Mnisi, Robert Londi; Ndibewu, Peter Papoh
2017-11-04
The bark of Moringa oleifera, a cheap and readily available natural biopolymeric resource material, found to significantly reduce coliform load and turbidity in contaminated water is investigated in this paper. Its surface and adsorptive properties are investigated to explore its adsorptive potential in removing V(V) from aqueous solutions. Surface properties were investigated using FTIR, HRSEM/EDS, IC, and BET-N 2 adsorption techniques. Adsorptive properties were investigated by optimizing adsorption parameters such as pH, temperature, initial metal concentration, and adsorbent dosage, using V(V) as an adsorbate. The adsorption-desorption isotherms are typical of type II with a H3 hysteresis loop and is characteristic of a largely macroporous material. Bottle ink pores are observed, which can provide good accessibility of the active sites, even though the internal BET surface area is typically low (1.79 g/m 2 ). Solution pH significantly influences the adsorptive potential of the material. The low surface area negatively impacts on the adsorption capacity, but is compensated for by the exchangeable anions (Cl - , F - , PO 4 3- , NO 3 - , and SO 4 2- ) and cations (Ca 2+ , K + , Mg 2+ , and Al 3+ ) at the surface and the accessibility of the active sites. Adsorption isotherm modeling show that the surface is largely heterogeneous with complex multiple sites and adsorption is not limited to monolayer.
Adsorption properties for urokinase on local diatomite surface
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Zhang, Jianbo; Yang, Weimin; Wu, Jieda; Chen, Rongsan
2003-02-01
In this paper, adsorption isotherm of urokinase on two typical local diatomites were determined at 25 °C and their surface electrical potentials (ζ), isoelectrical point values (IEP) were determined. The properties of diatomites, the relationship among diatomite structure, pore-size distribution, surface ζ and adsorption isotherm were discussed. The adsorption equation of urokinase was calculated from the adsorption isotherm. The adsorption mode of urokinase on diatomite surface was judged by the configuration function α. The relationship between the amount of adsorbed urokinase and IEP value was also discussed.
Study of Cs/NF3 adsorption on GaN (0 0 1) surface
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike
2017-03-01
To investigate the optoelectronics properties of Cs/NF3 adsorption on GaN (0 0 1) photocathode surface, different adsorption models of Cs-only, Cs/O, Cs/NF3 adsorption on GaN clean surface were established, respectively. Atomic structures, work function, adsorption energy, E-Mulliken charge distribution, density of states and optical properties of all these adsorption systems were calculated using first principles. Compared with Cs/O co-adsorption, Cs/NF3 co-adsorption show better stability and more decline of work function, which is more beneficial for photoemission efficiency. Besides, surface band structures of Cs/NF3 co-adsorption system exhibit metal properties, implying good conductivity. Meanwhile, near valence band minimum of Cs/NF3 co-adsorption system, more acceptor levels emerges to form a p-type emission surface, which is conductive to the escape of photoelectrons. In addition, imaginary part of dielectric function curve and absorption curve of Cs/NF3 co-adsorption system both move towards lower energy side. This work can direct the optimization of activation process of NEA GaN photocathode.
Designing transition metal surfaces for their adsorption properties and chemical reactivity
NASA Astrophysics Data System (ADS)
Montemore, Matthew M.
Many technological processes, such as catalysis, electrochemistry, corrosion, and some materials synthesis techniques, involve molecules bonding to and/or reacting on surfaces. For many of these applications, transition metals have proven to have excellent chemical reactivity, and this reactivity is strongly tied to the surface's adsorption properties. This thesis focuses on predicting adsorption properties for use in the design of transition metal surfaces for various applications. First, it is shown that adsorption through a particular atom (e.g, C or O) can be treated in a unified way. This allows predictions of all C-bound adsorbates from a single, simple adsorbate, such as CH3. In particular, consideration of the adsorption site can improve the applicability of previous approaches, and gas-phase bond energies correlate with adsorption energies for similarly bound adsorbates. Next, a general framework is presented for understanding and predicting adsorption through any atom. The energy of the adsorbate's highest occupied molecular orbital (HOMO) determines the strength of the repulsion between the adsorbate and the surface. Because adsorbates with similar HOMO energies behave similarly, their adsorption energies correlate. This can improve the efficiency of predictions, but more importantly it constrains catalyst design and suggests strategies for circumventing these constraints. Further, the behavior of adsorbates with dissimilar HOMO energies varies in a systematic way, allowing predictions of adsorption energy differences between any two adsorbates. These differences are also useful in surface design. In both of these cases, the dependence of adsorption energies on surface electronic properties is explored. This dependence is used to justify the unified treatments mentioned above, and is used to gain further insight into adsorption. The properties of the surface's d band and p band control variations in adsorption energy, as does the strength of the adsorbate-surface coupling. A single equation, with only a single adsorbate-dependent fitting parameter as well as a few universal fitting parameters, is developed that can predict the adsorption energy of any radical on any close-packed transition metal surface. The surface electronic properties that are input into this equation can be estimated based on the alloy structure of the surface, improving prospects for high-throughput screening and rational catalyst design. The methods discussed in this thesis are used to design a novel catalyst for ethylene epoxidation, which is experimentally synthesized and tested. Initial tests indicate that this catalyst may have improved selectivity over pure Ag.
Grenoble, Zlata; Baldelli, Steven
2013-08-29
The adsorption of the cationic surfactant benzyldimethylhexadecylammonium (BDMHA(+)) chloride was studied at an octadecyltrichlorosilane (OTS)-monolayer-modified silica-water interface by Raman spectroscopy in total internal reflection (TIR) geometry. The present study demonstrates the capabilities of this spectroscopic technique to evaluate thermodynamic and kinetic BDMHA(+)Cl(-) adsorption properties at the hydrophobic silica surface. The surface coverage of BDMHA(+) decreased by 50% at the hydrophobic OTS-silica surface relative to the surface coverage on bare silica; the dominating driving mechanisms for surfactant adsorption were identified as hydrophobic effects and head group charge screening by the electrolyte counterions. Addition of magnesium metal salt (MgCl2) to the aqueous solution (∼ neutral pH) lowered the surface coverage and moderately increased the Langmuir adsorption constants relative to those of the pure surfactant. These trends were previously observed at the hydrophilic, negatively charged silica surface but with a smaller change in the Gibbs free energy of adsorption at the hydrophobic silica surface. The hydrophobic OTS-silica surface properties resulted in shorter times for the surfactant to reach steady-state adsorption conditions compared to the slow adsorption kinetics previously seen with the surfactant at the hydrophilic surface. Adsorption isotherms, based on Raman signal intensities from spectral analysis, were developed according to the Langmuir adsorption model for the pure surfactant at the OTS-silica-water interface; the modified Langmuir model was applied to the surfactant adsorption in the presence of 5, 10, 50, and 100 mM magnesium chloride. Spectral analysis of the Raman scattering intensities and geometric considerations suggests a hemimicelle-type surface aggregate as the most likely surfactant structure at the OTS-silica surface. The different kinetics observed at the hydrophilic versus the hydrophobic silica surface further indicate that the surface charge and potential influence the surfactant diffusion and kinetic rates of adsorption at the silica-water interface.
