinate environment. The structures of SC1 and SC2 consist of parallel polymeric 1D-chains, extended in two and three dimensional supramolecular frameworks by intermolecular hydrogen bonding interactions. SC1 and SC2 are luminescent materials which can be used in applications as molecular sensing systems. SC1 and SC2 were used as heterogeneous catalysts for degradation of acid blue 92 (AB-92) under sun light irradiation. The fluorescence measurements of terephthalic acid technique as a probe molecule were used to determine the •OH radicals. Also the radicals trapping experiments using isopropanol alcohol (IPA) as radical scavenger were discussed. In addition a mechanism of degradation was proposed and discussed.

  4. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework

    DOE PAGES

    Yang, Sihai; Ramirez-Cuesta, Anibal J.; Newby, Ruth; ...

    2014-12-01

    Supramolecular interactions are fundamental to host–guest binding in many chemical and biological processes. Direct visualization of such supramolecular interactions within host–guest systems is extremely challenging, but crucial to understanding their function. Within this paper, we report a comprehensive study that combines neutron scattering, synchrotron X-ray and neutron diffraction, and computational modelling to define the detailed binding at a molecular level of acetylene, ethylene and ethane within the porous host NOTT-300. This study reveals simultaneous and cooperative hydrogen-bonding, π···π stacking interactions and intermolecular dipole interactions in the binding of acetylene and ethylene to give up to 12 individual weak supramolecular interactionsmore » aligned within the host to form an optimal geometry for the selective binding of hydrocarbons. In addition, we also report the cooperative binding of a mixture of acetylene and ethylene within the porous host, together with the corresponding breakthrough experiments and analysis of adsorption isotherms of gas mixtures.« less

  5. Synthesis, crystallographic and spectral studies of homochiral cobalt(II) and nickel(II) complexes of a new terpyridylaminoacid ligand

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Gao, Chang-Qing; Gao, Zhi-Yang; Wu, Ben-Lai; Niu, Yun-Yin

    2018-04-01

    Based on a chiral terpyridylaminoacid ligand, a series of homochiral Co(II) and Ni(II) complexes, namely, [Co(H2L)(HL)]·Cl·(PF6)2·2H2O (1), [Ni(H2L)(HL)]·Cl·(PF6)2 (2), [Co2(L)2(CH3OH)(H2O)]·(PF6)2·CH3OH (3), [Ni2(L)2(CH3OH)2]·(PF6)2·2CH3OH (4), [Co2(L)2(N3)2]·3H2O (5), and [Ni2(L)2(SCN)2]·4H2O (6) have been successfully synthesized and characterized by elemental analysis, TGA, spectroscopic methods (IR, CD and electronic absorption spectra) and single-crystal X-ray diffraction structural analysis (HL = (S)-2-((4-([2,2':6‧,2″-terpyridin]-4‧-yl)benzyl)amino)-4-methylpentanoic acid). In the acidic reaction conditions, one protonated (H2L)+ and one zwitterionic HL only used their terpyridyl groups to chelate one metal ion Co(II) or Ni(II), forming chiral mononuclear cationic complexes 1 or 2. But in the basic and hydro(solvo)thermal reaction conditions, deprotonated ligands (L)‒ acting as bridges used their terpyridyl and amino acid groups to link with two Co(II) or Ni(II) ions, fabricating chiral dinuclear metallocyclic complexes 3-6. Those chiral mononuclear and dinuclear complexes whose chirality originates in the homochiral ligand HL further self-assemble into higher-dimensional homochiral supramolecular frameworks through intermolecular hydrogen-bonding and π···π interactions. Notably, the coordination mode, hydrogen-bonding site, and existence form of HL ligand can be controlled by the protonation of its amino group, and the architectural diversity of those supramolecular frameworks is adjusted by pH and counter anions. Very interestingly, the 3D porous supramolecular frameworks built up from the huge chiral mononuclear cationic complexes 1 and 2 have novel helical layers only formed through every right-handed helical chain intertwining with two adjacent same helical chains, and the 2D supramolecular helicate 5 consists of two types of left-handed helical chains.

  6. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging.

    PubMed

    Li, Yunkun; Li, Yachao; Zhang, Xiao; Xu, Xianghui; Zhang, Zhijun; Hu, Cheng; He, Yiyan; Gu, Zhongwei

    2016-01-01

    Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms.

  7. Hydrothermal synthesis and structural characterization of a novel three-dimensional supramolecular framework constructed by zinc salt and pyridine-2,5-dicarboxylate

    NASA Astrophysics Data System (ADS)

    Wang, Xinlong; Qin, Chao; Wang, Enbo; Hu, Changwen; Xu, Lin

    2004-07-01

    A novel metal-organic coordination polymer, [Zn(PDB)(H 2O) 2] 4 n (H 2PDB=pyridine-2,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the triclinic system, space group P-1, a=7.0562(14) Å, b=7.38526(15) Å, c=18.4611(4) Å, α=90.01(3)°, β=96.98(3)°, γ=115.67(3)°, V=859.1(3) Å 3, Z=1 and R=0.0334. The structure of the compound exhibits a novel three-dimensional supramolecular network, mainly based on multipoint hydrogen bonds originated from within and outside of a large 24-membered ring. Interestingly, the three-dimensional network consists of one-dimensional parallelogrammic channels in which coordinated water molecules point into the channel wall.

  8. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    PubMed

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  9. Selective Capture of CWAs and Containment of Their Neutralization Byproducts by Porous Frameworks Presenting Self-Amplifying and Self-Regulating Reactivities

    DTIC Science & Technology

    2013-02-04

    Intl. Symposium on Macrocyclic and Supramolecular Chemistry, June 2010, Nara, Japan (Plenary talk). O. M. Yaghi, Zeolitic imidazolate frameworks, 5th...International Zeolite Membrane Meeting, May 2010, Loutraki, Greece (Plenary talk). O. M. Yaghi, Reticular chemistry and its applications to clean energy

  10. Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles

    NASA Astrophysics Data System (ADS)

    Shcherbina, M. A.; Chvalun, S. N.

    2018-06-01

    Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).

  11. Supramolecular PEGylated Dendritic Systems as pH/Redox Dual-Responsive Theranostic Nanoplatforms for Platinum Drug Delivery and NIR Imaging

    PubMed Central

    Li, Yunkun; Li, Yachao; Zhang, Xiao; Xu, Xianghui; Zhang, Zhijun; Hu, Cheng; He, Yiyan; Gu, Zhongwei

    2016-01-01

    Recently, self-assembling small dendrimers into supramolecular dendritic systems offers an alternative strategy to develop multifunctional nanoplatforms for biomedical applications. We herein report a dual-responsive supramolecular PEGylated dendritic system for efficient platinum-based drug delivery and near-infrared (NIR) tracking. With a refined molecular/supramolecular engineering, supramolecular dendritic systems were stabilized by bioreducible disulfide bonds and endowed with NIR fluorescence probes, and PEGylated platinum derivatives coordinated onto the abundant peripheral groups of supramolecular dendritic templates to generate pH/redox dual-responsive theranostic supramolecular PEGylated dendritic systems (TSPDSs). TSPDSs markedly improved the pharmacokinetics and biodistribution of platinum-based drugs, owing to their stable nanostructures and PEGylated shells during the blood circulation. Tumor intracellular environment (low pH value and high glutathione concentration) could trigger the rapid disintegration of TSPDSs due to acid-labile coordination bonds and redox-cleavable disulfide linkages, and then platinum-based drugs were delivered into the nuclei to exert antitumor activity. In vivo antitumor treatments indicated TSPDSs not only provided high antitumor efficiency which was comparable to clinical cisplatin, but also reduced renal toxicity of platinum-based drugs. Moreover, NIR fluorescence of TSPDSs successfully visualized in vitro and in vivo fate of nanoplatforms and disclosed the intracellular platinum delivery and pharmacokinetics. These results confirm tailor-made supramolecular dendritic system with sophisticated nanostructure and excellent performance is a promising candidate as smart theranostic nanoplatforms. PMID:27375780

  12. New metal-organic complexes based on bis(tetrazole) ligands: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Du, Ceng-Ceng; Fan, Jian-Zhong; Wang, Xin-Fang; Zhou, Sheng-Bin; Wang, Duo-Zhi

    2017-04-01

    In this paper, a series of new complexes, [Zn2(HL1)2(H2O)4]·H2O (1), [Co2(HL1)2]·TEA (2), [Co3(HL1)2(H2L1)2(H2O)4]n (3), [Cu(HL1)(H2O)2]n (4), {[Cu5(HL2)2(OH)4(ClO4)2]·4H2O}n (5) and [Cu2(L3)]n (6) were successfully prepared by utilizing three bis(tetrazole) ligands [bis-(1H-tetrazol-5-ylmethyl)-amine (H3L1), bis-(1H-tetrazol-5-ylethyl)-amine (H3L2) and 1,5-bis(5-tetrazolo)-3-thiapentane (H2L3)], all of which have been characterized by elemental analyses, FT-IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analyses as well as single-crystal X-ray diffraction analyses showing different dimensionalities (0D, 1D and 3D). Complexes 1 and 2 are 0D structures, 1 shows a dinuclear structure, 2 displays two crystallographically different mononuclear structures, 1 and 2 are further assembled to form 3D supramolecular framework and 2D supramolecular network by hydrogen-bonding interactions, respectively. Complexes 3, 4 and 5 are 1D structures, 3 features a mononuclear unit and a 1D chain, which are arranged into 3D supramolecular architecture by hydrogen-bonding interactions, 4 presents a zigzag chain, 5 shows an infinite chain structure constructed from pentanuclear Cu(II) subunits and ClO4- anions. Complex 6 exhibits a 3D coordination framework based on cyclic [Cu4(L3)2] dimmer subunits as nodes possessing an 8-connected network topology with the point symbol {424·64}. Further, semiconductor behaviors, the solid-state luminescent properties of the complexes 1-3 and 6 were measured and studied seriously at room temperature.

  13. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host-guest recognition: construction and application in explosive detection.

    PubMed

    Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe

    2018-05-08

    Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.

  14. Artificial enzymes based on supramolecular scaffolds.

    PubMed

    Dong, Zeyuan; Luo, Quan; Liu, Junqiu

    2012-12-07

    Enzymes are nanometer-sized molecules with three-dimensional structures created by the folding and self-assembly of polymeric chain-like components through supramolecular interactions. They are capable of performing catalytic functions usually accompanied by a variety of conformational states. The conformational diversities and complexities of natural enzymes exerted in catalysis seriously restrict the detailed understanding of enzymatic mechanisms in molecular terms. A supramolecular viewpoint is undoubtedly helpful in understanding the principle of enzyme catalysis. The emergence of supramolecular artificial enzymes therefore provides an alternative way to approach the structural complexity and thus to unravel the mystery of enzyme catalysis. This critical review covers the recent development of artificial enzymes designed based on supramolecular scaffolds ranging from the synthetic macrocycles to self-assembled nanometer-sized objects. Such findings are anticipated to facilitate the design of supramolecular artificial enzymes as well as their potential uses in important fields, such as manufacturing and food industries, environmental biosensors, pharmaceutics and so on.

  15. A self-assembled supramolecular optical sensor for NiII, CdII, and CrIII.

    PubMed

    Resendiz, Marino J E; Noveron, Juan C; Disteldorf, Hendrick; Fischer, Sonja; Stang, Peter J

    2004-03-04

    A new chromogenic supramolecular sensor for transition metals is reported. It is based on a newly designed phenanthroline-containing molecule that self-assembles via an organometallic "clip" into a supramolecular optical sensor for metals. [reaction: see text

  16. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite.

    PubMed

    Shokrollahi, Parvin; Mirzadeh, Hamid; Scherman, Oren A; Huck, Wilhelm T S

    2010-10-01

    Supramolecular polymers based on quadruple hydrogen-bonding ureido-pyrimidinone (UPy) moieties hold promise as dynamic/stimuli-responsive materials in applications such as tissue engineering. Here, a new class of materials is introduced: supramolecular polymer composites. We show that despite the highly ordered structure and tacticity-dependent nature of hydrogen-bonded supramolecular polymers, the bioactivity of these polymers can be tuned through composite preparation with bioceramics. These novel supramolecular composites combine the superior processability of supramolecular polymers with the excellent bioactivity and mechanical characteristics of bioceramics. In particular, the bioactive composites prepared from supramolecular polycaprolactone and UPy-grafted hydroxyapatite (HApUPy) are described that can be easily formed into microporous biomaterials. The compression moduli increased about 40 and 90% upon composite preparation with HAp and HApUPy, respectively, as an indication to improved mechanical properties. These new materials show excellent potential as microporous composite scaffolds for the adhesion and proliferation of rat mesenchymal stem cells (rMSCs) as a first step toward bone regeneration studies; rMSCs proliferate about 2 and 2.7 times faster on the conventional composite with HAp and the supramolecular composite with (HApUPy) than on the neat PCL1250(UPy)(2). Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.

  17. Solid-state supramolecular architectures formed by co-crystallization of melamine and 2-, 3- and 4-fluorophenylacetic acids

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo Julio; Janczak, Jan

    2018-01-01

    A family of supramolecular complexes of melamine with fluorophenylacetic acid isomers using solvent-assisted and evaporation-based techniques has been prepared. Crystallization of melamine with 2-fluorophenylacetic acid yield hydrated ionic supramolecular complex (1), whereas crystallization of melamine with 3- and 4-fluorophenylacetic acids leads to formation of neutral supramolecular complexes (2, 3), all with base to acid ratio of 1:2. The supramolecular assembly is driven by the noncovalent interactions, most commonly by the hydrogen bonds. The components of the crystal 1 interact via Nsbnd H⋯O and Osbnd H⋯N hydrogen bonds with R22(8) and R32(10) graphs forming ionic supramolecular complex, whereas the components in the crystals 2 and 3 interact with a graph of R22(8) forming neutral supramolecular complexes. The singly protonated melamin-1-ium residues in 1 interact each other via a pair of Nsbnd H⋯N hydrogen bonds forming one dimensional chains along [-110] that interact via Nsbnd H⋯O with deprotonated and neutral 2-fluorophenylacetic acid units and water molecules forming ribbon. In 2 and 3 co-crystals the melamine interacts with 3- and 4-fluorophenylacetic acids via a pair of Nsbnd H⋯O hydrogen bonds forming pseudo one-dimensional supramolecular chains along [010] direction. Hirshfeld surface and analysis of 2D fingerprint plots have been analysed both quantitatively and qualitatively interactions that governing the supramolecular organisation. The IR and Raman vibrational characterization of the supramolecular complexes 1-3 was supported by the spectra of their deuterated analogues.

  18. Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Zhao, Nana; Yu, Bingran; Liu, Fusheng; Xu, Fu-Jian

    2014-06-01

    Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems.Different polysaccharide-based supramolecular polycations were readily synthesized by assembling multiple β-cyclodextrin-cored star polycations with an adamantane-functionalized dextran via host-guest interaction in the absence or presence of bioreducible linkages. Compared with nanoplexes of the starting star polycation and pDNA, the supramolecular polycation/pDNA nanoplexes exhibited similarly low cytotoxicity, improved cellular internalization and significantly higher gene transfection efficiencies. The incorporation of disulfide linkages imparted the supramolecular polycation/pDNA nanoplexes with the advantage of intracellular bioreducibility, resulting in better gene delivery properties. In addition, the antitumor properties of supramolecular polycation/pDNA nanoplexes were also investigated using a suicide gene therapy system. The present study demonstrates that the proper assembly of cyclodextrin-cored polycations with adamantane-functionalized polysaccharides is an effective strategy for the production of new nanoplex delivery systems. Electronic supplementary information (ESI) available: 1H NMR assay and synthetic route of Dex-Ad and Dex-SS-Ad. See DOI: 10.1039/c4nr01590h

  19. Quinoline derivative containing monomeric and polymeric metal carboxylates: Synthesis, crystal structure and gas adsorption study over a 2D layered framework

    NASA Astrophysics Data System (ADS)

    Gayen, Saikat; Saha, Debraj; Koner, Subratanath

    2018-06-01

    A new supramolecular metal-carboxylate framework [Co(mqc)2]n (1), and another monomeric compound [Zn (mqc)2(H2O)] (2) (mqcH = 4-methoxy 2-quinolinecarboxylic acid) have been synthesized solvothermally and characterized by single crystal X-ray diffraction, elemental analysis, IR spectra, UV-vis spectra, powdered X-ray diffraction (PXRD) and thermogravimetric analysis. Compound 1 is a 2D coordination polymer, extended to a 3D porous supramolecular network having void space in between 2D layers. Compound 1 exhibits gas uptake capacity of N2, H2, CO2 and CH4 like small gas molecules in which moderately high uptake of H2 and CO2 takes place among the 2D MOFs. While the Zn variety, compound 2 features a one-dimensional chain like structure through strong intermolecular hydrogen-bonding.

  20. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  1. Facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite with enhanced photocatalytic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiangpeng; Li, Changqing; Cong, Jingkun

    2016-06-15

    Here we report a facile synthesis of nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) by using Fe-melamine supramolecular framework as precursor. The chemical and optical properties of the nanocomposites are well-characterized. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light due to the efficient utilization of sunlight and the construction of Z-scheme electron transfer pathway. The results indicated that it could be a promising approach for the preparation of efficient g-C{sub 3}N{sub 4} nanocomposites photocatalysts by using metal-melamine supramolecular framework as precursors. - Graphical abstract: Nanorod-type graphitic carbon nitride/Fe{sub 2}O{submore » 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized by using Fe-melamine supramolecular framework as precursor. The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities under visible light. Display Omitted - Highlights: • Nanorod-type graphitic carbon nitride/Fe{sub 2}O{sub 3} composite (Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4}) was synthesized. • Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} showed strong optical absorption in the visible-light region. • The Fe{sub 2}O{sub 3}-g-C{sub 3}N{sub 4} nanocomposite demonstrated excellent photocatalytic activities.« less

  2. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness.

    PubMed

    Shen, Zhaocun; Wang, Tianyu; Shi, Lin; Tang, Zhiyong; Liu, Minghua

    2015-07-01

    Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3 -symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines.

  3. Supramolecular Architectures and Mimics of Complex Natural Folds Derived from Rationally Designed alpha-Helical Protein Structures

    NASA Astrophysics Data System (ADS)

    Tavenor, Nathan Albert

    Protein-based supramolecular polymers (SMPs) are a class of biomaterials which draw inspiration from and expand upon the many examples of complex protein quaternary structures observed in nature: collagen, microtubules, viral capsids, etc. Designing synthetic supramolecular protein scaffolds both increases our understanding of natural superstructures and allows for the creation of novel materials. Similar to small-molecule SMPs, protein-based SMPs form due to self-assembly driven by intermolecular interactions between monomers, and monomer structure determines the properties of the overall material. Using protein-based monomers takes advantage of the self-assembly and highly specific molecular recognition properties encodable in polypeptide sequences to rationally design SMP architectures. The central hypothesis underlying our work is that alpha-helical coiled coils, a well-studied protein quaternary folding motif, are well-suited to SMP design through the addition of synthetic linkers at solvent-exposed sites. Through small changes in the structures of the cross-links and/or peptide sequence, we have been able to control both the nanoscale organization and the macroscopic properties of the SMPs. Changes to the linker and hydrophobic core of the peptide can be used to control polymer rigidity, stability, and dimensionality. The gaps in knowledge that this thesis sought to fill on this project were 1) the relationship between the molecular structure of the cross-linked polypeptides and the macroscopic properties of the SMPs and 2) a means of creating materials exhibiting multi-dimensional net or framework topologies. Separate from the above efforts on supramolecular architectures was work on improving backbone modification strategies for an alpha-helix in the context of a complex protein tertiary fold. Earlier work in our lab had successfully incorporated unnatural building blocks into every major secondary structure (beta-sheet, alpha-helix, loops and beta-turns) of a small protein with a tertiary fold. Although the tertiary fold of the native sequence was mimicked by the resulting artificial protein, the thermodynamic stability was greatly compromised. Most of this energetic penalty derived from the modifications present in the alpha-helix. The contribution within this thesis was direct comparison of several alpha-helical design strategies and establishment of the thermodynamic consequences of each.

  4. Supramolecular Drug Delivery Systems Based on Water-Soluble Pillar[n]arenes.

    PubMed

    Wu, Xuan; Gao, Lei; Hu, Xiao-Yu; Wang, Leyong

    2016-06-01

    Supramolecular drug delivery systems (SDDSs), including various kinds of nanostructures that are assembled by reversible noncovalent interactions, have attracted considerable attention as ideal drug carriers owing to their fascinating ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, which provides a flexible and robust platform for designing and developing functional and smart supramolecular nano-drug carriers. Pillar[n]arenes represent a new generation of macrocyclic hosts, which have unique structures and excellent properties in host-guest chemistry. This account describes recent progress in our group to develop pillararene-based stimuli-responsive supramolecular nanostructures constructed by reversible host-guest interactions for controllable anticancer drug delivery. The potential applications of these supramolecular drug carriers in cancer treatment and the fundamental questions facing SDDSs are also discussed. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Inverted cucurbit[6]uril supramolecular assemblies formed in the presence of tetrachlorozincate anions

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Xu, Jing; Qiu, Sheng-Chao; Wang, Yuan; Chen, Min-Dong; Zhang, Yun-Qian; Xiao, Xin; Tao, Zhu

    2017-10-01

    We investigated the interactions in an inverted cucurbit[6]uril (iQ[6]) with a series of 1,ω-alkyldimins and their supramolecular assemblies in the presence of the tetrachlorozincate anion ([ZnCl4]2-) structure directing agent. iQ[6] forms an outer surface interaction with [ZnCl4]2- to form different iQ[6]/[ZnCl4]2--based supramolecular assemblies with different length 1,ω-alkyldimins. Interestingly, most 1,ω-alkyldimins were not visible in crystals structures in the presence of concentrated HCl. The porous iQ[6]/[ZnCl4]2--based supramolecular assemblies could be used as materials for adsorbing volatile compounds.

  6. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer-Specific Amino Group Recognition.

    PubMed

    Cho, Ik Sung; Ooya, Tooru

    2018-05-24

    Dendrimer-based supramolecular hydrogels have gained attention in biomedical fields. While biocompatible dendrimers were used to prepare hydrogels via physical and/or chemical crosslinking, smart functions such as pH and molecular control remain undeveloped. Here, we present polyglycerol dendrimer-based supramolecular hydrogel formation induced by a specific interaction between the polyglycerol dendrimer and an amino group of glycol chitosan. Gelation was achieved by mixing the two aqueous solutions. Hydrogel formation was controlled by varying the polyglycerol dendrimer generation. The hydrogel showed pH-dependent swelling; strongly acidic conditions induced degradation via dissociation of the specific interaction. It also showed unique L-arginine-responsive degradation capability due to competitive exchange of the amino groups of glycol chitosan and L-arginine. These polyglycerol dendrimer-based supramolecular characteristics allow multimodal application in smart biomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrospinning bioactive supramolecular polymers from water.

    PubMed

    Tayi, Alok S; Pashuck, E Thomas; Newcomb, Christina J; McClendon, Mark T; Stupp, Samuel I

    2014-04-14

    Electrospinning is a high-throughput, low-cost technique for manufacturing long fibers from solution. Conventionally, this technique is used with covalent polymers with large molecular weights. We report here the electrospinning of functional peptide-based supramolecular polymers from water at very low concentrations (<4 wt %). Molecules with low molecular weights (<1 kDa) could be electrospun because they self-assembled into one-dimensional supramolecular polymers upon solvation and the critical parameters of viscosity, solution conductivity, and surface tension were optimized for this technique. The supramolecular structure of the electrospun fibers could ensure that certain residues, like bioepitopes, are displayed on the surface even after processing. This system provides an opportunity to electrospin bioactive supramolecular materials from water for biomedical applications.

  8. Eight supramolecular assemblies constructed from bis(benzimidazole) and organic acids through strong classical hydrogen bonding and weak noncovalent interactions

    NASA Astrophysics Data System (ADS)

    Jin, Shouwen; Wang, Daqi

    2014-05-01

    Eight crystalline organic acid-base adducts derived from alkane bridged bis(N-benzimidazole) and organic acids (2,4,6-trinitrophenol, p-nitrobenzoic acid, m-nitrobenzoic acid, 3,5-dinitrobenzoic acid, 5-sulfosalicylic acid and oxalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Of the eight compounds five are organic salts (1, 4, 6, 7 and 8) and the other three (2, 3, and 5) are cocrystals. In all of the adducts except 1 and 8, the ratio of the acid and the base is 2:1. All eight supramolecular assemblies involve extensive intermolecular classical hydrogen bonds as well as other noncovalent interactions. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, all the complexes displayed 3D framework structure. The results presented herein indicate that the strength and directionality of the classical N+-H⋯O-, O-H⋯O, and O-H⋯N hydrogen bonds (ionic or neutral) and other nonbonding associations between acids and ditopic benzimidazoles are sufficient to bring about the formation of cocrystals or organic salts.

  9. Construction of nanostructures for selective lithium ion conduction using self-assembled molecular arrays in supramolecular solids

    NASA Astrophysics Data System (ADS)

    Moriya, Makoto

    2017-12-01

    In the development of innovative molecule-based materials, the identification of the structural features in supramolecular solids and the understanding of the correlation between structure and function are important factors. The author investigated the development of supramolecular solid electrolytes by constructing ion conduction paths using a supramolecular hierarchical structure in molecular crystals because the ion conduction path is an attractive key structure due to its ability to generate solid-state ion diffusivity. The obtained molecular crystals exhibited selective lithium ion diffusion via conduction paths consisting of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and small molecules such as ether or amine compounds. In the present review, the correlation between the crystal structure and ion conductivity of the obtained molecular crystals is addressed based on the systematic structural control of the ionic conduction paths through the modification of the component molecules. The relationship between the crystal structure and ion conductivity of the molecular crystals provides a guideline for the development of solid electrolytes based on supramolecular solids exhibiting rapid and selective lithium ion conduction.

  10. Self-assembly behavior of a linear-star supramolecular amphiphile based on host-guest complexation.

    PubMed

    Wang, Juan; Wang, Xing; Yang, Fei; Shen, Hong; You, Yezi; Wu, Decheng

    2014-11-04

    A star polymer, β-cyclodextrin-poly(l-lactide) (β-CD-PLLA), and a linear polymer, azobenzene-poly(ethylene glycol) (Azo-PEG), could self-assemble into a supramolecular amphiphilic copolymer (β-CD-PLLA@Azo-PEG) based on the host-guest interaction between β-CD and azobenzene moieties. This linear-star supramolecular amphiphilic copolymer further self-assembled into a variety of morphologies, including sphere-like micelle, carambola-like micelle, naan-like micelle, shuttle-like lamellae, tube-like fiber, and random curled-up lamellae, by tuning the length of hydrophilic or hydrophobic chains. The variation of morphology was closely related to the topological structure and block ratio of the supramolecular amphiphiles. These self-assembly structures could disassemble upon an ultraviolet (UV) light irradiation.

  11. Complexing DNA Origami Frameworks through Sequential Self-Assembly Based on Directed Docking.

    PubMed

    Suzuki, Yuki; Sugiyama, Hiroshi; Endo, Masayuki

    2018-06-11

    Ordered DNA origami arrays have the potential to compartmentalize space into distinct periodic domains that can incorporate a variety of nanoscale objects. Herein, we used the cavities of a preassembled 2D DNA origami framework to incorporate square-shaped DNA origami structures (SQ-origamis). The framework was self-assembled on a lipid bilayer membrane from cross-shaped DNA origami structures (CR-origamis) and subsequently exposed to the SQ-origamis. High-speed AFM revealed the dynamic adsorption/desorption behavior of the SQ-origamis, which resulted in continuous changing of their arrangements in the framework. These dynamic SQ-origamis were trapped in the cavities by increasing the Mg 2+ concentration or by introducing sticky-ended cohesions between extended staples, both from the SQ- and CR-origamis, which enabled the directed docking of the SQ-origamis. Our study offers a platform to create supramolecular structures or systems consisting of multiple DNA origami components. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Strong circularly polarized luminescence from the supramolecular gels of an achiral gelator: tunable intensity and handedness† †Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c5sc01056j Click here for additional data file.

    PubMed Central

    Shen, Zhaocun; Shi, Lin; Tang, Zhiyong

    2015-01-01

    Although the importance of circularly polarized luminescence (CPL) materials has been widely recognized, the CPL responses of supramolecular gels are still rarely studied. Moreover, developing CPL materials based on supramolecular gels is of great significance, due to their special advantages and important applications. Herein, we report the first circularly polarized supramolecular gels self-assembled exclusively from a simple achiral C 3-symmetric molecule. Most importantly, the excellent tunability of these novel CPL materials, which benefits from achiral molecular building blocks as well as the nature of supramolecular gels, has been investigated. Thus, the CPL intensity of these supramolecular gels is easily enhanced by mechanical stirring or doping chiral amines. The handedness of CPL signals is controlled by the chirality of organic amines. PMID:29218194

  13. A "ship in a bottle" strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery.

    PubMed

    di Nunzio, Maria Rosaria; Agostoni, Valentina; Cohen, Boiko; Gref, Ruxandra; Douhal, Abderrazzak

    2014-01-23

    An essential challenge in the development of nanosized metal organic framework (nanoMOF) materials in biomedicine is to develop a strategy to stabilize their supramolecular structure in biological media while being able to control drug encapsulation and release. We have developed a method to efficiently encapsulate topotecan (TPT, 1), an important cytotoxic drug, in biodegradable nanoMOFs. Once inside the pores, 1 monomers aggregate in a "ship in a bottle" fashion, thus filling practically all of the nanoMOFs' available free volume and stabilizing their crystalline supramolecular structures. Highly efficient results have been found with the human pancreatic cell line PANC1, in contrast with free 1. We also demonstrate that one- and two-photon light irradiation emerges as a highly promising strategy to promote stimuli-dependent 1 release from the nanoMOFs, hence opening new standpoints for further developments in triggered drug delivery.

  14. Living supramolecular polymerization realized through a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Ogi, Soichiro; Sugiyasu, Kazunori; Manna, Swarup; Samitsu, Sadaki; Takeuchi, Masayuki

    2014-03-01

    Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium—ubiquitously observed in nature—must take place. Prion infection is one example that can be observed in biological systems. Here, we present an ‘artificial infection’ process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a ‘pathogen’. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.

  15. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    PubMed

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Design, Synthesis, and Self-Assembly of Well-Defined Hybrid Materials Including Polymer Amphiphiles and Giant Tetrahedra Molecules Based on Poss Nanoparticles

    NASA Astrophysics Data System (ADS)

    Huang, Mingjun

    "Bottom-up" techniques-based self-assembly are always attracting people's interests since this technology provides relatively low economic cost and fast route to construct organized structures at different scales. Considering unprecedented benefits from polymer materials, self-assemblies utilizing polymer building blocks have been extensively studied to achieve diverse hierarchical structures and various attractive properties. However, precise controls of chemical primary structures and compositions and exact constructions of hierarchal ordered structures in synthetic polymers are far from being fully appreciated. In this dissertation, a novel approach has been utilized to construct diverse well-defined nano-building blocks, giant molecules, via conjugating different, and functionalized molecular nanoparticles (MNPs) which are shape- and volume-persistent nano-objects with precise molecular structure and specific symmetry. The representative examples of the three basic categories of giant molecules, "giant polyhedra", "giant surfactants", and "giant shape amphiphiles" were discussed in details. First, a class of precisely defined, nanosized giant tetrahedra was constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces accurate positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper (FK) A15 phase. The FK and quasicrystal phases are originally identified in metal alloys and only sporadically observed in soft matters. It remains unclear how to correlate their stability with the chemical composition and molecular topology in the self-assembling systems. We then for this purpose designed and studied the self-assembly phase transition sequences of four series of hybrid giant surfactants based on hydrophilic POSS cages tethered with one to four polystyrene (PS) tails. With increasing the number of tails, molecular topological variations not only affect phase boundaries in terms of the PS volume fraction, but also open a window to stabilize supramolecular FK and quasicrystal phases in the spherical phase region, demonstrating the critical role of molecular topology in dictating the formation of unconventional supramolecular lattices of "soft" spherical motifs. The FK A15 phase was even surprisingly observed in the giant shape amphiphile molecule, triphenylene-6BPOSS, which has a disk-like flat triphenylene core connected with six hydrophobic POSS cages by sides. Without conical molecular shape, triphenylene-6BPOSS self-assembled and stabilized into supramolecular sphere via pi-pi interactions through a completely different mechanism with precious two cases. These studies indicate that "bottom-up" self-assemble based on well-defined giant molecules approach can be rather powerful to fabricate usually complicated hierarchical structures and open up a wide field of supramolecular self-assembly with unexpected structure and properties.

  17. Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristin

    The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less

  18. Supramolecular structure of polymer binders and composites: targeted control based on the hierarchy

    NASA Astrophysics Data System (ADS)

    Matveeva, Larisa; Belentsov, Yuri

    2017-10-01

    The article discusses the problem of targeted control over properties by modifying the supramolecular structure of polymer binders and composites based on their hierarchy. Control over the structure formation of polymers and introduction of modifying additives should be tailored to the specific hierarchical structural levels. Characteristics of polymer materials are associated with structural defects, which also display a hierarchical pattern. Classification of structural defects in polymers is presented. The primary structural level (nano level) of supramolecular formations is of great importance to the reinforcement and regulation of strength characteristics.

  19. From fundamental supramolecular chemistry to self-assembled nanomaterials and medicines and back again - how Sam inspired SAMul.

    PubMed

    Smith, David K

    2018-05-08

    This feature article provides a personal insight into the research from my group over the past 10 years. In particular, the article explains how, inspired in 2005 by meeting my now-husband, Sam, who had cystic fibrosis, and who in 2011 went on to have a double lung transplant, I took an active decision to follow a more applied approach to some of our research, attempting to use fundamental supramolecular chemistry to address problems of medical interest. In particular, our strategy uses self-assembly to fabricate biologically-active nanosystems from simple low-molecular-weight building blocks. These systems can bind biological polyanions in highly competitive conditions, allowing us to approach applications in gene delivery and coagulation control. In the process, however, we have also developed new fundamental principles such as self-assembled multivalency (SAMul), temporary 'on-off' multivalency, and adaptive/shape-persistent multivalent binding. By targeting materials with applications in drug formulation and tissue engineering, we have discovered novel self-assembling low-molecular-weight hydrogelators based on the industrially-relevant dibenzylidenesorbitol framework and developed innovative approaches to spatially-resolved gels and functional multicomponent hybrid hydrogels. In this way, taking an application-led approach to research has also delivered significant academic value and conceptual advances. Furthermore, beginning to translate fundamental supramolecular chemistry into real-world applications, starts to demonstrate the power of this approach, and its potential to transform the world around us for the better.

  20. Time-dependent gel to gel transformation of a peptide based supramolecular gelator.

    PubMed

    Baral, Abhishek; Basak, Shibaji; Basu, Kingshuk; Dehsorkhi, Ashkan; Hamley, Ian W; Banerjee, Arindam

    2015-06-28

    A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0-8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.

  1. Evaporation rate-based selection of supramolecular chirality.

    PubMed

    Hattori, Shingo; Vandendriessche, Stefaan; Koeckelberghs, Guy; Verbiest, Thierry; Ishii, Kazuyuki

    2017-03-09

    We demonstrate the evaporation rate-based selection of supramolecular chirality for the first time. P-type aggregates prepared by fast evaporation, and M-type aggregates prepared by slow evaporation are kinetic and thermodynamic products under dynamic reaction conditions, respectively. These findings provide a novel solution reaction chemistry under the dynamic reaction conditions.

  2. Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels: A modular design strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Lingguang; Gu Lina; Hu Gang

    2009-03-15

    Modular design method for designing and synthesizing microporous metal-organic frameworks (MOFs) with selective catalytical activity was described. MOFs with both nano-sized channels and potential catalytic activities could be obtained through self-assembly of a framework unit and a catalyst unit. By selecting hexaaquo metal complexes and the ligand BTC (BTC=1,3,5-benzenetricarboxylate) as framework-building blocks and using the metal complex [M(phen){sub 2}(H{sub 2}O){sub 2}]{sup 2+} (phen=1,10-phenanthroline) as a catalyst unit, a series of supramolecular MOFs 1-7 with three-dimensional nano-sized channels, i.e. [M{sup 1}(H{sub 2}O){sub 6}].[M{sup 2}(phen){sub 2}(H{sub 2}O){sub 2}]{sub 2}.2(BTC).xH{sub 2}O (M{sup 1}, M{sup 2}=Co(II), Ni(II), Cu(II), Zn(II), or Mn(II), phen=1,10-phenanthroline, BTC=1,3,5-benzenetricarboxylate, x=22-24),more » were synthesized through self-assembly, and their structures were characterized by IR, elemental analysis, and single-crystal X-ray diffraction. These supramolecular microporous MOFs showed significant size and shape selectivity in the catalyzed oxidation of phenols, which is due to catalytic reactions taking place in the channels of the framework. Design strategy, synthesis, and self-assembly mechanism for the construction of these porous MOFs were discussed. - Grapical abstract: A modular design strategy has been developed to synthesize microporous metal-organic frameworks with potential catalytic activity by self-assembly of the framework-building blocks and the catalyst unit.« less

  3. Dual pH-sensitive supramolecular micelles from star-shaped PDMAEMA based on β-cyclodextrin for drug release.

    PubMed

    Zhou, Zaishuai; Guo, Feng; Wang, Nairong; Meng, Meng; Li, Guiying

    2018-05-23

    Star-shaped poly(2-(dimethylamino)ethyl methacrylate) based on β-cyclodextrin (β-CD-(PDMAEMA) 7 ) was synthesized by means of atomic transfer radical polymerization (ATRP). Dual pH-sensitive supramolecular micelles were formed from β-CD-(PDMAEMA) 7 and benzimidazole modified poly(ε-caprolactone) (BM-PCL) through the host-guest interactions between β-CD and benzimidazole. The supramolecular micelles have regular spherical structure with hydrophobic β-CD/BM-PCL as the core and pH-sensitive PDMAEMA as the shell. The hydrophobic PCL as well as the hydrophobic cavity of β-CD can efficiently encapsulate doxorubicin (DOX) with the drug-loading content and entrapment efficiency up to 40% and 86%. The drug release from micelles accelerated when the pH decreased from 7.0 to 2.0 and the temperature increased from 25 °C to 45 °C. MTT assay showed that drug loaded supramolecular micelles exhibited excellent anti-cancer activity than free DOX. These supramolecular micelles have promising potential applications as intelligent nanocarriers in drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Supramolecular fabrication of multilevel graphene-based gas sensors with high NO2 sensibility.

    PubMed

    Chen, Zhuo; Umar, Ahmad; Wang, Shiwei; Wang, Yao; Tian, Tong; Shang, Ying; Fan, Yuzun; Qi, Qi; Xu, Dongmei; Jiang, Lei

    2015-06-14

    This study reports the supramolecular assembly of a silver nanoparticle-naphthalene-1-sulphonic acid-reduced graphene oxide composite (Ag-NA-rGO) and its utilization to fabricate a highly sensitive and selective gas sensor. The prepared supramolecular assembly acted not only as a non-covalent functionalization platform (π-π interaction) but was also an excellent scaffold to fabricate a highly sensitive and selective low concentration NO2 gas sensor. The prepared composites were characterized using several techniques, which revealed that the graphene sheets were dispersed as ultrathin monolayers with a uniform distribution of silver nanoparticles. The fabricated multilevel structure exhibited an excellent sensing performance, i.e. 2.8 times better, towards 10 ppm NO2 compared to the NA-rGO and rGO based sensors. Apart from its high sensitivity, superior reversibility and selectivity, the prepared supramolecular assembly exhibited an outstanding linear response over the large concentration range from 1 ppm to 10 ppm. The obtained results demonstrate that the prepared supramolecular assembly holds great potential in the fabrication of efficient and effective low-concentration NO2 gas sensors for practical applications.

  5. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  6. Porphyrin framework solids. Synthesis and structure of hybrid coordination polymers of tetra(carboxyphenyl)porphyrins and lanthanide-bridging ions.

    PubMed

    Muniappan, Sankar; Lipstman, Sophia; George, Sumod; Goldberg, Israel

    2007-07-09

    New types of porphyrin-based framework solids were constructed by reacting meso-tetra(3-carboxyphenyl)porphyrin and meso-tetra(4-carboxyphenyl)metalloporphyrins with common salts of lanthanide metal ions. The large size, high coordination numbers and strong affinity for oxo ligands of the latter, combined with favorable hydrothermal reaction conditions, allowed the formation of open three-dimensional single-framework architectures by coordination polymerization, in which the tetradentate porphyrin units are intercoordinated by multinuclear assemblies of the bridging metal ions. The latter serve as construction pillars of the supramolecular arrays, affording stable structures. Several modes of coordination polymerization were revealed by single-crystal X-ray diffraction. They differ by the spatial functionality of the porphyrin building blocks, the coordination patterns of the lanthanide-carboxylate assemblies, and the topology of the resulting frameworks. The seven new reported structures exhibit periodically spaced 0.4-0.6 nm wide channel voids that perforate the respective crystalline polymeric architectures and are accessible to solvent components. Materials based on the m-carboxyphenyl derivative reveal smaller channels than those based on the p-carboxyphenyl analogues. An additional complex of the former with a smaller third-row transition metal (Co) is characterized by coordination connectivity in two dimensions only. Thermal and powder-diffraction analyses confirm the stability of the lanthanide-TmCPP (TmCPP=tetra(m-carboxyphenyl)porphyrin) frameworks.

  7. Polyoxometalate-based Supramolecular Gel

    PubMed Central

    He, Peilei; Xu, Biao; Liu, Huiling; He, Su; Saleem, Faisal; Wang, Xun

    2013-01-01

    Self-assemblyings of surfactant-encapsulated Wells-Dawson polyoxometalates (SEPs) nanobuilding blocks in butanone and esters yielded supramolecular gels showing thermo and photo responsive properties. The gels can be further polymerized if unsaturated esters were used and subsequently electrospinned into nanowires and non-woven mats. The as-prepared non-woven mats have a Young's modulus as high as 542.55 MPa. It is believed that this supramolecular gel is a good platform for polyoxometalates processing. PMID:23666013

  8. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    PubMed

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  9. First fluorescent sensor for fluoride based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly.

    PubMed

    Zhao, Yao-Peng; Zhao, Chun-Chang; Wu, Li-Zhu; Zhang, Li-Ping; Tung, Chen-Ho; Pan, Yuan-Jiang

    2006-03-03

    A simple, highly selective, neutral, fluorescent sensor for fluoride anions is reported. It is based on 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded AADD supramolecular assembly, and its assembling and disassembling processes are also able to respond to external stimuli reversibly.

  10. Biopolymers and supramolecular polymers as biomaterials for biomedical applications

    PubMed Central

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B.; Naik, Rajesh R.

    2015-01-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine. PMID:26989295

  11. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Glucose-Responsive Supramolecular Vesicles Based on Water-Soluble Pillar[5]arene and Pyridylboronic Acid Derivatives for Controlled Insulin Delivery.

    PubMed

    Gao, Lei; Wang, Tingting; Jia, Keke; Wu, Xuan; Yao, Chenhao; Shao, Wei; Zhang, Dongmei; Hu, Xiao-Yu; Wang, Leyong

    2017-05-11

    The stimuli-responsive behavior of supramolecular nanocarriers is crucial for their potential applications as smart drug delivery systems. We hereby constructed a glucose-responsive supramolecular drug delivery system based on the host-guest interaction between a water-soluble pillar[5]arene (WP5) and a pyridylboronic acid derivative (G) for insulin delivery and controlled release under physiological conditions. The approach represents the ideal treatment of diabetes mellitus. The drug loading and in vitro drug release experiments demonstrated that large molecular weight insulin could be encapsulated into the vesicles with high loading efficiency, which, to our knowledge, is the first example of small-size supramolecular vesicles with excellent encapsulation capacity of a large protein molecule. Moreover, FITC-labeled insulin was used to evaluate the release behavior of insulin, and it was demonstrated that high glucose concentration could facilitate the quick release of insulin, suggesting a smart drug delivery system for potential application in controlled insulin release only under hyperglycemic conditions. Finally, we demonstrated that these supramolecular nanocarriers have good cytocompatibility, which is essential for their further biomedical applications. The present study provides a novel strategy for the construction of glucose-responsive smart supramolecular drug delivery systems, which has potential applications for the treatment of diabetes mellitus. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Visualization of Stereoselective Supramolecular Polymers by Chirality-Controlled Energy Transfer.

    PubMed

    Sarkar, Aritra; Dhiman, Shikha; Chalishazar, Aditya; George, Subi J

    2017-10-23

    Chirality-driven self-sorting is envisaged to efficiently control functional properties in supramolecular materials. However, the challenge arises because of a lack of analytical methods to directly monitor the enantioselectivity of the resulting supramolecular assemblies. Presented herein are two fluorescent core-substituted naphthalene-diimide-based donor and acceptor molecules with minimal structural mismatch and they comprise strong self-recognizing chiral motifs to determine the self-sorting process. As a consequence, stereoselective supramolecular polymerization with an unprecedented chirality control over energy transfer has been achieved. This chirality-controlled energy transfer has been further exploited as an efficient probe to visualize microscopically the chirality driven self-sorting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Supramolecular Polymer Nanocomposites - Improvement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hinricher, Jesse; Neikirk, Colin; Priestley, Rodney

    2015-03-01

    Supramolecular polymers differ from traditional polymers in that their repeat units are connected by hydrogen bonds that can reversibly break and form under various stimuli. They can be more easily recycled than conventional materials, and their highly temperature dependent viscosities result in reduced energy consumption and processing costs. Furthermore, judicious selection of supramolecular polymer architecture and functionality allows the design of advanced materials including shape memory and self-healing materials. Supramolecular polymers have yet to see widespread use because they can't support much weight due to their inherent mechanical weakness. In order to address this issue, the mechanical strength of supramolecular polymer nanocomposites based on ureidopyrmidinone (UPy) telechelic poly(caprolactone) doped with surface activated silica nanoparticles was investigated by tensile testing and dynamic mechanical analysis. The effects of varying amounts and types of nanofiller surface functionality were investigated to glean insight into the contributions of filler-filler and filler-matrix interactions to mechanical reinforcement in supramolecular polymer nanocomposites. MRSEC NSF DMR 0819860 (PI: Prof. N. Phuan Ong) REU Site Grant: NSF DMR-1156422 (PI: Prof. Mikko Haataja)

  15. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective

    PubMed Central

    Zhang, Jianxiang; Ma, Peter X

    2013-01-01

    The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed. PMID:23673149

  16. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    PubMed

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Haijuan; Zunzhe Shu; Niu Yunyin, E-mail: niuyy@zzu.edu.cn

    2012-06-15

    Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is themore » first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net containing {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} 1D chain and DIE ligands. These compounds had definite catalytic activities on the acetaldehyde oxidation.« less

  18. Unraveling the Solution-State Supramolecular Structures of Donor-Acceptor Polymers and their Influence on Solid-State Morphology and Charge-Transport Properties.

