Sample records for surface activity concentrations

  1. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.

    PubMed

    Heitbrink, William A; Evans, Douglas E; Ku, Bon Ki; Maynard, Andrew D; Slavin, Thomas J; Peters, Thomas M

    2009-01-01

    This study investigated the relationships between particle number, surface area, and respirable mass concentration measured simultaneously in a foundry and an automotive engine machining and assembly center. Aerosol concentrations were measured throughout each plant with a condensation particle counter for number concentration, a diffusion charger for active surface area concentration, and an optical particle counter for respirable mass concentration. At selected locations, particle size distributions were characterized with the optical particle counter and an electrical low pressure impactor. Statistical analyses showed that active surface area concentration was correlated with ultrafine particle number concentration and weakly correlated with respirable mass concentration. Correlation between number and active surface area concentration was stronger during winter (R2 = 0.6 for both plants) than in the summer (R2 = 0.38 and 0.36 for the foundry and engine plant respectively). The stronger correlation in winter was attributed to use of direct-fire gas fired heaters that produced substantial numbers of ultrafine particles with a modal diameter between 0.007 and 0.023 mu m. These correlations support findings obtained through theoretical analysis. Such analysis predicts that active surface area increasingly underestimates geometric surface area with increasing particle size, particularly for particles larger than 100 nm. Thus, a stronger correlation between particle number concentration and active surface area concentration is expected in the presence of high concentrations of ultrafine particles. In general, active surface area concentration may be a concentration metric that is distinct from particle number concentration and respirable mass concentration. For future health effects or toxicological studies involving nano-materials or ultrafine aerosols, this finding needs to be considered, as exposure metrics may influence data interpretation.

  2. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    PubMed

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  3. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays.

    PubMed

    Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie

    2011-10-01

    This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.

  4. Biopharmaceutical evaluation of surface active ophthalmic excipients using in vitro and ex vivo corneal models.

    PubMed

    Juretić, Marina; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena; Hafner, Anita; Lovrić, Jasmina; Pepić, Ivan

    2018-07-30

    The objective of this study was to systematically investigate the effects of surface active ophthalmic excipients on the corneal permeation of ophthalmic drugs using in vitro (HCE-T cell-based model) and ex vivo (freshly excised porcine cornea) models. The permeation of four ophthalmic drugs (i.e., timolol maleate, chloramphenicol, diclofenac sodium and dexamethasone) across in vitro and ex vivo corneal models was evaluated in the absence and presence of four commonly used surface active ophthalmic excipients (i.e., Polysorbate 80, Tyloxapol, Cremophor® EL and Pluronic® F68). The concentration and self-aggregation-dependent effects of surface active ophthalmic excipients on ophthalmic drug permeability were studied from the concentration region where only dissolved monomer molecules of surface active ophthalmic excipients exist, as well as the concentration region in which aggregates of variable size and dispersion are spontaneously formed. Neither the surface active ophthalmic excipients nor the ophthalmic drugs at all concentrations that were tested significantly affected the barrier properties of both corneal models, as assessed by transepithelial electrical resistance (TEER) monitoring during the permeability experiments. The lowest concentration of all investigated surface active ophthalmic excipients did not significantly affect the ophthalmic drug permeability across both of the corneal models that were used. For three ophthalmic drugs (i.e., chloramphenicol, diclofenac sodium and dexamethasone), depressed in vitro and ex vivo permeability were observed in the concentration range of either Polysorbate 80, Tyloxapol, Cremophor® EL or Pluronic® F68, at which self-aggregation is detected. The effect was the most pronounced for Cremophor® EL (1 and 2%, w/V) and was the least pronounced for Pluronic® F68 (1%, w/V). However, all surface active ophthalmic excipients over the entire concentration range that was tested did not significantly affect the in vitro and ex vivo permeability of timolol maleate, which is the most hydrophilic ophthalmic drug that was investigated. The results of the dynamic light scattering measurements point to the association of ophthalmic drugs with self-aggregates of surface active ophthalmic excipients as the potential mechanism of the observed permeability-depressing effect of surface active ophthalmic excipients. A strong and statistically significant correlation was observed between in vitro and ex vivo permeability of ophthalmic drugs in the presence of surface active ophthalmic excipients, which indicates that the observed permeability-altering effects of surface active ophthalmic excipients were comparable and were mediated by the same mechanism in both corneal models. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A Model to Predict the Breathing Zone Concentrations of Particles Emitted from Surfaces

    EPA Science Inventory

    Activity based sampling (ABS) is typically performed to assess inhalation exposure to particulate contaminants known to have low, heterogeneous concentrations on a surface. Activity based sampling determines the contaminant concentration in a person's breathing zone as they perfo...

  6. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  7. Collective Surfing of Chemically Active Particles

    NASA Astrophysics Data System (ADS)

    Masoud, Hassan; Shelley, Michael J.

    2014-03-01

    We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.

  8. Drop punt kicking induces eccentric knee flexor weakness associated with reductions in hamstring electromyographic activity.

    PubMed

    Duhig, Steven J; Williams, Morgan D; Minett, Geoffrey M; Opar, David; Shield, Anthony J

    2017-06-01

    To examine the effect of 100 drop punt kicks on isokinetic knee flexor strength and surface electromyographic activity of bicep femoris and medial hamstrings. Randomized control study. Thirty-six recreational footballers were randomly assigned to kicking or control groups. Dynamometry was conducted immediately before and after the kicking or 10min of sitting (control). Eccentric strength declined more in the kicking than the control group (p<0.001; d=1.60), with greater reductions in eccentric than concentric strength after kicking (p=0.001; d=0.92). No significant between group differences in concentric strength change were observed (p=0.089; d=0.60). The decline in normalized eccentric hamstring surface electromyographic activity (bicep femoris and medial hamstrings combined) was greater in the kicking than the control group (p<0.001; d=1.78), while changes in concentric hamstring surface electromyographic activity did not differ between groups (p=0.863; d=0.04). Post-kicking reductions in surface electromyographic activity were greater in eccentric than concentric actions for both bicep femoris (p=0.008; d=0.77) and medial hamstrings (p<0.001; d=1.11). In contrast, the control group exhibited smaller reductions in eccentric than concentric hamstring surface electromyographic activity for bicep femoris (p=0.026; d=0.64) and medial hamstrings (p=0.032; d=0.53). Reductions in bicep femoris surface electromyographic activity were correlated with eccentric strength decline (R=0.645; p=0.007). Reductions in knee flexor strength and hamstring surface electromyographic activity are largely limited to eccentric contractions and this should be considered when planning training loads in Australian Football. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Variability of winter and summer surface ozone in Mexico City on the intraseasonal timescale

    NASA Astrophysics Data System (ADS)

    Barrett, Bradford S.; Raga, Graciela B.

    2016-12-01

    Surface ozone concentrations in Mexico City frequently exceed the Mexican standard and have proven difficult to forecast due to changes in meteorological conditions at its tropical location. The Madden-Julian Oscillation (MJO) is largely responsible for intraseasonal variability in the tropics. Circulation patterns in the lower and upper troposphere and precipitation are associated with the oscillation as it progresses eastward around the planet. It is typically described by phases (labeled 1 through 8), which correspond to the broad longitudinal location of the active component of the oscillation with enhanced precipitation. In this study we evaluate the intraseasonal variability of winter and summer surface ozone concentrations in Mexico City, which was investigated over the period 1986-2014 to determine if there is a modulation by the MJO that would aid in the forecast of high-pollution episodes. Over 1 000 000 hourly observations of surface ozone from five stations around the metropolitan area were standardized and then binned by active phase of the MJO, with phase determined using the real-time multivariate MJO index. Highest winter ozone concentrations were found in Mexico City on days when the MJO was active and in phase 2 (over the Indian Ocean), and highest summer ozone concentrations were found on days when the MJO was active and in phase 6 (over the western Pacific Ocean). Lowest winter ozone concentrations were found during active MJO phase 8 (over the eastern Pacific Ocean), and lowest summer ozone concentrations were found during active MJO phase 1 (over the Atlantic Ocean). Anomalies of reanalysis-based cloud cover and UV-B radiation supported the observed variability in surface ozone in both summer and winter: MJO phases with highest ozone concentration had largest positive UV-B radiation anomalies and lowest cloud-cover fraction, while phases with lowest ozone concentration had largest negative UV-B radiation anomalies and highest cloud-cover fraction. Furthermore, geopotential height anomalies at 250 hPa favoring reduced cloudiness, and thus elevated surface ozone, were found in both seasons during MJO phases with above-normal ozone concentrations. Similar height anomalies at 250 hPa favoring enhanced cloudiness, and thus reduced surface ozone, were found in both seasons during MJO phases with below-normal ozone concentrations. These anomalies confirm a physical pathway for MJO modulation of surface ozone via modulation of the upper troposphere.

  10. Study of the adsorption of Cd and Zn onto an activated carbon: Influence of pH, cation concentration, and adsorbent concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seco, A.; Marzal, P.; Gabaldon, C.

    1999-06-01

    The single adsorption of Cd and Zn from aqueous solutions has been investigated on Scharlau Ca 346 granular activated carbon in a wide range of experimental conditions: pH, metal concentration, and carbon concentration. The results showed the efficiency of the activated carbon as sorbent for both metals. Metal removals increase on raising the pH and carbon concentration, and decrease on raising the initial metal concentration. The adsorption processes have been modeled using the surface complex formation (SCF) Triple Layer Model (TLM). The adsorbent TLM parameters were determined. Modeling has been performed assuming a single surface bidentate species or an overallmore » surface species with fractional stoichiometry. The bidentate stoichiometry successfully predicted cadmium and zinc removals in all the experimental conditions. The Freundlich isotherm has been also checked.« less

  11. Surface activation of dyed fabric for cellulase treatment.

    PubMed

    Schimper, Christian B; Ibanescu, Constanta; Bechtold, Thomas

    2011-10-01

    Surface activation of fabric made from cellulose fibres, such as viscose, lyocell, modal fibres and cotton, can be achieved by printing of a concentrated NaOH-containing paste. From the concentration of reducing sugars formed in solution, an increase in intensity of the cellulase hydrolysis by a factor of six to eight was observed, which was mainly concentrated at the activated parts of the fabric surface. This method of local activation is of particular interest for modification of materials that have been dyed with special processes to attain an uneven distribution of dyestuff within the yarn cross-section, e.g., indigo ring-dyed denim yarn for jeans production. Fabrics made from regenerated cellulose fibres were used as model substrate to express the effects of surface activation on indigo-dyed material. Wash-down experiments on indigo-dyed denim demonstrated significant colour removal from the activated surface at low overall weight loss of 4-5%. The method is of relevance for a more eco-friendly processing of jeans in the garment industry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    PubMed

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial resolution are needed to precisely verify surface structures formed after copper activation. Sphalerite and pyrite surfaces are characterised by varying amounts of steps and defects, and this heterogeneity suggests co-existence of more than one copper-sulfide structure after activation.

  13. Radiocaesium derived from the TEPCO Fukushima accident in the North Pacific Ocean: Surface transport processes until 2017.

    PubMed

    Aoyama, Michio; Hamajima, Yasunori; Inomata, Yayoi; Kumamoto, Yuichiro; Oka, Eitarou; Tsubono, Takaki; Tsumune, Daisuke

    2018-04-04

    We report temporal variations of 137 Cs activity concentrations in surface waters of six regions of the western and central North Pacific Ocean during 2011-2017 using a combination of 1264 previously published data and 42 new data. In the western and central North Pacific Ocean at latitudes of 30-42°N and longitudes of 140°E to 160°W, eastward transport of radiocaesium was clearly apparent. 137 Cs activity concentrations in surface water decreased rapidly to ∼2-3 Bq m -3 in 2015/2016, still a bit higher than 137 Cs activity concentrations before the FNPP1 accident (1.5-2 Bq m -3 ). 134 Cs/ 137 Cs activity ratios decay-corrected to 11 March 2011 were ∼0.5-0.8. To the south of 30°N and between 130°E and 160°W in the western and central Pacific Ocean, 137 Cs activity concentrations were around 1-7 Bq m -3 in 2011/2012 but then stabilized at a few Bq m -3 up to 2017. 134 Cs activity concentrations were detected at levels of 0.1-0.9 Bq m -3 , and 134 Cs/ 137 Cs activity ratios decay-corrected to 11 March 2011 were ∼0.3-0.5. Temporal variations of model-simulated 137 Cs activity concentrations in surface water in the region of interest showed good agreement with observations, except in the southwestern North Pacific Ocean. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of particle surface area on ice active site densities retrieved from droplet freezing spectra

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan; Polen, Michael; Sullivan, Ryan C.

    2016-10-01

    Heterogeneous ice nucleation remains one of the outstanding problems in cloud physics and atmospheric science. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established parameterization of immersion freezing properties. Here, we formulate an ice active, surface-site-based stochastic model of heterogeneous freezing with the unique feature of invoking a continuum assumption on the ice nucleating activity (contact angle) of an aerosol particle's surface that requires no assumptions about the size or number of active sites. The result is a particle-specific property g that defines a distribution of local ice nucleation rates. Upon integration, this yields a full freezing probability function for an ice nucleating particle. Current cold plate droplet freezing measurements provide a valuable and inexpensive resource for studying the freezing properties of many atmospheric aerosol systems. We apply our g framework to explain the observed dependence of the freezing temperature of droplets in a cold plate on the concentration of the particle species investigated. Normalizing to the total particle mass or surface area present to derive the commonly used ice nuclei active surface (INAS) density (ns) often cannot account for the effects of particle concentration, yet concentration is typically varied to span a wider measurable freezing temperature range. A method based on determining what is denoted an ice nucleating species' specific critical surface area is presented and explains the concentration dependence as a result of increasing the variability in ice nucleating active sites between droplets. By applying this method to experimental droplet freezing data from four different systems, we demonstrate its ability to interpret immersion freezing temperature spectra of droplets containing variable particle concentrations. It is shown that general active site density functions, such as the popular ns parameterization, cannot be reliably extrapolated below this critical surface area threshold to describe freezing curves for lower particle surface area concentrations. Freezing curves obtained below this threshold translate to higher ns values, while the ns values are essentially the same from curves obtained above the critical area threshold; ns should remain the same for a system as concentration is varied. However, we can successfully predict the lower concentration freezing curves, which are more atmospherically relevant, through a process of random sampling from g distributions obtained from high particle concentration data. Our analysis is applied to cold plate freezing measurements of droplets containing variable concentrations of particles from NX illite minerals, MCC cellulose, and commercial Snomax bacterial particles. Parameterizations that can predict the temporal evolution of the frozen fraction of cloud droplets in larger atmospheric models are also derived from this new framework.

  15. Innate resistance to sporicides and potential failure to decontaminate.

    PubMed

    Maillard, J-Y

    2011-03-01

    Bacterial spores are frequently intrinsically resistant to biocides and only a number of alkylating and oxidising biocides are sporicidal under certain conditions. Activity against spores is affected by several key factors such as concentration, exposure time, soiling, and the types of surface to be treated. Sporicidal efficacy is usually achieved after an exposure time of several minutes with a high concentration of a biocide. Failure to understand these factors will result in decreased sporicide activity and spore survival. Sporicides in healthcare settings are used for surface disinfection and for the high level disinfection of certain medical devices (e.g. endoscopes). With efficacy data in mind, sporicidal activity should be achieved for the disinfection of medical devices where both high concentration and long exposure time occur. However, for the disinfection of environmental surfaces, high concentration is not recommended, nor is long exposure time achievable. In this case, sporicidal activity is severely reduced and spore survival following treatment is to be expected and contributes to the explanation of spore persistence on surfaces. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Effect of Concentration on the Interfacial and Bulk Structure of Ionic Liquids in Aqueous Solution.

    PubMed

    Cheng, H-W; Weiss, H; Stock, P; Chen, Y-J; Reinecke, C R; Dienemann, J-N; Mezger, M; Valtiner, M

    2018-02-27

    Bio and aqueous applications of ionic liquids (IL) such as catalysis in micelles formed in aqueous IL solutions or extraction of chemicals from biologic materials rely on surface-active and self-assembly properties of ILs. Here, we discuss qualitative relations of the interfacial and bulk structuring of a water-soluble surface-active IL ([C 8 MIm][Cl]) on chemically controlled surfaces over a wide range of water concentrations using both force probe and X-ray scattering experiments. Our data indicate that IL structuring evolves from surfactant-like surface adsorption at low IL concentrations, to micellar bulk structure adsorption above the critical micelle concentration, to planar bilayer formation in ILs with <1 wt % of water and at high charging of the surface. Interfacial structuring is controlled by mesoscopic bulk structuring at high water concentrations. Surface chemistry and surface charges decisively steer interfacial ordering of ions if the water concentration is low and/or the surface charge is high. We also demonstrate that controlling the interfacial forces by using self-assembled monolayer chemistry allows tuning of interfacial structures. Both the ratio of the head group size to the hydrophobic tail volume as well as the surface charging trigger the bulk structure and offer a tool for predicting interfacial structures. Based on the applied techniques and analyses, a qualitative prediction of molecular layering of ILs in aqueous systems is possible.

  17. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    NASA Astrophysics Data System (ADS)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  18. Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential.

    PubMed Central

    Winterhalter, M; Bürner, H; Marzinka, S; Benz, R; Kasianowicz, J J

    1995-01-01

    We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface. PMID:8534807

  19. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.

    PubMed

    Thiruppathi, Eagappanath; Larson, Mark K; Mani, Gopinath

    2015-01-01

    CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy.

  20. Cyclic lipopeptide signature as fingerprinting for the screening of halotolerant Bacillus strains towards microbial enhanced oil recovery.

    PubMed

    Farias, Bárbara C S; Hissa, Denise C; do Nascimento, Camila T M; Oliveira, Samuel A; Zampieri, Davila; Eberlin, Marcos N; Migueleti, Deivid L S; Martins, Luiz F; Sousa, Maíra P; Moyses, Danuza N; Melo, Vânia M M

    2018-02-01

    Cyclic lipopeptides (CLPs) are non-ribosomal biosurfactants produced by Bacillus species that exhibit outstanding interfacial activity. The synthesis of CLPs is under genetic and environmental influence, and representatives from different families are generally co-produced, generating isoforms that differ in chemical structure and biological activities. This study to evaluate the effect of low and high NaCl concentrations on the composition and surface activity of CLPs produced by Bacillus strains TIM27, TIM49, TIM68, and ICA13 towards microbial enhanced oil recovery (MEOR). The strains were evaluated in mineral medium containing NaCl 2.7, 66, or 100 g L -1 and growth, surface tension and emulsification activity were monitored. Based on the analysis of 16S rDNA, gyrB and rpoB sequences TIM27 and TIM49 were assigned to Bacillus subtilis, TIM68 to Bacillus vallismortis, and ICA13 to Bacillus amyloliquefaciens. All strains tolerated up to 100-g L -1 NaCl, but only TIM49 and TIM68 were able to reduce surface tension at this concentration. TIM49 also showed emulsification activity at concentrations up to 66-g L -1 NaCl. ESI-MS analysis showed that the strains produced a mixture of CLPs, which presented distinct CLP profiles at low and high NaCl concentrations. High NaCl concentration favored the synthesis of surfactins and/or fengycins that correlated with the surface activities of TIM49 and TIM68, whereas low concentration favored the synthesis of iturins. Taken together, these findings suggest that the determination of CLP signatures under the expected condition of oil reservoirs can be useful in the guidance for choosing well-suited strains to MEOR.

  1. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  2. SI-traceable calibration-free analysis for the active concentration of G2-EPSPS protein using surface plasmon resonance.

    PubMed

    Su, Ping; He, Zhangjing; Wu, Liqing; Li, Liang; Zheng, Kangle; Yang, Yi

    2018-02-01

    Active proteins play important roles in the function regulation of human bodies and attract much interest for use in pharmaceuticals and clinical diagnostics. However, the lack of primary methods to analyze active proteins means there is currently no metrology standard for active protein measurement. In recent years, calibration-free concentration analysis (CFCA), which is based on surface plasmon resonance (SPR) technology, has been proposed to determine the active concentration of proteins that have specific binding activity with a binding partner without any higher order standards. The CFCA experiment observes the changes of binding rates at totally different two flow rates and uses the known diffusion coefficient of an analyte to calculate the active concentration of proteins, theoretically required, the binding process have to be under diffusion-limited conditions. Measuring the active concentration of G2-EPSPS protein by CFCA was proposed in this study. This method involves optimization of the regeneration buffer and preparation of chip surfaces for appropriate reaction conditions by immobilizing ligands (G2-EPSPS antibodies) on sensor chips (CM5) via amine coupling. The active concentration of G2-EPSPS was then determined by injection of G2-EPSPS protein samples and running buffer over immobilized and reference chip surfaces at two different flow rates (5 and 100μLmin -1 ). The active concentration of G2-EPSPS was obtained after analyzing these sensorgrams with the 1:1 model. Using the determined active concentration of G2-EPSPS, the association, dissociation, and equilibrium constants of G2-EPSPS and its antibody were determined to be 2.18 ± 0.03 × 10 6 M -1 s -1 , 5.79 ± 0.06 ×10 -3 s -1 , and 2.65 ± 0.06 × 10 -9 M, respectively. The performance of the proposed method was evaluated. The within-day precisions were from 3.26% to 4.59%, and the between-day precision was 8.36%. The recovery rate of the method was from 97.46% to 104.34% in the concentration range of 1.5-8nM. The appropriate concentration range of G2-EPSPS in the proposed method was determined to be 1.5-8nM. The active G2-EPSPS protein concentration determined by our method was only 17.82% of that obtained by isotope dilution mass spectrometry, showing the active protein was only a small part of the total G2-EPSPS protein. The measurement principle of the proposed method can be clearly described by equations and the measurement result can be expressed in SI units. Therefore, the proposed method shows promise to become a primary method for active protein concentration measurement, which can benefit the development of certified reference materials for active proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Thorium isotopes in colloidal fraction of water from San Marcos Dam, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Cabral-Lares, M.; Melgoza, A.; Montero-Cabrera, M. E.; Renteria-Villalobos, M.

    2013-07-01

    The main interest of this stiidy is to assess the contents and distribution of Th-series isotopes in colloidal fraction of surface water from San Marcos dam, because the suspended particulate matter serves as transport medium for several pollutants. The aim of this work was to assess the distribution of thorium isotopes (232Th and 230Th) contained in suspended matter. Samples were taken from three surface points along the San Marcos dam: water input, midpoint, and near to dam wall. In this last point, a depth sampling was also carried out. Here, three depth points were taken at 0.4, 8 and 15 meters. To evaluate the thorium behavior in surface water, from every water sample the colloidal fraction was separated, between 1 and 0.1 μm. Thorium isotopes concentraron in samples were obtained by alpha spectrometry. Activity concentrations obtained of 232Th and 230Th in surface points ranged from 0.3 to 0.5 Bq ṡ L-1, whereas in depth points ranged from 0.4 to 3.2 Bq ṡ L-1, respectively. The results show that 230Th is in higher concentration than 232Th in colloidal fraction. This can be attributed to a preference of these colloids to adsorb uranium. Thus, the activity ratio 230Th/232Th in colloidal fraction showed values from 2.3 to 10.2. In surface points along the dam, 230Th activity concentration decreases while 232Th concentration remains constant. On the other hand, activity concentrations of both isotopes showed a pointed out enhancement with depth. The results have shown a possible lixiviation of uranium from geological substrate into the surface water and an important fractionation of thorium isotopes, which suggest that thorium is non-homogeneously distributed along San Marcos dam.

  4. THE ALTERATION OF INTRACELLULAR ENZYMES

    PubMed Central

    Kaplan, J. Gordin

    1954-01-01

    1. The ability of homologous series of alcohols, ketones, and aldehydes to cause alteration of intracellular catalase increases approximately threefold for each methylene group added, thus following Traube's rule. Equiactive concentrations of alcohols (methanol to octanol) varied over a 4,000-fold range, yet the average corresponding surface tension was 42 ± 2 dynes/cm., that for ketones 43 ± 2, and for aldehydes (above C1) 41 ± 3. 2. Above C8 the altering activity of alcohols ceased to follow Traube's rule, and at C18 was nil. Yet the surface activities of alcohols from nonanol to dodecanol did follow Traube's rule. These two facts show that the interface which is being affected by these agents is not the cell surface, for if it were, altering activity should not fall off between C9 and C12 where surface activity is undiminished; they show also that micelle formation by short range association of hydrocarbon "tails," usually invoked to explain decrease in biological activity of compounds above C8, is not responsible for this effect in these experiments, in which permeability of the cell membrane probably is involved. 3. The most soluble alcohols and aldehydes (alcohols C1 to C8; aldehydes C1, C2), but not ketones, cause, above optimal concentration, an irreversible inhibition of yeast catalase. 4. The critical concentration of altering agent (i.e., that concentration just sufficient to cause doubling of the catalase activity of the yeast suspension) was independent of the concentration of the yeast cells. 5. Viability studies show that the number of yeast cells killed by the altering agents was not related to the degree of activation of the catalase produced. While all the cells were invariably killed by concentrations of altering agent which produced complete activation, all the cells had been killed by concentrations which were insufficient to cause more than 50 per cent maximal activation. Further, the evidence suggested that the catalase may be partially activated by concentrations of altering agent which cause no decrease in viability at all. Hence alteration, unlike death, may not be all-or-none per cell. 6. The fact that the biological criterion being examined was the activation of a water-soluble enzyme rules out the possibility that the reason for the logarithmic increase in altering activity with chain length was increase in concentration of the altering agent in some intracellular fat phase. It is concluded that these surface-active agents cause enzyme alteration by becoming adsorbed at some intracellular interface and thus causing, directly or indirectly, the modification of catalase properties. 7. It is considered that these data support, but do not provide critical proof for, the interfacial hypothesis, which states that catalase is present at the intracellular interface in question, but is desorbed into solution as a consequence of the alteration process. PMID:13211996

  5. Alteration of biophysical activity of pulmonary surfactant by aluminosilicate nanoparticles.

    PubMed

    Kondej, Dorota; Sosnowski, Tomasz R

    2013-02-01

    The influence of five different types of aluminosilicate nanoparticles (NPs) on the dynamic surface activity of model pulmonary surfactant (PS) (Survanta) was studied experimentally using oscillating bubble tensiometry. Bentonite, halloysite and montmorillonite (MM) NPs, which are used as fillers of polymer composites, were characterized regarding the size distribution, morphology and surface area. Particle doses applied in the studies were estimated based on the inhalation rate and duration, taking into account the expected aerosol concentration and deposition efficiency after penetration of NPs into the alveolar region. The results indicate that aluminosilicate NPs at concentrations in the pulmonary liquid above 0.1 mg cm(-3) are capable of promoting alterations of the original dynamic biophysical activity of the PS. This effect is indicated by deviation of the minimum surface tension, stability index and the size of surface tension hysteresis. Such response is dependent on the type of NPs present in the system and is stronger when particle concentration increases. It is suggested that interactions between NPs and the PS must be related to the surfactant adsorption on the suspended particles, while in the case of surface-modified clay NPs the additional washout of surface-active components may be expected. It is speculated that observed changes in surface properties of the surfactant may be associated with undesired health effects following extensive inhalation of aluminosilicate NPs in the workplace.

  6. Antifouling and antipredatory activity of natural products of the seaweeds Dictyota dichotoma and Chaetomorpha linoides.

    PubMed

    Murugan, Annappan; Begum, Maraikayar Shynisha; Ramasamy, Maniramakrishnan Santhana; Raja, Paulraj

    2012-01-01

    The seaweeds Dictyota dichotoma and Chaetomorpha linoides from the southeast coast of India were screened for anti-microfouling activity against biofilm bacteria, anti-macrofouling activity against brown mussels and feeding deterrence activity against the sea angel Monodactylus kottelati. The surface associated epiphytic bacteria were also isolated from seaweeds and screened for activity against biofilm bacteria. The acetone extracts showed a wide spectrum activity against biofilm bacteria and the algal metabolite was surface concentrated and non-polar in nature. The seaweeds also inhibited byssus production and attachment in brown mussels, and deterred feeding in the sea angel. The lower epiphytic bacterial number on the seaweed's surface compared to the surrounding seawater medium indicated selective inhibition or surface mediation. The epiphytic bacteria, which showed activity against biofilm bacteria, might also possibly play a role in seaweed defence strategies. The 50% deterrence of feeding activity at lower concentrations was not proportionate to the 100% inhibition concentration, which could be attributed to the adaptability of the fishes, an indication that the active substances are inhibitory in nature. This was further substantiated with the 100% recovery of mussels in a toxicity assay and the lower EC(50) values than LC(50) values in the mussel bioassay. The study indicates that the metabolites of both seaweeds have ecological significance and could possibly play a multifunctional role.

  7. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern.

    PubMed

    Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E

    2015-08-15

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities. Published by Elsevier B.V.

  8. Seasonal variation of nitrogen-concentration in the surface water and its relationship with land use in a catchment of northern China.

    PubMed

    Chen, Li-ding; Peng, Hong-jia; Fu, Bo-Jie; Qiu, Jun; Zhang, Shu-rong

    2005-01-01

    Surface waters can be contaminated by human activities in two ways: (1) by point sources, such as sewage treatment discharge and storm-water runoff; and (2) by non-point sources, such as runoff from urban and agricultural areas. With point-source pollution effectively controlled, non-point source pollution has become the most important environmental concern in the world. The formation of non-point source pollution is related to both the sources such as soil nutrient, the amount of fertilizer and pesticide applied, the amount of refuse, and the spatial complex combination of land uses within a heterogeneous landscape. Land-use change, dominated by human activities, has a significant impact on water resources and quality. In this study, fifteen surface water monitoring points in the Yuqiao Reservoir Basin, Zunhua, Hebei Province, northern China, were chosen to study the seasonal variation of nitrogen concentration in the surface water. Water samples were collected in low-flow period (June), high-flow period (July) and mean-flow period (October) from 1999 to 2000. The results indicated that the seasonal variation of nitrogen concentration in the surface water among the fifteen monitoring points in the rainfall-rich year is more complex than that in the rainfall-deficit year. It was found that the land use, the characteristics of the surface river system, rainfall, and human activities play an important role in the seasonal variation of N-concentration in surface water.

  9. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  10. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials.

    PubMed

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-10-11

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H₂SO₄) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100-500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H₂SO₄.

  11. Fuzzy Clustering-Based Modeling of Surface Interactions and Emulsions of Selected Whey Protein Concentrate Combined to i-Carrageenan and Gum Arabic Solutions

    USDA-ARS?s Scientific Manuscript database

    Gums and proteins are valuable ingredients with a wide spectrum of applications. Surface properties (surface tension, interfacial tension, emulsion activity index “EAI” and emulsion stability index “ESI”) of 4% whey protein concentrate (WPC) in a combination with '- carrageenan (0.05%, 0.1%, and 0.5...

  12. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned carbons with one of the following properties will produce activated carbons with high surface areas. These properties include: (a) large amount of O2 chemisorption capacity; (b) high concentration of surface C-O complex; and (c) small crystallite diameter; (d) high concentration of Na+K particles that are combined with carbon; (e) high concentration of isotropic carbon. (Abstract shortened by UMI.)

  13. Surface tension prevails over solute effect in organic-influenced cloud droplet activation.

    PubMed

    Ovadnevaite, Jurgita; Zuend, Andreas; Laaksonen, Ari; Sanchez, Kevin J; Roberts, Greg; Ceburnis, Darius; Decesari, Stefano; Rinaldi, Matteo; Hodas, Natasha; Facchini, Maria Cristina; Seinfeld, John H; O' Dowd, Colin

    2017-06-29

    The spontaneous growth of cloud condensation nuclei (CCN) into cloud droplets under supersaturated water vapour conditions is described by classic Köhler theory. This spontaneous activation of CCN depends on the interplay between the Raoult effect, whereby activation potential increases with decreasing water activity or increasing solute concentration, and the Kelvin effect, whereby activation potential decreases with decreasing droplet size or increases with decreasing surface tension, which is sensitive to surfactants. Surface tension lowering caused by organic surfactants, which diminishes the Kelvin effect, is expected to be negated by a concomitant reduction in the Raoult effect, driven by the displacement of surfactant molecules from the droplet bulk to the droplet-vapour interface. Here we present observational and theoretical evidence illustrating that, in ambient air, surface tension lowering can prevail over the reduction in the Raoult effect, leading to substantial increases in cloud droplet concentrations. We suggest that consideration of liquid-liquid phase separation, leading to complete or partial engulfing of a hygroscopic particle core by a hydrophobic organic-rich phase, can explain the lack of concomitant reduction of the Raoult effect, while maintaining substantial lowering of surface tension, even for partial surface coverage. Apart from the importance of particle size and composition in droplet activation, we show by observation and modelling that incorporation of phase-separation effects into activation thermodynamics can lead to a CCN number concentration that is up to ten times what is predicted by climate models, changing the properties of clouds. An adequate representation of the CCN activation process is essential to the prediction of clouds in climate models, and given the effect of clouds on the Earth's energy balance, improved prediction of aerosol-cloud-climate interactions is likely to result in improved assessments of future climate change.

  14. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia.

    PubMed

    Olley, Jon; Brooks, Andrew; Spencer, John; Pietsch, Timothy; Borombovits, Daniel

    2013-10-01

    The Laura-Normanby River (catchment area: 24,350 km(2)), which drains into Princess Charlotte Bay, has been identified in previous studies as the third largest contributor of sediment to the Great Barrier Reef World Heritage Area. These catchment scale modelling studies also identified surface soil erosion as supplying >80% of the sediment. Here we use activity concentrations of the fallout radionuclides (137)Cs and (210)Pbex to test the hypothesis that surface soil erosion dominates the supply of fine (<10 μm) sediment in the river systems draining into Princess Charlotte Bay. Our results contradict these previous studies, and are consistent with channel and gully erosion being the dominant source of fine sediment in this catchment. The hypothesis that surface soil erosion dominates the supply of fine sediment to Princess Charlotte Bay is rejected. River sediment samples were collected using both time-integrated samplers and sediment drape deposits. We show that there is no detectable difference in (137)Cs and (210)Pbex activity concentrations between samples collected using these two methods. Two methods were also used to collect samples to characterise (137)Cs and (210)Pbex concentrations in sediment derived from surface soil erosion; sampling of surface-wash deposits and deployment of surface runoff traps that collected samples during rain events. While there was no difference in the (137)Cs activity concentrations for samples collected using these two methods, (210)Pbex activity concentrations were significantly higher in the samples collected using the runoff traps. The higher (210)Pbex concentrations are shown to be correlated with loss-on-ignition (r(2) = 0.79) and therefore are likely to be related to higher organic concentrations in the runoff trap samples. As a result of these differences we use a three end member mixing model (channel/gully, hillslope surface-wash and hillslope runoff traps) to determine the relative contribution from surface soil erosion. Probability distributions for (137)Cs and (210)Pbex concentrations were determined for each of the end members, with these distributions then used to estimate the surface soil contribution to each of the collected river sediment samples. The mean estimate of contribution of surface derived sediment for all river samples (n = 70) is 16 ± 2%. This study reinforces the importance of testing model predictions before they are used to target investment in remedial action and adds to the body of evidence that the primary source of sediment delivered to tropical river systems is derived from subsoil erosion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Arsenic Concentration in the Surface Water of a Former Mining Area: The La Junta Creek, Baja California Sur, Mexico

    PubMed Central

    Imaz Lamadrid, Miguel; Acosta Vargas, Baudilio

    2018-01-01

    The mining activity in the San Antonio-El Triunfo district, located in a mountainous region at 60 km southeast of La Paz, occured for more than 250 years and left behind severe contamination of soils and riverbed sediments which led to elevated concentrations of arsenic and other trace elements in the surface- and groundwater of the region. Although the main mining activity ended around 1911, contamination is still beeing distributed, especially from left behind tailings and mine waste piles. The contamination levels in the groundwater have been reported in several studies, but there is little information available on the surface water quality, and especially the temporal variation. In this study, we analyzed the surface water of the La Junta creek, in the southern part of the San Antonio-El Triunfo mining district. The working hypothesis was that by means of a spatial analysis of surface water and shallow groundwater, in combination with the temporal observation of the concentrations in runoff water, the effects of different sources of arsenic (natural geogene anomalies, due to historic mining activity, and hydrothermal related impact) in the La Junta creek can be recognized. This present study revealed that historic mining activity caused a mojor impact of arsenic but less contamination was observed than in the northern part of the district and elevated arsenic concentrations in stream water generally occurred during times of low streamflow. PMID:29498700

  16. Vehicle Traffic as a Source of Particulate Polycyclic Aromatic Hydrocarbon Exposure in the Mexico City Metropolitan Area

    PubMed Central

    MARR, LINSEY C.; GROGAN, LISA A.; WÖHRNSCHIMMEL, HENRY; MOLINA, LUISAT.; MOLINA, MARIO J.; SMITH, THOMAS J.; GARSHICK, ERIC

    2005-01-01

    Surface properties of aerosols in the Mexico City metropolitan area have been measured in a variety of exposure scenarios related to vehicle emissions in 2002, using continuous, real-time instruments. The objective of these experiments is to describe ambient and occupational particulate polycyclic aromatic hydrocarbon (PAH) concentrations associated with vehicular traffic and facilities using diesel vehicles. Median total particulate PAH concentrations along Mexico City’s roadways range from 60 to 910 ng m−3, averaged over a minimum of 1 h. These levels are approximately 5 times higher than concentrations measured in the United States and among the highest measured ambient values reported in the literature. The ratio of particulate PAH concentration to aerosol active surface area is much higher along roadways and in other areas of fresh vehicle emissions, compared to ratios measured at sites influenced more by aged emissions or noncombustion sources. For particles freshly emitted by vehicles, PAH and elemental carbon (EC) concentrations are correlated because they both originate during the combustion process. Comparison of PAH versus EC and active surface area concentrations at different locations suggests that surface PAH concentrations may diminish with particle aging. These results indicate that exposure to vehicle-related PAH emissions on Mexico City’s roadways may present an important public health risk. PMID:15180054

  17. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  18. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  19. High level active n+ doping of strained germanium through co-implantation and nanosecond pulsed laser melting

    NASA Astrophysics Data System (ADS)

    Pastor, David; Gandhi, Hemi H.; Monmeyran, Corentin P.; Akey, Austin J.; Milazzo, Ruggero; Cai, Yan; Napolitani, Enrico; Gwilliam, Russell M.; Crowe, Iain F.; Michel, Jurgen; Kimerling, L. C.; Agarwal, Anuradha; Mazur, Eric; Aziz, Michael J.

    2018-04-01

    Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.

  20. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  1. The Effects of Acid Etching on the Nanomorphological Surface Characteristics and Activation Energy of Titanium Medical Materials

    PubMed Central

    Hung, Kuo-Yung; Lin, Yi-Chih; Feng, Hui-Ping

    2017-01-01

    The purpose of this study was to characterize the etching mechanism, namely, the etching rate and the activation energy, of a titanium dental implant in concentrated acid and to construct the relation between the activation energy and the nanoscale surface topographies. A commercially-pure titanium (CP Ti) and Ti-6Al-4V ELI surface were tested by shot blasting (pressure, grain size, blasting distance, blasting angle, and time) and acid etching to study its topographical, weight loss, surface roughness, and activation energy. An Arrhenius equation was applied to derive the activation energy for the dissolution of CP Ti/Ti-6Al-4V ELI in sulfuric acid (H2SO4) and hydrochloric acid (HCl) at different temperatures. In addition, white-light interferometry was applied to measure the surface nanomorphology of the implant to obtain 2D or 3D roughness parameters (Sa, Sq, and St). The nanopore size that formed after etching was approximately 100–500 nm. The surface roughness of CP Ti and Ti-6Al-4V ELI decreased as the activation energy decreased but weight loss increased. Ti-6Al-4V ELI has a higher level of activation energy than Ti in HCl, which results in lower surface roughness after acid etching. This study also indicates that etching using a concentrated hydrochloric acid provided superior surface modification effects in titanium compared with H2SO4. PMID:29019926

  2. Influences of the (NH2)2CO concentration on magnetic photocatalytic composites

    NASA Astrophysics Data System (ADS)

    Liŭ, Dan; Li, Ziheng; Wang, Wenquan; Liú, Dan; Wang, Guoqiang; Lin, Junhong; He, Yingqiao; Li, Xiangru

    2016-11-01

    Magnetic photocatalytic Fe3O4@TiO2 composites have been fabricated by changing the concentration of (NH2)2CO. Samples were named as low (NH2)2CO concentration group which the (NH2)2CO concentration in the synthesis process was below 2.25 mol/L and high (NH2)2CO concentration group which the (NH2)2CO concentration was above 2.5 mol/L. Photocatalytic degradation experiments of methyl orange showed that the final degradation rates of low (NH2)2CO concentration group samples were higher than that of high (NH2)2CO concentration group, even better than P25 at the same test conditions. And it was interesting that samples of low (NH2)2CO concentration group had smaller values of BET surface areas than that of high (NH2)2CO concentration group. It indicated that the improvement of photocatalytic activity which was effected by BET surface areas was not obvious. There were two main factors enhancing the photocatalytic property of low (NH2)2CO concentration group: First, diffusing reflection spectra showed that the low (NH2)2CO concentration group samples had lower reflectivity, this suggested that the structure improved the efficiency of light absorption; Second, NH4+ would take up the active sites on the surface of the TiO2 particles, the FT-IR test results showed that the samples of the low (NH2)2CO concentration group samples bonded less NH4+, thus leading to the higher photocatalytic activity. It had enlightenment role for optimizing the performance of photocatalytic materials.

  3. Plasma and serum serotonin concentrations and surface-bound platelet serotonin expression in Cavalier King Charles Spaniels with myxomatous mitral valve disease.

    PubMed

    Cremer, Signe E; Kristensen, Annemarie T; Reimann, Maria J; Eriksen, Nynne B; Petersen, Stine F; Marschner, Clara B; Tarnow, Inge; Oyama, Mark A; Olsen, Lisbeth H

    2015-06-01

    To investigate serum and plasma serotonin concentrations, percentage of serotonin-positive platelets, level of surface-bound platelet serotonin expression (mean fluorescence intensity [MFI]), and platelet activation (CD62 expression) in platelet-rich plasma from Cavalier King Charles Spaniels with myxomatous mitral valve disease (MMVD). Healthy dogs (n = 15) and dogs with mild MMVD (18), moderate-severe MMVD (19), or severe MMVD with congestive heart failure (CHF; 10). Blood samples were collected from each dog. Serum and plasma serotonin concentrations were measured with an ELISA, and surface-bound platelet serotonin expression and platelet activation were determined by flow cytometry. Dogs with mild MMVD had higher median serum (746 ng/mL) and plasma (33.3 ng/mL) serotonin concentrations, compared with MMVD-affected dogs with CHF (388 ng/mL and 9.9 ng/mL, respectively), but no other group differences were found. Among disease groups, no differences in surface-bound serotonin expression or platelet activation were found. Thrombocytopenic dogs had lower serum serotonin concentration (482 ng/mL) than nonthrombocytopenic dogs (731 ng/mL). In 26 dogs, a flow cytometry scatterplot subpopulation (FSSP) of platelets was identified; dogs with an FSSP had a higher percentage of serotonin-positive platelets (11.0%), higher level of surface-bound serotonin expression (MFI, 32,068), and higher platelet activation (MFI, 2,363) than did dogs without an FSSP (5.7%, 1,230, and 1,165, respectively). An FSSP was present in 93.8% of thrombocytopenic dogs and in 29.5% of nonthrombocytopenic dogs. A substantive influence of circulating serotonin on MMVD stages prior to CHF development in Cavalier King Charles Spaniels was not supported by the study findings. An FSSP of highly activated platelets with pronounced serotonin binding was strongly associated with thrombocytopenia but not MMVD.

  4. Protein-Nanoparticle Interactions: Improving Immobilized Lytic Enzyme Activity and Surface Energy Effects

    NASA Astrophysics Data System (ADS)

    Downs, Emily Elizabeth

    Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, G. M.; Vaughan, Janet; Williamson, Margaret

    Characteristics of bone surfaces are discussed in relation to the uptake of bone-seeking isotopes. The alkaline earths are concentrated behind the osteoid border of active surfaces. Yttrium, americium, and plutonium are concentrated on quiescent and resorbing surfaces; traces only occur in and beneath the osteoid border. In view of evidence of mucoproteins at sites where the latter elemerts are found in concentration, a separation of the mucoproteins in cortical bone was undertaken. Mucosubstances have been isolated which give the same reaction with certain reagents as the bone surfaces in question. One of these, a sialoprotein, might be expected, in viewmore » of its acidic nature, to be capable of metal binding.« less

  6. Surface-active ionic liquids for palladium-catalysed cross coupling in water: effect of ionic liquid concentration on the catalytically active species† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra07757b

    PubMed Central

    Taskin, Meltem; Cognigni, Alice; Zirbs, Ronald; Reimhult, Erik

    2017-01-01

    We report the design and synthesis of surface-active ionic liquids for application in palladium-catalyzed cross coupling reactions. A series of dodecylimidazolium-based ionic liquids were applied as additives in the Heck reaction of ethyl acrylate and iodobenzene, and high yields of >90% could be obtained in water without the addition of further ligands. Our results indicate that the ionic liquid concentration in water is the key factor affecting the formation of the catalytically active species and hence the yield. Moreover, imidazolium-based ionic liquids that are able to form a carbene species differ significantly from conventional cationic surfactants, as a concentration dependent formation of the N-heterocyclic carbene complex was observed. PMID:29308189

  7. Surface effects and desorption of tetracycline supramolecular complex on bovine dentine.

    PubMed

    Pataro, A L; Franco, C F; Santos, V R; Cortés, M E; Sinisterra, R D

    2003-03-01

    The aim of this in vitro study was to evaluate the antimicrobial activity, the substantivity, and surface effects of the inclusion compound tetracycline: beta-cyclodextrin on bovine roots. The antimicrobial activity was assessed by dentine slabs which had been immersed in the inclusion complex in concentrations 8.0%, 4.0%, 2.0%, 1.0%, 0.5% and 0.25% for 5min compared to a control of tetracycline hydrochloride. Each slab was tested in a broth of overnight culture of Actinobacillus actinomycetemcomitans (Y4-FDC). The inclusion complex significantly inhibited the A. actinomycetemcomitans (p<0.01) verified at concentrations from 1.0% to 8.0%. The substantivity of tetracycline was evaluated by the measure of desorption from the slabs previously immersed in solution samples and removed at 24h intervals. The tetracycline encapsulated in beta-cyclodextrin showed a flow rate near to zero order in comparison to free tetracycline. The surface morphology determined by SEM showed a more homogeneous and integrated layer with the complex compared to the effect of free tetracycline. We concluded that the root surfaces treated with tetracycline: beta-cyclodextrin release lower concentrations of active drug over 5 days at inhibitory concentrations against A. actinomycetemcomitans with enhanced disponibility in comparison to tetracycline.

  8. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  9. Competitive Adsorption between Nanoparticles and Surface Active Ions for the Oil-Water Interface.

    PubMed

    Hua, Xiaoqing; Bevan, Michael A; Frechette, Joelle

    2018-04-24

    Nanoparticles (NPs) can add functionality (e.g., catalytic, optical, rheological) to an oil-water interface. Adsorption of ∼10 nm NPs can be reversible; however, the mechanisms for adsorption and its effects on surface pressure remain poorly understood. Here we demonstrate how the competitive reversible adsorption of NPs and surfactants at fluid interfaces can lead to independent control of both the adsorbed amount and surface pressure. In contrast to prior work, both species investigated (NPs and surfactants) interact reversibly with the interface and without the surface active species binding to NPs. Independent measurements of the adsorption and surface pressure isotherms allow determination of the equation of state (EOS) of the interface under conditions where the NPs and surfactants are both in dynamic equilibrium with the bulk phase. The adsorption and surface pressure measurements are performed with gold NPs of two different sizes (5 and 10 nm), at two pH values, and across a wide concentration range of surfactant (tetrapentylammonium, TPeA + ) and NPs. We show that free surface active ions compete with NPs for the interface and give rise to larger surface pressures upon the adsorption of NPs. Through a competitive adsorption model, we decouple the contributions of NPs wetting at the interface and their surface activity on the measured surface pressure. We also demonstrate reversible control of adsorbed amount via changes in the surfactant concentration or the aqueous phase pH.

  10. Feedback mechanisms between snow and atmospheric mercury: Results and observations from field campaigns on the Antarctic plateau.

    PubMed

    Spolaor, Andrea; Angot, Hélène; Roman, Marco; Dommergue, Aurélien; Scarchilli, Claudio; Vardè, Massimiliano; Del Guasta, Massimo; Pedeli, Xanthi; Varin, Cristiano; Sprovieri, Francesca; Magand, Olivier; Legrand, Michel; Barbante, Carlo; Cairns, Warren R L

    2018-04-01

    The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less

  12. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces.

    PubMed

    Park, Won-Kyu; Chung, Jin-Woo; Kim, Young-Ku; Chung, Sung-Chang; Kho, Hong-Seop

    2006-10-01

    The purpose of this study was to investigate the influence of animal mucins on lysozyme activity in solution and on the surface of hydroxyapatite (HA) beads. The effects of animal mucins on lysozyme activity in solution were examined by incubating porcine gastric mucin (PGM) or bovine submaxillary mucin (BSM) with hen egg-white lysozyme (HEWL) or salivary samples. HA-immobilised animal mucins or lysozyme were used to determine the influence of animal mucins on lysozyme activity on HA surfaces. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Protein concentration was determined by ninhydrin assay. PGM inhibited the activity of HEWL and salivary lysozyme in solution. The amount of inhibition was dependent on mucin concentration, incubation time and temperature, and the structural integrity of the mucin. The inhibition of salivary lysozyme activity by PGM was greater in submandibular/sublingual saliva than in parotid saliva. The inhibition of lysozyme activity by PGM was markedly dependent on pH. However, BSM did not inhibit the in-solution lysozyme activities of HEWL and clarified saliva. Both PGM and BSM bound to HA surfaces, and HA-adsorbed animal mucins increased the subsequent adsorption of lysozyme. When HA beads were exposed to a mixture of HEWL and PGM or BSM, lysozyme activity on the HA surfaces was significantly increased. The results suggest that animal mucins affect lysozyme activity, and the effects are different on HA surfaces compared with in solution. Further research is needed to determine the effect of animal mucins on lysozyme activity in vivo.

  13. Comparison of the virucidal efficacy of peracetic acid, potassium monopersulphate and sodium hypochlorite on bacteriophages P001 and MS2.

    PubMed

    Morin, T; Martin, H; Soumet, C; Fresnel, R; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P

    2015-09-01

    The phagicidal activity of peroxy products against the virulent bacteriophage P001 infecting lactic acid bacteria and bacteriophage MS2 used as a surrogate of enteric viruses (EVs) was evaluated and compared to sodium hypochlorite using the EN 13610 European suspension test and a surface test developed in our laboratories. Infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference P001 phage of Lactoccocus lactis and F-specific RNA phage MS2 of Escherichia coli in conditions simulating practical use. Similar concentrations of sodium hypochlorite were phagicidal against both bacteriophages, either at 0·05-0·125% of active chlorine using the suspension test or at 0·12-0·5% using the surface test. For Potassium monopersulphate (MPS), phagicidal concentrations varied from 0·006 to 0·012% whatever the type of test and phages. However, for peracetic acid products (PAP) used in suspension, concentrations 55 times higher were necessary against MS2 (0·271%) than against P001 (0·005%). With the surface test, 0·089-0·178% concentrations of PAP were effective against MS2, but these concentrations were 16-32 times greater than needed against P001. Sodium hypochlorite and MPS had similar phagicidal activities against P001 and MS2, but PAP did not. This is the first comparative study to investigate through suspension and surface tests the difference in resistance to peroxy compounds between a reference bacteriophage (P001) used to evaluate phagicidal concentrations in European standards and a surrogate of EVs (MS2). Results underline the importance of validation tests on pertinent surrogates of viruses or bacteriophages to adjust the concentration of disinfectants for use in the food and water industries. © 2015 The Society for Applied Microbiology.