Liu, Shou-Xin; Chen, Xi; Zhang, Xian-Quan
2008-05-01
Commercial activated carbon was treated by HNO3 oxidation and then subsequently heat treated under N2 atmosphere. Effect of surface chemical properties and pore structure on the adsorption performance of nitrobenzene was investigated. N2/77K adsorption isotherm and scanning electron microscopy (SEM) were used to characterize the pore structure and surface morphology of carbon. Boehm titration, Fourier transform infrared spectroscopy (FTIR), the point of zero charge (pH(PZC)) measurement and elemental analysis were used to characterize the surface properties. The results reveal that HNO3 oxidation can modify the surface chemical properties, increase the number of acidic surface oxygen-containing groups and has trivial effect on the pore structure of carbon. Further heat treatment can cause the decomposition of surface oxygen-containing groups, and increase the external surface area and the number of mesopores. Adsorption capacity of nitrobenzene on AC(NO-T), AC(raw) and AC(NO) was 1011.31, 483.09 and 321.54 mg x g(-1), respectively. Larger external surface area and the number of meso-pores, together with the less acid surface oxygen-containing groups were the main reason for the larger adsorption capacity AC(NO-T).
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya Ashi; Chan-Thaw, Carine E.; Sutton, Jonathan E.
The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent withmore » the microkinetic modeling.« less
Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.
Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N
2016-09-15
The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.
2017-06-01
Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.
The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei
2018-07-01
In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.
Temporal changes in nitrogen adsorption properties of single-walled carbon nanotubes
Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.
2004-01-01
Temporal evolution of N2 adsorption (77 K) properties of as-produced and purified single-walled nanotubes (SWNTs) samples is described here. The N2 adsorption isotherms are used to characterize the samples' surface areas and porosities. The as-produced samples demonstrate a temporal increase in surface area and pore volumes for up to 16 months. The purified samples, however, reached their stable values of surface area and pore volumes within four to seven months. N2 adsorption capacity of the purified SWNTs also increased when the fresh samples were subjected to thermal pre-processing, with diminishing changes in adsorption capacity with increased age. These observations indicate that the freshly prepared SWNTs, both as-produced and purified, were in an unstable state with their porosity changing with increasing sample age and thermal treatments. It is hypothesized that SWNTs undergo slow but progressive changes in their surface chemistry which causes their N2 adsorption properties to change over several months. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Chaojun; Liang, Xiaoyi; Liu, Xiaojun; Wang, Qin; Zhan, Liang; Zhang, Rui; Qiao, Wenming; Ling, Licheng
2008-08-01
Surface chemistry of pitch-based spherical activated carbon (PSAC) was modified by chemical vapor deposition of NH 3 (NH 3-CVD) to improve the adsorption properties of uric acid. The texture and surface chemistry of PSAC were studied by N 2 adsorption, pH PZC (point of zero charge), acid-base titration and X-ray photoelectron spectroscopy (XPS). NH 3-CVD has a limited effect on carbon textural characteristics but it significantly changed the surface chemical properties, resulting in positive effects on uric acid adsorption. After modification by NH 3-CVD, large numbers of nitrogen-containing groups (especially valley-N and center-N) are introduced on the surface of PSAC, which is responsible for the increase of pH PZC, surface basicity and uric acid adsorption capacity. Pseudo-second-order kinetic model can be used to describe the dynamic adsorption of uric acid on PSAC, and the thermodynamic parameters show that the adsorption of uric acid on PSAC is spontaneous, endothermic and irreversible process in nature.
Chen, Wei-Chieh; Nachimuthu, Santhanamoorthi; Jiang, Jyh-Chiang
2017-07-10
Determining an ideal adsorption configuration for a dye on the semiconductor surface is an important task in improving the overall efficiency of dye-sensitized solar cells. Here, we present a detailed investigation of different adsorption configurations of designed model dyes on TiO 2 anatase (101) surface using first principles methods. Particularly, we aimed to investigate the influence of cyano group in the anchoring part of dye on its adsorption stability and the overall photovoltaic properties such as open circuit voltage, electron injection ability to the surface. Our results indicate that the inclusion of cyano group increases the stability of adsorption only when it adsorbs via CN with the surface and it decreases the photovoltaic properties when it does not involve in binding. In addition, we also considered full dyes based on the results of model dyes and investigated the different strength of acceptor abilities on stability and electron injection ability. Among the various adsorption configurations considered here, the bidentate bridging mode (A3) is more appropriate one which has higher electron injection ability, larger V OC value and more importantly it has higher dye loading on the surface.
NASA Astrophysics Data System (ADS)
Guo, Shusen; Cao, Yongzhi; Sun, Tao; Zhang, Junjie; Gu, Le; Zhang, Chuanwei; Xu, Zhiqiang
2018-05-01
Molecular dynamics (MD) simulations were used to provide insights into the influence of nano-scale surface morphology on adsorptive behavior of Potassium stearate molecules on diamond-like carbon (DLC) substrates. Particular focus was given to explain that how the distinctive geometric properties of different surface morphologies affect the equilibrium structures and substrate-molecules interactions of monolayers, which was achieved through adsorptive analysis methods including adsorptive process, density profile, density distribution and surface potential energy. Analysis on surface potential energy demonstrated that the adsorptivity of amorphous smooth substrate is uniformly distributed over the surface, while DLC substrates with different surface morphologies appear to be more potentially corrugated, which improves the adsorptivity significantly. Because of the large distance of molecules from carbon atoms located at the square groove bottom, substrate-molecules interactions vanish significantly, and thus potassium stearate molecules cannot penetrate completely into the square groove. It can be observed that the equilibrium substrate-molecules interactions of triangle groove and semi-circle groove are much more powerful than that of square groove due to geometrically advantageous properties. These findings provided key information of optimally design of solid substrates with controllable adsorptivity.