    PubMed

    Zheng, Yu-Qing; Yao, Ze-Fan; Lei, Ting; Dou, Jin-Hu; Yang, Chi-Yuan; Zou, Lin; Meng, Xiangyi; Ma, Wei; Wang, Jie-Yu; Pei, Jian

    2017-11-01

    Polymer self-assembly in solution prior to film fabrication makes solution-state structures critical for their solid-state packing and optoelectronic properties. However, unraveling the solution-state supramolecular structures is challenging, not to mention establishing a clear relationship between the solution-state structure and the charge-transport properties in field-effect transistors. Here, for the first time, it is revealed that the thin-film morphology of a conjugated polymer inherits the features of its solution-state supramolecular structures. A "solution-state supramolecular structure control" strategy is proposed to increase the electron mobility of a benzodifurandione-based oligo(p-phenylene vinylene) (BDOPV)-based polymer. It is shown that the solution-state structures of the BDOPV-based conjugated polymer can be tuned such that it forms a 1D rod-like structure in good solvent and a 2D lamellar structure in poor solvent. By tuning the solution-state structure, films with high crystallinity and good interdomain connectivity are obtained. The electron mobility significantly increases from the original value of 1.8 to 3.2 cm 2 V -1 s -1 . This work demonstrates that "solution-state supramolecular structure" control is critical for understanding and optimization of the thin-film morphology and charge-transport properties of conjugated polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. [Analysis on property of meridian supramolecules by biological evolution path].

    PubMed

    Deng, Kaiwen; Tao, Yeqin; Tang, Wenhan; He, Fuyuan; Liu, Wenlong; Shi, Jilian; Yang, Yantao; Zhou, Yiqun; Chang, Xiaorong

    2017-03-12

    With human placed in the whole nature, by following the biologic evolution path, the property of channel structure for "imprinting template" in meridian and zang-fu was explored with supramolecular chemistry. In the history of biologic evolution, each molecule in "molecule society" gradually developed into various highly-ordered supramolecular bodies based on self-identification, self-assembly, self-organization, self-replicating of"imprinting template", and thereby the original biochemical system was established, and finally evolved into human. In the forming process of supramolecular bodies, the channel structure of"imprinting template" in guest supramolecular bodies would be kept by host supramolecular bodies, and communicate with the outside to exchange materials, energy, information, otherwise life phenomenon could not continue, for which it was the chemical nature of biolo-gical supramolecular bodies for body to develop meridian. Therefore, the human was a gigantic and complicated supramolecules body in biological nature, and possessed the supramolecules "imprinting template" at each stage of evolution, for which the meridians were formed. When meridians converged, acupoints appeared; when acupointsconverged, zang-fu appeared. With the promotion of the blood from heart, according to"imprinting template", the guest supramolecular bodies and host meridian produced qi -analysis, which was the qi -phenomenon of guest in meridian. It presented as zang-fu image of physiology and pathology as well as action regularities of medication and acupuncture tolerance, by which current various meridian viewpoints could be explained and propose the hypothesis of meridian supramolecular bodies. The meridian and its phenomenon was decide by its "imprinting template" of supramolecular bodies and self-reaction regularities, which abided through the living nature. This was the substance for meridian biology.

  20. Porous Hydrogen-Bonded Organic Frameworks.

    PubMed

    Han, Yi-Fei; Yuan, Ying-Xue; Wang, Hong-Bo

    2017-02-13

    Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs) are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs) are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  1. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun

    2013-01-01

    Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554

  2. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage

    PubMed Central

    Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong

    2017-01-01

    We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690

  4. Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel

    PubMed Central

    Shi, Yang; Wang, Jingyu; Wang, Huaimin; Hu, Yanhui; Chen, Xuemei; Yang, Zhimou

    2014-01-01

    A biocompatible method of glutathione (GSH) catalyzed disulfide bond reduction was used to form Fmoc-short peptide-based supramolecular hydrogels. The hydrogels could form in both buffer solution and cell culture medium containing 10% of Fetal Bovine Serum (FBS) within minutes. The hydrogel was characterized by rheology, transmission electron microscopy, and fluorescence emission spectra. Their potential in three dimensional (3D) cell culture was evaluated and the results indicated that the gel with a low concentration of the peptide (0.1 wt%) was suitable for 3D cell culture of 3T3 cells. This study provides an alternative candidate of supramolecular hydrogel for 3D cell culture and cell delivery. PMID:25222132

  5. Supramolecular effects as driving force of dipyrrin based functional materials engineering

    NASA Astrophysics Data System (ADS)

    Banakova, E.; Bobrov, A.; Kazak, A.; Marfin, Yu; Merkushev, D.; Molchanov, E.; Rumyantsev, E.; Shipalova, M.; Usoltsev, S.; Vodyanova, O.

    2018-01-01

    Dipyrrin based luminophores are of major interest in different areas of chemistry, material science and molecular biology. Vast variety of the structures with dipyrrin motif were synthesized and investigated up to date. Modern trend in the dipyrrin chemistry is the aimed functionalization of the ligand or complex structure allowing to gain the mechanism based on supramolecular interactions for controlling spectral and photophysical characteristics of compounds for tuning practically valuable properties for specific tasks. Presented paper summarize the results of our research group, working in the field of dipyrrin complexes with p-elements: synthesis, spectral characteristics evaluation and possibilities of practical application investigation. Discussion is focused on the opportunities of molecules preorganization for achieving the supramolecular interactions causing the tuning of fluorescence of the compounds in solutions, polymeric matrices and thin films.

  6. Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives

    PubMed Central

    2018-01-01

    Synthetic hydrogel materials can recapitulate the natural cell microenvironment; however, it is equally necessary that the gels maintain cell viability and phenotype while permitting reisolation without stress, especially for use in the stem cell field. Here, we describe a family of synthetically accessible, squaramide-based tripodal supramolecular monomers consisting of a flexible tris(2-aminoethyl)amine (TREN) core that self-assemble into supramolecular polymers and eventually into self-recovering hydrogels. Spectroscopic measurements revealed that monomer aggregation is mainly driven by a combination of hydrogen bonding and hydrophobicity. The self-recovering hydrogels were used to encapsulate NIH 3T3 fibroblasts as well as human-induced pluripotent stem cells (hiPSCs) and their derivatives in 3D. The materials reported here proved cytocompatible for these cell types with maintenance of hiPSCs in their undifferentiated state essential for their subsequent expansion or differentiation into a given cell type and potential for facile release by dilution due to their supramolecular nature. PMID:29528623

  7. Formation of Polymer Particles by Direct Polymerization on the Surface of a Supramolecular Template.

    PubMed

    Schmuck, Carsten; Li, Mao; Zellermann, Elio

    2018-04-06

    Formation of polymeric materials on the surface of supramolecular assemblies is rather challenging due to the often weak non-covalent interactions between the self-assembled template and the monomers before polymerization. We herein describe that the introduction of a supramolecular anion recognition motif, the guanidiniocarbonyl pyrrole cation (GCP), into a short Fmoc-dipeptide 1 leads to self-assembled spherical nanoparticles in aqueous solution. Onto the surface of these nanoparticles negatively charged diacetylene monomers can be attached which after UV polymerization lead to the formation of a polymer shell around the self-assembled template. The hybrid supramolecular and polymeric nanoparticles demonstrated intriguing thermal hysteresis phenomenon. The template nanoparticle could be disassembled through the treatment with organic base which cleaved the Fmoc moiety on 1. This strategy thus showed that a supramolecular anion recognition motif allows the post-assembly formation of polymeric nanomaterials from anionic monomers around a cationic self-assembled template. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Combining Immune Checkpoint Inhibitors and Kinase-Inhibiting Supramolecular Therapeutics for Enhanced Anticancer Efficacy.

    PubMed

    Kulkarni, Ashish; Natarajan, Siva Kumar; Chandrasekar, Vineethkrishna; Pandey, Prithvi Raj; Sengupta, Shiladitya

    2016-09-29

    A major limitation of immune checkpoint inhibitors is that only a small subset of patients achieve durable clinical responses. This necessitates the development of combinatorial regimens with immunotherapy. However, some combinations, such as MEK- or PI3K-inhibitors with a PD1-PDL1 checkpoint inhibitor, are pharmacologically challenging to implement. We rationalized that such combinations can be enabled using nanoscale supramolecular targeted therapeutics, which spatially home into tumors and exert temporally sustained inhibition of the target. Here we describe two case studies where nanoscale MEK- and PI3K-targeting supramolecular therapeutics were engineered using a quantum mechanical all-atomistic simulation-based approach. The combinations of nanoscale MEK- and PI3K-targeting supramolecular therapeutics with checkpoint PDL1 and PD1 inhibitors exert enhanced antitumor outcome in melanoma and breast cancers in vivo, respectively. Additionally, the temporal sequence of administration impacts the outcome. The combination of supramolecular therapeutics and immunotherapy could emerge as a paradigm shift in the treatment of cancer.

  9. A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes.

    PubMed

    Martín-Caballero, Jagoba; San José Wéry, Ana; Reinoso, Santiago; Artetxe, Beñat; San Felices, Leire; El Bakkali, Bouchra; Trautwein, Guido; Alcañiz-Monge, Juan; Vilas, José Luis; Gutiérrez-Zorrilla, Juan M

    2016-05-16

    The first decavanadate-based microporous hybrid, namely, [Cu(cyclam)][{Cu(cyclam)}2(V10O28)]·10H2O (1, cyclam = 1,4,8,11-tetraazacyclotetradecane) was prepared by reaction of (VO3)(-) anions and {Cu(cyclam)}(2+) complexes in NaCl (aq) at pH 4.6-4.7 and characterized by elemental analyses, thermogravimetry, and X-ray diffraction (powder, single-crystal) techniques. Compound 1 exhibits a POMOF-like supramolecular open-framework built of covalent decavanadate/metalorganic layers with square-like voids, the stacking of which is aided by interlamellar cementing complexes and generates water-filled channels with approximate cross sections of 10.4 × 8.8 Å(2). The framework is robust enough to remain virtually unaltered upon thermal evacuation of all water molecules of hydration, as demonstrated through single-crystal X-ray diffraction studies on the anhydrous phase 1a. This permanent microporosity renders interesting functionality to 1, such as selective adsorption of CO2 over N2 and remarkable activity as heterogeneous catalyst toward the H2O2-based oxidation of the highly-stable, tricyclic alkane adamantane.

  10. A Stimuli-Responsive Supramolecular Hydrogel for Controlled Release of Drug

    NASA Astrophysics Data System (ADS)

    Biswas, Subharanjan; Datta, Lakshmi Priya; Roy, Soumyajit

    An inexpensive, facile, and environmentally benign method has been developed for the preparation of stimuli-responsive and self-healing polyacrylic acid-chitosan-based supramolecular hydrogels. Guanidine hydrochloride is used as the supramolecular crosslinker to form an interconnected network with polyacrylic acid-chitosan complex. Because of the dynamic equilibrium between the hydrogen-bonding sites of the components, the hydrogels were found to be self-healable and sensitive to biochemical-stimulus, such as pH. Controlled loading of drug like doxorubicin and its significant anticancer activity of such hydrogels is worth mentioning.

  11. Capsid-like supramolecular dendritic systems as pH-responsive nanocarriers for drug penetration and site-specific delivery.

    PubMed

    Li, Yachao; Lai, Yusi; Xu, Xianghui; Zhang, Xiao; Wu, Yahui; Hu, Cheng; Gu, Zhongwei

    2016-02-01

    Supramolecular dendritic systems emerge as a promising new-generation bioinspired nanoplatform for nanomedicine. Herein, we report capsid-like mimics self-assembled from peptide dendrimers and functionalized peptides to enhance drug penetration and site-specific delivery for tumor therapy. These drug-loaded supramolecular dendritic systems are endowed with capsid-like component and nanostructure by a facile supramolecular approach. As expected, the drug-loaded capsid-like nanocarriers show some desirable advantages for antitumor drug delivery: a) well-defined nanostructure to improve drug location at tumor site, b) capsid-like architecture to enhance drug penetration, c) high internalization, pH-controlled release and nuclear delivery to jointly achieve site-specific delivery. Based on these merits, the drug-loaded capsid nanocarriers provide efficient tumor suppression to 4T1 tumor bearing BALB/c mice and decrease the DOX-induced toxicity during treatment course. Dendrimers have been tested in many clinical trials as nanocarriers, without great success due to many limitations. Here, the authors attempted to address these issues by developing supramolecular dendritic systems, which mimic capsids in viruses. Both in-vitro and in-vivo studies showed promising results. This work should provide a platform for further development of dendrimer-based nanocarriers for drug delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Synthesis, crystal structure and properties of a new 3D supramolecular unsymmetrical tetradentate Schiff bases copper (II) framework with stable tunnels

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.

    2016-12-01

    Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.

  13. Syntheses and structure characterization of ten acid-base hybrid crystals based on imidazole derivatives and mineral acids

    NASA Astrophysics Data System (ADS)

    Hu, Kaikai; Deng, Bowen; Jin, Shouwen; Ding, Aihua; Jin, Shide; Zhu, Jin; Zhang, Huan; Wang, Daqi

    2018-04-01

    Cocrystallization of the imidazole derivatives with a series of mineral acids gave a total of ten hybrid salts with the compositions: [(H2bzm)(Cl)2·3H2O] (1), [(H2bzm)(ClO4)2] (2), [(H2bze)(Cl)2·2H2O] (3), [(H2bze)(Br)2·2H2O] (4), [(H2bzp)(Cl)2·4H2O] (5), [(H2bzp)(Br)2·4H2O] (6), (2-(imidazol-1-yl)-1-phenylethanone): (phosphoric acid) [(Himpeta)+(H2PO4)-] (7), [(H2impd)(Br)2] (8), [(H2impd)(ClO4)2] (9), and [(Hbzml)(Cl)] (10). The ten salts have been characterised by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N atoms of the imidazole are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical H-bonds between the NH+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different set of additional CHsbnd O, CH2sbnd O, CHsbnd Cl, CH2sbnd Cl, CHsbnd N, CHsbnd Br, CH2sbnd Br, Osbnd O, O-π, Br-π, CH-π, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R21(7), R22(7), R22(8), and R42(8), usually observed in the organic solids, were again shown to be involved in constructing some of these H-bonding networks.

  14. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.

    PubMed

    Sankaran, Shrikrishnan; Kiren, Mustafa Can; Jonkheijm, Pascal

    2015-01-01

    Supramolecular assemblies, formed through noncovalent interactions, has become particularly attractive to develop dynamic and responsive architectures to address living systems at the nanoscale. Cucurbit[8]uril (CB[8]), a pumpkin shaped macrocylic host molecule, has been successfully used to construct various self-assembled architectures for biomedical applications since it can simultaneously bind two aromatic guest molecules within its cavity. Such architectures can also be designed to respond to external stimuli. Integrating living organisms as an active component into such supramolecular architectures would add a new dimension to the capabilities of such systems. To achieve this, we have incorporated supramolecular functionality at the bacterial surface by genetically modifying a transmembrane protein to display a CB[8]-binding motif as part of a cystine-stabilized miniprotein. We were able to confirm that this supramolecular motif on the bacterial surface specifically binds CB[8] and forms multiple intercellular ternary complexes leading to aggregation of the bacterial solution. We performed various aggregation experiments to understand how CB[8] interacts with this bacterial strain and also demonstrate that it can be chemically reversed using a competitor. To confirm that this strain can be incorporated with a CB[8] based architecture, we show that the bacterial cells were able to adhere to CB[8] self-assembled monolayers (SAMs) on gold and still retain considerable motility for several hours, indicating that the system can potentially be used to develop supramolecular bacterial biomotors. The bacterial strain also has the potential to be combined with other CB[8] based architectures like nanoparticles, vesicles and hydrogels.

  15. Hydrogen bonded supra-molecular framework in inorganic-organic hybrid compounds: Syntheses, structures, and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Wei; Li, Chuanbi; Wang, Yifei; Ma, Li; Dong, Qinqin

    2013-03-01

    Two novel compounds constructed from aromatic acid and N-Heterocyclic ligands have been synthesized by hydrothermal reaction: [Cd(mip)(1,8-NDC)(H2O)]2 (1) [mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, 1,8-NDC = naphthalene-1,8-dicarboxylic acid] and Cd(mip)2(NTC)2 (2) [NTC = nicotinic acid]. Compounds 1 and 2 are characterized by elemental analysis, IR, single crystal X-ray diffraction and thermogravimetric analysis (TGA). Single-crystal X-ray investigation reveals that compounds 1-2 are 0 dimensional (0D) structures, and the existence of hydrogen bonds and π-π interactions lead the 0D to 2D novel framework. Hydrogen bonds and π-π interactions are powerful non-covalent intermolecular interactions for directing supra-molecular architectures. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. At room temperature, compound 1 exhibits emission at 449 nm upon excitation at 325 nm, and compound 2 shows a strong emission at 656 nm upon excitation at 350 nm. Fluorescent spectrum displays that compounds 1 and 2 are potential luminescent materials.

  16. Supramolecular aromaticity

    NASA Astrophysics Data System (ADS)

    Karabıyık, Hande; Sevinçek, Resul; Karabıyık, Hasan

    2014-05-01

    We report experimental and theoretical evidences for supramolecular aromaticity as a new concept to be widely used in researches about molecular crystals. CSD survey regarding frequently encountered resonance-assisted H-bonds (RAHBs) in formic acid, formamide, formimidamide, formic acid-formamide, and formamide-formimidamide dimers shows that supramolecular quasirings formed by RAHBs have remarkable electronic delocalization within themselves, which is reminiscent of aromaticity at supramolecular level. This study criticizes and reevaluates the validity of conventional judgment which states that ring systems formed by intermolecular H-bonds cannot be aromatic. Thus, the term aromaticity can be extended to supramolecular systems formed by RAHBs. Supramolecular aromaticity has a multi-fold nature involving both σ- and π-delocalization, and σ-delocalization through RAHBs takes on a task of compensating σ-deficiency within quasirings. Atomic composition in donor-acceptor set of the dimers is descriptive for supramolecular aromaticity. We revised bond-valence parameters for RAHBs and they suggest that hypervalent character of H atoms is more pronounced than their hypovalent character in RAHBs. The σ-delocalized bonding within H-bonded quasirings necessitates hypervalent character of H atoms. Quantum chemical calculations based on adiabatic Hydrogen Atom Transfer (HAT) between the monomers reveal that topological parameters at ring critical points (RCPs) of the quasirings correlate well with Shannon's entropic aromaticity index. The presence of additional LP orbital on O atoms implying more diffused LP-orbitals in donor-acceptor set leads to the formation of resonance-disabling states reducing supramolecular aromaticity of a quasiring and energetic cost of the electron transfer between the monomers. There is a nonignorable electron transfer between the monomers even in the cases where H atoms are close to donor or acceptor atom. NBO analyses have revealed that formally vacant LP* orbitals on H-atoms in TS geometries mediate intermolecular electron transfer as a result of the hyperconjugative stereoelectronic interactions.

  17. Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.

    PubMed

    Lescop, Christophe

    2017-04-18

    One important concept associated with supramolecular chemistry is supramolecular self-assembly, which deals with the way discrete individual components interact via intermolecular interactions in order to build, upon their spontaneous association, high order functional assemblies. The accumulation of these very simple and localized noncovalent interactions (such as H-bonding, dipole-dipole, hydrophobic/hydrophilic, van der Waals, π-π, π-CH, etc.) is ubiquitous in the complexity of natural systems (such as DNA, proteins, membranes, micelles, etc.). It can also be transposed to the directed synthesis of intricate artificial scaffolds, which have anticipated geometries and properties. Among the synthetic strategies based on this concept, coordination-driven supramolecular chemistry uses the robust, reversible, and directional metal-to-ligand coordinative bond to build discrete metallo-supramolecular architectures. Within the last two decades, coordination-driven supramolecular chemistry has proved to be one of the most powerful contemporary synthetic approaches and has provided a significant number of increasingly complex supramolecular assemblies, which have predetermined sizes and geometries. While much focus has been devoted to architectures bearing internal cavities for host-guest chemistry or to generate specific reactivity, particular attention can also be paid to compact supramolecular assemblies given that their specific structures are characterized by peculiar synthetic guiding rules as well as by alternative long-range self-assembling properties. This Account describes how a preassembled Cu I bimetallic clip bearing short intermetallic distances can be used as a U-shaped molecular clip to give general and versatile access to a large variety of original compact supramolecular metallacycles. When this Cu I precursor is reacted with various cyano-capped ditopic linkers that have increasing lengths and complexities, specific effects guiding the selective and straightforward syntheses of such compact supramolecular objects are highlighted. Whereas a subtle compromise between the length of the ditopic linkers and the steric bulk of the molecular clip appears to be a purely stereogeometric preliminary parameter to master, lateral interlinker interactions (π-π stacking interactions or aurophilic interactions depending on the nature of the internal cores of the linkers) can circumvent these constraints regardless of the length of the linkers and allow the selective formation of new compact supramolecular structures. Generally, such derivatives presented a strong tendency to self-assemble in the solid state due to inter-supramolecule interactions. This approach thus opens a new door toward molecular materials having an attractive solid state structure for potential applications related to charge carrier mobility and luminescence properties. These compact supramolecular assemblies can therefore be considered as original secondary binding units directing the predictive preparation of such extended networks. The on-purpose design of original building blocks bearing specific cores allowed the formation of new compact supramolecular metallacycles such as "U-shaped" π-stacked assemblies or "pseudodouble paracyclophanes". Similarly, the control of the secondary structure of one-dimensional coordination polymers alternating π-stacked compact supramolecular metallacycles was also conducted. The results that are discussed in this Account illustrate how the rational design of both preassembled polymetallic precursors bearing short intermetallic distances and ditopic linkers able to induce cumulative lateral weak interactions can implement the general synthetic guiding rules of coordination driven supramolecular chemistry. This opens perspectives to use such compact supramolecular assemblies as secondary building blocks for the design of long-range organized functional molecular materials that have predictable architectures and targeted properties.

  18. C-I···π Halogen Bonding Driven Supramolecular Helix of Bilateral N-Amidothioureas Bearing β-Turns.

    PubMed

    Cao, Jinlian; Yan, Xiaosheng; He, Wenbin; Li, Xiaorui; Li, Zhao; Mo, Yirong; Liu, Maili; Jiang, Yun-Bao

    2017-05-17

    We report the first example of C-I···π halogen bonding driven supramolecular helix in highly dilute solution of micromolar concentration, using alanine based bilateral I-substituted N-amidothioureas that contain helical fragments, the β-turn structures. The halogen bonding interactions afford head-to-tail linkages that help to propagate the helicity of the helical fragments. In support of this action of the halogen bonding, chiral amplification was observed in the supramolecular helix formed in acetonitrile solution. The present finding provides alternative tools in the design of self-assembling macromolecules.

  19. Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor

    PubMed Central

    Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng

    2014-01-01

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319

  20. Supramolecular Based Membrane Sensors

    PubMed Central

    Ganjali, Mohammad Reza; Norouzi, Parviz; Rezapour, Morteza; Faridbod, Farnoush; Pourjavid, Mohammad Reza

    2006-01-01

    Supramolecular chemistry can be defined as a field of chemistry, which studies the complex multi-molecular species formed from molecular components that have relatively simpler structures. This field has been subject to extensive research over the past four decades. This review discusses classification of supramolecules and their application in design and construction of ion selective sensors.

  1. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    PubMed

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  2. Ionic supramolecular networks fully based on chemicals coming from renewable sources.

    PubMed

    Aboudzadeh, Ali; Fernandez, Mercedes; Muñoz, Maria Eugenia; Santamaría, Antxon; Mecerreyes, David

    2014-02-01

    New supramolecular ionic networks are synthesized by proton transfer reaction between a bio-based fatty diamine molecule (Priamine 1074) and a series of naturally occurring carboxylic acids such as malonic acid, citric acid, tartaric acid, and 2,5-furandicarboxylic acid. The resulting solid soft material exhibits a thermoreversible transition becoming a viscoelastic liquid at high temperatures. All the networks show an elastic behavior at low temperatures/high frequencies, with elastic modulus values ranging from 4.5 × 10(6) to 4.5 × 10(7) Pa and soft network to liquid transitions T(nl) between -10 and 60 °C. The supramolecular ionic network based on cationic Priamine 1074 and anionic citrate shows promising self-healing properties at room temperature as well as relatively high ionic conductivity values close to 10(-6) S cm(-1). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.

    PubMed

    Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard

    2017-07-25

    A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).

  4. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  5. Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio

    PubMed Central

    2012-01-01

    Background Research interest in phosphonates metal organic frameworks (MOF) has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh) network of cobalt vinylphosphonate (Co(vP)·H2O). Results A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh) network Co(vP)·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data. Conclusions Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost. PMID:22932493

  6. Designing, Describing and Disseminating New Materials by using the Network Topology Approach.

    PubMed

    Öhrström, Lars

    2016-09-19

    This Concept article describes how network topology analysis is applied to different fields of solid-state chemistry. Its usefulness is demonstrated by examples from metal-organic frameworks, group 14 allotropes and related compounds, ice polymorphs, zeolites, supramolecular (organic) solid-state chemistry, Zintl phases, and cathode materials for Li-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular Nanoparks for CWAs, TICs, and TIMs

    DTIC Science & Technology

    2012-12-11

    Symposium on Macrocyclic and Supramolecular Chemistry, June 2010, Nara, Japan (Plenary talk). O. M. Yaghi, Zeolitic imidazolate frameworks, 5th...International Zeolite Membrane Meeting, May 2010, Loutraki, Greece (Plenary talk). O. M. Yaghi, Reticular chemistry and its applications to clean energy...highest uptake capacity (15 mol/kg, 298 K, 1 bar) of any porous material, including zeolite , cation exchange resin, and mesoporous silica. 4. The gas

  8. Indanedione based binary chromophore supramolecular systems as a NLO active polymer composites

    NASA Astrophysics Data System (ADS)

    Rutkis, M.; Tokmakovs, A.; Jecs, E.; Kreicberga, J.; Kampars, V.; Kokars, V.

    2010-06-01

    Novel route to obtain EO material is proposed by supramolecular assembly of neutral-ground-state (NGS) and zwitterionic (ZWI) NLO chromophores in binary chromophore organic glass (BCOG) host-guest system. On a basis of our Langeven Dynamics (LD) molecular modeling combined with quantum chemical calculations, we have shown that anticipated enhancement NLO efficiency of BCOG material is possible via electrostatic supramolecular assembly of NGS with ZWI chromophore in antiparallel manner. Binding energy of such complex could be more dependent on molecular compatibility of components and local (atomic) charge distribution, then overall molecular dipole moments. According to our LD simulations these supramolecular bind structures of NGS and ZWI chromophores can sustain thermally assisted electrical field poling. For the one of experimentally investigated systems, build from dimethylaminobenzylidene 1,3-indanedione containing host and zwitterionic indanedione-1,3 pyridinium betaine as a guest, almost twofold enhancement of NLO efficiency was observed.

  9. Coherent states field theory in supramolecular polymer physics

    NASA Astrophysics Data System (ADS)

    Fredrickson, Glenn H.; Delaney, Kris T.

    2018-05-01

    In 1970, Edwards and Freed presented an elegant representation of interacting branched polymers that resembles the coherent states (CS) formulation of second-quantized field theory. This CS polymer field theory has been largely overlooked during the intervening period in favor of more conventional "auxiliary field" (AF) interacting polymer representations that form the basis of modern self-consistent field theory (SCFT) and field-theoretic simulation approaches. Here we argue that the CS representation provides a simpler and computationally more efficient framework than the AF approach for broad classes of reversibly bonding polymers encountered in supramolecular polymer science. The CS formalism is reviewed, initially for a simple homopolymer solution, and then extended to supramolecular polymers capable of forming reversible linkages and networks. In the context of the Edwards model of a non-reacting homopolymer solution and one and two-component models of telechelic reacting polymers, we discuss the structure of CS mean-field theory, including the equivalence to SCFT, and show how weak-amplitude expansions (random phase approximations) can be readily developed without explicit enumeration of all reaction products in a mixture. We further illustrate how to analyze CS field theories beyond SCFT at the level of Gaussian field fluctuations and provide a perspective on direct numerical simulations using a recently developed complex Langevin technique.

  10. Fabrication of MTN-type zeolite by self-assembling of supramolecular compound

    NASA Astrophysics Data System (ADS)

    Huang, Aisheng; Caro, Jürgen

    2009-10-01

    MTN-type (Zeolite Socony Mobil Thirty-Nine) zeolite was prepared at 473 K by a novel method through self-assembling of a supramolecular compound called 2,4,6-tris (4-pyridyl) triazine (TPT) in DMF (N,N-dimethylformamide). The effects of fluoride, DMF and germanium on the synthesis of MTN-type zeolite were investigated. The crystallization was facilitated by adding fluoride to the synthesis solution, resulting in the formation of highly crystalline MTN samples, while some amorphous phase was observed in fluoride-free batches. DMF was required to obtain a highly crystalline MTN sample, since TPT dissolves easier in DMF than in water, thus facilitating the self-assembling of TPT into a 3D network to structure the MTN framework. The MTN structure could be synthesized at low germanium content (Ge/Si≤0.18), while AST (AlPO 4-sixteen) as a foreign phase is formed at high germanium substitution (Ge/Si≥0.5).

  11. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a single SNP for both diagnosis and therapy were generated. The results show that this type of theranostic SNPs may have a great contribution in the optimization of therapeutic efficacy for individual patients in clinical translation in the near future. It is anticipated that our supramolecular synthetic approach could be adopted to assemble various SNP-based delivery agents for molecular diagnostics and therapeutics that pave the way toward personalized medicine.

  12. Toward self-organization and complex matter.

    PubMed

    Lehn, Jean-Marie

    2002-03-29

    Beyond molecular chemistry based on the covalent bond, supramolecular chemistry aims at developing highly complex chemical systems from components interacting through noncovalent intermolecular forces. Over the past quarter century, supramolecular chemistry has grown into a major field and has fueled numerous developments at the interfaces with biology and physics. Some of the conceptual advances and future challenges are profiled here.

  13. Star-like supramolecular polymers fabricated by a Keplerate cluster with cationic terminated polymers and their self-assembly into vesicles.

    PubMed

    Zhang, Qian; He, Lipeng; Wang, Hui; Zhang, Cheng; Liu, Weisheng; Bu, Weifeng

    2012-07-18

    The electrostatic combination of a Keplerate cluster, [Mo(132)O(372)(CH(3)COO)(30)(H(2)O)(72)](42-) with cationic terminated poly(styrene) yields polyoxometalate-based supramolecular star polymers, which can further self-assemble into vesicular aggregates in CHCl(3)-MeOH mixed solvent.

  14. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    PubMed

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization.

    PubMed

    Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A

    2017-09-15

    The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.

  16. Hierarchical self-assembly, coassembly, and self-organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer.

    PubMed

    Percec, Virgil; Bera, Tushar K; Glodde, Martin; Fu, Qiongying; Balagurusamy, Venkatachalapathy S K; Heiney, Paul A

    2003-02-17

    The synthesis and structural analysis of the twin-dendritic benzamide 10, based on the first-generation, self-assembling, tapered dendrons 3,4,5-tris(4'-dodecyloxybenzyloxy)benzoic acid and 3,4,5-tris(4'-dodecyloxybenzyloxy)-1-aminobenzene, and the polymethacrylate, 20, which contains 10 as side groups, are presented. Benzamide 10 self-assembles into a supramolecular cylindrical dendrimer that self-organizes into a columnar hexagonal (Phi(h)) liquid crystalline (LC) phase. Polymer 20 self-assembles into an imperfect four-cylinder-bundle supramolecular dendrimer, and creates a giant vesicular supercylinder that self-organizes into a columnar nematic (N(c)) LC phase which displays short-range hexagonal order. In mixtures of 20 and 10, 10 acts as a guest and 20 as a host to create a perfect four-cylinder-bundle host-guest supramolecular dendrimer that coorganizes with 10. A diversity of Phi(h), simple rectangular columnar (Phi(r-s)) and centered rectangular columnar (Phi(r-c)), superlattices are produced at different ratios between 20 and 10. This diversity of LC lattices and superlattices is facilitated by the architecture of the twin-dendritic building block, polymethacrylate, the host-guest supramolecular assembly, and by hydrogen bonding along the center of the supramolecular cylinders generated from 10 and 20.

  17. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    PubMed Central

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  18. Building new discrete supramolecular assemblies through the interaction of iso-tellurazole N-oxides with Lewis acids and bases.

    PubMed

    Ho, Peter C; Jenkins, Hilary A; Britten, James F; Vargas-Baca, Ignacio

    2017-10-13

    The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR 3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4'-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.

  19. Role of S…O non-bonded interaction in controlling supramolecular assemblies in a new series of 2-aminobenzothiazole based organic salts/ co-crystals

    NASA Astrophysics Data System (ADS)

    Yadav, Priyanka; Patel, Vatsa; Ballabh, Amar

    2018-07-01

    A new series of 2-aminobenzothiazole based organic salts were synthesized with mono- / di-carboxylic acid and characterized with various physico-chemical methods. One of the synthesized salt 2-aminobenzothiazolium-hydrogen fumarate (BTzA4) was found to be capable of gelling water with minimum gelator concentration (MGC) around 1.25 wt% (w/v). The single crystal structures of gelator (BTzA4) and non-gelators were analyzed for the presence of various supramolecular synthons especially the rarely occurring non-bonded S…O interactions and their role in controlling the overall hydrogen bonded network in these series of salts/ cocrystals. Charge assisted hydrogen bonded network was found to be governing the weak non-bonded S…O supramolecular synthons in the present study.

  20. Supramolecular Synthons: Will Giant Rigid Superspheres Do?

    PubMed Central

    2016-01-01

    For the first time, the concept of supramolecular synthons was applied to giant rigid superspheres based on pentaphosphaferrocene [CpRFe(η5-P5)] (R = Me, Et) and Cu(I) halides, which reach 2.1–3.0 nm in diameter. Two supramolecular synthons, σ–π and π–π, are discovered based on halogen···CpR and Cp*···Cp* specific interactions, respectively. The geometry of the synthons is reproducible in a series of crystal structures of various supramolecules. The σ–π synthon alone is realized more frequently for Br-containing superspheres. A combination of the σ–π and π–π synthons is more typical for Cl-containing supramolecules. Each supramolecule can bear up to nine synthons to give mostly 2D and 3D architectures. PMID:27081373

  1. Structure, photoluminescent properties and photocatalytic activities of a new Cd(II) metal-organic framework.

    PubMed

    Zhang, Cheng Yan; Ma, Wei Xing; Wang, Ming Yan; Yang, Xu Jie; Xu, Xing You

    2014-01-24

    A new metal-organic framework, [Cd(TDC)(bix)(H2O)]n (H2TDC = thiophene-2,5-dicarboxylic acid; bix = 1,4-bis(imidazol-1-ylmethyl)benzene), has been synthesized under hydrothermal conditions and structurally characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, UV-vis and single X-ray diffraction. Cd-MOF is a 2D infinite layer framework, which is further interconnected by hydrogen-bond interactions leading to a 3D supramolecular architecture. The photoluminescent properties of the Cd-MOF were investigated and this compound shows intense fluorescent emissions in the solid state. In addition, it exhibits good photocatalytic activities for the degradation of methyl organic under UV light irradiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Formation of supramolecular clusters at the interface of zeolite X following the adsorption of rare-earth cations and their impact on the macroscopic properties of the zeolite.

    PubMed

    Guzzinati, Roberta; Sarti, Elena; Catani, Martina; Costa, Valentina; Pagnoni, Antonella; Martucci, Annalisa; Rodeghero, Elisa; Capitani, Donatella; Pietrantonio, Massimiliana; Cavazzini, Alberto; Pasti, Luisa

    2018-05-18

    The adsorption behavior of neodymium (Nd3+) and yttrium (Y3+) cations on synthetic FAU zeolite 13X in its sodium form (Na13X) has been investigated by means of an approach based on both macroscopic (namely, adsorption isotherm determination and thermal analysis) and microscopic measurements (including solid-state NMR spectroscopy and X-ray powder diffraction). The multidisciplinary study has revealed some unexpected features. Firstly, adsorption constants of cations are not correlated to their ionic radii (or hydration enthalpy). The adsorption constant of Y3+ on Na13X was indeed about twice that of Nd3+, which is the opposite of what could be expected based on the size of the cations. In addition, adsorption was accompanied by partial dealumination of the zeolite framework. The extent of dealumination changed depending on exchanged cations. It was more significant on the Nd-exchanged zeolite than on the Y-exchanged one. The most interesting finding of this study, however, is the presence of supramolecular clusters composed of water, Nd3+, residual sodium ions and extraframework aluminum at the interface of Nd-exchanged zeolite. The hypothesis that these host-guest complexes are responsible of the significantly different behavior exhibited by Na13X towards the adsorption/desorption of Nd3+ and Y3+ has been formulated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Self-encapsulation of [MII(phen)2(H2O)2]2+ (M=Co, Zn) in one-dimensional nanochannels of [MII(H2O)6(BTC)2]4- (M=Co, Cu, Mn): a high HQ/CAT ratio catalyst for hydroxylation of phenols.

    PubMed

    Bi, Jianhong; Kong, Lingtao; Huang, Zixiang; Liu, Jinhuai

    2008-06-02

    Four novel three-dimensional (3D) microporous supramolecular compounds containing nanosized channels, namely, [Co(phen)2(H2O)2]2[Co(H2O)6].2BTC.21.5H2O (1), [Co(phen)2(H2O)2]2[Cu(H2O)6].2BTC.21.5H2O (2), [Co(phen)2(H2O)2]2[Mn(H2O)6].2BTC.18H2O (3), and [Zn(phen)2(H2O)2]2[Mn(H2O)6].2BTC.22.5H2O (4), were synthesized from 1,3,5-benzenetricarboxylate (BTC), 1,10-phenanthroline (phen), and the transition-metal salt(s) by self-assembly. Single-crystal X-ray structural analysis showed that the resulting 3D microporous supramolecular frameworks consist of a two-dimensional (2D) hydrogen-bonded host framework of [MII(H2O)6(BTC)2]4- (M=Co for 1, Cu for 2, Mn for 3, 4) with rectangular-shaped cavities containing [MII(phen)2(H2O)2]2+ (M=Co for 1-3, Zn for 4) guests. The guest complex is encapsulated in the 2D hydrogen-bonded host framework by hydrogen bonding and aromatic pi-pi stacking interactions, forming the 3D hydrogen-bonded framework. The catalytic activities of 1, 2, 3, and 4 were studied using hydroxylation of phenols with 30% aqueous H2O2 as a test reaction. The compounds displayed a good phenol conversion ratio and excellent channel selectivity in the hydroxylation reaction, with a maximum hydroquinone (HQ)/catechol (CAT) ratio of 3.9.

  4. Novel metal-organic and supramolecular 3D frameworks constructed from flexible biphenyl-2,5,3‧-tricarboxylate blocks: Synthesis, structural features and properties

    NASA Astrophysics Data System (ADS)

    You, Ao; Li, Yu; Zhang, Ze-Min; Zou, Xun-Zhong; Gu, Jin-Zhong; Kirillov, Alexander M.; Chen, Jin-Wei; Chen, Yun-Bo

    2017-10-01

    Biphenyl-2,5,3‧-tricarboxylic acid (H3L) was selected as an unexplored tricarboxylate building block and applied for the hydrothermal synthesis of three novel coordination compounds, namely a 0D tetramer [Co4(HL)2(μ3-HL)2(phen)6(H2O)2]·3H2O (1) and two 3D metal-organic frameworks (MOFs) [Cd3(μ5-L)(μ6-L)(py)(μ-H2O)2(H2O)]n·H2O (2) and [Zn3(μ4-L)2(2,2‧-bpy)(μ-4,4‧-bpy)]n·2H2O (3). These products were easily generated in aqueous medium from the corresponding metal(II) chlorides, H3L, and various N-donor ancillary ligands, selected from 1,10-phenanthroline (phen), pyridine (py), 2,2‧-bipyridine (2,2‧-bpy), and 4,4‧-bipyridine (4,4‧-bpy). Compounds 1-3 were isolated as stable crystalline solids and were fully characterized by IR and UV-vis spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a discrete tetracobalt(II) structure, which is extended into a 3D H-bonded network with the pcu topology. In contrast, MOF 2 discloses a very complex trinodal 4,5,12-connected net with an undocumented topology, while MOF 3 features the nce/I topological framework. The magnetic (for 1) and luminescence (for 2 and 3) properties were also studied and discussed. The present study thus widens a still very limited family of metal-organic and supramolecular frameworks driven by flexible biphenyl-2,5,3‧-tricarboxylate building blocks.

  5. Assembly and property research on seven 0D-3D complexes derived from imidazole dicarboxylate and 1,2-bi(pyridin-4-yl)ethene

    NASA Astrophysics Data System (ADS)

    Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan

    2015-03-01

    The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H3ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H2O)] (1), [M(H2ImDC)2(H2O)2]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn3(ImDC)2(bpe)(H2O)]·3H2O (5) and [Cd(H2ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O-H•••O and O-H•••N). Complexes 2-4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O-H•••O and O-H•••N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (103) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1-7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K.

  6. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery.

    PubMed

    Duan, Qunpeng; Cao, Yu; Li, Yan; Hu, Xiaoyu; Xiao, Tangxin; Lin, Chen; Pan, Yi; Wang, Leyong

    2013-07-17

    The drug delivery system based on supramolecular vesicles that were self-assembled by a novel host-guest inclusion complex between a water-soluble pillar[6]arene (WP6) and hydrophobic ferrocene derivative in water has been developed. The inclusion complexation between WP6 and ferrocene derivative in water was studied by (1)H NMR, UV-vis, and fluorescence spectroscopy, which showed a high binding constant of (1.27 ± 0.42) × 10(5) M(-1) with 1:1 binding stoichiometry. This resulting inclusion complex could self-assemble into supramolecular vesicles that displayed a significant pH-responsive behavior in aqueous solution, which were investigated by fluorescent probe technique, dynamic laser scattering, and transmission electron microscopy. Furthermore, the drug loading and in vitro drug release studies demonstrated that these supramolecular vesicles were able to encapsulate mitoxantrone (MTZ) to achieve MTZ-loaded vesicles, which particularly showed rapid MTZ release at low-pH environment. More importantly, the cellular uptake of these pH-responsive MTZ-loaded vesicles by cancer cells was observed by living cell imaging techniques, and their cytotoxicity assay indicated that unloaded vesicles had low toxicity to normal cells, which could dramatically reduce the toxicity of MTZ upon loading of MTZ. Meanwhile, MTZ-loaded vesicles exhibited comparable anticancer activity in vitro as free MTZ to cancer cells under examined conditions. This study suggests that such supramolecular vesicles have great potential as controlled drug delivery systems.

  7. Intelligent chiral sensing based on supramolecular and interfacial concepts.

    PubMed

    Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P

    2010-01-01

    Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  8. Self-Assembly of a Strong Polyhedral Oligomeric Silsesquioxane Core-Based Aspartate Derivative Dendrimer Supramolecular Gelator in Different Polarity Solvents.

    PubMed

    He, Huiwen; Chen, Si; Tong, Xiaoqian; An, Zhihang; Ma, Meng; Wang, Xiaosong; Wang, Xu

    2017-11-21

    Aromatic groups are introduced into the end peripherals of polyhedral oligomeric silsesquioxane (POSS) core-based organic/inorganic hybrid supramolecules to get a novel dendrimer gelator POSS-Z-Asp(OBzl) (POSS-ASP), which have eight aspartate derivative arms to make full use of strong π-π stacking forces to get strong supramolecular gels in addition to multiple hydrogen bindings and van der Waals interactions. POSS-ASP can self-assemble into three-dimensional nanoscale gel networks to provide hybrid physical gels especially with strong mechanical properties and fast-recovery behaviors. Two totally different morphologies of the connected spherical particle structures and banded ultralong fibers are observed owing to the polarity of solvents confirmed by the scanning electron microscopy, polarized optical microscopy, and transmission electron microscopy techniques, expecting the existing various self-assembly models and illustrating the peripherals of the dendrimer and the polarity of solvents having huge influences in the supramolecular self-assembly mechanism. What is more, the thermal stability, rheological properties, and network architecture information have also been investigated via tube-inversion, rotational rheometer, and powder X-ray diffraction methods, the results of which confirm the two different gel formation mechanisms that make POSS-ASP to exhibit two totally different thermal and mechanical properties. Such a study reports a new gelation system in organic or organic/aqueous mixed solvents, which can be helpful for investigating the relationship of dendritic supramolecular gelation and different polarity solvents during the supramolecular self-assembly process of gelators.

  9. Induced chirality of cage metal complexes switched by their supramolecular and covalent binding.

    PubMed

    Kovalska, Vladyslava B; Vakarov, Serhii V; Kuperman, Marina V; Losytskyy, Mykhaylo Y; Gumienna-Kontecka, Elzbieta; Voloshin, Yan Z; Varzatskii, Oleg A

    2018-01-23

    An ability of the ribbed-functionalized iron(ii) clathrochelates to induce a CD output in interactions with a protein, covalent bonding or supramolecular interactions with a low-molecular-weight chiral inductor, was discovered. The interactions of CD inactive, carboxyl-terminated iron(ii) clathrochelates with serum albumin induced their molecular asymmetry, causing an appearance of strong CD signals in the range of 350-600 nm, whereas methyl ester and amide clathrochelate derivatives remained almost CD inactive. The CD spectra of carboxyl-terminated clathrochelates on supramolecular interactions or covalent bonding with (R)-(+)-1-phenylethylamine gave a substantially lower CD output than with albumin, affected by both the solvent polarity and the isomerism of clathrochelate's ribbed substituents. In supramolecular assemblies, the bands were most intensive for ortho-substituted carboxyl-terminated clathrochelates. The ortho- and meta-phenylethylamide cage complexes in tetrachloromethane inverted the signs of their CD bands compared with those in acetonitrile. It was suggested that the tris-dioximate metal clathrochelates possess a Russian doll-like molecular system. Because of the distorted TP-TAP geometry, their coordination polyhedron had no inversion centre and possessed an inherent chirality together with the equiprobability of its left(Λ)- and right(Δ)-handle twists. The selective fixation of one of these C 3 -distorted conformations resulted in the appearance of the CD signal in the range of their visible metal-to-ligand charge transfer bands. Calculations by DFT methods were used to illustrate the possible conformations of the macrobicyclic molecules, as well as the intramolecular interactions between the cage framework and optically active distal substituents responsible for the chirality induction of the metal-centred coordination polyhedra.

  10. Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network.

    PubMed

    Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua

    2017-08-30

    In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.

  11. Post-synthetic transformation of a Zn(ii) polyhedral coordination network into a new supramolecular isomer of HKUST-1.