  14. Improvement in LPG sensing response by surface activation of ZnO thick films with Cr2O3

    NASA Astrophysics Data System (ADS)

    Hastir, Anita; Virpal, Kaur, Jasmeet; Singh, Gurpreet; Kohli, Nipin; Singh, Onkar; Singh, Ravi Chand

    2015-05-01

    Liquefied Petroleum Gas (LPG) sensing response of pure and Cr2O3 activated ZnO has been investigated in this study. Zinc oxide was synthesized by co-precipitation route and deposited as a thick film on an alumina substrate. The surface of ZnO sensor was activated by chromium oxide on surface oxidation by chromium chloride. The concentration of chromium chloride solution used to activate the ZnO sensor surface has been varied from 0 to 5 %. It is observed that response to LPG has improved as compared to pure ZnO.

  15. Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity

    NASA Astrophysics Data System (ADS)

    Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.

    2018-03-01

    Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.

  16. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  17. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  18. Surface Colonization and Activity of the 2,6-Dichlorobenzamide (BAM) Degrading Aminobacter sp. Strain MSH1 at Macro- and Micropollutant BAM Concentrations.

    PubMed

    Sekhar, Aswini; Horemans, Benjamin; Aamand, Jens; Sørensen, Sebastian R; Vanhaecke, Lynn; Bussche, Julie Vanden; Hofkens, Johan; Springael, Dirk

    2016-09-20

    Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as a C and N source and is a potential catalyst for biotreatment of BAM-contaminated groundwater in filtration units of drinking water treatment plants (DWTPs). The oligotrophic environment of DWTPs including trace pollutant concentrations, and the high flow rates impose challenges for micropollutant biodegradation in DWTPs. To understand how trace BAM concentrations affect MSH1 surface colonization and BAM degrading activity, MSH1 was cultivated in flow channels fed continuously with BAM macro- and microconcentrations in a N- and C-limiting medium. At all BAM concentrations, MSH1 colonized the flow channel. BAM degradation efficiencies were concentration-dependent, ranging between 70 and 95%. Similarly, BAM concentration affected surface colonization, but at 100 μg/L BAM and lower, colonization was similar to that in systems without BAM, suggesting that assimilable organic carbon and nitrogen other than those supplied by BAM sustained colonization at BAM microconcentrations. Comparison of specific BAM degradation rates in flow channels and in cultures of suspended freshly grown cells indicated that starvation conditions in flow channels receiving BAM microconcentrations resulted into MSH1 biomasses with 10-100-times reduced BAM degrading activity and provided a kinetic model for predicting BAM degradation under continuous C and N starvation.

  19. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    PubMed Central

    Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.

    2012-01-01

    The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665

  20. Microelectrophoretic study of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1987-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopolysaccharides have greater affinity for the COM surface than the proteins. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  1. Overcoming non-specific binding to measure the active concentration and kinetics of serum anti-HLA antibodies by surface plasmon resonance.

    PubMed

    Visentin, Jonathan; Couzi, Lionel; Dromer, Claire; Neau-Cransac, Martine; Guidicelli, Gwendaline; Veniard, Vincent; Coniat, Karine Nubret-le; Merville, Pierre; Di Primo, Carmelo; Taupin, Jean-Luc

    2018-06-07

    Human leukocyte antigen (HLA) donor-specific antibodies are key serum biomarkers for assessing the outcome of transplanted patients. Measuring their active concentration, i.e. the fraction that really interacts with donor HLA, and their affinity could help deciphering their pathogenicity. Surface plasmon resonance (SPR) is recognized as the gold-standard for measuring binding kinetics but also active concentrations, without calibration curves. SPR-based biosensors often suffer from non-specific binding (NSB) occurring with the sensor chip surface and the immobilized targets, especially for complex media such as human serum. In this work we show that several serum treatments such as dialysis or IgG purification reduce NSB but insufficiently for SPR applications. We then demonstrate that the NSB contribution to the SPR signal can be eliminated to determine precisely and reliably the active concentration and the affinity of anti-HLA antibodies from patients' sera. This was achieved even at concentrations close to the limit of quantification of the method, in the 0.5-1 nM range. The robustness of the assay was demonstrated by using a wide range of artificially generated NSB and by varying the density of the targets captured onto the surface. The assay is of general interest and can be used with molecules generating strong NSB, as far as a non-cognate target structurally close to the target can be captured on the same flow cell, in a different binding cycle. Compared with current fluorescence-based methods that are semi-quantitative, we expect this SPR-based assay to help better understanding anti-HLA antibodies pathogenicity and improving organ recipients' management. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Complete Analytical Screening Identifies the Real Pesticide Contamination of Surface Waters

    NASA Astrophysics Data System (ADS)

    Moschet, Christoph; Wittmer, Irene; Simovic, Jelena; Junghans, Marion; Singer, Heinz; Stamm, Christian; Leu, Christian; Hollender, Juliane

    2014-05-01

    A comprehensive assessment of pesticides in surface waters is challenging due to the large number of potential contaminants. In Switzerland for example, roughly 500 active ingredients are registered as either plant protection agent (PPA) or as biocide. In addition, an unlimited number of transformations products (TPs) can enter or be formed in surfaced waters. Most scientific publications or regulatory monitoring authorities have implemented 15-40 pesticides in their analytics. Only a few TPs are normally included. Interpretations of the surface water quality based on these subsets remains error prone. In the presented study, we carried out a nearly complete analytical screening covering 86% of all polar organic pesticides (from agricultural and urban sources) in Switzerland (300 substances) and 134 TPs with limits of quantification in the low ng/L range. The comprehensive pesticide screening was conducted by liquid-chromatography coupled to high-resolution tandem mass spectrometry. Five medium-sized rivers (Strahler stream order 3-4, catchment size 35-105 km2), containing high percentiles of diverse crops, orchards and urban settlements in their catchments, were sampled from March till July 2012. Nine subsequent time-proportional bi-weekly composite samples were taken in order to quantify average concentrations. In total, 104 different active ingredients could be detected in at least one of the five rivers. Thereby, 82 substances were only registered as PPA, 20 were registered as PPA and as biocide and 2 were only registered as biocide. Within the PPAs, herbicides had the most frequent detections and the highest concentrations, followed by fungicides and insecticides. Most concentrations were found between 1 and 50 ng/L; however 31 substances (mainly herbicides) had concentrations above 100 ng/L and 3 herbicides above 1000 ng/L. It has to be noted that the measured concentrations are average concentrations over two weeks in medium sized streams and that maximum concentrations, especially in smaller streams, can be much higher. In each sample, between 30-50 pesticides were detected and the concentration sum of all active ingredients exceeded 1000 ng/L in 78% of the samples. Forty of the 134 investigated TPs could be detected in all the five rivers. As for the active ingredients, herbicide TPs dominated the detection frequency and the concentration range. Twelve TPs exceeded 100 ng/L in at least one sample. Between 15 and 25 TPs were detected in each sample, and 35% of all samples had a concentration sum of more than 1000 ng/L. The comparison of the measured concentrations of the parent compounds with chronic environmental quality standards (AA-EQS), revealed that 70% of all surface water samples exceeded at least one of them; in some samples up to seven AA-EQS exceedances were observed. In total, 19 substances (mainly herbicides and insecticides) exceeded critical concentrations in at least one sample. The conducted study showed that the investigated medium-sized rivers were exposed to a large number of pesticides and TPs over the whole sampling period. For a correct assessment of the surface water quality, it is therefore crucial to measure as many pesticides as possible in order to get the real contamination of pesticides in surface waters.

  4. Improving the surface properties of municipal solid waste-derived pyrolysis biochar by chemical and thermal activation: Optimization of process parameters and environmental application.

    PubMed

    Genuino, Divine Angela D; de Luna, Mark Daniel G; Capareda, Sergio C

    2018-02-01

    Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.8 ± 12.5 to 662.4 ± 28.6 m 2  g -1 . The adsorptive capacities of the pristine biochar (PBC) and activated biochar (ABC) were compared using methylene blue (MB) dye as model compound. For MB concentrations up to 25 mg L -1 , more than 99% dye removal was achieved with ABC, while only a maximum of 51% was obtained with PBC. Results of the isotherm study showed that the Langmuir model best described MB adsorption on ABC with adsorption capacity of 37.0-41.2 mg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    PubMed

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  7. Time lag between the tropopause height and the levels of 7Be concentration in near surface air

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Vasileiadis, A.; Melas, D.

    2012-04-01

    The concentration of 7Be at near surface air has been determined over 2009, a year of a deep solar minimum, in the region of Thessaloniki, Greece at 40°62' N, 22°95'E. In geomagnetic latitudes over 40° N, the elevation of the tropopause during the warm summer months and the vertical exchange of air masses within the troposphere cause greater mixture of the air masses resulting in higher concentration levels for 7Be in surface air. The positive correlation between the monthly activity concentration of 7Be and the tropopause height (0.94, p < 0.0001), and also between 7Be concentration and the temperature T (°C) (R = 0.97, p < 0.001), confirm that the increased rate of vertical transport within the troposphere, especially during warmer summer months, has as a result the descent to surface of air masses enriched in 7Be. However, the 7Be concentration levels in near surface air are not expected to respond immediately to the change of elevation of the tropopause. It was found that there's a time lag of ~ 3 days between the change in the daily surface concentrations of 7Be the change in the elevation of the tropopause.

  8. Solute-mediated interactions between active droplets

    NASA Astrophysics Data System (ADS)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  9. Thiol-Capped Gold Nanoparticles Swell-Encapsulated into Polyurethane as Powerful Antibacterial Surfaces Under Dark and Light Conditions

    PubMed Central

    Macdonald, Thomas J.; Wu, Ke; Sehmi, Sandeep K.; Noimark, Sacha; Peveler, William J.; du Toit, Hendrik; Voelcker, Nicolas H.; Allan, Elaine; MacRobert, Alexander J.; Gavriilidis, Asterios; Parkin, Ivan P.

    2016-01-01

    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions. PMID:27982122

  10. Radionuclide activities and metal concentrations in sediments of the Sebou Estuary, NW Morocco, following a flooding event.

    PubMed

    Laissaoui, A; Mas, J L; Hurtado, S; Ziad, N; Villa, M; Benmansour, M

    2013-06-01

    This study presents metal concentrations (Fe, Mg, Mn, Co, Cu, Zn, Pb, As, Sr and V) and radionuclide activities ((40)K, (137)Cs, (210)Pb, (226)Ra, (228)Ac, (234)Th and (212)Pb) in surface deposits and a sediment core from the Sebou Estuary, Northwest Morocco. Samples were collected in April 2009, about 2 months after a flooding event, and analysed using a well-type coaxial gamma-ray detector and inductively coupled plasma-quadrupole mass spectrometry. Activities of radionuclides and concentrations of almost all elements in surface samples displayed only moderate spatial variation, suggesting homogenous deposition of eroded local soil in response to intense precipitation. Excess (210)Pb displayed relatively constant activity throughout the sediment core, preventing dating and precluding determination of the historical accumulation rates of pollutants at the core site. Some elements showed non-systematic trends with depth and displayed local maxima and minima. Other elements presented relatively systematic concentration trends or relatively constant levels with discrete maxima and/or minima. Except for Mn, Sr and Cr, all metal concentrations in sediment were below levels typical of polluted systems, suggesting little human impact or losses of metals from sediment particles.

  11. Response surface modeling of acid activation of raw diatomite using in sunflower oil bleaching by: Box-Behnken experimental design.

    PubMed

    Larouci, M; Safa, M; Meddah, B; Aoues, A; Sonnet, P

    2015-03-01

    The optimum conditions for acid activation of diatomite for maximizing bleaching efficiency of the diatomite in sun flower oil treatment were studied. Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed to obtain the optimum conditions of three independent variables (acid concentration, activation time and solid to liquid) for acid activation of diatomite. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95 % confidence limits (α = 0.05). The optimum values of the selected variables were obtained by solving the quadratic regression model, as well as by analyzing the response surface contour plots. The experimental conditions at this global point were determined to be acid concentration = 8.963 N, activation time = 11.9878 h, and solid to liquid ratio = 221.2113 g/l, the corresponding bleaching efficiency was found to be about 99 %.

  12. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide.

    PubMed

    Freitas, Sidónio C; Maia, Sílvia; Figueiredo, Ana C; Gomes, Paula; Pereira, Pedro J B; Barbosa, Mário A; Martins, M Cristina L

    2014-03-01

    Blood-contacting medical devices have been associated with severe clinical complications, such as thrombus formation, triggered by the activation of the coagulation cascade due to the adsorption of certain plasma proteins on the surface of biomaterials. Hence, the coating of such surfaces with antithrombotic agents has been used to increase biomaterial haemocompatibility. Biomaterial-induced clotting may also be decreased by albumin adsorption from blood plasma in a selective and reversible way, since this protein is not involved in the coagulation cascade. In this context, this paper reports that the immobilization of the thrombin inhibitor D-Phe-Pro-D-Arg-D-Thr-CONH2 (fPrt) onto nanostructured surfaces induces selective and reversible adsorption of albumin, delaying the clotting time when compared to peptide-free surfaces. fPrt, synthesized with two glycine residues attached to the N-terminus (GGfPrt), was covalently immobilized onto self-assembled monolayers (SAMs) having different ratios of carboxylate-hexa(ethylene glycol)- and tri(ethylene glycol)-terminated thiols (EG6-COOH/EG3) that were specifically designed to control GGfPrt orientation, exposure and density at the molecular level. In solution, GGfPrt was able to inactivate the enzymatic activity of thrombin and to delay plasma clotting time in a concentration-dependent way. After surface immobilization, and independently of its concentration, GGfPrt lost its selectivity to thrombin and its capacity to inhibit thrombin enzymatic activity against the chromogenic substrate n-p-tosyl-Gly-Pro-Arg-p-nitroanilide. Nevertheless, surfaces with low concentrations of GGfPrt could delay the capacity of adsorbed thrombin to cleave fibrinogen. In contrast, GGfPrt immobilized in high concentrations was found to induce the procoagulant activity of the adsorbed thrombin. However, all surfaces containing GGfPrt have a plasma clotting time similar to the negative control (empty polystyrene wells), showing resistance to coagulation, which is explained by its capacity to adsorb albumin in a selective and reversible way. This work opens new perspectives to the improvement of the haemocompatibility of blood-contacting medical devices. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan,S.; Ward, R.; Hexemer, A.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  14. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency.

    PubMed

    Kong, Ming; Li, Yuanzhi; Chen, Xiong; Tian, Tingting; Fang, Pengfei; Zheng, Feng; Zhao, Xiujian

    2011-10-19

    TiO(2) nanocrystals with tunable bulk/surface defects were synthesized and characterized with TEM, XRD, BET, positron annihilation, and photocurrent measurements. The effect of defects on photocatalytic activity was studied. It was found for the first time that decreasing the relative concentration ratio of bulk defects to surface defects in TiO(2) nanocrystals could significantly improve the separation efficiency of photogenerated electrons and holes, thus significantly enhancing the photocatalytic efficiency.

  15. Wide-range radioactive-gas-concentration detector

    DOEpatents

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  16. Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters.

    PubMed

    Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J

    2005-09-01

    Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.

  17. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  18. Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes

    DOE PAGES

    Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...

    2016-01-01

    Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less

  19. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  20. The electrokinetic behavior of calcium oxalate monohydrate in macromolecular solutions

    NASA Technical Reports Server (NTRS)

    Curreri, P. A.; Onoda, G. Y., Jr.; Finlayson, B.

    1988-01-01

    Electrophoretic mobilities were measured for calcium oxalate monohydrate (COM) in solutions containing macromolecules. Two mucopolysaccharides (sodium heparin and chrondroitin sulfate) and two proteins (positively charged lysozyme and negatively charged bovine serum albumin) were studied as adsorbates. The effects of pH, calcium oxalate surface charge (varied by calcium or oxalate ion activity), and citrate concentration were investigated. All four macromolecules showed evidence for chemical adsorption. The macromolecule concentrations needed for reversing the surface charge indicated that the mucopopolysacchrides have greater affinity for the COM surface than the proteins. The amount of proteins that can chemically adsorb appears to be limited to approximately one monomolecular layer. When the surface charge is high, an insufficient number of proteins can chemically adsorb to neutralize or reverse the surface charge. The remaining surface charge is balanced by proteins held near the surface by longer range electrostatic forces only. Citrate ions at high concentrations appear to compete effectively with the negative protein for surface sites but show no evidence for competing with the positively charged protein.

  1. Adsorption of 6-mercaptopurine and 6-mercaptopurine riboside on silver colloid: a pH dependent surface enhanced Raman spectroscopy and density functional theory study. Part I. 6-Mercaptopurine

    NASA Astrophysics Data System (ADS)

    Szeghalmi, A. V.; Leopold, L.; Pînzaru, S.; Chis, V.; Silaghi-Dumitrescu, I.; Schmitt, M.; Popp, J.; Kiefer, W.

    2005-02-01

    Surface enhanced Raman spectroscopy (SERS) on silver colloid has been applied to characterize the interaction of 6-mercaptopurine (6MP), an active drug used in chemotherapy of acute lymphoblastic leukemia, with a model biological substrate at therapeutical concentrations and as function of the pH value. The adsorption active sites and molecular orientation on the metal surface have been determined on the basis of SERS 'surface selection rules' subsequent to a detailed vibrational analysis of the 6MP tautomeric forms. Therefore, DFT calculations (vibrational wavenumbers, Raman scattering activities, partial atomic charges) of the optimized tautomers and potential energy distribution calculations have been performed. Around neutral pH value reorientation of the molecule has been observed. Under basic conditions the 6MP molecule is probably adsorbed on the silver colloid through the N1 atom of the purine ring and possibly the S atom, and adopts a tilted orientation to the surface. A reduction in the number of adsorbed molecules under basic conditions is proposed, since the SERS spectrum recorded at 10-6 M concentration at neutral pH value resembles the SERS spectra obtained under basic conditions at 10-5 M concentration. At acidic pH values a stronger interaction through the N9 and N3 atoms is suggested with an end-on orientation.

  2. Surface Dilution Kinetics Using Substrate Analog-Enantiomers as Diluents: Enzymatic Lipolysis by Bee-Venom Phospholipase A2

    PubMed Central

    Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph

    2010-01-01

    A novel assay employing D-enantiomers of phospholipids as diluents for characterizing surface kinetics of lipid hydrolysis by phospholipases is introduced. The rationale of the method are: (i) D-enantiomers resist hydrolysis because of the stereoselectivity of the enzymes toward L-enantiomers and (ii) mixtures of L+D-lipids at various L:D ratios but constant L+D-lipid concentrations yield a surface dilution series of variable L-lipid concentration with constant medium properties. Kinetic characterization of bee-venom phospholipase A2 activity at bile salt + phospholipid aggregate-water interfaces was performed using the mixed L+D-lipid surface dilution assay and interface kinetic parameters were obtained. The assay applies to bio-membrane models as well. Activity was measured by pH-Stat methods. Aggregation numbers and interface hydration/microviscosity measured by time resolved fluorescence quenching and electron spin resonance respectively confirmed that interface properties were indeed invariant in a surface dilution series, supporting rationale (ii) and were used to calculate substrate concentrations. Activity data show excellent agreement with a kinetic model derived with D-enantiomers as diluents and also that D-phospholipids bind to the enzyme but resist hydrolysis; underscoring rationale (i). The assay is significant to enabling determination of interface specific kinetic parameters for the first time and thereby characterization of interface specificity of lipolytic enzymes. PMID:20727845

  3. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  4. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic repulsion between the multilayered polymer coils which results in breakdown of the layer.

  5. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    PubMed

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Surfactant Behavior of Sodium Dodecylsulfate in Deep Eutectic Solvent Choline Chloride/Urea.

    PubMed

    Arnold, T; Jackson, A J; Sanchez-Fernandez, A; Magnone, D; Terry, A E; Edler, K J

    2015-12-01

    Deep eutectic solvents (DES) resemble ionic liquids but are formed from an ionic mixture instead of being a single ionic compound. Here we present some results that demonstrate that surfactant sodium dodecyl sulfate (SDS) remains surface-active and shows self-assembly phenomena in the most commonly studied DES, choline chloride/urea. X-ray reflectivity (XRR) and small angle neutron scattering (SANS) suggest that the behavior is significantly different from that in water. Our SANS data supports our determination of the critical micelle concentration using surface-tension measurements and suggests that the micelles formed in DES do not have the same shape and size as those seen in water. Reflectivity measurements have also demonstrated that the surfactants remain surface-active below this concentration.

  7. Correlation of emotional labor and cortisol concentration in hair among female kindergarten teachers.

    PubMed

    Qi, Xingliang; Ji, Shuang; Zhang, Jing; Lu, Wanyong; Sluiter, Judith K; Deng, Huihua

    2017-01-01

    The purpose of this study was to explore whether two types of emotional labor, surface acting and deep acting, are related to hair cortisol concentration among kindergarten teachers. Surface acting and deep acting over the last month were measured with the Chinese version of the emotional labor scale in 43 kindergarten teachers. Hair samples with 1 cm in length were cut from their posterior vertex region to represent cortisol excretion over one month. Cortisol concentrations were analyzed with high-performance liquid chromatography-tandem mass spectrometry. Positive association of emotion labor with hair cortisol concentration was significant for surface acting (r = 0.34, p < 0.05) and not significant for deep acting (r = 0.14, p > 0.05). More surface acting showed to be associated stronger with stress responses or higher HPA axis activity.

  8. [Diurnal and seasonal variations of surface atmospheric CO2 concentration in the river estuarine marsh].

    PubMed

    Zhang, Lin-Hai; Tong, Chuan; Zeng, Cong-Sheng

    2014-03-01

    Characteristics of diurnal and seasonal variations of surface atmospheric CO2 concentration were analyzed in the Minjiang River estuarine marsh from December 2011 to November 2012. The results revealed that both the diurnal and seasonal variation of surface atmospheric CO2 concentration showed single-peak patterns, with the valley in the daytime and the peak value at night for the diurnal variations, and the maxima in winter and minima in summer for the seasonal variation. Diurnal amplitude of CO2 concentration varied from 16.96 micromol x mol(-1) to 38.30 micromol x mol(-1). The seasonal averages of CO2 concentration in spring, summer, autumn and winter were (353.74 +/- 18.35), (327.28 +/- 8.58), (354.78 +/- 14.76) and (392.82 +/- 9.71) micromol x mol(-1), respectively, and the annual mean CO2 concentration was (357.16 +/- 26.89) micromol x mol(-1). The diurnal CO2 concentration of surface atmospheric was strongly negatively correlated with temperature, wind speed, photosynthetically active radiation and total solar radiation (P < 0.05). The diurnal concentration of CO2 was negatively related with tidal level in January, but significantly positively related in July.

  9. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro

    PubMed Central

    Ha, Shin-Woo; Sikorski, James A.; Weitzmann, M. Neale; Beck, George R.

    2014-01-01

    Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ~50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. PMID:24333519

  10. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    PubMed

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  11. Analysis of concentric and eccentric contractions in biceps brachii muscles using surface electromyography signals and multifractal analysis.

    PubMed

    Marri, Kiran; Swaminathan, Ramakrishnan

    2016-06-23

    Muscle contractions can be categorized into isometric, isotonic (concentric and eccentric) and isokinetic contractions. The eccentric contractions are very effective for promoting muscle hypertrophy and produce larger forces when compared to the concentric or isometric contractions. Surface electromyography signals are widely used for analyzing muscle activities. These signals are nonstationary, nonlinear and exhibit self-similar multifractal behavior. The research on surface electromyography signals using multifractal analysis is not well established for concentric and eccentric contractions. In this study, an attempt has been made to analyze the concentric and eccentric contractions associated with biceps brachii muscles using surface electromyography signals and multifractal detrended moving average algorithm. Surface electromyography signals were recorded from 20 healthy individuals while performing a single curl exercise. The preprocessed signals were divided into concentric and eccentric cycles and in turn divided into phases based on range of motion: lower (0°-90°) and upper (>90°). The segments of surface electromyography signal were subjected to multifractal detrended moving average algorithm, and multifractal features such as strength of multifractality, peak exponent value, maximum exponent and exponent index were extracted in addition to conventional linear features such as root mean square and median frequency. The results show that surface electromyography signals exhibit multifractal behavior in both concentric and eccentric cycles. The mean strength of multifractality increased by 15% in eccentric contraction compared to concentric contraction. The lowest and highest exponent index values are observed in the upper concentric and lower eccentric contractions, respectively. The multifractal features are observed to be helpful in differentiating surface electromyography signals along the range of motion as compared to root mean square and median frequency. It appears that these multifractal features extracted from the concentric and eccentric contractions can be useful in the assessment of surface electromyography signals in sports medicine and training and also in rehabilitation programs. © IMechE 2016.

  12. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern

    USGS Publications Warehouse

    Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.

    2015-01-01

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.

  13. Biphasic regulation of polymorphonuclear leukocyte spreading by polyphenolic compounds with pyrogallol moieties.

    PubMed

    Kori, Soichiro; Namiki, Hideo; Suzuki, Kingo

    2009-09-01

    Green tea polyphenols have been reported to have anti-inflammatory activities, although the molecular mechanisms responsible for this effect remain unclear. In the present study, we examined the effect of green tea extract and a variety of polyphenolic compounds on spreading of peripheral blood polymorphonuclear leukocytes (PMNs) over fibrinogen-coated surfaces. Green tea extract exerted a biphasic effect on PMN spreading; it induced or suppressed spreading at low and high concentrations, respectively. We also found that pyrogallol-bearing compounds have spreading induction activity. Among the compounds tested, tannic acid (TA) had the strongest activity; the concentrations required for induction of maximal spreading were 2 microM for TA, 200 microM for (-)-epigallocatechin gallate, and 2000 microM for the other active compounds. Furthermore, TA was the only compound showing a biphasic effect similar to that of green tea extract; TA at 20 or 200 microM suppressed spreading. The spreading-stimulatory signal was still latent during PMN exposure to TA at concentrations that inhibited spreading, because the pre-exposed PMNs underwent spreading when plated after removal of free TA by centrifugation. The spreading-inhibitory effect of TA at high concentrations overcame the induction of spreading by other stimuli, including phorbol 12-myristate 13-acetate, hydrogen peroxide, denatured fibrinogen surfaces, and naked plastic surfaces. These results suggest that TA as well as green tea extract is bi-functional, having pro-inflammatory and anti-inflammatory effects at low and high concentrations, respectively. Pharmacological use of TA may thus provide new strategies aimed at regulation of PMN spreading for control of inflammation.

  14. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    PubMed

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  15. Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium

    PubMed Central

    Hayashi, R.; Ueno, T.; Migita, S.; Tsutsumi, Y.; Doi, H.; Ogawa, T.; Hanawa, T.; Wakabayashi, N.

    2014-01-01

    Although the reported percentage of bone-implant contact is far lower than 100%, the cause of such low levels of bone formation has rarely been investigated. This study tested the negative biological effect of hydrocarbon deposition onto titanium surfaces, which has been reported to be inevitable. Osteogenic MC3T3-E1 cells were cultured on titanium disks on which the carbon concentration was experimentally regulated to achieve carbon/titanium (C/Ti) ratios of 0.3, 0.7, and 1.0. Initial cellular activities such as cell attachment and cell spreading were concentration-dependently suppressed by the amount of carbon on the titanium surface. The osteoblastic functions of alkaline phosphatase activity and calcium mineralization were also reduced by more than 40% on the C/Ti (1.0) surface. These results indicate that osteoblast activity is influenced by the degree of hydrocarbon contamination on titanium implants and suggest that hydrocarbon decomposition before implant placement may increase the biocompatibility of titanium. PMID:24868012

  16. Surface ozone in the Lake Tahoe Basin

    Treesearch

    Joel D. Burley; Sandra Theiss; Andrzej Bytnerowicz; Alan Gertler; Susan Schilling; Barbara Zielinska

    2015-01-01

    Surface ozone (O3) concentrations were measured in and around the Lake Tahoe Basin using both active monitors (2010) and passive samplers (2002, 2010). The 2010 data from active monitors indicate average summertime diurnal maxima of approximately 50–55 ppb. Some site-to-site variability is observed within the Basin during the well-mixed hours of...

  17. Batch and column adsorption of herbicide fluroxypyr on different types of activated carbons from water with varied degrees of hardness and alkalinity.

    PubMed

    Pastrana-Martínez, L M; López-Ramón, M V; Fontecha-Cámara, M A; Moreno-Castilla, C

    2010-02-01

    There has been little research into the effects of the water hardness and alkalinity of surface waters on the adsorption of herbicides on activated carbons. The aim of this study was to determine the influence of these water characteristics on fluroxypyr adsorption on different activated carbons. At low fluroxypyr surface concentrations, the amount adsorbed from distilled water was related to the surface hydrophobicity. Surface area of carbons covered by fluroxypyr molecules ranged from 60 to 65%. Variations in fluroxypyr solubility with water hardness and alkalinity showed a salting-in effect. Calcium, magnesium and bicarbonate ions were adsorbed to a varied extent on the activated carbons. The presence of fluroxypyr in solution decreased their adsorption due to a competition effect. K(F) from the Freundlich equation linearly increased with water hardness due to salt-screened electrostatic repulsions between charged fluroxypyr molecules. The amount adsorbed from distilled water was largest at high fluroxypyr solution concentrations, because there was no competition between inorganic ions and fluroxypyr molecules. The column breakthrough volume and the amount adsorbed at breakthrough were smaller in tap versus distilled water. Carbon consumption was lower with activated carbon cloth than with the use of granular activated carbon. (c) 2009 Elsevier Ltd. All rights reserved.

  18. Widespread occurrence of neuro-active pharmaceuticals and metabolites in 24 Minnesota rivers and wastewaters

    USGS Publications Warehouse

    Writer, Jeffrey; Ferrer, Imma; Barber, Larry B.; Thurman, E. Michael

    2013-01-01

    Concentrations of 17 neuro-active pharmaceuticals and their major metabolites (bupropion, hydroxy-bupropion, erythro-hydrobupropion, threo-hydrobupropion, carbamazepine, 10,11,-dihydro-10,11,-dihydroxycarbamazepine, 10-hydroxy-carbamazepine, citalopram, N-desmethyl-citalopram, fluoxetine, norfluoxetine, gabapentin, lamotrigine, 2-N-glucuronide-lamotrigine, oxcarbazepine, venlafaxine and O-desmethyl-venlafaxine), were measured in treated wastewater and receiving surface waters from 24 locations across Minnesota, USA. The analysis of upstream and downstream sampling sites indicated that the wastewater treatment plants were the major source of the neuro-active pharmaceuticals and associated metabolites in surface waters of Minnesota. Concentrations of parent compound and the associated metabolite varied substantially between treatment plants (concentrations ± standard deviation of the parent compound relative to its major metabolite) as illustrated by the following examples; bupropion and hydrobupropion 700 ± 1000 ng L−1, 2100 ± 1700 ng L−1, carbamazepine and 10-hydroxy-carbamazepine 480 ± 380 ng L−1, 360 ± 400 ng L−1, venlafaxine and O-desmethyl-venlafaxine 1400 ± 1300 ng L−1, 1800 ± 2300 ng L−1. Metabolites of the neuro-active compounds were commonly found at higher or comparable concentrations to the parent compounds in wastewater effluent and the receiving surface water. Neuro-active pharmaceuticals and associated metabolites were detected only sporadically in samples upstream from the effluent outfall. Metabolite to parent ratios were used to evaluate transformation, and we determined that ratios in wastewater were much lower than those reported in urine, indicating that the metabolites are relatively more labile than the parent compounds in the treatment plants and in receiving waters. The widespread occurrence of neuro-active pharmaceuticals and metabolites in Minnesota effluents and surface waters indicate that this is likely a global environmental issue, and further understanding of the environmental fate and impacts of these compounds is warranted.

  19. Interference with the Mannose Binding and Epithelial Cell Adherence of Escherichia coli by Sublethal Concentrations of Streptomycin

    PubMed Central

    Eisenstein, Barry I.; Ofek, Itzhak; Beachey, Edwin H.

    1979-01-01

    When Escherichia coli was grown in sublethal concentrations of streptomycin, mannose binding activity and epithelial cell adherence of the E. coli cultures at stationary phase were significantly reduced in the drug-grown organisms. In a strain whose minimal inhibitory concentrations was 30 μg/ml, the percentage of reduction in mannose binding activity was dose related over a range of concentrations between 0.5 and 10 μg/ml streptomycin. Concomitant with the drug-induced suppression of mannose binding activity, antigenic and ultrastructural alterations on the surface of the drug-grown organisms were observed by agglutination tests and electron microscopy, respectively. The streptomycin effect was reversible, required actively growing organisms, and was most apparent in the early log-phase of growth. High doses of antibiotic were ineffective when added to cultures which had acquired mannose binding activity. An isogenic derivative with high-level resistance to streptomycin was obtained as a single-step mutation from the test E. coli strain. Whereas the isogenic mutant possessed mannose binding activity and adhering ability similar to the parent strain, it was resistant to the streptomycin-induced suppression of the two activities at enormous concentrations (up to 10,000 μg/ml) of streptomycin. Taken together the results suggest that the suppression of epithelial cell adherence and mannose binding activity of E. coli grown in sublethal concentrations of streptomycin is a result of classic mechanisms of drug action upon the bacterial ribosome. The results support the possibility that antibiotics may act through mechanisms other than inhibition of growth and bacterial killing to eradicate bacteria from mucosal surfaces. Images PMID:376556

  20. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification.

    PubMed

    Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L

    2007-03-06

    In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).

  1. Wide range radioactive gas concentration detector

    DOEpatents

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  2. Comparative Study of Surface-Active Properties and Antimicrobial Activities of Disaccharide Monoesters

    PubMed Central

    Zhang, Xi; Song, Fei; Taxipalati, Maierhaba; Wei, Wei; Feng, Fengqin

    2014-01-01

    The objective of this research was to determine the effect of sugar or fatty acid in sugar ester compounds on the surface-active properties and antimicrobial activities of these compounds. Disaccharides of medium-chain fatty acid monoesters were synthesized through transesterifications by immobilized lipase (Lipozyme TLIM) to yield nine monoesters for subsequent study. Their antimicrobial activities were investigated using three pathogenic microorganisms: Staphylococcus aureus, Escherichia coli O157:H7 and Candida albicans. Their surface-active properties including air–water surface tension, critical micelle concentration, and foaming and emulsion power and stability were also studied. The results showed that all of the tested monoesters were more effective against Staphylococcus aureus (Gram-positive bacterium) than against Escherichia coli O157:H7 (Gram-negative bacterium). The results demonstrated that the carbon chain length was the most important factor influencing the surface properties, whereas degree of esterification and hydrophilic groups showed little effect. PMID:25531369

  3. Comparison of the virucidal efficiency of peracetic acid, potassium monopersulfate and sodium hypochlorite on hepatitis A and enteric cytopathogenic bovine orphan virus.

    PubMed

    Martin, H; Soumet, C; Fresnel, R; Morin, T; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P

    2013-10-01

    The virucidal activity of peroxy-products was evaluated and compared with sodium hypochlorite using the EN 14675 European suspension test and a surface test developed in our laboratory. The classical approach on infectivity of viruses was complemented with a prospective approach on virus genomes. Both infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference bovine enterovirus type 1 [enteric cytopathogenic bovine orphan virus (ECBO)] and resistant hepatitis A virus (HAV) in conditions simulating practical use. Similar concentrations of active chlorine were virucidal against both viruses, either at 0·062% using the suspension test or at 0·50-1% using the surface test. However, for potassium monopersulfate and peracetic acid products, concentrations of approximately three times (3%) to 72 times (9%) higher were necessary against HAV than ECBO when determined with the suspension test. With the surface test, 4-8% peroxy-products were virucidal against HAV, either 16 times more peroxy-products concentrations than against ECBO. No significant impact on the targeted area of the viral genome measured by real-time RT-PCRs was obtained for ECBO and HAV suspensions treated with disinfectants, even with doses higher than the minimal virucidal concentrations. Sodium hypochlorite, but not peroxy-products, had similar activity against ECBO and HAV. No relation could be established between infectivity tests and genome destruction. This is the first comparative study that investigates with novel suspension and surface tests the reduction of infectivity and genome destruction of two resistant viruses by peroxy-compounds. The results and conclusions collected with European standards are discussed. © 2013 The Society for Applied Microbiology.

  4. Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin.

    PubMed

    Gobi, K Vengatajalabathy; Iwasaka, Hiroyuki; Miura, Norio

    2007-02-15

    A simple and rapid continuous-flow immunosensor based on surface plasmon resonance (SPR) has been developed for detection of insulin as low as 1 ng ml-1 (ppb) with a response time of less than 5 min. At first, a heterobifunctional oligo(ethyleneglycol)-dithiocarboxylic acid derivative (OEG-DCA) containing dithiol and carboxyl end groups was used to functionalize the thin Au-film of SPR chip. Insulin was covalently bound to the Au-thiolate monolayer of OEG-DCA for activating the sensor surface to immunoaffinity interactions. An on-line competitive immunosensing principle is examined for detection of insulin, in which the direct affinity binding of anti-insulin antibody to the insulin on sensor surface is examined in the presence and absence of various concentrations of insulin. Immunoreaction of anti-insulin antibody with the sensor surface was optimized with reference to antibody concentration, sample analysis time and flow-rate to provide the desired detection limit and determination range. With the immunosensor developed, the lowest detectable concentration of insulin is 1 ng ml-1 and the determination range covers a wide concentration of 1-300 ng ml-1. The developed OEG-monolayer based sensor chip exhibited high resistance to non-specific adsorption of proteins, and an uninterrupted highly sensitive detection of insulin from insulin-impregnated serum samples has been demonstrated. After an immunoreaction cycle, active sensor surface was regenerated simply by a brief flow of an acidic buffer (glycine.HCl; pH 2.0) for less than 1 min. A same sensor chip was found reusable for more than 25 cycles without an appreciable change in the original sensor activity.

  5. Hollow Au/Ag nanostars displaying broad plasmonic resonance and high surface-enhanced Raman sensitivity

    NASA Astrophysics Data System (ADS)

    Garcia-Leis, Adianez; Torreggiani, Armida; Garcia-Ramos, Jose Vicente; Sanchez-Cortes, Santiago

    2015-08-01

    Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made.Bimetallic Au/Ag hollow nanostar (HNS) nanoparticles with different morphologies were prepared in this work. These nanoplatforms were obtained by changing the experimental conditions (concentration of silver and chemical reductors, hydroxylamine and citrate) and by using Ag nanostars as template nanoparticles (NPs) through galvanic replacement. The goal of this research was to create bimetallic Au/Ag star-shaped nanoparticles with advanced properties displaying a broader plasmonic resonance, a cleaner exposed surface, and a high concentration of electromagnetic hot spots on the surface provided by the special morphology of nanostars. The size, shape, and composition of Ag as well as their optical properties were studied by extinction spectroscopy, hyperspectral dark field microscopy, transmission and scanning electron microscopy (TEM and SEM), and energy dispersive X-ray spectroscopy (EDX). Finally, the surface-enhanced Raman scattering (SERS) activity of these HNS was investigated by using thioflavin T, a biomarker of the β-amyloid fibril formation, responsible for Alzheimer's disease. Lucigenin, a molecule displaying different SERS activities on Au and Ag, was also used to explore the presence of these metals on the NP surface. Thus, a relationship between the morphology, plasmon resonance and SERS activity of these new NPs was made. Electronic supplementary information (ESI) available: The SERS spectra of ThT on A-E samples are provided at two different excitations: 532 and 785 nm (Fig. S1). See DOI: 10.1039/c5nr02819a

  6. Characteristics of low-slope streams that affect O2 transfer rates

    USGS Publications Warehouse

    Parker, Gene W.; Desimone, Leslie A.

    1991-01-01

    Multiple-regression techniques were used to derive the reaeration coefficients estimating equation for low sloped streams: K2 = 3.83 MBAS-0.41 SL0.20 H-0.76, where K2 is the reaeration coefficient in base e units per day; MBAS is the methylene blue active substances concentration in milligrams per liter; SL is the water-surface slope in foot per foot; and H is the mean-flow depth in feet. Fourteen hydraulic, physical, and water-quality characteristics were regressed against 29 measured-reaeration coefficients for low-sloped (water surface slopes less than 0.002 foot per foot) streams in Massachusetts and New York. Reaeration coefficients measured from May 1985 to October 1988 ranged from 0.2 to 11.0 base e units per day for 29 low-sloped tracer studies. Concentration of methylene blue active substances is significant because it is thought to be an indicator of concentration of surfactants which could change the surface tension at the air-water interface.

  7. Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1991-01-01

    The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  8. Radionuclide activity concentrations in forest surface fuels at the Savannah River site

    Treesearch

    Anna M. Hejl; Roger D. Ottmar; G. Timothy Jannik; Teresa P. Eddy; Stephen I. Rathbun; Adwoa A. Commodore; John L. Pearce; Luke P. Naeler

    2013-01-01

    A study was undertaken at the United States Department of Energy's Savannah River Site (SRS), Aiken, South Carolina to investigate radionuclide activity concentrations in litter and duff from select areas at SRS. Litter (i.e., vegetative debris) and duff (i.e., highly decomposed vegetative debris) can often be the major fuels consumed during prescribed burns and...

  9. In vitro effects of Salvia officinalis L. essential oil on Candida albicans

    PubMed Central

    Sookto, Tularat; Srithavaj, Theerathavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Shrestha, Binit

    2013-01-01

    Objective To determine the anticandidal activities of Salvia officinalis L. (S. officinalis) essential oil against Candida albicans (C. albicans) and the inhibitory effects on the adhesion of C. albicans to polymethyl methacrylate (PMMA) resin surface. Methods Disc diffusion method was first used to test the anticandidal activities of the S. officinalis L. essential oil against the reference strain (ATCC 90028) and 2 clinical strains of C. albicans. Then the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined by modified membrane method. The adhesion of C. albicans to PMMA resin surface was assessed after immersion with S. officinalis L. essential oil at various concentrations of 1×MIC, 0.5×MIC and 0.25×MIC at room temperature for 30 min. One-way ANOVA was used to compare the Candida cell adhesion with the pretreatment agents and Tukey's test was used for multiple comparisons. Results S. officinalis L. essential oil exhibited anticandidal activity against all strains of C. albicans with inhibition zone ranging from 40.5 mm to 19.5 mm. The MIC and MLC of the oil were determined as 2.780 g/L against all test strains. According to the effects on C. albicans adhesion to PMMA resin surface, it was found that immersion in the essential oil at concentrations of 1×MIC (2.780 g/L), 0.5×MIC (1.390 g/L) and 0.25×MIC (0.695 g/L) for 30 min significantly reduced the adhesion of all 3 test strains to PMMA resin surface in a dose dependent manner (P<0.05). Conclusions S. officinalis L. essential oil exhibited anticandidal activities against C. albicans and had inhibitory effects on the adhesion of the cells to PMMA resin surface. With further testing and development, S. officinalis essential oil may be used as an antifungal denture cleanser to prevent candidal adhesion and thus reduce the risk of candida-associated denture stomatitis. PMID:23646301

  10. Habitability from the Surface to the Deep

    NASA Astrophysics Data System (ADS)

    Cox, A. D.; Schmidt, R.; Dahlquist, G. R.; Foster, J.; Dillard, M.

    2016-12-01

    Merging aqueous geochemical parameters of habitability with microbial identity and activity will help determine microbial contributions to observed water-rock reactions in surface to deep environments. To determine habitability for microbial life and decipher mechanisms by which microbes survive and perform chemical reactions, over one hundred sites in diverse geological and geochemical environs have been sampled for aqueous geochemistry, mineralogy, and microbial identity and activity. Sites ranged from surficial creeks and rivers to the flooded mine shafts beneath to hydrothermal features in the caldera of a supervolcano 250 km distant; these environments contain metal scarcity, extreme anoxia, and wide variations in metal, organic carbon, and oxygen scarcity, respectively. Aqueous geochemistry included in situ measurement of temperature, pH, conductivity, and dissolved oxygen by meters; field spectrophotometry for redox active species; and synchronous sample collection and preservation for water isotopes, major cations and anions, trace elements, and dissolved inorganic and organic carbon, and more. Concurrent collection and preservation of planktonic and sediment biomass at each site will allow for microbial community identification and assessment of microbial activity. DNA extraction and PCR amplification using universal, eukaryotic, bacterial, and archaeal small subunit ribosomal RNA gene primers yielded products for sequencing. For many of the aqueous geochemical parameters analyzed, including Li and B, concentrations in flooded mine shafts fell on a continuum directly between local surface waters and those resulting from hydrothermal alteration suggesting an intermediate level of water-rock interaction in flooded mine shaft habitats. Concentrations of Li and B ranged from low micromolal in surface waters to millimolal in thermal waters. Other elements - Fe, Mn, Zn, and As included - were enriched in anoxic mine shafts by three to four orders of magnitude, due to exposure to and reaction with minerals. Concentrations of Fe and Zn ranged up to tens of millimolal whereas millimolal Mn and submillimolal As concentrations were reached. The transition from mostly unreacted surface water to waters nearly in equilibrium with rock provides vast geochemical habitat for microbes to exploit.

  11. Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures

    NASA Astrophysics Data System (ADS)

    Klinkov, S. V.; Kosarev, V. F.

    2017-10-01

    In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.

  12. Effect of surface properties of NiFe2O4 nanoparticles synthesized by dc thermal plasma route on antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Bhosale, S. V.; Ekambe, P. S.; Bhoraskar, S. V.; Mathe, V. L.

    2018-05-01

    The present work reports the role of surface properties of NiFe2O4 nanoparticles on the antimicrobial activity. The NiFe2O4 nanoparticles were synthesized by gas phase condensation and chemical co-precipitation route. These nanoparticles were extensively investigated using X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and electro-kinetic property measurements. The HRTEM was used to analyze surface morphology of nickel ferrite nanoparticles obtained by two different routes. Electro-kinetic properties of the nanoparticles under investigation were recorded, analyzed and correlated with the antimicrobial properties. It was observed that nickel ferrite nanoparticles synthesized by thermal plasma route (NFOTP) formed highly stable colloidal solution as compared to chemically synthesized (NFOCP), as the later tends to agglomerate due to low surface charge. The antimicrobial activity of NiFe2O4 nanoparticles were investigated on two Gram positive bacteria Staphylococcus aureus and Streptococcus pyogenes, two Gram negative bacteria Escherichia coli and Salmonella typhimurium and one fungal species Candida albicans. It was noted that the surface properties of NiFe2O4 particles have revealing effect on the antimicrobial activity. The NFOTP nanoparticles showed significant activity for gram negative E. coli bacteria however no activity was observed for other bacteria's and fungi under study. Moreover NFOCP particles did not show any significant activity for both bacteria's and fungi. Further, antimicrobial activity of nickel ferrite nanoparticles were studied even for different concentration to obtain the minimum inhibition concentration (MIC).

  13. Absence of furrowing activity following regional cortical tension reduction in sand dollar blastomere and fertilized egg fragment surfaces.

    PubMed

    Rappaport, R

    1999-08-01

    The purpose of the present investigation was to test experimentally the possibility that division mechanism establishment at the equator of sand dollar eggs may be a consequence of cortical tension gradients between the equator and the poles. Cytochalasin has been shown to decrease tension at the sea urchin egg surface. The concave ends of cytochalasin D-containing agarose cylinders were held against regions of the surface of Echinarachnius parma blastomeres and enucleated fertilized egg fragments. The ability to interfere with normal furrowing activity was used as a biological indicator of the effectiveness of cytochalasin. When agarose containing 2 microg/mL cytochalasin contacted the equatorial region of the blastomeres resulting from the first cleavage, or the equatorial surfaces of nucleated fertilized egg halves, furrowing was blocked, stalled or delayed, indicating that the concentration of cytochalasin was effective. When the same concentration of cytochalasin was applied to the poles, the cells and nucleated fertilized egg fragments divided in the same way as the controls, indicating that the effectiveness of the cytochalasin did not spread from the poles to the equator and that bisection did not interfere with the division of nucleated fertilized egg fragments. When the same concentration of cytochalasin was applied to diametrically opposed surfaces of enucleated, spherical egg fragments, there was no evidence of furrowing activity between the areas that contacted the cytochalasin or in any other part of the surface. Because of the tension-reducing effect of cytochalasin, a tension gradient existed between the regions affected and unaffected by cytochalasin. The results strongly suggest that establishment of the division mechanism by simple gradients of tension at the surface is unlikely.

  14. Functional roles of cell surface peptidases in reproductive organs

    PubMed Central

    2004-01-01

    A number of biologically active peptides have been proposed to regulate function and differentiation of reproductive organs in an autocrine and/or paracrine fashion. Regulation of the local concentrations of these peptides is one of the important factors influencing their physiological effects on target cells. Membrane‐bound cell surface peptidases can activate or inactivate biologically active peptides before peptide factors access their receptors on the cell surface. Aminopeptidase A (EC 3.4.11.7), placental leucine aminopeptidase (EC 3.4.11.3), aminopeptidase‐N/CD13 (EC 3.4.11.2), dipeptidyl peptidases IV/CD26 (EC.3.4.14.5), carboxypeptidase‐M (EC 3.4.17.12), neutral endopeptidase/CD10 (EC 3.4.24.11) and endothelin converting enzyme‐1 (EC 3.4.23) are differentially expressed on the ovary, endometrium and placenta. The inhibition of enzyme activity affects steroid hormone production by granulosa and thecal cells, decidualization of endometrium and migration of extravillous trophoblasts. These findings suggest that membrane‐bound cell surface peptidases are local regulators for cellular growth and differentiation in reproductive organs by controlling extracellular concentration of peptide factors. (Reprod Med Biol 2004; 3: 165 –176) PMID:29662383

  15. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    EPA Science Inventory

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  16. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis.

    PubMed

    Xu, Juan; Sheng, Guo-Ping; Luo, Hong-Wei; Fang, Fang; Li, Wen-Wei; Zeng, Raymond J; Tong, Zhong-Hua; Yu, Han-Qing

    2011-01-01

    Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH(4)(+)-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature>substrate concentration > aeration rate > NH(4)(+)-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Relation between Oceanographic parameters and Optical properties in 5 coastal areas of Southern Italy

    NASA Astrophysics Data System (ADS)

    Campanelli, Alessandra; Braga, Federica; Betti, Mattia; Cavalli, Rosa Maria; Grilli, Federica; Pascucci, Simone; Marini, Mauro

    2014-05-01

    In the framework of the CLAM-PHYM (Coasts-and-Lake-Assessment-and-Monitoring-by-Prisma-Hyperspectral-Mission) project it was carried out an oceanographic cruise (27/08-13/09/2010) along the coasts of southern Italy in order to analyze the physical, biochemical and optical properties of some coastal areas. The sampling areas are: the Gulf of Taranto, the Policoro area, the Cetraro Bay, the Gulf of Augusta and the Gulf of Gela. CTD profiles and reflectance measurements of the sea surface and along the water column with portable field spectroradiometers were collected. Water samples were also collected for the analysis of nutrients, chlorophyll-a and CDOM. These optically active substances interact with solar radiation along the water column through absorption and scattering phenomena. The collected data were analyzed to identify the relationship between the bio-optical concentrations of optically-active-substances and the surface reflectance spectra measured in situ; this relation, if reversed, can be used to map the concentrations of optically-active-substances from hyperspectral-satellite-data. Results stress high biological activity in the Gulf of Taranto and in the Gulf of Gela showing the highest values of chlorophyll-a and aCDOM440. These areas are characterized by the presence of important industrial and port sites. The Gela's gulf, where we found the highest concentrations of chlorophyll a and CDOM, is also characterized by the runoff of the Salso river increasing the biological activity. The correlations found in the Gulf of Taranto between Kd, chlorophyll a and aCDOM440 indicate that the high concentrations of CDOM are primarily due to phytoplankton rather than from terrestrial source. The Gulf of Taranto shows the best site among those investigated where to identify bio-optical relationships between the concentrations of optically active substances and the surface reflectance spectra measured in situ. The preliminary results encourage the combined use of physical, biochemical and optical properties to retrieve water quality parameters in order to improve the coastal areas monitoring.