Lima, Isabel; Marshall, Wayne E
2005-01-01
The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.
Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael
2016-11-01
A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling adsorption: Investigating adsorbate and adsorbent properties
NASA Astrophysics Data System (ADS)
Webster, Charles Edwin
1999-12-01
Surface catalyzed reactions play a major role in current chemical production technology. Currently, 90% of all chemicals are produced by heterogeneously catalyzed reactions. Most of these catalyzed reactions involve adsorption, concentrating the substrate(s) (the adsorbate) on the surface of the solid (the adsorbent). Pore volumes, accessible surface areas, and the thermodynamics of adsorption are essential in the understanding of solid surface characteristics fundamental to catalyst and adsorbent screening and selection. Molecular properties such as molecular volumes and projected molecular areas are needed in order to convert moles adsorbed to surface volumes and areas. Generally, these molecular properties have been estimated from bulk properties, but many assumptions are required. As a result, different literature values are employed for these essential molecular properties. Calculated molar volumes and excluded molecular areas are determined and tabulated for a variety of molecules. Molecular dimensions of molecules are important in the understanding of molecular exclusion as well as size and shape selectivity, diffusion, and adsorbent selection. Molecular dimensions can also be used in the determination of the effective catalytic pore size of a catalyst. Adsorption isotherms, on zeolites, (crystalline mineral oxides) and amorphous solids, can be analyzed with the Multiple Equilibrium Analysis (MEA) description of adsorption. The MEA produces equilibrium constants (Ki), capacities (ni), and thermodynamic parameters (enthalpies, ΔHi, and entropies, ΔSi) of adsorption for each process. Pore volumes and accessible surface areas are calculated from the process capacities. Adsorption isotherms can also be predicted for existing and new adsorbate-adsorbent systems with the MEA. The results show that MEA has the potential of becoming a standard characterization method for microporous solids that will lead to an increased understanding of their behavior in gas adsorption and catalysis. These studies are also applicable to environmental cleanup applications, such as waste stream purification and separation procedures as well as decontamination of chemical warfare agents.
Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun
2018-04-01
Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.
Rosenzweig, Shirley; Sorial, George A; Sahle-Demessie, Endalkachew; McAvoy, Drew C
2014-08-30
Systematic experiments of copper adsorption on 10 different commercially available nanomaterials were studied for the influence of physical-chemical properties and their interactions. Design of experiment and response surface methodology was used to develop a polynomial model to predict maximum copper adsorption (initial concentration, Co=10mg/L) per mass of nanomaterial, qe, using multivariable regression and maximum R-square criterion. The best subsets of properties to predict qe in order of significant contribution to the model were: bulk density, ID, mesopore volume, tube length, pore size, zeta-charge, specific surface area and OD. The highest experimental qe observed was for an alcohol-functionalized MWCNT (16.7mg/g) with relative high bulk density (0.48g/cm(3)), ID (2-5nm), 10-30μm long and OD<8nm. Graphene nanoplatelets (GNP) showed poor adsorptive capacity associated to stacked-nanoplatelets, but good colloidal stability due to high functionalized surface. Good adsorption results for pristine SWCNT indicated that tubes with small diameter were more associated with good adsorption than functionalized surface. XPS and ICP analysis explored surface chemistry and purity, but pHpzc and zeta-charge were ultimately applied to indicate the degree of functionalization. Optimum CNT were identified in the scatter plot, but actual manufacturing processes introduced size and shape variations which interfered with final property results. Copyright © 2014 Elsevier B.V. All rights reserved.
Omanovic-Miklicanin, Enisa; Valzacchi, Sandro; Simoneau, Catherine; Gilliland, Douglas; Rossi, Francois
2014-10-01
A complete characterization of the different physico-chemical properties of nanoparticles (NPs) is necessary for the evaluation of their impact on health and environment. Among these properties, the surface characterization of the nanomaterial is the least developed and in many cases limited to the measurement of surface composition and zetapotential. The biological surface adsorption index approach (BSAI) for characterization of surface adsorption properties of NPs has recently been introduced (Xia et al. Nat Nanotechnol 5:671-675, 2010; Xia et al. ACS Nano 5(11):9074-9081, 2011). The BSAI approach offers in principle the possibility to characterize the different interaction forces exerted between a NP's surface and an organic--and by extension biological--entity. The present work further develops the BSAI approach and optimizes a solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) method which, as an outcome, gives a better-defined quantification of the adsorption properties on NPs. We investigated the various aspects of the SPME/GC-MS method, including kinetics of adsorption of probe compounds on SPME fiber, kinetic of adsorption of probe compounds on NP's surface, and optimization of NP's concentration. The optimized conditions were then tested on 33 probe compounds and on Au NPs (15 nm) and SiO2 NPs (50 nm). The procedure allowed the identification of three compounds adsorbed by silica NPs and nine compounds by Au NPs, with equilibrium times which varied between 30 min and 12 h. Adsorption coefficients of 4.66 ± 0.23 and 4.44 ± 0.26 were calculated for 1-methylnaphtalene and biphenyl, compared to literature values of 4.89 and 5.18, respectively. The results demonstrated that the detailed optimization of the SPME/GC-MS method under various conditions is a critical factor and a prerequisite to the application of the BSAI approach as a tool to characterize surface adsorption properties of NPs and therefore to draw any further conclusions on their potential impact on health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Gang; Otuonye, Amy N.; Blair, Elizabeth A.