    PubMed

    Chen, Yao; Wojtas, Lukasz; Ma, Shengqian; Zaworotko, Michael J; Zhang, Zhenjie

    2017-08-03

    A Zn-based porphyrin containing metal-organic material (porphMOM-1) was transformed into a novel Cu-based porphyrin-encapsulating metal-organic material (porph@HKUST-1-β) via a one-pot post-synthetic modification (PSM) process involving both metal ion exchange and linker installation of trimesic acid. HKUST-1-β is the first example of yao topology and is to our knowledge the first supramolecular isomer of the archetypal coordination network HKUST-1.

  12. High degree of polymerization in a fullerene-containing supramolecular polymer.

    PubMed

    Isla, Helena; Pérez, Emilio M; Martín, Nazario

    2014-05-26

    Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal-ligand coordination. We present the synthesis and self-assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF-based macrocycle, that interact mainly through π-π, charge-transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log K(a)=5.1±0.5 in CHCl3 at room temperature is determined for the host-guest couple. In accordance with the large binding constant, the monomer self-assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Supramolecular Differentiation for Construction of Anisotropic Fullerene Nanostructures by Time-Programmed Control of Interfacial Growth.

    PubMed

    Bairi, Partha; Minami, Kosuke; Hill, Jonathan P; Nakanishi, Waka; Shrestha, Lok Kumar; Liu, Chao; Harano, Koji; Nakamura, Eiichi; Ariga, Katsuhiko

    2016-09-27

    Supramolecular assembly can be used to construct a wide variety of ordered structures by exploiting the cumulative effects of multiple noncovalent interactions. However, the construction of anisotropic nanostructures remains subject to some limitations. Here, we demonstrate the preparation of anisotropic fullerene-based nanostructures by supramolecular differentiation, which is the programmed control of multiple assembly strategies. We have carefully combined interfacial assembly and local phase separation phenomena. Two fullerene derivatives, PhH and C12H, were together formed into self-assembled anisotropic nanostructures by using this approach. This technique is applicable for the construction of anisotropic nanostructures without requiring complex molecular design or complicated methodology.

  14. Static Electricity-Responsive Supramolecular Assembly.

    PubMed

    Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki

    2017-12-01

    Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supramolecular Amino Acid Based Hydrogels: Probing the Contribution of Additive Molecules using NMR Spectroscopy

    PubMed Central

    Ramalhete, Susana M.; Nartowski, Karol P.; Sarathchandra, Nichola; Foster, Jamie S.; Round, Andrew N.; Angulo, Jesús

    2017-01-01

    Abstract Supramolecular hydrogels are composed of self‐assembled solid networks that restrict the flow of water. l‐Phenylalanine is the smallest molecule reported to date to form gel networks in water, and it is of particular interest due to its crystalline gel state. Single and multi‐component hydrogels of l‐phenylalanine are used herein as model materials to develop an NMR‐based analytical approach to gain insight into the mechanisms of supramolecular gelation. Structure and composition of the gel fibres were probed using PXRD, solid‐state NMR experiments and microscopic techniques. Solution‐state NMR studies probed the properties of free gelator molecules in an equilibrium with bound molecules. The dynamics of exchange at the gel/solution interfaces was investigated further using high‐resolution magic angle spinning (HR‐MAS) and saturation transfer difference (STD) NMR experiments. This approach allowed the identification of which additive molecules contributed in modifying the material properties. PMID:28401991

  16. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    PubMed

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optically responsive supramolecular polymer glasses

    NASA Astrophysics Data System (ADS)

    Balkenende, Diederik W. R.; Monnier, Christophe A.; Fiore, Gina L.; Weder, Christoph

    2016-03-01

    The reversible and dynamic nature of non-covalent interactions between the constituting building blocks renders many supramolecular polymers stimuli-responsive. This was previously exploited to create thermally and optically healable polymers, but it proved challenging to achieve high stiffness and good healability. Here we present a glass-forming supramolecular material that is based on a trifunctional low-molecular-weight monomer ((UPyU)3TMP). Carrying three ureido-4-pyrimidinone (UPy) groups, (UPyU)3TMP forms a dynamic supramolecular polymer network, whose properties are governed by its cross-linked architecture and the large content of the binding motif. This design promotes the formation of a disordered glass, which, in spite of the low molecular weight of the building block, displays typical polymeric behaviour. The material exhibits a high stiffness and offers excellent coating and adhesive properties. On account of reversible dissociation and the formation of a low-viscosity liquid upon irradiation with ultraviolet light, rapid optical healing as well as (de)bonding on demand is possible.

  18. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  19. The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double-Comb Diblock Copolymers.

    PubMed

    Hofman, Anton H; Reza, Mehedi; Ruokolainen, Janne; Ten Brinke, Gerrit; Loos, Katja

    2017-09-01

    Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  1. Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2017-01-24

    Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.

  2. The dominant role of side chains in supramolecular double helical organisation in synthetic tripeptides

    NASA Astrophysics Data System (ADS)

    Sharma, Ankita; Tiwari, Priyanka; Dutt Konar, Anita

    2018-06-01

    Peptide self-assembled nanostructures have attracted attention recently owing to their promising applications in diversified avenues. To validate the importance of sidechains in supramolecular architectural stabilization, herein this report describes the self-assembly propensities involving weak interactions in a series of model tripeptides Boc-Xaa-Aib-Yaa-OMe I-IV, (where Xaa = 4-F-Phe/NMeSer/Ile & Yaa = Tyr in peptide I-III respectively and Xaa = 4-F-Phe & Yaa = Ile in peptide IV) differing in terminal side chains. The solid state structural analysis reveals that tripeptide (I) displays supramolecular preference for double helical architecture. However, when slight modification has been introduced in the N-terminal side chains disfavour the double helical organisation (Peptide II and III). Indeed the peptides display sheet like ensemble within the framework. Besides replacement of C-terminal Tyr by Ile in peptide I even do not promote the architecture, emphasizing the dominant role of balance of side chains in stabilizing double helical organisation. The CD measurements, concentration dependant studies, NMR titrations and ROESY spectra are well in agreement with the solid state conformational investigation. Moreover the morphological experiments utilizing FE-SEM, support the heterogeneity present in the peptides. Thus this work may not only hold future promise in understanding the structure and function of neurodegenerative diseases but also assist in rational design of protein modification in biologically active peptides.

  3. From supramolecular polymers to multi-component biomaterials.

    PubMed

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  4. Probing the intracellular fate of supramolecular nanocarriers and their cargo with FRET schemes

    NASA Astrophysics Data System (ADS)

    Thapaliya, Ek Raj; Fowley, Colin; Callan, Bridgeen; Tang, Sicheng; Zhang, Yang; Callan, John F.; Raymo, Françisco M.

    2017-02-01

    We designed a strategy to monitor self-assembling supramolecular nanocarriers and their cargo simultaneously in the intracellular space with fluorescence measurements. It is based on Förster resonance energy transfer (FRET) between complementary chromophores covalently integrated in the macromolecular backbone of amphiphilic polymers and/or noncovalently encapsulated in supramolecular assemblies of the amphiphilic components. Indeed, these polymers assemble into a micelles in aqueous phase to bring energy donors and acceptors in close proximity and allow energy transfer. The resulting supramolecular assemblies maintain their integrity after travelling into the intracellular space and do not lose their molecular guests in the process. Furthermore, this mechanism can also be exploited to probe the fate of complementary nanoparticles introduced within cells in consecutive incubation steps. Efficient energy transfer occurs in the intracellular space after the sequential incubation of nanocarriers incorporating donors first and then nanoparticles containing acceptors or vice versa. The two sets of nanostructured assemblies ultimately co-localize in the cell interior to bring donors and acceptors together and enable energy transfer. Thus, this protocol is particularly valuable to monitor the transport properties of supramolecular nanocarriers inside living cells and can eventually contribute to the fundamental understating of the ability of these promising vehicles to deliver contrast agents and/or drugs intracellularly in view of possible diagnostics and/or therapeutic applications.

  5. A supramolecular photosensitizer system based on the host-guest complexation between water-soluble pillar[6]arene and methylene blue for durable photodynamic therapy.

    PubMed

    Yang, Kui; Wen, Jia; Chao, Shuang; Liu, Jing; Yang, Ke; Pei, Yuxin; Pei, Zhichao

    2018-06-05

    A supramolecular photosensitizer system WP6-MB was synthesized based on water-soluble pillar[6]arene and the photosensitizer methylene blue (MB) via host-guest interaction. MB can complex with WP6 directly with a high complex constant without further modification. In particular, WP6-MB can reduce the dark toxicity of MB remarkably. Furthermore, it can efficiently overcome photobleaching and extend the time for singlet oxygen production of MB upon light irradiation, which is significant for durable photodynamic therapy.

  6. Spectro-microscopic study of the formation of supramolecular networks

    NASA Astrophysics Data System (ADS)

    Sadowski, Jerzy T.

    2015-03-01

    Metal-organic frameworks (MOFs) are emerging as a new class of materials for CO2 capture. There are many fundamental questions, including the optimum pore size and arrangement of the molecules in the structure to achieve highest CO2 uptake. As only the surface is of interest for potential applications such as heterogeneous catalysis, nano-templating, and sensing, 2D analogs of MOFs can serve as good model systems. Utilizing capabilities of LEEM/PEEM for non-destructive interrogation of the real-time molecular self-assembly, we investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc) and the electrostatic interactions of CO2 molecules with transition metal ions, can be tuned by controlling the type of TM ion and the size of the pore in the host network. The understanding of directed self-assembly by controlling the molecule-substrate interaction can enable us to engineer the pore size and density, and thus tune the host's chemical activity. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10.

  7. Decaaquabis(μ3-4-hydroxypyridine-2,6-dicarboxylato)bis(4-hydroxypyridine-2,6-dicarboxylato)tetramanganese(II) 3.34-hydrate: a new three-dimensional open metal-organic framework based on a tetranuclear Mn(II) complex of chelidamic acid and undecameric stitching water clusters.

    PubMed

    Mirzaei, M; Lippolis, V; Eshtiagh-Hosseini, H; Mahjoobizadeh, M

    2012-01-01

    4-Hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, cdaH(3)) reacts with MnCl(2)·2H(2)O in the presence of 2-amino-4-methylpyrimidine in water to afford the tetranuclear title complex, [Mn(4)(C(8)H(3)NO(5))(4)(H(2)O)(10)]·3.34H(2)O, built through carboxylate bridging. The tetranuclear complex sits on a centre of inversion at (½, ½, ½). In the crystal, discrete undecameric (H(2)O)(10.34) water clusters (involving both coordinated and uncoordinated water molecules, with one site of an uncoordinated water molecule not fully occupied) assemble these tetranuclear Mn(II) complex units via an intricate array of hydrogen bonding into an overall three-dimensional network. The degree of structuring of the (H(2)O)(10.34) supramolecular association of water molecules observed in the present compound, imposed by its environment and vice versa, will be discussed in comparison to that observed for the (H(2)O)(14) supramolecular clusters in the case of the dinuclear complex [Mn(2)(cdaH)(2)(H(2)O)(4)]·4H(2)O [Ghosh et al. (2005). Inorg. Chem. 44, 3856-3862]. © 2012 International Union of Crystallography

  8. Pathological-Condition-Driven Construction of Supramolecular Nanoassemblies for Bacterial Infection Detection.

    PubMed

    Li, Li-Li; Ma, Huai-Lei; Qi, Guo-Bin; Zhang, Di; Yu, Faquan; Hu, Zhiyuan; Wang, Hao

    2016-01-13

    A pyropheophorbide-α-based building block (Ppa-PLGVRG-Van) can be used to construct self-aggregated superstructures in vivo for highly specific and sensitive diagnosis of bacterial infection by noninvasive photoacoustic tomography. This in vivo supramolecular chemistry approach opens a new avenue for efficient, rapid, and early-stage disease diagnosis with high sensitivity and specificity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Supramolecular Polymers with Multiple Types of Binding Motifs: From Fundamental Studies to Multifunctional Materials

    DTIC Science & Technology

    2015-07-10

    studies metallo and hydrogen bonded supramolecular polymers that exhibit defect healing characteristics and multi- 1. REPORT DATE (DD-MM-YYYY) 4...supramolecular polymers that exhibit defect healing characteristics and multi-responsive actuators. It also report on a new class of supramolecular glasses. (a...2014; San Francisco, CA, USA Talks D. Balkenende “Optically responsive supramolecular glasses” Swiss Soft Days, 02.10.14, Lausanne

  10. Thermo-reversible supramolecular hydrogels of trehalose-type diblock methylcellulose analogues.

    PubMed

    Yamagami, Mao; Kamitakahara, Hiroshi; Yoshinaga, Arata; Takano, Toshiyuki

    2018-03-01

    This paper describes the design and synthesis of new trehalose-type diblock methylcellulose analogues with nonionic, cationic, and anionic cellobiosyl segments, namely 1-(tri-O-methyl-cellulosyl)-4-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (1), 1-(tri-O-methyl-cellulosyl)-4-[(6-amino-6-deoxy-β-d-glucopyranosyl)-(1→4)- 6-amino-6-deoxy-β-d-glucopyranosyloxymethyl]-1H-1,2,3-triazole (2), and 4-(tri-O-methyl-cellulosyloxymethyl)-1-[β-d-glucopyranuronosyl-(1→4)-β-d-glucopyranuronosyl]-1H-1,2,3-triazole (3), respectively. Aqueous solutions of all of the 1,2,3-triazole-linked diblock methylcellulose analogues possessed higher surface activities than that of industrially produced methylcellulose and exhibited lower critical solution temperatures, that allowed the formation of thermoresponsive supramolecular hydrogels at close to human body temperature. Supramolecular structures of thermo-reversible hydrogels based on compounds 1, 2, and 3 were investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Detailed structure-property-function relationships of compounds 1, 2, and 3 were discussed. Not only nonionic hydrophilic segment but also ionic hydrophilic segments of diblock methylcellulose analogues were valid for the formation of thermo-reversible supramolecular hydrogels based on end-functionalized methylcellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Pan, Cheng-Ling; Xiao, Li-Na

    Three new supramolecular compounds based on triethylenediamine and different polyoxometalates [W{sup VI}{sub 3}V{sup V}{sub 3}O{sub 19}H]{l_brace}[Cu(HDABCO)]{sub 2}(H{sub 2}O){r_brace} (1), [P{sub 2}Mo{sup VI}{sub 18}O{sub 62}][HDABCO]{sub 2}[H{sub 2}DABCO]{sub 2}.12 H{sub 2}O (2) and [Mo{sup VI}{sub 7.5}W{sup VI}{sub 0.5}O{sub 27}][Cu(HDABCO)]{sub 2}.2 H{sub 3}O.2 H{sub 2}O (3) (DABCO=triethylenediamine) have been synthesized hydrothermally and characterized by IR, TG, XPS and X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 exhibits a face-centered cubic packing motif, compound 2 displays a supramolecular structure constructed form the 'chains' arranged hexagonally, compound 3 contains [Mo{sub 7.5}W{sub 0.5}O{sub 27}]{sub {infinity}} chain decorated by [Cu(HDABCO)]{sup 2+} cations, which was thenmore » packed into a layer structure. These results show that the same organonitrogen combining with the different POMs will yield different supramolecular networks. -- Graphical abstract: Three new supramolecular compounds based on triethylenediamine and different polyoxometalates have been hydrothermally synthesized and characterized by IR, XPS, TG, elemental analysis and X-ray diffraction analysis.« less

  12. Assembly and property research on seven 0D–3D complexes derived from imidazole dicarboxylate and 1,2-bi(pyridin-4-yl)ethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Bao; Li, Qian; Lv, Lei

    2015-03-15

    The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, andmore » they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated.« less

  13. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.

    PubMed

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M

    2017-05-31

    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  14. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  15. A highly directional fourfold hydrogen-bonding motif for supramolecular structures through self-assembly of fullerodendrimers.

    PubMed

    Hahn, Uwe; González, Juan J; Huerta, Elisa; Segura, Margarita; Eckert, Jean-François; Cardinali, François; de Mendoza, Javier; Nierengarten, Jean-François

    2005-11-04

    Supramolecular dendrimers resulting from the dimerization of fullerene-functionalized dendrons through a quadruple hydrogen-bonding motif were prepared. The synthetic strategy is based on the esterification of a tert-butoxycarbonyl (Boc)-protected 2-ureido-4-[1H]pyrimidinone precursor possessing an alcohol function with fullerodendrons bearing a carboxylic acid unit at the focal point. Subsequent acidic treatment to cleave the protecting group and reaction of the resulting amine with octylisocyanate affords the targeted compounds. As demonstrated by the results of MALDI-TOF mass spectrometry and 1H NMR spectroscopy, both of the 2-ureido-4-[1H]pyrimidinone derivatives form self-assembled dimers spontaneously through hydrogen-bonding interactions, thus leading to supramolecular structures containing two or ten fullerene moieties.

  16. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  17. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.

    PubMed

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J

    2017-06-14

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.

  18. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  19. Physical Organic Chemistry of Supramolecular Polymers

    PubMed Central

    Serpe, Michael J.; Craig, Stephen L.

    2008-01-01

    Unlike the case of traditional covalent polymers, the entanglements that determine properties of supramolecular polymers are defined by very specific, intermolecular interactions. Recent work using modular molecular platforms to probe the mechanisms underlying mechanical response of supramolecular polymers is reviewed. The contributions of supramolecular kinetics, thermodynamics, and conformational flexibility to supramolecular polymer properties in solutions of discrete polymers, in networks, and at interfaces, are described. Molecule-to-material relationships are established through methods reminiscent of classic physical organic chemistry. PMID:17279638

  20. A supramolecular nanoparticle system based on β-cyclodextrin-conjugated poly-l-lysine and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma.

    PubMed

    Xiong, Qingqing; Cui, Mangmang; Bai, Yang; Liu, Yuanyuan; Liu, Di; Song, Tianqiang

    2017-07-01

    A novel supramolecular nanoparticle system with core-shell structure was designed based on β-cyclodextrin-conjugated poly-l-lysine (PLCD) and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma (HCC). PLCD was synthesized by the conjugation of monoaldehyde activated β-cyclodextrin with poly-l-lysine via Shiff's base reaction. Doxorubicin, as a model therapeutic drug, was included into the hydrophobic cavity of β-cyclodextrin in PLCD through host-guest interaction. OligoRNA, as a model gene, was further condensed into the inclusion complexes by electrostatic interaction to form oligoRNA and doxorubicin co-loaded supramolecular nanoparticle system. Hyaluronic acid, which is often over-expressed by HCC cells, was coated on the surface of the above nanoparticles to construct HCC-targeted nanoparticle system. These nanoparticles had regular spherical shape with classic "core-shell" structure, and their size and zeta potential were 195.8nm and -22.7mV, respectively. The nanoparticles could effectively deliver doxorubicin and oligoRNA into HCC cells via CD44 receptor-mediated endocytosis and significantly inhibit the cell proliferation. In the nude mice bearing MHCC-97H tumor, the nanoparticles could be efficiently accumulated in the tumor, suggesting their strong hepatoma-targeting capability. These findings demonstrated that this novel supramolecular nanoparticle system had a promising potential for combining gene therapy and chemotherapy to treat HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloe, Karsten; Tasker, Peter A; Oshima, Tatsuya

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia.more » Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large inverse micelles swollen with water molecules. Extraction systems involving long-chain cations such as alkylammonium species or long-chain anions such as sulfonates or carboxylates proved especially prone to extensive aggregate formation. The related phenomenon of third-phase formation in SX systems, long misunderstood, is now yielding to spectroscopic and scattering techniques showing extensive long-range organization. Over the last 50 years, tools for studying the structure and thermodynamics of aggregation have grown increasingly sophisticated, leading to a rich and detailed understanding of what we can now recognize as SC phenomena in SX. In the 1970s and 1980s, the rapid growth of SC elicited a paradigm shift in SX. The influence of SC principles had two major effects on the course of SX research. First, it provided a framework for understanding the supramolecular behavior that was already well appreciated in the field of SX, though earlier without the SC terminology. Second, it provided the conceptual tools to control supramolecular behavior in SX, direct it for intended functionality, and to simplify it. Extraction by designed reagents has been steadily progressing ever since, with commercial applications emerging to successfully validate this approach. With the discovery of crown ethers in the late 1960s, the advancement of extractant design has fruitfully employed the concept of inclusion. While considerable initial progress occurred with such molecules, especially because of their affinity and selectivity for alkali and alkaline earth metals, other molecular platforms such as calixarenes have proven more versatile. Multidentate receptors for partial to full inclusion of cations, anions, ion pairs, as well as neutral species, have now become commonplace for selective extraction. This volume of Ion Exchange and Solvent Extraction examines how the principles of SC are being employed both in advancing the design of new highly selective SX systems and in understanding aggregation phenomena in SX systems. Chapter 1 discusses the nature and definition of SC and how it is used generally in design of novel SX reagents. Major approaches using SC principles are outlined and illustrated. Chapter 2 expands upon the theme of ion-pair recognition and introduces outer-sphere recognition of metal complexes, a novel idea with the potential for structural control of solvation, casting a new light on solvent modifiers. Chapter 3 reviews the large literature of calixarenes as extraction reagents for metal ions, where the synthetic versatility of this family of compounds has produced vast possibilities for inclusion and selective separations. Chapter 4 extends such chemistry to extraction of biomolecules, where the potential for selective separations is only beginning to be explored through site recognition in macromolecules. In Chapter 5, a detailed examination of the liquid-liquid interface as an expression of supramolecular phenomena i...« less

  2. Supramolecular architecture of metal-organic frameworks involving dinuclear copper paddle-wheel complexes.

    PubMed

    Gomathi, Sundaramoorthy; Muthiah, Packianathan Thomas

    2013-12-15

    The two centrosymmetric dinuclear copper paddle-wheel complexes tetrakis(μ-4-hydroxybenzoato-κ(2)O:O')bis[aquacopper(II)] dimethylformamide disolvate dihydrate, [Cu2(C7H5O3)4(H2O)2]·2C3H7NO·2H2O, (I), and tetrakis(μ-4-methoxybenzoato-κ(2)O:O')bis[(dimethylformamide-κO)copper(II)], [Cu2(C8H7O3)4(C3H7NO)2], (II), crystallize with half of the dinuclear paddle-wheel cage unit in the asymmetric unit and, in addition, complex (I) has one dimethylformamide (DMF) and one water solvent molecule in the asymmetric unit. In both (I) and (II), two Cu(II) ions are bridged by four syn,syn-η(1):η(1):μ carboxylate groups, showing a paddle-wheel cage-type structure with a square-pyramidal coordination geometry. The equatorial positions of (I) and (II) are occupied by the carboxylate groups of 4-hydroxy- and 4-methoxybenzoate ligands, and the axial positions are occupied by aqua and DMF ligands, respectively. The three-dimensional supramolecular metal-organic framework of (I) consists of three different R2(2)(20) and an R4(4)(36) ring motif formed via O-H···O and OW-HW···O hydrogen bonds. Complex (II) simply packs as molecular species.

  3. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black.

    PubMed

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-05

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8mM GSH. The UV-Vis difference spectra show a positive peak at 383nm and a negative peak at 458nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis which is likely based on an intermediate formation of a similar type of supramolecular ensembles. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black

    NASA Astrophysics Data System (ADS)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-01

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis which is likely based on an intermediate formation of a similar type of supramolecular ensembles.

  5. Use of ion-mobility mass spectrometry (IMS-MS) to map polyoxometalate Keplerate clusters and their supramolecular assemblies.

    PubMed

    Robbins, Philip J; Surman, Andrew J; Thiel, Johannes; Long, De-Liang; Cronin, Leroy

    2013-03-07

    We present the high-resolution (HRES-MS) and ion-mobility (IMS-MS) mass spectrometry studies of icosahedral nanoscale polyoxometalate-based {L(30)}{(Mo)Mo(5)} Keplerate clusters, and demonstrate the use of IMS-MS to resolve and map intact nanoclusters, and its potential for the discovery of new structures, in this case the first gas phase observation of 'proto-clustering' of higher order Keplerate supramolecular aggregates.

  6. Critical aspects in the production of periodically ordered mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Soler-Illia, Galo J. A. A.; Angelomé, Paula C.; Fuertes, M. Cecilia; Grosso, David; Boissiere, Cedric

    2012-03-01

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems. Dedicated to Clément Sanchez, on the first anniversary of his appointment to the Hybrid Materials Chair of the Collège de France.

  7. Self-healing pH-sensitive poly[(methyl vinyl ether)-alt-(maleic acid)]-based supramolecular hydrogels formed by inclusion complexation between cyclodextrin and adamantane.

    PubMed

    Ma, Xiaoe; Zhou, Naizhen; Zhang, Tianzhu; Hu, Wanjun; Gu, Ning

    2017-04-01

    Self-healing materials are of interest for drug delivery, cell and gene therapy, tissue engineering, and other biomedical applications. In this work, on the base of biocompatible polymer poly(methyl vinyl ether-alt-maleic acid) (P(MVE-alt-MA)), host polymer β-cyclodextrin-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-β-CD) and guest polymer adamantane-grafted P(MVE-alt-MA) (P(MVE-alt-MA)-g-Ad) were first prepared. Then through taking advantage of the traditional host-guest interaction of β-cyclodextrin and adamantane, a novel self-healing pH-sensitive physical P(MVE-alt-MA)-g-β-CD/P(MVE-alt-MA)-g-Ad supramolecular hydrogels were obtained after simply mixing the aqueous solution of host polymer and guest polymer. This kind of supramolecular hydrogels not only possess pH-sensitivity, but also possess the ability to repair themselves after being damaged. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dipole-modified graphene with ultrahigh gas sensibility

    NASA Astrophysics Data System (ADS)

    Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao

    2018-05-01

    This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.

  9. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization.

    PubMed

    Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo

    2015-02-06

    Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.

  10. Azobenzene-based supramolecular polymers for processing MWCNTs.

    PubMed

    Maggini, Laura; Marangoni, Tomas; Georges, Benoit; Malicka, Joanna M; Yoosaf, K; Minoia, Andrea; Lazzaroni, Roberto; Armaroli, Nicola; Bonifazi, Davide

    2013-01-21

    Photothermally responsive supramolecular polymers containing azobenzene units have been synthesised and employed as dispersants for multi-walled carbon nanotubes (MWCNTs) in organic solvents. Upon triggering the trans-cis isomerisation of the supramolecular polymer intermolecular interactions between MWCNTs and the polymer are established, reversibly affecting the suspensions of the MWCNTs, either favouring it (by heating, i.e. cis→trans isomerisation) or inducing the CNTs' precipitation (upon irradiation, trans→cis isomerisation). Taking advantage of the chromophoric properties of the molecular subunits, the solubilisation/precipitation processes have been monitored by UV-Vis absorption spectroscopy. The structural properties of the resulting MWCNT-polymer hybrid materials have been thoroughly investigated via thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and atomic force microscopy (AFM) and modelled with molecular dynamics simulations.

  11. Supramolecular Biofunctional Materials

    PubMed Central

    Zhou, Jie; Li, Jie; Du, Xuewen; Xu, Bing

    2017-01-01

    This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine. PMID:28319779

  12. Supramolecular biofunctional materials.

    PubMed

    Zhou, Jie; Li, Jie; Du, Xuewen; Xu, Bing

    2017-06-01

    This review discusses supramolecular biofunctional materials, a novel class of biomaterials formed by small molecules that are held together via noncovalent interactions. The complexity of biology and relevant biomedical problems not only inspire, but also demand effective molecular design for functional materials. Supramolecular biofunctional materials offer (almost) unlimited possibilities and opportunities to address challenging biomedical problems. Rational molecular design of supramolecular biofunctional materials exploit powerful and versatile noncovalent interactions, which offer many advantages, such as responsiveness, reversibility, tunability, biomimicry, modularity, predictability, and, most importantly, adaptiveness. In this review, besides elaborating on the merits of supramolecular biofunctional materials (mainly in the form of hydrogels and/or nanoscale assemblies) resulting from noncovalent interactions, we also discuss the advantages of small peptides as a prevalent molecular platform to generate a wide range of supramolecular biofunctional materials for the applications in drug delivery, tissue engineering, immunology, cancer therapy, fluorescent imaging, and stem cell regulation. This review aims to provide a brief synopsis of recent achievements at the intersection of supramolecular chemistry and biomedical science in hope of contributing to the multidisciplinary research on supramolecular biofunctional materials for a wide range of applications. We envision that supramolecular biofunctional materials will contribute to the development of new therapies that will ultimately lead to a paradigm shift for developing next generation biomaterials for medicine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Gas adsorption and structural diversity in a family of Cu(II) pyridyl-isophthalate metal-organic framework materials

    NASA Astrophysics Data System (ADS)

    Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin

    2017-01-01

    A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

  14. Enantioselective cyclization of racemic supramolecular polymers.

    PubMed

    ten Cate, A Tessa; Dankers, Patricia Y W; Kooijman, Huub; Spek, Anthony L; Sijbesma, Rint P; Meijer, E W

    2003-06-11

    Homochiral hydrogen-bonded cyclic assemblies are formed in dilute solutions of racemic supramolecular polymers based on the quadruple hydrogen bonding 2-ureido-4[1H]-pyrimidinone unit, as observed by 1H NMR and SEC experiments. Preorganization of the monomers and the combined binding strength of the eight hydrogen bonds result in a very high stability of the cyclic aggregates with pronounced selectivity between homochiral and heterochiral cyclic species, usually only observed in crystalline or liquid crystalline phases.

  15. pH and Amphiphilic Structure Direct Supramolecular Behavior in Biofunctional Assemblies

    DOE PAGES

    Moyer, Tyson J.; Finbloom, Joel A.; Chen, Feng; ...

    2014-10-13

    Supramolecular self-assembly offers promising new ways to control nanostructure morphology and respond to external stimuli. A pH-sensitive self-assembled system was developed to both control nanostructure shape and respond to the acidic microenvironment of tumors using self-assembling peptide amphiphiles (PAs). Here, by incorporating an oligo-histidine H 6 sequence, we developed two PAs that self-assembled into distinct morphologies on the nanoscale, either as nanofibers or spherical micelles, based on the incorporation of the aliphatic tail on the N-terminus or near the C-terminus, respectively. Both cylinder and sphere-forming PAs demonstrated reversible disassembly between pH 6.0 and 6.5 upon protonation of the histidine residuesmore » in acidic solutions. These PAs were then characterized and assessed for their potential to encapsulate hydrophobic chemotherapies. The H 6-based nanofiber assemblies encapsulated camptothecin (CPT) with up to 60% efficiency, a 7-fold increase in CPT encapsulation relative to spherical micelles. Additionally, pH-sensitive nanofibers showed improved tumor accumulation over both spherical micelles and nanofibers that did not change morphologies in acidic environments. We have demonstrated that the morphological transitions upon changes in pH of supramolecular nanostructures affect drug encapsulation and tumor accumulation. Lastly, our findings also suggest that these supramolecular events can be tuned by molecular design to improve the pharmacologic properties of nanomedicines.« less

  16. Light-Induced Contraction/Expansion of 1D Photoswitchable Metallopolymer Monitored at the Solid-Liquid Interface.

    PubMed

    Garah, Mohamed El; Borré, Etienne; Ciesielski, Artur; Dianat, Arezoo; Gutierrez, Rafael; Cuniberti, Gianaurelio; Bellemin-Laponnaz, Stéphane; Mauro, Matteo; Samorì, Paolo

    2017-10-01

    The use of a bottom-up approach to the fabrication of nanopatterned functional surfaces, which are capable to respond to external stimuli, is of great current interest. Herein, the preparation of light-responsive, linear supramolecular metallopolymers constituted by the ideally infinite repetition of a ditopic ligand bearing an azoaryl moiety and Co(II) coordination nodes is described. The supramolecular polymerization process is followed by optical spectroscopy in dimethylformamide solution. Noteworthy, a submolecularly resolved scanning tunneling microscopy (STM) study of the in situ reversible trans-to-cis photoisomerization of a photoswitchable metallopolymer that self-assembles into 2D crystalline patterns onto a highly oriented pyrolytic graphite surface is achieved for the first time. The STM analysis of the nanopatterned surfaces is corroborated by modeling the physisorbed species onto a graphene slab before and after irradiation by means of density functional theory calculation. Significantly, switching of the monolayers consisting of supramolecular Co(II) metallopolymer bearing trans-azoaryl units to a novel pattern based on cis isomers can be triggered by UV light and reversed back to the trans conformer by using visible light, thereby restoring the trans-based supramolecular 2D packing. These findings represent a step forward toward the design and preparation of photoresponsive "smart" surfaces organized with an atomic precision. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A series of divalent metal coordination polymers based on isomeric tetracarboxylic acids: synthesis, structures and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Xu, Guo-Wang; Wu, Ya-Pan; Zhao, Jun

    2014-12-14

    Five new coordination polymers, namely, [Mn(2,2′-bipy)(H2O)2(H2L1)]n (1), {[Co(btb)(H2O)2(H2L1)]·0.5H2O}n (2), [Co(bib)(H2O)2(H2L1)]n (3), [Ni2(bpm)(H2O)3(L2)]n (4), and {[Co2(H2O)3(OH)(HL2)]·H2O}n (5), (H4L1 = 1,1′:2′,1′′-terphenyl-4,4′,4′′,5′-tetracarboxylic acid, H4L2 = 1,1′:2′,1′′-terphenyl-3,3′′,4′,5′-tetracarboxylic acid, 2,2′-bipy = 2,2′-bipyridine, btb = 1,4-bis(1,2,4-triazol-1-yl)butane, bib = 1,4-bis(imidazol-1-yl)butane, bpm = bis(4-pyridyl)amine), have been obtained under hydrothermal conditions. Complex 1 exhibits a 3D supramolecular framework based on 1D chains. Both complexes 2 and 3 are 3D supramolecular frameworks constructed from 1D zig-zag chains. Complex 4 features a 3D tetra-nodal (3,4,4,5)-connected architecture containing 1D μ-COO bridged chains with (5(2)·6(2)·7.9)(5(2)·6(4)·7(3)·8)2(5(2)·6)2(6(3)·7(2)·9) topology. Complex 5 shows a 3D penta-nodal (3,4,4,6,6)-connected net containing 1D μ-OH/μ-COO bridged chains and mononuclear Co(II) nodes with a (4(2)·6(3)·8)(4(3))2(4(4)·6(2))2(4(4)·6(6)·8(5))2(4(4)·6(7)·8(4)) topology. Variable-temperature magnetic susceptibility measurements reveal that complexes 2 and 3 show antiferromagnetic interactions between the adjacent Co(II) ions, whereas 4 is a ferromagnetic system.

  18. Design and functionalization of photocatalytic systems within mesoporous silica.

    PubMed

    Qian, Xufang; Fuku, Kojirou; Kuwahara, Yasutaka; Kamegawa, Takashi; Mori, Kohsuke; Yamashita, Hiromi

    2014-06-01

    In the past decades, various photocatalysts such as TiO2, transition-metal-oxide moieties within cavities and frameworks, or metal complexes have attracted considerable attention in light-excited catalytic processes. Owing to high surface areas, transparency to UV and visible light as well as easily modified surfaces, mesoporous silica-based materials have been widely used as excellent hosts for designing efficient photocatalytic systems under the background of environmental remediation and solar-energy utilization. This Minireview mainly focuses on the surface-chemistry engineering of TiO2/mesoporous silica photocatalytic systems and fabrication of binary oxides and nanocatalysts in mesoporous single-site-photocatalyst frameworks. Recently, metallic nanostructures with localized surface plasmon resonance (LSPR) have been widely studied in catalytic applications harvesting light irradiation. Accordingly, silver and gold nanostructures confined in mesoporous silica and their corresponding catalytic activity enhanced by the LSPR effect will be introduced. In addition, the integration of metal complexes within mesoporous silica materials for the construction of functional inorganic-organic supramolecular photocatalysts will be briefly described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The bright future of unconventional σ/π-hole interactions.

    PubMed

    Bauzá, Antonio; Mooibroek, Tiddo J; Frontera, Antonio

    2015-08-24

    Non-covalent interactions play a crucial role in (supramolecular) chemistry and much of biology. Supramolecular forces can indeed determine the structure and function of a host-guest system. Many sensors, for example, rely on reversible bonding with the analyte. Natural machineries also often have a significant non-covalent component (e.g. protein folding, recognition) and rational interference in such 'living' devices can have pharmacological implications. For the rational design/tweaking of supramolecular systems it is helpful to know what supramolecular synthons are available and to understand the forces that make these synthons stick to one another. In this review we focus on σ-hole and π-hole interactions. A σ- or π-hole can be seen as positive electrostatic potential on unpopulated σ* or π(() *()) orbitals, which are thus capable of interacting with some electron dense region. A σ-hole is typically located along the vector of a covalent bond such as XH or XHlg (X=any atom, Hlg=halogen), which are respectively known as hydrogen and halogen bond donors. Only recently it has become clear that σ-holes can also be found along a covalent bond with chalcogen (XCh), pnictogen (XPn) and tetrel (XTr) atoms. Interactions with these synthons are named chalcogen, pnigtogen and tetrel interactions. A π-hole is typically located perpendicular to the molecular framework of diatomic π-systems such as carbonyls, or conjugated π-systems such as hexafluorobenzene. Anion-π and lone-pair-π interactions are examples of named π-hole interactions between conjugated π-systems and anions or lone-pair electrons respectively. While the above nomenclature indicates the distinct chemical identity of the supramolecular synthon acting as Lewis acid, it is worth stressing that the underlying physics is very similar. This implies that interactions that are now not so well-established might turn out to be equally useful as conventional hydrogen and halogen bonds. In summary, we describe the physical nature of σ- and π-hole interactions, present a selection of inquiries that utilise σ- and π-holes, and give an overview of analyses of structural databases (CSD/PDB) that demonstrate how prevalent these interactions already are in solid-state structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Syntheses and structure characterization of ten acid-base hybrid crystals based on N-containing aromatic brønsted bases and mineral acids

    NASA Astrophysics Data System (ADS)

    Lin, Zhihao; Jin, Shouwen; Li, Xiaoliang; Xiao, Xiao; Hu, Kaikai; Guo, Ming; Chi, Xinchen; Liu, Hui; Wang, Daqi

    2017-10-01

    Cocrystallization of the aromatic brønsted bases with a series of mineral acids gave a total of ten hybrid salts with the compositions: (2-methylquinoline)2: (hydrochloride acid): 3H2O [(HL1)+. (L1)·· (Cl-) · (H2O)3] (1), (6-bromobenzo[d]thiazol-2-amine): (hydrochloride acid) [(HL2)+. (Cl-)] (2), (6-bromobenzo[d]thiazol-2-amine): (nitric acid) [(HL2)+. (NO3-)] (3), (6-bromobenzo[d]thiazol-2-amine): (sulfuric acid) [(HL2)+ · (HSO4)-] (4), (6-bromobenzo[d]thiazol-2-amine): (phosphoric acid) [(HL2)+ · (H2PO4)-] (5), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrochloride acid): 3H2O [(HL3)+ · (Cl-) (H2O)3] (6), (5,7-dimethyl-1,8-naphthyridine-2-amine): (hydrobromic acid): CH3OH [(HL3)+ · (Br)- · CH3OH] (7), (5,7-dimethyl-1,8-naphthyridine-2-amine): (sulfuric acid): H2O [(HL3)+ · (HSO4)- · H2O] (8), (2-aminophenol): (phosphoric acid) [(HL4)+ · (H2PO4)-] (9), and (2-amino-4-chlorophenol): (phosphoric acid) [(HL5)+ · (H2PO4)-] (10). The ten salts have been characterized by X-ray diffraction analysis, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the ten investigated crystals the ring N of the heterocycle or the NH2 in the aminophenol are protonated when the acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted classical hydrogen bonds between the NH+/NH3+ and deprotonated acidic groups. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O, CHsbnd Cl, CH3sbnd N, CH3sbnd O, CHsbnd Br, CH3sbnd Br, Brsbnd Cl, Clsbnd S, Osbnd S, Osbnd O, Brsbnd S, Hsbnd H, and π-π associations contribute to the stabilization and expansion of the total high-dimensional frameworks. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R22(8), R42(8), R43(10) and R44(12), usually observed in the organic solids, were again shown to be involved in constructing most of these H-bonding networks.

  1. Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions

    PubMed Central

    Tian, Tian; Song, Yanyan; Wei, Lai; Wang, Jiaqi; Fu, Boshi; He, Zhiyong; Yang, Xi-Ran; Wu, Fan; Xu, Guohua; Liu, Si-Min; Li, Conggang

    2017-01-01

    Abstract Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the first to disclose a supramolecular switch for the reversible control of human telomere G4s. Moreover, this supramolecular switch has been successfully used to manipulate an enzymatic reaction. Using various methods, we show that cucurbit[7]uril preferably locks and encapsulates the positively charged piperidines of Razo through supramolecular interactions. They can switch the conformations of the DNA inhibitor between a flexible state and the rigid G4 and are therefore responsible for the reversible control of the thrombin activity. Thus, our findings open a promising route and exhibit potential applications in future studies of chemical biology. PMID:28115627

  2. Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators.

    PubMed

    Clemente, María J; Fitremann, Juliette; Mauzac, Monique; Serrano, José L; Oriol, Luis

    2011-12-20

    Low molecular mass amphiphilic glycolipids have been prepared by linking a maltose polar head and a hydrophobic linear chain either by amidation or copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. The liquid crystalline properties of these amphiphilic materials have been characterized. The influence of the chemical structure of these glycolipids on the gelation properties in water has also been studied. Glycolipids obtained by the click coupling of the two components give rise to stable hydrogels at room temperature. The fibrillar structure of supramolecular hydrogels obtained by the self-assembly of these gelators have been characterized by electron microscopy. Fibers showed some torsion, which could be related with a chiral supramolecular arrangement of amphiphiles, as confirmed by circular dichroism (CD). The sol-gel transition temperature was also determined by differential scanning calorimetry (DSC) and NMR. © 2011 American Chemical Society

  3. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.

    PubMed

    Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A

    2018-03-01

    Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Dual photo- and pH-responsive supramolecular nanocarriers based on water-soluble pillar[6]arene and different azobenzene derivatives for intracellular anticancer drug delivery.

    PubMed

    Hu, Xiao-Yu; Jia, Keke; Cao, Yu; Li, Yan; Qin, Shan; Zhou, Fan; Lin, Chen; Zhang, Dongmei; Wang, Leyong

    2015-01-12

    Two novel types of supramolecular nanocarriers fabricated by the amphiphilic host-guest inclusion complex formed from water-soluble pillar[6]arene (WP6) and azobenzene derivatives G1 or G2 have been developed, in which G1 is structurally similar to G2 but has an extra phenoxy group in its hydrophobic region. Supramolecular micelles can be initially formed by WP6 with G1, which gradually transform into layered structures with liquid-crystalline properties, whereas stable supramolecular vesicles are obtained from WP6 and G2, which exhibit dual photo- and pH-responsiveness. Notably, the resulting WP6⊃G2 vesicles can efficiently encapsulate anticancer drug mitoxantrone (MTZ) to achieve MTZ-loaded vesicles, which maintain good stability in a simulated normal physiological environment, whereas in an acid environment similar to that of tumor cells or with external UV irradiation, the encapsulated drug is promptly released. More importantly, cytotoxicity assay indicates that such vesicles have good biocompatibility and the MTZ-loaded vesicles exhibit comparable anticancer activity to free MTZ, especially with additional UV stimulus, whereas its cytotoxicity for normal cells was remarkably reduced. Flow cytometric analysis further confirms that the cancer cell death caused by MTZ-loaded vesicles is associated with apoptosis. Therefore, the dual pH- and UV-responsive supramolecular vesicles are a potential platform for controlled release and targeted anticancer drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Helical self-organization and hierarchical self-assembly of an oligoheterocyclic pyridine-pyridazine strand into extended supramolecular fibers.

    PubMed

    Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc

    2002-08-02

    The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.

  6. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    NASA Astrophysics Data System (ADS)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  7. Promoting Spontaneous Second Harmonic Generation through Organogelation.

    PubMed

    Marco, A Belén; Aparicio, Fátima; Faour, Lara; Iliopoulos, Konstantinos; Morille, Yohann; Allain, Magali; Franco, Santiago; Andreu, Raquel; Sahraoui, Bouchta; Gindre, Denis; Canevet, David; Sallé, Marc

    2016-07-27

    An organogelator based on the Disperse Red nonlinear optical chromophore was synthesized according to a simple and efficient three-step procedure. The supramolecular gel organization leads to xerogels which display a spontaneous second harmonic generation (SHG) response without any need for preprocessing, and this SHG activity appears to be stable over several months. These findings, based on an intrinsic structural approach, are supported by favorable intermolecular supramolecular interactions, which promote a locally non-centrosymmetric NLO-active organization. This is in sharp contrast with most materials designed for SHG purposes, which generally require the use of expensive or heavy-to-handle external techniques for managing the dipoles' alignment.

  8. Dispersion of single-wall carbon nanotubes with supramolecular Congo red - properties of the complexes and mechanism of the interaction.

    PubMed

    Jagusiak, Anna; Piekarska, Barbara; Pańczyk, Tomasz; Jemioła-Rzemińska, Małgorzata; Bielańska, Elżbieta; Stopa, Barbara; Zemanek, Grzegorz; Rybarska, Janina; Roterman, Irena; Konieczny, Leszek

    2017-01-01

    A method of dispersion of single-wall carbon nanotubes (SWNTs) in aqueous media using Congo red (CR) is proposed. Nanotubes covered with CR constitute the high capacity system that provides the possibility of binding and targeted delivery of different drugs, which can intercalate into the supramolecular, ribbon-like CR structure. The study revealed the presence of strong interactions between CR and the surface of SWNTs. The aim of the study was to explain the mechanism of this interaction. The interaction of CR and carbon nanotubes was studied using spectral analysis of the SWNT-CR complex, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and microscopic methods: atomic force microscopy (AFM), transmission (TEM), scanning (SEM) and optical microscopy. The results indicate that the binding of supramolecular CR structures to the surface of the nanotubes is based on the "face to face stacking". CR molecules attached directly to the surface of the nanotubes can bind further, parallel-oriented molecules and form supramolecular and protruding structures. This explains the high CR binding capacity of carbon nanotubes. The presented system - containing SWNTs covered with CR - offers a wide range of biomedical applications.

  9. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    PubMed Central

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-01-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086

  10. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    PubMed

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  11. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NASA Astrophysics Data System (ADS)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  12. Formation of Supramolecular Nanotubes by Self-assembly of a Phosphate-linked Dimeric Anthracene in Water.

    PubMed

    Yu, Hao; Sabetti, Mattia; Häner, Robert

    2018-04-16

    The assembly of supramolecular polymers from a phosphodiester-linked dimeric anthracene is described. AFM and TEM imaging reveals that the supramolecular polymers self-assemble into nanotubes in water. Subsequent photodimerization experiments indicate that the supramolecular polymerization occurs via end-to-end stacking rather than an interdigitation arrangement of the building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Supramolecular polymeric chemosensor for biomedical applications: design and synthesis of a luminescent zinc metallopolymer as a chemosensor for adenine detection.