  19. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  20. Catalysis of the Oligomerization of O-Phospho-Serine, Aspartic Acid, or Glutamic Acid by Cationic Micelles

    NASA Technical Reports Server (NTRS)

    Boehler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.

    1996-01-01

    Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.

  1. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  2. Fluorescence-Based Sensor for Monitoring Activation of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2012-01-01

    This sensor unit is designed to determine the level of activation of lunar dust or simulant particles using a fluorescent technique. Activation of the surface of a lunar soil sample (for instance, through grinding) should produce a freshly fractured surface. When these reactive surfaces interact with oxygen and water, they produce hydroxyl radicals. These radicals will react with a terephthalate diluted in the aqueous medium to form 2-hydroxyterephthalate. The fluorescence produced by 2-hydroxyterephthalate provides qualitative proof of the activation of the sample. Using a calibration curve produced by synthesized 2-hydroxyterephthalate, the amount of hydroxyl radicals produced as a function of sample concentration can also be determined.

  3. Temporal variations of 90Sr and 137Cs concentrations in Japanese coastal surface seawater and sediments from 1974 to 1998

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Yoshihiro

    2003-09-01

    90Sr and 137Cs concentrations were determined in surface water and bottom sediments collected at 11 sites offshore from Japan during the period 1974-1998, to investigate their temporal variations and behaviour in the coastal marine environment. The concentrations of 90Sr and 137Cs in surface water have decreased with time since 1974. After the period of atmospheric nuclear weapons tests, the mean residence times of 90Sr and 137Cs were about 41 and 51 years, respectively. The 137Cs/ 90Sr activity ratios in coastal seawater during the atmospheric nuclear weapons tests (up until 1980) were lower than those after the tests due to the inflow of 90Sr in river water. A sharp increase in 137Cs levels was observed in airborne dust, in precipitation on the Japanese islands, and in coastal surface seawater in 1986 following the Chernobyl accident. However, the 137Cs levels in surface water returned to pre-1986 levels quickly, indicating rapid removal of Cs from the surface to deeper water. Concentrations of 90Sr in sediments were generally much lower than those for 137Cs, reflecting the more effective scavenging of Cs from the water column. In Ca-rich sediments, consisting of corals and shells, higher 90Sr levels and 90Sr/ 137Cs activity ratios were found, reflecting higher accumulation of Sr than Cs in marine organisms. Higher accumulation of 90Sr than 137Cs was also found in seaweed (gulfweed and wakame).

  4. Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.

    PubMed

    Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian

    2012-09-01

    Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. THE ELECTRICAL ACTIVATION OF PASSIVE IRON WIRES IN NITRIC ACID

    PubMed Central

    Lillie, Ralph S.

    1935-01-01

    1. The relation between the E. M. F. and the minimal duration of an activating current has been determined for passive iron wires in nitric acid under varying conditions of concentration of acid, duration of recovery period, and presence of surface-action compounds. 2. The characteristic intensity-duration curves resemble those of irritable living tissues with moderate speeds of response to stimulation (with chronaxies of the order of 10 to 30σ). 3. The intensity of the current required for activation, as well as its minimal effective duration for a given intensity, increases rapidly with increase in the concentration of HNO3. 4. The responsiveness of the iron wire to brief currents is low immediately after activation and returns progressively to the original level during the immediately following period, at first rapidly and then slowly, following a time curve resembling the corresponding curve of living tissues during the relative refractory period. 5. Surface-active compounds decrease reversibly, to a degree dependent on concentration, the responsiveness of iron wires to brief currents. 6. Conditions are described under which the iron wire is activated by the break of an already flowing constant current. PMID:19872905

  6. Synthesis and surface activity properties of alkylphenol polyoxyethylene nonionic trimeric surfactants

    NASA Astrophysics Data System (ADS)

    Yang, Fang; Li, Gang; Qi, Jian; Zhang, Song-Mei; Liu, Rong

    2010-10-01

    A series of trimeric n-alkylphenol polyoxyethylene surfactants (TAP) were successfully synthesized and the molecular structure were confirmed by NMR, FTIR spectrum and elemental analysis. Using the same synthesis route, the trimeric nonylphenol polyoxyethylene surfactant (TNP) was synthesized using industrial product nonylphenol and paraformaldehyde, and its molecular structure was characterized by 1HNMR, FTIR spectrum and elemental analysis. The optimal reaction conditions were established. The surface activity properties of TAP and TNP (such as the critical micelle concentration (cmc), the values of surface tension at the cmc ( γcmc), the maximum surface excess concentration ( Γcmc), and the minimum surface area per surfactant molecule ( Acmc)), were determined by means of Wilhelmy plate method and steady-state fluorescence probe method, respectively. The experimental results show that the lengths of the hydrophilic group oxyethylene (EO) chains and hydrophobic group methylene chains have an influence on the cmc, γcmc, Γcmc, and Acmc of series of surfactants. Furthermore, TAP are arranged to staggered three-dimensional array mode at the air-water interface, which has exhibited better surface properties, such as low cmc values, strong adsorption affinities and wet abilities.

  7. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer

    USGS Publications Warehouse

    Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)

  8. Using dual-polarization interferometry to study surface-initiated DNA hybridization chain reactions in real time.

    PubMed

    Huang, Fujian; Xu, Pingping; Liang, Haojun

    2014-01-15

    In this study we used dual-polarization interferometry to investigate DNA hybridization chain reactions (HCRs) at solid-liquid interfaces. We monitored the effects of variations in mass, thickness, and density of the immobilized initiator on the subsequent HCRs at various salt concentrations. At low salt concentrations, the single-stranded DNA (ssDNA) initiator was attached uniformly to the chip surface. At high salt concentrations, it lay on the surface at the onset of the immobilization process, but the approaching ssDNA forced the pre-immobilized ssDNA strands to extend into solution as a result of increased electrostatic repulsion between the pre-adsorbed and approaching ssDNA chains. Injection of a mixture of H1 and H2 increased the mass and thickness of the films initially, but thereafter the thickness decreased. These changes indicate that the long double-stranded DNA that formed lay on the surface, rather than extended into the solution, thereby suppressing the subsequent initiation activity of the released single-strand parts of H1 and H2. Increasing the salt concentration increased the HCR efficiency and reaction rate. The HCR efficiency of the initiator ssDNA immobilized on its 5' end was higher than that immobilized on its 3' end, suggesting that the released single-strand parts of H1 and H2 close to the chip surface decreased the initiation activity relative to those of the ones extending into solution. © 2013 Elsevier B.V. All rights reserved.

  9. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli

    PubMed Central

    Kharge, Angana Banerjee; Wu, You

    2014-01-01

    In the acute respiratory distress syndrome, alveolar flooding by proteinaceous edema liquid impairs gas exchange. Mechanical ventilation is used as a supportive therapy. In regions of the edematous lung, alveolar flooding is heterogeneous, and stress is concentrated in aerated alveoli. Ventilation exacerbates stress concentrations and injuriously overexpands aerated alveoli. Injury degree is proportional to surface tension, T. Lowering T directly lessens injury. Furthermore, as heterogeneous flooding causes the stress concentrations, promoting equitable liquid distribution between alveoli should, indirectly, lessen injury. We present a new theoretical analysis suggesting that liquid is trapped in discrete alveoli by a pressure barrier that is proportional to T. Experimentally, we identify two rhodamine dyes, sulforhodamine B and rhodamine WT, as surface active in albumin solution and investigate whether the dyes lessen ventilation injury. In the isolated rat lung, we micropuncture a surface alveolus, instill albumin solution, and obtain an area with heterogeneous alveolar flooding. We demonstrate that rhodamine dye addition lowers T, reduces ventilation-induced injury, and facilitates liquid escape from flooded alveoli. In vitro we show that rhodamine dye is directly surface active in albumin solution. We identify sulforhodamine B as a potential new therapeutic agent for the treatment of the acute respiratory distress syndrome. PMID:25414246

  10. Dynamic Asphaltene-Stearic Acid Competition at the Oil-Water Interface.

    PubMed

    Sauerer, Bastian; Stukan, Mikhail; Buiting, Jan; Abdallah, Wael; Andersen, Simon

    2018-05-15

    Interfacial tension (IFT) is one of the major parameters which govern the fluid flow in oil production and recovery. This paper investigates the interfacial activity of different natural surfactants found in crude oil. The main objective was to better understand the competition between carboxylic acids and asphaltenes on toluene/water interfaces. Dynamic IFT was measured for water-in-oil pendant drops contrary to most studies using oil-in-water drops. Stearic acid (SA) was used as model compound for surface-active carboxylic acids in crude. The influence of concentration of these species on dynamic IFT between model oil and deionized water was examined. The acid concentrations were of realistic values (total acid number 0.1 to 2 mg KOH/g oil) while asphaltene concentrations were low and set between 10 and 100 ppm. In mixtures, the initial surface pressure was entirely determined by the SA content while asphaltenes showed a slow initial diffusion to the interface followed by increased adsorption at longer times. The final surface pressure was higher for asphaltenes compared to SA, but for binaries, the final surface pressure was always lower than the sum of the individuals. At high SA concentration, surface pressures of mixtures were dominated entirely by the SA, although, Langmuir isotherm analysis shows that asphaltenes bind to the interface 200-250 times stronger than SA. The surface area/molecule for both SA and asphaltenes were found to be larger than the values reported in recent literature. Various approaches to dynamic surface adsorption were tested, showing that apparent diffusivity of asphaltenes is very low, in agreement with other works. Hence, the adsorption is apparently under barrier control. A possible hypothesis is that at the initial phase of the experiment and at lower concentration of asphaltenes, the interface is occupied by stearic acid molecules forming a dense layer of hydrocarbon chains that may repel the asphaltenes.

  11. Area G Perimeter Surface-Soil Sampling Environmental Surveillance for Fiscal Year 1998 Hazardous and Solid Waste Group (ESH-19)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis Childs

    1999-09-01

    Material Disposal Area G (Area G) is at Technical Area 54 at Los Alamos National Laboratory (LANL). Area G has been the principal facility for the disposal of low-level, solid-mixed, and transuranic waste since 1957. It is currently LANL's primary facility for radioactive solid waste burial and storage. As part of the annual environmental surveillance effort at Area G, surface soil samples are collected around the facility's perimeter to characterize possible radionuclide movement off the site through surface water runoff During 1998, 39 soil samples were collected and analyzed for percent moisture, tritium, plutonium-238 and 239, cesium-137 and americium-241. Tomore » assess radionuclide concentrations, the results from these samples are compared with baseline or background soil samples collected in an undisturbed area west of the active portion Area G. The 1998 results are also compared to the results from analogous samples collected during 1996 and 1997 to assess changes over this time in radionuclide activity concentrations in surface soils around the perimeter of Area G. The results indicate elevated levels of all the radionuclides assessed (except cesium-137) exist in Area G perimeter surface soils vs the baseline soils. The comparison of 1998 soil data to previous years (1996 and 1997) indicates no significant increase or decrease in radionuclide concentrations; an upward or downward trend in concentrations is not detectable at this time. These results are consistent with data comparisons done in previous years. Continued annual soil sampling will be necessary to realize a trend if one exists. The radionuclide levels found in the perimeter surface soils are above background but still considered relatively low. This perimeter surface soil data will be used for planning purposes at Area G, techniques to prevent sediment tm.nsport off-site are implemented in the areas where the highest radionuclide concentrations are indicated.« less

  12. Bio-active engineered 50 nm silica nanoparticles with bone anabolic activity: therapeutic index, effective concentration, and cytotoxicity profile in vitro.

    PubMed

    Ha, Shin-Woo; Sikorski, James A; Weitzmann, M Neale; Beck, George R

    2014-04-01

    Silica-based nanomaterials are generally considered to be excellent candidates for therapeutic applications particularly related to skeletal metabolism however the current data surrounding the safety of silica based nanomaterials is conflicting. This may be due to differences in size, shape, incorporation of composite materials, surface properties, as well as the presence of contaminants following synthesis. In this study we performed extensive in vitro safety profiling of ∼ 50 nm spherical silica nanoparticles with OH-terminated or Polyethylene Glycol decorated surface, with and without a magnetic core, and synthesized by the Stöber method. Nineteen different cell lines representing all major organ types were used to investigate an in vitro lethal concentration (LC) and results revealed little toxicity in any cell type analyzed. To calculate an in vitro therapeutic index we quantified the effective concentration at 50% response (EC50) for nanoparticle-stimulated mineral deposition activity using primary bone marrow stromal cells (BMSCs). The EC50 for BMSCs was not substantially altered by surface or magnetic core. The calculated Inhibitory concentration 50% (IC50) for pre-osteoclasts was similar to the osteoblastic cells. These results demonstrate the pharmacological potential of certain silica-based nanomaterial formulations for use in treating bone diseases based on a favorable in vitro therapeutic index. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Cell-based metabolomics for assessing chemical exposure and toxicity of environmental surface waters (presentation)

    EPA Science Inventory

    Introduction: Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals (e.g. fish) to monitor/as...

  14. Protein quantification on dendrimer-activated surfaces by using time-of-flight secondary ion mass spectrometry and principal component regression

    NASA Astrophysics Data System (ADS)

    Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol

    2008-12-01

    Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.

  15. Ocular surface inflammation, and nerve growth factor level in tears in active thyroid-associated ophthalmopathy.

    PubMed

    Yoon, Jin Sook; Choi, Soo Hyun; Lee, Joon H; Lee, Sung Jun; Lee, Sang Yeul

    2010-02-01

    To measure tear nerve growth factor (NGF) concentrations in cases of active thyroid-associated ophthalmopathy (TAO) before and after glucocorticoid treatment, and to correlate NGF levels with disease inflammatory activity and thyroid autoantibody concentration. The study involved 20 patients with active TAO and 20 age- and gender-matched controls. Tear break-up time (BUT) was obtained, the Schirmer test was performed, and tear NGF/total protein ratio was measured in control subjects and patients with active TAO before, and 2 and 4 weeks after, steroid treatment. Tear BUT and Schirmer values significantly increased after 2 and 4 weeks of steroid treatment (p < 0.001 and p = 0.004 respectively). Baseline tear NGF/total protein ratio was higher in patients with active TAO than in control subjects, and the ratio significantly decreased after 2 and 4 weeks of steroid treatment (p < 0.001). Tear NGF/total protein ratio did not correlate with inflammatory activity score, exophthalmos value and thyroid binding inhibiting immunoglobulin (TBII) level (p > 0.05). Tear NGF may have a specific role in ocular surface inflammation, which protects against ocular surface damage in patients with active TAO. Anti-inflammatory treatment significantly reduced the level of NGF in tears, increased tear film stability and production, and decreased congestive symptoms.

  16. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.

    PubMed

    Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A

    2009-09-01

    The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.

  17. Apparent Activation Energies Associated with Protein Dynamics on Hydrophobic and Hydrophilic Surfaces

    PubMed Central

    Langdon, Blake B.; Kastantin, Mark; Schwartz, Daniel K.

    2012-01-01

    With the use of single-molecule total internal reflection fluorescence microscopy (TIRFM), the dynamics of bovine serum albumin (BSA) and human fibrinogen (Fg) at low concentrations were observed at the solid-aqueous interface as a function of temperature on hydrophobic trimethylsilane (TMS) and hydrophilic fused silica (FS) surfaces. Multiple dynamic modes and populations were observed and characterized by their surface residence times and squared-displacement distributions (surface diffusion). Characteristic desorption and diffusion rates for each population/mode were generally found to increase with temperature, and apparent activation energies were determined from Arrhenius analyses. The apparent activation energies of desorption and diffusion were typically higher on FS than on TMS surfaces, suggesting that protein desorption and mobility were hindered on hydrophilic surfaces due to favorable protein-surface and solvent-surface interactions. The diffusion of BSA on TMS appeared to be activationless for several populations, whereas diffusion on FS always exhibited an apparent activation energy. All activation energies were small in absolute terms (generally only a few kBT), suggesting that most adsorbed protein molecules are weakly bound and move and desorb readily under ambient conditions. PMID:22713578

  18. Kinetic model of mass transfer through gas liquid interface in laser surface alloying

    NASA Astrophysics Data System (ADS)

    Gnedovets, A. G.; Portnov, O. M.; Smurov, I.; Flamant, G.

    1997-02-01

    In laser surface alloying from gas atmosphere neither surface concentration nor the flux of the alloying elements are known beforehand. They should be determined from the combined solution of heat and mass transfer equations with an account for the kinetics of interaction of a gas with a melt. Kinetic theory description of mass transfer through the gas-liquid interface is applied to the problem of laser surface alloying of iron from the atmosphere of molecular nitrogen. The activation nature of gas molecules dissociation at the surface is considered. It is shown that under pulsed-periodic laser action the concentration profiles of the alloying element have maxima situated close to the surface of the metal. The efficiency of surface alloying increases steeply under laser-plasma conditions which results in the formation of highly supersaturated gas solutions in the metal.

  19. Protein Monolayer Formation at Air-Electrolyte Interface:. a Langmuir-Blodgett Study

    NASA Astrophysics Data System (ADS)

    Pal, Prabir; Kamilya, Tapanendu; Mahato, Mrityunjoy; Talapatra, G. B.

    The interfacial surface activity of a protein, ovalbumin (OVA) at bare air/water interface in presence and also in absence of electrolyte (KCl) in subphase has been investigated. The surface activity was measured as a function of time. It has been found that, the presence of KCl in aqueous subphase enhances the adsorption rate of the protein. The changes of area/molecule, compressibility, rigidity and unfolding of OVA are trivial up to 10 mM KCl concentration. These properties of OVA, above 10 mM KCl concentration are significant and have been explained in the perspective of DLVO theory and many-body ion-protein dispersion potentials. The presence of high concentration of electrolyte increases the β-structure of OVA, resulting into larger unfolding as well as larger intermolecular aggregates. The overall study indicates that KCl perturbs the OVA monolayer.

  20. Application of response surface methodology to optimize pressurized liquid extraction of antioxidant compounds from sage (Salvia officinalis L.), basil (Ocimum basilicum L.) and thyme (Thymus vulgaris L.).

    PubMed

    Hossain, M B; Brunton, N P; Martin-Diana, A B; Barry-Ryan, C

    2010-12-01

    The present study optimized pressurized liquid extraction (PLE) conditions using Dionex ASE® 200, USA to maximize the antioxidant activity [Ferric ion Reducing Antioxidant Power (FRAP)] and total polyphenol content (TP) of the extracts from three spices of Lamiaceae family (sage, basil and thyme). Optimal conditions with regard to extraction temperature (66-129 °C) and solvent concentration (32-88% methanol) were identified using response surface methodology (RSM). For all three spices, results showed that 129 °C was the optimum temperature with regard to antioxidant activity. Optimal methanol concentrations with respect to the antioxidant activity of sage and basil extracts were 58% and 60% respectively. Thyme showed a different trend with regard to methanol concentration and was optimally extracted at 33%. Antioxidant activity yields of the optimal PLE were significantly (p < 0.05) higher than solid/liquid extracts. Predicted models were highly significant (p < 0.05) for both total phenol (TP) and FRAP values in all the spices with high regression coefficients (R(2)) ranging from 0.651 to 0.999.

  1. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  2. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    PubMed

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi.

  3. Investigation of the /sup 234/U//sup 238/U disequilibrium in the natural waters of the Santa Fe River basin north-central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briel, L.I.

    1976-01-01

    Typical surface water masses in the Santa Fe basin are characterized by a /sup 238/U concentration of 0.224 +- .014 ppB and a /sup 234/U//sup 238/U activity ratio of 1.081 +- .038. The Floridan aquifer in this area is represented by at least two distinct regimes of ground water. The effluent from the Poe Springs group has a nominal uranium concentration of 0.938 +- .014 ppB and an activity ratio of 0.900 +- .012, while the effluent from the Ichetucknee Springs group has a nominal uranium concentration of 0.558 +- .018 ppB and an activity ratio of 0.707 +- .022.more » The effluent from ten additional springs in the Santa Fe system can be represented by hypothetical mixtures of these two ground water regimes and a hypothetical surface water component, which may reflect the extent of local recharge to the aquifer in different parts of the basin.« less

  4. A Mesopore-Dependent Catalytic Cracking of n-Hexane Over Mesoporous Nanostructured ZSM-5.

    PubMed

    Qamar, M; Ahmed, M I; Qamaruddin, M; Asif, M; Sanhoob, M; Muraza, O; Khan, M Y

    2018-08-01

    Herein, pore size, crystalinity, and Si/Al ratio of mesoporous ZSM-5 (MFI) nanocrystals was controlled by synthesis parameters, such as surfactant concentration ([3-(trimethoxysilyl)propyl] hexa-decyl dimethyl ammonium chloride), sodium hydroxide concentrations, synthesis temperature and time. The morphology, surface structure and composition of the MFI particles was systematically investigated. More notably, the mesopore-dependent catalytic activity of ZSM-5 was evaluated by studying the cracking of n-hexane. The findings suggest the porosity has pronounced impact on the catalytic activity, selectivity and stability of ZSM-5 nanocrystals. Critical surface attributes such as nature of acid sites (Brønsted and Lewis), concentration, and strength are obtained by the infrared study of adsorbed probe molecules (pyridine) and the temperature programmed desorption. In spite of being weaker in Si/Al ratio or acidic strength, mesoporous catalysts showed more stable and efficient cracking of n-hexane suggesting that acidity seems not the predominant factor operative in the activity, selectivity and stability.

  5. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; ...

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  6. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant.

    PubMed

    Stojicic, Sonja; Zivkovic, Slavoljub; Qian, Wei; Zhang, Hui; Haapasalo, Markus

    2010-09-01

    Sodium hypochlorite is the most commonly used endodontic irrigant because of its antimicrobial and tissue-dissolving activity. The aim of this study was to evaluate and compare the effects of concentration, temperature, and agitation on the tissue-dissolving ability of sodium hypochlorite. In addition, a hypochlorite product with added surface active agent was compared with conventional hypochlorite solutions. Three sodium hypochlorite solutions from two different manufacturers in concentrations of 1%, 2%, 4%, and 5.8% were tested at room temperature, 37 degrees C, and 45 degrees C with and without agitation by ultrasonic and sonic energy and pipetting. Distilled and sterilized tap water was used as controls. Pieces of bovine muscle tissue (68 +/- 3 mg) were placed in 10 mL of each solution for five minutes. In selected samples, agitation was performed for one, two, or four 15-second periods per each minute. The tissue specimens were weighed before and after treatment, and the percentage of weight loss was calculated. The contact angle on dentin of the three solutions at concentrations of 1% and 5.8% was measured. Weight loss (dissolution) of the tissue increased almost linearly with the concentration of sodium hypochlorite. Higher temperatures and agitation considerably enhanced the efficacy of sodium hypochlorite. The effect of agitation on tissue dissolution was greater than that of temperature; continuous agitation resulted in the fastest tissue dissolution. Hypochlorite with added surface active agent had the lowest contact angle on dentin and was most effective in tissue dissolution in all experimental situations. Optimizing the concentration, temperature, flow, and surface tension can improve the tissue-dissolving effectiveness of hypochlorite even 50-fold. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Assessing the biological impact of exposure to environmental surface waters with cell-based lipidomics

    EPA Science Inventory

    Environmental surface waters often contain a variety of chemical contaminants from different sources including wastewater treatment plants, concentrated animal feeding operations, agricultural runoff and other human-related activities. Exposure to these contaminants may pose a th...

  8. Predesigned surface patterns and topological defects control the active matter.

    NASA Astrophysics Data System (ADS)

    Turiv, Taras; Peng, Chenhui; Guo, Yubing; Wei, Qi-Huo; Lavrentovich, Oleg

    Active matter exhibits remarkable patterns of never-ending dynamics with giant fluctuations of concentration, varying order, nucleating and annihilating topological defects. These patterns can be seen in active systems of both biological and artificial origin. A fundamental question is whether and how one can control this chaotic out-of-equilibrium behavior. We demonstrate a robust control of local concentration, trajectories of active self-propelled units and the net flows of active bacteria Bacillus Substilis by imposing pre-designed surface patterns of orientational order in a water-based lyotropic chromonic liquid crystal. The patterns force the bacteria to gather into dynamic swarms with spatially modulated concentration and well-defined polarity of motion. Topological defects produce net motion of bacteria with a unidirectional circulation, while pairs of defects induce a pumping action. The qualitative features of the dynamics can be explained by interplay of curvature and activity, in particular, by ability of mixed splay-bend curvatures to generate threshold-less active flows. The demonstrated level of control opens opportunities in engineering materials and devices that mimic rich functionality of living systems. This work was supported by NSF Grants DMR-1507637, DMS-1434185, CMMI-1436565, by the Petroleum Research Grant PRF# 56046-ND7 administered by the American Chemical Society.

  9. Development of ion-exchange properties of bamboo charcoal modified with concentrated nitric acid

    NASA Astrophysics Data System (ADS)

    Khandaker, S.; Kuba, T.; Toyohara, Y.; Kamida, S.; Uchikawa, Y.

    2017-08-01

    The surface chemistry and the structural properties of activated carbon can be altered by the acidic modification. The objective of this study is to investigate the changes occurring in bamboo charcoal (BC) during activation with concentrated nitric acid. Low temperature (500°C) carbonized BC has been prepared and oxidized with 70% concentrated boiling nitric acid (BC-AC). The porous properties of the BC are analyzed with nitrogen adsorption isotherm at 77 K. The surface structure is observed by Field emission scanning electronic microscope (FESEM) and the surface functional groups are examined by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and the pH of the point of zero charge (pHPZC). The results reveal that severe oxidation with HNO3 considerably decreases the surface area of BC with enhanced pore widening and FESEM observation demonstrates the erosive effect of oxidation. The FTIR analysis detects that some absorption bands are assigned for carboxyl, aldehyde and ketone groups on BC-AC. The XPS analysis also clearly shows that the ratio of oxygen and acidic functional groups has been enriched significantly on the BC-AC. The low pHPZC value of BC-AC confirms that the surface is highly acidic for the fixation of acidic functional groups on surface. In general, the existence of the abundant amount of acidic functional groups on adsorbents enhances the sorption of heavy metals ions in aqueous solution. Therefore, it is strongly expected that the modified BC, activated under the proposed conditions would be a promising ion exchanger in aqueous solution and can be applied for the adsorption of different heavy metal ions and radioactive materials from effluent.

  10. Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2

    PubMed Central

    Zhang, Sai; Huang, Zheng-Qing; Ma, Yuanyuan; Gao, Wei; Li, Jing; Cao, Fangxian; Li, Lin; Chang, Chun-Ran; Qu, Yongquan

    2017-01-01

    Identification on catalytic sites of heterogeneous catalysts at atomic level is important to understand catalytic mechanism. Surface engineering on defects of metal oxides can construct new active sites and regulate catalytic activity and selectivity. Here we outline the strategy by controlling surface defects of nanoceria to create the solid frustrated Lewis pair (FLP) metal oxide for efficient hydrogenation of alkenes and alkynes. Porous nanorods of ceria (PN-CeO2) with a high concentration of surface defects construct new Lewis acidic sites by two adjacent surface Ce3+. The neighbouring surface lattice oxygen as Lewis base and constructed Lewis acid create solid FLP site due to the rigid lattice of ceria, which can easily dissociate H–H bond with low activation energy of 0.17 eV. PMID:28516952

  11. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water.

    PubMed

    Yang, Ji; Cao, Limei; Guo, Rui; Jia, Jinping

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m(2)g(-1), the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Estrogenic activity and nutrient losses in surface runoff after winter manure application to small watersheds.

    PubMed

    Shappell, N W; Billey, L O; Shipitalo, M J

    2016-02-01

    Confined Animal Feeding Operations generate large amounts of wastes that are land-applied to provide nutrients for crop production and return organic matter to the soil. Production practices and storage limitations often necessitate that wastes be applied to frozen and snow-covered soil. Use of application setbacks have reduced concerns related to nutrient losses in surface runoff from manure, but the estrogenic activity of runoff under these conditions has not been evaluated. Therefore, we measured and sampled surface runoff when manure was applied in the winter at a rate to meet crop N needs and measured estradiol equivalents (E2Eqs) using E-Screen. In year one, six small watersheds used to produce corn were evaluated, treatments: 2 no-manure controls, 2 liquid swine manure with 30-m setbacks, and 2 turkey litter with 30-m setbacks. In addition, beef manure was applied to six frozen plots of forage. For years 2 and 3, applications were repeated on the swine manure watersheds and one control watershed. E2Eqs and nutrient concentrations generally peaked in the first runoff event after application. The highest measured E2Eq (5.6 ng L(-1)) was in the first event after swine manure application and was less than the 8.9 ng L(-1) Lowest Observable Effect Concentration (LOEC) for aquatic species and well below the concentrations measured in other studies using ELISAs to measure hormone concentrations. No runoff occurred from plots planted with forage, indicating low risk for environmental impact, and therefore plots were discontinued from study. In years 2 and 3, estrogenic activity never exceeded the Predicted No Effect Concentrations for E2 of 2 ng L(-1). When post-application runoff contained high estrogenic activity, strong correlations (R(2) 0.86 to 0.96) of E2Eq to Ca(2+), Mg(2+), and K(+) concentrations were observed, indicating under some condition these cations might be useful surrogates for E2Eq measurements. Published by Elsevier B.V.

  13. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  14. [Enzymatic conversion of tetradecanol in heterogenous phase by yeast-alcohol dehydrogenase].

    PubMed

    Rothe, U; Schöpp, W; Aurich, H

    1976-01-01

    Alcohol dehydrogenase from yeast converts long-chain primary alcohols not only in the dissolved state, but also at the surface of undissolved particles. Tetradecanol beads with a defined surface can be produced and employed as model substrate. The reaction rate was determined by the proton release accomplished in the reaction. The initial reaction rate depends on the enzyme concentration. The relation is nonlinear (vi = k-[e]0,4); the numerical value of the exponent (n = 0.4) argues in favour of a reaction occurring at the interface. The Lineweaver-Burk plots become linear if the substrate concentrations are based on the molar surface concentrations of the particles. The pH optimum for the reaction at the surface is displaced by 0.25 pH units towards the alkaline region (compared with ethanol as substrate). The activation energy of the reaction with tetradecanol beads as substrate is 30% lower than that for the ethanol oxydation.

  15. Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite

    NASA Astrophysics Data System (ADS)

    Boukoussa, Bouhadjar; Aouad, Nafissa; Hamacha, Rachida; Bengueddach, Abdelkader

    2015-03-01

    ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel-Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.

  16. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  17. A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology.

    PubMed

    Funken, K H; Sattler, C; Milow, B; De Oliveira, L; Blanco, J; Fernández, P; Malato, S; Brunott, M; Dischinge, N; Tratzky, S; Musci, M; de Oliveira, J C

    2001-01-01

    Solar photocatalytic detoxification of non-biodegradable chlorinated hydrocarbon solvents (NBCS) is carried out in different concentrating and non concentrating devices using TiO2 as a photocatalyst fixed on the inner surface of the reaction tubes or as a slurry catalyst which has to be removed from the treated water. The reaction is most effective using 200 mg/l of TiO2 as a slurry in a non concentrating CPC reactor. The concentrating parabolic trough reactor has a poor activity because of its minor irradiated reactor surface. Catalyst coated glass tubes are less efficient then the used slurry catalyst. Their advantage is that no catalyst has not to be removed from the treated water and there is no loss of activity during treatment. Yet their physical stability is not sufficient to be competitive to the slurry catalyst. Nevertheless the degradation results are very promising and will possibly lead to commercial applications of this technology.

  18. INVESTIGATION OF TRANSFORMATION PRODUCTS FROM THE CHLORINATION OF ESTROGENIC AND ANDROGENIC COMPOUNDS

    EPA Science Inventory

    Drinking water sources are increasingly impacted by upstream anthropogenic activities, including wastewater discharge, concentrated animal feeding operations (CAFOs) and landfill leachate. Androgenic and estrogenic activities have been detected in surface waters downstream from ...

  19. Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles.

    PubMed

    Sabyrov, Kairat; Jiang, Juncong; Yaghi, Omar M; Somorjai, Gabor A

    2017-09-13

    Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.

  20. Pulmonary lung surfactant synthetic peptide concentration-dependent modulation of DPPC and POPG acyl chain order in a DPPC:POPG:palmitic acid lipid mixture.

    PubMed

    Krill, S L; Gupta, S L; Smith, T

    1994-05-06

    Lung surfactant-associated protein interaction with lipid matrices and the effects on lipid thermotropic phase behavior are areas of active research. Many studies limit the lipids to a single or two-component system. The current investigation utilizes a three-lipid component matrix (DPPC:POPG:palmitic acid) to investigate the impact of a synthetic surfactant protein B fragment (SP-B 53-78 DiACM) on the dynamic surface activity of the lipid admixture as measured by a Wilhelmy surface balance. Also, the modulation of the individual lipid acyl chain order by the peptide within the lipid matrix is studied through the use of thermal perturbation FTIR spectroscopy. The data clearly demonstrate a concentration-dependent effect of the peptide on the surface activity with an improvement in the dynamic surface tension diagram characteristics (decreased surface tension and increased collapse plateau) especially at low, 0.36 M%, peptide concentrations. These effects are diminished upon further addition of the peptide. FTIR spectral data demonstrate that the peptide addition results in a significant increase in the acyl chain order of the DPPC and POPG components as measured by the position of the methylene stretching vibrational bands. DPPC is most sensitive to the peptide presence, while the palmitic acid is least affected. The transition temperatures of the individual lipids are also increased with the addition of the peptide. The presence of POPG in the matrix achieves the surface activity similarly seen with natural lung surfactant relative to a DPPC/palmitic acid lipid matrix alone. Its presence increases the sensitivity of the DPPC acyl chains to the presence of the peptide. These effects on the chain order are most probably related to the increased acyl chain fluidity which POPG imparts to the lipid matrix because of the presence of the cis double bond. The phosphatidylglycerol headgroup also adds a negative charge to the lipid matrix which enhances the peptide-lipid interaction. Although the palmitic acid is minimally affected by the peptide, its presence, as suggested by surface balance measurements, results in the establishment of a stable lipid film with DPPC, capable of achieving low surface tension values.

  1. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    NASA Astrophysics Data System (ADS)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  2. Comparative research on activation technique for GaAs photocathodes

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui

    2012-03-01

    The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.

  3. The nature of the active surface of the Cu/ZSM-5 catalyst in the reaction of NO reduction with hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilichev, A.N.; Ukharskii, A.A.; Matyshak, V.A.

    1995-03-01

    Data are obtained on the concentration of Cu{sup 2+}{sub isol}, Cu{sub ass}, and Cu{sup +} ions and the activity in the reaction of NO reduction with propane on copper-containing zeolites (0.15-2.86% Cu/ZSM-5). A correlation between the NO conversion and Cu{sup 2+}{sub isol} concentration is found and discussed.

  4. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.

  5. Active and passive controls of Jeffrey nanofluid flow over a nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    This communication explores magnetohydrodynamic (MHD) boundary-layer flow of Jeffrey nanofluid over a nonlinear stretching surface with active and passive controls of nanoparticles. A nonlinear stretching surface generates the flow. Effects of thermophoresis and Brownian diffusion are considered. Jeffrey fluid is electrically conducted subject to non-uniform magnetic field. Low magnetic Reynolds number and boundary-layer approximations have been considered in mathematical modelling. The phenomena of impulsing the particles away from the surface in combination with non-zero mass flux condition is known as the condition of zero mass flux. Convergent series solutions for the nonlinear governing system are established through optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the temperature and concentration distributions are affected by distinct physical flow parameters. Skin friction coefficient and local Nusselt and Sherwood numbers are also computed and analyzed. Our findings show that the temperature and concentration distributions are increasing functions of Hartman number and thermophoresis parameter.

  6. High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.

    PubMed

    Jin, Lixia; Son, Yowhan; Yoon, Tae Kyung; Kang, Yu Jin; Kim, Woong; Chung, Haegeun

    2013-02-01

    Nanomaterials such as single-walled carbon nanotubes (SWCNTs) may enter the soil environment with unknown consequences resulting from the development of nanotechnology for a variety of applications. We determined the effects of SWCNTs on soil enzyme activity and microbial biomass through a 3-week incubation of urban soils treated with different concentrations of SWCNTs ranging from 0 to 1000 μg g(-1) soil. The activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase, and acid phosphatase and microbial biomass were measured in soils treated with powder and suspended forms of SWCNTs. SWCNTs of concentrations at 300-1000 μg g(-1) soil significantly lowered activities of most enzymes and microbial biomass. It is noteworthy that the SWCNTs showed similar effects to that of multi-walled carbon nanotubes (MWCNTs), but at a concentration approximately 5 times lower; we suggest that this is mainly due to the higher surface area of SWCNTs than that of MWCNTs. Indeed, our results show that surface area of CNTs has significant negative relationship with relative enzyme activity and biomass, which suggests that greater microorganism-CNT interactions could increase the negative effect of CNTs on microorganisms. Current work may contribute to the preparation of a regulatory guideline for the release of CNTs to the soil environment. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Less is More: A Comparison of Antibody-Gold Nanoparticle Conjugates of Different Ratios.

    PubMed

    Byzova, Nadezhda A; Safenkova, Irina V; Slutskaya, Elvira S; Zherdev, Anatoly V; Dzantiev, Boris B

    2017-11-15

    This comprehensive study is related to gold nanoparticles (GNPs) conjugated with antibodies. The goal of the study is to determine the minimal concentration of antibodies for conjugate synthesis when the conjugates have high antigen-capturing activity. Two systems were studied: gold nanoparticles conjugated with monoclonal antibodies (mAb-GNP) specific to Helicobacter pylori and gold nanoparticles conjugated with polyclonal antibodies (pAb-GNP) specific to mouse immunoglobulins. Several conjugates were synthesized with different GNP-to-antibody molar ratios (from 1:1 to 1:245) through nondirectional and noncovalent immobilization on a surface of GNPs with a diameter of 25.3 ± 4.6 nm. The maximal antigen-capturing activities and equilibrium constants of the conjugates correlate with the formation of a constant hydrodynamic radius of the conjugates for mAb-GNP (GNP to antibody molar ratio 1:58) and with the stabilizing concentration by flocculation curves for pAb-GNP (GNP to antibody molar ratio 1:116). The application of the conjugates to the lateral flow immunoassay shows that the antibody concentrations used for the conjugation can be reduced (below the stabilizing concentration) without losing activity for the mAb-GNP conjugates. The findings highlight that the optimal concentration of antibodies immobilized on the surface of GNPs is not always equal to the stabilizing concentration determined by the flocculation curve.

  8. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    PubMed

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Impacts of urbanization on surface sediment quality: evidence from polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) contaminations in the Grand Canal of China.

    PubMed

    Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min

    2012-06-01

    Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.

  10. Numerical simulation of artificial microswimmers driven by Marangoni flow

    NASA Astrophysics Data System (ADS)

    Stricker, L.

    2017-10-01

    In the present paper the behavior of a single artificial microswimmer is addressed, namely an active droplet moving by Marangoni flow. We provide a numerical treatment for the main factors playing a role in real systems, such as advection, diffusion and the presence of chemical species with different behaviors. The flow field inside and outside the droplet is modeled to account for the two-way coupling between the surrounding fluid and the motion of the swimmer. Mass diffusion is also taken into account. In particular, we consider two concentration fields: the surfactant concentration in the bulk, i.e. in the liquid surrounding the droplet, and the surfactant concentration on the surface. The latter is related to the local surface tension, through an equation of state (Langmuir equation). We examine different interaction mechanisms between the bulk and the surface concentration fields, namely the case of insoluble surfactants attached to the surface (no exchange between the bulk and the surface) and soluble surfactants with adsorption/desorption at the surface. We also consider the case where the bulk concentration field is in equilibrium with the content of the droplet. The numerical results are validated through comparison with analytical calculations. We show that our model can reproduce the typical pusher/puller behavior presented by squirmers. It is also able to capture the self-propulsion mechanism of droplets driven by Belousov-Zhabotinsky (BZ) reactions, as well as a typical chemotactic behavior.

  11. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.

    PubMed

    Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin

    2015-05-05

    The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.

  12. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    NASA Astrophysics Data System (ADS)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  13. Enhanced oxidation of arsenite to arsenate using tunable K+ concentration in the OMS-2 tunnel.

    PubMed

    Hou, Jingtao; Sha, Zhenjie; Hartley, William; Tan, Wenfeng; Wang, Mingxia; Xiong, Juan; Li, Yuanzhi; Ke, Yujie; Long, Yi; Xue, Shengguo

    2018-07-01

    Cryptomelane-type octahedral molecular sieve manganese oxide (OMS-2) possesses high redox potential and has attracted much interest in its application for oxidation arsenite (As(III)) species of arsenic to arsenate (As(V)) to decrease arsenic toxicity and promote total arsenic removal. However, coexisting ions such as As(V) and phosphate are ubiquitous and readily bond to manganese oxide surface, consequently passivating surface active sites of manganese oxide and reducing As(III) oxidation. In this study, we present a novel strategy to significantly promote As(III) oxidation activity of OMS-2 by tuning K + concentration in the tunnel. Batch experimental results reveal that increasing K + concentration in the tunnel of OMS-2 not only considerably improved As(III) oxidation kinetics rate from 0.027 to 0.102 min -1 , but also reduced adverse effect of competitive ion on As(III) oxidation. The origin of K + concentration effect on As(III) oxidation was investigated through As(V) and phosphate adsorption kinetics, detection of Mn 2+ release in solution, surface charge characteristics, and density functional theory (DFT) calculations. Experimental results and theoretical calculations confirm that by increasing K + concentration in the OMS-2 tunnel not only does it improve arsenic adsorption on K + doped OMS-2, but also accelerates two electrons transfers from As(III) to each bonded Mn atom on OMS-2 surface, thus considerably improving As(III) oxidation kinetics rate, which is responsible for counteracting the adverse adsorption effects by coexisting ions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of temperature and concentration on the surface tension of chia seed mucilage

    NASA Astrophysics Data System (ADS)

    Fu, Yuting; Arye, Gilboa

    2017-04-01

    The production of mucilage by the seed coat during hydration is a common adaptation of many different plant species. The mucilage may play many ecological roles in adaptation and seed germination in diverse environments, especially in extreme desert conditions. The major compound of the seed mucilage is polysaccharides (e.g. pectins and hemicelluloses), which makes it highly hydrophilic. Consequently, it can hydrate quickly in the presence of water; forming a gel like coating surrounding the seed. However, the seed mucilage also reported to contain small amounts of protein and lipid which may exhibit surface activity at the water-air interface. As a result, decay in the surface tension of water can be occur and consequently a reduction in soil capillary pressure. This in turn may affect the water retention and transport during seed germination. The physical properties of the seeds mucilage have been studied mainly in conjunction with its rheological properties. To the best of our knowledge, its surface activity at the water-air interface has been reported mainly in the realms of food engineering, using a robust method of extraction. The main objective of this study was to quantify the effect of temperature and concentration on the surface tension of seed mucilage. The mucilage in this study was extracted from chia (Salvia hispanica L.) seeds, using distilled water (1:20 w/w) by shaking for 12 h at 4°C. The extracts were freeze dried after centrifuge (5000rpm for 20min). Fresh samples of different concentrations, ranging from 0.5 to 6 mg/ml, were prepared before each surface tension measurements. The equilibrium surface tension was measured by the Wilhelmy plate method using a tensiometer (DCAT 11, Data Physics) with temperature control unit. For a given mucilage concentration, surface tension measurements carried out at 5, 15, 25, 35, 45 °C. The quantitative and thermodynamic analysis of the results will be presented and discussed.

  15. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK).

    PubMed

    Tatsi, Kristi; Turner, Andrew

    2014-03-01

    Thallium is a highly toxic heavy metal whose concentrations and distributions in the aquatic environment are poorly defined. In this study, concentrations of aqueous and total Tl have been measured in water samples from a variety of rivers and effluents (the latter related to historical metal mining) in the county of Cornwall, SW England. Aqueous concentrations ranged from about 13 ng L(-1) in a river whose catchment contained no metal mines to 2,640 ng L(-1) in water abstracted directly from an abandoned mine shaft. Concentrations of Tl in rivers were greatest in the vicinity of mine-related effluents, with a maximum value measured of about 770 ng L(-1). Thallium was not efficiently removed by the conventional, active treatment of mine water, and displayed little interaction with suspended particles. Its mobility in surface waters, coupled with concentrations that are close to a quality guideline of 800 ng L(-1), is cause for concern. Accordingly, we recommend that the metal is more closely monitored in this and other regions impacted by mining activities. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    NASA Astrophysics Data System (ADS)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  17. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    PubMed

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  18. Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS

    NASA Astrophysics Data System (ADS)

    Chryssoulis, S. L.; Dimov, S. S.

    2004-06-01

    This work describes a comprehensive characterization of the factors controlling the floatability of free gold from flotation test using reagents (collectors) at plant concentration levels. A relationship between the collectors loadings on gold particles and their surface composition has been established. The findings of this study show that silver activates gold flotation and there is a strong correlation between the surface concentration of silver and the loading of certain collectors. The organic surface analysis was done by ToF-SIMS while the inorganic surface analysis was carried out by time-of-flight laser ionization mass spectrometry (ToF-LIMS). The developed testing protocol based on ToF-LIMS and ToF-SIMS complementary surface analysis allows for optimization of the flotation scheme and hence improved gold recovery.

  19. Spatio-Temporal Variability of Dissolved Metals in the Surface Waters of an Agroforestry Catchment with Low Levels of Anthropogenic Activity

    NASA Astrophysics Data System (ADS)

    Soto-Varela, Fátima; Rodríguez-Blanco, M. Luz; Mercedes Taboada-Castro, M.; Taboada-Castro, M. Teresa

    2017-12-01

    Evaluation of levels and spatial variations of metals in surface waters within a catchment are critical to understanding the extent of land-use impact on the river system. The aims of this study were to investigate the spatial and temporal variations of five dissolved metals (Al, Fe, Mn, Cu and Zn) in surface waters of a small agroforestry catchment (16 km2) in NW Spain. The land uses include mainly forests (65%) and agriculture (pastures: 26%, cultivation: 4%). Stream water samples were collected at four sampling sites distributed along the main course of the Corbeira stream (Galicia, NW Spain) between the headwaters and the catchment outlet. The headwater point can be considered as pristine environment with natural metal concentrations in waters because of the absence of any agricultural activity and limited accessibility. Metal concentrations were determined by ICP-MS. The results showed that metal concentrations were relatively low (Fe > Al > Mn > Zn > Cu), suggesting little influence from agricultural activities in the area. Mn and Zn did not show significant differences between sampling points along main stream, while for Fe and Cu significant differences were found between the headwaters and all other points. Al tended to decrease from the headwaters to the catchment outlet.

  20. Radioactivity concentrations and dose assessment in surface soil samples from east and south of Marmara region, Turkey.

    PubMed

    Kiliç, Onder; Belivermis, Murat; Topçuoğlu, Sayhan; Cotuk, Yavuz; Coşkun, Mahmut; Cayir, Akin; Küçer, Rahmi

    2008-01-01

    The activity concentrations of 137Cs, 40K, 232Th, 238U and 226Ra were measured in surface soil samples from East and South of Marmara region, Turkey. The physico-chemical parameters (organic matter, CaCO3 contents and pH-value) of the soil samples were determined in the samples collected from 100 sampling stations. The average activity concentrations of 137Cs, 40K, 232Th, 238U and 226Ra were found to be 27.46+/-21.84, 442.51+/-189.85, 26.63+/-15.90, 21.77+/-12.08 and 22.45+/-13.31 Bq kg(-1), respectively. The mean value of total annual external gamma radiation dose equivalent for the natural radionuclides was calculated to be 54.86 microSv. The current data were compared with those found in the other locations of Turkey and different countries.

  1. MICROBIOLOGICAL IMPACT OF CONCENTRATED ANIMAL FEED OPERATIONS (CAFOS) ON SURFACE AND GROUND WATER QUALITY

    EPA Science Inventory

    This investigation seeks to determine the microbiological impact of agricultural activities and confined animal feed operations (CAFOs) on surface and ground water in the Northwest Central Oklahoma. The first phase of the investigation will be carried on in collaboration with U...

  2. Fabrication of silicon-on-diamond substrate with an ultrathin SiO2 bonding layer

    NASA Astrophysics Data System (ADS)

    Nagata, Masahiro; Shirahama, Ryouya; Duangchan, Sethavut; Baba, Akiyoshi

    2018-06-01

    We proposed and demonstrated a sputter etching method to prepare both a flat surface (root-mean-square surface roughness of approximately 0.2–0.3 nm) and an ultrathin SiO2 bonding layer at an accuracy of approximately 5 nm in thickness to fabricate a silicon-on-diamond substrate (SOD). We also investigated a plasma activation method on a SiO2 surface using various gases. We found that O2 plasma activation is more suitable for the bonding between SiO2 and Si than N2 or Ar plasma activation. We speculate that the concentration of hydroxyl groups on the SiO2 surface was increased by O2 plasma activation. We fabricated the SOD substrate with an ultrathin (15 nm in thickness) SiO2 bonding layer using the sputter etching and O2 plasma activation methods.

  3. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  4. Impact of ferromanganese alloy plants on household dust manganese levels: implications for childhood exposure.

    PubMed

    Lucas, E L; Bertrand, P; Guazzetti, S; Donna, F; Peli, M; Jursa, T P; Lucchini, R; Smith, D R

    2015-04-01

    Adolescents living in communities with ferromanganese alloy plant activity have been shown to exhibit deficits in olfactory and fine motor function. Household dust may serve as an important manganese (Mn) exposure pathway to children, though dust Mn concentrations have not previously been measured to assess household contamination from ferromanganese alloy plant emissions. Here we determined the association between dust concentrations and surface loadings of Mn and other metals (Al, Cd, Cr, Cu, Fe, Pb, and Zn) in indoor and outdoor household dust from three Italian communities that differ by history of ferromanganese alloy plant activity: Bagnolo Mella, with an active ferromanganese alloy plant (n=178 households); Valcamonica, with historically active plants (n=166); and Garda Lake, with no history of ferromanganese plant activity (n=99). We also evaluated Mn levels in other environmental (soil, airborne particulates) and candidate biomarker (blood, hair, saliva, fingernails) samples from children within the households. Household dust Mn concentrations and surface loadings were significantly different between the three sites, with levels highest in Bagnolo Mella (outdoor median Mn concentration=4620, range 487-183,000µg/g), intermediate in Valcamonica (median=876, range 407-8240µg/g), and lowest in Garda Lake (median=407, range 258-7240µg/g). Outdoor dust Mn concentrations in Bagnolo Mella, but not the other communities, were significantly inversely related with distance from the plant (R(2)=0.6630, P<0.0001). Moreover, outdoor dust Mn concentrations and loadings were highly predictive of but significantly higher than indoor dust Mn concentrations and loadings by ~2 to ~7-fold (Mn concentrations) and ~7 to ~20-fold (Mn loadings). Finally, both indoor and outdoor dust Mn concentrations and outdoor dust Mn loading values were highly significantly correlated with both soil and air Mn concentrations, and with children's hair and fingernail Mn concentrations, but weakly or not associated with saliva or blood Mn levels. Given the evidence associating elevated Mn exposure with neurological impairments in children, these data support that dust Mn levels should be reduced in contaminated environments to protect the health of resident children. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Impact of Ferromanganese Alloy Plants on Household Dust Manganese Levels: Implications for Childhood Exposure

    PubMed Central

    Lucas, E.L.; Bertrand, P.; Guazzetti, S.; Donna, F.; Peli, M.; Jursa, T.R.; Lucchini, R.; Smith, D.R.