2009-07-15
The adsorption capacity and release properties of mesoporous materials for drug molecules can be improved by functionalizing their surfaces with judiciously chosen organic groups. Functionalized ordered mesoporous materials containing various types of organic groups via a co-condensation synthetic method from 15% organosilane and by post-grafting organosilanes onto a pre-made mesoporous silica were synthesized. Comparative studies of their adsorption and release properties for various model drug molecules were then conducted. Functional groups including 3-aminopropyl, 3-mercaptopropyl, vinyl, and secondary amine groups were used to functionalize the mesoporous materials while rhodamine 6G and ibuprofen were utilized to investigate the materials' relative adsorption andmore » release properties. The self-assembly of the mesoporous materials was carried out in the presence of cetyltrimethylammonium bromide (CTAB) surfactant, which produced MCM-41 type materials with pore diameters of {approx}2.7-3.3 nm and moderate to high surface areas up to {approx}1000 m{sup 2}/g. The different functional groups introduced into the materials dictated their adsorption capacity and release properties. While mercaptopropyl and vinyl functionalized samples showed high adsorption capacity for rhodamine 6G, amine functionalized samples exhibited higher adsorption capacity for ibuprofen. While the diffusional release of ibuprofen was fitted on the Fickian diffusion model, the release of rhodamine 6G followed Super Case-II transport model. - Graphical abstract: The adsorption capacity and release properties of mesoporous materials for various drug molecules are tuned by functionalizing the surfaces of the materials with judiciously chosen organic groups. This work reports comparative studies of the adsorption and release properties of functionalized ordered mesoporous materials containing different hydrophobic and hydrophilic groups that are synthesized via a co-condensation and post-grafting methods for various model drug molecules.« less
Phosphate uptake studies of cross-linked chitosan bead materials.
Mahaninia, Mohammad H; Wilson, Lee D
2017-01-01
A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO 4 2- ) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO 4 2- uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO 4 2- species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Q m ) of bead systems with HPO 4 2- at equilibrium was 52.1mgg -1 ; whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min -1 ) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghouma, Imen; Limousy, Lionel; Bennici, Simona
2018-01-01
The textural properties and surface chemistry of different activated carbons, prepared by the chemical activation of olive stones, have been investigated in order to gain insight on the NO2 adsorption mechanism. The parent chemical activated carbon was prepared by the impregnation of olive stones in phosphoric acid followed by thermal carbonization. Then, the textural properties and surface chemistry were modified by chemical treatments including nitric acid, sodium hydroxide and/or a thermal treatment at 900 °C. The main properties of the parent and modified activated carbons were analyzed by N2-adsorption, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques, in order to enlighten the modifications issued from the chemical and thermal treatments. The NO2 adsorption capacities of the different activated carbons were measured in fixed bed experiments under 500 ppmv NO2 concentrations at room temperature. Temperature programmed desorption (TPD) was applied after adsorption tests in order to quantify the amount of the physisorbed and chemisorbed NO2. The obtained results showed that the development of microporosity, the presence of oxygen-free sites, and the presence of basic surface groups are key factors for the efficient adsorption of NO2. PMID:29670008
Effects of oxygen chemical potential on the anisotropy of the adsorption properties of Zr surfaces.
Zhang, Hai-Hui; Xie, Yao-Ping; Yao, Mei-Yi; Xu, Jing-Xiang; Zhang, Jin-Long; Hu, Li-Juan
2018-05-30
The anisotropy of metal oxidation is a fundamental issue, and the oxidation of Zr surfaces also attracts much attention due to the application of Zr alloys as cladding materials for nuclear fuels in nuclear power plants. In this study, we systematically investigate the diagram of O adsorption on low Miller index Zr surfaces by using first-principles calculations based on density functional theory calculations. We find that O adsorption on the basal surface, Zr(0001), is more favourable than that on the prism surfaces, Zr(112[combining macron]0) and Zr(101[combining macron]0), under strong O-reducing conditions, while O adsorption on the prism surface is more favourable than that of the basal surface under weak O-reducing conditions and the O-rich conditions. Our findings reveal that the anisotropy of adsorption properties of O on the Zr surfaces is dependent on the O chemical potential in the environment. Furthermore, the ability of the prism for O adsorption is stronger than that of the basal surface under the O-rich condition, which is consistent with the experimental observation that the oxidation of the prism Zr surface is easier than that of the basal surface. Systematic surveys show the adsorption ability of the surface under strong O-reducing conditions is determined by the low coordination numbers of surface atoms and surface geometrical structures, while the adsorption ability of the surface under weak O-reducing conditions and O-rich conditions is only determined by the low coordination number of surface atoms. These results can provide an atomic scale understanding of the initial oxidation of Zr surfaces, which inevitably affects the growth of protective passivation layers that play critical roles in the corrosion resistance of Zr cladding materials.
Unusual Entropy of Adsorbed Methane on Zeolite-Templated Carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadie, Nicholas P.; Murialdo, Maxwell; Ahn, Channing C.