    PubMed

    Chow, Cheuk-Fai

    2012-11-01

    Adenine is an important bio-molecule that plays many crucial roles in food safety and biomedical diagnostics. Differentiating adenine from a mixture of adenosine and other nucleic bases (guanine, thymine, cytosine, and uracil) is particularly important for both biological and clinical applications. A neutral Zn(II) metallosupramolecular polymer based on acyl hydrazone derived coordination centres (P1) were generated through self-assembly polymerization. It is a linear coordination polymer that behaves like self-standing film. The synthesis, (1)H-NMR characterization, and spectroscopic properties of this supramolecular material are reported. P1 was found to be a chemosensor specific to adenine, with a luminescent enhancement. The binding properties of P1 with common nucleic bases and nucleosides reveal that this supramolecular polymer is very selective to adenine molecules (~20 to 420 times more selectivity than other nucleic bases). The formation constant (K) of P1 to adenine was found to be log K = 4.10 ± 0.02. This polymeric chemosensor produces a specific response to adenine down to 90 ppb. Spectrofluorimetric and (1)H-NMR titration studies showed that the P1 polymer allows each Zn(II) coordination centre to bind to two adenine molecules through hydrogen bonding with their imine and hydrazone protons.

  14. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials

    PubMed Central

    2017-01-01

    Conspectus Microencapsulation is a fundamental concept behind a wide range of daily applications ranging from paints, adhesives, and pesticides to targeted drug delivery, transport of vaccines, and self-healing concretes. The beauty of microfluidics to generate microcapsules arises from the capability of fabricating monodisperse and micrometer-scale droplets, which can lead to microcapsules/particles with fine-tuned control over size, shape, and hierarchical structure, as well as high reproducibility, efficient material usage, and high-throughput manipulation. The introduction of supramolecular chemistry, such as host–guest interactions, endows the resultant microcapsules with stimuli-responsiveness and self-adjusting capabilities, and facilitates hierarchical microstructures with tunable stability and porosity, leading to the maturity of current microencapsulation industry. Supramolecular architectures and materials have attracted immense attention over the past decade, as they open the possibility to obtain a large variety of aesthetically pleasing structures, with myriad applications in biomedicine, energy, sensing, catalysis, and biomimicry, on account of the inherent reversible and adaptive nature of supramolecular interactions. As a subset of supramolecular interactions, host–guest molecular recognition involves the formation of inclusion complexes between two or more moieties, with specific three-dimensional structures and spatial arrangements, in a highly controllable and cooperative manner. Such highly selective, strong yet dynamic interactions could be exploited as an alternative methodology for programmable and controllable engineering of supramolecular architectures and materials, exploiting reversible interactions between complementary components. Through the engineering of molecular structures, assemblies can be readily functionalized based on host–guest interactions, with desirable physicochemical characteristics. In this Account, we summarize the current state of development in the field of monodisperse supramolecular microcapsules, fabricated through the integration of traditional microfluidic techniques and interfacial host–guest chemistry, specifically cucurbit[n]uril (CB[n])-mediated host–guest interactions. Three different strategies, colloidal particle-driven assembly, interfacial condensation-driven assembly and electrostatic interaction-driven assembly, are classified and discussed in detail, presenting the methodology involved in each microcapsule formation process. We highlight the state-of-the-art in design and control over structural complexity with desirable functionality, as well as promising applications, such as cargo delivery stemming from the assembled microcapsules. On account of its dynamic nature, the CB[n]-mediated host–guest complexation has demonstrated efficient response toward various external stimuli such as UV light, pH change, redox chemistry, and competitive guests. Herein, we also demonstrate different microcapsule modalities, which are engineered with CB[n] host–guest chemistry and also can be disrupted with the aid of external stimuli, for triggered release of payloads. In addition to the overview of recent achievements and current limitations of these microcapsules, we finally summarize several perspectives on tunable cargo loading and triggered release, directions, and challenges for this technology, as well as possible strategies for further improvement, which will lead to substainitial progress of host–guest chemistry in supramolecular architectures and materials. PMID:28075551

  15. Simultaneous covalent and noncovalent hybrid polymerizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Tantakitti, F.; Yu, T.

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher averagemore » molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.« less

  16. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    PubMed

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  17. Inducing Axial Chirality in a Supramolecular Catalyst.

    PubMed

    Wenz, Katharina Marie; Leonhardt-Lutterbeck, Günter; Breit, Bernhard

    2018-03-06

    A new type of ligand, which is able to form axially chiral, supramolecular complexes was designed using DFT calculations. Two chiral monomers, each featuring a covalently bound chiral auxiliary, form a bidentate phosphine ligand with a twisted, hydrogen-bonded backbone upon coordination to a transition metal center which results in two diastereomeric, tropos complexes. The ratio of the diastereomers in solution is very temperature- and solvent-dependent. Rhodium and platinum complexes were analyzed through a combination of NMR studies, ESI-MS measurements, as well as UV-VIS and circular dichroism spectroscopy. The chiral self-organized ligands were evaluated in the rhodium-catalyzed asymmetric hydrogenation of α-dehydrogenated amino acids and resulted in good conversion and high enantioselectivity. This research opens the way for new ligand designs based on stereocontrol of supramolecular assemblies through stereodirecting chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Unveiling the molecular mechanism of self-healing in a telechelic, supramolecular polymer network

    PubMed Central

    Yan, Tingzi; Schröter, Klaus; Herbst, Florian; Binder, Wolfgang H.; Thurn-Albrecht, Thomas

    2016-01-01

    Reversible polymeric networks can show self-healing properties due to their ability to reassemble after application of stress and fracture, but typically the relation between equilibrium molecular dynamics and self-healing kinetics has been difficult to disentangle. Here we present a well-characterized, self-assembled bulk network based on supramolecular assemblies, that allows a clear distinction between chain dynamics and network relaxation. Small angle x-ray scattering and rheological measurements provide evidence for a structurally well-defined, dense network of interconnected aggregates giving mechanical strength to the material. Different from a covalent network, the dynamic character of the supramolecular bonds enables macroscopic flow on a longer time scale and the establishment of an equilibrium structure. A combination of linear and nonlinear rheological measurements clearly identifies the terminal relaxation process as being responsible for the process of self-healing. PMID:27581380

  19. On the structural stability of guanosine-based supramolecular hydrogels.

    PubMed

    Carducci, Federica; Yoneda, Juliana S; Itri, Rosangela; Mariani, Paolo

    2018-04-18

    Supramolecular hydrogels formed from the self-assembly of low molecular weight derivatives are very attractive systems, because of their potential applications in nano- and bio-technology. In this paper, the stable and transparent hydrogels observed in binary mixtures of guanosine derivatives (G), namely guanosine 5'-monophosphate (GMP) and guanosine (Gua), dissolved in water (at volume fractions larger than 0.95), were investigated by microscopy techniques and Small Angle X-ray Scattering (SAXS). The results confirm the presence of G-quadruplexes, chiral cylindrical rods obtained by the regular stacking of self-assembled planar cyclic guanosine quartets. However, the addition of Gua determines the formation of very stable hydrogels able to trap large amounts of water (up to a volume fraction of 0.99) and characterised by an unusual anisotropic order. A modified lateral helix-to-helix interaction pattern, tuned by Gua, is suggested to be responsible for the supramolecular gelation and the stability of the hydrogels during swelling.

  20. Rationally designed peptide nanosponges for cell-based cancer therapy.

    PubMed

    Wang, Hongwang; Yapa, Asanka S; Kariyawasam, Nilusha L; Shrestha, Tej B; Kalubowilage, Madumali; Wendel, Sebastian O; Yu, Jing; Pyle, Marla; Basel, Matthew T; Malalasekera, Aruni P; Toledo, Yubisela; Ortega, Raquel; Thapa, Prem S; Huang, Hongzhou; Sun, Susan X; Smith, Paul E; Troyer, Deryl L; Bossmann, Stefan H

    2017-11-01

    A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D) n DEVDGC) 3 -trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K) n DEVDGC) 3 -trimaleimides and a 1:1 mixture of cholesterol-(K/D) n DEVDGC) 3 -trimaleimides form stable nanosponges, whereas cholesterol-(D) n DEVDGC) 3 -trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Biocatalytic induction of supramolecular order

    NASA Astrophysics Data System (ADS)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  2. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels.

    PubMed

    Wojciechowski, Jonathan P; Martin, Adam D; Thordarson, Pall

    2018-02-28

    It remains challenging to program soft materials to show dynamic, tunable time-dependent properties. In this work, we report a strategy to design transient supramolecular hydrogels based on kinetic control of competing reactions. Specifically, the pH-triggered self-assembly of a redox-active supramolecular gelator, N,N'-dibenzoyl-l-cystine (DBC) in the presence of a reducing agent, which acts to disassemble the system. The lifetimes of the transient hydrogels can be tuned simply by pH or reducing agent concentration. We find through kinetic analysis that gel formation hinders the ability of the reducing agent and enables longer transient hydrogel lifetimes than would be predicted. The transient hydrogels undergo clean cycles, with no kinetically trapped aggregates observed. As a result, multiple transient hydrogel cycles are demonstrated and can be predicted. This work contributes to our understanding of designing transient assemblies with tunable temporal control.

  3. Polyhedral Boranes: A Versatile Building Block for Nanoporous Materials

    NASA Astrophysics Data System (ADS)

    Clingerman, Daniel Jon

    The studies described in this dissertation examine several new concepts related to polyhedral boranes and their applications towards the synthesis of novel nanoporous materials. The unique thermal and chemical robustness, rigidity, quasi-spherical geometry, and high boron content of polyhedral boranes are explored to generate materials not possible with typical organic synthons. Aside from the fundamental synthetic work, this work was also aimed at solving larger global issues such as energy storage and new routes to therapeutics. Chapter 2 highlights the discovery of the first highly porous carborane-based metal-organic framework, where the spherical nature of the carborane increases volumetric surface area without reducing pore volume. Chapter 3 examines the first tritopic carborane-based ligand and the stabilizing effect the rigid, sterically bulky carboranyl groups have on highly porous topologies not stable with typical organic ligands. Chapters 4 and 5 describe the use of polyhedral borane-based ligands as a means to influence and generate unexpected topologies. Lastly, chapter 6 explores using a simple carborane-based ligand that harnesses the power of coordination-driven assembly to rapidly generate a high boron-containing supramolecular cuboctahedron.

  4. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    DOE PAGES

    Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...

    2017-03-28

    We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.« less

  5. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to applications in biomimetics, optics/photonics, functional surfaces, and photoswitchable supramolecules. PMID:23805801

  6. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity

    PubMed Central

    Sengupta, Poulomi; Basu, Sudipta; Soni, Shivani; Pandey, Ambarish; Roy, Bhaskar; Oh, Michael S.; Chin, Kenneth T.; Paraskar, Abhimanyu S.; Sarangi, Sasmit; Connor, Yamicia; Sabbisetti, Venkata S.; Kopparam, Jawahar; Kulkarni, Ashish; Muto, Katherine; Amarasiriwardena, Chitra; Jayawardene, Innocent; Lupoli, Nicola; Dinulescu, Daniela M.; Bonventre, Joseph V.; Mashelkar, Raghunath A.; Sengupta, Shiladitya

    2012-01-01

    Nanoscale drug delivery vehicles have been harnessed extensively as carriers for cancer chemotherapeutics. However, traditional pharmaceutical approaches for nanoformulation have been a challenge with molecules that exhibit incompatible physicochemical properties, such as platinum-based chemotherapeutics. Here we propose a paradigm based on rational design of active molecules that facilitate supramolecular assembly in the nanoscale dimension. Using cisplatin as a template, we describe the synthesis of a unique platinum (II) tethered to a cholesterol backbone via a unique monocarboxylato and O→Pt coordination environment that facilitates nanoparticle assembly with a fixed ratio of phosphatidylcholine and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000]. The nanoparticles formed exhibit lower IC50 values compared with carboplatin or cisplatin in vitro, and are active in cisplatin-resistant conditions. Additionally, the nanoparticles exhibit significantly enhanced in vivo antitumor efficacy in murine 4T1 breast cancer and in K-RasLSL/+/Ptenfl/fl ovarian cancer models with decreased systemic- and nephro-toxicity. Our results indicate that integrating rational drug design and supramolecular nanochemistry can emerge as a powerful strategy for drug development. Furthermore, given that platinum-based chemotherapeutics form the frontline therapy for a broad range of cancers, the increased efficacy and toxicity profile indicate the constructed nanostructure could translate into a next-generation platinum-based agent in the clinics. PMID:22733767

  7. Host-guest supramolecular nanosystems for cancer diagnostics and therapeutics.

    PubMed

    Wang, Lei; Li, Li-li; Fan, Yun-shan; Wang, Hao

    2013-07-26

    Extensive efforts have been devoted to the construction of functional supramolecular nanosystems for applications in catalysis, energy conversion, sensing and biomedicine. The applications of supramolecular nanosystems such as liposomes, micelles, inorganic nanoparticles, carbon materials for cancer diagnostics and therapeutics have been reviewed by other groups. Here, we will focus on the recent momentous advances in the implementation of typical supramolecular hosts (i.e., cyclodextrins, calixarenes, cucurbiturils and metallo-hosts) and their nanosystems in cancer diagnostics and therapeutics. We discuss the evolutive process of supramolecular nanosystems from the structural control and characterization to their diagnostic and therapeutic function exploitation and even the future potentials for clinical translation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structural Plasticity of Helical Nanotubes Based on Coiled-Coil Assemblies

    DOE PAGES

    Egelman, Edward H.; Xu, C.; DiMaio, F.; ...

    2015-01-22

    Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure,more » in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies.« less

  9. Carbon nanotube/biocompatible bola-amphiphile supramolecular biohybrid materials: preparation and their application in bacterial cell agglutination.

    PubMed

    Yu, Guocan; Li, Jinying; Yu, Wei; Han, Chengyou; Mao, Zhengwei; Gao, Changyou; Huang, Feihe

    2013-11-26

    Supramolecular biohybrid materials were successfully constructed driven by non-covalent interactions between three biocompatible bolaform amphiphiles and single walled carbon nanotubes (SWNTs). The existence of galactoses in these supramolecular systems endowed the hybrid materials with interesting bio-function. By introducing the SWNTs as semi-flexible platforms, these supramolecular biohybrid materials display excellent agglutination ability for E. coli. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 3D Printing Polymers with Supramolecular Functionality for Biological Applications.

    PubMed

    Pekkanen, Allison M; Mondschein, Ryan J; Williams, Christopher B; Long, Timothy E

    2017-09-11

    Supramolecular chemistry continues to experience widespread growth, as fine-tuned chemical structures lead to well-defined bulk materials. Previous literature described the roles of hydrogen bonding, ionic aggregation, guest/host interactions, and π-π stacking to tune mechanical, viscoelastic, and processing performance. The versatility of reversible interactions enables the more facile manufacturing of molded parts with tailored hierarchical structures such as tissue engineered scaffolds for biological applications. Recently, supramolecular polymers and additive manufacturing processes merged to provide parts with control of the molecular, macromolecular, and feature length scales. Additive manufacturing, or 3D printing, generates customizable constructs desirable for many applications, and the introduction of supramolecular interactions will potentially increase production speed, offer a tunable surface structure for controlling cell/scaffold interactions, and impart desired mechanical properties through reinforcing interlayer adhesion and introducing gradients or self-assembled structures. This review details the synthesis and characterization of supramolecular polymers suitable for additive manufacture and biomedical applications as well as the use of supramolecular polymers in additive manufacturing for drug delivery and complex tissue scaffold formation. The effect of supramolecular assembly and its dynamic behavior offers potential for controlling the anisotropy of the printed objects with exquisite geometrical control. The potential for supramolecular polymers to generate well-defined parts, hierarchical structures, and scaffolds with gradient properties/tuned surfaces provides an avenue for developing next-generation biomedical devices and tissue scaffolds.

  11. Calcium ion coordinated dexamethasone supramolecular hydrogel as therapeutic alternative for control of non-infectious uveitis.

    PubMed

    Wu, Wei; Zhang, Zhaoliang; Xiong, Taotao; Zhao, Wenguang; Jiang, Rou; Chen, Hao; Li, Xingyi

    2017-10-01

    Supramolecular hydrogels formed by the self-assembly of therapeutic agents have received considerable attention due to their high drug payload and carrier-free features. Herein, we constructed a dexamethasone sodium phosphate (Dex) supramolecular hydrogel in combination with Dex and calcium ion (Ca 2+ ) and further demonstrated its therapeutic efficacy in the control of ocular inflammation. The developed supramolecular hydrogel was thoroughly characterized by rheology, TEM, FTIR and XRD. Calcium ions and Dex concentration had a marked influence on the sol-gel transition behaviour of hydrogel and the proposed Dex supramolecular hydrogel displayed thixotropic properties. The drug release rate from Dex supramolecular hydrogel was dependent on the Ca 2+ concentration. In comparison with Dex aqueous solution, single intravitreal injections of Dex supramolecular hydrogel up to 30μg/eye were well tolerated without causing undesirable complications of fundus blood vessel tortuosity and lens opacity, as indicated by electroretinograms (ERGs), fundus photography and histopathology. Moreover, the administration by Dex supramolecular hydrogel exhibited a comparable anti-inflammatory efficacy to native Dex solution on an experimental autoimmune uveitis (EAU) model induced in Lewis rats with IRBP peptide and the therapeutic efficacy had in a dosage-dependent manner. Histological observation and cytokines measurements indicated that both Dex solution and Dex supramolecular hydrogel (30μg/eye) treatment could significantly attenuate the inflammatory response in both anterior and posterior chambers via the downregulation of Th1 and Th17 effector responses. All these data suggested that the developed Dex supramolecular hydrogel might be a therapeutic alternative for non-infectious uveitis with minimal risk of the induction of lens opacity and fundus blood vessel tortuosity. A facile ionic cross-linking strategy was exploited to construct a dexamethasone sodium phosphate (Dex) supramolecular hydrogel composed of Dex and calcium ion. Intravitreal injection of Dex hydrogel displayed excellent intraocular biocompatibility without causing the complications of fundus blood vessel tortuosity and lens opacity. More importantly, the proposed Dex hydrogel exhibited a comparative anti-inflammatory response to native Dex formulation on an experimental autoimmune uveitis (EAU) model via the downregulation of Th1 and Th17 effector responses. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons

    PubMed Central

    Zheng, Yao-Rong; Stang, Peter J.

    2009-01-01

    The direct observation of dynamic ligand exchange beween Pt-N coordination-driven self-assembled supramolecular polygons (triangles and rectangles) has been achieved using stable isotope labeling (1H/2D) of the pyridyl donors and electrospray ionization mass spectrometry (ESI-MS) together with NMR spectroscopy. Both the thermodynamic and kinetic aspects of such exchange processes have been established based on quantitative mass spectral results. Further investigation showed that the exchange is highly dependent on experimental conditions such as temperature, solvent, and the counter anions. PMID:19243144

  13. Metallo‐Supramolecular Gels that are Photocleavable with Visible and Near‐Infrared Irradiation

    PubMed Central

    Theis, Sabrina; Iturmendi, Aitziber; Gorsche, Christian; Orthofer, Marco; Lunzer, Markus; Baudis, Stefan; Ovsianikov, Aleksandr; Liska, Robert

    2017-01-01

    Abstract A photolabile ruthenium‐based complex, [Ru(bpy)2(4AMP)2](PF6)2, (4AMP=4‐(aminomethyl)pyridine) is incorporated into polyurea organo‐ and hydrogels via the reactive amine moieties on the photocleavable 4AMP ligands. While showing long‐term stability in the dark, cleavage of the pyridine–ruthenium bond upon irradiation with visible or near‐infrared irradiation (in a two‐photon process) leads to rapid de‐gelation of the supramolecular gels, thus enabling spatiotemporal micropatterning by photomasking or pulsed NIR‐laser irradiation PMID:28941025

  14. Polyoxotungstates now also with pentagonal units: supramolecular chemistry and tuning of magnetic exchange in {(M)M5}12V30 Keplerates (M = Mo, W).

    PubMed

    Todea, Ana Maria; Merca, Alice; Bögge, Hartmut; Glaser, Thorsten; Engelhardt, Larry; Prozorov, Ruslan; Luban, Marshall; Müller, Achim

    2009-06-21

    The deliberate synthesis of the Keplerate [K(20) subset{(W)W(5)O(21)(SO(4))}(12)(VO)(30)(SO(4))(H(2)O)(63)](18-) with 20 pores all closed by K(+) in a supramolecular fashion proves that it is possible to follow new routes in polyoxotungstate chemistry based on pentagonal {(W)W(5)}-type units and to tune magnetic exchange couplings in {(M)M(5)}(12)M'(30) type Keplerates.

  15. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  16. Rhenium(I)-based Double-heterostranded Helicates.

    PubMed

    Saxena, Priya; Shankar, Bhaskaran; Sathyanarayana, Arruri; Prabusankar, Ganesan; Sathiyendiran, Malaichamy

    2015-01-01

    Rhenium(I)-based supramolecular coordination complexes were obtained using Re2(CO)10, (2-hydroxyphenyl)benzimidazole-derived bis-chelating N∩O donors and a benzimidazolyl-derived ditopic monodentate N-donor possessing Troger's base spacer in a one-pot approach.

  17. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Orlova, Tetiana; Lancia, Federico; Loussert, Charles; Iamsaard, Supitchaya; Katsonis, Nathalie; Brasselet, Etienne

    2018-04-01

    Molecular machines operated by light have been recently shown to be able to produce oriented motion at the molecular scale1,2 as well as do macroscopic work when embedded in supramolecular structures3-5. However, any supramolecular movement irremediably ceases as soon as the concentration of the interconverting molecular motors or switches reaches a photo-stationary state6,7. To circumvent this limitation, researchers have typically relied on establishing oscillating illumination conditions—either by modulating the source intensity8,9 or by using bespoke illumination arrangements10-13. In contrast, here we report a supramolecular system in which the emergence of oscillating patterns is encoded at the molecular level. Our system comprises chiral liquid crystal structures that revolve continuously when illuminated, under the action of embedded light-driven molecular motors. The rotation at the supramolecular level is sustained by the diffusion of the motors away from a localized illumination area. Above a critical irradiation power, we observe a spontaneous symmetry breaking that dictates the directionality of the supramolecular rotation. The interplay between the twist of the supramolecular structure and the diffusion14 of the chiral molecular motors creates continuous, regular and unidirectional rotation of the liquid crystal structure under non-equilibrium conditions.

  18. A series of coordination polymers constructed from R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Hong, E-mail: zhou21921@sina.com; Zhou, Xu-Wan; Zhou, Su-Rong

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn{sub 2}Na(sip){sub 2}(bpp){sub 3}(Hbpp)(H{sub 2}O){sub 2}]·8H{sub 2}O (1), [Cd{sub 3}(sip){sub 2}(nbi){sub 6}(H{sub 2}O){sub 2}]·7H{sub 2}O (2), [Zn(sip)(nbi){sub 2}(H{sub 2}O)]·Hnbi·3H{sub 2}O (3), [Cd(hip)(nbi){sub 2}(H{sub 2}O)]·nbi·5H{sub 2}O (4), [Cd{sub 2}(nip){sub 2}(nbi){sub 2}(H{sub 2}O){sub 2}]·DMF (5), and [Cu(nip)(nbi)(H{sub 2}O){sub 2}]·H{sub 2}O (6) (H{sub 3}sip=5-sulfoisophthalic acid, H{sub 2}hip=5-hydroxylisophthalic acid, H{sub 2}nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through Omore » atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip{sup 3−} anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3–5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip{sup 2−} ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied. - Graphical abstract: A series of Cd(II)/Zn(II)/ Cu(II) coordination polymers based on R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands have been synthesized under hydrothermal conditions and structurally characterized. Photoluminescent properties have been discussed. - Highlights: • Six coordination polymers were synthesized based on mixed-ligand strategy. • The polycarboxylate acids play a crucial role in determining the final structures. • Each complex shows diverse structures and different supramolecular interactions.« less

  19. Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.

    PubMed

    Mon, Marta; Pascual-Álvarez, Alejandro; Grancha, Thais; Cano, Joan; Ferrando-Soria, Jesús; Lloret, Francesc; Gascon, Jorge; Pasán, Jorge; Armentano, Donatella; Pardo, Emilio

    2016-01-11

    Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cyclodextrins as versatile building blocks for regenerative medicine.

    PubMed

    Alvarez-Lorenzo, Carmen; García-González, Carlos A; Concheiro, Angel

    2017-12-28

    Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine. Supramolecular poly(pseudo)rotaxane structures and zipper-like assemblies exhibit outstanding viscoelastic properties, performing as syringeable implants. The sharp shear-responsiveness of the supramolecular assemblies is opening new avenues for the design of bioinks for 3D printing and also of electrospun fibers. CDs can also be transformed into polymerizable monomers to prepare alternative nanostructured materials. The aim of this review is to analyze the role that CDs may play in regenerative medicine through the analysis of the last decade research. Most applications of CD-based scaffolds are focussed on non-healing bone fractures, cartilage reparation and skin recovery, but also on even more challenging demands such as neural grafts. For the sake of clarity, main sections of this review are organized according to the architecture of the CD-based scaffolds, mainly syringeable supramolecular hydrogels, 3D printed scaffolds, electrospun fibers, and composites, since the same scaffold type may find application in different tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial investigations were ultimately unsuccessful due to photodegradation of the UPy moiety in chloroform solution. This thesis has provided the Priestley lab with a solid base for the further investigation of the diverse applications and unsolved science of stimuli responsive adaptive materials.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua, E-mail: songhuihua@mail.hebtu.edu.cn

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H{sub 2}bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2′-bipy)(H{sub 2}O)]{sub n} (1), [Cd(bzgluO)(2,4′-bipy){sub 2}(H{sub 2}O)·3H{sub 2}O]{sub n} (2), [Cd(bzgluO)(phen)·H{sub 2}O]{sub n} (3), [Cd(bzgluO)(4,4′-bipy)(H{sub 2}O)]{sub n} (4), [Cd(bzgluO)(bpp)(H{sub 2}O)·2H{sub 2}O]{sub n} (5) were synthesized (2,2′-bipy=2,2′-bipyridine, 2,4′-bipy=2,4′-bipyridine, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1–2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π–π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π–π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboringmore » layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H{sub 2}bzgluO. Luminescent properties of 1–5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated. - Graphical abstract: Five new Cd(II) metal coordination compounds with H{sub 2}bzgluO and different N-donor ligands were synthesized and characterized. Compounds 1, 2 and 3 present 1D structures, compounds 4 and 5 display 2D networks. Results indicate that auxiliary ligands and coordination modes of H{sub 2}bzgluO play an important role in governing the formation of final frameworks, and the hydrogen-bonding and π–π stacking interactions contribute the formation of the diverse supramolecular architectures. Furthermore, the different crystal structures influence the emission spectra significantly. - Highlights: • It is rarely reported that complexes prepared with N-benzoyl-L-glutamic acid. • Each complex displays diverse structures and different supramolecular interactions. • Results indicate that N-donor ligands play a crucial role in the final structures. • The different crystal structures influence the emission spectra significantly.« less

  3. Multiple conformations of benzil in resorcinarene-based supramolecular host matrixes.

    PubMed

    Ma, Bao-Qing; Zhang, Yuegang; Coppens, Philip

    2003-11-28

    Six supramolecular complexes incorporating benzil as a guest, CMCR*bipy*benzil (alpha) 1 (CMCR = C-methylcalix[4]resorcinarene), CMCR*bipy*benzil (beta) 2, CMCR*2bpe*benzil*ethanol 3 (bpe = trans-1,4-bis(pyridyl)ethylene), CMCR*2bpe*benzil*2H2O 4, CMCR.2bpeh*benzil*ethanol 5 (bpeh = bis-(1-pyridin-4-yl-ethylidene)-hydrazine), and CECR*2bpe.benzil 6 (CECR = C-ethylcalix[4]resorcinarene), have been synthesized by hydrothermal and conventional methods and characterized by X-ray diffraction. Resorcinarene adopts a boat conformation in 1-4 and a bowl conformation in 5 and 6. Compounds 1-4 show a brick-wall-like framework, in which two benzil molecules are incorporated. For 5, bpeh spacers link CMCR molecules to give a one-dimensional wavelike polymer in which one benzil guest is embedded within the polymer cavity. Complex 6 forms a carcerand-like capsule in which two benzil guests are encapsulated. The O=C-C=O torsion angles vary from 91.8 to 139.3 degrees and correlate with the length of the central C-C bond. The benzil concentration, which is approximately 6.2 mol/L in the neat crystals, varies between 1.01 and 1.51 mol/L in the structures studied, corresponding to a 6-fold dilution. The benzil molecules are disordered in the larger cavities of 4 and 5. The two benzoyl fragments are almost perpendicular in 3, which has the next largest cavity size when solvent volume is excluded, whereas a nearly trans-coplanar conformation occurs for the cavity with the smallest volume in 6.

  4. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  5. Fabrication of Supramolecular Chirality from Achiral Molecules at the Liquid/Liquid Interface Studied by Second Harmonic Generation.

    PubMed

    Lin, Lu; Zhang, Zhen; Guo, Yuan; Liu, Minghua

    2018-01-09

    We present the investigation into the supramolecular chirality of 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18) at water/1,2-dichloroethane interface by second harmonic generation (SHG). We observe that PARC18 molecules form supramolecular chirality through self-assembly at the liquid/liquid interface although they are achiral molecules. The bulk concentration of PARC18 in the organic phase has profound effects on the supramolecular chirality. By increasing bulk concentration, the enantiomeric excess at the interface first grows and then decreases until it eventually vanishes. Further analysis reveals that the enantiomeric excess is determined by the twist angle of PARC18 molecules at the interface rather than their orientational angle. At lower and higher bulk concentrations, the average twist angle of PARC18 molecules approaches zero, and the assemblies are achiral; whereas at medium bulk concentrations, the average twist angle is nonzero, so that the assemblies show supramolecular chirality. We also estimate the coverage of PARC18 molecules at the interface versus the bulk concentration and fit it to Langmuir adsorption model. The result indicates that PARC18 assemblies show strongest supramolecular chirality in a half-full monolayer. These findings highlight the opportunities for precise control of supramolecular chirality at liquid/liquid interfaces by manipulating the bulk concentration.

  6. Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics.

    PubMed

    Xu, Xuejiao; Appel, Eric A; Liu, Xin; Parker, Richard M; Scherman, Oren A; Abell, Chris

    2015-09-14

    Herein we describe the use of microdroplets as templates for the fabrication of uniform-sized supramolecular hydrogel beads, assembled by supramolecular cross-linking of functional biopolymers with the macrocyclic host molecule, cucurbit[8]uril (CB[8]). The microdroplets were formed containing diluted hydrogel precursors in solution, including the functional polymers and CB[8], in a microfluidic device. Subsequent evaporation of water from collected microdroplets concentrated the contents, driving the formation of the CB[8]-mediated host-guest ternary complex interactions and leading to the assembly of condensed three-dimensional polymeric scaffolds. Rehydration of the dried particles gave monodisperse hydrogel beads. Their equilibrium size was shown to be dependent on both the quantity of material loaded and the dimensions of the microfluidic flow focus. Fluorescein-labeled dextran was used to evaluate the efficacy of the hydrogel beads as a vector for controlled cargo release. Both passive, sustained release (hours) and triggered, fast release (minutes) of the FITC-dextran was observed, with the rate of sustained release dependent on the formulation. The kinetics of release was fitted to the Ritger-Peppas controlled release equation and shown to follow an anomalous (non-Fickian) transport mechanism.

  7. Ionic liquids gels: Soft materials for environmental remediation.

    PubMed

    Marullo, Salvatore; Rizzo, Carla; Dintcheva, Nadka T; Giannici, Francesco; D'Anna, Francesca

    2018-05-01

    Nanostructured sorbents and, in particular, supramolecular gels are emerging as efficient materials for the removal of toxic contaminants from water, like industrial dyes. It is also known that ionic liquids can dissolve significant amounts of dyes. Consequently, supramolecular ionic liquids gels could be highly efficient sorbents for dyes removal. This would also contribute to overcome the drawbacks associated with dye removal by liquid-liquid extraction with neat ionic liquids which would require large volumes of extractant and a more difficult separation of the phases. Herein we employed novel supramolecular ionic liquid gels based on diimidazolium salts bearing naturally occurring or biomass derived anions, to adsorb cationic and anionic dyes from wastewaters. We also carried out a detailed investigation of thermal, structural, morphological and rheological features of our gels to identify which of them are key in designing better sorbents for environmental remediation. The most effective gels showed fast and thorough removal of cationic dyes like Rhodamine B. These gels could also be reused up to 20 times without any loss in removal efficiency. Overall, our ionic gels outperform most of gel-based sorbents systems so far reported in literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Synergizing Noncovalent Bonding Interactions in the Self-Assembly of Organic Charge-Transfer Ferroelectrics and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Cao, Dennis

    Contemporary supramolecular chemistry---chemistry beyond the molecule---seeks to leverage noncovalent bonding interactions to generate emergent properties and complexity. These aims extend beyond the solution phase and into the solid state, where crystalline organic materials have attracted much attention for their ability to imitate the physical properties of inorganic crystals. This Thesis outlines my efforts to understand the properties of the solid-state materials that are self-assembled with noncovalent bonding motifs which I have helped to realize. In the first five Chapters, I chronicle the development of the lock-arm supramolecular ordering (LASO) paradigm, which is a general molecular design strategy for amplifying the crystallization of charge transfer complexes that revolves around the synergistic action of hydrogen bonding and charge transfer interactions. In an effort to expand upon the LASO paradigm, I identify a two-point halogen-bonding motif which appears to operate orthogonally from the hydrogen bonding and charge transfer interactions. Since some of these single crystalline materials are ferroelectric at room temperature, I discuss the implications of these experimental observations and reconcile them with the centrosymmetric space groups assigned after X-ray crystallographic refinements. I conclude in the final two Chapters by recording my endeavors to control the assembly of metal-organic frameworks (MOFs) with noncovalent bonding interactions between [2]catenane-bearing struts. First of all, I describe the formation of syndiotactic pi-stacked 2D MOF layers before highlighting a two-component MOF that assembles with a magic number ratio of components that is independent of the molar proportions present in the crystallization medium.

  9. Towards chiral distributions of dopants in microporous frameworks: helicoidal supramolecular arrangement of (1R,2S)-ephedrine and transfer of chirality.

    PubMed

    Gómez-Hortigüela, Luis; Álvaro-Muñoz, Teresa; Bernardo-Maestro, Beatriz; Pérez-Pariente, Joaquín

    2015-01-07

    A molecular-mechanics computational study is performed in order to analyze the arrangement of (1R,2S)-(-)-ephedrine molecules within the 12-MR channels of the AFI aluminophosphate microporous framework and the influence on the spatial distribution of dopants embedded in the tetrahedral network. Results showed that ephedrine molecules arrange exclusively as dimers by π-π stacking of the aromatic rings within the AFI channels. Interestingly, the asymmetric nature of ephedrine and the presence of H-bond-forming groups (NH2 and OH) involve a preferential orientation where consecutive dimers within the channels are rotated by an angle of +30°; this is driven by the establishment of inter-dimer H-bonds. This preferential orientation leads to the development of a supramolecular enantiomerically-pure helicoidal (chiral) arrangement of ephedrine dimers. In addition, the computational results demonstrate that the particular molecular structure of ephedrine imparts a strong trend to attract negative charges to the vicinity of the NH2(+) positively-charged groups. Hence divalent dopants such as Mg, whose replacement by trivalent Al in the aluminophosphate network involves the generation of a negative charge, will tend to locate close to the NH2(+) molecular groups, suggesting that an imprinting of the organic arrangement to the spatial distribution of dopants would be feasible. Combined with the trend of ephedrine to arrange in a helicoidal fashion, an enantiomerically-pure helicoidal distribution of dopants would be expected, thus inducing a new type of chirality in microporous materials.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  11. Generation of a stable supramolecular hydrogen evolving photocatalyst by alteration of the catalytic center.

    PubMed

    Mengele, Alexander K; Kaufhold, Simon; Streb, Carsten; Rau, Sven

    2016-04-21

    A new dyad consisting of a Ru(II) chromophore, a tetrapyridophenazine bridging ligand and a Rh(Cp*)Cl catalytic center, [Ru(tbbpy)2(tpphz)Rh(Cp*)Cl]Cl(PF6)2, acts as durable photocatalyst for hydrogen production from water. Catalytic activity is observed for more than 650 hours. Electrochemical investigations reveal that up to two electrons can be transferred to the catalytic center by a thermodynamically favorable intramolecular process, which has so far not been reported for similar tpphz based supramolecular photocatalysts. Additionally, mercury poisoning tests indicate that the new dyad works as a homogeneous photocatalyst.

  12. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  13. Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection.

    PubMed

    Qi, Zhenhui; Bharate, Priya; Lai, Chian-Hui; Ziem, Benjamin; Böttcher, Christoph; Schulz, Andrea; Beckert, Fabian; Hatting, Benjamin; Mülhaupt, Rolf; Seeberger, Peter H; Haag, Rainer

    2015-09-09

    A supramolecular carbohydrate-functionalized two-dimensional (2D) surface was designed and synthesized by decorating thermally reduced graphene sheets with multivalent sugar ligands. The formation of host-guest inclusions on the carbon surface provides a versatile strategy, not only to increase the intrinsic water solubility of graphene-based materials, but more importantly to let the desired biofunctional binding groups bind to the surface. Combining the vital recognition role of carbohydrates and the unique 2D large flexible surface area of the graphene sheets, the addition of multivalent sugar ligands makes the resulting carbon material an excellent platform for selectively wrapping and agglutinating Escherichia coli (E. coli). By taking advantage of the responsive property of supramolecular interactions, the captured bacteria can then be partially released by adding a competitive guest. Compared to previously reported scaffolds, the unique thermal IR-absorption properties of graphene derivatives provide a facile method to kill the captured bacteria by IR-laser irradiation of the captured graphene-sugar-E. coli complex.

  14. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    PubMed

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids

    PubMed Central

    Dubey, Ritesh; Desiraju, Gautam R.

    2015-01-01

    The crystallization of 28 binary and ternary cocrystals of quercetin with dibasic coformers is analyzed in terms of a combinatorial selection from a solution of preferred molecular conformations and supramolecular synthons. The crystal structures are characterized by distinctive O—H⋯N and O—H⋯O based synthons and are classified as nonporous, porous and helical. Variability in molecular conformation and synthon structure led to an increase in the energetic and structural space around the crystallization event. This space is the crystal structure landscape of the compound and is explored by fine-tuning the experimental conditions of crystallization. In the landscape context, we develop a strategy for the isolation of ternary cocrystals with the use of auxiliary template molecules to reduce the molecular and supramolecular ‘confusion’ that is inherent in a molecule like quercetin. The absence of concomitant polymorphism in this study highlights the selectivity in conformation and synthon choice from the virtual combinatorial library in solution. PMID:26175900

  16. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  17. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies.

    PubMed

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I

    2015-03-04

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro.

  18. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-07

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  19. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks

    NASA Astrophysics Data System (ADS)

    Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa

    2015-03-01

    Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity.

  20. Supramolecular gels with high strength by tuning of calix[4]arene-derived networks

    PubMed Central

    Lee, Ji Ha; Park, Jaehyeon; Park, Jin-Woo; Ahn, Hyo-Jun; Jaworski, Justyn; Jung, Jong Hwa

    2015-01-01

    Supramolecular gels comprised of low-molecular-weight gelators are generally regarded as mechanically weak and unable to support formation of free-standing structures, hence, their practical use with applied loads has been limited. Here, we reveal a technique for in situ generation of high tensile strength supramolecular hydrogels derived from low-molecular-weight gelators. By controlling the concentration of hydrochloric acid during hydrazone formation between calix-[4]arene-based gelator precursors, we tune the mechanical and ductile properties of the resulting gel. Organogels formed without hydrochloric acid exhibit impressive tensile strengths, higher than 40 MPa, which is the strongest among self-assembled gels. Hydrogels, prepared by solvent exchange of organogels in water, show 7,000- to 10,000-fold enhanced mechanical properties because of further hydrazone formation. This method of molding also allows the gels to retain shape after processing, and furthermore, we find organogels when prepared as gel electrolytes for lithium battery applications to have good ionic conductivity. PMID:25799459

  1. Two-dimensional networks of brominated Y-shaped molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Jeon, Un Seung; Chang, Min Hui; Jang, Won-Jun; Lee, Soon-Hyung; Han, Seungwu; Kahng, Se-Jong

    2018-02-01

    In the design of supramolecular structures, Y-shaped molecules are useful to expand the structures in three different directions. The supramolecular structures of Y-shaped molecules with three halogen-ligands on surfaces have been extensively studied, but much less are done for those with six halogen-ligands. Here, we report on the intermolecular interactions of a Y-shaped molecule, 1,3,5-Tris(3,5-dibromophenyl)benzene, with six Br-ligands studied using scanning tunneling microscopy (STM). Honeycomb-like structures were observed on Au(111), and could be explained with chiral triple-nodes made of three Br···Br halogen bonds. Molecular models were proposed based on STM images and reproduced with density-functional theory calculations. Although the molecule has six Br-ligands, only three of them form Br···Br halogen bonds because of geometrical restrictions. Our study shows that halogenated Y-shaped molecules will be useful components for building supramolecular structures.

  2. Supramolecular core-shell nanoparticles for photoconductive device applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Chia; Chen, Jem-Kun; Shieh, Yeong-Tarng; Lee, Duu-Jong

    2016-08-01

    We report a breakthrough discovery involving supramolecular-based strategies to construct novel core-shell heterojunction nanoparticles with hydrophilic adenine-functionalized polythiophene (PAT) as the core and hydrophobic phenyl-C61-butyric acid methyl ester (PCBM) as the shell, which enables the conception of new functional supramolecular assemblies for constructing functional nanomaterials for applications in optoelectronic devices. The generated nanoparticles exhibit uniform spherical shape, well-controlled tuning of particle size with narrow size distributions, and excellent electrochemical stability in solution and the solid state owing to highly efficient energy transfer from PAT to PCBM. When the PAT/PCBM nanoparticles were fabricated into a photoconducting layer in an electronic device, the resulting device showed excellent electric conduction characteristics, including an electrically-tunable voltage-controlled switch, and high short-circuit current and open-circuit voltage. These observations demonstrate how the self-assembly of PAT/PCBM into specific nanostructures may help to promote efficient charge generation and transport processes, suggesting potential for a wide variety of applications as a promising candidate material for bulk heterojunction polymer devices.

  3. Self-Assembly of Supramolecular Composites under Cylindrical Confinement

    NASA Astrophysics Data System (ADS)

    Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting

    2014-03-01

    Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.

  4. Molecular basis of cooperativity in pH-triggered supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhao, Tian; Wang, Chensu; Lin, Zhiqiang; Huang, Gang; Sumer, Baran D.; Gao, Jinming

    2016-10-01

    Supramolecular self-assembly offers a powerful strategy to produce high-performance, stimuli-responsive nanomaterials. However, lack of molecular understanding of stimulated responses frequently hampers our ability to rationally design nanomaterials with sharp responses. Here we elucidated the molecular pathway of pH-triggered supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Hydrophobic micellization drove divergent proton distribution in either highly protonated unimer or neutral micelle states along the majority of the titration coordinate unlike conventional small molecular or polymeric bases. This all-or-nothing two-state solution is a hallmark of positive cooperativity. Integrated modelling and experimental validation yielded a Hill coefficient of 51 in pH cooperativity for a representative UPS block copolymer, by far the largest reported in the literature. These data suggest hydrophobic micellization and resulting positive cooperativity offer a versatile strategy to convert responsive nanomaterials into binary on/off switchable systems for chemical and biological sensing, as demonstrated in an additional anion sensing model.

  5. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.

    PubMed

    Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng

    2018-05-30

    Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Supramolecular photochemistry and solar cells

    PubMed

    Iha

    2000-01-01

    Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i) cage-type coordination compounds; (ii) second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii) covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  7. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  8. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C. A.; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L.

    2018-02-01

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large proteins, in which mechanical stress induces a coordinated movement. However, artificial molecular muscles have often relied on covalent polymer-based actuators. Here, we describe the macroscopic contractile muscle-like motion of a supramolecular system (comprising 95% water) formed by the hierarchical self-assembly of a photoresponsive amphiphilic molecular motor. The molecular motor first assembles into nanofibres, which further assemble into aligned bundles that make up centimetre-long strings. Irradiation induces rotary motion of the molecular motors, and propagation and accumulation of this motion lead to contraction of the fibres towards the light source. This system supports large-amplitude motion, fast response, precise control over shape, as well as weight-lifting experiments in water and air.

  9. Chiral signs of TPPS co-assemblies with chiral gelators: role of molecular and supramolecular chirality.

    PubMed

    Wang, Qiuling; Zhang, Li; Yang, Dong; Li, Tiesheng; Liu, Minghua

    2016-10-13

    A dianionic tetrakis(4-sulfonatophenyl)porphyrin (TPPS) self-assembled into J-aggregates when it co-assembled with a chiral cationic amphiphile via supramolecular gelation. The chiral signs of TPPS J aggregates followed the supramolecular chirality of amphiphilic assemblies rather than the molecular chirality of the amphiphile.

  10. Supramolecular latching system based on ultrastable synthetic binding pairs as versatile tools for protein imaging.

    PubMed

    Kim, Kyung Lock; Sung, Gihyun; Sim, Jaehwan; Murray, James; Li, Meng; Lee, Ara; Shrinidhi, Annadka; Park, Kyeng Min; Kim, Kimoon

    2018-04-27

    Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.

  11. Development of New Supramolecular Lyotropic Liquid Crystals and Their Application as Alignment Media for Organic Compounds.

    PubMed

    Leyendecker, Martin; Meyer, Nils-Christopher; Thiele, Christina M

    2017-09-11

    Most alignment media for the residual dipolar coupling (RDC) based molecular structure determination of small organic compounds consist of rod-like polymers dissolved in organic solvents or of swollen cross-linked polymer gels. Thus far, the synthesis of polymer-based alignment media has been a challenging process, which is often followed by a time-consuming sample preparation. We herein propose the use of non-polymeric alignment media based on benzenetricarboxamides (BTAs), which self-assemble into rod-like supramolecules. Our newly found supramolecular lyotropic liquid crystals (LLCs) are studied in terms of their LLC properties and their suitability as alignment media in NMR spectroscopy. Scalable enantiodifferentiating properties are introduced through a sergeant-and-soldier principle by blending achiral with chiral substituted BTAs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

    DOE PAGES

    Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; ...