    2015-01-01

    Adolescents living in communities with ferromanganese alloy plant activity have been shown to exhibit deficits in olfactory and fine motor function. Household dust may serve as an important manganese (Mn) exposure pathway to children, though dust Mn concentrations have not previously been measured to assess household contamination from ferromanganese alloy plant emissions. Here we determined the association between dust concentrations and surface loadings of Mn and other metals (Al, Cd, Cr, Cu, Fe, Pb, and Zn) in indoor and outdoor household dust from three Italian communities that differ by history of ferromanganese alloy plant activity: Bagnolo Mella, with an active ferromanganese alloy plant (n=178 households); Valcamonica, with historically active plants (n=166); and Garda Lake, with no history of ferromanganese plant activity (n=99). We also evaluated Mn levels in other environmental (soil, airborne particulates) and candidate biomarker (blood, hair, saliva, fingernails) samples from children within the households. Household dust Mn concentrations and surface loadings were significantly different between the three sites, with levels highest in Bagnolo Mella (outdoor median Mn concentration = 4620, range 487 – 183,000 µg/g), intermediate in Valcamonica (median = 876, range 407 – 8240 µg/g), and lowest in Garda Lake (median = 407, range 258 – 7240 µg/g). Outdoor dust Mn concentrations in Bagnolo Mella, but not the other communities, were significantly inversely related with distance from the plant (R2=0.6630, P<0.0001). Moreover, outdoor dust Mn concentrations and loadings were highly predictive of but significantly higher than indoor dust Mn concentrations and loadings by ~2 to ~7-fold (Mn concentrations) and ~7 to ~20-fold (Mn loadings). Finally, both indoor and outdoor dust Mn concentrations and outdoor dust Mn loading values were highly significantly correlated with both soil and air Mn concentrations, and with children’s hair and fingernail Mn concentrations, but weakly or not associated with saliva or blood Mn levels. Given the evidence associating elevated Mn exposure with neurological impairments in children, these data support that dust Mn levels should be reduced in contaminated environments to protect the health of resident children. PMID:25747819

  6. Quantitative Detection of Prostatic-Specific Antigens by Using Scanning Electron Microscopy for the Analysis of Protein Chips.

    PubMed

    Lee, Jisu; Jung, Moon Youn; Park, Hyung Ju

    2017-04-01

    We reported that quantitative detection of prostatic-specific antigen (PSA), which is the biomarker of prostate cancer, could be carried out by calculating the number density and the area ratio of gold nanoparticle probes on the surface of silicon oxide chips. When chips selectively activated with PSA were immersed in the gold nanoparticles conjugated with prostatic specific antigens-poly clonal antibodies (PSA-pAb), it was possible to observe changes in the number density and the area ratio of gold nanoparticles on the surface of the chips according to the concentration of PSA with scanning electron microscopy (SEM) images. As PSA concentration increased, the number density and the area ratio of gold nanoparticle probes on the surfaces of the chips increased accordingly. Conversely, with lower concentration, the number density and the area ratio of gold nanoparticle probes on the surfaces decreased at a certain ratio. We observed the correlations between PSA concentration and number density, area ratio of gold nanoparticle probes through the analysis of SEM images. In addition, it was confirmed that the sizes of the gold nanoparticles affected the detection limit of the number density and the area ratio of gold nanoparticle probes on the surface.

  7. Influence of multi-industrial activities on trace metal contamination: an approach towards surface water body in the vicinity of Dhaka Export Processing Zone (DEPZ).

    PubMed

    Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U

    2012-07-01

    Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.

  8. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  9. Mechanism for selective growth in electrical steel

    NASA Astrophysics Data System (ADS)

    Oh, Eun Jee; Heo, Nam Hoe; Kwon, Se Kyun; Koo, Yang Mo

    2018-01-01

    Through the competitive selective growth process between {100}, {110}, and {111} grains during final annealing which is governed by the primary grain size and the surface segregation concentration of sulfur, the sharp {110}<001> annealing texture can be developed in a C-and Al-free Fe-3%Si-0.1%Mn electrical steel. Generally, the selective growth of the {110} grains occurs actively under the low surface segregation concentration of sulfur. In spite of the surface energy disadvantage, the selective growth of a {hkl} grain can however occur, if the {hkl} grain size is larger than the critical grain size linearly proportional to the strip thickness.

  10. Reversal of Apixaban Induced Alterations in Hemostasis by Different Coagulation Factor Concentrates: Significance of Studies In Vitro with Circulating Human Blood

    PubMed Central

    Arellano-Rodrigo, Eduardo; Roquer, Jaume; Reverter, Joan Carles; Sanz, Victoria Veronica; Molina, Patricia; Lopez-Vilchez, Irene; Diaz-Ricart, Maribel; Galan, Ana Maria

    2013-01-01

    Apixaban is a new oral anticoagulant with a specific inhibitory action on FXa. No information is available on the reversal of the antihemostatic action of apixaban in experimental or clinical settings. We have evaluated the effectiveness of different factor concentrates at reversing modifications of hemostatic mechanisms induced by moderately elevated concentrations of apixaban (200 ng/ml) added in vitro to blood from healthy donors (n = 10). Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were assessed. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with blood circulating through damaged vascular surfaces, at a shear rate of 600 s−1. The potential of prothrombin complex concentrates (PCCs; 50 IU/kg), activated prothrombin complex concentrates (aPCCs; 75 IU/kg), or activated recombinant factor VII (rFVIIa; 270 μg/kg), at reversing the antihemostatic actions of apixaban, were investigated. Apixaban interfered with TG kinetics. Delayed lag phase, prolonged time to peak and reduced peak values, were improved by the different concentrates, though modifications in TG patterns were diversely affected depending on the activating reagents. Apixaban significantly prolonged clotting times (CTs) in TEM studies. Prolongations in CTs were corrected by the different concentrates with variable efficacies (rFVIIa≥aPCC>PCC). Apixaban significantly reduced fibrin and platelet interactions with damaged vascular surfaces in perfusion studies (p<0.05 and p<0.01, respectively). Impairments in fibrin formation were normalized by the different concentrates. Only rFVIIa significantly restored levels of platelet deposition. Alterations in hemostasis induced by apixaban were variably compensated by the different factor concentrates investigated. However, effects of these concentrates were not homogeneous in all the tests, with PCCs showing more efficacy in TG, and rFVIIa being more effective on TEM and perfusion studies. Our results indicate that rFVIIa, PCCs and aPCCs have the potential to restore platelet and fibrin components of the hemostasis previously altered by apixaban. PMID:24244342

  11. Development and evaluation of a high-resolution aerosol optical depth product for the southern California region during the October 2007 wildfires

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Raffuse, S. M.; Dewinter, J. L.; Lurmann, F.; Craig, K. J.; Fruin, S.

    2010-12-01

    Current methods for estimating acute exposure to high levels of air pollution (e.g., particles, CO, NOx, aldehydes) during fire events require spatial interpolation over the study area using concentrations at central air quality monitors to represent the population of interest. This may inaccurately represent the magnitude of exposure because pollutant concentrations vary widely depending on the location of the fire plume, vertical mixing, and prevailing winds dispersing the pollutant. Remotely sensed datasets, such as aerosol optical depth (AOD) from the NASA MODIS instrument, can provide greater spatial coverage than ground-based air quality monitors. Past studies have shown positive correlations between AOD, a measure of aerosols in an atmospheric column, and ground-level measurements of PM2.5 and PM10 concentrations. However, current standard AOD products are not sufficient for assessing intra-urban variability due to the low spatial resolution (e.g., 10x10 km for MODIS) of datasets. In addition such products typically perform poorly with very dense smoke in the atmosphere and over reflective, semi-arid land surfaces such as southern California. A highly resolved AOD product (500m resolution) was developed for southern California during the October 2007 fires using radiance data obtained from the National Aeronautics and Space Administration (NASA) MODIS instrument. AOD was calculated at 0.55µm wavelength using a unique algorithm tailored to the southern California region and for an atmosphere dominated by biomass burning aerosols. The AOD product was compared with column measurements of AOD from surface-based AERONET sites. AOD was not predictive of surface PM during the October 2007 fires when compared to surface PM concentrations throughout southern California; R-square correlation coefficients were low. However, the relationship varied during the time period studied: correlations were weak early in the event (0.02) but improved during the later days of the event (0.3). Heavy dust episodes early in the fire event were poorly represented by the biomass-specific aerosol optical properties model. In addition, lofted smoke plumes from active fires did not mix down to the surface, resulting in high AOD column estimates and low surface PM concentrations. The aerosol was more dispersed later in the event; elevated surface PM concentrations were coincident with moderate AOD values. The case study demonstrates the challenges in using remote measurements in quantifying surface concentrations during active fire events in areas of complex terrain.

  12. Ultrafiltrative deinking of flexographic ONP : the role of surfactants

    Treesearch

    Bradley H. Upton; Gopal A. Krishnagopalan; Said Abubakr

    1999-01-01

    Ultrafiltration is a potentially viable method of removing finely dispersed flexographic pigments from the deinking water loop. This work examines the effects of surface-active materials on ultrafiltration efficiency. A logarithmic relationship between permeate flax and pigment concentration was demonstrated at ink concentrations above 0.4%, permeation rates becoming...

  13. Effects of membrane composition on release of model hydrophilic compound from osmotic delivery systems.

    PubMed

    Ozdemir, N; Ozalp, Y; Ozkan, Y

    2000-01-01

    In this study, the effects of surface-active agents in different types and concentrations, added into the coating solution, on release of model hydrophilic compound have been examined. For this purpose, the tablets, prepared with the use of methylene blue as a model substance, were coated by spray coating technique with cellulose acetate solution containing polyethylene glycol 400 as a plasticizer. In addition, cetylpyridinium chloride as cationic surface-active agent and sodium lauryl sulphate as anionic surface-active agent were added into coating solution in different concentrations. After creating a delivery orifice by a microdrill on the tablets, release of model hydrophilic compound was tested by the USP paddle method. The data obtained were evaluated according to the different kinetics and the mechanism of release from the preparations was examined. The surface properties of the coating material were investigated by scanning electron microscope taken before and after the contact with medium fluid, as well as the mechanical properties by tensile tests. In conclusion, it has been found that the cationic surface active agent, cetylpyridinium chloride reduced the lag time, observed during the release of model hydrophilic compound, as a result of its enhancing effect on wettability of tablets by reducing the contact angle between the medium fluid and the coating material. On the other hand, the anionic surface active agent, sodium lauryl sulphate has been inactivated possibly due to the interaction with model hydrophilic compound that has cationic properties and/or substances contained in membrane composition; thus, the lag time has not decreased and furthermore, a significant decrease in the delivery rate of model hydrophilic compound has been observed.

  14. Elaboration of nano-structured grafted polymeric surface.

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Mozetic, Miran; Vesel, Alenka; Kovac, Janez; Coudreuse, Arnaud; Legeay, Gilbert; Poncin-Epaillard, Fabienne

    2011-10-15

    The surface grafting of multi-polymeric materials can be achieved by grafting as components such as polymers poly(N-isopropylacrylamide) and/or surfactant molecules (hexatrimethylammonium bromide, polyoxyethylene sorbitan monolaurate). The chosen grafting techniques, i.e. plasma activation followed by coating, allow a large spectrum of functional groups that can be inserted on the surface controlling the surface properties like adhesion, wettability and biocompatibility. The grafted polypropylene surfaces were characterized by contact angle analyses, XPS and AFM analyses. The influence of He plasma activation, of the coating parameters such as concentrations of the various reactive agents are discussed in terms of hydrophilic character, chemical composition and morphologic surface heterogeneity. The plasma pre-activation was shown inevitable for a permanent polymeric grafting. PNIPAM was grafted alone or with a mixture of the surfactant molecules. Depending on the individual proportion of each component, the grafted surfaces are shown homogeneous or composed of small domains of one component leading to a nano-structuration of the grafted surface. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose

    PubMed Central

    Jalak, Jürgen; Väljamäe, Priit

    2014-01-01

    Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area. PMID:25265511

  16. Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells

    PubMed Central

    1993-01-01

    Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). PMID:7687645

  17. Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.

    PubMed

    Ahkola, Heidi; Tuominen, Sirkku; Karlsson, Sanja; Perkola, Noora; Huttula, Timo; Saraperä, Sami; Artimo, Aki; Korpiharju, Taina; Äystö, Lauri; Fjäder, Päivi; Assmuth, Timo; Rosendahl, Kirsi; Nysten, Taina

    2017-12-01

    Anthropogenic chemicals in surface water and groundwater cause concern especially when the water is used in drinking water production. Due to their continuous release or spill-over at waste water treatment plants, active pharmaceutical ingredients (APIs) are constantly present in aquatic environment and despite their low concentrations, APIs can still cause effects on the organisms. In the present study, Chemcatcher passive sampling was applied in surface water, surface water intake site, and groundwater observation wells to estimate whether the selected APIs are able to end up in drinking water supply through an artificial groundwater recharge system. The API concentrations measured in conventional wastewater, surface water, and groundwater grab samples were assessed with the results obtained with passive samplers. Out of the 25 APIs studied with passive sampling, four were observed in groundwater and 21 in surface water. This suggests that many anthropogenic APIs released to waste water proceed downstream and can be detectable in groundwater recharge. Chemcatcher passive samplers have previously been used in monitoring several harmful chemicals in surface and wastewaters, but the path of chemicals to groundwater has not been studied. This study provides novel information on the suitability of the Chemcatcher passive samplers for detecting APIs in groundwater wells.

  18. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Renteria-Villalobos, M.

    2008-01-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating ofmore » core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.« less

  19. Effect of Surface Preparation and Gas Flow on Nitrogen Atom Surface Recombination

    NASA Technical Reports Server (NTRS)

    Prok, George M.

    1961-01-01

    The effects of surface preparation and gas flow on the recombination of nitrogen atoms at copper and platinum surfaces were determined. Atoms were generated by an electrodeless 2450-megacycle-per-second discharge, and their concentration was measured by gas-phase titration with nitric oxide. Test surfaces were either vacuum-evaporated films or spheres machined from bulk metal and cemented around small glass-bead thermistors. Heat released by recombination was measured as the difference in electrical energy required to maintain a given thermistor temperature with and without a catalytic surface exposed. Recombination coefficients measured at flow velocities of 1120, 1790, 2250, and 3460 centimeters per second and at pressures of 0.42 and 0.59 millimeter of mercury showed that flow conditions had no effect. The results were also independent of atom concentration. A rough indication of the temperature dependence was obtained; it was greater for copper than for platinum. Platinum films deposited on platinum or on glass had the same activity - about 3 percent of the atoms impinging recombined. With copper, however, the glass substrate greatly reduced the percent of atoms recombining over that of a bulk copper substrate where 4 percent of the impinging atoms recombined. This effect could be overcome by depositing a second film on top of the first. Bulk metal samples were subjected to various surface treatments including polishing, degreasing with a chlorinated hydrocarbon, washing with nitric acid, and rinsing with water. Polished, degreased platinum had low activity compared to an evaporated film, but nitric acid treatment made it equivalent. Polished, degreased copper was only slightly less active than a copper film; nitric acid etching decreased the activity still further, probably by preferentially exposing facets of low catalytic efficiency.

  20. Surface active properties of lipid nanocapsules

    PubMed Central

    Mouzouvi, Celia R. A.; Bigot, André K.; Saulnier, Patrick

    2017-01-01

    Lipid nanocapsules (LNCs) are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS) and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs’ properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8–35.0 mN/m and 37.7–38.8 mN/m, respectively), as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC) that was 10-fold higher than the critical micellar concentration (CMC) of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications. PMID:28796777

  1. Surface active properties of lipid nanocapsules.

    PubMed

    Mouzouvi, Celia R A; Umerska, Anita; Bigot, André K; Saulnier, Patrick

    2017-01-01

    Lipid nanocapsules (LNCs) are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS) and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively), as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC) that was 10-fold higher than the critical micellar concentration (CMC) of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  2. Thermodynamics, interfacial pressure isotherms and dilational rheology of mixed protein-surfactant adsorption layers.

    PubMed

    Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R

    2016-07-01

    Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

  4. Interaction of Strontium-90 in Sediment and Porewater in a Stream Near Chernobyl

    NASA Astrophysics Data System (ADS)

    Freed, R.; Smith, L.; Bugai, D.

    2002-12-01

    We investigated the interaction of 90Sr in sediments and pore waters of wetlands and stream hyporheic zones at a stream near Chernobyl. A non-dimensional activity ratio was formulated, the ratio of 90Sr in the pore waters compared with exchangeable 90Sr in the sediment on a volume basis. The average activity ratio for the wetland and channel sediments was 0.028 +/- 0.005. The activity ratio decreased when the sediment and porewaters were not in equilibrium. The change in the activity ratio was documented during two observational periods in a wetland: initially during a time when groundwater was discharging to the wetland (snowmelt, 2000) and subsequently at a time of near-stagnant groundwater flow (late fall in 2001 after a dry three month period). In both the discharge and stagnant periods, the exchangeable 90Sr concentration in sediment increased with depth by a factor of five to a peak concentration at 10 cm. In contrast, the 90Sr concentration in porewater differed significantly in the two observational periods. During the groundwater discharge period, the porewater concentration was relatively constant over the 30 cm depth of observation (120 +/-12 Bq/L) and surface water concentrations were similar. During the near-stagnant period, the porewater concentration increased with depth from 20+/-2 Bq/L in surface waters to 400 +/-40 Bq/L at a depth of 10 cm. We hypothesize that during discharge periods, the porewaters in the wetland represent the 90Sr concentration of advecting groundwater while during stagnant periods, the porewaters represent the concentration of 90Sr in equilibrium with the sediment. This proposed explanation is supported using PHREEQC in a dual porosity mode. Using independent estimates of the model parameters, the concentration profiles could be successfully matched with the assumption of advective transport during the discharge period and diffusive transport of 90Sr during near-stagnant conditions.

  5. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.

    PubMed

    Vences-Alvarez, Esmeralda; Velazquez-Jimenez, Litza Halla; Chazaro-Ruiz, Luis Felipe; Diaz-Flores, Paola E; Rangel-Mendez, Jose Rene

    2015-10-01

    Various health problems associated with drinking water containing high fluoride levels, have motivated researchers to develop more efficient adsorbents to remove fluoride from water for beneficial concentrations to human health. The objective of this research was to anchor lanthanum oxyhydroxides on a commercial granular activated carbon (GAC) to remove fluoride from water considering the effect of the solution pH, and the presence of co-existing anions and organic matter. The activated carbon was modified with lanthanum oxyhydroxides by impregnation. SEM and XRD were performed in order to determine the crystal structure and morphology of the La(III) particles anchored on the GAC surface. FT-IR and pK(a)'s distribution were determined in order to elucidate both the possible mechanism of the lanthanum anchorage on the activated carbon surface and the fluoride adsorption mechanism on the modified material. The results showed that lanthanum ions prefer binding to carboxyl and phenolic groups on the activated carbon surface. Potentiometric titrations revealed that the modified carbon (GAC-La) possesses positive charge at a pH lower than 9. The adsorption capacity of the modified GAC increased five times in contrast to an unmodified GAC adsorption capacity at an initial F(-) concentration of 20 mg L(-1). Moreover, the presence of co-existing anions had no effect on the fluoride adsorption capacity at concentrations below 30 mg L(-1), that indicated high F(-) affinity by the modified adsorbent material (GAG-La). Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis, Surface Parameters, and Biodegradability of Water-soluble Surfactants for Various Applications.

    PubMed

    El-Sayed, Refat; Alotaibi, Hawazin H; Elhady, Heba A

    2018-01-01

    The synthesis of water-soluble heterocyclic compounds was verified on the basis of nonionic surfactants for use as surface-active agents. Surface characteristics such as surface and interfacial tensions, cloud point, wetting time, emulsion stability, foaming height and foaming stability were measured for these surface factors in aqueous solutions. In addition, the critical micelle concentration (CMC), the surface pressure at CMC (π cmc ), the effectiveness of surface tension reduction (pC 20 ), the maximum surface concentration (Γ ma. ) and the minimum area/molecule at the aqueous solution/air interface (A min ) were calculated. Moreover, the biodegradability for these nonionic surfactants has been investigated. Furthermore, the antimicrobial evaluation has been evaluated with some surfactants that have demonstrated a potent cytotoxicity as antibacterial, antifungal and anticancer. These surfactants have a good water solubility, low toxicity, environmentally friendly environment, high foam, good emulsifier and easy production that will be used them in various fields such as medical drugs, insecticides, detergents, emulsifiers, cosmetics, inks clothing, leather industry and oil recovery.

  7. Breakthrough curves for toluene adsorption on different types of activated carbon fibers: application in respiratory protection.

    PubMed

    Balanay, Jo Anne G; Floyd, Evan L; Lungu, Claudiu T

    2015-05-01

    Activated carbon fibers (ACF) are considered viable alternative adsorbent materials in respirators because of their larger surface area, lighter weight, and fabric form. The purpose of this study was to characterize the breakthrough curves of toluene for different types of commercially available ACFs to understand their potential service lives in respirators. Two forms of ACF, cloth (AC) and felt (AF), with three surface areas each were tested. ACFs were challenged with six toluene concentrations (50-500 p.p.m.) at constant air temperature (23°C), relative humidity (50%), and air flow (16 l min-1) at different bed depths. Breakthrough data were obtained using continuous monitoring by gas chromatography using a gas sampling valve. The ACF specific surface areas were measured by an automatic physisorption analyzer. Results showed unique shapes of breakthrough curves for each ACF form: AC demonstrated a gradual increase in breakthrough concentration, whereas AF showed abrupt increase in concentration from the breakpoint, which was attributed to the difference in fiber density between the forms. AF has steeper breakthrough curves compared with AC with similar specific surface area. AC exhibits higher 10% breakthrough times for a given bed depth due to higher mass per bed depth compared with AF, indicating more adsorption per bed depth with AC. ACF in respirators may be appropriate for use as protection in environments with toluene concentration at the Occupational Safety and Health Administration Permissible Exposure Limit, or during emergency escape for higher toluene concentrations. ACF has shown great potential for application in respiratory protection against toluene and in the development of thinner, lighter, and more efficient respirators. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  8. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    PubMed Central

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-01-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629

  9. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-01

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  10. Assembling strategy to synthesize palladium modified kaolin nanocomposites with different morphologies.

    PubMed

    Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming

    2015-09-03

    Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.

  11. Mercury methylation in high and low-sulphate impacted wetland ponds within the prairie pothole region of North America.

    PubMed

    Hoggarth, Cameron G J; Hall, Britt D; Mitchell, Carl P J

    2015-10-01

    Using enriched stable (201)Hg injections into intact sediment cores, we provide the first reported Hg methylation potential rate constants (km) in prairie wetland ponds (0.016-0.17 d(-1)). Our km values were similar to other freshwater wetlands and did not differ in ponds categorized with high compared to low surface water concentrations of sulphate. Sites with high sulphate had higher proportions of methylmercury (MeHg) in sediment (2.9 ± 1.6% vs. 1.0 ± 0.3%) and higher surface water MeHg concentrations (1.96 ± 1.90 ng L(-1)vs. 0.56 ± 0.55 ng L(-1)). Sediment-porewater partitioning coefficients were small, and likely due to high ionic activity. Our work suggests while km measurements are useful for understanding mercury cycling processes, they are less important than surface water MeHg concentrations for assessing MeHg risks to biota. Significant differences in MeHg concentrations between sites with high and low sulphate concentrations may also inform management decisions concerning wetland remediation and creation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Photo reduction of CO2 to CH4 on g-C3N4: The effect of concentrating light and pretreatment

    NASA Astrophysics Data System (ADS)

    Li, Dong; Fang, Xiaoxiang; Liu, Huayan; Lu, Hanfeng; Zhang, Zekai

    2018-06-01

    The behavior of CO2 photoreduction to CH4 on the g-C3N4 catalyst was studied in a concentrating light reactor. The g-C3N4 catalysts before and after pretreatment were characterized by FE-SEM, XRD and photoilluminance. It is found that concentrating light increases the CH4 yield on the g-C3N4 by heightening the incident light intensity, and light pretreatment has an excessive effect on the performance. Pretreated by suitable light intensity, air atmosphere and time, the CH4 yield on the g-C3N4 under concentrating light irradiation reached about 3.39 μmol.g-1.h-1, which is about 16 times of that g-C3N4 reacted at nature incident light without pretreatment. The mechanism of pretreatment is considered to be from the surface oxidation state change of the catalyst either from the oxidation of the catalyst surface or the activation of surface oxygen.

  13. Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat

    PubMed Central

    Willard, F. L.; Kodras, Rudolph

    1967-01-01

    Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407

  14. Survey of chemical compounds tested in vitro against rumen protozoa for possible control of bloat.

    PubMed

    Willard, F L; Kodras, R

    1967-09-01

    Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-beta-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants.

  15. Determination of bromine, chlorine and iodine in environmental aqueous samples by epithermal neutron activation analysis and Compton suppression

    USGS Publications Warehouse

    Landsberger, S.; O'Kelly, D. J.; Braisted, J.; Panno, S.

    2006-01-01

    Halides, particularly Br- and Cl-, have been used as indicators of potential sources of Na+ and Cl- in surface water and groundwater with limited success. Contamination of groundwater and surface water by Na+ and Cl- is a common occurrence in growing urban areas and adversely affects municipal and private water supplies in Illinois and other states, as well as vegetation in environmentally sensitive areas. Neutron activation analysis (NAA) can be effectively used to determine these halogens, but often the elevated concentrations of sodium and chlorine in water samples can give rise to very high detection limits for bromine and iodine due to elevated backgrounds from the activation process. We present a detailed analytical scheme to determine Cl, Br and I in aqueous samples with widely varying Na and Cl concentrations using epithermal NAA in conjunction with Compton suppression. ?? 2006 Akade??miai Kiado??.

  16. Receptor density balances signal stimulation and attenuation in membrane-assembled complexes of bacterial chemotaxis signaling proteins

    PubMed Central

    Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.

    2008-01-01

    All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126

  17. Breaking The Enzymatic Latch: Do Anaerobic Conditions Constrain Decomposition In Humid Tropical Forest Soil?

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.

    2011-12-01

    Anaerobic conditions have been proposed to impose a "latch" on soil organic matter decomposition by inhibiting the activity of extracellular enzymes that catalyze the transformation of organic polymers into monomers for microbial assimilation. Here, we tested the hypothesis that anaerobiosis inhibits soil hydrolytic enzyme activity in a humid tropical forest ecosystem in Puerto Rico. We sampled surface and sub-surface soil from each of 59 plots (n = 118) stratified across distinct topographical zones (ridges, slopes, and valleys) known to vary in soil oxygen (O2) concentrations, and measured the potential activity of five hydrolytic enzymes that decompose carbon (C), nitrogen (N), and phosphorus (P) substrates. We measured reduced iron (Fe (II)) concentrations in soil extractions to provide a spatially and temporally integrated index of anaerobic microbial activity, since iron oxides constitute the dominant anaerobic terminal electron acceptor in this ecosystem. Surprisingly, we observed positive relationships between Fe (II) concentrations and the activity of all enzymes that we assayed. Linear mixed effects models that included Fe (II) concentration, topographic position, and their interaction explained between 30 to 70 % of the variance of enzyme activity of β-1,4-glucosidase, β-cellobiohydrolase, β-xylosidase, N-acetylglucosaminidase, and acid phosphatase. Soils from ridges and slopes contained between 10 and 800 μg Fe (II) g-1 soil, and exhibited consistently positive relationships (p < 0.0001) between Fe (II) and enzyme activity. Valley soils did not display significant relationships between enzyme activity and Fe (II), although they displayed variation in soil Fe (II) concentrations similar to ridges and slopes. Overall, valleys exhibited lower enzyme activity and lower Fe (II) concentrations than ridges or slopes, possibly related to decreased root biomass and soil C. Our data provide no indication that anaerobiosis suppresses soil enzyme activity, but rather that high rates of decomposition induce a higher proportion of anaerobiosis soil microsites. The spatial patterns of Fe (II) concentrations that we observed also support this hypothesis. Soil Fe (II) concentrations were significantly greater in ridges than in slopes or valleys, in spite of the fact that slopes and valleys tend to experience higher soil moisture and lower bulk soil O2 concentrations. In our samples, Fe (II) concentrations correlated only weakly with ambient soil moisture, suggesting the importance of biological demand in controlling O2 availability as opposed to physical limitations on O2 diffusion imposed by soil moisture. In sum, our data suggest that anaerobic conditions do not necessarily constrain enzyme activity in humid tropical forest soils, and may not provide a proximate control on soil C storage in these ecosystems as has been recently proposed.

  18. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    NASA Astrophysics Data System (ADS)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  19. Trace Element Cycling in Lithogenic Particles at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").

  20. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    PubMed

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  1. Strong Effects of a Shelfbreak Jet on Microbial Enzyme Activities

    NASA Astrophysics Data System (ADS)

    Hoarfrost, A.; Balmonte, J. P.; Ziervogel, K.; Ghobrial, S.; Gawarkiewicz, G.; Arnosti, C.

    2016-02-01

    The activities of extracellular enzymes are critical in initiating microbial cycling of organic carbon, yet the dynamics of heterotrophic enzyme activities in marine environments are still poorly understood. Variations at a given site in rates of activity and the spectrum of organic substrates hydrolyzed may depend upon environmental context. We measured the extracellular enzymatic hydrolysis of 13 high- and low-molecular-weight organic substrates in surface and bottom waters along a closely spaced 4-station transect at 71 W on the North Atlantic continental shelf, in the vicinity of the shelfbreak front. This transect intersects a robust upwelling cell that typically shows high biologic productivity, and is locatable by changes in T/S profiles and chl a concentrations along sharp spatial gradients. At the time of sampling, cold pool waters over the continental shelf were relatively cold, 3.5 Deg. C, compared to 12 Deg. C over the upper continental slope. Satellite thermal imagery indicated that shelf water extended offshore and interacted with a large crest of the Gulf Stream. The surface and bottom waters associated with the upwelling jet were characterized by enzyme activities a factor of 20 more rapid than closer inshore waters, and surface water chl a concentrations that were two to three times higher than the inshore waters. The spectrum of enzyme activities also differed markedly between surface and bottom waters both within the jet and at near-shore stations. Microbial extracellular enzymatic activities were strongly influenced by differences in their environmental context along the continental slope and shelfbreak front. Constraining the factors controlling heterotrophic activity across the diverse marine environment is an important step in understanding microbial controls on carbon cycling.

  2. Effect of surfactant concentration on the ultraviolet sensing properties of ZnO-cellulose nanocomposites

    NASA Astrophysics Data System (ADS)

    Sahoo, Karunakar; Nayak, J.

    2018-05-01

    ZnO nanoparticles were grown, on cellulose fiber surfaces, at three different concentrations of hexamethylenetetramine by an aqueous chemical method. A typical ZnO-cellulose nanocomposite showed an enhanced UV sensing activity due to its large surface area. Due to illumination with ultraviolet light, the surface photocurrent of ZnO-cellulose nanocomposite pellet increased from 8.90 × 10‒7 A to 3.18 × 10‒5 A in 15 s. The UV ON to OFF (IUV/IDark) ratio for this sample was 35.73. Hence, an enhancement in the conductivity due to UV illumination shows that our ZnO-cellulose can be used for the fabrication of UV sensors.

  3. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  4. [Electromyography of the perineum. Demonstration of the method].

    PubMed

    Plotti, G; Palla, G P; Romanini, C; Piscicelli, U; Bompiani, A

    1981-05-12

    The Authors, by means of surface E.M.G. have investigated the perineal potentials. The choice of surface E.M.G. is due to the good acceptance of the method by the patients, as it does not interfere with muscular activity and mental concentration, which are fundamental for a good application of R.A.T.

  5. Self-generated concentration and modulus gradient coating design to protect Si nano-wire electrodes during lithiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung-Yup; Ostadhossein, Alireza; van Duin, Adri C. T.

    2016-01-01

    Surface coatings as artificial solid electrolyte interphases have been actively pursued as an effective way to improve the cycle efficiency of nanostructured Si electrodes for high energy density lithium ion batteries, where the mechanical stability of the surface coatings on Si is as critical as Si itself.

  6. Low-level (PPB) determination of cisplatin in cleaning validation (rinse water) samples. II. A high-performance liquid chromatographic method.

    PubMed

    Raghavan, R; Burchett, M; Loffredo, D; Mulligan, J A

    2000-04-01

    A high-performance liquid chromatographic (HPLC) method is described for the determination of residual levels of cisplatin from extracts of surfaces with very low surface area; from extracts of surfaces of coupons made of Teflon (polytetrafluoroethylene, PTFE), stainless steel, and glass; and in aqueous solution collected after rinsing equipment and parts. Initially, the method was developed to determine cisplatin at concentrations ranging from 20 to 200 ng/ml by direct injection. Retaining the same method conditions, the scope of the method was expanded by the addition of a sample preconcentration step, allowing analyses at levels ranging from 0.5 ng to 20 ng/ml. Preconcentration is necessary for the determination of cisplatin in rinse waters at a quantifiable concentration of about 2 PPB. Under these conditions, the detection limit is about 0.2 to 0.3 ng/ml. Residual cisplatin on different types of surfaces, including surfaces with very low surface area, can be determined by swabbing each test surface with a derivatizing solution. The cisplatin recovered in the swabbing solution can be analyzed by HPLC using direct injection or preconcentration, depending on the expected level of cisplatin in the sample. Initial methods were developed to quantitate at a cisplatin concentration of about 100 PPB or higher in solution extracted from surfaces. However, when surface areas are limited because of the size of the parts, solution concentration becomes very low as a result of the minimum volume required for extraction. To support the application of swabbing techniques to surface analysis, stainless steel, Teflon, and glass surfaces were spiked with cisplatin at 2.5 to 20 ng/cm2. Satisfactory overall recoveries of 90% +/- 10% were obtained from all surfaces. Cisplatin has no ultraviolet/visible (UV/Vis) spectral-active functional group that can be used to detect low levels of cisplatin. Hence, diethyldithiocarbamate (DDTC) was used as a derivatizing agent to increase sensitivity to UV absorption at 340 nm. Diethyldithiocarbamate forms complexes with the platinum in cisplatin to yield a platinum-DDTC (Pt-DDTC) complex with a high molar-extinction coefficient. The Pt(DDTC)2 complex thus formed was chromatographically separated and the quantitated by comparison of its detector response to that of a similarly derivatized standard preparation. DDTC also has application as a cleaning agent for cisplatin (e.g., for production equipment cleaning, spill cleanup). Destruction of cisplatin can be affected by the reaction of cisplatin with this cleaning agent. Derivatization of cisplatin will convert active cisplatin to platinum-DDTC on surfaces or in solution. Final cleaning can be accomplished using a water-for-injection rinse. After such a cleaning process, the rinse water, when collected and analyzed, showed levels of free cisplatin less than the detection concentration of 0.2 PPB and a total platinum concentration less than 10 PPB as Pt-DDTC complex.

  7. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  8. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    PubMed Central

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  9. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    NASA Astrophysics Data System (ADS)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.

  10. Quality control of the paracetamol drug by chemometrics and imaging spectroscopy in the near infrared region

    NASA Astrophysics Data System (ADS)

    Baptistao, Mariana; Rocha, Werickson Fortunato de Carvalho; Poppi, Ronei Jesus

    2011-09-01

    In this work, it was used imaging spectroscopy and chemometric tools for the development and analysis of paracetamol and excipients in pharmaceutical formulations. It was also built concentration maps to study the distribution of the drug in the tablets surface. Multivariate models based on PLS regression were developed for paracetamol and excipients concentrations prediction. For the construction of the models it was used 31 samples in the tablet form containing the active principle in a concentration range of 30.0-90.0% (w/w) and errors below to 5% were obtained for validation samples. Finally, the study of the distribution in the drug was performed through the distribution maps of concentration of active principle and excipients. The analysis of maps showed the complementarity between the active principle and excipients in the tablets. The region with a high concentration of a constituent must have, necessarily, absence or low concentration of the other one. Thus, an alternative method for the paracetamol drug quality monitoring is presented.

  11. Negative impact of surface Ti3+ defects on the photocatalytic hydrogen evolution activity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Chen, Haidong; Zhang, Feng; Zhang, Weifeng; Du, Yingge; Li, Guoqiang

    2018-01-01

    Defects play an important and in many cases dominant role in the physical and chemical properties of many oxide materials. In this work, we show that the surface Ti3+ defects in SrTiO3 (STO), characterized by electron paramagnetic resonance and X-ray photoelectron spectroscopy, directly impact the photocatalytic activity of STO. O2 species are found to absorb preferentially on Ti3+ defect sites. Hydrogen evolution under ambient air diminishes with the increase in the concentration of surface Ti3+. This is explained by the over-accumulation of Pt cocatalysts on the site of surface Ti3+ defects after the removal of adsorbed O2.

  12. Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tite, T.; Donnet, C.; Loir, A.-S.

    We have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated.

  13. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  14. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    PubMed

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  15. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.

    PubMed

    Kotsmar, C; Grigoriev, D O; Xu, F; Aksenenko, E V; Fainerman, V B; Leser, M E; Miller, R

    2008-12-16

    Ellipsometry and surface profile analysis tensiometry were used to study and compare the adsorption behavior of beta-lactoglobulin (BLG)/C10DMPO, beta-casein (BCS)/C10DMPO and BCS/C12DMPO mixtures at the air/solution interface. The adsorption from protein/surfactant mixed solutions is of competitive nature. The obtained adsorption isotherms suggest a gradual replacement of the protein molecules at the interface with increasing surfactant concentration for all studied mixed systems. The thickness, refractive index, and the adsorbed amount of the respective adsorption layers, determined by ellipsometry, decrease monotonically and reach values close to those for a surface covered only by surfactant molecules, indicating the absence of proteins from a certain surfactant concentration on. These results correlate with the surface tension data. A continuous increase of adsorption layer thickness was observed up to this concentration, caused by the desorption of segments of the protein and transforming the thin surface layer into a rather diffuse and thick one. Replacement and structural changes of the protein molecules are discussed in terms of protein structure and surface activity of surfactant molecules. Theoretical models derived recently were used for the quantitative description of the equilibrium state of the mixed surface layers.

  16. Modeling electrochemical resistance with coal surface properties in a direct carbon fuel cell based on molten carbonate

    NASA Astrophysics Data System (ADS)

    Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin

    2017-12-01

    In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.

  17. Friction-induced surface activity of some hydrocarbons with clean and oxide-covered iron

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction studies were conducted on a clean and oxide-covered iron surface with exposure of that surface to various hydrocarbons. The hydrocarbons included ethane, ethylene ethyl chloride, methyl chloride, and vinyl chloride. Auger cylindrical mirror analysis was used to follow interactions of the hydrocarbon with the iron surface. Results with vinyl chloride indicate friction induced surface reactivity, adsorption to surface oxides, friction sensitivity to concentration and polymerization. Variation in the loads employed influence adsorption and accordingly friction. In contrast with ethyl and vinyl chloride, friction induced surface reactivity was not observed with ethane and ethylene.

  18. Activity and selectivity of photocatalysts in photodegradation of phenols.

    PubMed

    Emeline, A V; Zhang, X; Murakami, T; Fujishima, A

    2012-04-15

    Photodegradation of phenol and 4-chlorophenol over six different TiO(2) samples was tested in order to establish whether an interconnection between the activity and selectivity of photocatalysts exists. The obtained experimental data were analyzed using correlation analysis. Some correlations between the activity in phenol(s) photodegradation and selectivity toward formation of primary intermediate products were established. The type of correlations depends on the type of studied photoreactions. The discussion of the observed correlations between the activity and selectivity of photocatalysts is given in terms of the difference of surface concentrations of electrons and holes and corresponding surface active sites which might be dependent on the types of dominating surface faces. On the basis of the obtained results of correlation analysis it was assumed that a higher activity of photocatalysts could be achieved provided that both reduction and oxidation reaction pathways occur with equally high efficiency. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  20. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  1. Carbonaceous thin film coating with Fe-N4 site for enhancement of dioxovanadium ion reduction

    NASA Astrophysics Data System (ADS)

    Maruyama, Jun; Hasegawa, Takahiro; Iwasaki, Satoshi; Fukuhara, Tomoko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2016-08-01

    It has been found that carbonaceous materials containing a transition metal coordinated by 4 nitrogens in the square-planar configuration (metal-N4 site) on the surface possessed a catalytic activity for various electrochemical reactions related to energy conversion and storage; i.e., oxygen reduction, hydrogen evolution, and quite recently, the electrode reactions in vanadium redox flow batteries (VRFB). The catalyst for the VRFB positive electrode discharge reaction, i.e., the dioxovanadium ion reduction, was formed by coating the surface of cup-stack carbon nanotubes with a carbonaceous thin film with the Fe-N4 site generated by the sublimation, deposition, and pyrolysis of iron phthalocyanine. In this study, the influence of the physical properties of the catalyst on the electrochemical reactions was investigated to optimize the coating. With an increase in the coating, the specific surface area increased, whereas the pore size decreased. The surface Fe concentration was increased in spite of the Fe aggregation inside the carbon matrix. The catalytic activity enhancement was achieved due to the increase in the specific surface area and the surface Fe concentration, but was lowered due to the decrease in the pore size, which was disadvantageous for the penetration of the electrolyte and the mass transfer.

  2. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].

  3. Adsorption kinetics of SO2 on powder activated carbon

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Qilong; Ma, Chunyuan

    2018-02-01

    The flue gas SO2 adsorption removal by powder activated carbon is investigated based on a fixed bed reactor. The effect of SO2 inlet concentration on SO2 adsorption is investigated and the adsorption kinetics is analyzed. The results indicated that the initial SO2 adsorption rate and the amount of SO2 adsorbed have increased with increased in SO2 inlet concentration. Gas diffusion, surface adsorption and catalytic oxidation reaction are involved in SO2 adsorption on powder activated carbon, which play a different role in different stage. The Bangham kinetics model can be used to predict the kinetics of SO2 adsorption on powder activated carbon.

  4. α-Chymotrypsin in water-ethanol mixtures: Effect of preferential interactions

    NASA Astrophysics Data System (ADS)

    Sirotkin, Vladimir A.; Kuchierskaya, Alexandra A.

    2017-12-01

    We investigated preferential interactions of α-chymotrypsin with water-ethanol mixtures at 25 °C. Our approach is based on the analysis of residual enzyme activity and water/alcohol sorption. There are three concentration regimes. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity is close to 100%. α-Chymotrypsin has a higher affinity for alcohol than for water at intermediate water content. Residual enzyme activity is close to zero in this concentration range. At low water content, ethanol is preferentially excluded from the protein surface. This results in preferential hydration of α-chymotrypsin and significant residual catalytic activity (∼50%) in water-poor ethanol.

  5. Antimicrobial activities of gaseous essential oils against Listeria monocytogenes on a laboratory medium and radish sprouts.

    PubMed

    Lee, Gyeongmin; Kim, Yoonbin; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2018-01-16

    The aim of this study was to evaluate the antimicrobial activities of gaseous essential oils (EO gases) against Listeria monocytogenes on the surfaces of a laboratory medium and radish sprouts. We determined the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) values of EO gases from eight EOs extracted from basil leaves, carrot seed, cinnamon bark, cinnamon leaves, clove flower buds, oregano leaves, thyme flowers (linalool), and thyme leaves (thymol) against L. monocytogenes on a nutrient agar supplemented with 1% glucose and 0.025% bromocresol purple (NGBA). Oregano, thyme thymol, and cinnamon bark EO gases showed the strongest antilisterial activities (MIC and MLC, 78.1μL/L). We also investigated the inhibitory and lethal activities of these gases against L. monocytogenes on the surface of radish sprouts. The number of L. monocytogenes after exposure to EO gases at ≥156μL/L was significantly (P≤0.05) lower than that of untreated L. monocytogenes. For example, the initial number of L. monocytogenes on the surface of radish sprouts (ca. 6.3logCFU/g) decreased by 1.4logCFU/g within 24h at 30°C and 43% relative humidity (RH) without EO gas treatment, whereas the number of L. monocytogenes after exposure to oregano, thyme thymol, and cinnamon bark EO gases at 156μL/L decreased by 2.1, 2.1, and 1.8logCFU/g, respectively, after 24h. Although EO gases exerted greater lethal activities at higher concentrations (312 and 625μL/L), L. monocytogenes on the surface of radish sprouts was not completely inactivated. The number of L. monocytogenes on sprouts treated with oregano, thyme thymol, and cinnamon bark EO gases at 625μL/L decreased by 2.7-3.0logCFU/g after 24h at 30°C and 43% RH. Results indicate that EO gases that showed antilisterial activities on a laboratory medium also exhibited reduced lethal activity on the surface of radish sprouts. These findings will be useful when developing strategies to inactivate L. monocytogenes and possibly other foodborne pathogens on sprouts and perhaps other foods using EO gases. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical uncertainty and variability in time and space, and research on possible synergistic effects of low concentration mixtures of compounds belonging to similar pharmacological classes require attention. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Dissolved Organophosphate Esters and Polybrominated Diphenyl Ethers in Remote Marine Environments: Arctic Surface Water Distributions and Net Transport through Fram Strait.

    PubMed

    McDonough, Carrie A; De Silva, Amila O; Sun, Caoxin; Cabrerizo, Ana; Adelman, David; Soltwedel, Thomas; Bauerfeind, Eduard; Muir, Derek C G; Lohmann, Rainer

    2018-06-05

    Organophosphate esters (OPEs) have been found in remote environments at unexpectedly high concentrations, but very few measurements of OPE concentrations in seawater are available, and none are available in subsurface seawater. In this study, passive polyethylene samplers (PEs) deployed on deep-water moorings in the Fram Strait and in surface waters of Canadian Arctic lakes and coastal sites were analyzed for a suite of common OPEs. Total OPEs ( ∑ 11 OPE) at deep-water sites were dominated by chlorinated OPEs, and ranged from 6.3 to 440 pg/L. Concentrations were similar in eastern and western Fram Strait. Chlorinated OPEs were also dominant in Canadian Arctic surface waters (mean concentration ranged from < DL to 4400 pg/L), while nonhalogenated alkyl/aryl-substituted OPEs remained low (1.3-55 pg/L), possibly due to the greater long-range transport potential of chlorinated OPEs. Polybrominated diphenyl ethers (PBDEs) were found at much lower concentrations than OPEs (

  8. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E. S.; Trudeau, J.; Cleary, B.

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  11. Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media

    DOE PAGES

    Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...

    2015-10-22

    Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less

  12. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khokhra, Richa; Kumar, Rajesh, E-mail: rajesh.kumar@juit.ac.in

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnOmore » nanosheets depends upon the presence of surface oxygen vacancies.« less

  13. Effects of glucose concentration on osteogenic differentiation of type II diabetes mellitus rat bone marrow-derived mesenchymal stromal cells on a nano-scale modified titanium.

    PubMed

    Yamawaki, I; Taguchi, Y; Komasa, S; Tanaka, A; Umeda, M

    2017-08-01

    Diabetes mellitus (DM) is a common disease worldwide. Patients with DM have an increased risk of losing their teeth compared with other individuals. Dental implants are a standard of care for treating partial or full edentulism, and various implant surface treatments have recently been developed to increase dental implant stability. However, some studies have reported that DM reduces osseointegration and the success rate of dental implants. The purpose of this study was to determine the effects of high glucose levels for hard tissue formation on a nano-scale modified titanium surface. Titanium disks were heated at 600°C for 1 h after treatment with or without 10 m NaOH solution. All disks were incubated with type II DM rat bone marrow-derived mesenchymal stromal cells before exposure to one of four concentrations of glucose (5.5, 8.0, 12.0 or 24.0 mm). The effect of different glucose concentrations on bone marrow-derived mesenchymal stromal cell osteogenesis and inflammatory cytokines on the nano-scale modified titanium surface was evaluated. Alkaline phosphatase activity decreased with increasing glucose concentration. In contrast, osteocalcin production and calcium deposition were significantly decreased at 8.0 mm glucose, but increased with glucose concentrations over 8.0 mm. Differences in calcium/phosphate ratio associated with the various glucose concentrations were similar to osteocalcin production and calcium deposition. Inflammatory cytokines were expressed at high glucose concentrations, but the nano-scale modified titanium surface inhibited the effect of high glucose concentrations. High glucose concentration increased hard tissue formation, but the quality of the mineralized tissue decreased. Furthermore, the nano-scale modified titanium surface increased mineralized tissue formation and anti-inflammation, but the quality of hard tissue was dependent on glucose concentration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Schulze-Makuch, Dirk; Khan, Afshin; Lorek, Andreas; Koncz, Alexander; Möhlmann, Diedrich; Spohn, Tilman

    2014-08-01

    Stresses occurring on the Martian surface were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes (Zarnecki and Catling, 2002), low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 800 Pa (Kasting, 1991; Head et al., 2003). The lichen Pleopsidium chlorophanum is an extremophile that lives in very cold, dry, high-altitude habitats, which are Earth's best approximation of the Martian surface. Samples with P. chlorophanum were exposed uninterruptedly to simulated conditions of the unprotected Martian surface (i.e. 6344 kJ m-2) and protected niche conditions (269 kJ m-2) for 34 days. Under unprotected Martian surface conditions the fungal symbiont decreases its metabolic activity and it was unclear if the algal symbiont of the lichen was still actively photosynthesizing. However, under "protected site" conditions, the entire lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days.

  15. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    PubMed

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Biological inactivation of adhering Listeria monocytogenes by listeriaphages and a quaternary ammonium compound.

    PubMed Central

    Roy, B; Ackermann, H W; Pandian, S; Picard, G; Goulet, J

    1993-01-01

    The use of listeriaphages as a means of disinfecting contaminated stainless-steel and polypropylene surfaces was investigated. Surfaces artificially contaminated with L. monocytogenes 10401 and 8427 were sanitized with suspensions of listeriaphages (H387, H387-A, and 2671), all belonging to the Siphoviridae family. Phage suspensions at concentrations of up to 3.5 x 10(8) PFU/ml were at least as efficient as a 20 ppm solution of a quaternary ammonium compound (QUATAL) in reducing L. monocytogenes populations. A synergistic activity was observed when two or more phages were used in combination and when phages were suspended in QUATAL. The biological activity of the three phages was not affected by QUATAL concentrations of 50 ppm and a contact time of 4 h. PMID:8215364

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, X.; Antal, M.J. Jr.

    Macadamia nut shell charcoal was heated in an inert environment to temperatures above 1000 K (carbonized), reacted with oxygen (Po{sub 2} = 2.68--11.3 kPa) at temperatures between 525 and 586 K (oxygenated), and heated again in an inert environment to temperatures above 1000 K (activated) to produce an activated carbon. Carbons produced by this process possess surface areas and iodine numbers in the range of 400--550. Overall yields of these carbons (based on the dry, raw macadamia nut shell feed) ranged from 24 to 30 wt %. Under the conditions employed in this work, the rates of chemisorption and gasificationmore » were not mass transfer limited. Initially, the gasification reaction was first-order with respect to oxygen concentration but became independent of oxygen concentration as the surface sites of the carbon became saturated with oxygen.« less

  18. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  19. Estimation of Sediment Sources Using Selected Chemical Tracers in the Perry Lake and Lake Wabaunsee Basins, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.; Ziegler, Andrew C.