2015-11-25
Methane adsorption at high pressures and across a wide range of temperatures was investigated on the surface of three porous carbon adsorbents with complementary structural properties. The measured adsorption equilibria were analyzed using a method that can accurately account for nonideal fluid properties and distinguish between absolute and excess quantities of adsorption, and that also allows the direct calculation of the thermodynamic potentials relevant to adsorption. On zeolite-templated carbon (ZTC), a material that exhibits extremely high surface area with optimal pore size and homogeneous structure, methane adsorption occurs with unusual thermodynamic properties that are greatly beneficial for deliverable gas storage:more » an enthalpy of adsorption that increases with site occupancy, and an unusually low entropy of the adsorbed phase. The origin of these properties is elucidated by comparison of the experimental results with a statistical mechanical model. The results indicate that temperature-dependent clustering (i.e., reduced configurations) of the adsorbed phase due to enhanced lateral interactions can account for the peculiarities of methane adsorbed on ZTC.« less
Recent studies on activated carbons and fly ashes from Turkish resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayhan Demirbas; Gulsin Arslan; Erol Pehlivan
2006-05-15
This article deals with adsorptive properties of activated carbons (ACs) and fly ashes from Turkish coal and biomass resources. ACs because of their high surface area, microporous character and the chemical nature of their surface have been considered potential adsorbents for the removal of heavy metals from industrial wastewater. Pyrolysis is an established process method for preparation of activated carbon from biomass. The bio-char is can be used as AC. The adsorption properties of ACs were strictly defined by the physicochemical nature of their surface and their texture, i.e., pore volume, pore size distribution, surface area. It is well knownmore » that the pH of the solution-adsorbant mixture is an important variable in the adsorption process. Fly ash has the highest adsorption capacity (198.2 mg/g for Cd(II)). Almond shell AC has the lowest adsorption capacity (2.7 mg/g).« less
NASA Astrophysics Data System (ADS)
Guo, Shiguang; Zhang, Jianghua; Shao, Mingxue; Zhang, Xia; Liu, Yufeng; Xu, Junli; Meng, Hao; Han, Yide
2015-04-01
Surface functionalized nanoparticles are efficient adsorbents which have shown good potential for protein separation. In this work, we chose two different types of organic molecules, oleic acid (OA) and 3-glycidoxypropyltrimethoxy silane (GPTMS), to functionalize the surface of TiO2 nanoparticles, and we studied the effects of this modification on their surface physicochemical properties in correlation with their selective adsorption of proteins. The results showed that the surface zeta potential and the surface water wettability of the modified TiO2 were significantly changed in comparison with the original TiO2 nanoparticles. The adsorption activities of bovine hemoglobin (BHb) and bovine serum albumin (BSA) on these functionalized TiO2 samples were investigated under different conditions, including pH values, contact time, ion strength, and initial protein concentration. In comparison with the non-specific adsorption of original TiO2, however, both the OA-TiO2 and GPTMS-TiO2 exhibited increased BHb adsorption and decreased BSA adsorption at the same time. Using a binary protein mixture as the adsorption object, a higher separation factor (SF) was obtained for OA-TiO2 under optimum conditions. The different adsorption activities of BHb and BSA on the modified TiO2 were correlated with different interactions at the protein/solid interface, and the chemical force as well as the electrostatic force played an important role in the selective adsorption process.
Oxygen adsorption on the Al0.25Ga0.75N (0001) surface: A first-principles study
NASA Astrophysics Data System (ADS)
Fu, Jiaqi; Song, Tielei; Liang, Xixia; Zhao, Guojun
2018-04-01
To understand the interaction mechanism for the oxygen adsorption on AlGaN surface, herein, we built the possible models of oxygen adsorption on Al0.25Ga0.75N (0001) surface. For different oxygen coverage, three kinds of adsorption site are considered. Then the favorable adsorption sites are characterized by first principles calculation for (2 × 2) supercell of Al0.25Ga0.75N (0001) surface. On basis of the optimal adsorption structures, our calculated results show that all the adsorption processes are exothermic, indicating that the (0001) surface orientation is active towards the adsorption of oxygen. The doping of Al is advantage to the adsorption of O atom. Additionally, the adsorption energy decreases with reducing the oxygen coverage, and the relationship between them is approximately linear. Owing to the oxygen adsorption, the surface states in the fundamental band gap are significant reduced with respect to the free Al0.25Ga0.75N (0001) surface. Moreover, the optical properties on different oxygen coverage are also discussed.
Bile salts at the air-water interface: adsorption and desorption.
Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A
2014-08-01
Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.
Tailoring pore properties of MCM-48 silica for selective adsorption of CO2.
Kim, Sangil; Ida, Junichi; Guliants, Vadim V; Lin, Jerry Y S
2005-04-07
Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.
NO adsorption on ice at low concentrations
Richard A. Sommerfeld; Martha H. Conklin; S. Kay Laird
1992-01-01
To better understand the properties of ice surfaces at different temperatures, the adsorption of a relatively insoluble gas, NO, was studied using a continuous-flow column experiment. Adsorption isotherms for NO on the surface of ice were measured for a temperature range of-1 to -70°C and a concentration range of 10 to 250 ppbv. Very little adsorption was measured;...
The paper gives results of a characterization of the physical and chemical properties of the activated carbons used for elemental mercury (Hgo) adsorption, in order to understand the role of oxygen surface functional groups on the mechanism of Hgo adsorption by activated carbons....
Li, Qiu-mei; Chen, Jing; Li, Hai-ning; Zhang, Xiao-lei; Zhang, Gao-sheng
2015-12-01
In order to reveal the relationship between the adsorption performance of adsorbents and their compositions, structure, and surface properties, the core-shell structured Fe₃O₄/MnO2 and Fe-Mn/Mn₂2 magnetic particles were systematically characterized using multiple techniques and their Cu adsorption behaviors as well as mechanism were also investigated in details. It was found that both Fe₃O4 and Fe-Mn had spinel structure and no obvious crystalline phase change was observed after coating with MnO₂. The introduction of Mn might improve the affinity between the core and the shell, and therefore enhanced the amount and distribution uniformity of the MnO₂ coated. Consequently, Fe-Mn/MnO₂ exhibited a higher BET specific surface area and a lower isoelectric point. The results of sorption experiments showed that Fe-Mn had a higher maximal Cu adsorption capacity of 33.7 mg · g⁻¹ at pH 5.5, compared with 17.5 mg · g⁻¹ of Fe₃O4. After coating, the maximal adsorption capacity of Fe-Mn/MnO₂ was increased to 58.2 mg · g⁻¹, which was 2.6 times as high as that of Fe₃O₄/MnO₂ and outperformed the majority of magnetic adsorbents reported in literature. In addition, a specific adsorption of Cu occurred at the surface of Fe₃O₄/MnO₂ or Fe-Mn/MnO₂ through the formation of inner-sphere complexes. In conclusion, the adsorption performance of the magnetic particles was positively related to their compositions, structure, and surface properties.
NASA Astrophysics Data System (ADS)
Wei, Shiqian; Wang, Fang; Dan, Meng; Zeng, Kaiyue; Zhou, Ying
2017-11-01
In this work, spin-polarized DFT + U method has been employed to investigate adsorption properties of H2S on the rutile TiO2 (110) surface with a high coverage of bridging oxygen vacancies (BOVs). The influence of different BOV coverage (θ-BOVs) on the surface electronic structure is examined. Defected states increase within the band gap with θ-BOVs increasing from 1/8 to 4/8 monolayer (ML). The high defected surface with θ-BOVs = 4/8 ML is determined to have a desired band structure and noticeable visible light response. In addition, H2S adsorption behaviors are noticeably affected by different H2S coverage (θ-H2S). Particularly, it is found molecular adsorption at θ-H2S ≤ 1/8 ML and dissociative adsorption at the higher θ-H2S. The maximization of spontaneous dissociation of H2S can be realized when the BOVs are all covered by H2S molecules. This work gains mechanistic insights into BOVs in tuning the surface properties and provides a guide for the effective utilization of the active surface sites on the rutile TiO2 (110) in the field of H2S splitting.