    2017-03-01

    Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer,more » taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.« less

  13. Hierarchical Self-Organization of Perylene Bisimides into Supramolecular Spheres and Periodic Arrays Thereof.

    PubMed

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2016-11-09

    Perylene bisimide derivatives (PBIs) are known to form only columnar or lamellar assemblies. There is no known example of a PBI self-assembling into a supramolecular sphere. Therefore, periodic and quasiperiodic arrays generated from spherical assemblies produced from PBIs are also not known. Here, a PBI functionalized at its imide groups with a second generation self-assembling dendron is reported to self-assemble into supramolecular spheres. These spheres self-organize in a body-centered cubic (BCC) periodic array, rarely encountered for self-assembling dendrons but often encountered in block copolymers. These supramolecular spheres also assemble into a columnar hexagonal array in which the supramolecular columns are unexpectedly and unprecedentedly made from spheres. At lower temperature, two additional columnar hexagonal phases consisting of symmetric and asymmetric tetrameric crowns of PBI are observed. Structural and retrostructural analysis via X-ray diffraction (XRD), molecular modeling, molecular simulation, and solid state NMR suggests that inversion of the symmetric tetrameric crowns at high temperature mediates their transformation into supramolecular spheres. The tetrameric crowns of PBIs are able to form an isotropic sphere in the cubic phase due to rapid molecular motion at high temperature, unobservable by XRD but demonstrated by solid state NMR studies. This mechanism of hierarchical self-organization of PBI into supramolecular spheres is most probably general and can be applied to other related planar molecules to generate new functions.

  14. Competitive Energy and Electron Transfer in β-Functionalized Free-Base Porphyrin-Zinc Porphyrin Dimer Axially Coordinated to C60 : Synthesis, Supramolecular Formation and Excited-State Processes.

    PubMed

    Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis

    2017-09-18

    Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H 2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 10 4  m -1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H 2 P, and electron transfer to the coordinated ImC 60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×10 9  s -1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex photochemical events occurring in natural photosynthesis and its implications in building light energy harvesting devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. From containers to catalysts: supramolecular catalysis within cucurbiturils.

    PubMed

    Pemberton, Barry C; Raghunathan, Ramya; Volla, Sabine; Sivaguru, Jayaraman

    2012-09-24

    Cucurbiturils are a family of molecular container compounds with superior molecular recognition properties. The use of cucurbiturils for supramolecular catalysis is highlighted in this concept. Both photochemical reactions as well as thermal transformations are reviewed with an eye towards tailoring substrates for supramolecular catalysis mediated by cucurbiturils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CH3NH3PbI3 and CsPbI3 Supramolecular Clusters in 1D: Do They Evolve with the Same Principle of Cooperative Binding?

    NASA Astrophysics Data System (ADS)

    Varadwaj, Arpita; Varadwaj, Pradeep R.; Yamashita, Koichi

    Development of novel semiconductor-based photo-catalytic and -voltaic systems is a major area of research in nanoscience and technologies, and engineering. The process can be either direct or indirect in converting the light energy into electricity. Some of the photovoltaics include the organic, dye-sensitized, and halide perovskite solar cells, among others. Methylammonium lead iodide (CH3NH3PbI3) inorganic-organic hybrid perovskite is one among the many highly valued semiconductors reported till date, comparable with the inorganic cesium lead iodide (CsPbI3) perovskite. These are competitive candidates in the solar energy race. Nevertheless, this study was concentrated on the fundamental understanding of the rational designs of the CH3NH3PbI3 and CsPbI3 supramolecular materials using first-principles calculations, emerged though the self-assembly of the respective building blocks. It therefore addresses the question whether the (CH3NH3PbI3)n and (CsPbI3)n (n =1-10) supramolecular clusters are the consequences of additivity, or non-additive cooperative binding? For addressing this question, the supramolecular properties such as the polarizability, the intermolecular charge transfer, and the binding energy, etc., all w.r.t the cluster size n, are exploited. CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076.

  17. Supramolecular assembly affording a ratiometric two-photon fluorescent nanoprobe for quantitative detection and bioimaging.

    PubMed

    Wang, Peng; Zhang, Cheng; Liu, Hong-Wen; Xiong, Mengyi; Yin, Sheng-Yan; Yang, Yue; Hu, Xiao-Xiao; Yin, Xia; Zhang, Xiao-Bing; Tan, Weihong

    2017-12-01

    Fluorescence quantitative analyses for vital biomolecules are in great demand in biomedical science owing to their unique detection advantages with rapid, sensitive, non-damaging and specific identification. However, available fluorescence strategies for quantitative detection are usually hard to design and achieve. Inspired by supramolecular chemistry, a two-photon-excited fluorescent supramolecular nanoplatform ( TPSNP ) was designed for quantitative analysis with three parts: host molecules (β-CD polymers), a guest fluorophore of sensing probes (Np-Ad) and a guest internal reference (NpRh-Ad). In this strategy, the TPSNP possesses the merits of (i) improved water-solubility and biocompatibility; (ii) increased tissue penetration depth for bioimaging by two-photon excitation; (iii) quantitative and tunable assembly of functional guest molecules to obtain optimized detection conditions; (iv) a common approach to avoid the limitation of complicated design by adjustment of sensing probes; and (v) accurate quantitative analysis by virtue of reference molecules. As a proof-of-concept, we utilized the two-photon fluorescent probe NHS-Ad-based TPSNP-1 to realize accurate quantitative analysis of hydrogen sulfide (H 2 S), with high sensitivity and good selectivity in live cells, deep tissues and ex vivo -dissected organs, suggesting that the TPSNP is an ideal quantitative indicator for clinical samples. What's more, TPSNP will pave the way for designing and preparing advanced supramolecular sensors for biosensing and biomedicine.

  18. Long-range single domain array of a 5 nm pattern of supramolecules via solvent annealing in a double-sandwich cell.

    PubMed

    Kwon, Kiok; Park, Kangho; Jung, Hee-Tae

    2018-05-10

    In nanotechnology and microelectronics research, the generation of an ultradense, single-grain nanostructure with a long-range lateral order is challenging. In this paper, we report upon a new solvent-annealing method using a double-sandwich confinement to promote the formation of a large-area, single-domain array (>0.3 × 0.3 mm2) of supramolecular cylinders with a small feature size (4.7 nm). The in situ GISAXS experiment result shows the ordering process during solvent evaporation. The diffusion of the solvent molecules led to the disassembly of the supramolecules confined between the top and bottom surfaces and their subsequent mobilization, thereby producing a highly ordered hexagonal array of supramolecular materials under the double-sandwich confinement upon solvent evaporation. In addition, two key factors were found to be crucial in this process for generating highly-ordered supramolecular building blocks: (i) the presence of a top coat during solvent evaporation to provide a geometric confinement template, and (ii) the control of the solvent evaporation rate during the solvent evaporation step to provide the dendrimer sufficient time to self-assemble into the highly ordered state over a large area. Our developed approach, which can be extended to be used for a large family of supramolecules, is of critical importance in providing a new bottom-up lithographic method based on supramolecular self-assembly.

  19. Supramolecular self-assembly on the B-Si(111)-(√3x√3) R30° surface: From single molecules to multicomponent networks

    NASA Astrophysics Data System (ADS)

    Makoudi, Younes; Jeannoutot, Judicaël; Palmino, Frank; Chérioux, Frédéric; Copie, Guillaume; Krzeminski, Christophe; Cleri, Fabrizio; Grandidier, Bruno

    2017-09-01

    Understanding the physical and chemical processes in which local interactions lead to ordered structures is of particular relevance to the realization of supramolecular architectures on surfaces. While spectacular patterns have been demonstrated on metal surfaces, there have been fewer studies of the spontaneous organization of supramolecular networks on semiconductor surfaces, where the formation of covalent bonds between organics and adatoms usually hamper the diffusion of molecules and their subsequent interactions with each other. However, the saturation of the dangling bonds at a semiconductor surface is known to make them inert and offers a unique way for the engineering of molecular patterns on these surfaces. This review describes the physicochemical properties of the passivated B-Si(111)-(√3x√3) R30° surface, that enable the self-assembly of molecules into a rich variety of extended and regular structures on silicon. Particular attention is given to computational methods based on multi-scale simulations that allow to rationalize the relative contribution of the dispersion forces involved in the self-assembled networks observed with scanning tunneling microscopy. A summary of state of the art studies, where a fine tuning of the molecular network topology has been achieved, sheds light on new frontiers for exploiting the construction of supramolecular structures on semiconductor surfaces.

  20. An electrochemiluminescence-supramolecular approach to sarcosine detection for early diagnosis of prostate cancer.

    PubMed

    Valenti, Giovanni; Rampazzo, Enrico; Biavardi, Elisa; Villani, Elena; Fracasso, Giulio; Marcaccio, Massimo; Bertani, Federico; Ramarli, Dunia; Dalcanale, Enrico; Paolucci, Francesco; Prodi, Luca

    2015-01-01

    Monitoring Prostate Cancer (PCa) biomarkers is an efficient way to diagnosis this disease early, since it improves the therapeutic success rate and suppresses PCa patient mortality: for this reason a powerful analytical technique such as electrochemiluminescence (ECL) is already used for this application, but its widespread usability is still hampered by the high cost of commercial ECL equipment. We describe an innovative approach for the selective and sensitive detection of the PCa biomarker sarcosine, obtained by a synergistic ECL-supramolecular approach, in which the free base form of sarcosine acts as co-reagent in a Ru(bpy)3(2+)-ECL process. We used magnetic micro-beads decorated with a supramolecular tetraphosphonate cavitand (Tiiii) for the selective capture of sarcosine hydrochloride in a complex matrix like urine. Sarcosine determination was then obtained with ECL measurements thanks to the complexation properties of Tiiii, with a protocol involving simple pH changes - to drive the capture-release process of sarcosine from the receptor - and magnetic micro-bead technology. With this approach we were able to measure sarcosine in the μM to mM window, a concentration range that encompasses the diagnostic urinary value of sarcosine in healthy subjects and PCa patients, respectively. These results indicate how this ECL-supramolecular approach is extremely promising for the detection of sarcosine and for PCa diagnosis and monitoring, and for the development of portable and more affordable devices.

  1. Coexistence of cyclic (CH3OH)2(H2O)8 heterodecamer and acyclic water trimer in the channels of silver-azelate framework

    NASA Astrophysics Data System (ADS)

    Luo, Geng-Geng; Zhu, Rui-Min; He, Wei-Jun; Li, Ming-Zhi; Zhao, Qing-Hua; Li, Dong-Xu; Dai, Jing-Cao

    2012-08-01

    Flexible azelaic acid (H2aze) and 1,3-bis(4-pyridyl)propane) (bpp) react ultrasonically with silver(I) oxide, generating a new metal-organic framework [Ag2(bpp)2(aze)·7H2O·CH3OH]n (1) that forms a 3D supramolecular structure through H-bonding interactions between solvent molecules and carboxylate O atoms with void spaces. Two kinds of solvent clusters, discrete cyclic (CH3OH)2(H2O)8 heterodecameric and acyclic water trimeric clusters occupy the channels in the structure. Furthermore, 1 exhibits strong photoluminescence maximized at 500 nm upon 350 nm excitation at room temperature, of which CIE chromaticity ordinate (x = 0.28, y = 0.44) is close to that of edge of green component.

  2. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.

    PubMed

    Dennison, Genevieve H; Johnston, Martin R

    2015-04-20

    Organophosphorus chemical warfare agents (OP CWAs) are potent acetylcholinesterase inhibitors that can cause incapacitation and death within minutes of exposure, and furthermore are largely undetectable by the human senses. Fast, efficient, sensitive and selective detection of these compounds is therefore critical to minimise exposure. Traditional molecular-based sensing approaches have exploited the chemical reactivity of the OP CWAs, whereas more recently supramolecular-based approaches using non-covalent interactions have gained momentum. This is due, in part, to the potential development of sensors with second-generation properties, such as reversibility and multifunction capabilities. Supramolecular sensors also offer opportunities for incorporation of metal ions allowing for the exploitation of their unique properties. In particular, trivalent lanthanide ions are being increasingly used in the OP CWA sensing event and their use in supramolecular sensors is discussed in this Minireview. We focus on the fundamental interactions of simple lanthanide systems with OP CWAs and simulants, along with the development of more elaborate and complex systems including those containing nanotubes, polymers and gold nanoparticles. Whilst literature investigations into lanthanide-based OP CWA detection systems are relatively scarce, their unique and versatile properties provide a promising platform for the development of more efficient and complex sensing systems into the future. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. On some problems of inorganic supramolecular chemistry.

    PubMed

    Pervov, Vladislav S; Zotova, Anna E

    2013-12-02

    In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  5. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host-Guest Recognition or Hydrophilic-Hydrophobic Interaction?

    PubMed

    Bai, Yang; Fan, Xiao-dong; Yao, Hao; Yang, Zhen; Liu, Ting-ting; Zhang, Hai-tao; Zhang, Wan-bin; Tian, Wei

    2015-09-03

    Tuning of the morphology and size of supramolecular self-assemblies is of theoretical and practical significance. To date, supramolecular driving forces in different solvents remain unclear. In this study, we first synthesized an amphiphilic β-cyclodextrin (β-CD) dimer that consists of one hydrophobic ibuprofen (Ibu) and two hydrophilic β-CD moieties (i.e., Ibu-CD2). Ibu-CD2 possesses double supramolecular driving forces, namely, the host-guest recognition and hydrophilic-hydrophobic interaction. The host-guest interaction of Ibu-CD2 induced the formation of branched supramolecular polymers (SPs) in pure water, whereas the hydrophilic-hydrophobic interaction generated spherical or irregular micelles in water/organic mixtures. The SP size increased with the increase in Ibu-CD2 concentration in pure water. By contrast, the size of micelles decreased with the increase in volume ratio of water in mixtures.

  6. Gas Sorption and Storage Properties of Calixarenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.

    2016-12-01

    Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.

  7. Synthesis and the crystal and molecular structure of the germanium(IV) complex with propylene-1,3-diaminetetraacetic acid [Ge(Pdta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergienko, V. S., E-mail: sergienko@igic.ras.ru; Martsinko, E. E.; Seifullina, I. I.

    2015-09-15

    The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H{sub 4}Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge(Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta{sup 4–} ligand. An extended system of weak C—H···O hydrogen bonds connects complex molecules into a supramolecular 3D framework.

  8. Synthesis and the crystal and molecular structure of the germanium(IV) complex with propylene-1,3-diaminetetraacetic acid [Ge( Pdta)

    NASA Astrophysics Data System (ADS)

    Sergienko, V. S.; Martsinko, E. E.; Seifullina, I. I.; Churakov, A. V.; Chebanenko, E. A.

    2015-09-01

    The germanium(IV) complex with propylene-1,3-diaminetetraacetic acid (H4 Pdta) is studied by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. The X-ray diffraction study reveals two crystallographically independent [Ge( Pdta)] molecules of similar structure. Both Ge atoms are octahedrally coordinated by four O atoms and two N atoms (at the cis positions) of the hexadentate pentachelate Pdta 4- ligand. An extended system of weak С—Н···О hydrogen bonds connects complex molecules into a supramolecular 3D framework.

  9. Evolution of organo-cyanometallate cages: supramolecular architectures and new Cs+-specific receptors.

    PubMed

    Boyer, Julie L; Kuhlman, Matthew L; Rauchfuss, Thomas B

    2007-04-01

    The ability of inorganic cyanometallate polymers to form interesting and useful complexes is well-known. This Account summarizes work, especially in our laboratories, aimed at replicating aspects of this inorganic chemistry in homogeneous solution using organometallic building blocks. A library of molecular organometallic cyanides and Lewis acids, with varying charges and labilities, are shown to give families of neutral and charged cages. Neutral and anionic cages, often molecular boxes, bind larger alkali metals tightly. Cubic frameworks show an unparalleled affinity for cesium cations over potassium cations. Noncubic cages are described including tetrahedranes, defect boxes, trigonal prisms, and hexagonal prisms.

  10. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    NASA Astrophysics Data System (ADS)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  11. Amphiphiles for DNA Supramolecular Assemblies

    DTIC Science & Technology

    2005-11-15

    to drug or biomolecule delivery systems. In order to take advantage of forces that hold nucleic acid helices together, (Watson- Crick/Hoogsteen...supramolecular assemblies that highlight the underlying principles are evident in numerous biological (e.g., lipids) and synthetic (e.g., nanofibers ) systems.2...3). Additionally, they form hydrogels and organogels. The supramolecular systems obtained are promising in many aspects and could lead to new types

  12. Functional Supramolecular Polymers*

    PubMed Central

    Aida, T.; Meijer, E.W.; Stupp, S.I.

    2012-01-01

    Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton, and possess useful biological and electronic functions. PMID:22344437

  13. Theoretical insights into aggregation-induced helicity modulation of a perylene bisimide derivative.

    PubMed

    Liang, Lijun; Li, Xin

    2018-02-12

    Formation of helical chiroptical self-assemblies via noncovalent interaction is a widely observed phenomenon in nature, the mechanism of which remains insufficiently understood. Employing an amphiphilic perylene-sugar dyad molecule (PBI-HAG) as an example, we report that the modulatable supramolecular helicity may emerge from an aggregating process that is dominated by competition between two types of noncovalent interaction: hydrogen bonding and π-π stacking. The interplay between these two driving forces, which is greatly affected by the solvent environment, determines the morphology the supramolecular assembly of PBI-HAGs. In particular, a non-layered supramolecular structure was formed in octane owing to stabilization effects of intermolecular hydrogen bonds, whereas a layered supramolecular structure was formed in water because of energetically favorable π-π stacking of aromatic rings. The formation of distinct supramolecular architectures in different solvents was reinforced by simulated circular dichroism spectra, which show opposite signals consistent with experimental observations. The results of this study could help us understand aggregation-induced supramolecular chirality of noncovalent self-assemblies. Graphical abstract Left Typical structures of amphiphilic perylene-sugar dyad (PBI-HAG) aggregates in different octane and water. Right Simulated CD and UV-Vis spectra of core PBIs aggregates in octane and water.

  14. Functional supramolecular polymers for biomedical applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Novel Reconfigurable Logic Unit Based on the DNA-Templated Potassium-Concentration-Dependent Supramolecular Assembly.

    PubMed

    Yang, Chunrong; Zou, Dan; Chen, Jianchi; Zhang, Linyan; Miao, Jiarong; Huang, Dan; Du, Yuanyuan; Yang, Shu; Yang, Qianfan; Tang, Yalin

    2018-03-15

    Plenty of molecular circuits with specific functions have been developed; however, logic units with reconfigurability, which could simplify the circuits and speed up the information process, are rarely reported. In this work, we designed a novel reconfigurable logic unit based on a DNA-templated, potassium-concentration-dependent, supramolecular assembly, which could respond to the input stimuli of H + and K + . By inputting different concentrations of K + , the logic unit could implement three significant functions, including a half adder, a half subtractor, and a 2-to-4 decoder. Considering its reconfigurable ability and good performance, the novel prototypes developed here may serve as a promising proof of principle in molecular computers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. X-ray Scattering Combined with Coordinate-Based Analyses for Applications in Natural and Artificial Photosynthesis

    PubMed Central

    Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing

    2009-01-01

    Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808

  17. Junctions between i-motif tetramers in supramolecular structures

    PubMed Central

    Guittet, Eric; Renciuk, Daniel; Leroy, Jean-Louis

    2012-01-01

    The symmetry of i-motif tetramers gives to cytidine-rich oligonucleotides the capacity to associate into supramolecular structures (sms). In order to determine how the tetramers are linked together in such structures, we have measured by gel filtration chromatography and NMR the formation and dissociation kinetics of sms built by oligonucleotides containing two short C stretches separated by a non-cytidine-base. We show that a stretch of only two cytidines either at the 3′- or 5′-end is long enough to link the tetramers into sms. The analysis of the properties of sms formed by oligonucleotides differing by the length of the oligo-C stretches, the sequence orientation and the nature of the non-C base provides a model of the junction connecting the tetramers in sms. PMID:22362739

  18. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    PubMed

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug release from the doxorubicin (DOX)-loaded supramolecular star-shaped micelles due to the oxidation-induced dissociation of β-CD/Fc pair and the consequent loss of the colloidal stability of the star-shaped micelles. Studies of the delivery efficacy by an in vitro cytotoxicity study further indicated that higher DBs and longer hydrophilic arm compromised the therapeutic efficacy of the DOX-loaded supramolecular star-shaped micelles, resulting in significantly reduced cytotoxicity, as measured by increased IC 50 value. Overall, our results revealed that the screening of hydrophilic block by DB and MW for an optimized star-shaped copolymer should balance the stability versus therapeutic efficacy tradeoff for a comprehensive consideration. Therefore, the 12-arm star-shaped copolymer with POEGMA 30 is the best formulation tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    PubMed

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carriedmore » out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.« less

  1. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    PubMed

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  2. A metal-organic tetrahedron as a redox vehicle to encapsulate organic dyes for photocatalytic proton reduction.

    PubMed

    Jing, Xu; He, Cheng; Yang, Yang; Duan, Chunying

    2015-03-25

    The design of artificial systems that mimic highly evolved and finely tuned natural photosynthetic systems is a subject of intensive research. We report herein a new approach to constructing supramolecular systems for the photocatalytic generation of hydrogen from water by encapsulating an organic dye molecule into the pocket of a redox-active metal-organic polyhedron. The assembled neutral Co4L4 tetrahedron consists of four ligands and four cobalt ions that connect together in alternating fashion. The cobalt ions are coordinated by three thiosemicarbazone NS chelators and exhibit a redox potential suitable for electrochemical proton reduction. The close proximity between the redox site and the photosensitizer encapsulated in the pocket enables photoinduced electron transfer from the excited state of the photosensitizer to the cobalt-based catalytic sites via a powerful pseudo-intramolecular pathway. The modified supramolecular system exhibits TON values comparable to the highest values reported for related cobalt/fluorescein systems. Control experiments based on a smaller tetrahedral analogue of the vehicle with a filled pocket and a mononuclear compound resembling the cobalt corner of the tetrahedron suggest an enzymatic dynamics behavior. The new, well-elucidated reaction pathways and the increased molarity of the reaction within the confined space render these supramolecular systems superior to other relevant systems.

  3. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  4. Rational construction of gel-based supramolecular logic gates by using a functional gelator with multiple-stimuli responsive properties.

    PubMed

    Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian

    2014-11-07

    A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.

  5. Kondo effect and enhanced magnetic properties in gadolinium functionalized carbon nanotube supramolecular complex.

    PubMed

    Ncube, S; Coleman, C; Strydom, A; Flahaut, E; de Sousa, A; Bhattacharyya, S

    2018-05-23

    We report on the enhancement of magnetic properties of multiwalled carbon nanotubes (MWNTs) functionalized with a gadolinium based supramolecular complex. By employing a newly developed synthesis technique we find that the functionalization method of the nanocomposite enhances the strength of magnetic interaction leading to a large effective moment of 15.79 µ B and non-superparamagnetic behaviour unlike what has been previously reported. Saturating resistance at low temperatures is fitted with the numerical renormalization group formula verifying the Kondo effect for magnetic impurities on a metallic electron system. Magnetoresistance shows devices fabricated from aligned gadolinium functionalized MWNTs (Gd-Fctn-MWNTs) exhibit spin-valve switching behaviour of up to 8%. This study highlights the possibility of enhancing magnetic interactions in carbon systems through chemical modification, moreover we demonstrate the rich physics that might be useful for developing spin based quantum computing elements based on one-dimensional (1D) channels.

  6. Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg(2+)-adenosine triphosphate-arginine ternary system.

    PubMed

    Ren, Hu-Bo; Yan, Xiu-Ping

    2012-08-15

    An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs

    NASA Astrophysics Data System (ADS)

    Nuthanakanti, Ashok; Srivatsan, Seergazhi G.

    2016-02-01

    Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes. Electronic supplementary information (ESI) available: Supplementary figures, tables, experimental procedures, crystallography data and NMR spectra. See DOI: 10.1039/c5nr07490h

  8. Enzymatic induction of supramolecular order and bioactivity

    NASA Astrophysics Data System (ADS)

    Yang, Chengbiao; Ren, Xinrui; Ding, Dan; Wang, Ling; Yang, Zhimou

    2016-05-01

    We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity.We showed in this study that enzymatic triggering is a totally different pathway for the preparation of self-assembling nanomaterials to the heating-cooling process. Because the molecules were under lower energy levels and the molecular conformation was more ordered during the enzymatic triggeration under mild conditions, nanomaterials with higher supramolecular order could be obtained through biocatalytic control. In this study, nanoparticles were obtained by an enzymatic reaction and nanofibers were observed through the heating-cooling process. We observed a distinct trough at 318 nm from the CD spectrum of a particle sample but not a fiber sample, suggesting the long range arrangement of molecules and helicity in the nanoparticles. The nanoparticles with higher supramolecular order possessed much better potency as a protein vaccine adjuvant because it accelerated the DC maturation and elicited stronger T-cells cytokine production than the nanofibers. Our study demonstrated that biocatalytic triggering is a useful method for preparing supramolecular nanomaterials with higher supramolecular order and probably better bioactivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02330d

  9. Critical aspects in the production of periodically ordered mesoporous titania thin films.

    PubMed

    Soler-Illia, Galo J A A; Angelomé, Paula C; Fuertes, M Cecilia; Grosso, David; Boissiere, Cedric

    2012-04-21

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.

  10. Nanoparticles functionalized with supramolecular host-guest systems for nanomedicine and healthcare.

    PubMed

    Wu, Zilong; Song, Nan; Menz, Ryan; Pingali, Bharadwaj; Yang, Ying-Wei; Zheng, Yuebing

    2015-05-01

    Synthetic macrocyclic host compounds can interact with suitable guest molecules via noncovalent interactions to form functional supramolecular systems. With the synergistic integration of the response of molecules and the unique properties at the nanoscale, nanoparticles functionalized with the host-guest supramolecular systems have shown great potentials for a broad range of applications in the fields of nanoscience and nanotechnology. In this review article, we focus on the applications of the nanoparticles functionalized with supramolecular host-guest systems in nanomedicine and healthcare, including therapeutic delivery, imaging, sensing and removal of harmful substances. A large number of examples are included to elucidate the working mechanisms, advantages, limitations and future developments of the nanoparticle-supramolecule systems in these applications.

  11. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  12. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  13. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career.

    PubMed

    Anslyn, Eric V

    2016-01-01

    While the strict definition of supramolecular chemistry is "chemistry beyond the molecule", meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics.

  14. Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career

    PubMed Central

    2016-01-01

    Summary While the strict definition of supramolecular chemistry is “chemistry beyond the molecule”, meaning having a focus on non-covalent interactions, the field is primarily associated with the creation of synthetic receptors and self-assembly. For synthetic ease, the receptors and assemblies routinely possess a high degree of symmetry, which lends them an aspect of aesthetic beauty. Pictures of electron orbitals similarly can be seen as akin to works of art. This similarity was an early draw for me to the fields of supramolecular chemistry and molecular orbital theory, because I grew up in a household filled with art. In addition to art, my childhood was filled with repairing and constructing mechanical entities, such as internal combustion motors, where many components work together to achieve a function. Analogously, the field of supramolecular chemistry creates systems of high complexity that achieve functions or perform tasks. Therefore, in retrospect a career in supramolecular chemistry appears to be simply an extension of childhood hobbies involving art and auto-mechanics. PMID:26977197

  15. Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles.

    PubMed

    Deniz, Erhan; Kandoth, Noufal; Fraix, Aurore; Cardile, Venera; Graziano, Adriana C E; Lo Furno, Debora; Gref, Ruxandra; Raymo, Françisco M; Sortino, Salvatore

    2012-12-03

    A viable strategy to encapsulate a fluorophore/photochrome dyad and a nitric oxide photodonor within supramolecular assemblies of a cyclodextrin-based polymer in water was developed. The two photoresponsive guests do not interact with each other within their supramolecular container and can be operated in parallel under optical control. Specifically, the dyad permits the reversible switching of fluorescence on a microsecond timescale for hundreds of cycles, and the photodonor enables the irreversible release of nitric oxide. Furthermore, these supramolecular assemblies cross the membrane of human melanoma cancer cells and transport their cargo in the cytosol. The fluorescence of one component allows the visualization of the labeled cells, and its switchable character could, in principle, be used to acquire super-resolution images, while the release of nitric oxide from the other induces significant cell mortality. Thus, our design logic for the construction of biocompatible nanoparticles with dual functionality might evolve into the realization of valuable photoresponsive probes for imaging and therapeutic applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High Order in a Self-Assembled Iridium(III) Complex Gelator Towards Nanostructured IrO2 Thin Films.

    PubMed

    Scarpelli, Francesca; Ionescu, Andreea; Aiello, Iolinda; La Deda, Massimo; Crispini, Alessandra; Ghedini, Mauro; Brunelli, Elvira; Sesti, Settimio; Godbert, Nicolas

    2017-10-18

    The preparation and characterization of a new metallogelator based on the Ir III discrete cyclometalated complex [(ppy) 2 Ir(bpy)](CH 3 CH 2 OCH 2 CO 2 ) are reported, where H(ppy) is 2-phenylpiridine and bpy is 2,2'-bipyridine, which is used as an ancillary ligand. The compound is able to self-assemble in water in a range of concentrations between 3 % and 6 % w/w, creating a luminescent ordered supramolecular gel. The gel and xerogel architectures were investigated through polarized optical microscopy (POM), SEM and TEM microscopies coupled with powder X-ray diffraction. The gel supramolecular organization is characterized by columnar tetragonal strands, already present at high dilution conditions, of cations surrounded by counteranions. These strands, in turn, are self-assembled in an oblique columnar cell upon gelification. The xerogel thin films obtained upon complete dehydration maintained the gel supramolecular order and can be used as a precursor for the preparation of nanostructured IrO 2 thin films. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.

    PubMed

    Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J

    2017-07-19

    Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.

  18. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    NASA Astrophysics Data System (ADS)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  19. Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles.

    PubMed

    Golub, Eyal; Pelossof, Gilad; Freeman, Ronit; Zhang, Hong; Willner, Itamar

    2009-11-15

    Metallic or semiconductor nanoparticles (NPs) are used as labels for the electrochemical, photoelectrochemical, or surface plasmon resonance (SPR) detection of cocaine using a common aptasensor configuration. The aptasensors are based on the use of two anticocaine aptamer subunits, where one subunit is assembled on a Au support, acting as an electrode or a SPR-active surface, and the second aptamer subunit is labeled with Pt-NPs, CdS-NPs, or Au-NPs. In the different aptasensor configurations, the addition of cocaine results in the formation of supramolecular complexes between the NPs-labeled aptamer subunits and cocaine on the metallic surface, allowing the quantitative analysis of cocaine. The supramolecular Pt-NPs-aptamer subunits-cocaine complex allows the detection of cocaine by the electrocatalyzed reduction of H(2)O(2). The photocurrents generated by the CdS-NPs-labeled aptamer subunits-cocaine complex, in the presence of triethanol amine as a hole scavenger, allows the photoelectrochemical detection of cocaine. The supramolecular Au-NPs-aptamer subunits-cocaine complex generated on the Au support allows the SPR detection of cocaine through the reflectance changes stimulated by the electronic coupling between the localized plasmon of the Au-NPs and the surface plasmon wave. All aptasensor configurations enable the analysis of cocaine with a detection limit in the range of 10(-6) to 10(-5) M. The major advantage of the sensing platform is the lack of background interfering signals.

  20. A new configurational bias scheme for sampling supramolecular structures

    NASA Astrophysics Data System (ADS)

    De Gernier, Robin; Curk, Tine; Dubacheva, Galina V.; Richter, Ralf P.; Mognetti, Bortolo M.

    2014-12-01

    We present a new simulation scheme which allows an efficient sampling of reconfigurable supramolecular structures made of polymeric constructs functionalized by reactive binding sites. The algorithm is based on the configurational bias scheme of Siepmann and Frenkel and is powered by the possibility of changing the topology of the supramolecular network by a non-local Monte Carlo algorithm. Such a plan is accomplished by a multi-scale modelling that merges coarse-grained simulations, describing the typical polymer conformations, with experimental results accounting for free energy terms involved in the reactions of the active sites. We test the new algorithm for a system of DNA coated colloids for which we compute the hybridisation free energy cost associated to the binding of tethered single stranded DNAs terminated by short sequences of complementary nucleotides. In order to demonstrate the versatility of our method, we also consider polymers functionalized by receptors that bind a surface decorated by ligands. In particular, we compute the density of states of adsorbed polymers as a function of the number of ligand-receptor complexes formed. Such a quantity can be used to study the conformational properties of adsorbed polymers useful when engineering adsorption with tailored properties. We successfully compare the results with the predictions of a mean field theory. We believe that the proposed method will be a useful tool to investigate supramolecular structures resulting from direct interactions between functionalized polymers for which efficient numerical methodologies of investigation are still lacking.

  1. Potential enthalpic energy of water in oils exploited to control supramolecular structure.

    PubMed

    Van Zee, Nathan J; Adelizzi, Beatrice; Mabesoone, Mathijs F J; Meng, Xiao; Aloi, Antonio; Zha, R Helen; Lutz, Martin; Filot, Ivo A W; Palmans, Anja R A; Meijer, E W

    2018-06-01

    Water directs the self-assembly of both natural 1,2 and synthetic 3-9 molecules to form precise yet dynamic structures. Nevertheless, our molecular understanding of the role of water in such systems is incomplete, which represents a fundamental constraint in the development of supramolecular materials for use in biomaterials, nanoelectronics and catalysis 10 . In particular, despite the widespread use of alkanes as solvents in supramolecular chemistry 11,12 , the role of water in the formation of aggregates in oils is not clear, probably because water is only sparingly miscible in these solvents-typical alkanes contain less than 0.01 per cent water by weight at room temperature 13 . A notable and unused feature of this water is that it is essentially monomeric 14 . It has been determined previously 15 that the free energy cost of forming a cavity in alkanes that is large enough for a water molecule is only just compensated by its interaction with the interior of the cavity; this cost is therefore too high to accommodate clusters of water. As such, water molecules in alkanes possess potential enthalpic energy in the form of unrealized hydrogen bonds. Here we report that this energy is a thermodynamic driving force for water molecules to interact with co-dissolved hydrogen-bond-based aggregates in oils. By using a combination of spectroscopic, calorimetric, light-scattering and theoretical techniques, we demonstrate that this interaction can be exploited to modulate the structure of one-dimensional supramolecular polymers.

  2. Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites.

    PubMed

    Cai, Hong; Li, Mian; Lin, Xiao-Rong; Chen, Wei; Chen, Guang-Hui; Huang, Xiao-Chun; Li, Dan

    2015-09-01

    Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site-specific recognition takes advantage of cooperative spatial effects, as in local folding in protein-DNA binding. Herein, we report a new nucleobase-tagged metal-organic framework (MOF), namely ZnBTCA (BTC=benzene-1,3,5-tricarboxyl, A=adenine), in which the exposed Watson-Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson-Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host-guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine-thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Charge Effect on the Formation of Polyoxometalate-Based Supramolecular Polygons Driven by Metal Coordination.

    PubMed

    Piot, Madeleine; Hupin, Sébastien; Lavanant, Hélène; Afonso, Carlos; Bouteiller, Laurent; Proust, Anna; Izzet, Guillaume

    2017-07-17

    The metal-driven self-assembly of a Keggin-based hybrid bearing two remote pyridine units was investigated. The resulting supramolecular species were identified by combination of 2D diffusion NMR spectroscopy (DOSY) and electrospray ionization mass spectrometry (ESI-MS) as a mixture of molecular triangles and squares. This behavior is different from that of the structural analogue Dawson-based hybrid displaying a higher charge, which only led to the formation of molecular triangles. This study highlights the decisive effect of the charge of the POMs in their self-assembly processes that disfavors the formation of large assemblies. An isothermal titration calorimetry (ITC) experiment confirmed the stronger binding in the case of the Keggin hybrids. A correlation between the diffusion coefficient D and the molecular mass M of the POM-based building block and its coordination oligomers was also observed. We show that the diffusion coefficient of these compounds is mainly determined by their occupied volume rather than by their shape.

  4. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator.

    PubMed

    Yu, Qiangliang; Wu, Yang; Li, DongMei; Cai, Meirong; Zhou, Feng; Liu, Weimin

    2017-02-01

    A new class of ionic liquid gels (ionogels) is prepared through the supramolecular self-assembly of imidazolium-based ionic liquids (ILs) bearing the urea group as gelators in normal ILs. The ILs gelator can self-assemble through hydrogen bonding and hydrophobic interaction to form analogous lamellar structures and solidify base ILs. The obtained ionogels exhibit superior anticorrosion and conductivity characteristics. Moreover, ionogels show fully thermoreversible and favorable thixotropic characteristics, such that they can be used as high-performance semisolid conductive lubricants. The tribological tests reveal that these ionogels lubricants can effectively reduce the friction of sliding pairs effectively and have better tribological performance than the pure ILs under harsh conditions. Ionogel lubricants not only maintain the excellent tribological properties and conductivity of ILs, but also prevent base liquids from creeping and leakage. Therefore, ionogel lubricants can be potentially used in the conductive parts of electrical equipments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. © 2015 Wiley Periodicals, Inc.

  6. Assembling supramolecular networks by halogen bonding in coordination polymers driven by 5-bromonicotinic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn; Wu, Jiang; Kirillov, Alexander M.

    2014-05-01

    A series of six coordination compounds ([Zn(5-Brnic){sub 2}]·1.5H{sub 2}O){sub n} (1), [Cd(5-Brnic){sub 2}]{sub n} (2), [Co(5-Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (3), [Zn(5-Brnic){sub 2}(H{sub 2}biim)]{sub n} (4), ([Cd(5-Brnic){sub 2}(phen)]·H{sub 2}O){sub n} (5), and [Pb(5-Brnic){sub 2}(phen)] (6) have been generated by the hydrothermal method from the metal(II) nitrates, 5-bromonicotinic acid (5-BrnicH), and an optional ancillary 1,10-phenanthroline (phen) or 2,2′-biimidazole (H{sub 2}biim) ligand. All the products 1–6 have been characterized by IR spectroscopy, elemental, thermal, powder and single-crystal X-ray diffraction analyses. Their 5-bromonicotinate-driven structures vary from the 3D metal-organic framework with the seh-3,5-P21/c topology (in 2) and the 2D interdigitated layers with themore » sql topology (in 1 and 3), to the 1D chains (in 4 and 5) and the 0D discrete monomers (in 6). The 5-bromonicotinate moiety acts as a versatile building block and its tethered bromine atom plays a key role in reinforcing and extending the structures into diverse 3D supramolecular networks via the various halogen bonding Br⋯O, Br⋯Br, and Br⋯π interactions, as well as the N–H⋯O and C–H⋯O hydrogen bonds. The obtained results demonstrate a useful guideline toward engineering the supramolecular architectures in the coordination network assembly under the influence of various halogen bonding interactions. The luminescent (for 1, 2, 4, 5, and 6) and magnetic (for 3) properties have also been studied and discussed in detail. - Graphical abstract: Six coordination compounds driven by 5-bromonicotinic acid have been generated and structurally characterized, revealing diverse metal-organic networks that are further reinforced and extended via various halogen bonding interactions. - Highlights: • 5-Bromonicotinic acid is a versatile ligand for Zn, Cd, Co and Pb derivatives. • Careful selection of co-ligands and metals resulted in different network structures. • Halogen and hydrogen bonding interactions lead to various supramolecular networks. • Luminescent and magnetic properties were studied and discussed in detail.« less

  7. Chemical Sensors Based on Cyclodextrin Derivatives.

    PubMed

    Ogoshi, Tomoki; Harada, Akira

    2008-08-25

    This review focuses on chemical sensors based on cyclodextrin (CD) derivatives. This has been a field of classical interest, and is now of current interest for numerous scientists. First, typical chemical sensors using chromophore appended CDs are mentioned. Various "turn-off" and "turn-on" fluorescent chemical sensors, in which fluorescence intensity was decreased or increased by complexation with guest molecules, respectively, were synthesized. Dye modified CDs and photoactive metal ion-ligand complex appended CDs, metallocyclodextrins, were also applied for chemical sensors. Furthermore, recent novel approaches to chemical sensing systems using supramolecular structures such as CD dimers, trimers and cooperative binding systems of CDs with the other macrocycle [2]rotaxane and supramolecular polymers consisting of CD units are mentioned. New chemical sensors using hybrids of CDs with p-conjugated polymers, peptides, DNA, nanocarbons and nanoparticles are also described in this review.

  8. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  9. Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting.

    PubMed

    Wang, Mengfan; Lv, Yuqi; Liu, Xiaojing; Qi, Wei; Su, Rongxin; He, Zhimin

    2016-06-08

    In this study, an artificial hydrolase was developed by combining the catalytic Ser/His/Asp triad with N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF), followed by coassembly of the peptides into nanofibers (CoA-HSD). The peptide-based nanofibers provide an ideal supramolecular framework to support the functional groups. Compared with the self-assembled catalytic nanofibers (SA-H), which contain only the catalytic histidine residue, the highest activity of CoA-HSD occurs when histidine, serine, and aspartate residues are at a ratio of 40:1:1. This indicates that the well-ordered nanofiber structure and the synergistic effects of serine and aspartate residues contribute to the enhancement in activity. Additionally, for the first time, molecular imprinting was applied to further enhance the activity of the peptide-based artificial enzyme (CoA-HSD). p-NPA was used as the molecular template to arrange the catalytic Ser/His/Asp triad residues in the proper orientation. As a result, the activity of imprinted coassembled CoA-HSD nanofibers is 7.86 times greater than that of nonimprinted CoA-HSD and 13.48 times that of SA-H.

  10. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents

    NASA Astrophysics Data System (ADS)

    Rubira, Rafael Jesus Gonçalves; Aoki, Pedro Henrique Benites; Constantino, Carlos José Leopoldo; Alessio, Priscila

    2017-09-01

    The developing of organic-based devices has been widely explored using ultrathin films as the transducer element, whose supramolecular architecture plays a central role in the device performance. Here, Langmuir and Langmuir-Blodgett (LB) ultrathin films were fabricated from iron phthalocyanine (FePc) solutions in chloroform (CHCl3), dichloromethane (CH2Cl2), dimethylformamide (DMF), and tetrahydrofuran (THF) to determine the influence of different solvents on the supramolecular architecture of the ultrathin films. The UV-vis absorption spectroscopy shows a strong dependence of the FePc aggregation on these solvents. As a consequence, the surface pressure vs. mean molecular area (π-A) isotherms and Brewster angle microscopy (BAM) reveal a more homogeneous (surface morphology) Langmuir film at the air/water interface for FePc in DMF. The same morphological pattern observed for the Langmuir films is preserved upon LB deposition onto solid substrates. The Raman and FTIR analyses indicate the DMF-FePc interaction relies on coordination bonds between N atom (from DMF) and Fe atom (from FePc). Besides, the FePc molecular organization was also found to be affected by the DMF-FePc chemical interaction. It is interesting to note that, if the DMF-FePc leads to less aggregated FePc either in solution or ultrathin films (Langmuir and LB), with time (one week) the opposite trend is found. Taking into account the N-Fe interaction, the performance of the FePc ultrathin films with distinct supramolecular architectures composing sensing units was explored as proof-of-principle in the detection of trace amounts of atrazine herbicide in water using impedance spectroscopy. Further statistical and computational analysis reveal not only the role played by FePc supramolecular architecture but also the sensitivity of the system to detect atrazine solutions down to 10-10 mol/L, which is sufficient to monitor the quality of drinking water even according to the most stringent international regulations.

  11. Supramolecular delivery of photoactivatable fluorophores in developing embryos

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tang, Sicheng; Sansalone, Lorenzo; Thapaliya, Ek Raj; Baker, James D.; Raymo, Françisco M.

    2017-02-01

    The identification of noninvasive strategies to monitor dynamics within living organisms in real time is essential to elucidate the fundamental factors governing a diversity of biological processes. This study demonstrates that the supramolecular delivery of photoactivatable fluorophores in Drosophila melanogaster embryos allows the real-time tracking of translocating molecules. The designed photoactivatable fluorophores switch from an emissive reactant to an emissive product with spectrally-resolved fluorescence, under moderate blue-light irradiation conditions. These hydrophobic fluorescent probes can be encapsulated within supramolecular hosts and delivered to the cellular blastoderm of the embryos. Thus, the combination of supramolecular delivery and fluorescence photoactivation translates into a noninvasive method to monitor dynamics in vivo and can evolve into a general chemical tool to track motion in biological specimens.

  12. Supramolecular biomaterials

    NASA Astrophysics Data System (ADS)

    Webber, Matthew J.; Appel, Eric A.; Meijer, E. W.; Langer, Robert

    2016-01-01

    Polymers, ceramics and metals have historically dominated the application of materials in medicine. Yet rationally designed materials that exploit specific, directional, tunable and reversible non-covalent interactions offer unprecedented advantages: they enable modular and generalizable platforms with tunable mechanical, chemical and biological properties. Indeed, the reversible nature of supramolecular interactions gives rise to biomaterials that can sense and respond to physiological cues, or that mimic the structural and functional aspects of biological signalling. In this Review, we discuss the properties of several supramolecular biomaterials, as well as their applications in drug delivery, tissue engineering, regenerative medicine and immunology. We envision that supramolecular biomaterials will contribute to the development of new therapies that combine highly functional materials with unmatched patient- and application-specific tailoring of both material and biological properties.

  13. Assembly of a new inorganic-organic frameworks based on [Sb4Mo12(OH)6O48]10- polyanion

    NASA Astrophysics Data System (ADS)

    Thabet, Safa; Ayed, Meriem; Ayed, Brahim; Haddad, Amor

    2014-10-01

    A new organic-inorganic hybrid material, (C4N2H7)8[K(H2O)]2[Sb4Mo12(OH)6O48]ṡ16H2O (1) has been isolated by the conventional solution method and characterized by elemental analysis, single-crystal X-ray diffraction, infrared spectroscopy, UV-visible spectroscopies, cyclic voltammetry and TG-DTA analysis. The compound crystallizes in the triclinic space group P - 1 with a = 13.407(6) Å, b = 13.906(2) Å, c = 14.657(7) Å, α = 77.216(9)°, β = 71.284(6)°, γ = 71.312(3)° and Z = 1. The crystal structure exhibits an infinite 1D inorganic structure built from [Sb4Mo12(OH)6O48]10- clusters and potassium cations; adjacent chains are further joined up hydrogen bonding interactions between protonated 2-methylimidazolim cations, water molecules and polyoxoanions to form a 3D supramolecular architecture.