    2007-01-01

    In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were similar or did not vary in a consistent manner. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment prior to the sediment-source estimations, constituent ratio and clay-normalization techniques were used. Computed ratios included the ratio of TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators (that is, three constituent ratios and the clay-normalized concentration or activity for four constituents). Sediment-source estimation for each reservoir was based on a comparison between the reservoir bottom sediment and the end member channel-bank and surface-soil sources. Within the Perry Lake Basin, the seven-indicator consensus indicated that both channel-bank and surface-soil sources were important contributors of the sediment deposited in Atchison County Lake and Banner Creek Reservoir, whereas channel-bank sources were the dominant source of sediment for Mission Lake. On the sole basis of 137Cs activity, surface-soil sources contributed the most sediment to Atchison County Lake, and channel-bank sources contributed the most sediment to Banner Creek Reservoir and Mission Lake. For Perry Lake, both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant and that channel-bank sources increased in importance with distance downstream in the Perry Lake Basin. For Lake Wabaunsee, the seven-indicator consensus and 137Cs indicated that both channel-bank and surface-soil sources were important. Given that the relative contribution of sediment from channel-bank and surface-soil sources can vary within and between basins and over time, basin-specific strategies for sediment management and monitoring are appropriate.

  20. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    PubMed Central

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.; Kretz, Cecilia B.; Kolton, Max; Morton, Peter L.; Pett-Ridge, Jennifer; Weston, David J.; Schadt, Christopher W.; Kostka, Joel E.

    2017-01-01

    ABSTRACT Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4. IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. PMID:28667112

  1. Exchange of E. coli from the foreshore reservoir to surface waters during intensified wave conditions

    NASA Astrophysics Data System (ADS)

    Malott, S. S.; Vogel, L. J.; Edge, T.; O'Carroll, D. M.; Robinson, C. E.

    2014-12-01

    In recent years a number of studies have suggested that foreshore sand and porewater can act as a non-point source of microbial contamination to adjacent surface waters. Fecal indicator bacteria (FIB) can be released from the sand into the surface water through sand erosion or wave-induced porewater flows leading to FIB detachment. Although regression models often show that there is a strong correlation between wave events and high E. coli in surface waters, there is limited understanding of the mechanisms by which E. coli is transported from the subsurface foreshore reservoir (sand and porewater) to surface waters during wave events. An improved understanding of the transport mechanisms will facilitate the development of better water quality exceedences predictions. Detailed groundwater flow, sand level and E. coli measurements were conducted at Ipperwash Beach, Lake Huron (Ontario) for three wave events during the 2014 bathing season to evaluate the relative contribution of sand erosion and wave-induced pore water flow in transporting E. coli from the subsurface reservoir to the shallow waters. As expected, results indicate increased E. coli concentrations in ankle and waist deep surface water during periods of increased wave activity (wave height > 0.5m). Considerable sand erosion from the foreshore may have contributed to these increased surface water concentrations. The E. coli concentrations in the foreshore reservoir generally decreased as the wave height intensified, while E. coli concentrations in upshore sand and porewater locations increased.

  2. Comparison of in vitro estrogenic activity and estrogen concentrations in source and treated waters from 25 U.S. drinking water treatment plants

    EPA Science Inventory

    In vitro bioassays have been successfully used to screen for estrogenic activity in wastewater and surface water, however, few have been applied to treated drinking water. Here, extracts of source and treated drinking water samples were assayed for estrogenic activity using T47D...

  3. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase.

    PubMed

    Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop

    2018-05-01

    To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    NASA Astrophysics Data System (ADS)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  5. Enhancing the photoresponse and photocatalytic properties of TiO 2 by controllably tuning defects across {101} facets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Piaopiao; Hood, Zachary D.; Oak Ridge National Lab.

    Introducing defects into semiconductors with well-controlled exposed facets offers an effective route for the development of photocatalytic materials with greatly improved properties. Here, we report a facile ethylene glycol reduction procedure to make anatase titanium dioxide (TiO 2) with different concentrations of exposed {001} and {101} facets, leading to different surficial defects. TiO 2 with increased concentrations of {101} facets shows a 5-fold improvement in photocurrent generation as well as improved photocatalytic activity towards water splitting under visible light irradiation. Thus, the improved activity is ascribed to the oxygen vacancies as well as the variable surface chemical states, which collectivelymore » induce a slower recombination rate of photo-induced electron-hole pairs. This work also highlights a feasible strategy to obtain the defective TiO 2 and explore the synergistic effect of surface defects and different concentrations of exposed {001} and {101} facets for photocurrent and photocatalytic properties under visible light irradiation.« less

  6. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic methanotrophy could be modulated to reach peak activity once the influence of saline water is reduced to a low level.

  7. Strong catalytic activity of iron nanoparticles on the surfaces of reduced olivine

    NASA Astrophysics Data System (ADS)

    Tucker, William C.; Quadery, Abrar H.; Schulte, Alfons; Blair, Richard G.; Kaden, William E.; Schelling, Patrick K.; Britt, Daniel T.

    2018-01-01

    It is demonstrated that olivine powders heated to subsolidus temperatures in reducing conditions can develop significant concentrations of 10-50 nm diameter Fe nanoparticles on grain surfaces and that these display strong catalytic activity not observed in powders without Fe nanoparticles. Reduced surfaces were exposed to NH3, CO, and H2, volatiles that may be present on the surfaces of comet and volatile-rich asteroids. In the case of NH3 exposure, rapid decomposition was observed. When exposed to a mixture of CO and H2, significant coking of the mineral surfaces occurred. Analysis of the mineral grains after reaction indicated primarily the presence of graphene or graphitic carbon. The results demonstrate that strong chemical activity can be expected at powders that contain nanophase Fe particles. This suggests space-weathered mineral surfaces may play an important role in the synthesis and processing of organic species. This processing may be part of the weathering processes of volatile-rich but atmosphereless solar-system bodies.

  8. Concentration and Separation of Active Proteins from Potato Industry Waste Based on Low-Temperature Evaporation and Ethanol Precipitation

    PubMed Central

    Ahokas, Mikko; Järvinen, Juho; Toivanen, Juho; Tanskanen, Juha P.

    2017-01-01

    Purpose. Potato fruit juice, a residue of starch industry, contains up to 2.5% [w/w] of proteins that are potentially valuable raw-materials of food, cosmetic, and pharma industries. The recovery of protein from the potato fruit juice is limited by the lack of industrially feasible concentration and separation technologies. The present research thus aimed at development of such process for the separation of active protease inhibitors from potato fruit juice. Methods. Low temperature mechanical vapor recompression evaporation was applied for concentration of potato fruit juice followed by ethanol precipitation for recovery of active proteins. The effects of precipitation temperature and precipitative agents were investigated employing response surface modeling methodology. Results. Concentration of potato fruit juice by evaporation was successful without loss of trypsin inhibition activity. Precipitation using 6.5 M ethanol at low temperature (0–+4°C) was found suitable for the recovery of active protease inhibitors from the concentrate. Piloting at starch industry yielded 50% of total proteins, with a high quantity of active protease inhibitors and a minor inclusion of other proteins. Conclusion. Concentration by low-temperature evaporation, followed by ethanol precipitation of protease inhibitors at optimized temperature, is an attractive option for valorization of potato fruit juice. PMID:28299232

  9. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    PubMed

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  10. Stabilization and activation of alpha-chymotrypsin in water-organic solvent systems by complex formation with oligoamines.

    PubMed

    Kudryashova, Elena V; Artemova, Tatiana M; Vinogradov, Alexei A; Gladilin, Alexander K; Mozhaev, Vadim V; Levashov, Andrey V

    2003-04-01

    Formation of enzyme-oligoamine complexes was suggested as an approach to obtain biocatalysts with enhanced resistance towards inactivation in water-organic media. Complex formation results in broadening (by 20-40% v/v ethanol) of the range of cosolvent concentrations where the enzyme retains its catalytic activity (stabilization effect). At moderate cosolvent concentrations (20-40% v/v) complex formation activates the enzyme (by 3-6 times). The magnitude of activation and stabilization effects increases with the number of possible electrostatic contacts between the protein surface and the molecules of oligoamines (OA). Circular dichroism spectra in the far-UV region show that complex formation stabilizes protein conformation and prevents aggregation in water-organic solvent mixtures. Two populations of the complexes with different thermodynamic stabilities were found in alpha-chymotrypsin (CT)-OA systems depending on the CT/OA ratio. The average dissociation constants and stoichiometries of both low- and high-affinity populations of the complexes were estimated. It appears that it is the low-affinity sites on the CT surface that are responsible for the activation effect.

  11. No association between hair cortisol or cortisone and brain morphology in children.

    PubMed

    Chen, Ruoqing; Muetzel, Ryan L; El Marroun, Hanan; Noppe, Gerard; van Rossum, Elisabeth F C; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Fang, Fang; Tiemeier, Henning

    2016-12-01

    Little is known about the relationship between the long-term hypothalamic-pituitary-adrenal (HPA) axis functioning and brain structure in children. Glucocorticoid in hair has emerged as an important biomarker of HPA activity. In this study, we investigated the associations of hair cortisol and cortisone concentrations with brain morphology in young children. We included 219 children aged 6-10 years from the Generation R Study in Rotterdam, the Netherlands. We examined cortisol and cortisone concentrations by hair analysis using liquid chromatography-tandem mass spectrometry, and assessed brain morphometric measures with structural magnetic resonance imaging. The relationships of hair cortisol and cortisone concentrations with brain volumetrics, cortical thickness, cortical surface area and gyrification were analyzed separately after adjustment for several potential confounding factors. We observed a positive association between cortisol concentrations and cortical surface area in the parietal lobe, positive associations of cortisone concentrations with thalamus volume, occipital lobe volume and cortical surface area in the parietal lobe, and a negative association between cortisone concentrations and cortical surface area in the temporal lobe in the regions of interest analyses. A negative association between cortisol or cortisone concentrations and hippocampal volume was observed in children with behavioral problems. The whole brain vertex-wise analyses did however not show any association between cortisol or cortisone concentration and brain morphometric measures after correction for multiple testing. Although some associations are noted in region of interest analyses, we do not observe clear association of hair cortisol or cortisone with brain morphometric measures in typically developing young children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments.

    PubMed Central

    Goldsmith, G H; Saito, H; Ratnoff, O S

    1978-01-01

    Activation of plasminogen through surface-mediated reactions is well recognized. In the presence of kaolin, purified Hageman factor (Factor XII) changed plasminogen to plasmin, as assayed upon a synthetic amide substrate and by fibrinolysis. Kinetic studies suggested an enzymatic action of Hageman factor upon its substrate, plasminogen. Hageman factor fragments, at a protein concentration equivalent to whole Hageman factor, activated plasminogen to a lesser extent. These protein preparations were not contaminated with other agents implicated in surface-mediated fibrinolysis. Diisopropyl fluorophosphate treatment of plasminogen did not inhibit its activation by Hageman factor. These studies indicate that Hageman factor has a hitherto unsuspected function, the direct activation of plasminogen. PMID:659637

  13. Incorporation of low energy activated nitrogen onto HOPG surface: Chemical states and thermal stability studies by in-situ XPS and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandran, Maneesh; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon

    2016-09-01

    In this paper we report the chemical states analysis of activated nitrogen incorporated highly oriented pyrolytic graphite (HOPG) surface under well-controlled conditions. Nitrogen incorporation is carried out by two different processes: an indirect RF nitrogen plasma and low energy (1 keV) N2+ implantation. Bonding configuration, concentration and thermal stability of the incorporated nitrogen species by aforesaid processes are systematically compared by in-situ X-ray photoelectron spectroscopy (XPS). Relatively large concentration of nitrogen is incorporated onto RF nitride HOPG surface (16.2 at.%), compared to N2+ implanted HOPG surface (7.7 at.%). The evolution of N 1s components (N1, N2, N3) with annealing temperature is comprehensively discussed, which indicates that the formation and reorganization of local chemical bonding states are determined by the process of nitridation and not by the prior chemical conditioning (i.e., amorphization or hydrogenation) of the HOPG surface. A combined XPS and Raman spectroscopy studies revealed that N2+ implantation process resulted in a high level of defects to the HOPG surface, which cannot be annealed-out by heat treatment up to 1000 °C. On the other hand, the RF nitrogen plasma process did not produce a high level of surface defects, while incorporating nearly the same amount of stable nitrogen species.

  14. Factors affecting the 7Be surface concentration and its extremely high occurrences over the Scandinavian Peninsula during autumn and winter.

    PubMed

    Ajtić, J; Brattich, E; Sarvan, D; Djurdjevic, V; Hernández-Ceballos, M A

    2018-05-01

    Relationships between the beryllium-7 activity concentrations in surface air and meteorological parameters (temperature, atmospheric pressure, and precipitation), teleconnection indices (Arctic Oscillation, North Atlantic Oscillation, and Scandinavian pattern) and number of sunspots are investigated using two multivariate statistical techniques: hierarchical cluster and factor analysis. The beryllium-7 surface measurements over 1995-2011, at four sampling sites located in the Scandinavian Peninsula, are obtained from the Radioactivity Environmental Monitoring Database. In all sites, the statistical analyses show that the beryllium-7 concentrations are strongly linked to temperature. Although the beryllium-7 surface concentration exhibits the well-characterised spring/summer maximum, our study shows that extremely high beryllium-7 concentrations, defined as the values exceeding the 90 th percentile in the data records for each site, also occur over the October-March period. Two types of autumn/winter extremes are distinguished: type-1 when the number of extremes in a given month is less than three, and type-2 when at least three extremes occur in a month. Factor analysis performed for these autumn/winter events shows a weaker effect of temperature and a stronger impact of the transport and production signal on the beryllium-7 concentrations. Further, the majority of the type-2 extremes are associated with a very high monthly Scandinavian teleconnection index. The type-2 extremes that occurred in January, February and March are also linked to sudden stratospheric warmings of the Arctic vortex. Our results indicate that the Scandinavian teleconnection index might be a good indicator of the meteorological conditions facilitating extremely high beryllium-7 surface concentrations over Scandinavia during autumn and winter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Mg-Doped Hydroxyapatite/Chitosan Composite Coated 316L Stainless Steel Implants for Biomedical Applications.

    PubMed

    Sutha, S; Dhineshbabu, N R; Prabhu, M; Rajendran, V

    2015-06-01

    In this investigation, ultrasonication process was used for the synthesis of magnesium doped nano-hydroxyapatite (MH) (0, 1, 2, and 3 mol% of Mg concentration) particles with controlled size and surface morphology. The size of the prepared MH particles was in the range of 20-100 nm with narrow distribution. Increase in the concentration of Mg reduced the particle size distribution from 60 to 40 nm. On incorporation of Mg in HAp lattice, an increase of 20-66 nm in specific surface area was observed in microporous HAp particles. XRF and XRD patterns reveal that the particles possess stoichiometric composition with reduced crystallinity with respect to the Mg concentration. Surface morphology of MH/chitosan (CTS) coated implant was found to be uniform without any defects. The corrosion rate of the implant decreased with increase in Mg concentration. The in vitro formation of bonelike apatite layer on the surface of the MH/CTS coated implant was observed from simulated body fluid studies. The antimicrobial activity of the MH/CTS composites against gram-positive and gram-negative bacterial strains indicated that increasing Mg concentration enhanced antimicrobial properties. Nanoindentation analysis of apatite coated implant surface reveals that the mechanical property depends on the concentration of magnesium in HAp. From the cytotoxicity analysis against NIH 3T3 fibroblast, it was observed that the Mg incorporated HAp/CTS composite was less toxic than the MHO/CTS composite. From this result, it was concluded that the MH/CTS nanocomposites coated implant is the excellent material for implants.

  16. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Koole, Leo H.

    2014-05-01

    The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface -COOH groups (determined with UV-vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  17. Meta-structure and tunable optical device including the same

    DOEpatents

    Han, Seunghoon; Papadakis, Georgia Theano; Atwater, Harry

    2017-12-26

    A meta-structure and a tunable optical device including the same are provided. The meta-structure includes a plurality of metal layers spaced apart from one another, an active layer spaced apart from the plurality of metal layers and having a carrier concentration that is tuned according to an electric signal applied to the active layer and the plurality of metal layers, and a plurality of dielectric layers spaced apart from one another and each having one surface contacting a metal layer among the plurality of metal layers and another surface contacting the active layer.

  18. The assessment of the antibacterial and antifungal activities of aspirin, EDTA and aspirin-EDTA combination and their effectiveness as antibiofilm agents.

    PubMed

    Al-Bakri, A G; Othman, G; Bustanji, Y

    2009-07-01

    To evaluate the antimicrobial activities of aspirin, EDTA and an aspirin-EDTA (A-EDTA) combination against Pseudomonas aeruginosa, Escherichia coli and Candida albicans in planktonic and biofilm cultures. Minimal inhibitory concentrations (MIC) and minimal biocidal concentrations (MBC) were determined using twofold broth microdilution and viable counting methods, respectively. Aspirin's recorded MIC values ranged from 1.2 to 2.7 mg ml(-1). Checkerboard assay demonstrated a synergism in antimicrobial activity upon combination. Aspirin's minimal biofilm eradication concentration values (MBEC) against the established biofilms ranged between 1.35 and 3.83 mg ml(-1). A complete eradication of bacterial biofilms was achieved after a 4-h treatment with the A-EDTA combination. Both aspirin and EDTA possess broad-spectrum antimicrobial activity for both planktonic and biofilm cultures. Aspirin used at the MBEC for 24 h was successful in eradicating P. aeruginosa, E. coli and C. albicans biofilms established on abiotic surfaces. Moreover, the exposure to the A-EDTA combination (4 h) effected complete bacterial biofilm eradication. There is a continuous need for the discovery of new antimicrobial agents. Aspirin and EDTA are 'nonantibiotic drugs', the combination of which can be used successfully to treat and eradicate biofilms established on abiotic surfaces.

  19. Preliminary investigations on the antibacterial activity of zinc oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ramani, Meghana; Ponnusamy, S.; Muthamizhchelvan, C.

    2013-04-01

    In this study, we present a systematic investigation on the evolution of nanorods of diameter 35-40 nm and 1-2 μm length from nanoparticles of diameter 30-35 nm by varying the concentration of 2,6-lutidine which acts as a shape-directing agent in the synthesis process. This variation in morphology was studied using transmission electron microscopy. The surface capping agent was subsequently removed by heating during the synthesis process and confirmed using Fourier Transform Infra-red spectroscopy. Sufficient quantity of surface defects in the form of oxygen vacancies was observed from the photoluminescence analysis of the synthesized nanostructures. The concentration of defects decreased as the shape transits from nanoparticles to nanorods. The synthesized samples were preliminarily studied for their antibacterial activity against four model (gram-positive and gram-negative) pathogens by disk diffusion method and growth curve analysis. The calculated generation time indicates higher activity for nanoparticles than nanorods. However, the difference in the activity against different pathogens and their dependence on the concentration of defects indicate oxidative stress in addition to mechanical membrane damage as the major toxicity mechanism. Overall, the experimental findings are preliminary evidence supporting the possibility of developing zinc oxide nanostructures as antibacterial agents against a wide range of microorganisms to control and prevent the spreading of bacterial infections.

  20. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; N. Youssef; T. Fincher

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. Themore » surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Interfacial tension (IFT) decreased in a stepwise manner as biosurfactant concentration increased with marked reductions in IFT occurring at biosurfactant concentrations of 10 and 40 mg/l. When the biosurfactant concentration was greater than 10 mg/l, residual oil recovery linearly increased with biosurfactant concentration. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Our work shows that (1) diverse microorganisms produce biosurfactants, (2) nutrient manipulation may provide a mechanism to increase biosurfactant activity, (3) biosurfactant concentrations in excess of the critical micelle concentration recover substantial amounts of residual oil, and (4) equations that describe the effect of the biosurfactant on IFT adequately predict residual oil recovery in sandstone cores.« less

  1. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Construction of Zinc Oxide into Different Morphological Structures to Be Utilized as Antimicrobial Agent against Multidrug Resistant Bacteria

    PubMed Central

    Elkady, M. F.; Shokry Hassan, H.; Hafez, Elsayed E.; Fouad, Ahmed

    2015-01-01

    Nano-ZnO has been successfully implemented in particles, rods, and tubes nanostructures via sol-gel and hydrothermal techniques. The variation of the different preparation parameters such as reaction temperature, time, and stabilizer agents was optimized to attain different morphological structures. The influence of the microwave annealing process on ZnO crystallinity, surface area, and morphological structure was monitored using XRD, BET, and SEM techniques, respectively. The antimicrobial activity of zinc oxide produced in nanotubes structure was examined against four different multidrug resistant bacteria: Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) strains. The activity of produced nano-ZnO was determined by disc diffusion technique and the results revealed that ZnO nanotubes recorded high activity against the studied strains due to their high surface area equivalent to 17.8 m2/g. The minimum inhibitory concentration (MIC) of ZnO nanotubes showed that the low concentrations of ZnO nanotubes could be a substitution for the commercial antibiotics when approached in suitable formula. Although the annealing process of ZnO improves the degree of material crystallinity, however, it declines its surface area and consequently its antimicrobial activity. PMID:26451136

  3. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    NASA Astrophysics Data System (ADS)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  4. Identification and characterization of a Fc receptor activity on the Toxoplasma gondii tachyzoite.

    PubMed

    Vercammen, M; el Bouhdidi, A; Ben Messaoud, A; de Meuter, F; Bazin, H; Dubremetz, J F; Carlier, Y

    1998-01-01

    The Immunoglobulin (Ig) binding capacity of Toxoplasma gondii tachyzoites was investigated using fluorescence flow-cytometry analysis. Polyclonal mouse, human and rat immunoglobulins without specific anti-Toxoplasma activity bound to parasites in a concentration-dependent manner, saturating them at circulating serum concentrations. The immunoglobulin class and subclass specificity of binding was investigated using irrelevant monoclonal antibodies. IgM, IgA and IgG reacted with the parasite membrane. The attachment of mouse IgM to the parasite surface was hampered by mouse IgG1, IgG2a, IgG2b and IgG3. The binding of mouse IgG was proportionally reduced with increasing concentrations of mouse monoclonal IgM. The binding of murine immunoglobulin was diminished when in presence of human IgG. Purified Fc- but not Fab portions of immunoglobulins, fixed to parasites. Using labelled calibrated beads, the Ig binding capacity of parasites was estimated to be 6900 +/- 500 sites per tachyzoite. The Kd of the T. gondii Fc Receptor (FcR) activity was determined at 1.4 +/- 0.1 microM (mean +/- SEM). Such FcR activity was reduced by phospholipase C, trypsin and pronase treatment of the parasites. These data show a low affinity FcR activity on T. gondii tachyzoites which recognizes Ig of different species and isotypes and is likely supported by a glycosyl-phosphatidylinositol (GPI)-anchored surface protein of the parasite.

  5. Diel Sampling of Groundwater and Surface Water for Trace Elements and Select Water-Quality Constituents at a Former Zinc Smelter Site near Hegeler, Illinois, August 1-3, 2007

    USGS Publications Warehouse

    Kay, Robert T.; Groschen, George E.; Dupre, David H.; Drexler, Timothy D.; Thingvold, Karen L.; Rosenfeld, Heather J.

    2009-01-01

    Surface water can exhibit substantial diel variations in the concentration of a number of constituents. Sampling regimens that do not characterize diel variations in water quality can result in an inaccurate understanding of site conditions and of the threat posed by the site to human health and the environment. Surface- and groundwater affected by acid drainage were sampled every 60 to 90 minutes over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, in Hegeler, Ill. Groundwater-quality data from a well at the site indicate stable, low pH, weakly oxidizing geochemical conditions in the aquifer. With the exceptions of temperature and pH, no constituents exhibited diel variations in groundwater. Variations in temperature and pH likely were not representative of conditions in the aquifer. Surface water was sampled at a site on Grape Creek. Diel variations were observed in temperature, dissolved oxygen, pH, and specific conductance, and in the concentrations of nitrite, barium, iron, lead, vanadium, and possibly uranium. Concentrations during the diel cycles varied by about an order of magnitude for nitrite and varied by about a factor of two for barium, iron, lead, vanadium, and uranium. Temperature, dissolved oxygen, specific conductance, nitrite, barium, lead, and uranium generally reached maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally reached minimum values during the afternoon and maximum values during the night. These variations would need to be accounted for during sampling of surface-water quality in similar hydrologic settings. The temperature variations in surface water were affected by variations in air temperature. Concentrations of dissolved oxygen were affected by variations in the intensity of photosynthetic activity and respiration. Nitrite likely was formed by the oxidation of ammonium by dissolved oxygen and degraded by its anaerobic oxidation by ammonium or as part of the decomposition of organic matter. Variations in pH were affected by the photoreduction of Fe3+ to Fe2+ and the precipitation of iron oxyhydroxides. Diel variations in concentrations of iron and vanadium were likely caused by variations in the dissolution and precipitation of iron oxyhydroxides, oxyhydroxysulfates, and hydrous sulfates, which may have been affected by in the intensity of insolation, iron photoreduction, and the concentration of dissolved oxygen. The concentrations of lead, uranium, and perhaps barium in Grape Creek may have been affected by competition for sorption sites on iron oxyhydroxides. Competition for sorption sites was likely affected by variations in pH and the concentration of Fe2+. Constituent concentrations likely also were affected by precipitation and dissolution of minerals that are sensitive to changes in pH, temperature, oxidation-reduction conditions, and biologic activity. The chemical and biologic processes that resulted in the diel variations observed in Grape Creek occurred within the surface-water column or in the underlying sediments.

  6. Activated coconut shell charcoal carbon using chemical-physical activation

    NASA Astrophysics Data System (ADS)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  7. Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO₂ Nanocomposite Structure.

    PubMed

    Chen, Jian-Zhi; Chen, Tai-Hong; Lai, Li-Wen; Li, Pei-Yu; Liu, Hua-Wen; Hong, Yi-You; Liu, Day-Shan

    2015-07-13

    This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p -type NiO film of high concentration in contact with the native n -type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the p -NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.

  8. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  9. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.

  10. A Survey of Environmental Microbial Flora During Closed Chamber Studies

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Groves, Theron O.; Bell-Robinson, Denetia; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    1999-01-01

    Services, Inc. and NASA Johnson Space Center, Houston, TX As NASA prepares for long-term missions aboard the International Space Station and the eventual exploration of Mars, closed-environment chambers on Earth have become important test beds for systems evaluations. During 2 separate studies of a selfcontained ecosystem containing 4 crewmembers, microbial surveys of samples from 13 surface and 3 air sites were performed. Microbial concentration of samples from surface sites with frequent water contact (e.g., urinal, sink) did not indicate significantly higher levels of contamination than drier areas, though surface cleaning by the crew may have influenced this conclusion. Changes in bacterial diversity on surface sites implied that the number of transient species was high, suggesting movement by crew activities, aerosols, or both. A non-linear relationship between bacterial diversity and enumeration from surface samples indicated that a rapid increase occurred in the number of species as cell concentration increased to 5 CFU/sq cm. Above this concentration, the number of different bacterial species varied between 11 and 16. Airborne bacteria and fungi averaged only 160 and 1 CFU/m3, respectively. Microbial contamination of the potable water system primarily consisted of 3 species of Gram negative bacteria; however, after 60 days during one study, several species of Bacillus became the dominant flora. This study suggests that under these conditions, microbial contamination in the air and water was suppressed by the life-support systems, though contamination was possible. Conversely, the crew and their activities controlled microbial levels on surfaces. Understanding the factors that affect microbial control will improve the design of microbial testing both during space flight and in analogous Earth-based environments.

  11. The Activity of Cotinus coggygria Scop. Leaves on Staphylococcus aureus Strains in Planktonic and Biofilm Growth Forms.

    PubMed

    Rendeková, Katarína; Fialová, Silvia; Jánošová, Lucia; Mučaji, Pavel; Slobodníková, Lívia

    2015-12-30

    The purpose of this study was to detect the effectiveness of Cotinus coggygria Scop. leaves methanol extract against planktonic and biofilm growth forms of Staphylococcus aureus. The antimicrobial activity was determined by the broth microdilution test. Minimal inhibitory concentrations and minimal bactericidal concentrations were detected against two collection and ten clinical S. aureus strains. Anti-biofilm activity of the tested extract was detected using 24 h bacterial biofilm on the surface of microtiter plate wells. The biofilm inhibitory activity was evaluated visually after 24 h interaction of extract with biofilm, and the eradicating activity by a regrowth method. The tested extract showed bactericidal activity against all S. aureus strains (methicillin susceptible or methicillin resistant) in concentrations ranging from 0.313 to 0.625 mg·mL(-1). Biofilm inhibitory concentrations were 10-times higher and biofilm eradicating concentrations 100-times higher (8 and 32 mg·mL(-1), respectively). The phytochemical analysis of C. coggygria leaves 60% methanol extract performed by LC-DAD-MS/MS revealed quercetin rhamnoside, methyl gallate, and methyl trigallate as main constituents. Results of our study indicate that C. coggygria, rich in tannins and flavonoids, seems to be a prospective topical antibacterial agent with anti-biofilm activity.

  12. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.

    PubMed

    Wang, Lingqing; Liang, Tao

    2016-06-01

    The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed.

  13. [Endothelial microparticles (EMP) in physiology and pathology].

    PubMed

    Sierko, Ewa; Sokół, Monika; Wojtukiewicz, Marek Z

    2015-08-18

    Endothelial microparticles (EMP) are released from endothelial cells (ECs) in the process of activation and/or apoptosis. They harbor adhesive molecules, enzymes, receptors and cytoplasmic structures and express a wide range of various constitutive antigens, typical for ECs, at their surface. Under physiological conditions the concentration of EMP in the blood is clinically insignificant. However, it was reported that under pathological conditions EMP concentration in the blood might slightly increase and contribute to blood coagulation, angiogenesis and inflammation. It has been shown that EMP directly and indirectly contribute to the activation of blood coagulation. Endothelial microparticles directly participate in blood coagulation through their surface tissue factor (TF) - a major initiator of blood coagulation. Furthermore, EMP exhibit procoagulant potential via expression of negatively charged phospholipids at their surface, which may promote assembly of coagulation enzymes (TF/VII, tenases and prothrombinase complexes), leading to thrombus formation. In addition, they provide a binding surface for coagulation factors: IXa, VIII, Va and IIa. Moreover, it is possible that EMP transfer TF from TF-bearing EMP to activated platelets and monocytes by binding them through adhesion molecules. Also, EMP express von Willebrand factor, which may facilitate platelet aggregation. Apart from their procoagulant properties, it was demonstrated that EMP may express adhesive molecules and metalloproteinases (MMP-2, MMP-9) at their surface and release growth factors, which may contribute to angiogenesis. Additionally, surface presence of C3 and C4 - components of the classical pathway - suggests pro-inflammatory properties of these structures. This article contains a summary of available data on the biology and pathophysiology of endothelial microparticles and their potential role in blood coagulation, angiogenesis and inflammation.

  14. Nutrient and Trace Metal Controls on Alkaline Phosphatase in the Subtropical Ocean: Insights from Bioassays and Gene Expression

    NASA Astrophysics Data System (ADS)

    Mahaffey, C.; Reynolds, S.; Davis, C. E.; Lohan, M. C.

    2016-02-01

    Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low in the surface ocean and limit biological activity. In response to phosphate limitation, organisms produce phosphohydrolytic enzymes, such as alkaline phosphatases (AP), that enable them to utilize the more replete dissolved organic phosphorus (DOP) pool to meet their cellular phosphorus demands. Synthesis of data from the surface ocean from 14 open ocean studies reveals an inverse hyperbolic relationship between phosphate and AP, where AP is significantly induced at phosphate concentrations below 50 nM and DOP concentrations decrease as AP increases. AP activity was significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM). While the phosphate concentration may have a first order control on the rates of AP, we demonstrate that other factors influence AP activity. AP are metalloenzymes and zinc and iron are co-factors of the AP proteins PhoA and PhoX, respectively. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increases the rate of AP. To our knowledge, our results are the first direct field-based evidence that AP activity is limited by zinc in the subtropical ocean. In colonies of nitrogen fixer, Trichodesmium, we found enhanced expression of the phoA gene in a region of elevated zinc concentrations and enhanced expression of the phoX gene in a region of elevated iron concentrations around the intertropical convergence zone. Our study highlights the potential link between the phosphorus cycle and trace metals, specifically zinc and iron, and implies that there is potential for zinc-phosphorus and iron-phosphorus co-limitation in the ocean via AP.

  15. Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy.

    PubMed

    Meffe, Raffaella; de Bustamante, Irene

    2014-05-15

    This paper provides the first review of the occurrence of 161 emerging organic compounds (EOCs) in Italian surface water and groundwater. The reported EOCs belong to the groups of industrials, pharmaceuticals, estrogens and illicit drugs. Occurrence of 137 pesticides was also reported. The reviewed research works have been published between 1997 and 2013. The majority of the studies have been carried out in Northern Italy (n. 30) and to a lower extent in Central Italy (n. 13). Only a limited number of research studies report EOC concentrations in water resources of Southern Italy. The EOCs that have been more frequently studied are in the following descending order, pesticides (16), pharmaceuticals (15), industrials (13), estrogens (7) and illicit drugs (2). Research activities investigating the EOC occurrence in surface water are more numerous than those in groundwater. This is consistent with the higher complexity involved in groundwater sampling and EOC detection. Among the reported EOCs, industrials and pesticides are those occurring in both surface water and groundwater with the highest concentrations (up to 15 × 10(6) and 4.78 × 0(5)ng L(-1), respectively). Concentrations of pharmaceuticals in surface water reach a maximum of 3.59 × 10(3)ng L(-1), whereas only the antimicrobial agent josamycin has been encountered in groundwater with a concentration higher than 100 ng L(-1). Both estrogens and illicit drugs appeared in surface water with concentrations lower than 50 ng L(-1). Groundwater concentrations for estrogens were measured to be below the detection limits, whereas illicit drugs have so far not been studied in groundwater. The present review reveals the serious contamination status of Italian surface water and groundwater especially by pesticides, industrials and to a lower extent by pharmaceuticals and the necessity to foster the research on EOC occurrence in Italian water resources, in particular in Southern Italy where a limited number of investigations currently exist. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  17. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  18. Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier.

    PubMed

    Łokas, Edyta; Zaborska, Agata; Kolicka, Małgorzata; Różycki, Michał; Zawierucha, Krzysztof

    2016-10-01

    Surface of glaciers is covered by mineral and organic dust, together with microorganisms forming cryoconite granules. Despite fact that glaciers and ice sheets constitute significance part of land surface, reservoir of freshwater, and sites of high biological production, the knowledge on the cryoconite granules still remain unsatisfactory. This study presents information on radionuclide and heavy metal contents in cryoconites. Cryoconites collected from the Hans Glacier in SW Spitsbergen reveal high activity concentrations of anthropogenic ((238,239,240)Pu, (137)Cs, (90)Sr) and natural ((210)Pb) radionuclides. The (238)Pu/(239+240)Pu activity ratios in these cryoconites significantly exceed the mean global fallout ratio (0.025). The (238)Pu/(239+240)Pu ranged from 0.064 to 0.118. The (239+240)Pu/(137)Cs varied from 0.011 ± 0.003 to 0.030 ± 0.007. Such activity ratios as observed in these cryoconites were significantly higher than the values characterizing global fallout, pointing to possible contributions of these radionuclides from other sources. Heavy metals (Pb, Cd, Cu, Zn, Fe, and Mn) in cryoconites exceed both UCC concentrations and local rocks' concentrations, particularly for cadmium. The concentration ratios of stable lead isotopes ((206)Pb/(207)Pb, (208)Pb/(206)Pb) were determined to discriminate between the natural and anthropogenic sources of Pb in cryoconites and to confirm the strong anthropogenic contribution to heavy metal deposition in the Arctic. In investigated cryoconite holes, two groups of invertebrates, both extremophiles, Tardigrada and Rotifera were detected. Our study indicate that cryoconites are aggregates of mineral and organic substances on surfaces of glaciers are able to accumulate large amounts of airborne pollutants bound to extracellular polymeric substances secreted by microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. New method of design of nonimaging concentrators.

    PubMed

    Miñano, J C; González, J C

    1992-06-01

    A new method of designing nonimaging concentrators is presented and two new types of concentrators are developed. The first is an aspheric lens, and the second is a lens-mirror combination. A ray tracing of three-dimensional concentrators (with rotational symmetry) is also done, showing that the lens-mirror combination has a total transmission as high as that of the full compound parabolic concentrators, while their depth is much smaller than the classical parabolic mirror-nonimaging concentrator combinations. Another important feature of this concentrator is that the optically active surfaces are not in contact with the receiver, as occurs in other nonimaging concentrators in which the rim of the mirror coincides with the rim of the receiver.

  20. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    NASA Astrophysics Data System (ADS)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO concentration were observed. Apparently different vertical distributions between H2 and CO concentration were revealed at all the observed stations. At a station where N-nutrient was depleted through surface mixed layer, H2 was supersaturated at the surface while CO concentration was constant through the depths. In contrast, at another station where some amount of terrestrial humic matter was introduced into the surface, H2 concentration was constantly undersaturated through the depth while vertical distribution of CO concentration showed the highest at the surface and exponentially decreased to deep. These facts suggest that H2 production involved with nitrogen fixation played an important role for H2 behavior in ocean water while photochemical H2 production would be a minor process. In addition to the surface, H2 supersaturation accoumpanied with little CO concentration rise were observed at depths just below the mixed layer in pycnocline with Chlorophyll maximum.

  1. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    PubMed

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  2. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: Kinetics, isotherm, and thermodynamics.

    PubMed

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K

    2018-07-15

    Nitrogen enriched carbon adsorbents with high surface areas were successfully prepared by carbonizing the low-cost urea formaldehyde resin, followed by KOH activation. Different characterization techniques were used to determine the structure and surface functional groups. Maximum surface area and total pore volume of 4547 m 2  g -1 and 4.50 cm 3  g -1 were found by controlling activation conditions. The optimized sample denoted as UFA-3-973 possesses a remarkable surface area, which is found to be one of the best surface areas achieved so far. Nitrogen content of this sample was found to be 22.32%. Dynamic CO 2 uptake capacity of the carbon adsorbents were determined thermogravimetrically at different CO 2 concentrations (6-100%) and adsorption temperatures (303-373 K) which have a much more relevance for the flue gas application. Highest adsorption capacity of 2.43 mmol g -1 for this sample was obtained at 303 K under pure CO 2 flow. Complete regenerability of the adsorbent over four adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description of adsorption over all adsorption temperatures and CO 2 concentrations. Heterogeneity of the adsorbent surface was confirmed from the Langmuir and Freundlich isotherms fits and isosteric heat of adsorption values. Exothermic, spontaneous and feasible nature of adsorption process was confirmed from thermodynamic parameter values. The combination of high surface area and large pore volume makes the adsorbent a new promising carbon material for CO 2 capture from power plant flue gas and for other relevant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Use of oil shale ash in road construction: results of follow-up environmental monitoring.

    PubMed

    Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis

    2018-01-05

    Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.

  4. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain.

    PubMed

    Esteban, S; Gorga, M; Petrovic, M; González-Alonso, S; Barceló, D; Valcárcel, Y

    2014-01-01

    Endocrine-disrupting compounds (EDCs) are chemical compounds with the ability to alter the hormonal systems of organisms. Such compounds are used in several industrial and domestic activities and reach the aquatic environment via wastewater discharge. The aim of this study is to assess the occurrence of 30 EDCs and related compounds in the surface waters of central Spain and to determine the overall estrogenic activity of environmental samples. This study analyzed a large number of EDCs and other emergent or suspected compounds with endocrine-disrupting activity. The results have shown the presence of 19 EDCs at concentrations ranging from 2 to 5928 ng L(-1). Organophosphorus-based flame retardants, alkylphenolic compounds and anticorrosives were found at the highest concentrations. Furthermore, although insufficient data are available to calculate an average over time, these preliminary results show the need to monitor the waters in both rivers studied. Alkylphenolic compounds, particularly nonylphenol, were the main contributors to overall estrogenicity. A higher concentration of the compounds studied was detected in the river Jarama, although the estrogenicity expressed as estradiol equivalents (EEQs) was higher in the river Manzanares due to a higher concentration of nonylphenol. However, the total estrogenicity did not exceed 1 ng L(-1) (EEQ), which is the level that may cause estrogenic effects in aquatic organisms, in any of the samples. In conclusion, the potential estrogenic risk in both rivers is low, although organophosphorus-based flame retardants may increase this risk as they were found at high levels in all samples. Unfortunately, these compounds could not be taken into account when calculating the estrogenic activity due to the lack of activity data for them. For future investigations, it will be important to assess the estrogenicity provided by these flame retardants. Due to the significant concentrations of EDCs detected in both rivers, further studies in this region are required. © 2013.

  5. HIV Nef-mediated cellular phenotypes are differentially expressed as a function of intracellular Nef concentrations.

    PubMed

    Liu, X; Schrager, J A; Lange, G D; Marsh, J W

    2001-08-31

    Nef is a regulatory protein encoded by the genome of both human and simian immunodeficiency virus. Its expression in T cells leads to CD4 and major histocompatibility complex class I modulation and either enhancement or suppression of T cell activation. How this viral protein achieves multiple and at times opposing activities has been unclear. Through direct measurements of Nef and the Nef-GFP fusion protein, we find that these events are mediated by different Nef concentrations. Relative to the intracellular concentration that down-modulates surface CD4, an order of magnitude increase in Nef-GFP expression is required for a comparable modulation of major histocompatibility complex class I, and a further 3-fold increase is necessary to suppress T cell activation.

  6. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  7. Phoretic Self-Propulsion

    NASA Astrophysics Data System (ADS)

    Moran, Jeffrey L.; Posner, Jonathan D.

    2017-01-01

    It is well-known that micro- and nanoparticles can move by phoretic effects in response to externally imposed gradients of scalar quantities such as chemical concentration or electric potential. A class of active colloids can propel themselves through aqueous media by generating local gradients of concentration and electrical potential via surface reactions. Phoretic active colloids can be controlled using external stimuli and can mimic collective behaviors exhibited by many biological swimmers. Low-Reynolds number physicochemical hydrodynamics imposes unique challenges and constraints that must be understood for the practical potential of active colloids to be realized. Here, we review the rich physics underlying the operation of phoretic active colloids, describe their interactions and collective behaviors, and discuss promising directions for future research.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ning; He, Yuqing; Mao, Xun

    This paper presents a novel approach to electrochemically determine enzymatically active PSA using ferrocene-functionalized helix peptide (CHSSLKQK). The principle of electrochemical measurement is based on the specific proteolytic cleavage events of the FC-peptide on the gold electrode surface in the presence of PSA, resulting the change of the current signal of the electrode. The percentage of the decreased current is linear with the concentration of active PSA at the range of 0.5-40 ng/mL with a detection limit of 0.2 ng/mL. The direct transduction of peptide cleavage events into an electrical signal provides a simple, sensitive method for detecting the enzymaticmore » activity of PSA and determining the active PSA concentration.« less

  9. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  10. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during themore » coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.« less

  11. Adsorption of Cu(II) Ions in Aqueous Solutions by HCl Activated Carbon of Oil Palm

    NASA Astrophysics Data System (ADS)

    Muslim, A.; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D.; Peiono, D.

    2017-06-01

    Activated carbon was prepared from oil palm empty fruit bunch (OPEFB) by pyrolysis at 873.15 K in a furnace and chemical activation using 0.01 M HCl. Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and BET (Brunauer, Emmett and Teller) surface area analyses were taken into account to investigate the chemical functional group, to characterise the surface morphology and to determine total surface area the OPEFB AC, respectively. Experiments in batch mode were conducted to investigate Cu(II) adsorption capacity by the OPEFB AC whereas the system consisted of 1 g the OPEFB AC in 100 mL Cu(II) aqueous solution with initial concentration in the range of 10-70 mg/L, magnetic stirring at 75 rpm, room temperature of 300.15 K (± 2 K), at 1 atm and neutral pH over contact time in the range of 0-150 min. As the result, Cu(II) adsorption capacity increased exponentially over contact time and initial concentration. The Cu(II) adsorption kinetics followed the pseudo second order kinetics with the correlation coefficients (R 2), kinetics rate constant and equilibrium adsorption capacity being 0.98, 4.81 mg/g and 0.15/min, respectively for initial Cu(II) concentration being 58.71 mg/L. In addition, Cu(II) adsorption isotherm followed the Langmuir equation with the R2 value, the mono-layer and over-all adsorption capacity being 0.99, 5.92 mg/g and 0.17 L/mg, respectively.

  12. Characterization of iron in silicon by low-temperature photoluminescence and deep-level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru; Murakami, Susumu; Udono, Haruhiko

    2018-03-01

    We investigate the relationship between the intensity of band-edge (BDE) photoluminescence (PL) from 10 to 70 K and the concentration of iron diffused in boron-doped p-type silicon. Because of the nonradiative recombination activity of the interstitial iron-boron complex (FeiB center), the BDE-PL intensity at each temperature varies distinctively and systematically with the iron concentration, which means that this method has the potential to make the accurate measurements of a wide range of interstitial iron concentrations in silicon. The iron precipitates formed in the bulk and/or at the surface are found to exert much weaker recombination activity for excess carriers than FeiB center by exploiting both PL and deep-level transient spectroscopy (DLTS) measurements. The unexpected enhancement in BDE-PL intensity from iron-diffused silicon between 20 and 50 K is attributed to the passivation of the Si-oxide/Si interface by iron. For the samples diffused with trace amounts of iron, the iron concentration within 20 μm of the surface is significantly greater than that in the bulk, as measured by DLTS. This result is tentatively attributed to the affinity of iron with the Si-oxide.

  13. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    PubMed

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Modelling of the batch biosorption system: study on exchange of protons with cell wall-bound mineral ions.

    PubMed

    Mishra, Vishal

    2015-01-01

    The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (<0.001-0.04), sum of square errors (0.061-0.016), root mean square error (0.01-0.04) and F-test (2.22-19.92) reported in the present research indicated the suitability of the model over a wide range of proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.

  15. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    PubMed

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  16. [Effects of elevated ozone concentrations on enzyme activities and organic acids content in wheat rhizospheric soil.

    PubMed

    Yin, Wei Qin; Jing, Hao Qi; Wang, Ya Bo; Wei, Si Yu; Sun, Yue; Wang, Sheng Sen; Wang, Xuai Zhi

    2018-02-01

    The elevated concentration of tropospheric ozone (O 3 ) is an important global climate change driver, with adverse impacts on soil ecological environment and crop growth. In this study, a pot experiment was carried out in an open top chamber (OTC), to investigate the effects of elevated ozone concentration on soil enzyme activities (catalase, polyphenol oxidase, dehydrogenase and invertase), organic acids contents (oxalic acid, citric acid and malic acid) at different growth stages (tillering, jointing, heading and ripening stages) of wheat, and combined with the rhizospheric soil physicochemical properties and plant root characteristics to analyze the underlying reasons. The results showed that, elevated ozone concentration increased soil catalase, polyphenol oxidase, dehydrogenase and invertase activities at wheat ripening period to different degrees, with the effects on the activities of catalase and polyphenol oxidase being statistically significant. At the heading stage, activities of dehydrogenase and invertase were significantly increased by up to 76.7%. At the ripening stage, elevated ozone concentration significantly increased the content of citric acid and malic acid and redox potential (Eh) in rhizospheric soil, but reduced soil pH, electrical conductivity, total carbon and nitrogen. For root characteristics, elevated ozone concentrations significantly reduced the wheat root biomass, total root length and root surface area but increased the average root diameter.

  17. Understanding recent climate change.

    PubMed

    Serreze, Mark C

    2010-02-01

    The Earth's atmosphere has a natural greenhouse effect, without which the global mean surface temperature would be about 33 degrees C lower and life would not be possible. Human activities have increased atmospheric concentrations of carbon dioxide, methane, and other gases in trace amounts. This has enhanced the greenhouse effect, resulting in surface warming. Were it not for the partly offsetting effects of increased aerosol concentrations, the increase in global mean surface temperature over the past 100 years would be larger than observed. Continued surface warming through the 21st century is inevitable and will likely have widespread ecological impacts. The magnitude and rate of warming for the global average will be largely dictated by the strength and direction of climate feedbacks, thermal inertia of the oceans, the rate of greenhouse gas emissions, and aerosol concentrations. Because of regional expressions of climate feedbacks, changes in atmospheric circulation, and a suite of other factors, the magnitude and rate of warming and changes in other key climate elements, such as precipitation, will not be uniform across the planet. For example, due to loss of its floating sea-ice cover, the Arctic will warm the most.

  18. Influence of contaminant burial depth on the bioaccumulation of PCBs and PBDEs by two benthic invertebrates (Monoporeia affinis and Marenzelleria spp.).

    PubMed

    Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin

    2011-11-01

    The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 2. Effect of different surfactants and theoretical model.

    PubMed

    Fainerman, V B; Lotfi, M; Javadi, A; Aksenenko, E V; Tarasevich, Yu I; Bastani, D; Miller, R

    2014-11-04

    The influence of the addition of the nonionic surfactants dodecyl dimethyl phosphine oxide (C12DMPO), tetradecyl dimethyl phosphine oxide (C14DMPO), decyl alcohol (C10OH), and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the surface tension is studied. It is shown that a significant decrease of the water/air surface tension occurs for all the surfactants studied at very low concentrations (10(-5)-10(-3) mmol/L). All measurements were performed with the buoyant bubble profile method. The dynamics of the surface tension was simulated using the Fick and Ward-Tordai equations. The calculation results agree well with the experimental data, indicating that the equilibration times in the system studied do not exceed 30 000 s, while the time required to attain the equilibrium on a plane surface is by one order of magnitude higher. To achieve agreement between theory and experiment for the mixtures, a supposition was made about the influence of the concentration of nonionic surfactant on the adsorption activity of the protein. The adsorption isotherm equation of the protein was modified accordingly, and this corrected model agrees well with all experimental data.

  20. [Distributions and influencing factors of total dissolved inorganic antimony in the coastal area of Zhejiang and Fujian].

    PubMed

    Zhang, Xu-Zhou; Ren, Jing-Ling; Liu, Zong-Guang; Fan, Xiao-Peng; Liu, Cheng-Gang; Wu, Ying

    2014-02-01

    Antimony has been ubiquitously present in the aquatic environment as a toxic and rare metalloid element. The contamination of antimony and its compounds in the environment is increasingly severe, so it has been received extensive attention by the international scientific community. The cruise was carried out in the coastal area of Zhejiang and Fujian provinces in the East China Sea (ECS) in May 2008. The concentrations of total dissolved inorganic antimony (TDISb) were measured by Hydride Generation-Atomic Fluorescence (HG-AFS). The concentration ranges of TDISb in the surface and bottom layer were 0.68-5.64 nmol x L(-1) and 0.71-5.25 nmol x L(-1) with averages of 2.25 and 1.79 nmol x L(-1), respectively. The concentration of TDISb in the study area was lower than the environmental quality standards for surface water of China and drinking water standards of World Health Organization (about 41.08 nmol x L(-1)), indicating that it remained at the pristine level. The concentration of TDISb decreased gradually from the coastal area to the central ECS shelf with higher concentration in the surface layer than the bottom. Water mass mixing, adsorption/desorption behavior on the surface of the suspended particulate matters (SPM) and biological activities were the main influence factors of TDISb biogeochemistry in the study area.