NASA Astrophysics Data System (ADS)
Fan, Yaming; Zhuo, Yuqun; Li, Liangliang
2017-10-01
SeO2 adsorption mechanisms on CaO surface were firstly investigated by both density functional theory (DFT) calculations and adsorption experiments. Adsorption of multiple SeO2 on the CaO (001) surface was investigated using slab model. Based on the results of adsorption energy and surface property, a double-layer adsorption mechanisms were proposed. In experiments, the SeO2 adsorption products were prepared in a U-shaped quartz reactor at 200 °C. The surface morphology was investigated by field emission scanning electron microscopy (FE-SEM). The superficial and total SeO2 mass fractions were measured by X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES), respectively. The surface valence state and bulk structure are determined by XPS and X-Ray Diffraction (XRD). The experimental results are in good agreement with the DFT results. In conclusion, the fundamental SeO2 chemisorption mechanisms on CaO surface were suggested.
Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment.
Visa, Maria; Andronic, Luminita; Duta, Anca
2015-03-01
This paper reports on the synthesis, characterization and adsorption properties of a novel nano-composite obtained using the hydrothermal method applied to a fly ash-TiO2 slurry and hexadecyltrimethyl-ammonium bromide, as surface controlling agent. The new adsorbent was investigated in terms of crystallinity (XRD), surface properties (AFM, SEM, and porosity and BET surface) and surface chemistry (EDX, FTIR). The nanocomposite's properties were sequentially tested in adsorption and photocatalysis processes applied to multi-pollutant synthetic wastewaters loaded with copper cations and two industrial dyes: the acid dye Bemacid Blau and the reactive dye Bemacid Rot; the nano-composite substrate allowed reaching high removal efficiencies, above 90%, both in adsorption and in photodegradation experiments, in optimised conditions. Copyright © 2014. Published by Elsevier Ltd.
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Uematsu, Yuki; Netz, Roland R.; Bonthuis, Douwe Jan
2018-02-01
Using a box profile approximation for the non-electrostatic surface adsorption potentials of anions and cations, we calculate the differential capacitance of aqueous electrolyte interfaces from a numerical solution of the Poisson-Boltzmann equation, including steric interactions between the ions and an inhomogeneous dielectric profile. Preferential adsorption of the positive (negative) ion shifts the minimum of the differential capacitance to positive (negative) surface potential values. The trends are similar for the potential of zero charge; however, the potential of zero charge does not correspond to the minimum of the differential capacitance in the case of asymmetric ion adsorption, contrary to the assumption commonly used to determine the potential of zero charge. Our model can be used to obtain more accurate estimates of ion adsorption properties from differential capacitance or electrocapillary measurements. Asymmetric ion adsorption also affects the relative heights of the characteristic maxima in the differential capacitance curves as a function of the surface potential, but even for strong adsorption potentials the effect is small, making it difficult to reliably determine the adsorption properties from the peak heights.
Zhi, Lee Lin; Zaini, Muhammad Abbas Ahmad
2017-02-01
This work was aimed to evaluate the feasibility of castor bean residue based activated carbons prepared through metals chloride activation. The activated carbons were characterized for textural properties and surface chemistry, and the adsorption data of rhodamine B were established to investigate the removal performance. Zinc chloride-activated carbon with specific surface area of 395 m 2 /g displayed a higher adsorption capacity of 175 mg/g. Magnesium chloride and iron(III) chloride are less toxic and promising agents for composite chemical activation. The adsorption data obeyed Langmuir isotherm and pseudo-second-order kinetics model. The rate-limiting step in the adsorption of rhodamine B is film diffusion. The positive values of enthalpy and entropy indicate that the adsorption is endothermic and spontaneous at high temperature.
Chen, Ran; Riviere, Jim E
2017-01-01
Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
Adsorption properties of AlN on Si(111) surface: A density functional study
NASA Astrophysics Data System (ADS)
Yuan, Yinmei; Zuo, Ran; Mao, Keke; Tang, Binlong; Zhang, Zhou; Liu, Jun; Zhong, Tingting
2018-04-01
In the process of preparing GaN on Si substrate by MOCVD, an AlN buffer layer is very important. In this study, we conducted density functional theory calculations on the adsorption of AlN molecule on Si(111)-(2 × 2) surface, with the AlN molecule located horizontally or vertically above Si(111) surface at different adsorption sites. The calculations revealed that the lowest adsorption energy was at the N-top-Al-bridge site in the horizontal configuration, with the narrowest band gap, indicating that it was the most preferential adsorption growth status of AlN. In the vertical configurations, N adatom was more reactive and convenient to form bonds with the topmost Si atoms than Al adatom. When the N-end of the AlN molecule was located downward, the hollow site was the preferred adsorption site; when the Al-end was located downward, the bridge site was the most energetically favorable. Moreover, we investigated some electronic properties such as partial density of states, electron density difference, Mulliken populations, etc., revealing the microscale mechanism for AlN adsorption on Si(111) surface and providing theoretical support for adjusting the processing parameters during AlN or GaN production.
Adsorption of cyanogen chloride on the surface of boron nitride nanotubes for CNCl sensing
NASA Astrophysics Data System (ADS)
Movlarooy, Tayebeh; Fadradi, Mahboobeh Amiri
2018-05-01
The adsorption of CNCl gas, on the surface of boron nitride nanotubes in pure form, as well as doped with Al and Ga, based on the density functional theory (DFT) has been studied. The electron and structural properties of pristine and doped nanotubes have been investigated. By calculating the adsorption energy, the most stable positions and the equilibrium distance are obtained, and charge transferred and electronic properties have been calculated. The most stable molecule adsorption position for pure nanotube is obtained at the center of the hexagon and for doped nanotube above the impurity atom from N side.
NASA Astrophysics Data System (ADS)
Chibisov, A. N.; Chibisova, M. A.