  14. Iridescent cellulose nanocrystal films: the link between structural colour and Bragg’s law

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Dinh; Sierra, Egoitz; Eguiraun, Harkaitz; Lizundia, Erlantz

    2018-07-01

    Structural colour is a phenomenon found in nature, which provides plants and animals with vibrant optical properties. The production of this colour is based on the interaction of incident light with the hierarchical organisation of submicron- and micron-sized layered structures. Cellulose nanocrystals (CNCs) are anisotropic building units formed by acid hydrolysis of native cellulose microfibers, which can disperse in aqueous media to form a photonic liquid crystal. One fascinating example of the appearance of biomimetic colour is the supramolecular assembly of CNCs into iridescent layered structures that rotate along a helical screw to yield a long-range chiral nematic order. A quick, simple and engaging experiment that allows the establishment of a direct relation between the structural colour and underlying mechanism of the light interaction with these hierarchically structured materials is reported. The obtained colour changes are explained within the theoretical framework provided by Bragg’s law and may provide an easy way to observe the macroscopic manifestation of this often abstract concept.

  15. Photocontrol of Drug Release from Supramolecular Hydrogels with Green Light.

    PubMed

    Karcher, Johannes; Pianowski, Zbigniew

    2018-06-26

    Photoresponsive smart materials transform light energy into sophisticated functions. They find increasing biomedical applications in light-induced drug release and photopharmacology, as they can locally provide the desired therapeutic effect due to precise spatiotemporal dosage control. However, the majority of reported studies rely on cytotoxic UV light that poorly penetrates tissues. Here we report the first drug-releasing system based on photochromic low molecular weight supramolecular hydrogels that is triggered with visible light. We demonstrated green-light-induced release of structurally unmodified antibiotic, anticancer, and anti-inflammatory drugs under physiological conditions. Using the antibiotic-loaded gel, we selectively inhibited bacterial growth with green light. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles.

    PubMed

    Llopis-Lorente, Antoni; Díez, Paula; de la Torre, Cristina; Sánchez, Alfredo; Sancenón, Félix; Aznar, Elena; Marcos, María D; Martínez-Ruíz, Paloma; Martínez-Máñez, Ramón; Villalonga, Reynaldo

    2017-03-28

    This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular β-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tunable blue organic light emitting diode based on aluminum calixarene supramolecular complex

    NASA Astrophysics Data System (ADS)

    Legnani, C.; Reyes, R.; Cremona, M.; Bagatin, I. A.; Toma, H. E.

    2004-07-01

    In this letter, the results of supramolecular organic light emitting diodes using a calix[4] arene complex thin film as emitter and electron transporting layer are presented. The devices were grown onto glass substrates coated with indium-tin-oxide layer and aluminum thick (150nm) cathode. By applying a dc voltage between the device electrodes in forward bias condition, a blue light emission in the active area of the device was observed. It was found that the electroluminescent emission peak can be tuned between 470 and 510nm changing the applied voltage bias from 4.3 to 5.4V. The observed tunable emission can be associated with an energy transfer from the calixarene compound.

  18. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  19. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chunlin; Xiao, Hanxi; Cai, Qing

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds.more » While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules are linked by covalent or non-covalent interactions. • They are attributed to two representative models of supramolecule. • A rare multi-metal infinite supramolecular coordination polymer was formed. • They exhibit good catalytic activities for catalytic oxidation of methanol.« less

  20. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  1. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors

    PubMed Central

    Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash

    2008-01-01

    Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786

  2. Self-assembly of chiral (1R,2S)-ephedrine and (1S,2S)-pseudoephedrine into low-dimensional aluminophosphate materials driven by their amphiphilic nature.

    PubMed

    Bernardo-Maestro, Beatriz; Garrido-Martín, Elisa; López-Arbeloa, Fernando; Pérez-Pariente, Joaquín; Gómez-Hortigüela, Luis

    2018-03-28

    In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.

  3. Effect of molecular mass on supramolecular organisation of poly(4,4''-dioctyl-2,2':5',2''-terthiophene).

    PubMed

    Jaroch, Tomasz; Knor, Marek; Nowakowski, Robert; Zagórska, Małgorzata; Proń, Adam

    2008-10-28

    The effect of the chain length on the type and extent of the 2D supramolecular organization in poly(4,4''-dioctyl-2,2':5',2''-terthiophene) (PDOTT) monomolecular layers deposited on highly oriented pyrolytic graphite (HOPG) is studied by scanning tunneling microscopy (STM) and analyzed in terms of molecular modeling. The strictly monodispersed fractions of increasing molecular mass used in this study were obtained by chromatographic fractionation of the crude product of 4,4''-dioctyl-2,2':5',2''-terthiophene oxidative polymerization. STM investigations of PDOTT layers, deposited on HOPG from poly- and monodispersed fractions, show that polydispersity can be considered as a key factor seriously limiting supramolecular ordering. This is a consequence of significant differences in the type of supramolecular order observed for molecules of different chain length. It has been demonstrated that shorter molecules (consisting of 6 and 9 thiophene units) form well-defined two-dimensional islands, while the interactions between longer molecules (consisting of 12 and 15 thiophene units) become anisotropic. Consequently, for higher molecular mass fractions, the supramolecular organization is one-dimensional and consists of more or less separated rows of ordered macromolecules. In this case an increase of the chain length leads to amplification of the intermolecular interactions proceeding via interdigitation of the alkyl substituents of adjacent molecules. Polydispersed fractions show much less ordered organization because of the incompatibility of the supramolecular structures of molecules of different molecular masses. This finding is of crucial importance for the application of polythiophene derivatives in organic and molecular electronics since ordered supramolecular organization constitutes the condition sine qua non of good electrical transport properties.

  4. Prediction of Rate Constant for Supramolecular Systems with Multiconfigurations.

    PubMed

    Guo, Tao; Li, Haiyan; Wu, Li; Guo, Zhen; Yin, Xianzhen; Wang, Caifen; Sun, Lixin; Shao, Qun; Gu, Jingkai; York, Peter; Zhang, Jiwen

    2016-02-25

    The control of supramolecular systems requires a thorough understanding of their dynamics, especially on a molecular level. It is extremely difficult to determine the thermokinetic parameters of supramolecular systems, such as drug-cyclodextrin complexes with fast association/dissociation processes by experimental techniques. In this paper, molecular modeling combined with novel mathematical relationships integrating the thermodynamic/thermokinetic parameters of a series of isomeric multiconfigurations to predict the overall parameters in a range of pH values have been employed to study supramolecular dynamics at the molecular level. A suitable form of Eyring's equation was derived and a two-stage model was introduced. The new approach enabled accurate prediction of the apparent dissociation/association (k(off)/k(on)) and unbinding/binding (k-r/kr) rate constants of the ubiquitous multiconfiguration complexes of the supramolecular system. The pyronine Y (PY) was used as a model system for the validation of the presented method. Interestingly, the predicted k(off) value ((40 ± 1) × 10(5) s(-1), 298 K) of PY is largely in agreement with that previously determined by fluorescence correlation spectroscopy ((5 ± 3) × 10(5) s(-1), 298 K). Moreover, the k(off)/k(on) and k-r/kr for flurbiprofen-β-cylcodextrin and ibuprofen-β-cyclodextrin systems were also predicted and suggested that the association processes are diffusion-controlled. The methodology is considered to be especially useful in the design and selection of excipients for a supramolecular system with preferred association and dissociation rate constants and understanding their mechanisms. It is believed that this new approach could be applicable to a wide range of ligand-receptor supramolecular systems and will surely help in understanding their complex mechanism.

  5. How the Dynamics of a Supramolecular Polymer Determines Its Dynamic Adaptivity and Stimuli-Responsiveness: Structure-Dynamics-Property Relationships From Coarse-Grained Simulations.

    PubMed

    Torchi, Andrea; Bochicchio, Davide; Pavan, Giovanni M

    2018-04-12

    The rational design of supramolecular polymers that can adapt or respond in time to specific stimuli in a controlled way is interesting for many applications, but this requires understanding the molecular factors that make the material faster or slower in responding to the stimulus. To this end, it is necessary to study the dynamic adaptive properties at submolecular resolution, which is difficult at an experimental level. Here we show coarse-grained molecular dynamics simulations (<5 Å resolution) demonstrating how the dynamic adaptivity and stimuli responsiveness of a supramolecular polymer is controlled by the intrinsic dynamics of the assembly, which is in turn determined by the structure of the monomers. As a representative case, we focus on a water-soluble 1,3,5-benzenetricarboxamide (BTA) supramolecular polymer incorporating (charged) receptor monomers, experimentally seen to undergo dynamic clustering following the superselective binding to a multivalent recruiter. Our simulations show that the dynamic reorganization of the supramolecular structure proceeds via monomer diffusion on the dynamic fiber surface (exchange within the fiber). Rationally changing the structure of the monomers to make the fiber surface more or less dynamic allows tuning the rate of response to the stimulus and of supramolecular reconfiguration. Simple in silico experiments draw a structure-dynamics-property relationship revealing the key factors underpinning the dynamic adaptivity and stimuli-responsiveness of these supramolecular polymers. We come out with clear evidence that to master the bioinspired properties of these fibers, it is necessary to control their intrinsic dynamics, while the high-resolution of our molecular models permits us to show how.

  6. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites

    PubMed Central

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J.

    2011-01-01

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study. PMID:21516167

  7. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    PubMed

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  8. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions

    NASA Astrophysics Data System (ADS)

    Rood, Mark T. M.; Spa, Silvia J.; Welling, Mick M.; Ten Hove, Jan Bart; van Willigen, Danny M.; Buckle, Tessa; Velders, Aldrik H.; van Leeuwen, Fijs W. B.

    2017-01-01

    The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or “training” of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.

  9. Supramolecular architectures constructed by lanthanum, amino acids and 1,10-phenanthroline via non-covalent bond interactions

    NASA Astrophysics Data System (ADS)

    Zheng, Xiang-Jun; Jin, Lin-Pei

    2003-07-01

    Three supramolecular lanthanum coordination compounds of amino acids, with 1,10-phenanthroline (phen), [La 2(APA) 6(phen) 2(H 2O) 2](ClO 4) 6(phen) 4·2H 2O ( 1), [La 2(ABA) 6(phen) 2(H 2O) 2](ClO 4) 6 (phen) 6·4H 2O ( 2), and [La 2(AHA) 4(phen) 4](ClO 4) 6(phen) 4·2H 2O ( 3) (APA=3-aminopropionic acid; ABA=4-aminobutanoic acid; AHA=6-aminohexanoic acid) were synthesized and characterized by single crystal X-ray diffraction. The results show that the three coordination compounds are all composed of binuclear coordination cations built by metal-ligand coordination. Through hydrogen bonding and π-π stacking interactions, complex 1 forms a two-dimensional supramolecular sheet structure extending in the (001) plane, complex 2 forms a three-dimensional supramolecular network with many cavities occupied by ClO 4- and lattice H 2O molecules, and complex 3 forms a two-dimensional supramolecular lamellar structure in the (100) plane.

  10. Phase behaviors of supramolecular graft copolymers with reversible bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao

    2013-11-14

    Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less

  11. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    PubMed

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  12. The use of fibrous, supramolecular membranes and human tubular cells for renal epithelial tissue engineering: towards a suitable membrane for a bioartificial kidney.

    PubMed

    Dankers, Patricia Y W; Boomker, Jasper M; Huizinga-van der Vlag, Ali; Smedts, Frank M M; Harmsen, Martin C; van Luyn, Marja J A

    2010-11-10

    A bioartificial kidney, which is composed of a membrane cartridge with renal epithelial cells, can substitute important kidney functions in patients with renal failure. A particular challenge is the maintenance of monolayer integrity and specialized renal epithelial cell functions ex vivo. We hypothesized that this can be improved by electro-spun, supramolecular polymer membranes which show clear benefits in ease of processability. We found that after 7 d, in comparison to conventional microporous membranes, renal tubular cells cultured on top of our fibrous supramolecular membranes formed polarized monolayers, which is prerequisite for a well-functioning bioartificial kidney. In future, these supramolecular membranes allow for incorporation of peptides that may increase cell function even further.

  13. Redox-responsive self-healing materials formed from host–guest polymers

    PubMed Central

    Nakahata, Masaki; Takashima, Yoshinori; Yamaguchi, Hiroyasu; Harada, Akira

    2011-01-01

    Expanding the useful lifespan of materials is becoming highly desirable, and self-healing and self-repairing materials may become valuable commodities. The formation of supramolecular materials through host–guest interactions is a powerful method to create non-conventional materials. Here we report the formation of supramolecular hydrogels and their redox-responsive and self-healing properties due to host–guest interactions. We employ cyclodextrin (CD) as a host molecule because it is environmentally benign and has diverse applications. A transparent supramolecular hydrogel quickly forms upon mixing poly(acrylic acid) (pAA) possessing β-CD as a host polymer with pAA possessing ferrocene as a guest polymer. Redox stimuli induce a sol−gel phase transition in the supramolecular hydrogel and can control self-healing properties such as re-adhesion between cut surfaces. PMID:22027591

  14. Supramolecular Approaches To Control Activity and Selectivity in Hydroformylation Catalysis

    PubMed Central

    2018-01-01

    The hydroformylation reaction is one of the most intensively explored reactions in the field of homogeneous transition metal catalysis, and many industrial applications are known. However, this atom economical reaction has not been used to its full potential, as many selectivity issues have not been solved. Traditionally, the selectivity is controlled by the ligand that is coordinated to the active metal center. Recently, supramolecular strategies have been demonstrated to provide powerful complementary tools to control activity and selectivity in hydroformylation reactions. In this review, we will highlight these supramolecular strategies. We have organized this paper in sections in which we describe the use of supramolecular bidentate ligands, substrate preorganization by interactions between the substrate and functional groups of the ligands, and hydroformylation catalysis in molecular cages. PMID:29657887

  15. A supramolecular strategy for self-mobile adsorption sites in affinity membrane.

    PubMed

    Lin, Ligang; Dong, Meimei; Liu, Chunyu; Wei, Chenjie; Wang, Yuanyuan; Sun, Hui; Ye, Hui

    2014-09-01

    Disclosed here is the design of a novel supramolecular membrane with self-mobile adsorption sites for biomolecules purification. In the 3D micropore channels of membrane matrix, the ligands are conjugated onto the cyclic compounds in polyrotaxanes for protein adsorption. During membrane filtration, the adsorption sites can rotate and/or slide along the axial chain, which results in the enhanced adsorption capacity. The excellent performance of supra-molecular membrane is related with the dynamic working manner of adsorption sites, which plays a crucial role on avoiding spatial mismatching and short-circuit effect. The supra-molecular strategy described here has general suggestions for the "sites" involved technologies such as catalysis, adsorption, and sensors, which is of broad interest. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Host-guest chemistry of cyclodextrin carbamates and cellulose derivatives in aqueous solution.

    PubMed

    Guo, Xin; Jia, Xiangxiang; Du, Jiaojiao; Xiao, Longqiang; Li, Feifei; Liao, Liqiong; Liu, Lijian

    2013-10-15

    Supramolecular polymer micelles were prepared on basis of the inclusion complexation between cyclodextrin carbamates and cellulose derivatives in aqueous media. Cyclodextrin carbamates were synthesized by microwave-assisted method from cyclodextrin and urea. The urea modified cyclodextrin shows the higher yield than the physical mixture of urea/cyclodextrin in the micellization with cellulose derivatives. The supramolecular structure of the core-shell micelles was demonstrated by (1)H NMR spectra, TEM images, and fluorescence spectra. The drug release behavior of the supramolecular polymer micelles was evaluated using prednisone acetate as a model drug. The drug loaded micelles showed steady and long time drug release behavior. With these properties, the supramolecular polymer micelles are attractive as drug carriers for pharmaceutical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Reversible Self-Assembly of Water-Soluble Gold(I) Complexes.

    PubMed

    Aguiló, Elisabet; Moro, Artur J; Gavara, Raquel; Alfonso, Ignacio; Pérez, Yolanda; Zaccaria, Francesco; Guerra, Célia Fonseca; Malfois, Marc; Baucells, Clara; Ferrer, Montserrat; Lima, João Carlos; Rodríguez, Laura

    2018-02-05

    The reaction of the gold polymers containing bipyridyl and terpyridyl units, [Au(C≡CC 15 H 10 N 3 )] n and [Au(C≡CC 10 H 7 N 2 )] n , with the water-soluble phosphines 1,3,5-triaza-7-phosphatricyclo[3.3.1.13.7]decane and 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane gives rise to the formation of four gold(I) alkynyl complexes that self-assemble in water (H 2 O) and dimethyl sulfoxide (DMSO), through different intermolecular interactions, with an impact on the observed luminescence displayed by the supramolecular assemblies. A detailed analysis carried out by NMR studies performed in different DMSO/deuterated H 2 O mixtures indicates the presence of two different assembly modes in the aggregates: (i) chain assemblies, which are based mainly on aurophilic interactions, and (ii) stacked assemblies, which are based on Au···π and π···π interactions. These different supramolecular environments can also be detected by their intrinsic optical properties (differences in absorption and emission spectra) and are predicted by the changes in the relative binding energy from density functional theory calculations carried out in DMSO and H 2 O. Small-angle X-ray scattering (SAXS) experiments performed in the same mixture of solvents are in agreement with the formation of aggregates in all cases. The aromatic units chosen, bipyridine and terpyridine, allow the use of external stimuli to reversibly change the aggregation state of the supramolecular assemblies. Interaction with the Zn 2+ cation is observed to disassemble the aggregates, while encapsulating agents competing for Zn 2+ complexation revert the process to the aggregation stage, as verified by SAXS and NMR. The adaptive nature of the supramolecular assemblies to the metal-ion content is accompanied by significant changes in the absorption and emission spectra, signaling the aggregation state and also the content on Zn 2+ .

  18. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    NASA Astrophysics Data System (ADS)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  19. Supramolecular architecture based on [Fe(CN)6]3- metallotectons and melaminium synthons

    NASA Astrophysics Data System (ADS)

    Krichen, Firas; Walha, Siwar; Lhoste, Jérôme; Bulou, Alain; Kabadou, Ahlem; Goutenoire, François

    2017-10-01

    Assembly involving [Fe(CN)6]3- metallotectons as building units and melaminium organic cation has been envisioned in order to elaborate a hybrid supramolecular based on ionic H-bonds with formula {(H-mel)4[Fe(CN)6]Cl} (H-mel+: melaminium cation). The compound has been prepared by diffusion method and characterized by single-crystal X-ray diffraction, EDX analysis, and Raman-IR spectroscopies with assignment from ab initio calculations. The melaminium exhibit self cationic coupling with cyclic hydrogen bonds to give a one dimensional {[H-mel]+}∝ synthon. Therefore, these cationic ribbons are inter-linked via hydrogen bonds by the anionic tectons [Fe(CN)6]3- and chlorine anion resulting on a 3D network. Molecular hirshfeld surfaces revealed that the crystal structure has been supported mainly by Nsbnd H⋯N and Nsbnd H⋯Cl intermolecular Hydrogen bonds and by favoured C⋯C and C⋯N weak interactions.

  20. Atomistic absorption spectra and non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    NASA Astrophysics Data System (ADS)

    Glowacki, David

    Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter-chromophore couplings. The scalability of our excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.

  1. An easy-to-prepare mini-scaffold for DNA origami

    NASA Astrophysics Data System (ADS)

    Brown, S.; Majikes, J.; Martínez, A.; Girón, T. M.; Fennell, H.; Samano, E. C.; Labean, T. H.

    2015-10-01

    The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated.The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated. Electronic supplementary information (ESI) available: Flow chart of the production process, base sequences of the scaffold strand, and synthetic staple strands, as well as caDNAnao files for all three mini-M13 origami structures. See DOI: 10.1039/c5nr04921k

  2. Crystal structures of seven molecular salts derived from benzylamine and organic acidic components

    NASA Astrophysics Data System (ADS)

    Wen, Xianhong; Jin, Xiunan; Lv, Chengcai; Jin, Shouwen; Zheng, Xiuqing; Liu, Bin; Wang, Daqi; Guo, Ming; Xu, Weiqiang

    2017-07-01

    Cocrystallization of the commonly available organic amine, benzylamine, with a series of organic acids gave a total of seven molecular salts with the compositions: (benzylamine): (p-toluenesulfonic acid) (1) [(HL)+ · (tsa-)], (benzylamine): (o-nitrobenzoic acid) (2) [(HL+) · (onba)-], (benzylamine): (3,4-methylenedioxybenzoic acid) (3) [(HL+) · (mdba-)], (benzylamine): (mandelic acid) (4) [(HL+) · (mda-)], (benzylamine): (5-bromosalicylic acid)2(5) [(HL+) · (bsac-) · (Hbsac)], (benzylamine): (m-phthalic acid) (6) [(HL+) · (Hmpta-)], and (benzylamine)2: (trimesic acid) (7) [(HL+)2 · (Htma2-)]. The seven salts have been characterised by X-ray diffraction technique, IR, and elemental analysis, and the melting points of all the salts were also reported. And their structural and supramolecular aspects are fully analyzed. The result reveals that among the seven investigated crystals the NH2 groups in the benzylamine moieties are protonated when the organic acids are deprotonated, and the crystal packing is interpreted in terms of the strong charge-assisted Nsbnd H⋯O hydrogen bond formation between the ammonium and the deprotonated acidic groups. Except the Nsbnd H⋯O hydrogen bond, the Osbnd H⋯O hydrogen bonds (charge assisted or neutral) were also found at the salts 4-7. Further analysis of the crystal packing of the salts indicated that a different family of additional CHsbnd O/CH2sbnd O, CHsbnd π/CH2sbnd π, Osbnd O, and Osbnd Cπ associations contribute to the stabilization and expansion of the total high-dimensional (2D-3D) framework structures. For the coexistence of the various weak nonbonding interactions these structures adopted homo or hetero supramolecular synthons or both. Some classical supramolecular synthons, such as R42(8), R43(10) and R44(12), usually observed in organic solids of organic acids with amine, were again shown to be involved in constructing most of these hydrogen bonding networks.

  3. Characterization of supramolecular (H2O)18 water morphology and water-methanol (H2O)15(CH3OH)3 clusters in a novel phosphorus functionalized trimeric amino acid host.

    PubMed

    Raghuraman, Kannan; Katti, Kavita K; Barbour, Leonard J; Pillarsetty, Nagavarakishore; Barnes, Charles L; Katti, Kattesh V

    2003-06-11

    Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).

  4. Design of Self-Healing Supramolecular Rubbers by Introducing Ionic Cross-Links into Natural Rubber via a Controlled Vulcanization.

    PubMed

    Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun

    2016-07-13

    Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.

  5. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    PubMed

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2018-02-15

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD + dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R 2 = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics.

    PubMed

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-02-01

    Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Assembly of three organic-inorganic hybrid supramolecular materials based on reduced molybdenum(V) phosphates

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yu, Kai; Lv, Jing-Hua; Wang, Chun-Mei; Wang, Chun-Xiao; Zhou, Bai-Bin

    2014-09-01

    Three supramolecular materials based on {P4Mo6} polyoxoanions, (Hbbi)2(H2bbi)[Cu3Mo12VO24(OH)6(H2O)6(HPO4)4(H2PO4)2(PO4)2]·3H2O (1), (Hbbi)2(H2bbi)[Ni3Mo12VO24(OH)6(H2O)2(HPO4)4(H2PO4)2(PO4)2]·9H2O (2), (Hbpy)(bpy)3[Ni2(H2O)10Na(PCA)2][NiMo12VO24(OH)6(H2PO4)6(PO4)2]·6H2O (3) (bbi=1,1‧-(1,4-butanediyl)bis(imidazole), bpy=4,4‧-bipyridine, PCA=pyridine-4-carboxylic acid), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV-vis, PXRD and the single-crystal X-ray diffraction. Compounds 1 and 2 exhibit covalent 1-D chains constructed from M[P4Mo6]2 dimeric cluster and {M(H2O)n} (M=Cu, n=3 for 1 and M=Ni, n=1 for 2) linker. Compound 3 possesses an unusual POMMOF supramolecular layers based on [Ni(P4Mo6)]2 dimeric units and 1-D metal-organic strings [Ni(H2O)5Na(PCA)]n, in which an in situ ligand of PCA from 1,3-bis(4-pyridyl)propane (bpp) precursor was observed. Furthermore, the electrochemical behavior of 1-3-CPE and magnetic properties of 1-3 have been investigated in detail.

  9. Force spectroscopy of quadruple H-bonded dimers by AFM: dynamic bond rupture and molecular time-temperature superposition.

    PubMed

    Zou, Shan; Schönherr, Holger; Vancso, G Julius

    2005-08-17

    We report on the application of the time-temperature superposition principle to supramolecular bond-rupture forces on the single-molecule level. The construction of force-loading rate master curves using atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) experiments carried out in situ at different temperatures allows one to extend the limited range of the experimentally accessible loading rates and hence to cross from thermodynamic nonequilibrium to quasi-equilibrium states. The approach is demonstrated for quadruple H-bonded ureido-4[1H]-pyrimidinone (UPy) moieties studied by variable-temperature SMFS in organic media. The unbinding forces of single quadruple H-bonding (UPy)2 complexes, which were identified based on a polymeric spacer strategy, were found to depend on the loading rate in the range of 5 nN/s to 500 nN/s at 301 K in hexadecane. By contrast, these rupture forces were independent of the loading rate from 5 to 200 nN/s at 330 K. These results indicate that the unbinding behavior of individual supramolecular complexes can be directly probed under both thermodynamic nonequilibrium and quasi-equilibrium conditions. On the basis of the time-temperature superposition principle, a master curve was constructed for a reference temperature of 301 K, and the crossover force (from loading-rate independent to -dependent regimes) was determined as approximately 145 pN (at a loading rate of approximately 5.6 nN/s). This approach significantly broadens the accessible loading-rate range and hence provides access to fine details of potential energy landscape of supramolecular complexes based on SMFS experiments.

  10. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    PubMed

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.

    PubMed

    Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W

    2016-02-02

    The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Physico-chemical Properties of Supramolecular Complexes of Natural Flavonoids with Biomacromolecules

    NASA Astrophysics Data System (ADS)

    Barvinchenko, V. M.; Lipkovska, N. O.; Fedyanina, T. V.; Pogorelyi, V. K.

    Polyvinylpyrrolidone (a water-soluble biopolymer) and human serum albumin (a globular protein) form supramolecular complexes with natural flavonoids quercetin and rutin in aqueous medium. The interaction with these biomacromolecules (BMM) causes the alteration of flavonoid spectral, protolytic, and other properties; in particular, it essentially increases their solubility. Absorption and solubility measurements revealed the supramolecular compounds of 1:1 stoichiometry for all systems studied. First it was demonstrated experimentally that the interaction with BMM promotes the tautomeric transformation in quercetin molecule. The mechanism of tautomerization via flavonoid molecular structure was discussed. Adsorption of BMM and their supramolecular compounds with flavonoids onto nanosilica was studied as a function of pH, and the properties of the biomacromolecules, flavonoids, and silica surface. It was found that BMM either complexed with quercetin (rutin) or preliminary immobilized on nanosilica increases the flavonoid adsorption.

  13. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    PubMed

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  14. Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, An-Ping; Yang, Pei-Pei; Yang, Chao; Gao, Yu-Juan; Zhao, Xiao-Xiao; Luo, Qiang; Li, Xiang-Dan; Li, Li-Zhong; Wang, Lei; Wang, Hao

    2016-07-01

    We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions.We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions. Electronic supplementary information (ESI) available: Experimental details; Fig. S1-S9. See DOI: 10.1039/c6nr03580a

  15. Three-dimensional supramolecular architecture in imidazolium hydrogen 2,3,5,6-tetrafluoroterephthalate.

    PubMed

    Yu, Li-Li; Cheng, Mei-Ling; Liu, Qi; Zhang, Zhi-Hui; Chen, Qun

    2010-04-01

    The asymmetric unit of the title salt formed between 2,3,5,6-tetrafluoroterephthalic acid (H(2)tfbdc) and imidazolium (ImH), C(3)H(5)N(2)(+).C(8)HF(4)O(4)(-), contains one Htfbdc(-) anion and one ImH(2)(+) cation, joined by a classical N-H...O hydrogen bond. The acid and base subunits are further linked by N-H...O and O-H...O hydrogen bonds into infinite two-dimensional layers with R(6)(5)(32) hydrogen-bond motifs. The resulting (4,4) network layers interpenetrate to produce an interlocked three-dimensional structure. The final three-dimensional supramolecular architecture is further stabilized by the linkages of two C-H...O interactions.

  16. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    PubMed

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  17. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology

    PubMed Central

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Abstract Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine. PMID:25738892

  18. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy

    PubMed Central

    2018-01-01

    Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers’ structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution. PMID:29697958

  19. Supramolecular organization and chiral resolution of p-terphenyl-m-dicarbonitrile on the Ag(111) surface.

    PubMed

    Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V

    2010-05-17

    The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.

  20. Competing supramolecular interactions give a new twist to terpyridyl chemistry: anion- and solvent-induced formation of spiral arrays in silver(I) complexes of a simple terpyridine.

    PubMed

    Hannon, Michael J; Painting, Claire L; Plummer, Edward A; Childs, Laura J; Alcock, Nathaniel W

    2002-05-17

    Multiple competing molecular interactions (metal-ligand, pi-stacking and hydrogen-bonding) in the silver(I) complexes of 4'-thiomethyl-2,2':6',2"-terpyridine give rise to a range of different molecular architectures, in which the metal-ligand coordination requirements are satisfied in quite different ways. Polynuclear supramolecular spirals, aggregated mononuclear and aggregated dinuclear units are all structurally characterised. The metallo-supramolecular architecture obtained displays a remarkable dependence both on the choice of non-coordinated anion and the type of solvent used (coordinating or non-coordinating). The anion dependence is particularly surprising, since the anions are not integrated into the centre of the supramolecular structure. The solution behaviour is also solvent and anion dependent, with aggregation of planar mononuclear cations observed in acetonitrile, but oligonuclear spiral species implicated in nitromethane. The extraordinarily variable geometries of these systems suggest that they provide a novel example of the "frustration" principle, in which opposing tendencies cannot simultaneously be satisfied and identify an alternative approach to the design of metallo-supramolecular systems whose structure is responsive to external agents.

  1. A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule

    NASA Astrophysics Data System (ADS)

    Smith, David K.

    2005-03-01

    This article focuses on the essential roles played by intermolecular forces in mediating the interactions between chemical molecules and biological systems. Intermolecular forces constitute a key topic in chemistry programs, yet can sometimes seem disconnected from real-life applications. However, by taking a "supramolecular" view of medicinal chemistry and focusing on interactions between molecules, it is possible to come to a deeper understanding of recent developments in medicine. This allows us to gain a real insight into the interface between biology and chemistry—an interdisciplinary area that is crucial for the development of modern medicinal products. This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and Creutzfield Jacob. The article also indicates how taking a supramolecular approach will enable the development of new nanoscale medicines.

  2. From Mesocates to Helicates: Structural, Magnetic and Chiro-Optical Studies on Nickel(II) Supramolecular Assemblies Derived from Tetradentate Schiff Bases.

    PubMed

    Mayans, Júlia; Font-Bardia, Mercè; Di Bari, Lorenzo; Arrico, Lorenzo; Zinna, Francesco; Pescitelli, Gennaro; Escuer, Albert

    2018-05-28

    The systematic reactions of a family of tetradentate pyridyl/imine and quinolyl/imine racemic or enantiopure Schiff bases with Ni(NO 3 ) 2 or Ni(ClO 4 ) 2 in the presence of sodium azide yielded, as a function of the starting racemic, chiral or achiral base, a set of chiral, meso or achiral complexes. In all cases, the compounds consist of two Ni II cations linked by a double azido bridge in its end-on coordination mode. All the dimers exhibit a mesocate supramolecular structure and one of them, the unprecedented mix of helicate and mesocate in 2:1 ratio. The transition from mesocate to helicate conformation has been reached by tuning the flexibility of the central spacers of the Schiff bases and the size of the substituents. Electronic circular dichroism (ECD) studies have been performed for two pairs of enantiomers and interpreted by means of DFT calculations. Susceptibility measurements show a ferromagnetic coupling between the Ni II cations mediated by the end-on azido bridges. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Designed synthesis and supramolecular architectures of furan-substituted perylene diimide.

    PubMed

    Yu, Yanwen; Li, Yongjun; Qin, Zhihong; Jiang, Runsheng; Liu, Huibiao; Li, Yuliang

    2013-06-01

    Novel furan-substituted perylene diimides are successfully synthesized and an efficient supramolecular architecture approach to construct zero/one-dimensional nano- and micro-structures by controlling solvents has been demonstrated. The aggregate structure conversion in different molecular structures can be controlled in the form of sphere-like, rod-like, and vesicle-like structures. As expected, these solid supramolecular rod-like architectures displayed interesting optical waveguide behavior, which indicates the aggregate structure materials of furan-substituted perylene diimides have the potential application as micro-scale photonic elements. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Metal-driven and covalent synthesis of supramolecular grids from racks: a convergent approach to heterometallic and heteroleptic nanostructures.

    PubMed

    Schmittel, Michael; Kalsani, Venkateshwarlu; Bats, Jan W

    2005-06-13

    Supramolecular nanogrids were prepared from dynamic supramolecular racks through the coupling of terminal alkynes using either a covalent (with CuCl/O(2)) or a coordinative (with [trans-(PEt(3))(2)PtCl(2)]) approach. Because of the rapid equilibration of the racks (as tested by exchange reactions), oligomeric adducts potentially formed in the coupling process will selectively furnish the nanogrids through an entropically driven self-repair mechanism. To ascertain the structural assignment, the nanogrids were also synthesized by an independent strategy.

  5. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication.

    PubMed

    Malina, Jaroslav; Hannon, Michael J; Brabec, Viktor

    2016-07-12

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  6. Assessing cooperativity in supramolecular systems.

    PubMed

    von Krbek, Larissa K S; Schalley, Christoph A; Thordarson, Pall

    2017-05-09

    This tutorial review summarises different aspects of cooperativity in supramolecular complexes. We propose a systematic categorisation of cooperativity into cooperative aggregation, intermolecular (allosteric) cooperativity, intramolecular (chelate) cooperativity and interannular cooperativity and discuss approaches to quantify them thermodynamically using cooperativity factors. A brief summary of methods to determine the necessary thermodynamic data is given with emphasis on isothermal titration calorimetry (ITC), a method still underrepresented in supramolecular chemistry, which however offers some advantages over others. Finally, a discussion of very few selected examples, which highlight different aspects to illustrate why such an analysis is useful, rounds up this review.

  7. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    PubMed

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  8. Energy transfer within self-assembled cyclic multichromophoric arrays based on orthogonally arranged donor-acceptor building blocks.

    PubMed

    Karakostas, Nikolaos; Kaloudi-Chantzea, Antonia; Martinou, Elisabeth; Seintis, Kostas; Pitterl, Florian; Oberacher, Herbert; Fakis, Mihalis; Kallitsis, Joannis K; Pistolis, George

    2015-01-01

    We herein present the coordination-driven supramolecular synthesis and photophysics of a [4+4] and a [2+2] assembly, built up by alternately collocated donor-acceptor chromophoric building blocks based, respectively, on the boron dipyrromethane (Bodipy) and perylene bisimide dye (PBI). In these multichromophoric scaffolds, the intensely absorbing/emitting dipoles of the Bodipy subunit are, by construction, cyclically arranged at the corners and aligned perpendicular to the plane formed by the closed polygonal chain comprising the PBI units. Steady-state and fs time-resolved spectroscopy reveal the presence of efficient energy transfer from the vertices (Bodipys) to the edges (PBIs) of the polygons. Fast excitation energy hopping - leading to a rapid excited state equilibrium among the low energy perylene-bisimide chromophores - is revealed by fluorescence anisotropy decays. The dynamics of electronic excitation energy hopping between the PBI subunits was approximated on the basis of a theoretical model within the framework of Förster energy transfer theory. All energy-transfer processes are quantitatively describable with Förster theory. The influence of structural deformations and orientational fluctuations of the dipoles in certain kinetic schemes is discussed.

  9. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks

    NASA Astrophysics Data System (ADS)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Tanaka, Wataru; Kubota, Ryou; Minami, Saori; Urayama, Kenji; Hamachi, Itaru

    2018-02-01

    Novel soft materials should comprise multiple supramolecular nanostructures whose responses (for example, assembly and disassembly) to external stimuli can be controlled independently. Such multicomponent systems are present in living cells and control the formation and break-up of a variety of supramolecular assemblies made of proteins, lipids, DNA and RNA in response to external stimuli; however, artificial counterparts are challenging to make. Here, we present a hybrid hydrogel consisting of a self-sorting double network of nanofibres in which each network responds to an applied external stimulus independent of the other. The hydrogel can be made to change its mechanical properties and rates of release of encapsulated proteins by adding Na2S2O4 or bacterial alkaline phosphatase. Notably, the properties of the gel depend on the order in which the external stimuli are applied. Multicomponent hydrogels comprising orthogonal stimulus-responsive supramolecular assemblies would be suitable for designing novel adaptive materials.

  10. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry.

    PubMed

    Cremer, Paul S; Flood, Amar H; Gibb, Bruce C; Mobley, David L

    2017-12-19

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists - with their expertise in macrocyclic synthesis and measuring supramolecular interactions - have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  11. Engineering antiparallel charge-transfer cascades into supramolecular n/p-heterojunction photosystems: toward directional self-sorting on surfaces.

    PubMed

    Lista, Marco; Areephong, Jetsuda; Orentas, Edvinas; Charbonnaz, Pierre; Sakai, Naomi; Matile, Stefan

    2012-01-01

    This contribution describes recent progress made with the design, synthesis and evaluation of supramolecular architectures for artificial photosynthesis. Emphasis is on the possible introduction of antiparallel redox gradients into the co-axial hole- and electron-transporting channels of supramolecular n/p-heterojunctions, and on directional, uniform axial and alternate lateral self-sorting to get there. Recent results suggest that two-component gradients in both channels are sufficient for photoinduced charge separation over very long distances. Removal of one gradient leads to charge recombination at the usual critical distances, inversion of both gradients causes photocurrent inhibition. These promising results call for user-friendly, cheap and fast approaches to oriented multicomponent architectures on solid surfaces. However, the reduction of efforts devoted to covalent organic synthesis will have to be compensated by the development of strategic concepts on the supramolecular level to tackle basic questions such as self-sorting on surfaces.

  12. Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators.

    PubMed

    Chin, Stacey M; Synatschke, Christopher V; Liu, Shuangping; Nap, Rikkert J; Sather, Nicholas A; Wang, Qifeng; Álvarez, Zaida; Edelbrock, Alexandra N; Fyrner, Timmy; Palmer, Liam C; Szleifer, Igal; Olvera de la Cruz, Monica; Stupp, Samuel I

    2018-06-19

    Skeletal muscle provides inspiration on how to achieve reversible, macroscopic, anisotropic motion in soft materials. Here we report on the bottom-up design of macroscopic tubes that exhibit anisotropic actuation driven by a thermal stimulus. The tube is built from a hydrogel in which extremely long supramolecular nanofibers are aligned using weak shear forces, followed by radial growth of thermoresponsive polymers from their surfaces. The hierarchically ordered tube exhibits reversible anisotropic actuation with changes in temperature, with much greater contraction perpendicular to the direction of nanofiber alignment. We identify two critical factors for the anisotropic actuation, macroscopic alignment of the supramolecular scaffold and its covalent bonding to polymer chains. Using finite element analysis and molecular calculations, we conclude polymer chain confinement and mechanical reinforcement by rigid supramolecular nanofibers are responsible for the anisotropic actuation. The work reported suggests strategies to create soft active matter with molecularly encoded capacity to perform complex tasks.

  13. Supramolecularly Engineered Circular Bivalent Aptamer for Enhanced Functional Protein Delivery.

    PubMed

    Jiang, Ying; Pan, Xiaoshu; Chang, Jin; Niu, Weijia; Hou, Weijia; Kuai, Hailan; Zhao, Zilong; Liu, Ji; Wang, Ming; Tan, Weihong

    2018-06-06

    Circular bivalent aptamers (cb-apt) comprise an emerging class of chemically engineered aptamers with substantially improved stability and molecular recognition ability. Its therapeutic application, however, is challenged by the lack of functional modules to control the interactions of cb-apt with therapeutics. We present the design of a β-cyclodextrin-modified cb-apt (cb-apt-βCD) and its supramolecular interaction with molecular therapeutics via host-guest chemistry for targeted intracellular delivery. The supramolecular ensemble exhibits high serum stability and enhanced intracellular delivery efficiency compared to a monomeric aptamer. The cb-apt-βCD ensemble delivers green fluorescent protein into targeted cells with efficiency as high as 80%, or cytotoxic saporin to efficiently inhibit tumor cell growth. The strategy of conjugating βCD to cb-apt, and subsequently modulating the supramolecular chemistry of cb-apt-βCD, provides a general platform to expand and diversify the function of aptamers, enabling new biological and therapeutic applications.

  14. Mastering fundamentals of supramolecular design with carboxylic acids. Common lessons from X-ray crystallography and scanning tunneling microscopy.

    PubMed

    Ivasenko, Oleksandr; Perepichka, Dmitrii F

    2011-01-01

    Hydrogen bonding is one of the most important non-covalent interactions in both biological (DNA, peptides, saccharides etc.) and artificial systems (various soft materials, host-guest architectures, molecular networks, etc.). Carboxylic acids are some of the most simple yet powerful hydrogen-bonding building blocks, that possess a particularly rich supramolecular chemistry. This tutorial review focuses on the structural diversity of supramolecular architectures accessible via hydrogen bonding of carboxylic acids, as observed both in single crystals using X-ray analysis and in monolayers on surfaces using scanning probe techniques. It provides a concise overview of the key concepts and principles of modern supramolecular design and is given in the form of case studies of finely selected literature examples, covering formation of macrocycles, chains, ladders, rotaxanes, catenanes, various 2D and 3D nets, host-guest systems and some applications thereof.

  15. Excited-State Dynamics of Dithienylethenes Functionalized for Self-Supramolecular Assembly.

    PubMed

    Hamdi, I; Buntinx, G; Poizat, O; Perrier, A; Le Bras, L; Delbaere, S; Barrau, S; Louati, M; Takeshita, M; Tokushige, K; Takao, M; Aloïse, S

    2018-04-12

    The photoswitching and competitive processes of two photochromic dithienylethenes (DTEs) functionalized at both sides with 2-ureido-4[1H]-pyrimidone (UPy) quadruple hydrogen-bonding recognition patterns have been investigated with NMR experiments, ultrafast spectroscopy, and density functional theory (DFT) calculations. The originality of these molecules is their ability to form large supramolecular assemblies induced by light for the closed form (CF) species while the open form (OF) species exist as small oligomers. Photochromic parameters have been determined and photochemical pathways have been rationalized with clear distinction between the antiparallel (OF-AP) and parallel (OF-P) species. A new photocyclization pathway via triplet manifold has been evidenced. The effect of the supramolecular assembly on the photochemical response is discussed. Unlike the photoreversion process, which is unaffected by supramolecular assembly, rate constants of the photocyclization reaction and intersystem crossing process are sensitive to the presence of small OF oligomers.

  16. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  17. Catalytic control over supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Boekhoven, Job; Poolman, Jos M.; Maity, Chandan; Li, Feng; van der Mee, Lars; Minkenberg, Christophe B.; Mendes, Eduardo; van Esch, Jan H.; Eelkema, Rienk

    2013-05-01

    Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.

  18. Supramolecular aggregates of metallo-organic acids with stilbazoles. Formation of columnar mesophases and Langmuir films.

    PubMed

    Domínguez, Cristina; Donnio, Bertrand; Coco, Silverio; Espinet, Pablo

    2013-11-28

    Supramolecular metal complexes formed through hydrogen bonding between tris(3,4,5-decyloxy)stilbazole and several metallo-organic acids of the type [Au(R)(CNC6H4CO2H)] (R = C6F5, C6F4OC10H21), [cis-[MCl2(CNC6H4COOH)2] and [trans-[MI2(CNC6H4COOH)2] (M = Pd, Pt) have been synthesized. All the supramolecular palladium and platinum polycatenar aggregates display a hexagonal columnar mesophase at temperatures close to room temperature. Most of the supramolecular trisalkoxystilbazole complexes exhibit luminescent behaviour. Aggregates of [Au(C6F4OC10H21)(CNC6H4CO2H)] and [trans-[MI2(CNC6H4COOH)2] (M = Pd, Pt) form stable Langmuir films at the air-water interface.

  19. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry

    NASA Astrophysics Data System (ADS)

    Cremer, Paul S.; Flood, Amar H.; Gibb, Bruce C.; Mobley, David L.

    2018-01-01

    On planet Earth, water is everywhere: the majority of the surface is covered with it; it is a key component of all life; its vapour and droplets fill the lower atmosphere; and even rocks contain it and undergo geomorphological changes because of it. A community of physical scientists largely drives studies of the chemistry of water and aqueous solutions, with expertise in biochemistry, spectroscopy and computer modelling. More recently, however, supramolecular chemists -- with their expertise in macrocyclic synthesis and measuring supramolecular interactions -- have renewed their interest in water-mediated non-covalent interactions. These two groups offer complementary expertise that, if harnessed, offer to accelerate our understanding of aqueous supramolecular chemistry and water writ large. This Review summarizes the state-of-the-art of the two fields, and highlights where there is latent chemical space for collaborative exploration by the two groups.

  20. Supramolecular assembly/reassembly processes: molecular motors and dynamers operating at surfaces.

    PubMed

    Ciesielski, Artur; Samorì, Paolo

    2011-04-01

    Among the many significant advances within the field of supramolecular chemistry over the past decades, the development of the so-called "dynamers" features a direct relevance to materials science. Defined as "combinatorial dynamic polymers", dynamers are constitutional dynamic systems and materials resulting from the application of the principles of supramolecular chemistry to polymer science. Like supramolecular materials in general, dynamers are reversible dynamic multifunctional architectures, capable of modifying their constitution by exchanging, recombining, incorporating components. They may exhibit a variety of novel properties and behave as adaptive materials. In this review we focus on the design of responsive switchable monolayers, i.e. monolayers capable to undergo significant changes in their physical or chemical properties as a result of external stimuli. Scanning tunneling microscopy studies provide direct evidence with a sub-nanometre resolution, on the formation and dynamic response of these self-assembled systems featuring controlled geometries and properties.

  1. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry.

    PubMed

    Lehn, Jean-Marie

    2007-02-01

    Supramolecular chemistry has developed over the last forty years as chemistry beyond the molecule. Starting with the investigation of the basis of molecular recognition, it has explored the implementation of molecular information in the programming of chemical systems towards self-organisation processes, that may occur either on the basis of design or with selection of their components. Supramolecular entities are by nature constitutionally dynamic by virtue of the lability of non-covalent interactions. Importing such features into molecular chemistry, through the introduction of reversible bonds into molecules, leads to the emergence of a constitutional dynamic chemistry, covering both the molecular and supramolecular levels. It considers chemical objects and systems capable of responding to external solicitations by modification of their constitution through component exchange or reorganisation. It thus opens the way towards an adaptive and evolutive chemistry, a further step towards the chemistry of complex matter.