  1. Optimized dispersion of ZnO nanoparticles and antimicrobial activity against foodborne pathogens and spoilage microorganisms

    NASA Astrophysics Data System (ADS)

    Espitia, Paula Judith Perez; Soares, Nilda de Fátima Ferreira; Teófilo, Reinaldo F.; Vitor, Débora M.; Coimbra, Jane Sélia dos Reis; de Andrade, Nélio José; de Sousa, Frederico B.; Sinisterra, Rubén D.; Medeiros, Eber Antonio Alves

    2013-01-01

    Single primary nanoparticles of zinc oxide (nanoZnO) tend to form particle collectives, resulting in loss of antimicrobial activity. This work studied the effects of probe sonication conditions: power, time, and the presence of a dispersing agent (Na4P2O7), on the size of nanoZnO particles. NanoZnO dispersion was optimized by response surface methodology (RSM) and characterized by the zeta potential (ZP) technique. NanoZnO antimicrobial activity was investigated at different concentrations (1, 5, and 10 % w/w) against four foodborne pathogens and four spoilage microorganisms. The presence of the dispersing agent had a significant effect on the size of dispersed nanoZnO. Minimum size after sonication was 238 nm. An optimal dispersion condition was achieved at 200 W for 45 min of sonication in the presence of the dispersing agent. ZP analysis indicated that the ZnO nanoparticle surface charge was altered by the addition of the dispersing agent and changes in pH. At tested concentrations and optimal dispersion, nanoZnO had no antimicrobial activity against Pseudomonas aeruginosa, Lactobacillus plantarum, and Listeria monocytogenes. However, it did have antimicrobial activity against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, Saccharomyces cerevisiae, and Aspergillus niger. Based on the exhibited antimicrobial activity of optimized nanoZnO against some foodborne pathogens and spoilage microorganisms, nanoZnO is a promising antimicrobial for food preservation with potential application for incorporation in polymers intended as food-contact surfaces.

  2. Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations.

    PubMed

    Villa, Federica; Secundo, Francesco; Polo, Andrea; Cappitelli, Francesca

    2015-07-01

    The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm(2) with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 and 3.5 log10 units in presence of 0.022 Upectinase/cm(2) and 0.095 Usubtilisin/cm(2) was obtained, respectively, in comparison the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for antibiofilm applications.

  3. Environmental dust effects on aluminum surfaces in humid air ambient.

    PubMed

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-04-05

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems.

  4. Environmental dust effects on aluminum surfaces in humid air ambient

    PubMed Central

    Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser

    2017-01-01

    Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798

  5. A naturally occurring diatom frustule as a SERS substrate for the detection and quantification of chemicals

    NASA Astrophysics Data System (ADS)

    Chamuah, Nabadweep; Chetia, Lakhi; Zahan, Nashrat; Dutta, Sibasish; Ahmed, Gazi A.; Nath, Pabitra

    2017-05-01

    Naturally occurring photonic crystal structures play an important role in different fields of application. Herein, we exploit the periodic pore pattern of a diatom frustule and demonstrate surface-enhanced Raman scattering (SERS) using its structure as a template for the SERS substrate. Gold nanoparticles (AuNPs) were initially allowed to self-assemble on the surface and inside the pores of the diatoms. The enhancement in the localized surface plasmon resonance (LSPR) field magnitude for the assembled AuNPs on the diatom frustule were studied using simulation software. For the proposed SERS substrate, an average field enhancement of the order of 108 magnitude was observed. We demonstrate the operation of the designed substrate for the detection and quantification of Raman signals from two Raman active samples, namely malachite green (MG) and fluoride concentrations in drinking water. Using the proposed SERS substrate, an MG concentration as low as 1 nM with a relative standard deviation (RSD) of 7.57% and a fluoride concentration of 100 nM with an RSD of 17.26% could be measured with the Raman spectrometer. We envision that the proposed technique could emerge as an inexpensive alternative fabrication method of SERS substrates which can produce an enhanced LSPR field magnitude and scatter intense Raman signals from Raman active samples.

  6. Paper-based α-amylase detector for point-of-care diagnostics.

    PubMed

    Dutta, Satarupa; Mandal, Nilanjan; Bandyopadhyay, Dipankar

    2016-04-15

    We report the fabrication of a paper-sensor for quantitative detection of α-amylase activity in human blood serum. Pieces of filter papers were coated with starch-iodine solution leading to an intense blue coloration on the surface. Dispensing α-amylase solution on the starch-iodine coated paper reduced the intensity of the color because of starch-hydrolysis catalyzed by amylase. The variation in the intensity of the color with the concentration of amylase was estimated in three stages: (i) initially, the paper-surface was illuminated with a light emitting diode, (ii) then, the transmitted (reflected) rays emitted through (from) the paper were collected on a photoresistor, and (iii) the variations in the electrical resistance of the photoresistor were correlated with the amylase concentration in analyte. The resistance of photoresistor decreased monotonically with an increase in amylase concentration because the intensity of the reflected (transmitted) rays collected from (through) the paper increased with reduction in the color intensity on the paper surface. Since a specific bio-reaction was employed to detect the activity of amylase, the sensor was found to be equally efficient in detecting unknown quantities of amylase in human blood serum. The reported sensor has shown the potential to graduate into a point-of-care detection tool for α-amylase. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Hexabromocyclododecanes (HBCDDs) in surface soils from coastal cities in North China: Correlation between diastereoisomer profiles and industrial activities.

    PubMed

    Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J

    2016-04-01

    Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Rational Design and Synthesis of Carboxylate Gemini Surfactants with an Excellent Aggregate Behavior for Nano-La2O3 Morphology-Controllable Preparation.

    PubMed

    Liao, Xueming; Gao, Zhinong; Xia, Yan; Niu, Fei; Zhai, Wenzhong

    2017-04-04

    A series of carboxylate gemini surfactants (CGS, C n -Φ-C n , n = 12, 14, 16, 18) with diphenyl ketone as a spacer group were prepared using a simple and feasible synthetic method. These CGS exhibited an excellent surface activity with extremely low critical micelle concentration (CMC) value (approximately 10 -5 mol/L), good performance in reducing surface tension (nearly 30 mN/m), and the ability of molecular self-assembly into different aggregate morphologies via adjusting the concentrations, which is attributed to the introduction of diphenyl ketone and carboxylic acid ammonium salt in the molecular structure. Moreover, the surface activity and self-assembly ability of CGS were further optimized by tuning the length of the tail chain. These excellent properties imply that CGS can be a soft template to prepare nanomaterials, especially in morphology-controllable synthesis. By adjusting the concentration of one of CGS (C 12 -Φ-C 12 ), nano-La 2 O 3 particles with diverse morphologies were obtained, including spherical shape, bead-chain shape, rod shape, velvet-antler shape, cedar shape, and bowknot shape. This work offers a vital insight into the rational design of template agents for the development of morphology-controllable nanomaterials.

  9. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    PubMed

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    PubMed

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  11. Estrogenicity and Nutrient Concentration of Surface Waters Surrounding a Large Confinement Dairy Operation Using Best Management Practices for Land Application of Animal Wastes

    USDA-ARS?s Scientific Manuscript database

    The impact of a confinement dairy operation (> 2,000 head) using best management practices for land application of animal wastes, on estrogenic activity (E-Screen), estrogens, and nutrients of associated surface waters and tile drain runoff were evaluated. Farm tile drain and creek samples were col...

  12. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    NASA Astrophysics Data System (ADS)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  13. Effects of Menthol-Containing Artificial Tears on Tear Stimulation and Ocular Surface Integrity in Normal and Dry Eye Rat Models.

    PubMed

    Ahn, Somin; Eom, Youngsub; Kang, Boram; Park, Jungboung; Lee, Hyung Keun; Kim, Hyo Myung; Song, Jong Suk

    2018-05-01

    To evaluate the effects of menthol-containing artificial tears on tear stimulation and ocular surface integrity in normal and dry eye rat models. A total of 54 male Lewis rats were used. The levels of tear secretion and tear MUC5AC concentrations were compared between the menthol-containing artificial tear-treated group (menthol group) and the vehicle-treated group (vehicle group). The groups were compared after a single instillation to evaluate the immediate effects, and after repeated instillation (five times a day for 5 days) to evaluate the longer-term effects. Tear lactate dehydrogenase (LDH) activity was measured to evaluate eye drop instillation-induced ocular surface damage. The effects of menthol-containing artificial tears were also evaluated in a dry eye rat model. After a single instillation of menthol-containing artificial tears, tear secretion increased from 4.37 (±0.75) mm at baseline to 7.37 (±1.60) mm. However, after repeated instillations, the effects of tear stimulation decreased. The tear MUC5AC concentration was significantly lower in the menthol group than in the vehicle group after a single instillation, but not after repeated instillation. However, the tear LDH concentration was significantly increased in the menthol group after repeated instillation. In the dry eye rat model, the extent of menthol-induced tear stimulation was reduced. Menthol-containing artificial tears increased tear secretion, but lowered the tear MUC5AC concentration. Menthol-induced tear stimulation was reduced after repeated instillation for 5 days and in the dry eye rat model. Conversely, repeated instillation of menthol-induced ocular surface damage, resulting in increased tear LDH activity.

  14. Tripolar Laplacian electrocardiogram and moment of activation isochronal mapping.

    PubMed

    Besio, W; Chen, T

    2007-05-01

    The electrocardiogram (ECG) provides useful global temporal assessment of the cardiac activity, but has limited spatial capabilities. The Laplacian electrocardiogram (LECG), an improvement over the ECG, provides high spatiotemporal distributed information about cardiac electrical activation. We designed and developed LECG tripolar concentric ring electrode active sensors based on the finite element algorithm 'nine-point method' (NPM). The active sensors were used in an array of 6 by 12 (72) locations to record bipolar and tripolar LECG from the body surface over the anterolateral chest. Compared to bipolar LECG, tripolar LECG showed significantly higher spatial selectivity which may be helpful in inferring information about cardiac activations detected on the body surface. In this study the moment of activation (MOA), an indicator of a depolarization wave passing below the active sensors, was used to surmise possible timing information of the cardiac electrical activation below the active sensors' recording sites. The MOA on the body surface was used to generate isochronal maps that may some day be used by clinicians in diagnosing arrhythmias and assessing the efficacy of therapies.

  15. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  16. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles

    PubMed Central

    Govindaraju, Saravanan; Ramasamy, Mohankandhasamy; Baskaran, Rengarajan; Ahn, Sang Jung; Yun, Kyusik

    2015-01-01

    Here we report a novel method for the synthesis of glucosamine-functionalized gold nanoparticles (GlcN-AuNPs) using biocompatible and biodegradable glucosamine for antibacterial activity. GlcN-AuNPs were prepared using different concentrations of glucosamine. The synthesized AuNPs were characterized for surface plasmon resonance, surface morphology, fluorescence spectroscopy, and antibacterial activity. The minimum inhibitory concentrations (MICs) of the AuNPs, GlcN-AuNPs, and GlcN-AuNPs when irradiated by ultraviolet light and laser were investigated and compared with the MIC of standard kanamycin using Escherichia coli by the microdilution method. Laser-irradiated GlcN-AuNPs exhibited significant bactericidal activity against E. coli. Flow cytometry and fluorescence microscopic analysis supported the cell death mechanism in the presence of GlcN-AuNP-treated bacteria. Further, morphological changes in E. coli after laser treatment were investigated using atomic force microscopy and transmission electron microscopy. The overall results of this study suggest that the prepared nanoparticles have potential as a potent antibacterial agent for the treatment of a wide range of disease-causing bacteria. PMID:26345521

  17. Determination of the volume activity concentration of alpha artificial radionuclides with alpha spectrometer.

    PubMed

    Liu, B; Zhang, Q; Li, Y

    1997-12-01

    This paper introduces a method to determine the volume activity concentration of alpha and/or beta artificial radionuclides in the environment and radon/thoron progeny background-compensation based on a Si surface-barrier detector. By measuring the alpha peak counts of 218Po and 214Po in two time intervals, the activity concentration of 218Po, 214Pb and 214Bi aerosol particles were determined; meanwhile, the total beta count of 214Pb and 214Bi aerosols was also calculated from their decay scheme. With the average equilibrium factor of thoron progeny in general environment, the alpha and beta counts of thoron progeny were approximately evaluated by 212Po alpha peak counts. The alpha count of transuranic aerosols was determined by subtracting the trail counts of radon/thoron progeny alpha peaks. The total count of beta artificial radionuclides was determined by subtracting the beta counts of radon/thoron progeny aerosol particles. In our preliminary experiments, if the radon progeny concentration is less than 15 Bq m(-3), the lower limit of detection of transuranics concentration is less than 0.1 Bq m(-3). Even if the radon progeny concentration is as high as 75 Bq m(-3), the lower limit of detection of total beta activity concentration of artificial nuclides aerosols is less than 1 Bq m(-3).

  18. Etch pit investigation of free electron concentration controlled 4H-SiC

    NASA Astrophysics Data System (ADS)

    Kim, Hong-Yeol; Shin, Yun Ji; Kim, Jung Gon; Harima, Hiroshi; Kim, Jihyun; Bahng, Wook

    2013-04-01

    Etch pits were investigated using the molten KOH selective etching method to examine dependence of etch pit shape and size on free electron concentration. The free electron concentrations of highly doped 4H-silicon carbide (SiC) were controlled by proton irradiation and thermal annealing, which was confirmed by a frequency shift in the LO-phonon-plasmon-coupled (LOPC) mode on micro-Raman spectroscopy. The proton irradiated sample with 5×1015 cm-2 fluence and an intrinsic semi-insulating sample showed clearly classified etch pits but different ratios of threading screw dislocation (TSD) and threading edge dislocation (TED) sizes. Easily classified TEDs and TSDs on proton irradiated 4H-SiC were restored as highly doped 4H-SiC after thermal annealing due to the recovered carrier concentrations. The etched surface of proton irradiated 4H-SiC and boron implanted SiC showed different surface conditions after activation.

  19. Multisensor comparison of ice concentration estimates in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Burns, B. A.; Cavalieri, D. J.; Gloersen, P.; Keller, M. R.; Campbell, W. J.

    1987-01-01

    Aircraft remote sensing data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) imagery, passive microwave imagery at several frequencies, aerial photography, and spectral photometer data. The comparison is carried out not only to evaluate SAR performance against more established techniques but also to investigate how ice surface conditions, imaging geometry, and choice of algorithm parameters affect estimates made by each sensor.Active and passive microwave sensor estimates of ice concentration derived using similar algorithms show an rms difference of 13 percent. Agreement between each microwave sensor and near-simultaneous aerial photography is approximately the same (14 percent). The availability of high-resolution microwave imagery makes it possible to ascribe the discrepancies in the concentration estimates to variations in ice surface signatures in the scene.

  20. Adsorption of octylamine on titanium dioxide

    NASA Astrophysics Data System (ADS)

    Siwińska, Daria; Kołodziejczak-Radzimska, Agnieszka; Krysztafkiewicz, Andrzej; Jesionowski, Teofil

    2009-05-01

    Processes of adsorption and desorption of a model active substance (octylamine) on the surface of unmodified titanium dioxide (E 171) have been performed. The effects of concentration of octylamine and time of the process on the character of adsorption have been studied and the efficiency of the adsorption/desorption has been determined. The samples obtained have been studied by X-ray diffraction. The nitrogen adsorption/desorption isotherms, particle size distribution and absorption capacities of water, dibutyl phthalate and paraffin oil have been determined. The efficiency of octylamine adsorption on the surface of the titanium dioxide has been found positively correlated with the concentration of octylamine in the initial solution. The desorption of octylamine has decreased with increasing concentration of this compound adsorbed. For octylamine in low concentrations the physical adsorption has been found to dominate, which is desirable when using TiO 2 in the production of pharmaceuticals.

  1. Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.

    PubMed

    Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R

    2017-01-01

    Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.

  2. Hydrogeology and chemical quality of water and soil at Carroll Island, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, F.J.; Phillips, S.W.

    1996-01-01

    Carroll Island was used for open-air testing of chemical warfare agents from the late 1940's until 1971. Testing and disposal activities weresuspected of causing environmental contamination at 16 sites on the island. The hydrogeology and chemical quality of ground water, surface water, and soil at these sites were investigated with borehole logs, environmental samples, water-level measurements, and hydrologic tests. A surficial aquifer, upper confining unit, and upper confined aquifer were defined. Ground water in the surficial aquifer generally flows from the east-central part of the island toward the surface-water bodies, butgradient reversals caused by evapotranspiration can occur during dry seasons. In the confined aquifer, hydraulic gradients are low, and hydraulic head is affected by tidal loading and by seasonal pumpage from the west. Inorganic chemistry in the aquifers is affected by brackish-water intrusion from gradient reversals and by dissolution ofcarboniferous shell material in the confining unit.The concentrations of most inorganic constituents probably resulted from natural processes, but some concentrations exceeded Federal water-quality regulations and criteria. Organic compounds were detected in water and soil samples at maximum concentrations of 138 micrograms per liter (thiodiglycol in surface water) and 12 micrograms per gram (octadecanoic acid in soil).Concentrations of organic compounds in ground water exceeded Federal drinking-water regulations at two sites. The organic compounds that weredetected in environmental samples were variously attributed to natural processes, laboratory or field- sampling contamination, fallout from industrial air pollution, and historical military activities.

  3. Hydrologic and geochemical data for the Big Brown lignite mine area, Freestone County, Texas

    USGS Publications Warehouse

    Dorsey, Michael E.

    1985-01-01

    Lignite mining in east and east-central Texas is increasing in response to increased energy needs throughout the State. Associated with the increase in mining activities is a greater need to know the effects of mining activities on the water quantity and quality of near-surface aquifers. The near-surface lignite beds mined at the Big Brown Lignite Mine are from the Calvert Bluff Formation of the Wilcox Group of Eocene age, which is a minor aquifer generally having water suitable for all uses, in eastern Freestone County, Texas. One of the potential hydro!ogic effects of surface-coal mining is a change in the quality of ground water associated with replacement of aquifer materials by mine spoils. The purpose of this report is to compile and categorize geologic, mineralogic, geochemical, and hydrologic data for the Big Brown Lignite Mine and surrounding area in east-central Texas. Included are results of pasteextract analyses, constituent concentrations in water from batch-mixing experiments, sulfur analyses, and minerals or mineral groups detected by X-ray diffraction in 12 spoil material samples collected from 3 locations at the mine site. Also, common-constituent and trace-constituent concentrations in water from eight selected wells, located updip and downdip from the mine, are presented. Dissolved-solids concentrations in water from batch-mixing experiments vary from 12 to 908 milligrams per liter. Water from selected wells contain dissolved-solids concentrations ranging from 75 to 510 milligrams per liter.

  4. Effects of decontamination work on riverine radiocaesium activity concentrations in Fukushima affected area

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.; Onda, Y.; Yoshimura, K.; Smith, H.; Brake, W.; Kubo, T.; Kuramoto, T.; Sato, T.; Onuma, S.

    2016-12-01

    Radionuclides such as Cs-134 and Cs-137 were widely distributed in the area affected by the accident at Fukushima Daiichi nuclear power plant. The radionuclides were deposited on the surface, absorbed by soil particles, and transported via river systems to Pacific Ocean due to rainfall events. In order to reduce air dose rate surrounding residential area, decontamination works have been conducted between 2013 and 2016 Fiscal Years. In paddy field and farmland contaminated by the fallout, 5 cm of surface soil was stripped, and then clean sands put on the surface. This work could reduce radiocaesium inventory, while the coverage of vegetation was significantly decreased. Therefore, runoff characteristics in the decontaminated area were different before and after the decontamination. Activity concentrations of particulate Cs-137 were measured in Abukuma river system and 8 small catchments located in coastal zone of Fukushima affected area. In all monitoring sites, Cs-137 concentrations have decreased over an entire monitoring period. Kuchibuto river, which is a tributary of Abukuma river showed significant effect of decontamination. In Yamakiya district, in the watershed of the tributary, the decontamination work had conducted from 2013 FY to December 2015. Particulate Cs-137 concentration at two monitoring sites located in the district showed around 30% of decline in the beginning of 2014 FY whereas the decline was not so significant at sites in lower reach of the tributary. Decontaminated paddy field and farmland can be judged as the important source of suspended sediments in the tributary.

  5. Instrument comparison for Aerosolized Titanium Dioxide

    NASA Astrophysics Data System (ADS)

    Ranpara, Anand

    Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration, than the PDRs. Two apparently identical DC devices were statistically different with each other for fine particles but not for UFP. DC devices and SMPS were statistically different with each other for both sizes of particles. Two apparently identical GRIMM devices were statistically different with each other for fine particles. For UFP, results of GRIMM device were statistically different than SMPS but not for fine particles. These observations suggest that inter-device within instrument and inter-instrument agreements depend on particle size and instrument characteristics to measure nanoparticles at different concentration levels.

  6. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE PAGES

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; ...

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  7. Effects of Surface-Engineered Nanoparticle-Based Dispersants for Marine Oil Spills on the Model Organism Artemia franciscana

    PubMed Central

    2015-01-01

    Fine particles are under active consideration as alternatives to chemical dispersants for large-scale petroleum spills. Fine carbon particles with engineered surface chemistry have been shown to stabilize oil-in-water emulsions, but the environmental impacts of large-scale particle introduction to the marine environment are unknown. Here we study the impact of surface-engineered carbon-black materials on brine shrimp (Artemia franciscana) as a model marine microcrustacean. Mortality was characterized at 50–1000 mg/L, and levels of heat shock protein 70 (hsp70) were characterized at sublethal particle concentrations (25–50 mg/L). Functionalized carbon black (CB) nanoparticles were found to be nontoxic at all concentrations, while hydrophobic (annealed) and as-produced CB induced adverse effects at high concentrations. CB was also shown to adsorb benzene, a model hydrocarbon representing the more soluble and toxic low-molecular weight aromatic fraction of petroleum, but the extent of adsorption was insufficient to mitigate benzene toxicity to Artemia in coexposure experiments. At lower benzene concentrations (25–75 mg/L), coexposure with annealed and as-produced CB increased hsp70 protein levels. This study suggests that surface functionalization for increased hydrophilicity can not only improve the performance of CB-based dispersants but also reduce their adverse environmental impacts on marine organisms. PMID:24823274

  8. Surface properties and cytocompatibillity of silk fibroin films cast from aqueous solutions in different concentrations

    NASA Astrophysics Data System (ADS)

    Lian, Xiao-Jie; Wang, Song; Zhu, He-Sun

    2010-03-01

    Silk fibroin film (SFF) has been widely used in biomaterials. SFF is usually prepared from a regenerated silk aqueous solution and its properties depend remarkably on the preparation conditions. However, the effect of the silk fibroin concentration ( C 0) on the SFF surface properties as well as the cytocompatibility has rarely been investigated. In this work we prepared a series of Bombyx mori SFFs by casting SF aqueous solutions with the concentration from 10° to 102 mg/mL on TCPS substrate at 60°C. The test results of atomic force microscopy, attenuated total reflection Fourier transform infrared and contact angles analysis showed that the film surface roughness and β-sheet structure increased with the increase of C 0, whereas the surface hydrophilicity increased with the decrease of C 0. The in vitro clotting time measurement results revealed that the SFFs prepared from the thinner solution showed a longer APTT (activated partial thromboplastin time) and TT (thrombin time). The results of microscopy and MTT assay also revealed that cell adhesion and growth were enhanced on the SFF cast from lower C 0 for fibroblasts. In contrast, endothelial cells showed a similar behavior on all those films that were prepared from the solution in different concentrations.

  9. Super-SERS-active and highly effective antimicrobial Ag nanodendrites

    NASA Astrophysics Data System (ADS)

    Li, H. B.; Liu, P.; Liang, Y.; Xiao, J.; Yang, G. W.

    2012-07-01

    We have developed simple and green electrochemistry to synthesize Ag nanostructures with high purity, good crystallinity and smooth surface for applications as super-SERS (surface-enhanced Raman scattering), SERS-active substrates and with highly effective antimicrobial activities. This synthesis takes place in a clean and slow reaction environment without any chemical additives, which ensures an ultrahigh active surface of the as-synthesized Ag nanostructures owing to their purity, good crystallinity and smooth morphology. Using this method, we synthesized nearly perfect Ag nanodendrites (NDs), which exhibit super-SERS sensitivity when they are used to detect the SERS spectra of rhodamine 6G at concentrations as low as 5 × 10-16 M, and have an ultrahigh electromagnetic (EM) enhancement factor of the order of 1013, breaking through the theoretical limit of EM enhancement. Meanwhile, the as-synthesized Ag NDs possess highly effective antimicrobial activities for Escherichia coli, Candida albicans and Staphylococcus aureus, which are over 10 times that of silver nanoparticles. Additionally, the basic physics and chemistry involved in the fabrication of Ag nanostructures are pursued. These investigations show that silver nanostructures with highly active surfaces can make the most of Ag nanostructures functioning as super-SERS-active substrates and multiple antibiotics.

  10. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  11. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China.

    PubMed

    Zhang, Panwei; Zhou, Huaidong; Li, Kun; Zhao, Xiaohui; Liu, Qiaona; Li, Dongjiao; Zhao, Gaofeng

    2018-01-13

    Eighteen selected pharmaceuticals and personal care products (PPCPs), consisting of five non-antibiotic pharmaceuticals (N-APs), four sulfonamides (SAs), four tetracyclines (TCs), four macrolides (MCs), and one quinolone (QN) were detected in water, pore water, and sediment samples from Baiyangdian Lake, China. A total of 31 water samples and 29 sediment samples were collected in March 2017. Caffeine was detected with 100% frequency in surface water, pore water, and sediment samples. Carbamazepine was detected with 100% frequency in surface water and sediment samples. Five N-APs were prominent, with mean concentrations of 4.90-266.24 ng/l in surface water and 5.07-14.73 μg/kg in sediment samples. Four MCs were prominent, with mean concentrations of 0.97-29.92 ng/l in pore water samples. The total concentrations of the different classes of PPCPs followed the order: N-APs (53.26%) > MCs (25.39) > SAs (10.06%) > TCs (7.64%) > QNs (3.64%) in surface water; N-APs (42.70%) > MCs (25.43%) > TCs (14.69%) > SAs (13.90%) > QNs (3.24%) in sediment samples, and MCs (42.12%) > N-APs (34.80%) > SAs (11.71%) > TCs (7.48%) > QNs (3.88%) in pore water samples. The geographical differences of PPCP concentrations were largely due to anthropogenic activities. Sewage discharged from Baoding City and human activities around Baiyangdian Lake were the main sources of PPCPs in the lake. An environmental risk assessment for the upper quartile concentration was undertaken using calculated risk quotients and indicated a low or medium-high risk from 18 PPCPs in Baiyangdian Lake and its five upstream rivers.

  12. Determination of the effective anticandidal concentration of denture cleanser tablets on some denture base resins

    PubMed Central

    Hayran, Yeliz; Sarikaya, Işıl; Aydin, Ali; Tekin, Yadel Hazır

    2018-01-01

    Abstract Objective Although the effectiveness of chemical cleansing against Candida albicans biofilm has been shown, the effective concentration of denture cleanser tablets has not been studied. The aim of this study was to assess the effect of three denture materials against Candida albicans biofilm and to determine effective concentrations of denture cleanser tablets. Material and methods The surface-roughness of Acron-hi™, QC-20™ and Deflex™ (n=45 per resin) resins was standardized by using a profilometer and their contact angle or surface free energy was calculated. C. albicans biofilm was formed on all three resins and were treated with Polident 3 min™, Corega™ and Fittydent™ cleanser solutions at various concentrations and both resin-biofilm and cleanser-biofilm interest were determined by using a MTT protocol according to the European Committee on Antimicrobial Susceptibility Testing's antifungal susceptibility testing (AFST-EUCAST). Scanning electron microscopy was used to compare the efficacy of different resin materials against C. albicans biofilm. Anticandidal activity and surface free energy statistical parameters were calculated by using 3-way and 1-way ANOVA, respectively (p<0.05). Results Polident 3 min™ and Corega™ tablets significantly inhibited (p<0.05) the proliferation of C. albicans against all denture resins at 27-37 mg/mL. Scanning electron microscopy results indicated that there was no significant difference among resin specimens regarding biofilm formation on dentures. We failed to find a significant relationship between surface free energy and the anticandidal effect of resin types. However, the polarity value of the resins was statistically associated with their anticandidal activity. Conclusions The polarity of the resins, the concentrations of tablets and the chemical content of the cleanser may directly affect C. albicans biofilm formations. Polident 3 min™ and Corega™ tablets should be suggested for patients who use any denture resin types, whereas the Fittydent™ tablet should only be proposed for those who use Deflex™, when two tablets are dropped into 150 mL water. PMID:29364341

  13. Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Amin, N. Mohd; Ng, S. S.

    2018-01-01

    Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.

  14. The influence of human physical activity and contaminated clothing type on particle resuspension.

    PubMed

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Some Surface-Active Agents and Their Virucidal Effect on Foot-and-Mouth Disease Virus

    PubMed Central

    Fellowes, O. N.

    1965-01-01

    Selected cationic and anionic surface-active compounds were tested to determine their virucidal effect on the foot-and-mouth disease virus, type O, strain M11, propagated in primary calf kidney cells. The chemical inactivation of the virus was tested with 0.5, 1.0, 2.0, and 5.0% concentrations of the selected compounds. Virus controls with pH adjusted to cover the expected range of the mixtures of the chemicals and virus were also tested. The absence of virus from the mixtures of chemical and virus after reaction at 28 C for 2 hr was assayed by inoculating suckling mice with the mixtures. One cationic compound, alkyl methyl isoquinilinium chloride, showed considerable antiviral activity due largely to pH effect. The use of the surface-active agents investigated in this study, in the presence of organic material, would not be recommended as virucides. PMID:4286396

  16. Comparing activated alumina with indigenous laterite and bauxite as potential sorbents for removing fluoride from drinking water in Ghana

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.

    2015-01-01

    Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.

  17. Photocatalytic activity of Pt-TiO2 films supported on hydroxylated fly ash cenospheres under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Yang, Zewei; An, Hao; Zhai, Jianping; Li, Qin; Cui, Hao

    2015-01-01

    TiO2 was coated on the surface of hydroxylated fly ash cenospheres (FACs) by the sol-gel method. Platinum (Pt) was then deposited on these TiO2/FAC particles by a photoreduction method to form PTF photocatalyst. The photocatalytic activity of PTF for the degradation of methylene blue (MB) under visible-light irradiation was determined. The PTF sample that was calcined at 450 °C and had a Pt/TiO2 mass ratio of 1.5% exhibited the optimal photocatalytic activity for degradation of MB with a catalyst concentration of 3 g L-1. MB was photodecomposed by PTF in aqueous solution more effectively at alkali pH than at acidic pH, because more MB molecules were adsorbed on the surface of PTF under alkaline conditions than that under acidic. The effect of various inorganic anions (HCO3-, F-, SO42-, NO3-, and Cl-) on the photodegradation of MB by PTF was also investigated. Addition of anions with a concentration of 5 mM enhanced the photocatalytic efficiency of PTF because of the improved adsorption of MB. This effect weakened as the anion concentration was increased, which was attributed to the ability of the anions to scavenge hydroxyl radicals and holes. Our results indicated that the photodegradation of MB took place mainly on the catalyst surface. The generation of hydroxyl radicals in the photocatalytic reaction was measured by the fluorescence method. KI was used to determine the participation of holes in the photocatalytic reaction. Both hydroxyl radicals and valence-band holes were detected in the PTF system. Recycling tests revealed that calcination of the used PTF helped to regain its photocatalytic activity.

  18. Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa

    2017-09-01

    Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.

  19. Trimethylamine N-oxide (TMAO) and tert-butyl alcohol (TBA) at hydrophobic interfaces: insights from molecular dynamics simulations.

    PubMed

    Fiore, Andrew; Venkateshwaran, Vasudevan; Garde, Shekhar

    2013-06-25

    TMAO, a potent osmolyte, and TBA, a denaturant, have similar molecular architecture but somewhat different chemistry. We employ extensive molecular dynamics simulations to quantify their behavior at vapor-water and octane-water interfaces. We show that interfacial structure-density and orientation-and their dependence on solution concentration are markedly different for the two molecules. TMAO molecules are moderately surface active and adopt orientations with their N-O vector approximately parallel to the aqueous interface. That is, not all methyl groups of TMAO at the interface point away from the water phase. In contrast, TBA molecules act as molecular amphiphiles, are highly surface active, and, at low concentrations, adopt orientations with their methyl groups pointing away and the C-O vector pointing directly into water. The behavior of TMAO at aqueous interfaces is only weakly dependent on its solution concentration, whereas that of TBA depends strongly on concentration. We show that this concentration dependence arises from their different hydrogen bonding capabilities-TMAO can only accept hydrogen bonds from water, whereas TBA can accept (donate) hydrogen bonds from (to) water or other TBA molecules. The ability to self-associate, particularly visible in TBA molecules in the interfacial layer, allows them to sample a broad range of orientations at higher concentrations. In light of the role of TMAO and TBA in biomolecular stability, our results provide a reference with which to compare their behavior near biological interfaces. Also, given the ubiquity of aqueous interfaces in biology, chemistry, and technology, our results may be useful in the design of interfacially active small molecules with the aim to control their orientations and interactions.

  20. Hanford Site near-facility environmental monitoring annual report, calendar year 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, C.J.

    1998-07-28

    Near-facility environmental monitoring provides a means to measure the impacts of operations, waste management, and remediation activities on the environment adjacent to facilities and ensure compliance with local, state, and federal environmental regulations. Specifically, near-facility environmental monitoring monitors new and existing sites, processes, and facilities for potential impacts and releases; fugitive emissions and diffuse sources associated with contaminated areas, facilities (both active and those undergoing surveillance and maintenance), and environmental restoration activities. External radiation, ambient air particulates, ground and surface water, soil, sediment, and biota (plants and animals) are sampled or monitored. Parameters include, as appropriate, radionuclides; radiation fields; chemicalmore » or physical constituents, such as nitrates; pH; and water temperature. All ambient air results were below the US Department of Energy (DOE) Derived Concentration Guides (DCGs). Groundwater concentrations at the two wells at the 107-N Facility were below both the DOE DCG and US Environmental Protection Agency Interim Drinking Water Standards for gamma emitting radionuclides. Soil and vegetation results were generally within historic ranges and mostly below the Accessible Soil Concentration limits (included in HNF-PRO-454, Inactive Waste Sites) with the exception of one soil sampling location at 1 00 N Area. External radiation fields continued an overall downward trend. Surface water disposal unit samples (water, sediment, and aquatic vegetation) showed radionuclide concentrations below their respective DCG and Accessible Soil Concentration limits. The 100 N Area Columbia river shoreline springs results were below DCGs with the exception of one Sr concentration. More than 4,600 ha (11,300 acres) of radiologically controlled areas were surveyed in 1997, approximately the same as in 1996.« less

  1. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase.

    PubMed

    Benaud, Christelle; Oberst, Michael; Hobson, John P; Spiegel, Sarah; Dickson, Robert B; Lin, Chen-Yong

    2002-03-22

    We describe here a novel biological function of sphingosine 1-phosphate (S1P): the activation of a serine protease, matriptase. Matriptase is a type II integral membrane serine protease, expressed on the surface of a variety of epithelial cells; it may play an important role in tissue remodeling. We have previously reported that the activation of matriptase is regulated by serum. We have now identified the bioactive component from serum. First, the activity was observed to co-purify with lipoproteins by conventional liquid chromatography and immunoaffinity chromatography. The ability of lipoproteins to induce the activation of matriptase was further confirmed with commercial preparations of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). Next, we observed that the bioactive component of LDL is associated with the phospholipid components of LDL. Fractionation of lipid components of LDL by thin layer chromatography (TLC) revealed that the bioactive component of LDL comigrates with S1P. Nanomolar concentrations of commercially obtained S1P were then observed to induce the rapid activation of matriptase on the surfaces of nontransformed human mammary epithelial cells. Other structurally related sphingolipids, including dihydro-S1P, ceramide 1-phosphates, and sphingosine phosphocholine as well as lysophosphatidic acid, can also induce the activation of matriptase, but at significantly higher concentrations than S1P. Furthermore, S1P-dependent matriptase activation is dependent on Ca(2+) but not via G(i) protein-coupled receptors. Our results demonstrate that bioactive phospholipids can function as nonprotein activators of a cell surface protease, suggesting a possible mechanistic link between S1P and normal and possibly pathologic tissue remodeling.

  2. An Increase in Healthcare-Associated Clostridium difficile Infection Associated with Use of a Defective Peracetic Acid-Based Surface Disinfectant.

    PubMed

    Cadnum, Jennifer L; Jencson, Annette L; O'Donnell, Marguerite C; Flannery, Elizabeth R; Nerandzic, Michelle M; Donskey, Curtis J

    2017-03-01

    BACKGROUND We investigated an increase in the incidence of healthcare-associated Clostridium difficile infection (CDI) that occurred following a change from a bleach disinfectant to a peracetic acid-based disinfectant. OBJECTIVE To evaluate the efficacy of the peracetic acid-based disinfectant. DESIGN Laboratory-based product evaluation. METHODS The commercial peracetic acid-based product is activated on site by mixing a small volume of concentrated hydrogen peroxide and peracetic acid present in a "SmartCap" reservoir with the remaining contents of the container. We measured concentrations of peracetic acid in newly activated and in-use product and determined the stability of nonactivated and activated product. We tested the efficacy of the product against C. difficile spores using the American Society for Testing and Materials standard quantitative carrier disk test method. RESULTS Measured concentrations of peracetic acid (50-800 parts per million [ppm]) were significantly lower than the level stated on the product label (1,500 ppm), and similar results were obtained for containers from multiple lot numbers and from another hospital. Product with peracetic acid levels below 600 ppm had significantly reduced activity against C. difficile spores. Peracetic acid concentrations were reduced markedly after storage of either activated or nonactivated product for several weeks. The Environmental Protection Agency confirmed the finding of low disinfectant levels and ordered discontinuation of sale of the product. CONCLUSION Use of a defective peracetic acid-based surface disinfectant may have contributed to an increase in healthcare-associated CDI. Our findings highlight the importance of evaluating the efficacy of liquid disinfectants in healthcare settings. Infect Control Hosp Epidemiol 2017;38:300-305.

  3. Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators

    PubMed Central

    2015-01-01

    Many members of the LuxR family of quorum sensing (QS) transcriptional activators, including LasR of Pseudomonas aeruginosa, are believed to require appropriate acyl-homoserine lactone (acyl-HSL) ligands to fold into an active conformation. The failure to purify ligand-free LuxR homologues in nonaggregated form at the high concentrations required for their structural characterization has limited the understanding of the mechanisms by which QS receptors are activated. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can be applied to study proteins at extremely low concentrations in their active state. The high sensitivity of SERS has allowed us to detect molecular interactions between the ligand-binding domain of LasR (LasRLBD) as a soluble apoprotein and modulators of P. aeruginosa QS. We found that QS activators and inhibitors produce differential SERS fingerprints in LasRLBD, and in combination with molecular docking analysis provide insight into the relevant interaction mechanism. This study reveals signal-specific structural changes in LasR upon ligand binding, thereby confirming the applicability of SERS to analyze ligand-induced conformational changes in proteins. PMID:25927541

  4. Role of Oxygen as Surface-Active Element in Linear GTA Welding Process

    NASA Astrophysics Data System (ADS)

    Yadaiah, Nirsanametla; Bag, Swarup

    2013-11-01

    Although the surface-active elements such as oxygen and sulfur have an adverse effect on momentum transport in liquid metals during fusion welding, such elements can be used beneficially up to a certain limit to increase the weld penetration in the gas tungsten arc (GTA) welding process. The fluid flow pattern and consequently the weld penetration and width change due to a change in coefficient of surface tension from a negative value to a positive value. The present work is focused on the analysis of possible effects of surface-active elements to change the weld pool dimensions in linear GTA welding. A 3D finite element-based heat transfer and fluid flow model is developed to study the effect of surface-active elements on stainless steel plates. A velocity in the order of 180 mm/s due to surface tension force is estimated at an optimum concentration of surface-active elements. Further, the differential evolution-based global optimization algorithm is integrated with the numerical model to estimate uncertain model parameters such as arc efficiency, effective arc radius, and effective values of material properties at high temperatures. The effective values of thermal conductivity and viscosity are estimated to be enhanced nine and seven times, respectively, over corresponding room temperature values. An error analysis is also performed to find out the overall reliability of the computed results, and a maximum reliability of 0.94 is achieved.

  5. Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction.

    PubMed

    Cai, Lili; Cho, In Sun; Logar, Manca; Mehta, Apurva; He, Jiajun; Lee, Chi Hwan; Rao, Pratap M; Feng, Yunzhe; Wilcox, Jennifer; Prinz, Fritz B; Zheng, Xiaolin

    2014-06-28

    Doping nanowires (NWs) is of crucial importance for a range of applications due to the unique properties arising from both impurities' incorporation and nanoscale dimensions. However, existing doping methods face the challenge of simultaneous control over the morphology, crystallinity, dopant distribution and concentration at the nanometer scale. Here, we present a controllable and reliable method, which combines versatile solution phase chemistry and rapid flame annealing process (sol-flame), to dope TiO2 NWs with cobalt (Co). The sol-flame doping method not only preserves the morphology and crystallinity of the TiO2 NWs, but also allows fine control over the Co dopant profile by varying the concentration of Co precursor solution. Characterizations of the TiO2:Co NWs show that Co dopants exhibit 2+ oxidation state and substitutionally occupy Ti sites in the TiO2 lattice. The Co dopant concentration significantly affects the oxygen evolution reaction (OER) activity of TiO2:Co NWs, and the TiO2:Co NWs with 12 at% of Co on the surface show the highest OER activity with a 0.76 V reduction of the overpotential with respect to undoped TiO2 NWs. This enhancement of OER activity for TiO2:Co NWs is attributed to both improved surface charge transfer kinetics and increased bulk conductivity.

  6. Study on photoemission surface of varied doping GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Du, Ruijuan; Ding, Huan; Gao, Youtang; Chang, Benkang

    2014-09-01

    For varied doping GaN photocathode, from bulk to surface the doping concentrations are distributed from high to low. The varied doping GaN photocathode may produce directional inside electric field within the material, so the higher quantum efficiency can be obtained. The photoemission surface of varied doping GaN photocathode is very important to the high quantum efficiency, but the forming process of the surface state after Cs activation or Cs/O activation has been not known completely. Encircling the photoemission mechanism of varied GaN photocathode, considering the experiment phenomena during the activation and the successful activation results, the varied GaN photocathode surface model [GaN(Mg):Cs]:O-Cs after activation with cesium and oxygen was given. According to GaN photocathode activation process and the change of electronic affinity, the comparatively ideal NEA property can be achieved by Cs or Cs/O activation, and higher quantum efficiency can be obtained. The results show: The effective NEA characteristic of GaN can be gotten only by Cs. [GaN(Mg):Cs] dipoles form the first dipole layer, the positive end is toward the vacuum side. In the activation processing with Cs/O, the second dipole layer is formed by O-Cs dipoles, A O-Cs dipole includes one oxygen atom and two Cs atoms, and the positive end is also toward the vacuum side thus the escape of electrons can be promoted.

  7. Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber.

    PubMed

    Shrestha, Sohan; Son, Guntae; Lee, Seung Hwan; Lee, Tae Gwan

    2013-08-01

    The Zn (II) adsorption capacity of lignite and coconut shell-based activated carbon fiber (ACF) was evaluated as a function of initial Zn (II) concentration, temperature and contact time in batch adsorption process in this study. Adsorption uptake increased with initial Zn (II) concentration and temperature. Optimal contact time for the adsorption of Zn (II) ions onto lignite and coconut shell-based ACF was found to be 50 min. Removal percentage decreased from 88.0% to 78.54% with the increment in initial Zn (II) concentration from 5 to 50 mg L(-1). Equilibrium data fit well with Langmuir-I isotherm indicating homogeneous monolayer coverage of Zn (II) ions on the adsorbent surface. Maximum monolayer adsorption capacity of Zn (II) ions on ACF was found to be 9.43 mg g(-1). Surface morphology and functionality of ACF prior to and after adsorption were characterized by electron microscopy and infrared spectroscopy. Various thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Platinum group elements in stream sediments of mining zones: The Hex River (Bushveld Igneous Complex, South Africa)

    NASA Astrophysics Data System (ADS)

    Almécija, Clara; Cobelo-García, Antonio; Wepener, Victor; Prego, Ricardo

    2017-05-01

    Assessment of the environmental impact of platinum group elements (PGE) and other trace elements from mining activities is essential to prevent potential environmental risks. This study evaluates the concentrations of PGE in stream sediments of the Hex River, which drains the mining area of the Bushveld Igneous Complex (South Africa), at four sampling points. Major, minor and trace elements (Fe, Ca, Al, Mg, Mn, V, Cr, Zn, Cu, As, Co, Ni, Cd, and Pb) were analyzed by FAAS and ETAAS in suspended particulate matter and different sediment fractions (<63, 63-500 and 500-2000 μm), and Pt, Pd, Rh, and Ir were measured by ICP-MS after removal of interfering elements (cation exchange resin 50W-DOWEX-X8). Procedures were blank-corrected and accuracy checked using reference materials. Nickel, Cr, Pt, Pd, Rh and Ir show concentrations 3-, 13- 18-, 28-, 48- and 44- fold the typical upper continental crust levels, respectively, although lower than concentrations reported for the parent rocks. The highest concentrations were observed closer to the mining area, decreasing with distance and in the <63 μm fraction, probably derived from atmospheric deposition and surface runoff of PGE-rich particles released from mining activities. Thus, mining activities are causing some disturbance of the surface PGE geochemical cycle, increasing the presence of PGE in the fine fraction of river sediments. We propose that indicators such as airborne particulate matter, and soil and river sediment quality, should be added to the protocols for evaluating the sustainability of mining activities.

  9. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays

    PubMed Central

    2013-01-01

    Background Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. Results We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5′-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. Conclusions Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume. PMID:23758982

  10. Enhancement of sediment phosphorus release during a tunnel construction across an urban lake (Lake Donghu, China).

    PubMed

    Wang, Siyang; Li, Hui; Xiao, Jian; Zhou, Yiyong; Song, Chunlei; Bi, Yonghong; Cao, Xiuyun

    2016-09-01

    Tunnel construction in watershed area of urban lakes would accelerate eutrophication by inputting nutrients into them, while mechanisms underlying the internal phosphorus cycling as affected by construction events are scarcely studied. Focusing on two main pathways of phosphorus releasing from sediment (enzymatic mineralization and anaerobic desorption), spatial and temporal variations in phosphorus fractionation, and activities of extracellular enzymes (alkaline phosphatase, β-1,4-glucosidase, leucine aminopeptidase, dehydrogenase, lipase) in sediment were examined, together with relevant parameters in interstitial and surface waters in a Chinese urban lake (Lake Donghu) where a subaqueous tunnel was constructed across it from October 2013 to July 2014. Higher alkaline phosphatase activity (APA) indicated phosphorus deficiency for phytoplankton, as illustrated by a significantly negative relationship between APA and concentration of dissolved total phosphorus (DTP). Noticeably, in the construction area, APAs in both sediment and surface water were significantly lower than those in other relevant basins, suggesting a phosphorus supply from some sources in this area. In parallel, its sediment gave the significantly lower iron-bound phosphorus (Fe(OOH)∼P) content, coupled with significantly higher ratio of iron (II) to total iron content (Fe(2+)/TFe) and dehydrogenase activities (DHA). Contrastingly, difference in the activities of sediment hydrolases was not significant between the construction area and other basins studied. Thus, in the construction area, subsidy of bioavailable phosphorus from sediment to surface water was attributable to the anaerobic desorption of Fe(OOH)∼P rather than enzymatic mineralization. Finally, there existed a significantly positive relationship between chlorophyll a concentration in surface water and Fe(OOH)∼P content in sediment. In short, construction activities within lakes may interrupt cycling patterns of phosphorus across sediment-water interface by enhancing release of redox-sensitive phosphate, and thereby facilitating phytoplankton growth in water column.

  11. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

    NASA Astrophysics Data System (ADS)

    Horgnies, M.; Dubois-Brugger, I.; Krou, N. J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.

    2015-07-01

    The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g-1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g-1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

  13. Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation

    NASA Astrophysics Data System (ADS)

    Shelley, Michael; Masoud, Hassan

    2013-11-01

    Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.

  14. Polyphenol, antioxidant and antimicrobial potential of six different white and red wine grape processing leftovers.

    PubMed

    Trošt, Kajetan; Klančnik, Anja; Mozetič Vodopivec, Branka; Sternad Lemut, Melita; Jug Novšak, Katja; Raspor, Peter; Smole Možina, Sonja

    2016-11-01

    During winemaking, grape polyphenols are only partly extracted, and consequently unexploited. The main aim was to characterize the phenolic content of freeze-dried grape skin and seed (FDSS) extracts obtained from Slovenian and international grape varieties and to evaluate their antioxidant, antimicrobial and anti-adhesive activities. FDSS of six Vitis vinifera L. grapevine cultivars from Vipava Valley region (Slovenia) underwent extraction and sonification under different conditions. Flavonols were the predominant content of extracts from white 'Zelen' and 'Sauvignon Blanc' grape varieties, with strong antimicrobial activities against Gram-negative bacteria. 'Pinot Noir' FDSS extracted with 50% aqueous ethanol extraction produced a high phenolic content in the final extract, which was further associated with strong antioxidant and antimicrobial activities against all tested bacteria. Bacterial adhesion to stainless steel surfaces with minimal and maximal surface roughness was significantly inhibited (up to 60%) across a wide FDSS concentration range, with lower concentrations also effective with two types of stainless steel surfaces. FDSS extracts from winery by-products show interesting phenolic profiles that include flavonols, catechins, anthocyanins and hydroxycinnamic acids, with yields influenced by grapevine cultivar and extraction conditions. The antioxidant, antimicrobial and anti-adhesive activities of 50% aqueous ethanol 'Pinot Noir' FDSS extract reveals potential applications in food, pharmaceutical and cosmetic industries for these bioactive residues. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Nonylphenol and estrogenic activity in aquatic environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanghe, T.; Devriese, G.; Verstraete, W.

    1999-03-01

    The authors surveyed a series of surface waters and sewage treatment plants in Flanders (north of Belgium) for the presence of estrogenic activity and a xeno-estrogenic compound para-nonylphenol (NP), respectively. The surface waters of rural origin, used for drinking water production were free of significant levels of estrogenic activity and NP. Domestic sewage, after proper treatment, appeared to be no major source of this chemical. Yet, in some industrial effluents and surface waters of highly industrialized regions, NP and/or estrogenic activity was prominent, that is, <1 to 122 {micro}g NP/L and 11 to 42 {micro}g NP/L, respectively. This is becausemore » of the ongoing use of NP polyethoxylates in industry. The response of the recombinant yeast estrogen assay to the environmental samples tested was not consistent with the detected concentrations of NP. Standard addition of a natural estrogen, 17{beta}-estradiol, generated no or a reduced response compared to the standard curve concentration. Application of humic acids to standard series of NP and 17{beta}-estradiol resulted in a dose-dependent decrease of the estrogenic response. It appears that this bioassay is subject to considerable interferences due to the complexity of environmental samples. Parallel implementation of extensive chemical screening for xenobiotics and use of the bioassay are needed for adequate assessment of the potential estrogenic hazard to avoid false negative evaluations.« less

  16. Effective diffusion coefficient including the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Kitahata, Hiroyuki; Yoshinaga, Natsuhiko

    2018-04-01

    Surface-active molecules supplied from a particle fixed at the water surface create a spatial gradient of the molecule concentration, resulting in Marangoni convection. Convective flow transports the molecules far from the particle, enhancing diffusion. We analytically derive the effective diffusion coefficient associated with the Marangoni convection rolls. The resulting estimated effective diffusion coefficient is consistent with our numerical results and the apparent diffusion coefficient measured in experiments.