  2. Smart nanovehicles based on pH-triggered disassembly of supramolecular peptide-amphiphiles for efficient intracellular drug delivery.

    PubMed

    Xu, Xianghui; Li, Yunkun; Li, Haiping; Liu, Rong; Sheng, Mingming; He, Bin; Gu, Zhongwei

    2014-03-26

    A novel type of nanovehicle (NV) based on stimuli-responsive supramolecular peptide-amphiphiles (SPAs, dendritic poly (L-lysine) non-covalently linked poly (L-leucine)) is developed for intracellular drug delivery. To determine the pH-dependent mechanism, the supramolecular peptide-amphiphile system (SPAS) is investigated at different pH conditions using a variety of physical and chemical approaches. The pH-triggered disassembly of SPAS can be attributed to the disappearance of non-covalent interactions within SPAs around the isoelectric point of poly (L-leucine). SPAS is found to encapsulate guest molecules at pH 7.4 but release them at pH 6.2. In this way, SPAS is able to act as a smart NV to deliver its target to tumor cells using intracellular pH as a trigger. The DOX-loaded NVs are approximately 150 nm in size. In vitro release profiles and confocal laser scanning microscopy (CLSM) images of HepG2 cells confirm that lower pH conditions can trigger the disassembly of NVs and so achieve pH-dependent intracellular DOX delivery. In vitro cytotoxicity of the DOX-loaded NVs to HepG2 cells demonstrate that the smart NVs enhance the efficacy of hydrophobic DOX. Fluorescence-activated cell sorting (FACS) and CLSM results show that the NVs can enhance the endocytosis of DOX into HepG2 cells considerably and deliver DOX to the nuclei. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.

  4. Supramolecular packing and polymorph screening of N-isonicotinoyl arylketone hydrazones with phenol and amino modifications

    NASA Astrophysics Data System (ADS)

    Hean, Duane; Michael, Joseph P.; Lemmerer, Andreas

    2018-04-01

    Thirteen structural variants based on the (E)-N‧-(1-arylethylidene)pyridohydrazide template were prepared, investigated and screened for possible polymorphic behaviour. Four variants showed from Differential Scanning Calorimetry Scans thermal events indicative of new solid-state phases. The thirteen variants included substituents R = sbnd OH or sbnd NH2 placed at ortho, meta and para positions on the phenyl ring; and shifting the pyridyl nitrogen between positions 4-, 3- and 2-. The crystal structures of twelve of the compounds were determined to explore their supramolecular structures. The outcomes of these modifications demonstrated that the pyridyl nitrogen at the 2- position is 'locked' by forming a hydrogen bond with the amide hydrogen; while placing the pyridyl nitrogen at positions 3- and 4- offers a greater opportunity for hydrogen bonding with neighbouring molecules. Such interactions include Osbnd H⋯N, Nsbnd H⋯N, Osbnd H⋯O, Nsbnd H⋯O, Nsbnd H⋯π, π⋯π stacking, as well as other weaker interactions such as Csbnd H⋯N, Csbnd H⋯O, Csbnd H⋯N(pyridyl). When OH or NH2 donors are placed in the ortho position, an intramolecular hydrogen bond is formed between the acceptor hydrazone nitrogen and the respective donor. The meta- and para-positioned donors form an unpredictable array of supramolecular structures by forming hydrogen-bonded chains with the pyridyl nitrogen and carbonyl acceptors respectively. In addition to the intramolecular and chain hydrogen bond formation demonstrated throughout the crystal structures under investigation, larger order hydrogen-bonded rings were also observed in some of the supramolecular aggregations. The extent of the hydrogen-bonded ring formations range from two to six molecular participants depending on the specific crystal structure.

  5. Control over Structure and Function of Peptide Amphiphile Supramolecular Assemblies through Molecular Design and Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Tantakitti, Faifan

    Supramolecular chemistry is a powerful tool to create a material of a defined structure with tunable properties. This strategy has led to catalytically active, bioactive, and environment-responsive materials, among others, that are valuable in applications ranging from sensor technology to energy and medicine. Supramolecular polymers formed by peptide amphiphiles (PAs) have been especially relevant in tissue regeneration due to their ability to form biocompatible structures and mimic many important signaling molecules in biology. These supramolecular polymers can form nanofibers that create networks which mimic natural extracellular matrices. PA materials have been shown to induce growth of blood vessels, bone, cartilage, and nervous tissue, among others. The work described in this thesis not only studied the relationship between molecular structure and functions of PA assemblies, but also uncovered a powerful link between the energy landscape of their supramolecular self-assembly and the ability of PA materials to interact with cells. In chapter 2, it is argued that fabricating fibrous nanostructures with defined mechanical properties and decoration with bioactive molecules is not sufficient to create a material that can effectively communicate with cells. By systemically placing the fibronectin-derived RGDS epitope at increasing distances from the surface of PA nanofibers through a linker of one to five glycine residues, integrin-mediated RGDS signaling was enhanced. The results suggested that the spatial presentation of an epitope on PA nanofibers strongly influences the bioactivity of the PA substrates. In further improving functionality of a PA-based scaffold to effectively direct cell growth and differentiation, chapter 3 explored the use of a cell microcarrier to compartmentalize and simultaneously tune insoluble and soluble signals in a single matrix. PA nanofibers were incorporated at the surface of the microcarrier in order to promote cell adhesion, while a controlled local release of the soluble growth factor bone morphogenetic protein 4 (BMP-4) was realized from the particle's core composed of cross-linked alginate. The alginate-core and PA-shell microparticles were found to allow independent tuning of the bioactivity of a PA and a release of the growth factor for specific signaling to cells. Using microcarriers which encapsulated BMP-4 and coated with RGDS PA nanofibers, it was shown that a control over spatial distribution, proliferation, and osteogenic differentiation of premyoblastic cells on the surface of microcarriers can be effectively achieved. Finally, in drastic contrast to the traditional approach to material development based on altering molecular structure, chapter 4 presents the energy landscapes in which supramolecular assemblies of unique architecture exist in different thermodynamic wells. Experimental results and calculations revealed that the energy landscapes are rooted in competing interactions between PA monomers, namely beta-sheet hydrogen bonds and repulsion among charged groups. Switching off or on the repulsive electrostatic interactions by changing the ionic strength promoted or suppressed the dominant ?-sheet hydrogen bonding interactions respectively. However, the dominant forces can prevail if the assemblies are above a certain size and thereby can exist in a kinetically trapped state. Preparative pathways involving dilution, annealing, and addition of salt were investigated in which the structures belonging to different energy states could be accessed and demonstrated that these energy landscapes involving competitive interactions was applicable not only to PA systems but also to a non-peptide supramolecular system based on pi-orbital overlaps as the dominant attraction among molecules and electrostatic repulsion. In chapter 5, structure and biological function relationships of long or short PA nanofibers are reported, and such fibers were prepared from identical monomers based on knowledge of their energy landscapes described in chapter 4. Biological experiments were performed to compare the cytotoxicity of solutions containing short or long PA assemblies, as well as the ability of PA substrates to support cell adhesion and growth. In one assay, short fibers killed cells faster than long fibers and a study of interactions between lipid membrane and PA fibers suggested that cell death occurred through disruption of cell membrane by intact fibers, as opposed to single PA monomers. In another assay, long fibers induced better cell-spreading than short ones when immobilized on a surface. Mechanical measurements on the PA substrates indicated a higher ability of long fibers to sustain a higher pulling force exerted by cells. In summary, this thesis highlights that function in PA supramolecular materials is not only connected to chemical structure but also to the positions of specific materials within their respective energy landscapes.

  6. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  7. First copper(II)-cyclophosphato complex with macrocyclic N-donor ligand: Single crystal structure elucidation with Hirshfeld surface analysis, optical, electrochemical and antioxidant properties

    NASA Astrophysics Data System (ADS)

    Hemissi, Hanène; Fezai, Ramzi; Mezni, Ali; Besbes-Hentati, Salma; Rzaigui, Mohamed

    2018-07-01

    From the system metal-cyclam-condensed phosphate is isolated the first complex of {(H3O+)2[Cu(II)(μ-P4O12)(cyclam)]}n(1). This complex was characterized by X-ray diffraction (XRD), spectroscopy (diffuse reflectance, UV-Vis and FT-IR) and thermal analysis (DTA/TGA). The solved molecular structure of 1 revealed one rare 1D-anionic polymeric copper(II)-complex, {[Cu(II)(μ-P4O12)(cyclam)]2-}n, involving two distinct ring ligands (cyclam / cyclotetraphosphate), in which a new coordination mode of the P4 O124- was observed. The counterions (H3O+) ensure the connection between 1D-polymers by acting as donor in a strong "charge-assisted" hydrogen bonds with P4O12 rings leading to 2D-supramolecular frameworks arranged in -A-B-A- fashion. The 2D-supramolecular network is stabilized by O/N-H…O interactions whereas the van der Waals contacts play a key role in the consolidation of the 3D packing as verified by Hirshfeld surface analysis in combination with 2D fingerprint plots. The biochemical properties of 1 was also evaluated via DDPH, ABTS, hydroxyl radical scavengers and ferric reducing power (FRP) showing promising antioxidant activities which has been clarified by means of the cyclic voltammetric study.

  8. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system.

    PubMed

    Frkanec, Leo; Jokić, Milan; Makarević, Janja; Wolsperger, Kristina; Zinić, Mladen

    2002-08-21

    The photoinduced gelation system based on 1 (non-gelling) to 2 (gelling) molecular photoisomerization in water results by microspheres (1) to gel fibers (2) transformation at the supramolecular level.

  9. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Léonforte, F.; Welling, U.; Müller, M.

    2016-12-01

    Structural properties of brushes which are composed of weak acidic and basic polyelectrolytes are studied in the framework of a particle-based approach that implicitly accounts for the solvent quality. Using a semi-grandcanonical partition function in the framework of the Single-Chain-in-Mean-Field (SCMF) algorithm, the weak polyelectrolyte is conceived as a supramolecular mixture of polymers in different dissociation states, which are explicitly treated in the partition function and sampled by the SCMF procedure. One obtains a local expression for the equilibrium acid-base reaction responsible for the regulation of the charged groups that is also incorporated to the SCMF sampling. Coupled to a simultaneous treatment of the electrostatics, the approach is shown to capture the main features of weak polyelectrolyte brushes as a function of the bulk pH in the solution, the salt concentration, and the grafting density. Results are compared to experimental and theoretical works from the literature using coarse-grained representations of poly(acrylic acid) (PAA) and poly(2-vinyl pyridine) (P2VP) polymer-based brushes. As the Born self-energy of ions can be straightforwardly included in the numerical approach, we also study its effect on the local charge regulation mechanism of the brush. We find that its effect becomes significant when the brush is dense and exposed to high salt concentrations. The numerical methodology is then applied (1) to the study of the kinetics of collapse/swelling of a P2VP brush and (2) to the ability of an applied voltage to induce collapse/swelling of a PAA brush in a pH range close to the pKa value of the polymer.

  10. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems.

    PubMed

    Broer, Dirk J; Bastiaansen, Cees M W; Debije, Michael G; Schenning, Albertus P H J

    2012-07-16

    Functional organic materials are of great interest for a variety of applications. To obtain precise functional properties, well-defined hierarchically ordered supramolecular materials are crucial. The self-assembly of liquid crystals has proven to be an extremely useful tool in the development of well-defined nanostructured materials. We have chosen the illustrative example of photopolymerizable hydrogen-bonding mesogens to show that a wide variety of functional materials can be made from a relatively simple set of building blocks. Upon mixing these compounds with other reactive mesogens, nematic, chiral nematic, and smectic or columnar liquid-crystalline phases can be formed that can be applied as actuators, sensors and responsive reflectors, and nanoporous membranes, respectively. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Interrogating heterobimetallic co-catalytic responses for the electrocatalytic reduction of CO2 using supramolecular assembly.

    PubMed

    Machan, Charles W; Kubiak, Clifford P

    2016-10-12

    The use of hydrogen-bonding interactions to direct the non-covalent assembly of a heterobimetallic supramolecular system with Re and Mn bipyridine-based electrocatalysts is reported. Under catalytic conditions, the formation of hydrogen bonds generates a catalyst system which passes ∼10% more current than the individual current responses of the respective Re and Mn complexes for the reduction of CO 2 to CO and H 2 O. Infrared spectroelectrochemical studies indicate that the Re and Mn metal centers interact during the reduction mechanism, even forming heterobimetallic bonds under reducing conditions in the absence of substrate. These findings demonstrate that non-covalent assembly is a powerful method for generating new co-catalyst systems with greater reactivity and efficiency for transformations of interest.

  12. Covalently Interlocked Cyclohexa-m-phenylenes and Their Assembly: En Route to Supramolecular 3D Carbon Nanostructures.

    PubMed

    Dumslaff, Bastian; Reuss, Anna N; Wagner, Manfred; Feng, Xinliang; Narita, Akimitsu; Fytas, George; Müllen, Klaus

    2017-08-21

    In our search to cluster as many phenylene units as possible in a given space, we have proceeded to the three-dimensional world of benzene-based molecules by employing covalently interlocked cyclohexa-m-phenylenes, as present in the unique paddlewheel-shaped polyphenylene 10. A precursor was conceived, in which freely rotating m-chlorophenylene units provide sufficient solubility along with the necessary proximity for the final ring closure to give 10. Monitoring the assembly of solubilized tert-butyl derivatives of 10 into supramolecular carbon nanostructures by dynamic light scattering (DLS) and Brillouin light scattering (BLS) revealed the dimensions of the initially formed aggregates as well as the amorphous character of the solid state. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Two novel self-assemblies of supramolecular solar cells using N-heterocyclic-anchoring porphyrins.

    PubMed

    Zhang, Qian; Wu, Fang-Yuan; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Neng-Zhi

    2018-02-15

    Two novel N-substituted anchoring porphyrins (ZnPAtz and ZnPAim) have been devised and synthesized. Moreover, these two anchoring porphyrins were linked to the TiO 2 semiconductor through carboxyl groups and then a zinc porphyrin ZnP was bound to the anchoring porphyrin using a zinc-to-ligand axial coordination approach. The different performances of these assemblies were compared with single anchoring porphyrin devices ZnPAtz and ZnPAim. The photoelectric conversion efficiency of the new supramolecular solar cells sensitized by ZnP-ZnPAx (x=tz, im) has been improved. The ZnP-ZnPAtz-based DSSCs provided the highest photovoltaic efficiency (1.86%). Fundamental studies showed that incorporation of these assemblies promote light-harvesting efficiency. Copyright © 2017. Published by Elsevier B.V.

  14. Carbon-rich supramolecular metallacycles and metallacages

    PubMed Central

    Northrop, Brian H.; Chercka, Dennis; Stang, Peter J.

    2008-01-01

    Coordination-driven self-assembly via the directional-bonding approach utilizes rigid transition metal acceptors and electron-rich donors to allow for complex, nanoscale 2D polygons and 3D polyhedra to be prepared under mild conditions and in high yields. To ensure proper rigidity and directionality, many acceptor and donor precursors contain largely carbon-rich aromatic and/or acetylenic moieties. This article introduces self-assembly as an alternative means of synthesizing carbon-rich materials and discusses the development, design, synthesis, and applications of carbon-rich supramolecular metallacycles and metallacages as well as the self-assembly of new diastereomeric carbon-rich supramolecular triangles. PMID:20011029

  15. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid.

    PubMed

    Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj

    2013-09-02

    Aggregates of hexaphenylbenzene derivatives 3, having pyrene groups form network of fluorescent nanofibres in presence of mercury ions. Further, fluorescent nanofibres of 3-Hg(2+) supramolecular ensemble exhibit sensitive and pronounced response towards the picric acid. In addition, the solution coated paper strips of 3-Hg(2+) supramolecular ensemble can detect picric acid in the range of 2.29 fg/cm(2), thus, providing a simple, portable and low cost method for detection of picric acid in solution and in contact mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Iron(II) supramolecular helicates interfere with the HIV-1 Tat–TAR RNA interaction critical for viral replication

    PubMed Central

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor

    2016-01-01

    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat–TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates. PMID:27405089

  17. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05233e

  18. Combination of magnetic dispersive micro solid-phase extraction and supramolecular solvent-based microextraction followed by high-performance liquid chromatography for determination of trace amounts of cholesterol-lowering drugs in complicated matrices.

    PubMed

    Arghavani-Beydokhti, Somayeh; Rajabi, Maryam; Asghari, Alireza

    2017-07-01

    A novel, efficient, rapid, simple, sensitive, selective, and environmentally friendly method termed magnetic dispersive micro solid-phase extraction combined with supramolecular solvent-based microextraction (Mdμ-SPE-SSME) followed by high-performance liquid chromatography (HPLC) with UV detection is introduced for the simultaneous microextraction of cholesterol-lowering drugs in complicated matrices. In the first microextraction procedure, using layered double hydroxide (LDH)-coated Fe 3 O 4 magnetic nanoparticles, an efficient sample cleanup is simply and rapidly provided without the need for time-consuming centrifugation and elution steps. In the first step, desorption of the target analytes is easily performed through dissolution of the LDH-coated magnetic nanoparticles containing the target analytes in an acidic solution. In the next step, an emulsification microextraction method based on a supramolecular solvent is used for excellent preconcentration, ultimately resulting in an appropriate determination of the target analytes in real samples. Under the optimal experimental conditions, the Mdμ-SPE-SSME-HPLC-UV detection procedure provides good linearity in the ranges of 1.0-1500 ng mL -1 , 1.5-2000 ng mL -1 , and 2.0-2000 ng mL -1 with coefficients of determination of 0.995 or less, low limits of detection (0.3, 0.5, and 0.5 ng mL -1 ), and good extraction repeatabilities (relative standard deviations below 7.8%, n = 5) in deionized water for rosuvastatin, atorvastatin, and gemfibrozil, respectively. Finally, the proposed method is successfully applied for the determination of the target analytes in complicated matrices. Graphical Abstract Mdμ-SPE-SSME procedure.

  19. Supra-dendron Gelator Based on Azobenzene-Cyclodextrin Host-Guest Interactions: Photoswitched Optical and Chiroptical Reversibility.

    PubMed

    Xie, Fan; Ouyang, Guanghui; Qin, Long; Liu, Minghua

    2016-12-12

    A novel amphiphilic dendron (AZOC 8 GAc) with three l-glutamic acid units and an azobenzene moiety covalently linked by an alkyl spacer has been designed. The compound formed hydrogels with water at very low concentration and self-assembled into chiral-twist structures. The gel showed a reversible macroscopic volume phase transition in response to pH variations and photo-irradiation. During the photo-triggered changes, although the gel showed complete reversibility in its optical absorptions, only an incomplete chiroptical property change was achieved. On the other hand, the dendron could form a 1:1 inclusion complex through a host-guest interaction with α-cyclodextrin (α-CD), designated as supra-dendron gelator AZOC 8 GAc/α-CD. The supra-dendron showed similar gelation behavior to that of AZOC 8 GAc, but with enhanced photoisomerization-transition efficiency and chiroptical switching capacity, which was completely reversible in terms of both optical and chiroptical performances. The self-assembly of the supra-dendron is a hierarchical or multi-supramolecular self-assembling process. This work has clearly illustrated that the hierarchical and multi-supramolecular self-assembling system endows the supramolecular nanostructures or materials with superior reversible optical and chiroptical switching. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer.

    PubMed

    Yang, Dong; Zhang, Li; Yin, Lu; Zhao, Yin; Zhang, Wei; Liu, Minghua

    2017-09-20

    Helical polymers are widely found in nature and synthetic functional materials. Although a number of elaborate strategies have been developed to endow polymers with helicity through either covalent bonds or supramolecular techniques, it still remains a challenge to get the desired helical polymers with controlled handedness in an easy but effective manner. In this study, we report an easily accessible gelation-guided self-assembly system where the chirality of a gelator can be easily transferred to an achiral azobenzene-containing polymer during gelation. It is found that during the process of chiral induction, the induced chirality of the polymer was entirely dominated by the molecular chirality of the gelator. Experimentally, achiral azobenzene-containing polymers with different side-chain lengths were doped into a supramolecular gel system formed with amphiphilic N,N'-bis-(octadecyl)-l(d)-Boc-glutamic (LBG-18 or DBG-18 for short). CD spectra and SEM observation confirmed that the co-assembly of polymer/LBG-18 or polymer/DBG-18 in the xerogel state exhibited supramolecular chirality. More importantly, alternate UV and visible light irradiation on the xerogel film caused the induced CD signal to switch between on and off states. Thus a chiroptical switch was fabricated based on the isomerization of the azo-polymer in xerogel films.

  1. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays

    PubMed Central

    2017-01-01

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C2-phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers. PMID:28486805

  2. Communication: Self-assembly of a model supramolecular polymer studied by replica exchange with solute tempering

    NASA Astrophysics Data System (ADS)

    Arefi, Hadi H.; Yamamoto, Takeshi

    2017-12-01

    Conventional molecular-dynamics (cMD) simulation has a well-known limitation in accessible time and length scales, and thus various enhanced sampling techniques have been proposed to alleviate the problem. In this paper, we explore the utility of replica exchange with solute tempering (REST) (i.e., a variant of Hamiltonian replica exchange methods) to simulate the self-assembly of a supramolecular polymer in explicit solvent and compare the performance with temperature-based replica exchange MD (T-REMD) as well as cMD. As a test system, we consider a relatively simple all-atom model of supramolecular polymerization (namely, benzene-1,3,5-tricarboxamides in methylcyclohexane solvent). Our results show that both REST and T-REMD are able to predict highly ordered polymer structures with helical H-bonding patterns, in contrast to cMD which completely fails to obtain such a structure for the present model. At the same time, we have also experienced some technical challenge (i.e., aggregation-dispersion transition and the resulting bottleneck for replica traversal), which is illustrated numerically. Since the computational cost of REST scales more moderately than T-REMD, we expect that REST will be useful for studying the self-assembly of larger systems in solution with enhanced rearrangement of monomers.

  3. A Rapid Pathway Toward a Superb Gene Delivery System: Programming Structural and Functional Diversity into a Supramolecular Nanoparticle Library

    PubMed Central

    Wang, Hao; Liu, Kan; Chen, Kuan-Ju; Lu, Yujie; Wang, Shutao; Lin, Wei-Yu; Guo, Feng; Kamei, Ken-ichiro; Chen, Yi-Chun; Ohashi, Minori; Wang, Mingwei; Garcia, Mitch André; Zhao, Xing-Zhong; Shen, Clifton K.-F.; Tseng, Hsian-Rong

    2010-01-01

    Nanoparticles are regarded as promising transfection reagents for effective and safe delivery of nucleic acids into specific type of cells or tissues providing an alternative manipulation/therapy strategy to viral gene delivery. However, the current process of searching novel delivery materials is limited due to conventional low-throughput and time-consuming multistep synthetic approaches. Additionally, conventional approaches are frequently accompanied with unpredictability and continual optimization refinements, impeding flexible generation of material diversity creating a major obstacle to achieving high transfection performance. Here we have demonstrated a rapid developmental pathway toward highly efficient gene delivery systems by leveraging the powers of a supramolecular synthetic approach and a custom-designed digital microreactor. Using the digital microreactor, broad structural/functional diversity can be programmed into a library of DNA-encapsulated supramolecular nanoparticles (DNA⊂SNPs) by systematically altering the mixing ratios of molecular building blocks and a DNA plasmid. In vitro transfection studies with DNA⊂SNPs library identified the DNA⊂SNPs with the highest gene transfection efficiency, which can be attributed to cooperative effects of structures and surface chemistry of DNA⊂SNPs. We envision such a rapid developmental pathway can be adopted for generating nanoparticle-based vectors for delivery of a variety of loads. PMID:20925389

  4. Self-assembly of a supramolecular hexagram and a supramolecular pentagram

    NASA Astrophysics Data System (ADS)

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan

    2017-05-01

    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium-terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+ however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature.

  5. The base pairs and hydrogen-bond network of the 5-Amino-8-(β-L-furanosyl)pyrimido[4,5-d]pyrimidine-2,4(3H,8H)-dione

    NASA Astrophysics Data System (ADS)

    Meng, Liying; Zhou, Xinglong; Chai, Yingying; Li, Changfu; Liu, Jiang; Chen, Qianming; Li, Weimin; Zhao, Hang; He, Yang

    2017-11-01

    Supramolecular morphogenesis is a fundamentally important process in fields ranging from structural biology to materials chemistry. Our previous works demonstrated that the sugar structural parameters can decree the supramolecular morphogenesis of Janus-type nucleosides. However, the chiral effect in this regards has not yet been tackled. Here, the self-associated superstructures of J-AT L-ribonucleoside (J-AT-L, 1) was investigated in both solid state and solution by single-crystal X-ray analysis and scanning electron microscope (SEM). The results indicate a high mirror symmetry in both monomeric level and hydrogen bond patterns in solid state between compound 1 and its enantiomeric counterpart J-AT D-ribonucleoside (J-AT-D, 2), except the distinct interactions between A-B and B-B conformers. The SEM experiments display that J-AT-L forms a porous microsphere-flower-like superstructure, instead of a radial-petal-flower-like superstructure of the D-enantiomer (2), which could be attributed to the different interactions of A-B and B-B conformers among these two series. This study provides for the first time the evidences of how the chiral information of the monomeric J-AT nucleosides is translated into the diverse supramolecular morphologies.

  6. Isolated Reporter Bacteria in Supramolecular Hydrogel Microwell Arrays.

    PubMed

    Li, Ping; Dou, Xiaoqiu; Feng, Chuanliang; Müller, Mareike; Chang, Matthew Wook; Frettlöh, Martin; Schönherr, Holger

    2017-08-08

    The combination of supramolecular hydrogels formed by low molecular weight gelator self-assembly via noncovalent interactions within a scaffold derived from polyethylene glycol (PEG) affords an interesting approach to immobilize fully functional, isolated reporter bacteria in novel microwell arrays. The PEG-based scaffold serves as a stabilizing element and provides physical support for the self-assembly of the C 2 -phenyl-derived gelator on the micrometer scale. Supramolecular hydrogel microwell arrays with various shapes and sizes were used to isolate single or small numbers of Escherichia coli TOP10 pTetR-LasR-pLuxR-GFP. In the presence of the autoinducer N-(3-oxododecanoyl) homoserine lactone, the entrapped E. coli in the hydrogel microwell arrays showed an increased GFP expression. The shape and size of microwell arrays did not influence the fluorescence intensity and the projected size of the bacteria markedly, while the population density of seeded bacteria affected the number of bacteria expressing GFP per well. The hydrogel microwell arrays can be further used to investigate quorum sensing, reflecting communication in inter- and intraspecies bacterial communities for biology applications in the field of biosensors. In the future, these self-assembled hydrogel microwell arrays can also be used as a substrate to detect bacteria via secreted autoinducers.

  7. Self-assembly of a supramolecular hexagram and a supramolecular pentagram

    PubMed Central

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan

    2017-01-01

    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium–terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+; however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature. PMID:28524876

  8. A threefold interpenetrated two-dimensional zinc(II) supramolecular architecture based on 3-nitrobenzoic acid and 4,4'-bipyridine.

    PubMed

    Tang, Long; Wang, Ji-Jiang; Fu, Feng; Wang, Sheng-Wen; Liu, Qi-Rui

    2016-02-01

    With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal-organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3-nitrobenzoic acid (HNBA) and 4,4'-bipyridine (4,4'-bipy) under hydrothermal conditions produced a two-dimensional zinc(II) supramolecular architecture, catena-poly[[bis(3-nitrobenzoato-κ(2)O,O')zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4'-bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction analysis. The Zn(II) ions are connected by the 4,4'-bipy ligands to form a one-dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π-π stacking interactions, expanding the structure into a threefold interpenetrated two-dimensional supramolecular architecture. The solid-state fluorescence analysis indicates a slight blue shift compared with pure 4,4'-bipyridine and HNBA.

  9. Black-to-Transmissive Electrochromism with Visible-to-Near-Infrared Switching of a Co(II)-Based Metallo-Supramolecular Polymer for Smart Window and Digital Signage Applications.

    PubMed

    Hsu, Chih-Yu; Zhang, Jian; Sato, Takashi; Moriyama, Satoshi; Higuchi, Masayoshi

    2015-08-26

    Black-to-transmissive electrochromism has been obtained with a Co(II)-based metallo-supramolecular polymer (polyCo). Thin films of polyCo, based on bisterpyridine ligand assembled with Co(II) metal ion, were constructed by spray casting the polymer onto ITO glass. With such simple fabricating means to form good-quality films, polyCo films show stable switching at the central metal ion of the Co(II)/Co(I) redox reaction when immersed in aqueous solution. With an increase in the pH of the aqueous electrolyte solution from neutral, the film exhibits a color response due to the interaction between the d-orbital electron and hydroxide ions affecting the d-d* transition. As a result, a nearly transparent-to-black electrochromic performance can be achieved with a transmittance difference at 550 nm of 74.3% (81.9-7.6%) in pH 13 solution. The light absorption of the film can be tuned over light regions from visible to near-infrared with a large attenuation.

  10. Synchronous fluorescence based biosensor for albumin determination by cooperative binding of fluorescence probe in a supra-biomolecular host-protein assembly.

    PubMed

    Patra, Digambara

    2010-01-15

    A synchronous fluorescence probe based biosensor for estimation of albumin with high sensitivity and selectivity was developed. Unlike conventional fluorescence emission or excitation spectral measurements, synchronous fluorescence measurement offered exclusively a new synchronous fluorescence peak in the shorter wavelength range upon binding of chrysene with protein making it an easy identification tool for albumin determination. The cooperative binding of a fluorescence probe, chrysene, in a supramolecular host-protein assembly during various albumin assessments was investigated. The presence of supramolecular host molecules such as beta-cyclodextrin, curucurbit[6]uril or curucurbit[7]uril have little influence on sensitivity or limit of detection during albumin determination but reduced dramatically interference from various coexisting metal ion quenchers/enhancers. Using the present method the limit of detection for BSA and gamma-Globulin was found to be 0.005 microM which is more sensitive than reported values. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zexing; Wang, Jie; Han, Lili

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  12. From helical supramolecular arrays to gel-forming networks: lattice restructuring and aggregation control in peptide-based sulfamides to integrate new functional attributes.

    PubMed

    Raghava, Saripalli V; Srivastava, Bhartendu K; Ramshad, Kalluruttimmal; Antharjanam, Sudhadevi; Varghese, Babu; Muraleedharan, Kannoth M

    2018-03-28

    While supramolecular organisation is central to both crystallization and gelation, the latter is more complex considering its dynamic nature and multifactorial dependence. This makes the rational design of gelators an extremely difficult task. In this report, the assembly preference of a group of peptide-based sulfamides was modulated by making them part of an acid-amine two-component system to drive the tendency from crystallization to gelation. Here, the peptide core directed the assembly while the long-chain amines, introduced through salt-bridges, promoted layering and anisotropic development of primary aggregates. This proved to be very successful, leading to gelation of a number of solvents. Apart from this, it was possible to fine-tune their aggregation using an amphiphilic polymer like F-127 as an additive to get honey-comb-like 3D molecular architectures. These gels also proved to be excellent matrices for entrapping silver nanoparticles with superior emissive properties.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xin; Zhou, Pei; Zheng, Chunying

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in amore » novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.« less

  14. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  15. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-03-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO4- ( 1), NO3- ( 2), BF4- ( 3) and CF3SO3- ( 4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ( αGlytrz) which show hysteretic room temperature spin crossover, 1- 4 remain in the high-spin state as revealed by 57Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  16. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  17. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    PubMed Central

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E.P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved—qubits—communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic–inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]– coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron–electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates. PMID:26742716

  18. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

    PubMed

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A; Timco, Grigore A; Barran, Perdita E; Ardavan, Arzhang; Winpenny, Richard E P

    2016-01-08

    Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.

  19. Ionic liquid-induced aggregate formation and their applications.

    PubMed

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  20. Robust excitons inhabit soft supramolecular nanotubes

    PubMed Central

    Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336

  1. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure.

    PubMed

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa

    2017-12-13

    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  2. Symmetry Breaking in the Supramolecular Gels of an Achiral Gelator Exclusively Driven by π-π Stacking.

    PubMed

    Shen, Zhaocun; Jiang, Yuqian; Wang, Tianyu; Liu, Minghua

    2015-12-30

    Supramolecular symmetry breaking, in which chiral assemblies with imbalanced right- and left-handedness emerge from achiral molecular building blocks, has been achieved in the organogels of a C3-symmetric molecule only via π-π stacking. Specifically, an achiral C3-symmetric benzene-1,3,5-tricarboxylate substituted with methyl cinnamate through ester bond was found to form organogels in various organic solvents. More interestingly, when gels formed in cyclohexane, symmetry breaking occurred; i.e., optically active organogels together with the helical nanofibers with predominant handedness were obtained. Furthermore, the stochastically appeared imbalanced helicity could be driven to desired handedness by utilizing slight chiral solvents such as (R)- or (S)-terpinen-4-ol. Remarkably, the handedness of supramolecular assemblies thus formed could be kept even when the chiral solvents were removed. For the first time, we show that symmetry breaking can occur in supramolecular gel system driven exclusively through π-π stacking.

  3. Halogen-bonding-triggered supramolecular gel formation

    NASA Astrophysics Data System (ADS)

    Meazza, Lorenzo; Foster, Jonathan A.; Fucke, Katharina; Metrangolo, Pierangelo; Resnati, Giuseppe; Steed, Jonathan W.

    2013-01-01

    Supramolecular gels are topical soft materials involving the reversible formation of fibrous aggregates using non-covalent interactions. There is significant interest in controlling the properties of such materials by the formation of multicomponent systems, which exhibit non-additive properties emerging from interaction of the components. The use of hydrogen bonding to assemble supramolecular gels in organic solvents is well established. In contrast, the use of halogen bonding to trigger supramolecular gel formation in a two-component gel (‘co-gel’) is essentially unexplored, and forms the basis for this study. Here, we show that halogen bonding between a pyridyl substituent in a bis(pyridyl urea) and 1,4-diiodotetrafluorobenzene brings about gelation, even in polar media such as aqueous methanol and aqueous dimethylsulfoxide. This demonstrates that halogen bonding is sufficiently strong to interfere with competing gel-inhibitory interactions and create a ‘tipping point’ in gel assembly. Using this concept, we have prepared a halogen bond donor bis(urea) gelator that forms co-gels with halogen bond acceptors.

  4. A π-gel scaffold for assembling fullerene to photoconducting supramolecular rods

    PubMed Central

    Nair, Vishnu Sukumaran; Mukhopadhyay, Rahul Dev; Saeki, Akinori; Seki, Shu; Ajayaghosh, Ayyappanpillai

    2016-01-01

    Nonequilibrium self-assembly of molecules holds a huge prospect as a tool for obtaining new-generation materials for future applications. Crystallization of neutral molecules within a supramolecular gel matrix is one example in which two nonequilibrium processes occur orthogonal to each other. On the other hand, electronically interacting donor-acceptor two-component systems are expected to form phase-miscible hybrid systems. Contrary to the expectation, we report the behavior of a π-gel, derived from oligo(p-phenylenevinylene), OPVA, as a scaffold for the phase separation and crystallization of fullerene (C60) to supramolecular rods with increased transient photoconductivity (φƩμmax = 2.4 × 10−4 cm2 V−1 s−1). The C60 supramolecular rods in the π-gel medium exhibited high photocurrent in comparison to C60 loaded in a non–π-gel medium. This finding provides an opportunity for large-scale preparation of micrometer-sized photoconducting rods of fullerenes for device application. PMID:27679815

  5. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    NASA Astrophysics Data System (ADS)

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-05-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible.

  6. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  7. Nanoparticles of adaptive supramolecular networks self-assembled from nucleotides and lanthanide ions.

    PubMed

    Nishiyabu, Ryuhei; Hashimoto, Nozomi; Cho, Ten; Watanabe, Kazuto; Yasunaga, Takefumi; Endo, Ayataka; Kaneko, Kenji; Niidome, Takuro; Murata, Masaharu; Adachi, Chihaya; Katayama, Yoshiki; Hashizume, Makoto; Kimizuka, Nobuo

    2009-02-18

    Amorphous nanoparticles of supramolecular coordination polymer networks are spontaneously self-assembled from nucleotides and lanthanide ions in water. They show intrinsic functions such as energy transfer from nucleobase to lanthanide ions and excellent performance as contrast enhancing agents for magnetic resonance imaging (MRI). Furthermore, adaptive inclusion properties are observed in the self-assembly process: functional materials such as fluorescent dyes, metal nanoparticles, and proteins are facilely encapsulated. Dyes in these nanoparticles fluoresce in high quantum yields with a single exponential decay, indicating that guest molecules are monomerically wrapped in the network. Gold nanoparticles and ferritin were also wrapped by the supramolecular shells. In addition, these nucleotide/lanthanide nanoparticles also serve as scaffolds for immobilizing enzymes. The adaptive nature of present supramolecular nanoparticles provides a versatile platform that can be utilized in a variety of applications ranging from material to biomedical sciences. As examples, biocompatibility and liver-directing characteristics in in vivo tissue localization experiments are demonstrated.

  8. Ultra-large supramolecular coordination cages composed of endohedral Archimedean and Platonic bodies

    PubMed Central

    Byrne, Kevin; Zubair, Muhammad; Zhu, Nianyong; Zhou, Xiao-Ping; Fox, Daniel S.; Zhang, Hongzhou; Twamley, Brendan; Lennox, Matthew J.; Düren, Tina; Schmitt, Wolfgang

    2017-01-01

    Pioneered by Lehn, Cram, Peterson and Breslow, supramolecular chemistry concepts have evolved providing fundamental knowledge of the relationships between the structures and reactivities of organized molecules. A particular fascinating class of metallo-supramolecular molecules are hollow coordination cages that provide cavities of molecular dimensions promoting applications in diverse areas including catalysis, enzyme mimetics and material science. Here we report the synthesis of coordination cages with exceptional cross-sectional diameters that are composed of multiple sub-cages providing numerous distinctive binding sites through labile coordination solvent molecules. The building principles, involving Archimedean and Platonic bodies, renders these supramolecular keplerates as a class of cages whose composition and topological aspects compare to characteristics of edge-transitive {Cu2} MOFs with A3X4 stoichiometry. The nature of the cavities in these double-shell metal-organic polyhedra and their inner/outer binding sites provide perspectives for post-synthetic functionalizations, separations and catalysis. Transmission electron microscopy studies demonstrate that single molecules are experimentally accessible. PMID:28485392

  9. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design.

    PubMed

    Ogi, Soichiro; Fukui, Tomoya; Jue, Melinda L; Takeuchi, Masayuki; Sugiyasu, Kazunori

    2014-12-22

    Far-from-equilibrium thermodynamic systems that are established as a consequence of coupled equilibria are the origin of the complex behavior of biological systems. Therefore, research in supramolecular chemistry has recently been shifting emphasis from a thermodynamic standpoint to a kinetic one; however, control over the complex kinetic processes is still in its infancy. Herein, we report our attempt to control the time evolution of supramolecular assembly in a process in which the supramolecular assembly transforms from a J-aggregate to an H-aggregate over time. The transformation proceeds through a delicate interplay of these two aggregation pathways. We have succeeded in modulating the energy landscape of the respective aggregates by a rational molecular design. On the basis of this understanding of the energy landscape, programming of the time evolution was achieved through adjusting the balance between the coupled equilibria. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.

    PubMed

    Lin, Qianming; Yang, Yumeng; Hu, Qian; Guo, Zhong; Liu, Tao; Xu, Jiake; Wu, Jianping; Kirk, Thomas Brett; Ma, Dong; Xue, Wei

    2017-02-01

    Hydrogels have attracted much attention in cancer therapy and tissue engineering due to their sustained gene delivery ability. To obtain an injectable and high-efficiency gene delivery hydrogel, methoxypolyethylene glycol (MPEG) was used to conjugate with the arginine-functionalized poly(l-lysine) dendron (PLLD-Arg) by click reaction, and then the synthesized MPEG-PLLD-Arg interacted with α-cyclodextrin (α-CD) to form the supramolecular hydrogel by the host-guest interaction. The gelation dynamics, hydrogel strength and shear viscosity could be modulated by α-CD content in the hydrogel. MPEG-PLLD-Arg was confirmed to bind and deliver gene effectively, and its gene transfection efficiency was significantly higher than PEI-25k under its optimized condition. After gelation, MMP-9 shRNA plasmid (pMMP-9) could be encapsulated into the hydrogel matrix in situ and be released from the hydrogels sustainedly, as the release rate was dependent on α-CD content. The released MPEG-PLLD-Arg/pMMP-9 complex still showed better transfection efficiency than PEI-25k and induced sustained tumor cell apoptosis. Also, in vivo assays indicated that this pMMP-9-loaded supramolecular hydrogel could result in the sustained tumor growth inhibition meanwhile showed good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate for long-term gene therapy. To realize the sustained gene delivery for gene therapy, a supramolecular hydrogel with high-efficiency gene delivery ability was prepared through the host-guest interaction between α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron. The obtained hydrogel was injectable and biocompatible with adjustable physicochemical property. More importantly, the hydrogel showed the high-efficiency and sustained gene transfection to our used cells, better than PEI-25k. The supramolecular hydrogel resulted in the sustained tumor growth inhibition meanwhile keep good biocompatibility. As an injectable, sustained and high-efficiency gene delivery system, this supramolecular hydrogel is a promising candidate in long-term gene therapy and tissue engineering. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.

    PubMed

    Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R

    2018-05-28

    In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

  13. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.

    PubMed

    Sambrook, M R; Notman, S

    2013-12-21

    Supramolecular chemistry presents many possible avenues for the mitigation of the effects of chemical warfare agents (CWAs), including sensing, catalysis and sequestration. To-date, efforts in this field both to study fundamental interactions between CWAs and to design and exploit host systems remain sporadic. In this tutorial review the non-covalent recognition of CWAs is considered from first principles, including taking inspiration from enzymatic systems, and gaps in fundamental knowledge are indicated. Examples of synthetic systems developed for the recognition of CWAs are discussed with a focus on the supramolecular complexation behaviour and non-covalent approaches rather than on the proposed applications.

  14. Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water.

    PubMed

    Smith, Peter T; Benke, Bahiru Punja; Cao, Zhi; Kim, Younghoon; Nichols, Eva M; Kim, Kimoon; Chang, Christopher J

    2018-06-19

    We report the use of a porous organic cage composed of six iron tetraphenylporphyrins as a supramolecular catalyst for electrochemical CO2-to-CO conversion. This strategy enhances active site exposure and substrate diffusion relative to the monomeric catalyst, resulting in CO generation with near-quantitative Faradaic efficiency in pH 7.3 water, with activities reaching 55,250 turnovers. These results provide a starting point for the design of supramolecular catalysts that can exploit the properties of the surrounding matrix yet retain the tunability of the original molecular unit. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Metallo-supramolecular modules as a paradigm for materials science

    PubMed Central

    Kurth, Dirk G.

    2008-01-01

    Metal ion coordination in discrete or extended metallo-supramolecular assemblies offers ample opportunity to fabricate and study devices and materials that are equally important for fundamental research and new technologies. Metal ions embedded in a specific ligand field offer diverse thermodynamic, kinetic, chemical, physical and structural properties that make these systems promising candidates for active components in functional materials. A key challenge is to improve and develop methodologies for placing these active modules in suitable device architectures, such as thin films or mesophases. This review highlights recent developments in extended, polymeric metallo-supramolecular systems and discrete polyoxometalates with an emphasis on materials science. PMID:27877929

  16. 8th International Symposium on Supramolecular and Macrocyclic Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jeffery T.

    2015-09-18

    This report summarizes the 8th International Conference on Supramolecular and Macrocyclic Chemistry (ISMSC-8). DOE funds were used to make it more affordable for students, post-docs and junior faculty to attend the conference by covering their registration costs. The conference was held in Crystal City, VA from July 7-11, 2013. See http://www.indiana.edu/~ismsc8/ for the conference website. ISMSC-8 encompassed the broad scope and interdisciplinary nature of the field. We met our goal to bring together leading scientists in molecular recognition and supramolecular chemistry. New research directions and collaborations resulted this conference. The DOE funding was crucial for us achieving our primary goal.

  17. Supramolecule-Inspired Fabrication of Carbon Nanoparticles In Situ Anchored Graphene Nanosheets Material for High-Performance Supercapacitors.

    PubMed

    Huang, Yulan; Gao, Aimei; Song, Xiaona; Shu, Dong; Yi, Fenyun; Zhong, Jie; Zeng, Ronghua; Zhao, Shixu; Meng, Tao

    2016-10-12

    The remarkable electrochemical performance of graphene-based materials has drawn a tremendous amount of attention for their application in supercapacitors. Inspired by supramolecular chemistry, the supramolecular hydrogel is prepared by linking β-cyclodextrin to graphene oxide (GO). The carbon nanoparticles-anchored graphene nanosheets are then assembled after the hydrothermal reduction and carbonization of the supramolecular hydrogels; here, the β-cyclodextrin is carbonized to carbon nanoparticles that are uniformly anchored on the graphene nanosheets. Transmission electron microscopy reveals that carbon nanoparticles with several nanometers are uniformly anchored on both sides of graphene nanosheets, and X-ray diffraction spectra demonstrate that the interlayer spacing of graphene is enlarged due to the anchored nanoparticles among the graphene nanosheets. The as-prepared carbon nanoparticles-anchored graphene nanosheets material (C/r-GO-1:3) possesses a high specific capacitance (310.8 F g -1 , 0.5 A g -1 ), superior rate capability (242.5 F g -1 , 10 A g -1 ), and excellent cycle stability (almost 100% after 10 000 cycles, at the scan rate of 50 mV s -1 ). The outstanding electrochemical performance of the resulting C/r-GO-1:3 is mainly attributed to (i) the presence of the carbon nanoparticles, (ii) the enlarged interlayer spacing of the graphene sheets, and (iii) the accelerated ion transport rates toward the interior of the electrode material. The supramolecule-inspired approach for the synthesis of high-performance carbon nanoparticles-modified graphene sheets material is promising for future application in graphene-based energy storage devices.

  18. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  19. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications.

    PubMed

    Kaur, Matinder; Choi, Dong Hoon

    2015-01-07

    The development of fluorescent probes for the detection of biologically relevant species is a burgeoning topic in the field of supramolecular chemistry. A number of available dyes such as rhodamine, coumarin, fluorescein, and cyanine have been employed in the design and synthesis of new fluorescent probes. However, diketopyrrolopyrrole (DPP) and its derivatives have a distinguished role in supramolecular chemistry for the design of fluorescent dyes. DPP dyes offer distinctive advantages relative to other organic dyes, including high fluorescence quantum yields and good light and thermal stability. Significant advancements have been made in the development of new fluorescent probes based on DPP in recent years as a result of tireless research efforts by the chemistry scientific community. In this tutorial review, we highlight the recent progress in the development of DPP-based fluorescent probes for the period spanning 2009 to the present time and the applications of these probes to recognition of biologically relevant species including anions, cations, reactive oxygen species, thiols, gases and other miscellaneous applications. This review is targeted toward providing the readers with deeper understanding for the future design of DPP-based fluorogenic probes for chemical and biological applications.

  20. Supramolecular Inclusion in Cyclodextrins: A Pictorial Spectroscopic Demonstration

    ERIC Educational Resources Information Center

    Haldar, Basudeb; Mallick, Arabinda; Chattopadhyay, Nitin

    2008-01-01

    A spectroscopic experiment is presented that reveals that the hydrophobically end-modified water-soluble polymeric fluorophore, pyrene end-capped poly(ethylene oxide) (PYPY), interacts differently with [alpha], [beta], and [gamma]-cyclodextrins (CD) to form supramolecular inclusion complexes. The emission spectrum of PYPY in aqueous solution shows…

  1. The structure and protein binding of amyloid-specific dye reagents.

    PubMed

    Stopa, Barbara; Piekarska, Barbara; Konieczny, Leszek; Rybarska, Janina; Spólnik, Paweł; Zemanek, Grzegorz; Roterman, Irena; Król, Marcin

    2003-01-01

    The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.

  2. Impact of Alkyl Spacer Length on Aggregation Pathways in Kinetically Controlled Supramolecular Polymerization.

    PubMed

    Ogi, Soichiro; Stepanenko, Vladimir; Thein, Johannes; Würthner, Frank

    2016-01-20

    We have investigated the kinetic and thermodynamic supramolecular polymerizations of a series of amide-functionalized perylene bisimide (PBI) organogelator molecules bearing alkyl spacers of varied lengths (ethylene to pentylene chains, PBI-1-C2 to PBI-1-C5) between the amide and PBI imide groups. These amide-functionalized PBIs form one-dimensional fibrous nanostructures as the thermodynamically favored states in solvents of low polarity. Our in-depth studies revealed, however, that the kinetic behavior of their supramolecular polymerization is dependent on the spacer length. Propylene- and pentylene-tethered PBIs follow a similar polymerization process as previously observed for the ethylene-tethered PBI. Thus, the monomers of these PBIs are kinetically trapped in conformationally restricted states through intramolecular hydrogen bonding between the amide and imide groups. In contrast, the intramolecularly hydrogen-bonded monomers of butylene-tethered PBI spontaneously self-assemble into nanoparticles, which constitute an off-pathway aggregate state with regard to the thermodynamically stable fibrous supramolecular polymers obtained. Thus, for this class of π-conjugated system, an unprecedented off-pathway aggregate with high kinetic stability could be realized for the first time by introducing an alkyl linker of optimum length (C4 chain) between the amide and imide groups. Our current system with an energy landscape of two competing nucleated aggregation pathways is applicable to the kinetic control over the supramolecular polymerization by the seeding approach.

  3. Self-Healing Polymer Networks

    NASA Astrophysics Data System (ADS)

    Tournilhac, Francois

    2012-02-01

    Supramolecular chemistry teaches us to control non-covalent interactions between organic molecules, particularly through the use of optimized building blocks able to establish several hydrogen bonds in parallel. This discipline has emerged as a powerful tool in the design of new materials through the concept of supramolecular polymers. One of the fascinating aspects of such materials is the possibility of controlling the structure, adding functionalities, adjusting the macroscopic properties of and taking profit of the non-trivial dynamics associated to the reversibility of H-bond links. Applications of these compounds may include adhesives, coatings, rheology additives, high performance materials, etc. However, the synthesis of such polymers at the industrial scale still remains a challenge. Our first ambition is to design supramolecular polymers with original properties, the second ambition is to devise simple and environmentally friendly methods for their industrial production. In our endeavours to create novel supramolecular networks with rubbery elasticity, self-healing ability and as little as possible creep, the strategy to prolongate the relaxation time and in the same time, keep the system flexible was to synthesize rather than a single molecule, an assembly of randomly branched H-bonding oligomers. We propose a strategy to obtain through a facile one-pot synthesis a large variety of supramolecular materials that can behave as differently as associating low-viscosity liquids, semi-crystalline or amorphous thermoplastics, viscoelastic melts or self-healing rubbers.

  4. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  5. Injectable self-healing carboxymethyl chitosan-zinc supramolecular hydrogels and their antibacterial activity.

    PubMed

    Wahid, Fazli; Zhou, Ya-Ning; Wang, Hai-Song; Wan, Tong; Zhong, Cheng; Chu, Li-Qiang

    2018-04-07

    Injectable and self-healing hydrogels have found numerous applications in drug delivery, tissue engineering and 3D cell culture. Herein, we report an injectable self-healing carboxymethyl chitosan (CMCh) supramolecular hydrogels cross-linked by zinc ions (Zn 2+ ). Supramolecular hydrogels were obtained by simple addition of metal ions solution to CMCh solution at an appropriate pH value. The mechanical properties of these hydrogels were adjustable by the concentration of Zn 2+ . For example, the hydrogel with the highest concentration of Zn 2+ (CMCh-Zn4) showed strongest mechanical properties (storage modulus~11,000Pa) while hydrogel with the lowest concentration of Zn 2+ (CMCh-Zn1) showed weakest mechanical properties (storage modulus~220Pa). As observed visually and confirmed rheologically, the CMCh-Zn1 hydrogel with the lowest Zn 2+ concentration showed thixotropic property. CMCh-Zn1 hydrogel also presented injectable property. Moreover, the antibacterial properties of the prepared supramolecular hydrogels were studied against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by agar well diffusion method. The results revealed Zn 2+ dependent antibacterial properties against both kinds of strains. The inhibition zones were ranging from ~11-24mm and ~10-22mm against S. aureus and E. coli, respectively. We believe that the prepared supramolecular hydrogels could be used as a potential candidate in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    PubMed

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystal structure of the co-crystal fac-tri-aqua-tris(thio-cyanato-κN)iron(III)-2,3-di-methyl-pyrazine (1/3).

    PubMed

    Kucheriv, Olesia I; Shylin, Sergii I; Ilina, Tetiana A; Dechert, Sebastian; Gural'skiy, Il'ya A

    2015-04-01

    In the crystal of the title compound, [Fe(NCS)3(H2O)3]·3C6H8N2, the Fe(III) cation is located on a threefold rotation axis and is coordinated by three N atoms of the thiocyanate anions and three water mol-ecules in a fac arrangement, forming a slightly distorted N3O3 octa-hedron. Stabilization within the crystal structure is provided by O-H⋯N hydrogen bonds; the H atoms from coordinating water mol-ecules act as donors to the N atoms of guest 2,3-di-methyl-pyrazine mol-ecules, leading to a three-dimensional supra-molecular framework.

  8. Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective

    PubMed Central

    Langton, Matthew J.

    2015-01-01

    Abstract The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C−H hydrogen bonding and halogen bonding. We also look beyond the field of small‐molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles. PMID:26612067

  9. Synthesis, structure and topological analysis of glycine templated highly stable cadmium sulfate framework: A New Lewis Acid catalyst

    NASA Astrophysics Data System (ADS)

    Paul, Avijit Kumar

    2018-04-01

    One new open-framework two-dimensional layer, [Cd(NH3CH2COO)(SO4)], I, has been synthesized using amino acid as templating agent. Single crystal structural analysis shows that the compound crystallizes in monoclinic cell with non-centrosymmetric space group P21, a = 4.9513(1) Å, b = 7.9763(2) Å, c = 8.0967(2) Å, β = 105.917(1)° and V = 307.504(12) Å3. The compound has connectivity between the Cd-centers and the sulfate units forming a two-dimensional layer structure. Sulfate unit is coordinated to metal center with η3, μ4 mode possessing a coordination free oxygen atom. The zwitterionic form of glycine molecule is present in the structure bridging with two metal centers through μ2-mode by carboxylate oxygens. The topological analysis reveals that the two-dimensional network is formed with a novel 4- and 6-connected binodal net of (32,42,52)(34,44,54,63) topology. Although one end of the glycine molecule is free from coordination, the structure is highly stable up to 350 °C. Strong N-H⋯ O hydrogen bonding interactions play an important role in the stabilization and formation of three-dimensional supramolecular structure. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicates good catalytic behavior. The present study illustrates the usefulness of the amino acid for the structure building in less studied sulfate based framework materials as well as designing of new heterogeneous catalysts for the broad application. The compound has also been characterized through elemental analysis, PXRD, IR, SEM and TG-DT studies.

  10. Smart molecules for imaging, sensing and health (SMITH).

    PubMed

    Smith, Bradley D

    2015-01-01

    This autobiographical review provides a personal account of the author's academic journey in supramolecular chemistry, including brief summaries of research efforts in membrane transport, molecular imaging, ion-pair receptors, rotaxane synthesis, squaraine rotaxanes, and synthtavidin technology. The article concludes with a short perspective of likely future directions in biomedical supramolecular chemistry.

  11. From steroids to aqueous supramolecular chemistry: an autobiographical career review.

    PubMed

    Gibb, Bruce C

    2016-01-01

    The focus of my group's research is aqueous supramolecular chemistry; we try to understand how chemical entities interact with water and consequently how they interact with each other. This personal history recounts my career experiences that led to his involvement with this fascinating area of science.

  12. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Rong; Song Huihua, E-mail: songhuihua@mail.hebtu.edu.c; Wei Zhen

    2010-09-15

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (1), [Co(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (2), [Ni(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (3), and [Co(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (4), where tsgluO{sup 2-}=(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2{sub 1}, forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co{submore » 2}O{sub 6}N{sub 2}]{sub n}{sup 4-} units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through {pi}-{pi} stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.« less

  13. A series of coordination polymers constructed from R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-Hong; Zhou, Xu-Wan; Zhou, Su-Rong; Tian, Yu-Peng; Wu, Jie-Ying

    2017-01-01

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn2Na(sip)2(bpp)3(Hbpp)(H2O)2]·8H2O (1), [Cd3(sip)2(nbi)6(H2O)2]·7H2O (2), [Zn(sip)(nbi)2(H2O)]·Hnbi·3H2O (3), [Cd(hip)(nbi)2(H2O)]·nbi·5H2O (4), [Cd2(nip)2(nbi)2(H2O)2]·DMF (5), and [Cu(nip)(nbi)(H2O)2]·H2O (6) (H3sip=5-sulfoisophthalic acid, H2hip=5-hydroxylisophthalic acid, H2nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through O atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip3- anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3-5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip2- ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied.

  14. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers.

    PubMed

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-07-21

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  15. A polyamidoamine dendrimer-streptavidin supramolecular architecture for biosensor development.

    PubMed

    Soda, N; Arotiba, O A

    2017-12-01

    A novel polyamidoamine dendrimer-streptavidin supramolecular architecture suitable as a versatile platform for biosensor development is reported. The dendrimer was electrodeposited on a glassy carbon electrode via cyclic voltammetry. The dendrimer electrode was further modified with streptavidin by electrostatic attraction upon drop coating. The platform i.e. the dendrimer-streptavidin modified electrode was electrochemically interrogated in phosphate buffer, ferrocyanide and H 2 O 2 . The dendrimer-streptavidin platform was used in the preparation of a simple DNA biosensor as a proof of concept. The supramolecular architecture of dendrimer-streptavidin was stable, electroactive and thus lends itself as a versatile immobilisation layer for any biotinylated bioreceptors in biosensor development. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Supramolecular catalysis beyond enzyme mimics.

    PubMed

    Meeuwissen, Jurjen; Reek, Joost N H

    2010-08-01

    Supramolecular catalysis - the assembly of catalyst species by harnessing multiple weak intramolecular interactions - has, until recently, been dominated by enzyme-inspired approaches. Such approaches often attempt to create an enzyme-like 'active site' and have concentrated on reactions similar to those catalysed by enzymes themselves. Here, we discuss the application of supramolecular assembly to the more traditional transition metal catalysis and to small-molecule organocatalysis. The modularity of self-assembled multicomponent catalysts means that a relatively small pool of catalyst components can provide rapid access to a large number of catalysts that can be evaluated for industrially relevant reactions. In addition, we discuss how catalyst-substrate interactions can be tailored to direct substrates along particular reaction paths and selectivities.

  17. Adsorption of organic molecules on a porous polymer surface modified with the supramolecular structure of melamine-cyanuric acid

    NASA Astrophysics Data System (ADS)

    Gainullina, Yu. Yu.; Guskov, V. Yu.

    2017-10-01

    The adsorption of organic molecules on the surface of a porous polymeric sorbent modified with a mixed cyanuric acid-melamine supramolecular structure is studied. The parameters of thermodynamic adsorption are considered and the contributions from intermolecular interactions to the Helmholtz energy of adsorption are assessed. Analysis of the molar changes in internal energy and adsorption entropy shows that the supramolecular structure formed on the surface could not exhibit dimension effects, indicating there were no cavities. The contributions from nonspecific interactions to the Helmholtz energy of adsorption generally fall, while those of specific interactions increase, indicating an increase in the polarity of the sorbent surface.

  18. Tunneling spectroscopy measurements on hydrogen-bonded supramolecular polymers

    NASA Astrophysics Data System (ADS)

    Vonau, François; Shokri, Roozbeh; Aubel, Dominique; Bouteiller, Laurent; Guskova, Olga; Sommer, Jens-Uwe; Reiter, Günter; Simon, Laurent

    2014-06-01

    We studied the formation of hydrogen-bonded supramolecular polymers of Ethyl Hexyl Urea Toluene (EHUT) on a gold (111) surface by low temperature scanning tunneling microscopy. Tunneling spectroscopy performed along an individual molecule embedded in a self-assembled layer revealed strong changes in the value of the HOMO-LUMO gap. A variation of the LUMO state is attributed to the effect of space charge accumulation resulting from anisotropic adhesion of the molecule. In addition, for specific tunneling conditions, changes induced through the formation of hydrogen bonds became visible in the differential conductance (dI/dV) maps; isolated molecules, hydrogen bonded dimers and supramolecular polymers of EHUT were distinguishable through their electronic properties.

  19. Emergence of photoautotrophic minimal protocell-like supramolecular assemblies, "Jeewanu" synthesied photo chemically in an irradiated sterilised aqueous mixture of some inorganic and organic substances.

    PubMed

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.

  20. Ball and socket nanostructures: New supramolecular chemistry based on cyclotriveratrylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, J.W.; Junk, P.C.; Atwood, J.L.

    1994-11-02

    This paper outlines new vistas for the inclusion chemistry of hosts based upon the cyclotriveratrylene motif. A simple method of retrieving pure fullerenes from fullerite without the use of chromatographic techniques has been outlined, and a new class of ball and socket-type inclusion species has been realized by simple modification of either host or guest electronic and steric properties. 14 refs., 2 figs.

  1. Symmetry and topology code of the cluster self-assembly of framework MT structures of alumophosphates AlPO4(H2O)2 (metavariscite and variscite) and Al2(PO4)2(H2O)3 (APC)

    NASA Astrophysics Data System (ADS)

    Ilyushin, G. D.; Blatov, V. A.

    2017-03-01

    The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Fei; Chen, Jing; Liang, Yongfeng

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1)more » and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.« less

  3. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  4. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    ERIC Educational Resources Information Center

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  5. Comparison of Cellulose Supramolecular Structures Between Nanocrystals of Different Origins

    Treesearch

    Umesh P. Agarwal; Richard S. Reiner; Christopher G. Hunt; Jeffery Catchmark; E. Johan Foster; Akira Isogai

    2015-01-01

    In this study, morphologies and supramolecular structures of CNCs from wood-pulp, cotton, bacteria, tunicate, and cladophora were investigated. TEM was used to study the morphological aspects of the nanocrystals whereas Raman spectroscopy provided information on the cellulose molecular structure and its organization within a CNC. Dimensional differences between the...

  6. An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine.

    PubMed

    Li, Shengke; Jiang, Nan; Zhao, Wenxuan; Ding, Yuan-Fu; Zheng, Ying; Wang, Lian-Hui; Zheng, Jun; Wang, Ruibing

    2017-05-30

    We report an unprecedented, eco-friendly, in situ activatable model antibiotic, phenylalanyl-polyethylenimine (PhePEI), to potentially diminish antibiotic pollution of the environment and associated antibiotic resistance. The inactive PhePEI can be reversibly activated upon supramolecular crosslinking by cucurbit[8]uril, conferring potent antibacterial activity.

  7. Bioinspired Supramolecular Enzymatic Systems

    DTIC Science & Technology

    2012-09-28

    bearing alkyl chains of various lengths (methyl, ethyl, propyl , butyl, Figure 34. Synthesis of a catalytically active RPM for the hydrolysis...signal or product production. The multidisciplinary work accomplished integrated efforts and expertise in organic and inorganic chemical synthesis ...MURI grant period, Mirkin, Hupp, Stoddart, Ratner, and Nguyen made significant headway into the synthesis and study of supramolecular allosteric

  8. Construction and DNA condensation of cyclodextrin-coated gold nanoparticles with anthryl grafts.

    PubMed

    Zhao, Di; Chen, Yong; Liu, Yu

    2014-07-01

    The condensation of DNA in a controlled manner is one of the key steps in gene delivery and gene therapy. For this purpose, a water-soluble supramolecular nanostructure is constructed by coating 14 β-cyclodextrins onto the surface of a gold nanoparticle, followed by the noncovalent association of different amounts of anthryl-modified adamantanes with coated β-cyclodextrins. The strong binding of β-cyclodextrins with anthryl adamantanes (K(S) =8.61×10(4)  M(-1)) efficiently stabilizes the supramolecular nanostructure. Spectrophotometric fluorescence spectra and microscopic studies demonstrated that, with many anthryl grafts that can intercalate in the outer space of the DNA double helix, this supramolecular nanostructure showed good condensation abilities to calf thymus DNA. Significantly, the condensation efficiency of supramolecular nanostructure towards DNA could be conveniently controlled by adjusting the ratio between gold nanoparticles and anthryl adamantane grafts, leading to the formation of DNA condensates of a size that are suitable for the endocytosis of hepatoma cells, which will make it potentially applicable in many fields of medicinal science and biotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Activation-deactivation of self-healing in supramolecular rubbers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  10. Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral π-Gelator.

    PubMed

    Vedhanarayanan, Balaraman; Nair, Vishnu S; Nair, Vijayakumar C; Ajayaghosh, Ayyappanpillai

    2016-08-22

    In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4)  m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Parametabolism as Non-Specific Modifier of Supramolecular Interactions in Living Systems].

    PubMed

    Kozlov, V A; Sapozhnikov, S P; Sheptuhina, A I; Golenkov, A V

    2015-01-01

    As it became known recently, in addition to the enzyme (enzymes and/or ribozymes) in living organisms occur a large number of ordinary chemical reactions without the participation of biological catalysts. These reactions are distinguished by low speed and, as a rule, the irreversibility. For example, along with diabetes mellitus, glycation and fructosilation of proteins are observed resulted in posttranslational modification with the low- or nonfunctioning protein formation which is poorly exposed to enzymatic proteolysis and therefore accumulates in the body. In addition, the known processes such as the nonenzymatic carbomoylation, pyridoxylation and thiamiation proteins. There is a reasonable basis to believe that alcoholic injury also realized through parametabolic secondary metabolites synthesis such as acetaldehyde. At the same time, the progress in supramolecular chemistry proves that in biological objects there is another large group ofparametabolic reactions caused by the formation of supramolecular complexes. Obviously, known parameterizes interactions can modify the formation of supramolecular complexes in living objects. These processes are of considerable interest for fundamental biology and fundamental and practical medicine, but they remain unexplored due to a lack of awareness of a wide range of researchers.

  12. Self-assembling N-(9-Fluorenylmethoxycarbonyl)-l-Phenylalanine hydrogel as novel drug carrier.

    PubMed

    Snigdha, Kirti; Singh, Brijesh K; Mehta, Abijeet Singh; Tewari, R P; Dutta, P K

    2016-12-01

    Supramolecular hydrogel as a novel drug carrier was prepared from N-(9-Fluorenylmethoxycarbonyl) (Fmoc) modified l-phenylalanine. Its different properties like stability at different pH, temperature and rheology were evaluated in reference to salicylic acid (SA) as a model drug, entrapped in the supramolecular hydrogel network. The release behaviour of SA drug in supramolecular hydrogel was investigated by UV-vis spectroscopy. The influence of hydrogelator, pH values of the accepting media, temperature and concentration of SA drug on the release behaviour was investigated under static conditions. The results indicated that the release rate of SA in the supramolecular hydrogels was slightly retarded with an increase of the hydrogelator concentration. Also, the release rates of SA increased with an increase of temperature and its concentration. Furthermore, the release behaviour of SA was found to be different at various pH values in buffers. The study of the release kinetics indicated that the release behaviour of SA from the carrier was in accord with the Peppas model and the diffusion controlled mechanism involved in the Fickian model. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hydrogen-Bond and Supramolecular-Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines.

    PubMed

    Wałęsa-Chorab, Monika; Tremblay, Marie-Hélène; Skene, William G

    2016-08-01

    An electronic push-pull fluorophore consisting of an intrinsically fluorescent central fluorene capped with two diaminophenyl groups was prepared. An aminothiophene was conjugated to the two flanking diphenylamines through a fluorescent quenching azomethine bond. X-ray crystallographic analysis confirmed that the fluorophore formed multiple intermolecular supramolecular bonds. It formed two hydrogen bonds involving a terminal amine, resulting in an antiparallel supramolecular dimer. Hydrogen bonding was also confirmed by FTIR and NMR spectroscopic analyses, and further validated theoretically by DFT calculations. Intrinsic fluorescence quenching modes could be reduced by intermolecular supramolecular contacts. These contacts could be engaged at high concentrations and in thin films, resulting in fluorescence enhancement. The fluorescence of the fluorophore could also be restored to an intensity similar to its azomethine-free counterpart with the addition of water in >50 % v/v in tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), and acetonitrile. The fluorophore also exhibited reversible oxidation and its color could be switched between yellow and blue when oxidized. Reversible electrochemically mediated fluorescence turn-off on turn-on was also possible. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Impact of helical organization on the photovoltaic properties of oligothiophene supramolecular polymers† †Electronic supplementary information (ESI) available: Synthesis and characterization of 3 and 4, UV-vis spectra, solar cell device properties and AFM images. See DOI: 10.1039/c7sc05093c

    PubMed Central

    Ouchi, Hayato; Kizaki, Takahiro; Yamato, Masaki; Lin, Xu; Hoshi, Nagahiro; Silly, Fabien; Kajitani, Takashi; Fukushima, Takanori

    2018-01-01

    Helical self-assembly of functional π-conjugated molecules offers unique photochemical and electronic properties in the spectroscopic level, but there are only a few examples that demonstrate their positive impact on the optoelectronic device level. Here, we demonstrate that hydrogen-bonded tapelike supramolecular polymers of a barbiturated oligo(alkylthiophene) show notable improvement in their photovoltaic properties upon organizing into helical nanofibers. A tapelike hydrogen-bonded supramolecular array of barbiturated oligo(butylthiophene) molecules was directly visualized by STM at a liquid–solid interface. TEM, AFM and XRD revealed that the tapelike supramolecular polymers further organize into helical nanofibers in solution and bulk states. Bulk heterojunction solar cells of the helical nanofibers and soluble fullerene showed a power conversion efficiency of 4.5%, which is markedly high compared to that of the regioisomer of butyl chains organizing into 3D lamellar agglomerates. PMID:29780493

  15. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    PubMed

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Supramolecular gel electrophoresis of large DNA fragments.

    PubMed

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Long-range energy transport in single supramolecular nanofibres at room temperature

    NASA Astrophysics Data System (ADS)

    Haedler, Andreas T.; Kreger, Klaus; Issac, Abey; Wittmann, Bernd; Kivala, Milan; Hammer, Natalie; Köhler, Jürgen; Schmidt, Hans-Werner; Hildner, Richard

    2015-07-01

    Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

  18. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding

    PubMed Central

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  19. Construction of single-crystalline supramolecular networks of perchlorinated hexa-peri-hexabenzocoronene on Au(111)

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Zhang, Yanfang; Li, Geng; Lu, Jianchen; Lin, Xiao; Tan, Yuanzhi; Feng, Xinliang; Du, Shixuan; Müllen, Klaus; Gao, Hong-Jun

    2015-03-01

    The self-assembly of the perchlorinated hexa-peri-hexabenzocoronene (PCHBC) molecules on Au(111) has been studied by a low temperature scanning tunneling microscopy (STM) combining with density functional theory based first principle calculations. Highly ordered supramolecular networks with single domains limited by the terraces are formed on Au(111) substrate. High resolution images of the PCHBC molecules, confirmed by first principle simulations, are obtained. It reveals the close-packed arrangement of the PCHBC molecules on Au(111). The calculated charge distribution of PCHBC molecules shows the existence of attractive halogen-halogen interaction between neighboring molecules. Compared with the disordered adsorption of hexa-peri-hexabenzocoronene on Au(111), we conclude that the formation of attractive ClCl interactions between neighbors is the key factor to form the highly ordered, close-packed networks. Due to the steric hindrance resulted from the peripheral chlorine atoms, the PCHBC molecule is contorted and forms the doubly concave conformation, which is different from the hexa-peri-hexabenzocoronene with a planar structure. By using this supramolecular network as a template, we deposited C60 molecules on it at room temperature with low coverage. The STM images taken at low temperature show that the C60 molecules are mono-dispersed on the networks and adsorb on top of the PCHBC molecules, forming a typical concave-convex host-guest system.

  20. Effect of the magnetic field on the supramolecular structure of chiral smectic C phases: (2)H NMR studies.

    PubMed

    Domenici, Valentina; Marini, Alberto; Veracini, Carlo Alberto; Zhang, Jing; Dong, Ronald Y

    2007-12-21

    We present a theoretical and experimental (2)H NMR study of the effect of external magnetic fields on the supramolecular organization of chiral smectic liquid-crystalline mesophases, such as SmC* and re-entrant SmC*. Three experimental cases in which the supramolecular helical structure of the smectic C* phase is unwound by a magnetic field (H), parallel to the helical axes of this phase, are discussed in detail. Unwinding of the helical structure is described by using a theoretical model based on the Landau-de Gennes theory, which allows us to explain the transition temperatures among the SmA, SmC*, and uSmC* phases. The energy-density behavior in the vicinity of the transitions and the value of the critical magnetic field H(C) for unwinding the helical structure are discussed by applying this model to three ferroelectric smectogens (MBHB, 11EB1M7, ZLL7/*), which are studied by (2)H NMR spectroscopy at different magnetic fields (from 2.4 to 9.4 Tesla). Furthermore, the tilt angle of the three smectogens in the SmC* phase has been directly evaluated, for the first time, by comparing the quadrupolar splittings at different magnetic fields. In one case, (2)H NMR angular measurements are used to obtain the tilt angle in the re-entrant smectic C phase.

  1. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.

    PubMed

    Mayans, Enric; Casanovas, Jordi; Gil, Ana M; Jiménez, Ana I; Cativiela, Carlos; Puiggalí, Jordi; Alemán, Carlos

    2017-04-25

    Microstructures from small phenylalanine-based peptides have attracted great attention lately because these compounds are considered to be a new class of tunable materials. In spite of the extensive studies on uncapped diphenylalanine and tetraphenylalanine peptides, studies on the self-assembly of uncapped triphenylananine (FFF) are very scarce and nonsystematic. In this work, we demonstrate that FFF assemblies can organize in a wide number of well-defined supramolecular structures, which include laminated helical-ribbons, leaflike dendrimers, doughnut-, needle-, and flower-shapes. These organizations are produced by the attractive or repulsive interactions between already formed assemblies and therefore can be controlled through the choice of solvents used as the incubation medium. Thus, the formation of the desired supramolecular structures is regulated through the protonation/deprotonation of the terminal groups, the polarity of the incubation medium, which affects both peptide···solvent interactions and the cavity solvation energy (i.e., solvent···solvent interactions), and the steric interactions between own assemblies that act as building blocks. Finally, the β-sheet disposition in the latter structural motifs has been examined using both theoretical calculations and Fourier transform infrared spectroscopy. Results indicate that FFF molecules can adopt both parallel and antiparallel β-sheets. However, the former one is the most energetically favored because of the formation of π-π stacking interactions between the aromatic rings of hydrogen-bonded strands.

  3. Structure-property relationship of supramolecular ferroelectric [H-66dmbp][Hca] accompanied by high polarization, competing structural phases, and polymorphs.

    PubMed

    Kobayashi, Kensuke; Horiuchi, Sachio; Ishibashi, Shoji; Kagawa, Fumitaka; Murakami, Youichi; Kumai, Reiji

    2014-12-22

    Three polymorphic forms of 6,6'-dimethyl-2,2'-bipyridinium chloranilate crystals were characterized to understand the origin of polarization properties and the thermal stability of ferroelectricity. According to the temperature-dependent permittivity, differential scanning calorimetry, and X-ray diffraction, structural phase transitions were found in all polymorphs. Notably, the ferroelectric α-form crystal, which has the longest hydrogen bond (2.95 Å) among the organic acid/base-type supramolecular ferroelectrics, transformed from a polar structure (space group, P21) into an anti-polar structure (space group, P21/c) at 378 K. The non-ferroelectric β- and γ-form crystals also exhibited structural rearrangements around hydrogen bonds. The hydrogen-bonded geometry and ferroelectric properties were compared with other supramolecular ferroelectrics. A positive relationship between the phase-transition temperature (TC ) and hydrogen-bond length () was observed, and was attributed to the potential barrier height for proton off-centering or order/disorder phenomena. The optimized spontaneous polarization (Ps ) agreed well with the results of the first-principles calculations, and could be amplified by separating the two equilibrium positions of protons with increasing . These data consistently demonstrated that stretching is a promising way to enhance the polarization performance and thermal stability of hydrogen-bonded organic ferroelectrics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hu, Dong-Cheng; Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang; Liu, Jia-Cheng

    2016-09-01

    A novel series of Zn/Cd coordination polymers based on H3L, namely, [Zn2(HL)2(bipy)2(H2O)6]n (1), [Zn(HL)(phen)]n (2), [Cd3L2(bbi)3]n (3), [Zn3L2(bbi)3]n (4) [(H3L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4‧-bipyridine, phen =1,10-phenanthroline, bbi =1,1‧-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (63.8.102)2(63)2(64.8.10). In particular, compound 3 exhibited a high sensitivity for Cr3+ in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr3+.

  5. Minimalistic peptide supramolecular co-assembly: expanding the conformational space for nanotechnology.

    PubMed

    Makam, Pandeeswar; Gazit, Ehud

    2018-05-21

    Molecular self-assembly is a ubiquitous process in nature and central to bottom-up nanotechnology. In particular, the organization of peptide building blocks into ordered supramolecular structures has gained much interest due to the unique properties of the products, including biocompatibility, chemical and structural diversity, robustness and ease of large-scale synthesis. In addition, peptides, as short as dipeptides, contain all the molecular information needed to spontaneously form well-ordered structures at both the nano- and the micro-scale. Therefore, peptide supramolecular assembly has been effectively utilized to produce novel materials with tailored properties for various applications in the fields of material science, engineering, medicine, and biology. To further expand the conformational space of peptide assemblies in terms of structural and functional complexity, multicomponent (two or more) peptide supramolecular co-assembly has recently evolved as a promising extended approach, similar to the structural diversity of natural sequence-defined biopolymers (proteins) as well as of synthetic covalent co-polymers. The use of this methodology was recently demonstrated in various applications, such as nanostructure physical dimension control, the creation of non-canonical complex topologies, mechanical strength modulation, the design of light harvesting soft materials, fabrication of electrically conducting devices, induced fluorescence, enzymatic catalysis and tissue engineering. In light of these significant advancements in the field of peptide supramolecular co-assembly in the last few years, in this tutorial review, we provide an updated overview and future prospects of this emerging subject.

  6. Stimuli responsive charge-switchable lipids: Capture and release of nucleic acids.

    PubMed

    Hersey, Joseph S; LaManna, Caroline M; Lusic, Hrvoje; Grinstaff, Mark W

    2016-03-01

    Stimuli responsive lipids, which enable control over the formation, transformation, and disruption of supramolecular assemblies, are of interest for biosensing, diagnostics, drug delivery, and basic transmembrane protein studies. In particular, spatiotemporal control over a supramolecular structure can be achieved using light activated compounds to induce significant supramolecular rearrangements. As such, a family of cationic lipids are described which undergo a permanent switch in charge upon exposure to 365 nm ultraviolet (UV) light to enable the capture of negatively charged nucleic acids within the self-assembled supramolecular structure of the lipids and subsequent release of these macromolecules upon exposure to UV light and disruption of the assemblies. The lipids are composed of either two different tripeptide head groups, Lysine-Glycine-Glycine (KGG) and Glycine-Glycine-Glycine (GGG) and three different hydrocarbon chain lengths (C6, C10, or C14) terminated by a UV light responsive 1-(2-nitrophenyl)ethanol (NPE) protected carboxylic acid. The photolysis of the NPE protected lipid is measured as a function of time, and the resulting changes in net molecular charge are observed using zeta potential analysis for each head group and chain length combination. A proof of concept study for the capture and release of both linear DNA (calf thymus) and siRNA is presented using an ethidium bromide quenching assay where a balance between binding affinity and supramolecular stability are found to be the key to optimal nucleic acid capture and release. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. A novel smart supramolecular organic gelator exhibiting dual-channel responsive sensing behaviours towards fluoride ion via gel-gel states.

    PubMed

    Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling

    2016-07-07

    A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.

  8. Why Congo red binding is specific for amyloid proteins - model studies and a computer analysis approach.

    PubMed

    Roterman, I; KrUl, M; Nowak, M; Konieczny, L; Rybarska, J; Stopa, B; Piekarska, B; Zemanek, G

    2001-01-01

    The complexing of Congo red in two different ligand forms - unimolecular and supramolecular (seven molecules in a micelle) - with eight deca-peptides organized in a b-sheet was tested by computational analysis to identify its dye-binding preferences. Polyphenylananine and polylysine peptides were selected to represent the specific side chain interactions expected to ensure particularly the stabilization of the dye-protein complex. Polyalanine was used to verify the participation of non-specific backbone-derived interactions. The initial complexes for calculation were constructed by intercalating the dye between the peptides in the middle of the beta-sheet. The long axis of the dye molecule (in the case of unimolecular systems) or the long axis of the ribbon-like micelle (in the case of the supramolecular dye form) was oriented parallel to the peptide backbone. This positioning maximally reduced the exposure of the hydrophobic diphenyl (central dye fragment) to water. In general the complexes of supramolecular Congo red ligands appeared more stable than those formed by individual dye molecules. Specific interactions (electrostatic and/or ring stacking) dominated as binding forces in the case of the single molecule, while non-specific surface adsorption seemed decisive in complexing with the supramolecular ligand. Both the unimolecular and supramolecular versions of the dye ligand were found to be likely to form complexes of sufficient stability with peptides. The low stability of the protein and the gap accessible to penetration in the peptide sheet seem sufficient for supramolecular ligand binding, but the presence of positively charged or hydrophobic amino acids may strengthen binding significantly. The need for specific interaction makes single-molecule Congo red binding rather unusual as a general amyloid protein ligand. The structural feature of Congo red, which enables specific and common interaction with amyloid proteins, probably derives from the ribbon-like self-assembled form of the dye.

  9. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xin-Xin; Luo, Yu-Hui; Lu, Chen

    Three new silver coordination polymers, namely, {Ag_3(bpy)_6[PW_1_2O_4_0]} (1), {Ag_5(H_2biim)_2(Hbiim-NO_2)_2[PW_1_2O_4_0]} (2), {Ag_7(pytz)_4[PW_1_2O_4_0]} (3) (bpy=2,2′-bipyridine, H{sub 2}biim=2,2′-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1–3 have better antibacterial property in gram negative bacteriamore » than gram positive bacteria. In addition, compounds 1–3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants. - Highlights: • Three new silver coordination polymers have been synthesized under hydrothermal condition. • Due to different coordination modes of rigid N-donor ligands, structures of the title compounds vary from 0D to 3D frameworks. • It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. • In addition, these compounds exhibit efficiency of photocatalytic decomposition of dyes and antibacterial activities.« less

  10. A modular design of molecular qubits to implement universal quantum gates

    PubMed Central

    Ferrando-Soria, Jesús; Moreno Pineda, Eufemio; Chiesa, Alessandro; Fernandez, Antonio; Magee, Samantha A.; Carretta, Stefano; Santini, Paolo; Vitorica-Yrezabal, Iñigo J.; Tuna, Floriana; Timco, Grigore A.; McInnes, Eric J.L.; Winpenny, Richard E.P.

    2016-01-01

    The physical implementation of quantum information processing relies on individual modules—qubits—and operations that modify such modules either individually or in groups—quantum gates. Two examples of gates that entangle pairs of qubits are the controlled NOT-gate (CNOT) gate, which flips the state of one qubit depending on the state of another, and the gate that brings a two-qubit product state into a superposition involving partially swapping the qubit states. Here we show that through supramolecular chemistry a single simple module, molecular {Cr7Ni} rings, which act as the qubits, can be assembled into structures suitable for either the CNOT or gate by choice of linker, and we characterize these structures by electron spin resonance spectroscopy. We introduce two schemes for implementing such gates with these supramolecular assemblies and perform detailed simulations, based on the measured parameters including decoherence, to demonstrate how the gates would operate. PMID:27109358

  11. Towards 1D nanolines on a monolayered supramolecular network adsorbed on a silicon surface.

    PubMed

    Makoudi, Younes; Beyer, Matthieu; Lamare, Simon; Jeannoutot, Judicael; Palmino, Frank; Chérioux, Frédéric

    2016-06-16

    The growth of 3D extended periodic networks made up of π-conjugated molecules on semi-conductor surfaces is of interest for the integration of nano-components in the future generations of smart devices. In the work presented in this article, we successfully achieved the formation of bilayered networks on a silicon surface including 1D-isolated nanolines in the second layer. Firstly, we observed the formation of a 2D large-scale supramolecular network in the plane of a silicon surface through the deposition of tailored molecules. Then using the same molecules, a second-layer, based on 1D nanolines, grew above the first layer, thanks to a template effect. Mono- or bi-layered networks were found to be stable from 100 K up to room temperature. These networks were investigated by scanning tunnel microscopy imaging under an ultra-high vacuum (UHV-STM).

  12. Determination of amantadine and rimantadine using a sensitive fluorescent probe

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Quan; Qin, Yan-Fang; Du, Li-Ming; Li, Jun-Fei; Jing, Xu; Chang, Yin-Xia; Wu, Hao

    2012-12-01

    Amantadine hydrochloride (AMA) and rimantadine hydrochloride (RIM) are non-fluorescent in aqueous solutions. This property makes their determination through direct fluorescent method difficult. The competing reactions and the supramolecular interaction mechanisms between the two drugs and coptisine (COP) as they fight for occupancy of the cucurbit[7]uril (CB[7]) cavity, were studied using spectrofluorimetry, 1H NMR, and molecular modeling calculations. Based on the significant quenching of the supramolecular complex fluorescence intensity, a fluorescent probe method of high sensitivity and selectivity was developed to determine AMA or RIM in their pharmaceutical dosage forms and in urine samples with good precision and accuracy. The linear range of the method was from 0.0040 to 1.0 μg mL-1 with a detection limit ranging from 0.0012 to 0.0013 μg mL-1. This shows that the proposed method has promising potential for therapeutic monitoring and pharmacokinetics and for clinical application.

  13. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  14. Formation of a Fluorous/Organic Biphasic Supramolecular Octopus Assembly for Enhanced Porphyrin Phosphorescence in Air

    DOE PAGES

    Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.; ...

    2015-03-03

    The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

  15. Dissipative and Autonomous Square-Wave Self-Oscillation of a Macroscopic Hybrid Self-Assembly under Continuous Light Irradiation.

    PubMed

    Ikegami, Tomonori; Kageyama, Yoshiyuki; Obara, Kazuma; Takeda, Sadamu

    2016-07-11

    Building a bottom-up supramolecular system to perform continuously autonomous motions will pave the way for the next generation of biomimetic mechanical systems. In biological systems, hierarchical molecular synchronization underlies the generation of spatio-temporal patterns with dissipative structures. However, it remains difficult to build such self-organized working objects via artificial techniques. Herein, we show the first example of a square-wave limit-cycle self-oscillatory motion of a noncovalent assembly of oleic acid and an azobenzene derivative. The assembly steadily flips under continuous blue-light irradiation. Mechanical self-oscillation is established by successively alternating photoisomerization processes and multi-stable phase transitions. These results offer a fundamental strategy for creating a supramolecular motor that works progressively under the operation of molecule-based machines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Abiotic ligation of DNA oligomers templated by their liquid crystal ordering

    NASA Astrophysics Data System (ADS)

    Fraccia, Tommaso P.; Smith, Gregory P.; Zanchetta, Giuliano; Paraboschi, Elvezia; Yi, Yougwooo; Walba, David M.; Dieci, Giorgio; Clark, Noel A.; Bellini, Tommaso

    2015-03-01

    It has been observed that concentrated solutions of short DNA oligomers develop liquid crystal ordering as the result of a hierarchically structured supramolecular self-assembly. In mixtures of oligomers with various degree of complementarity, liquid crystal microdomains are formed via the selective aggregation of those oligomers that have a sufficient degree of duplexing and propensity for physical polymerization. Here we show that such domains act as fluid and permeable microreactors in which the order-stabilized molecular contacts between duplex terminals serve as physical templates for their chemical ligation. In the presence of abiotic condensing agents, liquid crystal ordering markedly enhances ligation efficacy, thereby enhancing its own phase stability. The coupling between order-templated ligation and selectivity provided by supramolecular ordering enables an autocatalytic cycle favouring the growth of DNA chains, up to biologically relevant lengths, from few-base long oligomers. This finding suggests a novel scenario for the abiotic origin of nucleic acids.

  17. pH Control on the Sequential Uptake and Release of Organic Cations by Cucurbit[7]uril.

    PubMed

    Mikulu, Lukas; Michalicova, Romana; Iglesias, Vivian; Yawer, Mirza A; Kaifer, Angel E; Lubal, Premysl; Sindelar, Vladimir

    2017-02-16

    Cucurbit[7]uril (CB7) is a macrocycle with the ability to form the most stable supramolecular complexes in water ever reported for an artificial receptor. Its use for the design of advanced functional materials is, however, very limited because there is no example of a fully reversible CB7 based supramolecular complex enabling repetitious dissociation/association controlled by external stimuli. We report the synthesis of a new ferrocene amino acid that forms with CB7 a 1:1 inclusion complex that is stable in submicromolar concentration at low pH but dissociates at high pH. This reversible process was used for the sequential uptake and release of bispyridinium and antraquinone guests by CB7, which is controlled by adjusting the pH of the solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. 1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides.

    PubMed

    Adam, Madeleine K; Jarrett-Wilkins, Charles; Beards, Michael; Staykov, Emiliyan; MacFarlane, Liam R; Bell, Toby D M; Matthews, Jacqueline M; Manners, Ian; Faul, Charl F J; Moens, Pierre D J; Ben, Robert N; Wilkinson, Brendan L

    2018-06-04

    Antifreeze glycoproteins (AFGPs) are polymeric natural products that have drawn considerable interest in diverse research fields owing to their potent ice recrystallization inhibition (IRI) activity. Self-assembled materials have emerged as a promising class of biomimetic ice growth inhibitor, yet the development of AFGP-based supramolecular materials that emulate the aggregative behavior of AFGPs have not yet been reported. This work reports the first example of the 1D self-assembly and IRI activity of AFGP-functionalized perylene bisimides (AFGP-PBIs). Glycopeptide-functionalized PBIs underwent 1D self-assembly in water and showed modest IRI activity, which could be tuned through substitution of the PBI core. This work presents essential proof-of-principle for the development of novel IRIs as potential supramolecular cryoprotectants and glycoprotein mimics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly efficient drug delivery nanosystem via L-phenylalanine triggering based on supramolecular polymer micelles.

    PubMed

    Dong, Haiqing; Li, Yongyong; Wen, Huiyun; Xu, Meng; Liu, Lijian; Li, Zhuoquan; Guo, Fangfang; Shi, Donglu

    2011-03-16

    An intelligent drug delivery nanosystem has been developed based on biodegradable supramolecular polymer micelles (SMPMs). The drug release can be triggered from SMPMs responsively by a bioactive agent, L-phenylalanine in a controlled fashion. The SMPMs are constructed from ethylcellulose-graft-poly(ε-caprolactone) (EC-g-PCL) and α-cyclodextrin (α-CD) derivate via host-guest and hydrophobic interactions. It has been found that these SMPMs have disassembled rapidly in response to an additional L-phenylalanine, due to great affinity discrepancy to α-CD between L-phenylalanine and PCL. Experiments have been carried out on trigger-controlled in vitro drug release of the SMPMs loaded with a model porphyrin based photosensitizer THPP. The result shows that the SMPMs released over 85% THPP in 6 h, which is two orders magnitudes faster than that of control. Also investigated is the photodynamic therapy (PDT) of THPP-loaded SMPMs with and without L-phenylalanine on MCF-7 carcinoma cell line. An effective trigger-concentration dependent lethal effect has been found showing promise in clinical photodynamic therapy. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A bioartificial environment for kidney epithelial cells based on a supramolecular polymer basement membrane mimic and an organotypical culture system.

    PubMed

    Mollet, Björne B; Bogaerts, Iven L J; van Almen, Geert C; Dankers, Patricia Y W

    2017-06-01

    Renal applications in healthcare, such as renal replacement therapies and nephrotoxicity tests, could potentially benefit from bioartificial kidney membranes with fully differentiated and functional human tubular epithelial cells. A replacement of the natural environment of these cells is required to maintain and study cell functionality cell differentiation in vitro. Our approach was based on synthetic supramolecular biomaterials to mimic the natural basement membrane (BM) on which these cells grow and a bioreactor to provide the desired organotypical culture parameters. The BM mimics were constructed from ureidopyrimidinone (UPy)-functionalized polymer and bioactive peptides by electrospinning. The resultant membranes were shown to have a hierarchical fibrous BM-like structure consisting of self-assembled nanofibres within the electrospun microfibres. Human kidney-2 (HK-2) epithelial cells were cultured on the BM mimics under organotypical conditions in a custom-built bioreactor. The bioreactor facilitated in situ monitoring and functionality testing of the cultures. Cell viability and the integrity of the epithelial cell barrier were demonstrated inside the bioreactor by microscopy and transmembrane leakage of fluorescently labelled inulin, respectively. Furthermore, HK-2 cells maintained a polarized cell layer and showed modulation of both gene expression of membrane transporter proteins and metabolic activity of brush border enzymes when subjected to a continuous flow of culture medium inside the new bioreactor for 21 days. These results demonstrated that both the culture and study of renal epithelial cells was facilitated by the bioartificial in vitro environment that is formed by synthetic supramolecular BM mimics in our custom-built bioreactor. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

Top