  17. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which is may be magnetically active as mediator. Measurements suggest that this defect contribution is strongest (or concentration higher) near the surface too. This study concerns the wide-gap oxide ZnO when doped with the transition metal Cr, below the percolation threshold, and subject to defects that mediate ferromagnetism independent of polarized free carriers. Ultimately, by adjusting the volumetric concentration of certain defects, ferromagnetic ordering in ZnO:Cr can be controlled. The potential applicability of novel theories of defect-mediated magnetism to this system is discussed.

  18. Drug delivery properties of macroporous polystyrene solid foams.

    PubMed

    Canal, Cristina; Aparicio, Rosa Maria; Vilchez, Alejandro; Esquena, Jordi; García-Celma, Maria José

    2012-01-01

    Polymeric porous foams have been evaluated as possible new pharmaceutical dosage forms. These materials were obtained by polymerization in the continuous phase of highly concentrated emulsions prepared by the phase inversion temperature method. Their porosity, specific surface and surface topography were characterized, and the incorporation and release of active principles was studied using ketoprofen as model lipophilic molecule. Solid foams with very high pore volume, mainly inside macropores, were obtained by this method. The pore morphology of the materials was characterized, and very rough topography was observed, which contributed to their nearly superhydrophobic properties. These solid foams could be used as delivery systems for active principles with pharmaceutical interest, and in the present work ketoprofen was used as a model lipophilic molecule. Drug incorporation and release was studied from solid foam disks, using different concentrations of the loading solutions, achieving a delayed release with short lag-time.

  19. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  20. Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology.

    PubMed

    D'Souza-Ticlo, Donna; Garg, Sandeep; Raghukumar, Chandralata

    2009-11-25

    The effects of various synthetic medium components and their interactions with each other ultimately impact laccase production in fungi. This was studied using a laccase-hyper-producing marine-derived basidiomycete, Cerrena unicolor MTCC 5159. Inducible laccases were produced in the idiophase only after addition of an inducer such as CuSO(4). Concentration of carbon and nitrogen acted antagonistically with respect to laccase production. A combination of low nitrogen and high carbon concentration favored both biomass and laccase production. The most favorable combination resulted in 917 U L(-1) of laccase. After sufficient growth had occurred, addition of a surfactant such as Tween 80 positively impacted biomass and increased the laccase activity to around 1,300 U L(-1). Increasing the surface to volume ratio of the culture vessel further increased its activity to almost 2,000 U L(-1).

  1. SERS-active silver nanoparticle aggregates produced in high-iron float glass by ion exchange process

    NASA Astrophysics Data System (ADS)

    Karvonen, L.; Chen, Y.; Säynätjoki, A.; Taiviola, K.; Tervonen, A.; Honkanen, S.

    2011-11-01

    Silver nanoparticles were produced in iron containing float glasses by silver-sodium ion exchange and post-annealing. In particular, the effect of the concentration and the oxidation state of iron in the host glass on the nanoparticle formation was studied. After the nanoparticle fabrication process, the samples were characterized by optical absorption measurements. The samples were etched to expose nanoparticle aggregates on the surface, which were studied by optical microscopy and scanning electron microscopy. The SERS-activity of these glass samples was demonstrated and compared using a dye molecule Rhodamine 6G (R6G) as an analyte. The importance of the iron oxidation level for reduction process is discussed. The glass with high concentration of Fe 2+ ions was found to be superior in SERS applications of silver nanoparticles. The optimal surface features in terms of SERS enhancement are also discussed.

  2. Electrocatalytic activity of LaNiO3 toward H2O2 reduction reaction: Minimization of oxygen evolution

    NASA Astrophysics Data System (ADS)

    Amirfakhri, Seyed Javad; Meunier, Jean-Luc; Berk, Dimitrios

    2014-12-01

    The catalytic activity of LaNiO3 toward H2O2 reduction reaction (HPRR), with a potential application in the cathode side of fuel cells, is studied in alkaline, neutral and acidic solutions by rotating disk electrode. The LaNiO3 particles synthesised by citrate-based sol-gel method have sizes between 30 and 70 nm with an active specific surface area of 1.26 ± 0.05 m2 g-1. LaNiO3 shows high catalytic activity toward HPRR in 0.1 M KOH solution with an exchange current density based on the active surface area (j0A) of (7.4 ± 1) × 10-6 A cm-2 which is noticeably higher than the j0A of N-doped graphene. The analysis of kinetic parameters suggests that the direct reduction of H2O2, H2O2 decomposition, O2 reduction and O2 desorption occur through HPRR on this catalyst. In order to control and minimize oxygen evolution from the electrode surface, the effects of catalyst loading, bulk concentration of H2O2, and using a mixture of LaNiO3 and N-doped graphene are studied. Although the mechanism of HPRR is independent of the aforementioned operating conditions, gas evolution decreases by increasing the catalyst loading, decreasing the bulk concentration of H2O2, and addition of N-doped graphene to LaNiO3.

  3. Anomalous levels of 90Sr and 239,240Pu in Florida corals: Evidence of coastal processes

    NASA Astrophysics Data System (ADS)

    Purdy, Caroline B.; Druffel, Ellen R. M.; Livingston, Hugh D.

    1989-06-01

    Strontium-90, a radionuclide whose primary source is fallout from nuclear weapons testing, serves as a tritium-like tracer of ocean circulation. The historical record of 90Sr activities in the annual bands of island corals have been shown by other investigators to reflect the 90Sr concentration in surface waters at those site. Strontium-90 activities measured in annual bands in Montastrea annularis from the Florida Keys are 30-120% higher than those in corresponding peak activity years (1960-1965) of a Bermuda coral ( Diploria). The Bermuda 90Sr activity record reflects the fallout source only, whereas the additional 90Sr activity in the Florida Keys is expected to reflect a coastal runoff source as well as the fallout. The coastal circulation patterns off the northern and western edge of the Florida Current further act to concentrate and prolong the exposure of the runoff 90Sr to the corals. Six measured 239,240Pu activities in the Florida coral are 30% of 239,240Pu activities in island coral records previously reported. Since Pu is expected to be scavenged by particles in coastal waters, this decrease in 239,240Pu substantiates the importance of coastal influences in the Florida 90Sr record. Strontium-90 activities measured in subannual coral bands from 1973 to 1974 reflect seasonal changes in the 90Sr concentrations in the surface layer of the coastal waters. This may reflect Loop Current intrusion events. The seasonal and long-term coral 90Sr data presented in this paper suggests that coastal 90Sr coral time series may be very useful for documenting coastal circulation patterns.

  4. Endocytosis and Vacuolar Degradation of the Yeast Cell Surface Glucose Sensors Rgt2 and Snf3*

    PubMed Central

    Roy, Adhiraj; Kim, Jeong-Ho

    2014-01-01

    Sensing and signaling the presence of extracellular glucose is crucial for the yeast Saccharomyces cerevisiae because of its fermentative metabolism, characterized by high glucose flux through glycolysis. The yeast senses glucose through the cell surface glucose sensors Rgt2 and Snf3, which serve as glucose receptors that generate the signal for induction of genes involved in glucose uptake and metabolism. Rgt2 and Snf3 detect high and low glucose concentrations, respectively, perhaps because of their different affinities for glucose. Here, we provide evidence that cell surface levels of glucose sensors are regulated by ubiquitination and degradation. The glucose sensors are removed from the plasma membrane through endocytosis and targeted to the vacuole for degradation upon glucose depletion. The turnover of the glucose sensors is inhibited in endocytosis defective mutants, and the sensor proteins with a mutation at their putative ubiquitin-acceptor lysine residues are resistant to degradation. Of note, the low affinity glucose sensor Rgt2 remains stable only in high glucose grown cells, and the high affinity glucose sensor Snf3 is stable only in cells grown in low glucose. In addition, constitutively active, signaling forms of glucose sensors do not undergo endocytosis, whereas signaling defective sensors are constitutively targeted for degradation, suggesting that the stability of the glucose sensors may be associated with their ability to sense glucose. Therefore, our findings demonstrate that the amount of glucose available dictates the cell surface levels of the glucose sensors and that the regulation of glucose sensors by glucose concentration may enable yeast cells to maintain glucose sensing activity at the cell surface over a wide range of glucose concentrations. PMID:24451370

  5. Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation.

    PubMed

    Oliveira, Weslley F; Silva, Germana M M; Cabral Filho, Paulo E; Fontes, Adriana; Oliveira, Maria D L; Andrade, César A S; Silva, Márcia V; Coelho, Luana C B B; Machado, Giovanna; Correia, Maria T S

    2018-09-01

    An alternative to accelerate the osseointegration on titanium dioxide nanotubes (TNTs) used in osseointegrated implants is through the functionalization of these nanostructured surfaces with biomolecules. In this work, we immobilized a lectin with recognized mitogenic activity, the Cramoll lectin, extracted from Cratylia mollis seeds, on surfaces modified by TNTs. For the immobilization of Cramoll on TNTs surfaces, we used the Layer-by-Layer technique (LbL) by growing five alternate layers of poly(allylamine) hydrochloride (PAH) and poly(acrylic) acid (PAA); lastly we incubated the lectin, at different concentrations, with the TNTs-LbL. Before and after the immobilization procedures, the substrate surfaces were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and, electrochemical impedance spectroscopy (EIS). We also evaluated the Cramoll activity after immobilization on TNTs by using the lectin interaction with ovalbumin. The lectin did not lose its biological activity, even after immobilization onto nanotubular arrays. In addition, we observed an increase osteoblast-like cell adhesion on the TNTs-LbL-Cramoll system when compared to the bare TNTs surfaces. Moreover, a significative cell proliferation was identified on the substrates when Cramoll was immobilized at concentrations of 80, 160 and 320 μg/mL after 48 h of incubation by using the resazurin assay. Our results suggest that Cramoll was efficiently immobilized on a nanotubular array and this new platform presents a great potential to be tested in implantology. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Biochemical effects of chlorpyrifos on two developmental stages of Xenopus laevis.

    PubMed

    Richards, Sean M; Kendall, Ron J

    2002-09-01

    Abstract-The effects of a 96-h static exposure to chlorpyrifos were examined in two developmental stages of larval Xenopus laevis (premetamorph and metamorph). Measures of effect included mortality, deformity, cholinesterase (ChE) activity, and DNA and protein concentration. All parameters indicated that metamorphs were more sensitive than were premetamorphs. For larvae exposed as premetamorphs, the median lethal concentration and median effective concentration were 14.6 mg/L and 1.71 mg/L; for those exposed as metamorphs, values were 0.56 mg/L and 0.24 mg/L, respectively. Cholinesterase activity was the most sensitive biochemical parameter. Exposure to chlorpyrifos at 0.01 mg/L caused significant decreases in the ChE activity of metamorphs; 0.1 mg/L significantly decreased premetamorph ChE activity. Metamorph DNA was significantly decreased at 0.1 mg/L; premetamorph DNA was not reduced until exposure to 1.0 mg/L. Whole-body protein was the least sensitive biochemical measure of effect. Premetamorphs did not experience a reduction in protein concentrations. Metamorph protein concentration was significantly decreased at 1.0 mg/L. Based on current surface water data, the most sensitive effect would not have a high probability (< or = 4.2%) of occurring in the environment.

  7. Factors Influencing NO2 Adsorption/Reduction on Microporous Activated Carbon: Porosity vs. Surface Chemistry

    PubMed Central

    Ghouma, Imen; Limousy, Lionel; Bennici, Simona

    2018-01-01

    The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2. PMID:29670008

  8. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.

    PubMed

    Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P

    2008-04-15

    As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.

  9. Compositional evidence regarding the origins of rims on Semarkona chondrules

    USGS Publications Warehouse

    Grossman, J.N.; Wasson, J.T.

    1987-01-01

    The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten. ?? 1987.

  10. Influence of dietary forage and feed intake on carbohydrase activities and small intestinal morphology of calves.

    PubMed

    Kreikemeier, K K; Harmon, D L; Peters, J P; Gross, K L; Armendariz, C K; Krehbiel, C R

    1990-09-01

    Twenty (12 Holstein, 8 Longhorn cross) calves (198 kg and 7 mo old) were used in a randomized complete block design to evaluate the effects of dietary forage concentration and feed intake on carbohydrase activities and small intestinal (SI) morphology. Calves were individually fed 90% forage (alfalfa) or a 90% concentrate (50% sorghum: 50% wheat) diet at either one or two times NEm for 140 d and slaughtered; tissues and small intestinal digesta were collected. Increased feed intake increased (P less than .05) pancreatic weight, alpha-amylase and glucoamylase activities in the pancreas, SI length and SI digesta weight. Forage-fed calves gained faster (P less than .01) and had greater (P less than .05) pancreatic protein concentrations, alpha-amylase and glucoamylase activities in the pancreas and greater SI digesta alpha-amylase activities than grain-fed calves did. Increased feed intake increased (P less than .01) mucosal weight/cm small intestine only in forage-fed calves and increased (P less than .05) SI surface/volume only in grain-fed calves. Mucosal weight was greatest (P less than .05) at the terminal ileum, surface/volume was greatest (P less than .05) in the duodenum, and mucosal protein concentration was highest (P less than .05) in the SI mid-section. Mucosal lactase was higher (P less than .05) in proximal segments, whereas mucosal isomaltase was higher in middle and distal segments of the small intestine. For mucosal maltase activity, there was a feed intake x SI sampling site interaction (P less than .05) and for trehalase, a diet x feed intake x SI sampling site interaction (P less than .05). The SI distribution patterns of maltase and isomaltase were similar, as were those of trehalase and lactase. The alpha-amylase activity in the pancreas and SI morphology were influenced greatly by diet composition and feed intake by calves.

  11. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    PubMed

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  12. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler.

    PubMed

    Miki, Saeki; Kitagawa, Haruaki; Kitagawa, Ranna; Kiba, Wakako; Hayashi, Mikako; Imazato, Satoshi

    2016-09-01

    A surface pre-reacted glass-ionomer (S-PRG) filler is a technology of interest for providing bio-functions to restorative materials. Resin composites containing S-PRG filler have been reported to show less plaque accumulation and reduced bacterial attachment. In this study, experimental resin composites containing S-PRG filler at various concentrations were fabricated, and the inhibitory effects on bacterial growth on their surface and the association of ions released from S-PRG filler with antibacterial activity were evaluated. Five kinds of experimental resin composites containing S-PRG filler at 0, 13.9, 27.3, 41.8, or 55.9 (vol.%) were fabricated. Streptococcus mutans was cultured on the cured discs for 18h to examine the growth of bacteria in contact with the surface of the experimental resins. The concentrations of Al(3+), BO3(3-), F(-), Na(+), SiO3(2-), or Sr(2+) released from each experimental resin into water were measured. The standardized solutions of each ion were prepared at the concentrations determined to be released from the experimental resin, and their inhibitory effects of single ion species on S. mutans growth were evaluated by using each standardized solution. Resin composites containing S-PRG filler at 13.9 (vol.%) or greater inhibited S. mutans growth on their surface. When S. mutans was incubated in the presence of six kinds of ions at the concentrations released from the resin composite containing S-PRG filler at 55.9 (vol.%), a significant reduction in bacterial number was observed for BO3(3-), F(-), Al(3+), and SiO3(2-). Among these four ions, BO3(3-) and F(-) demonstrated the strongest inhibitory effect on S. mutans growth. Our findings suggest that resin composites containing S-PRG filler inhibit the growth of S. mutans on their surface. BO3(3-), F(-), Al(3+) and SiO3(2-) released from S-PRG filler have the ability to inhibit S. mutans growth, and the inhibitory effects are mainly attributed to release of BO3(3-) and F(-). Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. The relation of seismic activity and radon concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulali, Feride, E-mail: feridekulali@gmail.com, E-mail: iskender@fef.sdu.edu.tr; Akkurt, İskender, E-mail: feridekulali@gmail.com, E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios, E-mail: svog@env.aegean.gr

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  14. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules.

    PubMed

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-26

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans -1,2-bis(4-pyridyl)ethylene (BPE).

  15. Surface grafting of Corchorus olitorius fibre: a green approach for the development of activated bioadsorbent.

    PubMed

    Roy, Aparna; Chakraborty, Sumit; Kundu, Sarada Prasad; Majumder, Subhasish Basu; Adhikari, Basudam

    2013-02-15

    The present work is an endeavor to prepare lignocellulosic biomass based adsorbent, suitable for removal of organic and inorganic pollutants from industrial effluents. Lignocellulosic Corchorus olitorius fibre (jute fibre) surface was grafted with naturally available polyphenol, tannin, preceded by the epoxy-activation of fibre surface with epichlorohydrin under mild condition in an aqueous suspension. The reaction parameters for the modification, viz., concentration of epichlorohydrin and tannin, time, and temperature were optimized. The successful occurrence of surface modification of jute fibre (JF) was characterized and estimated from weight gain percent, elemental analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, scanning electron and atomic force microscopy, and thermogravimetric analysis. An extensive analysis of deconvoluted FTIR spectra using the Voigt model was utilized to ensure the surface grafting. The microbiological susceptibility study revealed high persistency of JF towards biodegradation after efficient grafting with tannin. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Assessment of soil contamination by (210)Po and (210)Pb around heavy oil and natural gas fired power plants.

    PubMed

    Al-Masri, M S; Haddad, Kh; Doubal, A W; Awad, I; Al-Khatib, Y

    2014-06-01

    Soil contamination by (210)Pb and (210)Po around heavy oil and natural gas power plants has been investigated; fly and bottom ash containing enhanced levels of (210)Pb and (210)Po were found to be the main source of surface soil contamination. The results showed that (210)Pb and (210)Po in fly-ash (economizer, superheater) is highly enriched with (210)Pb and (210)Po, while bottom-ash (boiler) is depleted. The highest (210)Pb and (210)Po activity concentrations were found to be in economizer ash, whereas the lowest activity concentration was in the recirculator ash. On the other hand, (210)Pb and (210)Po activity concentrations in soil samples were found to be higher inside the plant site area than those samples collected from surrounding areas. The highest levels were found in the vicinity of Mhardeh and Tishreen power plants; both plants are operated by heavy oil and natural fuels, while the lowest values were found to be in those samples collected from Nasrieh power plant, which is only operated by one type of fuel, viz. natural gas. In addition, the levels of surface soil contamination have decreased as the distance from the power plant site center increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Atmospheric radionuclides from the Fukushima Dai-ichi nuclear reactor accident observed in Vietnam.

    PubMed

    Long, N Q; Truong, Y; Hien, P D; Binh, N T; Sieu, L N; Giap, T V; Phan, N T

    2012-09-01

    Radionuclides from the reactor accident at the Fukushima Dai-ichi Nuclear Power Plant were observed in the surface air at stations in Hanoi, Dalat, and Ho Chi Minh City (HCMC) in Vietnam, about 4500 km southwest of Japan, during the period from March 27 to April 22, 2011. The maximum activity concentrations in the air measured at those three sites were 193, 33, and 37 μBq m(-3) for (131)I, (13)(4)Cs, and (13)(7)Cs, respectively. Peaks of radionuclide concentrations in the air corresponded to arrival of the air mass from Fukushima to Vietnam after traveling for 8 d over the Pacific Ocean. Cesium-134 was detected with the (134)Cs/(137)Cs activity ratio of about 0.85 in line with observations made elsewhere. The (131)I/(137)Cs activity ratio was observed to decrease exponentially with time as expected from radioactive decay. The ratio at Dalat, where is 1500 m high, was higher than those at Hanoi and HCMC in low lands, indicating the relative enrichment of the iodine in comparison to cesium at high altitudes. The time-integrated surface air concentrations of the Fukushima-derived radionuclides in the Southeast Asia showed exponential decrease with distance from Fukushima. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Sea spray aerosol as a unique source of ice nucleating particles

    DOE PAGES

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; ...

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. In addition, data in the present study are also in accord with previously published INPmore » measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0°C, averaging an order of magnitude increase per 5°C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. Lastly, these findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.« less

  19. Sea spray aerosol as a unique source of ice nucleating particles.

    PubMed

    DeMott, Paul J; Hill, Thomas C J; McCluskey, Christina S; Prather, Kimberly A; Collins, Douglas B; Sullivan, Ryan C; Ruppel, Matthew J; Mason, Ryan H; Irish, Victoria E; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R; McMeeking, Gavin R; Dhaniyala, Suresh; Lewis, Ernie R; Wentzell, Jeremy J B; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M; Ault, Andrew P; Axson, Jessica L; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M Dale; Deane, Grant B; Mayol-Bracero, Olga L; Grassian, Vicki H; Bertram, Timothy H; Bertram, Allan K; Moffett, Bruce F; Franc, Gary D

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

  20. Sea spray aerosol as a unique source of ice nucleating particles

    PubMed Central

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.

    2016-01-01

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean. PMID:26699469

  1. Chalcopyrite dissolution: Scanning photoelectron microscopy examination of the evolution of sulfur species with and without added iron or pyrite

    NASA Astrophysics Data System (ADS)

    Li, Yubiao; Qian, Gujie; Brown, Paul L.; Gerson, Andrea R.

    2017-09-01

    Dissolution and oxidation of sulfide minerals play key roles in both acid and metalliferous rock drainage and supergene enrichment. Surface speciation heterogeneity, critical to understanding mechanisms of mineral sulfide dissolution, has to date largely not been considered. To this end synchrotron scanning photoelectron microscopy (SPEM) was employed to examine freshly fractured and partially dissolved chalcopyrite (CuFeS2) surfaces (pH 1.0 HClO4 solution, redox potential 650 mV relative to a standard hydrogen electrode, 75 °C). S2- (bulk), S22- and Sn2- were found to be present on all samples at varying concentrations. Oxidation was observed to take place heterogeneously at the sub-micron scale. As compared to chalcopyrite partially dissolved for 5 days, extended dissolution to 10 days did not show appreciably enhanced oxidation of surface species; however surface roughness increased markedly due to the growth/overlap of oxidised sulfur species. On addition of 4 mM iron both S0 and SO42- were observed but not SO32-, indicating that the greater Fe3+ activity/concentration promotes heterogeneous sulfur oxidation. On contact of pyrite (FeS2) with chalcopyrite, significantly greater chalcopyrite surface oxidation was observed than for the other systems examined, with S0, SO32- and SO42- being identified heterogeneously across the surface. It is proposed that chalcopyrite oxidative dissolution is enhanced by increasing its cathodic area, e.g. contacting with pyrite, while increased Fe3+ activity/concentration also contributes to increased dissolution rates. The high degree of surface heterogeneity of these surface products indicates that these surfaces are not passivated by their formation. These results suggest that chalcopyrite dissolution will be accelerated when in contact with pyrite at solution redox potential intermediate between the rest potentials of chalcopyrite and pyrite (560 mV and 660 mV, respectively) and/or iron rich acidic waters with resulting enhanced formation of secondary sulfur containing species and release of copper and iron. This in turn suggests accelerated supergene formation and enhanced metalliferous drainage under these conditions.

  2. Generation of Ca2+-independent sortase A mutants with enhanced activity for protein and cell surface labeling

    PubMed Central

    Jeong, Hee-Jin; Abhiraman, Gita C.; Story, Craig M.

    2017-01-01

    Sortase A, a calcium-dependent transpeptidase derived from Staphylococcus aureus, is used in a broad range of applications, such as the conjugation of fluorescent dyes and other moieties to proteins or to the surface of eukaryotic cells. In vivo and cell-based applications of sortase have been somewhat limited by the large range of calcium concentrations, as well as by the often transient nature of protein-protein interactions in living systems. In order to use sortase A for cell labeling applications, we generated a new sortase A variant by combining multiple mutations to yield an enzyme that was both calcium-independent and highly active. This variant has enhanced activity for both N- and C-terminal labeling, as well as for cell surface modification under physiological conditions. PMID:29200433

  3. Chemical State of Surface Oxygen on Carbon and Its Effects on the Capacity of the Carbon Anode in a Lithium-Ion Battery Investigated

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2001-01-01

    In a lithium-ion battery, the lithium-storage capacity of the carbon anode is greatly affected by a surface layer formed during the first half cycle of lithium insertion and release into and out of the carbon anode. The formation of this solid-electrolyte interface, in turn, is affected by the chemistry of the carbon surface. A study at the NASA Glenn Research Center examined the cause-and-effect relations. Information obtained from this research could contribute in designing a high-capacity lithium-ion battery and, therefore, small, powerful spacecraft. In one test, three types of surfaces were examined: (1) a surface with low oxygen content (1.5 at.%) and a high concentration of active sites, (2) a surface with 4.5 at.% -OH or -OC type oxygen, and (3) a surface with 6.5 at.% O=C type oxygen. The samples were made from the same precursor and had similar bulk properties. They were tested under a constant current of 10 mA/g in half cells that used lithium metal as the counter electrode and 0.5 M lithium iodide in 50/50 (vol%) ethylene carbonate and dimethyl carbonate as the electrolyte. For the first cycle of the electrochemical test, the graph describes the voltage of the carbon anode versus the lithium metal as a function of the capacity (amount of lithium insertion or release). From these data, it can be observed that the surface with low oxygen and a high concentration of active sites could result in a high irreversible capacity. Such a high irreversible capacity could be prevented if the active sites were allowed to react with oxygen in air, producing -OH or -OC type oxygen. The O=C type oxygen, on the other hand, could greatly reduce the capacity of lithium intercalation and, therefore, needs to be avoided during battery fabrication.

  4. Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices

    NASA Astrophysics Data System (ADS)

    Brown, A. E.; Baril, N.; Zuo, D.; Almeida, L. A.; Arias, J.; Bandara, S.

    2017-09-01

    The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped ( n-type) and various concentrations of Be-doped ( p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm-3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10-4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.

  5. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces

    PubMed Central

    Couston, Ruairidh G.; Skoda, Maximilian W.; Uddin, Shahid; van der Walle, Christopher F.

    2013-01-01

    One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested (“mAb-1”) showed highest surface loading to silica at pH 7.4 (~12 mg/m2), with lower surface loading at pH 5.5 (~5.5 mg/m2, further from its pI of 8.99) and to hydrophobized silica (~2 mg/m2). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50–5000 mg/L, pH 5.5, and 50–2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO2 surface at near saturation with an end-on” orientation, while the outer mAb-1 layer was sparse and molecules had a “side-on” orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO2 surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding. PMID:23196810

  6. Integrated assessment of runoff from livestock farming operations: analytical chemistry, in vitro bioassays, and in vivo fish exposures

    USGS Publications Warehouse

    Cavallin, Jenna E.; Durhan, Elizabeth J.; Evans, Nicola; Jensen, Kathleen M.; Kahl, Michael D.; Kolpin, Dana W.; Kolodziej, Edward P.; Foreman, William T.; LaLone, Carlie A.; Makynen, Elizabeth A.; Seidl, Sara M.; Thomas, Linnea M.; Villeneuve, Daniel L.; Weberg, Matthew A.; Wilson, Vickie S.; Ankley, Gerald T.

    2014-01-01

    Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture. 

  7. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke R.; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  9. Kinetic study of Chromium VI adsorption onto palm kernel shell activated carbon

    NASA Astrophysics Data System (ADS)

    Mohammad, Masita; Sadeghi Louyeh, Shiva; Yaakob, Zahira

    2018-04-01

    Heavy metal contamination of industrial effluent is one of the significant environmental problems due to their toxicity and its accumulation throughout the food chain. Adsorption is one of the promising methods for removal of heavy metals from aqua solution because of its simple technique, efficient, reliable and low-cost due to the utilization of residue from the agricultural industry. In this study, activated carbon from palm kernel shells has been produced through chemical activation process using zinc chloride as an activating agent and carbonized at 800 °C. Palm kernel shell activated carbon, PAC was assessed for its efficiency to remove Chromium (VI) ions from aqueous solutions through a batch adsorption process. The kinetic mechanisms have been analysed using Lagergren first-order kinetics model, second-order kinetics model and intra-particle diffusion model. The characterizations such as BET surface area, surface morphology, SEM-EDX have been done. The result shows that the activation process by ZnCl2 was successfully improved the porosity and modified the functional group of palm kernel shell. The result shows that the maximum adsorption capacity of Cr is 11.40mg/g at 30ppm initial metal ion concentration and 0.1g/50mL of adsorbent concentration. The adsorption process followed the pseudo second orders kinetic model.

  10. Adsorption and Pore of Physical-Chemical Activated Coconut Shell Charcoal Carbon

    NASA Astrophysics Data System (ADS)

    Budi, E.; Umiatin, U.; Nasbey, H.; Bintoro, R. A.; Wulandari, Fi; Erlina, E.

    2018-04-01

    The adsorption of activated carbon of coconut shell charcoal on heavy metals (Cu and Fe) of the wastewater and its relation with the carbon pore structure was investigated. The coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours to produce charcoal and then shieved into milimeter sized granule particles. Chemical activation was done by immersing the charcoal into chemical solution of KOH, NaOH, HCl and H3PO4, with various concentration. The activation was followed by physical activation using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology of activated carbon were characterized by using Scanning Electron Microscopy (SEM). Wastewater was made by dissolving CuSO4.5H2O and FeSO4.7H2O into aquades. The metal adsorption was analized by using Atomic Absorption Spectroscopy (AAS). The result shows that in general, the increase of chemical concentration cause the increase of pore number of activated carbon due to an excessive chemical attack and lead the increase of adsorption. However it tend to decrease as further increasing in chemical activator concentration due to carbon collapsing. In general, the adsorption of Cu and Fe metal from wastewater by activated carbon increased as the activator concentration was increased.

  11. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the polymer surface.

  12. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation

    NASA Astrophysics Data System (ADS)

    Liu, Yuxi; Dai, Hongxing; Deng, Jiguang; Zhang, Lei; Au, Chak Tong

    2012-03-01

    Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m2 g-1) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO3 as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO4 samples was evaluated for the degradation of phenol in the presence of a small amount of H2O2 under visible light illumination. The effects of the initial phenol concentration and the H2O2 amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a ``(Bi + V) : chelating agent'' molar ratio of 2 : 1 being the most appropriate. Among the as-prepared BiVO4 samples, the one with a surface area of ca. 24 m2 g-1 showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L-1 and in the presence of 0.6 mL H2O2). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H2O2 was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO4 is due to the high quality 3D-OM structured BiVO4 that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination.Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m2 g-1) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO3 as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO4 samples was evaluated for the degradation of phenol in the presence of a small amount of H2O2 under visible light illumination. The effects of the initial phenol concentration and the H2O2 amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a ``(Bi + V) : chelating agent'' molar ratio of 2 : 1 being the most appropriate. Among the as-prepared BiVO4 samples, the one with a surface area of ca. 24 m2 g-1 showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L-1 and in the presence of 0.6 mL H2O2). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H2O2 was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO4 is due to the high quality 3D-OM structured BiVO4 that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr12046a

  13. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P<0.01), the quadratic effects of temperature were significant ( P<0.05), the linear effects of copper ion concentration were not significant ( P>0.05), and the quadratic effects of copper ion concentration were significant ( P<0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant ( P>0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  14. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    PubMed

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution, which would minimize the impact of solubility-controlled fractionation processes. Furthermore, the high bulk dissolution rates promoted greater groundwater (226)Ra/(234)U ratios because the Ra has a comparatively much greater mobility than U in saline conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Computer simulation comparison of tripolar, bipolar, and spline Laplacian electrocadiogram estimators.

    PubMed

    Chen, T; Besio, W; Dai, W

    2009-01-01

    A comparison of the performance of the tripolar and bipolar concentric as well as spline Laplacian electrocardiograms (LECGs) and body surface Laplacian mappings (BSLMs) for localizing and imaging the cardiac electrical activation has been investigated based on computer simulation. In the simulation a simplified eccentric heart-torso sphere-cylinder homogeneous volume conductor model were developed. Multiple dipoles with different orientations were used to simulate the underlying cardiac electrical activities. Results show that the tripolar concentric ring electrodes produce the most accurate LECG and BSLM estimation among the three estimators with the best performance in spatial resolution.

  16. Triggered pore-forming agents

    DOEpatents

    Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.

    1998-07-07

    An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.

  17. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    PubMed

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Contents of the NASA ocean data system archive, version 11-90

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1990-01-01

    The National Aeronautics and Space Administration (NASA) Ocean Data System (NODS) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and surface pigment concentration. NODS will become the Data Archive and Distribution Service of the JPL Distributed Active Archive Center for the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  19. Optimization of functionalization conditions for protein analysis by AFM

    NASA Astrophysics Data System (ADS)

    Arroyo-Hernández, María; Daza, Rafael; Pérez-Rigueiro, Jose; Elices, Manuel; Nieto-Márquez, Jorge; Guinea, Gustavo V.

    2014-10-01

    Activated vapor silanization (AVS) is used to functionalize silicon surfaces through deposition of amine-containing thin films. AVS combines vapor silanization and chemical vapor deposition techniques and allows the properties of the functionalized layers (thickness, amine concentration and topography) to be controlled by tuning the deposition conditions. An accurate characterization is performed to correlate the deposition conditions and functional-film properties. In particular, it is shown that smooth surfaces with a sufficient surface density of amine groups may be obtained with this technique. These surfaces are suitable for the study of proteins with atomic force microscopy.

  20. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design.

    PubMed

    Tavares, A P M; Coelho, M A Z; Agapito, M S M; Coutinho, J A P; Xavier, A M R B

    2006-09-01

    Experimental design and response surface methodologies were applied to optimize laccase production by Trametes versicolor in a bioreactor. The effects of three factors, initial glucose concentration (0 and 9 g/L), agitation (100 and 180 rpm), and pH (3.0 and 5.0), were evaluated to identify the significant effects and its interactions in the laccase production. The pH of the medium was found to be the most important factor, followed by initial glucose concentration and the interaction of both factors. Agitation did not seem to play an important role in laccase production, nor did the interaction agitation x medium pH and agitation x initial glucose concentration. Response surface analysis showed that an initial glucose concentration of 11 g/L and pH controlled at 5.2 were the optimal conditions for laccase production by T. versicolor. Under these conditions, the predicted value for laccase activity was >10,000 U/L, which is in good agreement with the laccase activity obtained experimentally (11,403 U/L). In addition, a mathematical model for the bioprocess was developed. It is shown that it provides a good description of the experimental profile observed, and that it is capable of predicting biomass growth based on secondary process variables.

  1. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    PubMed

    Schaffhauser, Daniel Felix; Patti, Monica; Goda, Tatsuro; Miyahara, Yuji; Forster, Ian Cameron; Dittrich, Petra Stephanie

    2012-01-01

    An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  2. Active colloidal propulsion over a crystalline surface

    NASA Astrophysics Data System (ADS)

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  3. ERTS imagery applied to Alaskan coastal problems. [surface water circulation

    NASA Technical Reports Server (NTRS)

    Wright, F. F.; Sharma, G. D.; Burbank, D. C.; Burns, J. J.

    1974-01-01

    Along the Alaska coast, surface water circulation is relatively easy to study with ERTS imagery. Highly turbid river water, sea ice, and fluvial ice have proven to be excellent tracers of the surface waters. Sea truth studies in the Gulf of Alaska, Cook Inlet, Bristol Bay, and the Bering Strait area have established the reliability of these tracers. ERTS imagery in the MSS 4 and 5 bands is particularly useful for observing lower concentrations of suspended sediment, while MSS 6 data is best for the most concentrated plumes. Ice features are most clearly seen on MSS 7 imagery; fracture patterns and the movement of specific floes can be used to map circulation in the winter when runoff is restricted, if appropriate allowance is made for wind influence. Current patterns interpreted from satellite data are only two-dimensional, but since most biological activity and pollution are concentrated near the surface, the information developed can be of direct utility. Details of Alaska inshore circulation of importance to coastal engineering, navigation, pollution studies, and fisheries development have been clarified with satellite data. ERTS has made possible the analysis of circulation in many parts of the Alaskan coast.

  4. The secret lives of corals: Climate records from coral chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, J.W.; Smoker, M.; Burr, G.

    1995-12-01

    Corals can provide archives of a diverse suite of information about the ocean surface mixed layer, including records of ocean surface temperature (via coral Sr/Ca or U/Ca measurements), salinity (via {gamma}{sup 18}O measurements), biologic activity (via {gamma}{sup 13}C measurements), and ocean/atmosphere CO{sub 2} exchange rates (via {sup 14}C/{sup 12}C measurements). Recently, it has been shown that corals record evidence of large seasonal oscillations in {sup 14}C concentration of the ocean surface mixed layer, and that such oscillations are modulated by ENSO. These oscillations are related to seasonal changes in the surface wind velocity field, changes in the patterns of regionalmore » upwelling, as well as seasonal changes in the strength of the thermocline. High frequency AMS {sup 14}C analyses of corals shows that ENSO events can dramatically diminish the annual range in ocean mixed layer {sup 14}C concentration in this region. Our work on a coral from Vanuatu in the western equatorial Pacific also documents large seasonal changes in {sup 14}C concentration (3-5%) as well as ENSO modulation of these variations during the 82-83 ENSO event.« less

  5. Numerical Study of Nonlinear Structures of Locally Excited Marangoni Convection in the Long-Wave Approximation

    NASA Astrophysics Data System (ADS)

    Wertgeim, Igor I.

    2018-02-01

    We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

  6. The boron implantation in the varied zone MBE MCT epilayer

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, Alexander V.; Grigor'ev, Denis V.; Kokhanenko, Andrey P.; Korotaev, Alexander G.; Sidorov, Yuriy G.; Varavin, Vasiliy S.; Dvoretsky, Sergey A.; Mikhailov, Nicolay N.; Talipov, Niyaz Kh.

    2005-09-01

    In the paper experimental results on boron implantation of the CdxHg1-xTe epilayers with various composition near surface of the material are discussed. The electron concentration in the surface layer after irradiation vs irradiation dose and ion energy are investigated for range of doses 1011 - 3•1015 cm-2 and energies of 20 - 150 keV. Also the results of the electrical active defects distribution measurement, carried out by differential Hall method, after boron implantation are represented. Consideration of the received data shows, that composition gradient influence mainly on the various dynamics of accumulation of electric active radiation defects. The electric active defects distribution analysis shows, that the other factors are negligible.

  7. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  8. HTO and OBT concentrations in a wetland ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S. B.; Workman, W. J. G.; Davis, P. A.

    2008-07-15

    Tritiated water (HTO) and organically bound tritium (OBT) concentrations in the non-human biota inhabiting Duke Swamp were measured during the 2005 growing season. Samples of surface water, soil, plants, precipitation, wild animals and air moisture were collected from 2005 May to October at five locations in the swamp and analyzed for their tritium content. HTO concentrations in air moisture decreased with height since the tritium source is in the ground. Soil HTO concentrations were not closely related to the concentrations in nearby surface water and the HTO concentration in balsam fir needles showed no clear pattern with height. HTO concentrationsmore » in moss, grass and alder leaves decreased in September, which is the time when metabolic activity is reduced. OBT concentrations in a given compartment showed less variation than the HTO concentrations in that compartment. The OBT/HTO ratio was approximately one for soil and less than one for plants, with the exception of lichen. The OBT/HTO ratio in most wild animals was also less than one, but increased to more than 2.0 for mice. Although the tritium concentrations varied substantially in space and time in Duke Swamp, the fact that OBT/HTO <1 for most compartments suggests that equilibrium conditions hold locally. (authors)« less

  9. Effective decolorization and adsorption of contaminant from industrial dye effluents using spherical surfaced magnetic (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Khan, Samreen Heena; Pathak, Bhawana; Fulekar, M. H.

    2016-04-01

    Treatment of highly concentrated Industrial dye stuff effluents released in the environment is the major issue faced in the era of waste management as well as in water pollution. Though there is availability of conventional techniques in large numbers, there is a need of efficient and effective advance technologies. In account of that, Nanotechnology plays a prominent role to treat the heavy metals, organic and inorganic contaminants using smart materials in nano regime (1 -100 nm). Among these nanomaterials like Iron Oxide (Fe3O4, magnetic nanoparticle) is one of the most promising candidates to remove the heavy metals from the industrial effluent. Fe3O4 is the widely used smart material with magnetic property having high surface area; high surface to volume ratio provides more surface for the chemical reaction for the surface adsorption. Fe3O4 nanoparticles have been synthesized using sonochemical method using ultra frequency in aqueous solution under optimized conditions. The as-synthesized nanoparticle was analyzed using different characterization tool. The Transmission Electron microscope (TEM) images revealed 10-12 nm spherical shape nanoparticles; crystal phase and surface morphology was confirmed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The functional group were identified by Fourier Transform-Infra Red Spectroscopy (FT-IR), revealed the bending and stretching vibrations associated with Iron Oxide nanoparticle. In present study, for the efficient removal of contaminants, different concentration (10-50 ppm) of dye stuff effluent has been prepared and subjected to adsorption and decolourization at definite time intervals with Fe3O4 nanoparticles. The concentration of Iron oxide and the time (45 mins) was kept fixed for the reaction whereas the concentration of dye stuff effluent was kept varying. It was found that the spherical shaped Fe3O4 proved to be the potential material for the adsorption of corresponding contaminants due to its highly active adsorbing surfaces. The result concluded that the effective adsorption and decolourization of contaminants is observed in different concentration with the maximum time period of 45 mins with the optimized concentration of Fe3O4.

  10. Molluscicidal properties and selective toxicity of surface-active agents

    PubMed Central

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  11. Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium

    NASA Astrophysics Data System (ADS)

    Barhoumi, Z.; Saini, M.; Amdouni, N.; Pal, A.

    2016-09-01

    The micellization of an aqueous solution of the surface active ionic liquid (SAIL), 1-butyl-3-methylimidazolium octylsufate (C4mim)(C8OSO3) and its interaction with an anionic polymer sodium polystyrene sulfonate, (NaPSS) were studied using conductimetry, tensiometry and fluorimetry. Surface tension profile shows a more dramatic increase in the value of surface tension of aqueous (C4mim)(C8OSO3) before the critical micelle concentration (cmc) of IL. The critical micelle concentration (cmc) value of this surfactant was found out from conductance measurements. The thermodynamic parameters, i.e., Gibb's free energy, enthalpy, and entropy of micellization of the IL in aqueous solution have been calculated. Behavior of fluorescence probe confirms the binding interactions between SAIL and the polyelectrolyte.

  12. In vitro determination of HT oxidation activity and tritium concentration in soil and vegetation during the chronic HT release experiment at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichimasa, Y.; Ichimasa, M.; Jiang, H.

    1995-10-01

    The oxidation activity of molecular tritium (HT) in soils and vegetation collected in experimental plots during the 1994 chronic HT release experiment at Chalk River was determined in vitro laboratory experiments after the release. HT oxidation activity was highest in surface soils in the natural plot, about 3-4 times that in soils in the cultivated plots. HT oxidation activity in weeds and Komatsuna leaves was about 2 and 0.4% of that in the cultivated soil, respectively. The number of HT-oxidizing bacteria isolated from soils was highest in the surface soil (0-5 cm) in the natural plot. The viable cell numbersmore » in surface soils in the cultivated and natural plots were almost the same. The total occurrence rates of HT-oxidizing bacteria in the surface soils were 22% in the natural plot, and 7.5% in the cultivated plot. The occurrence rates of HT-oxidizing airborne bacteria during the release on two culture media were 4.2 and 1.9%. 16 refs., 3 figs., 3 tabs.« less

  13. Occupational exposure to beryllium in French enterprises: a survey of airborne exposure and surface levels.

    PubMed

    Vincent, Raymond; Catani, Jacques; Créau, Yvon; Frocaut, Anne-Marie; Good, Andrée; Goutet, Pierre; Hou, Alain; Leray, Fabrice; André-Lesage, Marie-Ange; Soyez, Alain

    2009-06-01

    An assessment survey of occupational exposure to beryllium (Be) was conducted in France between late 2004 and the end of 2006. Exposure estimates were based on the analytical results of samples collected from workplace air and from work surfaces in 95 facilities belonging to 37 sectors of activity. The results of this study indicated airborne Be concentrations in excess of the occupational exposure limit value of 2 microg m(-3) recommended in France. Metallurgy and electronic component manufacturing represented the activities and occupations where workers had the highest arithmetic mean exposures to Be. Surface contamination levels were also high and frequently exceeded thresholds recommended by different bodies. These results should prompt the development of prevention programmes that include Be substitution, process control and surface decontamination, in conjunction with suitable medical surveillance.

  14. Cs-137 geochronology, epithermal neutron activation analysis, and principal component analysis of heavy metals pollution of the Black Sea anoxic continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Cristache, C.; Oaie, G.; Culicov, O. A.; Frontasyeva, M. V.

    2009-04-01

    Anthropogenic Cs-137 Gamma-ray Spectroscopy assay (GrSA) performed at the National Institute of Research and Development for Physics and Nuclear Engineering - Bucharest (Romania) in correlation with Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researches - Dubna (Russia) were used to investigate a 50 cm core containing unconsolidated sediments collected at a depth of 600 m off Romanian town of Constantza, located in the anoxic zone of the Black Sea Continental Shelf. A digital radiography showed the presence of about 265 distinct laminae, 1 to 3 mm thick, a fact attesting a stationary sedimentary process, completely free of bioturbation. After being radiographed, the core was sliced into 45 segments whose thickness gradually increased from 0.5 to 5 cm, such that the minimum thickness corresponded to the upper part of the core. From each segment two aliquots of about 0.5 g and 50 g were extracted for subsequent ENAA and Cs-137 GrSA. The Cs-137 vertical profile evidenced two maxima, one of them was very sharp and localized at a depth of 1 cm and the other very broad, almost undistinguished at about 8 cm depth, the first one being attributed to 1986 Chernobyl accident. Based on these date, we have estimated a sedimentation ratio of about 0.5 mm/year, value taken as reference for further assessment of recent pollution history. By means of ENAA we have determined the vertical content of five presumed pollutants, e.i. Zn, As, Br, Sn and Sb and of Sc, as natural, nonpolluting element. In the first case, all five elements presented a more or less similar vertical profile consisting of an almost exponential decrease for the first 10 cm below sediment surface followed by a plateau until the core base, i.e. 50 cm below surface, dependency better described by the equation: c(z) = c0 [1+k exp (-z/Z)] (1) where: where c(z) represents the concentration vertical profile; z represents depth (in absolute value); c0 represents the plateau concentrations; k represents the surface to plateau relative increment of concentration; Z represents concentration decrement: the depth at which the concentration becomes 1+k times greater than plateau one. Final results have shown with clarity that in the case of Zn, As, Br, Sn and Sb, the concentrations near sediment surface were 1.6 to 4.1 times greater then the plateau ones while Sc vertical profile, excepting some small fluctuations observed between 18 to 25 cm below surface, shown to be almost constant. Moreover, the concentration decrements Z of Zn, Br, Sn and Sb were almost coincident within one standard deviation while in the case of As, this coincidence appears within two standard deviation, these facts pleading for a comparable time evolution in the past 100 years. On the other hand, in the case of Sn and As, the maximum concentrations were reached 1 cm below the sediment surface, roughly corresponding to 1990 year, while the concentrations of all other three elements monotonously increases up to sediment surface. Further Principal Components Analysis of the data concerning the vertical distribution of all six elements illustrates the presence of two distinct clusters, one consisting of Zn, As, Br, Sn and Sb and the other on only of Sn, attesting both differences and similarities in the vertical distribution of considered elements. By comparing the experimental concentrations of all five elements with Romania Regulations concerning heavy metal pollution, we remarked that, by respect to these Regulations the only Zn, As, Br and Sb slightly exceeded normal accepted limits while the minimum alert concentrations were exceeded only in few cases by of As and Br, but no elements concentrations reached the intervention threshold. In our opinion, these results reflect the dynamics of the industrial activity in the riparian to Danube River European countries: a steady increase beginning with the last half of the XIX-th century followed by a slightly decline after the fall of Communism.

  15. Distribution of 137Cs in surface soil of Fraser's Hill, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Bakar, Ahmad Sanadi Abu; Hamzah, Zaini; Saat, Ahmad

    2017-01-01

    Caesium-137 (137Cs) in an anthropogenic radionuclide originated from the fission of fissile materials. Nuclear weapons testing during the 1960s and the Chernobyl disaster introduced substantial amount of 137Cs into the atmosphere that are then eventually deposited back to earth's surface. Caesium-137 can be used as tracer to study soil movements since it adsorbs to soil particles. This paper aims to describe the distribution of 137Cs in surface soil of Fraser's Hill, Pahang, determine the levels of 137Cs here compared to other areas, and to check correlation of 137Cs levels to physical data. A series of sampling were carried out between February 2014 and August 2015. Soil samples were taken from 31 locations using soil scraper. The samples were then taken to the laboratory to be dried, homogenized, grinded and sieved. The activity concentration of 137Cs in the samples was determined using gamma spectroscopy. The activity concentration was found to be between 0.26 Bq/kg and 5.14 Bq/kg. Although this paper only studies surface soil, 137Cs is expected to be present within the soil body. Further study of 137Cs in the soil body can be used to predictive model for soil erosion.

  16. Atomic oxygen recombination on quartz at high temperature: experiments and molecular dynamics simulation.

    PubMed

    Bedra, L; Rutigliano, M; Balat-Pichelin, M; Cacciatore, M

    2006-08-15

    A joint experimental and theoretical approach has been developed to study oxygen atom recombination on a beta-quartz surface. The experimental MESOX setup has been applied for the direct measurement of the atomic oxygen recombination coefficient gamma at T(S) = 1000 K. The time evolution of the relative atomic oxygen concentration in the cell is described by the diffusion equation because the mean free path of the atoms is less than the characteristic dimension of the reactor. The recombination coefficient gamma is then calculated from the concentration profile obtained by visible spectroscopy. We get an experimental value of gamma = 0.008, which is a factor of about 3 less than the gamma value reported for O recombination over beta-cristobalite. The experimental results are discussed and compared with the semiclassical collision dynamics calculations performed on the same catalytic system aimed at determining the basic features of the surface catalytic activity. Agreement, both qualitative and quantitative, between the experimental and the theoretical recombination coefficients has been found that supports the Eley-Rideal recombination mechanism and gives more evidence of the impact that surface crystallographic variation has on catalytic activity. Also, several interesting aspects concerning the energetics and the mechanism of the surface processes involving the oxygen atoms are pointed out and discussed.

  17. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 4-Phenylbutyrate modulates ubiquitination of hepatocanalicular MRP2 and reduces serum total bilirubin concentration.

    PubMed

    Hayashi, Hisamitsu; Mizuno, Tadahaya; Horikawa, Reiko; Nagasaka, Hironori; Yabuki, Takashi; Takikawa, Hajime; Sugiyama, Yuichi

    2012-05-01

    Multidrug resistance-associated protein 2 (in humans, MRP2; in rodents, Mrp2) mediates biliary excretion of bilirubin glucuronides. Therefore, upregulation of MRP2/Mrp2 expression may improve hyperbilirubinemia. We investigated the effects of 4-phenylbutyrate (4PBA), a drug used to treat ornithine transcarbamylase deficiency (OTCD), on the cell surface expression and transport function of MRP2/Mrp2 and serum T-Bil concentration. MRP2-expressing MDCKII (MRP2-MDCKII) cells and rats were studied to explore the change induced by 4PBA treatment in the cell surface expression and transport function of MRP2/Mrp2 and its underlying mechanism. Serum and liver specimens from OTCD patients were analyzed to examine the effect of 4PBA on hepatic MRP2 expression and serum T-Bil concentration in humans. In MRP2-MDCKII cells and the rat liver, 4PBA increased the cell surface expression and transport function of MRP2/Mrp2. In patients with OTCD, hepatic MRP2 expression increased and serum T-Bil concentration decreased significantly after 4PBA treatment. In vitro studies designed to explore the mechanism underlying this drug action suggested that cell surface-resident MRP2/Mrp2 is degraded via ubiquitination-mediated targeting to the endosomal/lysosomal degradation pathway and that 4PBA inhibits the degradation of cell surface-resident MRP2/Mrp2 by reducing its susceptibility to ubiquitination. 4PBA activates MRP2/Mrp2 function through increased expression of MRP2/Mrp2 at the hepatocanalicular membrane by modulating its ubiquitination, and thereby decreases serum T-Bil concentration. 4PBA has thus therapeutic potential for improving hyperbilirubinemia. Copyright © 2012 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Assessment of elemental concentrations in streams of the New Lead Belt in southeastern Missouri, 2002-05

    USGS Publications Warehouse

    Brumbaugh, William G.; May, Thomas W.; Besser, John M.; Allert, Ann L.; Schmitt, Christopher J.

    2007-01-01

    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area.

  20. Organic carbon accumulation and preservation in surface sediments on the Peru margin

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Laarkamp, K.

    1998-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone on the Peru margin were studied in samples from deck-deployed box cores and push cores acquired by submersible on two transects spanning depths of 75 to 1000 m at 12??and 13.5??S. The source of organic matter to the seafloor in these areas is almost entirely marine material as confirmed by the narrow range of ??13C of organic carbon obtained in the present study (-20.3 to -21.6???; PDB) and the lack of any relationship between pyrolysis hydrogen index and carbon isotope composition. Organic carbon contents are highest (up to 16%) on the slope at depths between 75 and 350 m in sediments deposited under intermediate water masses with low dissolved oxygen concentrations (< 5 ??mol/kg). Even at these low concentrations of dissolved oxygen, however, the surface sediments that were recovered from these depths are dominantly unlaminated. Strong currents (up to 30 cm/s) associated with the poleward-flowing Peru Undercurrent were measured at depths between 160 and 300 m on both transects. The seafloor in this range of water depths is characterized by bedforms stabilized by bacterial mats, extensive authigenic mineral crusts, and (or) thick organic flocs. Constant advection of dissolved oxygen, although in low concentrations, active resuspension of surficial organic matter, activity of organisms, and transport of fine-grained sediment to and from more oxygenated zones all contribute to greater degradation and poorer initial preservation of organic matter than might be expected under oxygen-deficient conditions. Dissolved-oxygen concentrations ultimately may be the dominant affect on organic matter characteristics, but reworking of fine-grained sediment and organic matter by strong bottom currents and redeposition on the seafloor in areas of lower energy also exert important controls on organic carbon concentration and degree of oxidation in this region.

  1. Characterization of naturally occurring radioactive materials in Libyan oil pipe scale using a germanium detector and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Habib, A. S.; Shutt, A. L.; Regan, P. H.; Matthews, M. C.; Alsulaiti, H.; Bradley, D. A.

    2014-02-01

    Radioactive scale formation in various oil production facilities is acknowledged to pose a potential significant health and environmental issue. The presence of such an issue in Libyan oil fields was recognized as early as 1998. The naturally occurring radioactive materials (NORM) involved in this matter are radium isotopes (226Ra and 228Ra) and their decay products, precipitating into scales formed on the surfaces of production equipment. A field trip to a number of onshore Libyan oil fields has indicated the existence of elevated levels of specific activity in a number of locations in some of the more mature oil fields. In this study, oil scale samples collected from different parts of Libya have been characterized using gamma spectroscopy through use of a well shielded HPGe spectrometer. To avoid potential alpha-bearing dust inhalation and in accord with safe working practices at this University, the samples, contained in plastic bags and existing in different geometries, are not permitted to be opened. MCNP, a Monte Carlo simulation code, is being used to simulate the spectrometer and the scale samples in order to obtain the system absolute efficiency and then to calculate sample specific activities. The samples are assumed to have uniform densities and homogeneously distributed activity. Present results are compared to two extreme situations that were assumed in a previous study: (i) with the entire activity concentrated at a point on the sample surface proximal to the detector, simulating the sample lowest activity, and; (ii) with the entire activity concentrated at a point on the sample surface distal to the detector, simulating the sample highest activity.

  2. Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica--spatial variability and possible anthropogenic contributions.

    PubMed

    Thamban, Meloth; Thakur, Roseline C

    2013-04-01

    To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.

  3. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries.

    PubMed

    Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle

    2018-08-01

    The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Effects of Surface Oxygen on the Performance of Carbon as an Anode in Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Clark, Gregory W.

    2001-01-01

    Carbon materials with similar bulk structure but different surface oxygen were compared for their performance as anodes in lithium-ion battery. The bulk structure was such that the graphene planes were perpendicular to the surface. Three types of surfaces were examined: surface containing C=O type oxygen. surface containing -O-C type oxygen, and surface containing high concentration of active sites. The test involved cycles of lithium insertion into and release from the carbon materials, which was in the half cells of carbon/saturated LiI-50/50 (vol %) EC and DMC/lithium. During the first cycle of lithium insertion, the presence of adsorbed oxygen, -O-C type oxygen, active carbon sites, and C=O type oxygen resulted in the formation of solid-electrolyte interface (SEI) when the carbon's voltage relative to lithium metal was >1.35, 1 to 1.35, 0.5 to 1, and 0.67 to 0.7 V, respectively. An optimum -O-C type oxygen and a minimum C=O type oxygen was found to increase the reversible and decrease the irreversible capacity of carbon. Active sites on the carbon surface result in a large irreversible capacity and a second lithium insertion-release mechanism. However, this new mechanism has a short cycle life.

  5. Antioxidant capacity, insecticidal ability and heat-oxidation stability of Tagetes lemmonii leaf extract.

    PubMed

    Ma, Chih-Ming; Cheng, Chih-Lun; Lee, Shang-Chieh; Hong, Gui-Bing

    2018-04-30

    The aim of this study was to examine the effect of process factors such as ethanol concentration, extraction time and temperature on the extraction yield and the bioactive contents of Tagetes lemmonii leaf extracts using response surface methodology (RSM). ANOVA results showed that the response variables were affected by the ethanol concentration to a very significant degree and by extraction temperature to a lesser degree. GC/MS characterization showed that the extract is rich in bioactive compounds and those present exhibited important biological activities such as antioxidant, insect repellence and insecticidal activities. The results from the toxicity assay demonstrate that the extract obtained from the leaves of Tagetes lemmonii was an effective insect toxin against Tribolium castaneum. The radical scavenging activity and p-anisidine test results of olive oil spiked with different concentrations of leaf extract showed that the phenolic compounds can retard lipid oxidation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Model-derived dose rates per unit concentration of radon in air in a generic plant geometry.

    PubMed

    Vives i Batlle, J; Smith, A; Vives-Lynch, S; Copplestone, D; Pröhl, G; Strand, T

    2011-11-01

    A model for the derivation of dose rates per unit radon concentration in plants was developed in line with the activities of a Task Group of the International Commission on Radiological Protection (ICRP), aimed at developing more realistic dosimetry for non-human biota. The model considers interception of the unattached and attached fractions of the airborne radon daughters by plant stomata, diffusion of radon gas through stomata, permeation through the plant's epidermis and translocation of deposited activity to plant interior. The endpoint of the model is the derivation of dose conversion coefficients relative to radon gas concentration at ground level. The model predicts that the main contributor to dose is deposition of (214)Po α-activity on the plant surface and that diffusion of radon daughters through the stomata is of relatively minor importance; hence, daily variations have a small effect on total dose.

  7. Active ion transport in dog tongue: a possible role in taste.

    PubMed

    DeSimone, J A; Heck, G L; DeSimone, S K

    1981-11-27

    An in vitro preparation of the dorsal epithelium of the dog tongue actively transports ions, producing a transepithelial potential difference characteristic of the ions and their concentration. Hypertonic sodium chloride solutions generally cause increased potentials and short-circuit currents and reduced resistances when placed on the mucosal surface. This hypertonic flux is eliminated by ouabain and is not found in ventral lingual epithelia. When either sodium acetate or tetramethylammonium chloride is substituted for sodium chloride in the mucosal medium, the currents are diminished but their sum at a given concentration approximates that for sodium chloride at the same concentration. This result suggests a current composed of inward sodium ion movement and outward chloride ion movement. Actively regulated potentials and currents, whether generated in the taste buds or in supporting cells, may be important in both normal chemotransduction and in taste responses evoked by currents passing through the tongue.

  8. Surface tensions of solutions containing dicarboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Jae Young; Hildemann, Lynn M.

    2014-06-01

    Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.

  9. Extract of corn silk (stigma of Zea mays) inhibits the tumour necrosis factor-alpha- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression.

    PubMed

    Habtemariam, S

    1998-05-01

    Treatment of human endothelial cells with cytokines such as tumour necrosis factor-alpha (TNF) or E. coli lipopolysaccharide (LPS) induces the expression of several adhesion molecules and enhances leukocyte adhesion to endothelial cell surface. Interfering with this leukocyte adhesion or adhesion molecules upregulation is an important therapeutic target for the treatment of bacterial sepsis and various inflammatory diseases. In the course of screening marketed European anti-inflammatory herbal drugs for TNF antagonistic activity, a crude ethanolic extract of corn silk (stigma of Zea mays) exhibited significant activity. The extract at concentrations of 9-250 micrograms/ml effectively inhibited the TNF- and LPS-induced adhesiveness of EAhy 926 endothelial cells to monocytic U937 cells. Similar concentration ranges of corn silk extract did also block the TNF and LPS but not the phorbol 12-myristate 13-acetate-induced ICAM-1 expression on EAhy 926 endothelial cell surface. The extract did not alter the production of TNF by LPS-activated macrophages and failed to inhibit the cytotoxic activity of TNF. It is concluded that corn silk possesses important therapeutic potential for TNF- and LPS-mediated leukocyte adhesion and trafficking.

  10. Effects of elevated CO2 concentrations on denitrifying and nitrifying popualtions at terrestrial CO2 leakeage analogous sites

    NASA Astrophysics Data System (ADS)

    Christine, Dictor Marie; Catherine, Joulian; Valerie, Laperche; Stephanie, Coulon; Dominique, Breeze

    2010-05-01

    CO2 capture and geological storage (CCS) is recognized to be an important option for carbon abatement in Europe. One of the risks of CCS is the leakage from storage site. A laboratory was conducted on soil samples sampled near-surface from a CO2 leakage analogous site (Latera, Italy) in order to evaluate the impact of an elevated soil CO2 concentration on terrestrial bacterial ecosystems form near surface terrestrial environments and to determine a potential bacterial indicator of CO2 leakage from storage site. Surveys were conducted along a 50m long transect across the vent centre, providing a spectrum of CO2 flux rates, soil gas concentrations and compositions (Beaubien et al., 2007). A bacterial diversity studies, performed by CE-SSCP technique, on a soil profile with increasing CO2 soil concentrations (from 0.3% to 100%) showed that a change on bacterial diversity was noted when CO2 concentration was above 50 % of CO2. From this result, 3 soil samples were taken at 70 cm depth in 3 distinct zones (background soil CO2 content, soil CO2 content of 20% and soil CO2 content of 50%). Then theses soil samples were incubated under closed jars flushed with different air atmospheres (20, 50 and 90 % of CO2) during 18 months. At initial, 3, 6, 12 and 18 months, some soil samples were collected in order to estimate the denitrifying, nitrifying activities as a function of CO2 concentration content and times. Theses enzymatic activities were chosen because one occurs under anaerobic conditions (denitrification) and the other occurs under aerobic conditions (nitrification). Both of them were involved in the nitrogen cycle and are major actors of soil function and groundwater quality preservation. Metabolic diversity using BIOLOG Ecoplates was determined on every soil samples. Physico-chemical parameters (e.g. pH, bulk chemistry, mineralogy) were analyzed to have some information about the evolution of the soil during the incubation with increasing soil CO2 concentrations. Statistical analyses were performed to correlate microbiological measures and physico-chemical parameters. For the soil sampled in a zone with background CO2 content, incubation under an atmosphere with 20% of CO2, induce a sharp decrease of denitrifying activity after 6 months of incubation and only after 3 months with an atmosphere of 50% of CO2. On the contrary, concerning the soil sampled in a zone with 25.5% of CO2, incubation with an atmosphere of 50% has no effect on denitrifying activity and moreover this activity was stimulated with an atmosphere of 90% of CO2.Last, with the soil sampled in an area with 65.8% of CO2, denitrifying activity was negatively impacted from the 3th month of incubation with 90% CO2.and the activity was 2 fold lower after 12th of incubation. Concerning the nitrifying activity, soil sampled in an area with background CO2 content, this one remains little affected by increasing CO2 incubation. At initial times, soil sampled in the areas with 25.5 and 65.8 % of CO2 showed low level of nitrifying activities and further CO2 incubations have no effect on these activities. At the end, denitrifying activities seems to be more sensitive to CO2 concentrations evolution in the soil. More studies need to be done as incubation with lower CO2 content (< 10%) in order to determine the threshold of CO2 that can affect the near-surface bacterial activities and identify a possible candidate of CO2 leakage from deep reservoirs.

  11. Removal of basic nitrogen compounds from hydrocarbon liquids

    DOEpatents

    Givens, Edwin N.; Hoover, David S.

    1985-01-01

    A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

  12. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect "Blood" and Body Surface Elution.

    PubMed

    Łoś, Aleksandra; Strachecka, Aneta

    2018-05-09

    Using insect hemolymph ("blood") and insect body surface elutions, researchers can perform rapid and cheap biochemical analyses to determine the insect's immunology status. The authors of this publication describe a detailed methodology for a quick marking of the concentration of total proteins and evaluation of the proteolytic system activity (acid, neutral, and alkaline proteases and protease inhibitors), as well as a methodology for quick "liver" tests in insects: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and urea and glucose concentration analyses. The meaning and examples of an interpretation of the results of the presented methodology for biochemical parameter determination are described for the example of honey bees.

  13. Process for the leaching of AP from propellant

    NASA Technical Reports Server (NTRS)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)

    1980-01-01

    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  14. Antibacterial Activities of Jatropha curcas (LINN) on Coliforms Isolated from Surface Waters in Akure, Nigeria

    PubMed Central

    Dada, E. O.; Ekundayo, F. O.; Makanjuola, O. O.

    2014-01-01

    This study investigated the antibacterial activities of hot water, ethanol and acetone extracts of Jatropha curcas (LINN) leaves on coliforms isolated from surface waters using growth inhibition indices based on agar plate technique. The percentage recovery of the extracts was 19.17%, 18.10% and 18.80% for hot water, ethanol and acetone respectively. Phytochemical screening of the extracts was also determined. Qualitative phytochemical screening showed that the plant extracts contained steroids, tannins, flavonoids and cardiac glycosides, while alkaloids, phlobatannin, terpenoids and anthraquinones were absent. Only ethanolic extract did not possess saponins. Aqueous extracts of J. curcas compared most favourably with the standard antibiotics (gentamycin) on all the coliform bacteria except on K. pneumoniae and E. coli likely due to a measurably higher antibacterial activity compared to the organic extracts. The minimum inhibitory concentration of the aqueous extract ranged from 3.00 to 7.00 mg/L while minimum bactericidal concentration ranged from 4.00 to 10.00 mg/L. Aqueous extract of J. curcas could be used as antibacterial agents against diseases caused by coliforms. PMID:24711746

  15. Biogas upgrading: optimal activated carbon properties for siloxane removal.

    PubMed

    Cabrera-Codony, Alba; Montes-Morán, Miguel A; Sánchez-Polo, Manuel; Martín, Maria J; Gonzalez-Olmos, Rafael

    2014-06-17

    A total of 12 commercial activated carbons (ACs) have been tested for the removal of octamethylcyclotetrasiloxane (D4) in dynamic adsorption experiments using different carrier gases and D4 concentrations. Characterization of the ACs included several physical and chemical techniques. The D4 adsorption capacities were strongly related with the textural development of the ACs. Results showed that the optimum adsorbent for D4 is a wood-based chemically activated carbon, which rendered an adsorption capacity of 1732 ± 93 mg g(-1) using 1000 ppm (v/v) of D4 with dry N2 as the carrier gas. When the concentration of D4 was lowered to typical values found in biogas, the adsorption capacity was halved. The presence of major biogas compounds (i.e., CH4 and CO2) and humidity further reduced the D4 adsorption capacity. The polymerization of D4 over the surface of all ACs was found to be relevant after prolonged contact times. The extent of this phenomenon, which may negatively affect the thermal regeneration of the AC, correlated reasonably well with the presence of phenolic and carboxylic groups on the carbon surfaces.

  16. Thermo-kinetic analysis space expansion for cyclophilin-ligand interactions - identification of a new nonpeptide inhibitor using Biacore™ T200.

    PubMed

    Wear, Martin A; Nowicki, Matthew W; Blackburn, Elizabeth A; McNae, Iain W; Walkinshaw, Malcolm D

    2017-04-01

    We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his-tagged human cyclophilin-A. Our orientation-specific stabilisation approach captures his-tagged protein under 'physiological conditions' (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni 2+ -nitrilotriacetic acid surfaces, very briefly activated for primary amine-coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin-A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo-kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin-A-cyclosporin-A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin-A, from a screen of a fragment library. This fragment, 2,3-diaminopyridine, bound specifically with a mean affinity of 248 ± 60 μm. The X-ray structure of this 109-Da fragment bound in the active site of cyclophilin-A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin-A inhibitors.

  17. Vertical distributions of (99)Tc and the (99)Tc/(137)Cs activity ratio in the coastal water off Aomori, Japan.

    PubMed

    Nakanishi, Takahiro; Zheng, Jian; Aono, Tatsuo; Yamada, Masatoshi; Kusakabe, Masashi

    2011-08-01

    Using a sector-field ICP-MS the vertical distributions of the (99)Tc concentration and (99)Tc/(137)Cs activity ratio were measured in the coastal waters off Aomori Prefecture, Japan, where a spent-nuclear-fuel reprocessing plant has begun test operation. The (99)Tc concentrations in surface water ranged from 1.8 to 2.4 mBq/m(3), no greater than the estimated background level. Relatively high (99)Tc/(137)Cs activity ratios (10-12 × 10(-4)) would be caused by the inflow of the high-(99)Tc/(137)Cs water mass from the Japan Sea. There is no observable contamination from the reprocessing plant in the investigated area. The (99)Tc concentration and the (99)Tc/(137)Cs activity ratio in water column showed gradual decreases with depth. Our results implied that (99)Tc behaves in a more conservative manner than (137)Cs in marine environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Optimization protocol for the extraction of 6-gingerol and 6-shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology.

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2015-07-30

    Analysis and extraction of plant matrices are important processes for the development, modernization, and quality control of herbal formulations. Response surface methodology is a collection of statistical and mathematical techniques that are used to optimize the range of variables in various experimental processes to reduce the number of experimental runs, cost , and time, compared to other methods. Response surface methodology was applied for optimizing reflux extraction conditions for achieving high 6-gingerol and 6-shogaol contents, and high antioxidant activity in Zingiber officinale var. rubrum Theilade . The two-factor central composite design was employed to determine the effects of two independent variables, namely extraction temperature (X1: 50-80 °C) and time (X2: 2-4 h), on the properties of the extracts. The 6-gingerol and 6-shogaol contents were measured using ultra-performance liquid chromatography. The antioxidant activity of the rhizome extracts was determined by means of the 1,1-diphenyl-2-picrylhydrazyl assay. Anticancer activity of optimized extracts against HeLa cancer cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Increasing the extraction temperature and time induced significant response of the variables. The optimum extraction condition for all responses was at 76.9 °C for 3.4 h. Under the optimum condition, the corresponding predicted response values for 6-gingerol, 6-shogaol, and the antioxidant activity were 2.89 mg/g DW, 1.85 mg/g DW, and 84.3%, respectively. 6-gingerol and 6-shogaol were extracted under optimized condition to check the viability of the models. The values were 2.92 and 1.88 mg/g DW, and 84.0% for 6-gingerol, 6-shogaol, and the antioxidant activity respectively. The experimental values agreed with those predicted, thus indicating suitability of the models employed and the success of RSM in optimizing the extraction condition. With optimizing of reflux extraction anticancer activity of extracts against HeLa cancer cells enhanced about 16.8%. The half inhibition concentration (IC50) value of optimized and unoptimized extract was found at concentration of 20.9 and 38.4 μg/mL respectively. Optimized extract showed more distinct anticancer activities against HeLa cancer cells in a concentration of 40 μg/mL (P < 0.01) without toxicity to normal cells. The results indicated that the pharmaceutical quality of ginger could be improved significantly by optimizing of extraction process using response surface methodology.

  19. Sphingosine Prevents Bacterial Adherence to Endotracheal Tubes: A Novel Mechanism to Prevent Ventilator-Associated Pneumonia

    DTIC Science & Technology

    2016-06-21

    measurement of antibacterial activity on plastics and other non-porous surfaces, ISO 22196. Bacteria were prepared as described above to a concentration of...PVC ETTs. The antimicrobial assay we used is a variation of the international standard for measurement of antibacterial activity on plastics and... activity against both Gram-positive and Gram-negative bacteria. Additionally, sphingosine’s presence in the skin, oral mucosa, and respiratory mucosa

  20. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

    PubMed Central

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia MD; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells. PMID:26185439

  1. Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale.

    PubMed

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2018-06-01

    Unconventional oil production in North Dakota (ND) and other states in the United States uses large amounts of water for hydraulic fracturing to stimulate oil flow. Most of the water used returns to the surface as produced water (PW) containing different constituents. Some of these contents are total dissolved solids and radionuclides. The most predominant radionuclide in PW is radium-226 (Ra-226) of which level depends on several factors including the content of certain cations. A multivariate regression model was developed to predict Ra-226 in PW from the Bakken Shale based on the levels of barium, strontium, and calcium. The simulated Ra-226 activity concentration in PW was 535 pCi/L supporting extremely limited actual data based on three PW samples from the Bakken (527, 816, and 1210 pCi/L). The simulated activity concentration was further analyzed by studying its impact in the event of a PW spill reaching a surface water body that provides drinking water, irrigation water for crops, and recreational fishing. Using food transfer factors found in the literature, the final annual effective dose rate for an adult in ND was estimated. The global average annual effective dose rate via food and drinking water is 0.30 mSv, while the predicted dose rate in this study was 0.49 mSv indicating that there is potential risk to human health in ND due to Ra-226 in PW spills. This predicted dose rate is considered the best case scenario as it is based on the simulated Ra-226 activity concentration in PW of 535 pCi/L which is close to the low end actual activity concentration of 527 pCi/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Environmental assessment of coastal surface sediments at Tarut Island, Arabian Gulf (Saudi Arabia).

    PubMed

    Youssef, Mohamed; El-Sorogy, Abdelbaset; Al Kahtany, Khaled; Al Otiaby, Naif

    2015-07-15

    Thirty eight surface sediments samples have been collected in the area around Tarut Island, Saudi Arabian Gulf to determine the spatial distribution of metals, and to assess the magnitude of pollution. Total concentrations of Fe, Mn, As, B, Cd, Co, Cr, Cu, Hg, Mo, Pb, Se, and Zn in the sediments were measured using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). Nature of sediments and heavy metals distribution reflect marked changes in lithology, biological activities in Tarut bay. Very high arsenic concentrations were reported in all studied locations from Tarut Island. The concentrations of Mercury are generally high comparing to the reported values from the Gulf of Oman, Red Sea. The concentrations of As and Hg exceeded the wet threshold safety values (MEC, PEC) indicating possible As and Hg contamination. Dredging and land filling, sewage, and oil pollution are the most important sources of pollution in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Synthesis, surface properties and antimicrobial activity of some germanium nonionic surfactants.

    PubMed

    Zaki, Mohamed F; Tawfik, Salah M

    2014-01-01

    Esterification reaction between different fatty acid namely; lauric, stearic, oleic and linoleic acids and polyethylene glycol-400 were performed. The produced polyethylene glycol ester were reacted with p-amine benzoic acid followed by condensation reaction with germanium dioxide in presence of sodium carbonate to form desired germinate surfactants. The chemical structures of the synthesized surfactants were determined using different spectra tools. The surface parameter including: the critical micelle concentration (CMC), effectiveness (π(cmc)), efficiency (Pc20), maximum surface excess (Γ(max)) and minimum surface area (A(min)), were calculated from the surface tension measurements. The synthesized surfactants showed higher surface activity. The thermodynamic parameters showed that adsorption and micellization processes are spontaneous. It is clear that the synthesized nonionic surfactants showed their tendency towards adsorption at the interfaces and also micellization in the bulk of their solutions. The synthesized surfactants were tested against different strain of bacteria using inhibition zone diameters. The synthesized surfactants showed good antimicrobial activities against the tested microorganisms including Gram positive, Gram negative as well as fungi. The promising inhibition efficiency of these compounds against the sulfate reducing bacteria facilitates them to be applicable as new categories of sulfate reducing bacteria biocides.

  4. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  5. Sorption of lead onto two gram-negative marine bacteria in seawater

    USGS Publications Warehouse

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  6. Biosurfactant Production by Bacillus salmalaya for Lubricating Oil Solubilization and Biodegradation.

    PubMed

    Dadrasnia, Arezoo; Ismail, Salmah

    2015-08-19

    This study investigated the capability of a biosurfactant produced by a novel strain of Bacillus salmalaya to enhance the biodegradation rates and bioavailability of organic contaminants. The biosurfactant produced by cultured strain 139SI showed high physicochemical properties and surface activity in the selected medium. The biosurfactant exhibited a high emulsification index and a positive result in the drop collapse test, with the results demonstrating the wetting activity of the biosurfactant and its potential to produce surface-active molecules. Strain 139SI can significantly reduce the surface tension (ST) from 70.5 to 27 mN/m, with a critical micelle concentration of 0.4%. Moreover, lubricating oil at 2% (v/v) was degraded on Day 20 (71.5). Furthermore, the biosurfactant demonstrated high stability at different ranges of salinity, pH, and temperature. Overall, the results indicated the potential use of B. salmalaya 139SI in environmental remediation processes.

  7. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    NASA Astrophysics Data System (ADS)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  8. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    PubMed

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor.

    PubMed

    Twining, J R; Hughes, C E; Harrison, J J; Hankin, S; Crawford, J; Johansen, M; Dyer, L

    2011-06-01

    The results of a 21 month sampling program measuring tritium in tree transpirate with respect to local sources are reported. The aim was to assess the potential of tree transpirate to indicate the presence of sub-surface seepage plumes. Transpirate gathered from trees near low-level nuclear waste disposal trenches contained activity concentrations of (3)H that were significantly higher (up to ∼700 Bq L(-1)) than local background levels (0-10 Bq L(-1)). The effects of the waste source declined rapidly with distance to be at background levels within 10s of metres. A research reactor 1.6 km south of the site contributed significant (p < 0.01) local fallout (3)H but its influence did not reach as far as the disposal trenches. The elevated (3)H levels in transpirate were, however, substantially lower than groundwater concentrations measured across the site (ranging from 0 to 91% with a median of 2%). Temporal patterns of tree transpirate (3)H, together with local meteorological observations, indicate that soil water within the active root zones comprised a mixture of seepage and rainfall infiltration. The degree of mixing was variable given that the soil water activity concentrations were heterogeneous at a scale equivalent to the effective rooting volume of the trees. In addition, water taken up by roots was not well mixed within the trees. Based on correlation modelling, net rainfall less evaporation (a surrogate for infiltration) over a period of from 2 to 3 weeks prior to sampling seems to be the optimum predictor of transpirate (3)H variability for any sampled tree at this site. The results demonstrate successful use of (3)H in transpirate from trees to indicate the presence and general extent of sub-surface contamination at a low-level nuclear waste site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  11. Seasonal and diurnal patterns in the dispersion of SO2 from Mt. Nyiragongo

    NASA Astrophysics Data System (ADS)

    Dingwell, Adam; Rutgersson, Anna; Claremar, Björn; Arellano, Santiago; Yalire, Mathieu M.; Galle, Bo

    2016-05-01

    Mt. Nyiragongo is an active volcano located in the Democratic Republic of Congo, close to the border of Rwanda and about 15 km north of the city of Goma (∼ 1,000,000 inhabitants). Gases emitted from Nyiragongo might pose a persistent hazard to local inhabitants and the environment. While both ground- and satellite-based observations of the emissions exist, prior to this study, no detailed analysis of the dispersion of the emissions have been made. We have conducted a dispersion study, using a modelling system to determine the geographical distribution of SO2. A combination of a meteorological model (WRF), a Lagrangian particle dispersion model (FLEXPART-WRF) and flux data based on DOAS measurements from the NOVAC-network is used. Since observations can only be made during the day, we use random sampling of fluxes and ensemble modelling to estimate night-time emissions. Seasonal variations in the dispersion follows the migration of the Inter Tropical Convergence Zone. In June-August, the area with the highest surface concentrations is located to the northwest, and in December-February, to the southwest of the source. Diurnal variations in surface concentrations were determined by the development of the planetary boundary layer and the lake-/land breeze cycle around lake Kivu. Both processes contribute to low surface concentrations during the day and high concentrations during the night. However, the strong northerly trade winds in November-March weakened the lake breeze, contributing to higher daytime surface concentrations along the northern shore of Lake Kivu, including the city of Goma. For further analysis and measurements, it is important to include both seasonal and diurnal cycles in order to safely cover periods of high and potentially hazardous concentrations.

  12. Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Jiang, Yunhong; O'Neill, Alex J.; Ding, Yulong

    2015-04-01

    In this article, novel antibacterial PVC-based films coated with ZnO nanoparticles (NPs) were fabricated, characterized, and studied for their antibacterial properties. It was shown that the ZnO NPs were coated on the surface of the PVC films uniformly and that the coating process did not affect the size and shape of the NPs on the surface of PVC films. Films coated with concentrations of either 0.2 or 0.075 g/L of ZnO NPs exhibited antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli) bacteria, but exhibited no antifungal activity against Aspergillus flavus and Penicillium citrinum. Smaller particles (100 nm) exhibited more potent antibacterial activity than larger particles (1000 nm). All ZnO-coated films maintained antibacterial activity after 30 days in water.

  13. Spectroscopic study of surface enhanced Raman scattering of caffeine on borohydride-reduced silver colloids

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin; Gu, Huaimin; Shen, Gaoshan; Dong, Xiao; Kang, Jian

    2010-06-01

    The surface enhanced Raman scattering (SERS) of caffeine on borohydride-reduced silver colloids system under different aqueous solution environment has been studied in this paper. The relative intensity of SERS of caffeine significantly varies with different concentrations of sodium chloride and silver particles. However, at too high or too low concentration of sodium chloride and silver particle, the enhancement of SERS spectra is not evident. The SERS spectra of caffeine suggest that the contribution of the charge transfer mechanism to SERS may be dominant. The chloride ions can significantly enhance the efficiency of SERS, while the enhancement is selective, as the efficiency in charge transfer enhancement is higher than in electromagnetic enhancement. Therefore, it can be concluded that the active site of chloride ion locates on the bond between the caffeine and the silver surface. In addition, the SERS spectra of caffeine on borohydride-reduced and citrate-reduced silver colloids are different, which may be due to different states caffeine adsorbed on silver surface under different silver colloids.

  14. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    NASA Astrophysics Data System (ADS)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  15. Present and Reference Concentrations and Yields of Suspended Sediment in Streams in the Great Lakes Region and Adjacent Areas

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Heisey, Dennis M.

    2006-01-01

    In-stream suspended sediment and siltation and downstream sedimentation are common problems in surface waters throughout the United States. The most effective way to improve surface waters impaired by sediments is to reduce the contributions from human activities rather than try to reduce loadings from natural sources. Total suspended sediment/solids (TSS) concentration data were obtained from 964 streams in the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River Basins from 1951 to 2002. These data were used to estimate median concentrations, loads, yields, and volumetrically (flow) weighted (VW) concentrations where streamflow data were available. SPAtial Regression-Tree Analysis (SPARTA) was applied to land-use-adjusted (residualized) TSS data and environmental-characteristic data to determine the natural factors that best described the distribution of median and VW TSS concentrations and yields and to delineate zones with similar natural factors affecting TSS, enabling reference or natural concentrations and yields to be estimated. Soil properties (clay and organic-matter content, erodibility, and permeability), basin slope, and land use (percentage of agriculture) were the factors most strongly related to the distribution of median and VW TSS concentrations. TSS yields were most strongly related to amount of precipitation and the resulting runoff, and secondarily to the factors related to high TSS concentrations. Reference median TSS concentrations ranged from 5 to 26 milligrams per liter (mg/L), reference median annual VW TSS concentrations ranged from 10 to 168 mg/L, and reference TSS yields ranged from about 980 to 90,000 kilograms per square kilometer per year. Independent streams (streams with no overlapping drainage areas) with TSS data were ranked by how much their water quality exceeded reference concentrations and yields. Most streams exceeding reference conditions were in the central part of the study area, where agricultural activities are the most intensive; however, other sites exceeding reference conditions were identified outside of this area. Whether concentrations or yields should be considered in guiding rehabilitation efforts depends on whether in-stream or downstream effects are more important. Although this study attempted to obtain all available water-quality data for the study area, any actual prioritization of sites for remediation would need to rely on more extensive data collection or numerical models that can accurately simulate the effects of various human activities in a range of environmental settings.

  16. Investigation of radioactivity concentration in spent technetium generators

    NASA Astrophysics Data System (ADS)

    Idriss, Hajo; Salih, Isam; Alaamer, Abdulaziz S.; Eisa, M. H.; Sam, A. K.

    2014-04-01

    This study was carried out to survey and measure radioactivity concentration and estimate radiation dose level at the surface of spent technetium generator columns for the safe final disposal of radioactive waste. High resolution γ-spectrometry with the aid of handheld radiation survey meters has been used. The radioactivity measurements has shown that 238U, 40K and 137Cs were only measurable in one sample whereas 125Sb was found in 14 samples out of total of 20 samples with an activity concentration which ranged from 21 to 7404 with an average value of 1095 Bq/kg. The activity concentration of 125Sb is highly variable indicating that the spent 99mTc generator columns are of different origin. This investigation highlighted the importance of radiation monitoring of spent technetium generators in the country in order to protect workers, and the public from the dangers posed by radioactive waste.

  17. Facile preparation of SERS and catalytically active Au nanostructures using furfuryl derivatives

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Jung; Kim, Hyun-Chul; Park, Minsun; Huh, Seong

    2017-08-01

    Six different types of Au nanostructures with rough surfaces were readily prepared through the redox reactions between Au precursor, AuCl4-, and furfuryl derivatives without extra metal surface capping ligands, in deionized water at room temperature. Furfuryl alcohol (FA) or furfurylamine (FFA) was used as a sole reducing agent for the reduction of Au precursor. Both FA and FFA effectively polymerized during the redox reactions to form polyfuran polymers. These polymers are thought to act as surface capping ligands during the formation of Au nanostructures. Experiments were conducted with three different concentrations of each furfuryl derivative. Interestingly, Au particles prepared from the reaction with varying concentration of FA or FFA showed large differences in size, and revealed that the higher the ratios of [FA]/[AuCl4-] or [FFA]/[AuCl4-], the smaller the size of Au particles. The size of Au particles was in the range of 1 μm to under 30 nm. Among these samples, two nanostructured Au particles, AuFA-4 and AuFFA-1, deposited on a Si wafer by a simple drop-casting method, were revealed as highly active surface-enhanced Raman scattering (SERS) substrates for the detection of methylene blue (MB) and crystal violet (CV). High SERS enhancement factors (EFs) of 106 ∼ 108 for MB and CV were observed. Small size Au nanoparticles (AuFFA-2 and AuFFA-4) were also found to be very active for the catalytic hydrogenation of 4-nitrophenol to 4-aminophenol in the presence of NaBH4 at room temperature. AuFFA-2 could be recycled eight times, without losing its activity.

  18. Demonstration of In Situ Treatment with Reactive Amendments for Contaminated Sediments in Active DoD Harbors

    DTIC Science & Technology

    2017-06-30

    United States (NRC 2007). At elevated concentrations, these contaminants pose long-term risks to ecosystems and human health . 4 Reactive amendments...ability to reduce bioavailable concentrations thereby reducing ecological and human health risks. 6 2.1.2 AquaGate Composite Aggregate...could be of great interest as a remedy to HOC-impacted (e.g., PCBs, polycyclic aromatic hydrocarbon [PAHs], and pesticides ) surface sediments in

  19. TiO 2 nanotube arrays for photocatalysis: Effects of crystallinity, local order, and electronic structure

    DOE PAGES

    Liu, Jing; Hosseinpour, Pegah M.; Luo, Si; ...

    2014-11-19

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO₂ nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O₂ (oxidizing), Ar (inert), and H₂ (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO₂ nanotube samplesmore » partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (~5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO₂ nanotubes regardless of their length. The annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H₂-annealed nanotubes than with the Ar- and O₂-annealed nanotube samples. This enhanced photocatalytic response of the H₂-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti 3+ and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Hosseinpour, Pegah M.; Lewis, Laura H., E-mail: lhlewis@neu.edu

    To furnish insight into correlations of electronic and local structure and photoactivity, arrays of short and long TiO{sub 2} nanotubes were synthesized by electrochemical anodization of Ti foil, followed by thermal treatment in O{sub 2} (oxidizing), Ar (inert), and H{sub 2} (reducing) environments. The physical and electronic structures of these nanotubes were probed with x-ray diffraction, scanning electron microscopy, and synchrotron-based x-ray absorption spectroscopy, and correlated with their photocatalytic properties. The photocatalytic activity of the nanotubes was evaluated by monitoring the degradation of methyl orange under UV-VIS light irradiation. Results show that upon annealing at 350 °C all as-anodized amorphous TiO{submore » 2} nanotube samples partially transform to the anatase structure, with variations in the degree of crystallinity and in the concentration of local defects near the nanotubes' surface (∼5 nm) depending on the annealing conditions. Degradation of methyl orange was not detectable for the as-anodized TiO{sub 2} nanotubes regardless of their length. However, the annealed long nanotubes demonstrated detectable catalytic activity, which was more significant with the H{sub 2}-annealed nanotubes than with the Ar- and O{sub 2}-annealed nanotube samples. This enhanced photocatalytic response of the H{sub 2}-annealed long nanotubes relative to the other samples is positively correlated with the presence of a larger concentration of lattice defects (such as Ti{sup 3+} and anticipated oxygen vacancies) and a slightly lower degree of crystallinity near the nanotube surface. These physical and electronic structural attributes impact the efficacy of visible light absorption; moreover, the increased concentration of surface defects is postulated to promote the generation of hydroxyl radicals and thus accelerate the photodegradation of the methyl orange. The information obtained from this study provides unique insight into the role of the near-surface electronic and defect structure, crystal structure, and the local chemical environment on the photocatalytic activity and may be employed for tailoring the materials' properties for photocatalysis and other energy-related applications.« less

  1. Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Ranjan Nayak, Rati; Yamada, Tasuku; Matsuoka, Hideki

    2011-09-01

    Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.

  2. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy.

    PubMed

    Tempfer, H; Hofmann, W; Schober, A; Lettner, H; Dinu, A L

    2010-05-01

    In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients' skin varied from 1.2 to 4.1 Bq/cm(2) in the bathtub, and from 1.1 to 2.6 Bq/cm(2) in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

  4. Contrasting respirable quartz and kaolin retention of lecithin surfactant and expression of membranolytic activity following phospholipase A2 digestion.

    PubMed

    Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D

    1992-11-01

    Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.

  5. Role of associated defects in oxygen ion conduction and surface exchange reaction for epitaxial samaria-doped ceria thin films as catalytic coatings

    DOE PAGES

    Yang, Nan; Shi, Yanuo; Schweiger, Sebastian; ...

    2016-05-18

    Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as micro-solid oxide fuel cells, electrolysers, sensors and memristors. In this paper we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol% of samaria, an enhancement in the defect association was observed by Raman spectroscopy. The role of such defect associates on the films` oxygen ion transport and exchange was investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has amore » sharp maximum in ionic conductivity and drop in its activation energy down to 0.6 eV for 20 mol% doping. Increasing the doping concentration further up to 40 mol%, raises the activation energy substantially by a factor of two. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first order reversal curve measurements indicate that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol% of samaria. We reveal in a model experiment through a solid solution series of samaria doped ceria epitaxial films that the occurrence of associate defects in the bulk affects the surface charging state of the films to increase the exchange rates. Lastly, the implication of these findings are the design of coatings with tuned oxygen surface exchange by control of bulk associate clusters for future electro-catalytic applications.« less

  6. Summer Arctic ice concentrations and characteristics from SAR and SSM/I data

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.; Kwok, Ron

    1993-01-01

    The extent and concentration of the Summer minima provide indirect information about the long term ability of the perennial portion of the ice pack to survive the Arctic atmosphere and ocean system. Both active and passive microwave data were used with some success for monitoring the ice cover during the Summer, but they both suffer from similar problems caused by the presence of meltponding, surface wetness, flooding, and freeze/thaw cycles associated with periodic changes in surface air temperatures. A comparative analysis of ice conditions in the Arctic region using coregistered ERS-1 SAR (Synthetic Aperture Radar) and SSM/I (Special Sensor Microwave/Imager) data was made. The analysis benefits from complementary information from the two systems, the good spatial resolution of SAR data, and the good time resolution of and global coverage by SSM/I data. The results show that in many areas ice concentrations derived from SAR data are significantly different (usually higher) than those derived from passive microwave data. Additional insights about surface conditions can be inferred depending on the nature of the discrepancies.

  7. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    PubMed

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors.

  8. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    PubMed

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  9. Effect of Doping on Surface Reactivity and Conduction Mechanism in Sm-doped CeO2 Thin Films

    DOE PAGES

    Yang, Nan; Belianinov, Alex; Strelcov, Evgheni; ...

    2014-11-21

    Scanning probe microscopy measurements show irreversible surface electrochemistry in Sm-doped CeO2 thin films, which depends on humidity, temperature and doping concentration. A systematic study by electrochemical strain microscopy (ESM) in samples with two different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in water adsorption and splitting with subsequent proton liberation. We measure the behavior of the hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first order reversal curve (FORC) method. Complementing our study with spectroscopic measurements by hard x-ray photoemission spectroscopy we find that watermore » incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity and conduction mechanism clearly emerges from all of our experimental results. We find that at lower Sm concentration proton conduction is prevalent, featured by lower activation energy and higher mobility. Defect concentrations determine the type of the prevalent charge carrier in a doping dependent manner.« less

  10. Microbial population and functional dynamics associated with surface potential and carbon metabolism

    PubMed Central

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Phan, Tony; Wanger, Greg; Nealson, Kenneth H; Sekiguchi, Yuji; Gorby, Yuri A; Bretschger, Orianna

    2014-01-01

    Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member's contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. PMID:24351938

  11. The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation.

    PubMed

    Kaczorek, E; Urbanowicz, M; Olszanowski, A

    2010-11-01

    In this study the capacity of the newly isolated environmental strain Aeromonas hydrophila was evaluated. The influence of three surfactants: rhamnolipides, saponins and Triton X-100 on cell surface properties of the A. hydrophila environmental strain and the biodegradation process of diesel oil was studied. The surface activities in water, a mineral salts medium and in the biological system of all considered surfactants were estimated by means of equilibrium surface tension experiments. The obtained results indicated that critical micellar concentration in the biological system is twice higher for saponins and Triton X-100, and three times higher for rhamnolipides. Our results indicated also, that cell surface hydrophobicity (CSH) of bacteria is correlated with carbon sources in broth medium. The mechanism of surfactant action seems to be dependent on the type and concentration of surfactant used in the studies. The best effect of saponins on diesel oil biodegradation was observed using the A. hydrophila strain, diesel oil biodegradation after 21 days was 78%. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent

    NASA Astrophysics Data System (ADS)

    Chomicz-Kowalska, Anna; Mrugała, Justyna; Maciejewski, Krzysztof

    2017-10-01

    The article presents the analysis of the performance of foamed bitumen modified using surface active agents. Although, bitumen foaming permits production of asphalt concrete and other asphalt mix types without using chemical additives in significantly reduced temperatures, the decrease in processing temperatures still impacts the adhesion performance and bitumen coating of aggregates in final mixes. Therefore, in some cases it may be feasible to incorporate adhesion promoters and surface active agents into warm and half-warm mixes with foamed bitumen to increase their service life and resilience. Because of the various nature of the available surface active agents, varying bitumen compatibility and their possible impact on the rheological properties of bitumen, the introduction of surface active agents may significantly alter the bitumen foaming performance. The tests included basic performance tests of bitumen before and after foaming. The two tested bitumen were designated as 35/50 and 50/70 penetration grade binders, which were modified with a surface active agent widely used for improving mixture workability, compactibility and adhesion in a wide range of asphalt mixes and techniques, specifically Warm Mix Asphalt. Alongside to the reference unmodified bitumen, binders with 0.2%, 0.4% and 0.6% surface active agent concentration were tested. The analysis has shown a positive influence of the modifier on the foaming performance of both of the base bitumen increasing their maximum expansion ratio and bitumen foam halflife. In the investigations, it was found that the improvement was dependent on the bitumen type and modifier content. The improved expansion ratio and foam half-life has a positive impact on the aggregate coating and adhesion, which together with the adhesion promoting action of the modifier will have a combined positive effect on the quality of produced final asphalt mixes.

  13. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response

    NASA Astrophysics Data System (ADS)

    Samsudin, Emy Marlina; Hamid, Sharifah Bee Abd; Juan, Joon Ching; Basirun, Wan Jefrey; Kandjani, Ahmad Esmaielzadeh

    2015-12-01

    Preparation of highly photo-activated TiO2 is achievable by hydrogenation at constant temperature and pressure, with controlled hydrogenation duration. The formation of surface disorders and Ti3+ is responsible for the color change from white unhydrogenated TiO2 to bluish-gray hydrogenated TiO2. This color change, together with increased oxygen vacancies and Ti3+ enhanced the solar light absorption from UV to infra-red region. Interestingly, no band gap narrowing is observed. The photocatalytic activity in the UV and visible region is controlled by Ti3+ and oxygen vacancies respectively. Both Ti3+ and oxygen vacancies increases the electron density on the catalyst surface thus facilitates rad OH radicals formation. The lifespan of surface photo-excited electrons and holes are also sustained thus prevents charge carrier recombination. However, excessive amount of oxygen vacancies deteriorates the photocatalytic activity as it serves as charge traps. Hydrogenation of TiO2 also promotes the growth of active {0 0 1} facets and facilitates the photocatalytic activity by higher concentration of surface OH radicals. However, the growth of {0 0 1} facets is small and insignificant toward the overall photo-kinetics. This work also shows that larger role is played by Ti3+ and oxygen vacancies rather than the surface disorders created during the hydrogenation process. It also demonstrates the ability of hydrogenated TiO2 to absorb wider range of photons even though at a similar band gap as unhydrogenated TiO2. In addition, the photocatalytic activity is shown to be decreased for extended hydrogenation duration due to excessive catalyst growth and loss in the total surface area. Thus, a balance in the physico-chemical properties of hydrogenated TiO2 is crucial to enhance the photocatalytic activity by simply controlling the hydrogenation duration.

  14. Determinants of aerosol lung-deposited surface area variation in an urban environment.

    PubMed

    Reche, Cristina; Viana, Mar; Brines, Mariola; Pérez, Noemí; Beddows, David; Alastuey, Andrés; Querol, Xavier

    2015-06-01

    Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 μm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 μm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 μm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical regions of the human lung, followed by nucleation episodes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface

    PubMed Central

    Madeira, Petrus L. B.; Carvalho, Letícia T.; Paschoal, Marco A. B.; de Sousa, Eduardo M.; Moffa, Eduardo B.; da Silva, Marcos A. dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M.

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  16. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface.

    PubMed

    Madeira, Petrus L B; Carvalho, Letícia T; Paschoal, Marco A B; de Sousa, Eduardo M; Moffa, Eduardo B; da Silva, Marcos A Dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use.

  17. Determination of natural and artificial radioactivity in soil at North Lebanon province.

    PubMed

    El Samad, O; Baydoun, R; Nsouli, B; Darwish, T

    2013-11-01

    The concentrations of natural and artificial radionuclides at 57 sampling locations along the North Province of Lebanon are reported. The samples were collected from uncultivated areas in a region not previously reported. The samples were analyzed by gamma spectrometers with High Purity Germanium detectors of 30% and 40% relative efficiency. The activity concentrations of primordial naturally occurring radionuclides of (238)U, (232)Th, and (40)K varied between 4-73 Bq kg(-1), 5-50 Bq kg(-1), and 57-554 Bq kg(-1) respectively. The surface activity concentrations due to the presence of these radionuclides were calculated and Kriging-geostatistical method was used to plot the obtained data on the Lebanese radioactive map. The results for (238)U, (232)Th, and (40)K ranged from 0.2 kBq m(-2) to 9 kBq m(-2), from 0.2 kBq m(-2) to 3 kBq m(-2), and from 3 kBq m(-2) to 29 kBq m(-2) respectively. For the anthropogenic radionuclides, the activity concentrations of (137)Cs founded in soil ranged from 2 Bq kg(-1) to 113 Bq kg(-1), and the surface activity concentration from 0.1 kBq m(-2) to 5 kBq m(-2). The total absorbed gamma dose rates in air from natural and artificial radionuclides in these locations were calculated. The minimum value was 6 nGy h(-1) and the highest one was 135 nGy h(-1) with an average of 55 nGy h(-1) in which the natural terrestrial radiation contributes in 99% and the artificial radionuclides mainly (137)Cs contributes only in 1%. The total effective dose calculated varied in the range of 7 μSv y(-1) and 166 μSv y(-1) while the average value was 69 μSv y(-1) which is below the permissible limit 1000 μSv y(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Intercomparison of retrospective radon detectors.

    PubMed Central

    Field, R W; Steck, D J; Parkhurst, M A; Mahaffey, J A; Alavanja, M C

    1999-01-01

    We performed both a laboratory and a field intercomparison of two novel glass-based retrospective radon detectors previously used in major radon case-control studies performed in Missouri and Iowa. The new detectors estimate retrospective residential radon exposure from the accumulation of a long-lived radon decay product, (210)Pb, in glass. The detectors use track registration material in direct contact with glass surfaces to measure the alpha-emission of a (210)Pb-decay product, (210)Po. The detector's track density generation rate (tracks per square centimeter per hour) is proportional to the surface alpha-activity. In the absence of other strong sources of alpha-emission in the glass, the implanted surface alpha-activity should be proportional to the accumulated (210)Po, and hence to the cumulative radon gas exposure. The goals of the intercomparison were to a) perform collocated measurements using two different glass-based retrospective radon detectors in a controlled laboratory environment to compare their relative response to implanted polonium in the absence of environmental variation, b) perform collocated measurements using two different retrospective radon progeny detectors in a variety of residential settings to compare their detection of glass-implanted polonium activities, and c) examine the correlation between track density rates and contemporary radon gas concentrations. The laboratory results suggested that the materials and methods used by the studies produced similar track densities in detectors exposed to the same implanted (210)Po activity. The field phase of the intercomparison found excellent agreement between the track density rates for the two types of retrospective detectors. The correlation between the track density rates and direct contemporary radon concentration measurements was relatively high, considering that no adjustments were performed to account for either the residential depositional environment or glass surface type. Preliminary comparisons of the models used to translate track rate densities to average long-term radon concentrations differ between the two studies. Further calibration of the retrospective detectors' models for interpretation of track rate density may allow the pooling of studies that use glass-based retrospective radon detectors to determine historic residential radon exposures. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10545336

  19. Ultrafine and respirable particle exposure during vehicle fire suppression

    PubMed Central

    Fent, Kenneth W.

    2015-01-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews’ potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures. PMID:26308547

  20. Ultrafine and respirable particle exposure during vehicle fire suppression.

    PubMed

    Evans, Douglas E; Fent, Kenneth W

    2015-10-01

    Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews' potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures.

Top