2018-05-01
Two-dimensional silicon oxide (2D SiO2) is a unique surface phase with interesting optical, structural and electronic properties. In this study, important novel results on the effect of Fe on the structural and electronic properties of 2D SiO2 during adsorption of CH4 and NH3 molecules are presented. Density functional theory calculations are used to investigate the interaction of CH4 and NH3 molecules with silica. The electronic structure and molecules adsorption energy are studied in detail for undoped and Fe-doped surfaces. The results show that adsorption of CH4 and NH3 molecules on the surface decreases the spin polarization of Fe/SiO2. The results are relevant to understanding the adsorption physics of 2D SiO2 for practical usage in modern nanoelectronic sensors for nanotechnology and optoelectronics.
Carlà, M; Cuomo, M; Arcangeli, A; Olivotto, M
1995-06-01
The interfacial adsorption properties of polar/apolar inducers of cell differentiation (PAIs) were studied on a mercury electrode. This study, on a clean and reproducible charged surface, unraveled the purely physical interactions among these compounds and the surface, apart from the complexity of the biological membrane. The interfacial behavior of two classical inducers, hexamethylenebisacetamide (HMBA) and dimethylsulfoxide, was compared with that of a typical apolar aliphatic compound, 1-octanol, that has a similar hydrophobic moiety as HMBA but a much smaller dipolar moment. Both HMBA and Octanol adsorb flat in contact with the surface because of hydrophobic forces, with a very similar free energy of adsorption. However, the ratio of polar to apolar moieties in PAIs turned out to be crucial to drive the adsorption maximum toward physiological values of surface charge density, where octanol is desorbed. The electrostatic effects in the interfacial region reflected the adsorption properties: the changes in the potential drop across the interfacial region as a function of the surface charge density, in the physiological range, were opposite in PAIs as compared with apolar aliphatic compounds, as exemplified by octanol. This peculiar electrostatic effect of PAIs has far-reaching relevance for the design of inducers with an adequate therapeutic index to be used in clinical trials.
Batchelor, Stephen N; Tucker, Ian; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K
2014-08-19
The strong interaction between ionic surfactants and polyelectrolytes of opposite charge results in enhanced surface adsorption at the air-water interface down to low surfactant concentrations and in some cases in the formation of ordered surface structures. A notable example which exhibits such properties is the mixture of polyethylenimine, PEI, and sodium dodecyl sulfate, SDS. However, the electrostatic interaction, around charge neutralization, between the surfactant and polymer often results in precipitation or coacervation. This can be mitigated for PEI-surfactant mixtures by ethoxylation of the PEI, but this can also result in a weaker surface interaction and a significant reduction in the adsorption. It is shown here that by localizing the ethoxylation of the PEI into discrete regions of the polymer precipitation upon the addition of SDS is suppressed, the strong surface interaction and enhanced adsorption of the polymer-surfactant mixture is retained. The adsorption of SDS in the presence of ethoxylated PEI is greatly enhanced at low SDS concentrations compared to the adsorption for pure SDS. The adsorption is equally pronounced at pH 7 and 10 and is largely independent of the degree of ethoxylation. Surface ordering, more than monolayer adsorption, is observed over a relatively narrow range of SDS concentrations and is most pronounced at pH 10 and for the polymers with the lower degree of ethoxylation. The results show that ethoxylated PEI's reported here provide a suitable route to enhanced surfactant adsorption while retaining favorable solution properties in which precipitation effects are minimized.
Surface properties of thermionic electrodes
NASA Technical Reports Server (NTRS)
Stickney, R. E.
1972-01-01
A quasi-equilibrium model which provides semiquantitative predictions of the oxygen reaction with refractory metals was developed at high temperature and low pressure. Extensive experimental data was obtained on adsorption and work function properties for a wide variety of adsorbates (Cs, K, Na, I, Br, Cl, and O) on several refractory metals (W, Ta, Mo, and Re). Conclusions and recommendations for research on alkali metal adsorption, oxygen adsorption, and adsorption of cesium - oxygen mixtures are included.
Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles.
Wang, Chao; Fan, Xiulei; Wang, Peifang; Hou, Jun; Ao, Yanhui; Miao, Lingzhan
2016-12-01
Aquatic sediments serve as an important sink for engineered nanomaterials (ENMs), such as metal oxide nanoparticles (MeO NPs) and carbon nanotubes (CNTs). Owing to their remarkable properties, ENMs demonstrate significant potential to disturb the adsorption behavior of other contaminants in aquatic sediments, thereby altering the bioavailability and toxicity of these contaminants. Thus far, most studies have investigated the effect of CNTs on the adsorption of other contaminants on sediments. Cerium dioxide nanoparticles (CeO 2 NPs), as one of the important MeO NPs, are also inevitably discharged into aquatic sediments because of their widespread use. In this study, we investigated the adsorption behavior of Pb 2+ on sediments spiked with CeO 2 NPs at a weight ratio of 5.0%. The results showed that the adsorption rates at three stages occurring during adsorption clearly increase for sediments contaminated with CeO 2 NPs. Moreover, the results obtained from the adsorption isotherms indicated that the Langmuir isotherm model best fits the isotherm data for both sediments and those contaminated with CeO 2 NPs. After spiking the sediments with CeO 2 NPs, the theoretical maximum monolayer adsorption capacity (Q max ) for Pb 2+ increased from 4.433 to 4.995 mg/g and the Langmuir isotherm coefficient (K L ) decreased from 8.813 to 7.730 L/g. The effects of CeO 2 NPs on the surface charge and pore surface properties of sediments were also studied as these properties affect the adsorption of several chemicals in sediments. The results showed that pH zpc , S BET , S ext , and average pore size of sediments clearly decrease for sediments contaminated with CeO 2 NPs. Hence, the strong adsorption capacity of CeO 2 NPs and the changes of sediment surface charge and pore surface properties caused by CeO 2 NPs are important factors affecting the adsorption behavior of Pb 2+ . The potential risk of Pb 2+ in aquatic environment may increase with CeO 2 NPs buried in sediments. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheraghian, Goshtasp; Khalili Nezhad, Seyyed Shahram; Kamari, Mosayyeb; Hemmati, Mahmood; Masihi, Mohsen; Bazgir, Saeed
2014-07-01
Nanotechnology has been used in many applications and new possibilities are discovered constantly. Recently, a renewed interest has risen in the application of nanotechnology for the upstream petroleum industry, such as exploration, drilling, production and distribution. In particular, adding nanoparticles to fluids may significantly benefit enhanced oil recovery and improve well drilling, such as changing the properties of the fluid, wettability alternation of rocks, advanced drag reduction, strengthening sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary-trapped oil. In this study, we focus on the roles of clay and silica nanoparticles in adsorption process on reservoir rocks. Polymer-flooding schemes for recovering residual oil have been in general less satisfactory due to loss of chemicals by adsorption on reservoir rocks, precipitation, and resultant changes in rheological properties. Adsorption and rheological property changes are mainly determined by the chemical structure of the polymers, surface properties of the rock, composition of the oil and reservoir fluids, the nature of the polymers added and solution conditions such as salinity, pH and temperature. Because this method relies on the adsorption of a polymer layer onto the rock surface, a deeper understanding of the relevant polymer-rock interactions is of primary importance to develop reliable chemical selection rules for field applications. In this paper, the role of nanoparticles in the adsorption of water-soluble polymers onto solid surfaces of carbonate and sandstone is studied. The results obtained by means of static adsorption tests show that the adsorption is dominated by the nanoclay and nanosilica between the polymer molecules and the solid surface. These results also show that lithology, brine concentration and polymer viscosity are critical parameters influencing the adsorption behavior at a rock interface. On the other hand, in this study, the focus is on viscosity, temperature and salinity of solutions of polyacrylamide polymers with different nanoparticle degrees and molecular weight. The adsorption of nanopolymer solution is always higher in carbonated stones than in sandstones, and polymer solutions containing silica nanoparticles have less adsorption based on weight percent than similar samples containing clay. Based on the area of contact for stone, this behavior is the same regarding adsorption.
Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.
Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor
2013-06-03
Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Terzyk, Artur P.; Gauden, Piotr A.; Zieliński, Wojciech; Furmaniak, Sylwester; Wesołowski, Radosław P.; Klimek, Kamil K.
2011-10-01
The results of 84 MD simulations showing the influence of porosity and carbon surface oxidation on adsorption of three organic compounds from aqueous solutions on carbons are reported. Based on a model of 'soft' activated carbon, three carbon structures with gradually changed microporosity were created. Next, different number of surface oxygen groups was introduced. We observe quantitative agreement between simulation and experiment i.e. the decrease in adsorption from benzene down to paracetamol. Simulation results clearly demonstrate that the balance between porosity and carbon surface chemical composition in organics adsorption on carbons, and the pore blocking determine adsorption properties of carbons.
Tseng, Ru-Ling
2007-08-25
Activated carbon was prepared from plum kernels by NaOH activation at six different NaOH/char ratios. The physical properties including the BET surface area, the total pore volume, the micropore ratio, the pore diameter, the burn-off, and the scanning electron microscope (SEM) observation as well as the chemical properties, namely elemental analysis and temperature programmed desorption (TPD), were measured. The results revealed a two-stage activation process: stage 1 activated carbons were obtained at NaOH/char ratios of 0-1, surface pyrolysis being the main reaction; stage 2 activated carbons were obtained at NaOH/char ratios of 2-4, etching and swelling being the main reactions. The physical properties of stage 2 activated carbons were similar, and specific area was from 1478 to 1887m(2)g(-1). The results of reaction mechanism of NaOH activation revealed that it was apparently because of the loss ratio of elements C, H, and O in the activated carbon, and the variations in the surface functional groups and the physical properties. The adsorption of the above activated carbons on phenol and three kinds of dyes (MB, BB1, and AB74) were used for an isotherm equilibrium adsorption study. The data fitted the Langmuir isotherm equation. Various kinds of adsorbents showed different adsorption types; separation factor (R(L)) was used to determine the level of favorability of the adsorption type. In this work, activated carbons prepared by NaOH activation were evaluated in terms of their physical properties, chemical properties, and adsorption type; and activated carbon PKN2 was found to have most application potential.
Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R
2009-01-01
The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.
Mechanism and energetics of O and O{sub 2} adsorption on polar and non-polar ZnO surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorai, Prashun; Seebauer, Edmund G.; Ertekin, Elif, E-mail: ertekin@illinois.edu
2016-05-14
Polar surfaces of semiconducting metal oxides can exhibit structures and chemical reactivities that are distinct from their non-polar surfaces. Using first-principles calculations, we examine O adatom and O{sub 2} molecule adsorption on 8 different known ZnO reconstructions including Zn-terminated (Zn–ZnO) and O-terminated (O–ZnO) polar surfaces, and non-polar surfaces. We find that adsorption tendencies are largely governed by the thermodynamic environment, but exhibit variations due to the different surface chemistries of various reconstructions. The Zn–ZnO surface reconstructions which appear under O-rich and H-poor environments are found to be most amenable to O and O{sub 2} adsorption. We attribute this to themore » fact that on Zn–ZnO, the O-rich environments that promote O adsorption also simultaneously favor reconstructions that involve adsorbed O species. On these Zn–ZnO surfaces, O{sub 2} dissociatively adsorbs to form O adatoms. By contrast, on O–ZnO surfaces, the O-rich conditions required for O or O{sub 2} adsorption tend to promote reconstructions involving adsorbed H species, making further O species adsorption more difficult. These insights about O{sub 2} adsorption on ZnO surfaces suggest possible design rules to understand the adsorption properties of semiconductor polar surfaces.« less
Regeneration of acid orange 7-exhausted granular activated carbons with microwave irradiation.
Quan, Xie; Liu, Xitao; Bo, Longli; Chen, Shuo; Zhao, Yazhi; Cui, Xinyi
2004-12-01
An investigation was performed for the regeneration of three granular activated carbons (GACs) exhausted with acid orange 7 (AO7). The three GACs were made from different materials, i.e. coconut shells, almond nucleus and coal. The AO7 adsorption process was carried out in a continuous-flow adsorption column. After adsorption, the AO7-saturated GAC was dried at 120 degrees C, then regenerated in a quartz reactor by 2450 MHz microwave (MW) irradiation at 850 W for 5 min. The efficacy of this procedure was analyzed by determining the rates and amounts of AO7 adsorbed in successive adsorption-MW regeneration cycles. Effects of this regeneration on the structural properties, surface chemistry and the AO7 adsorption capacities of GAC samples were examined. It was found that after several adsorption-MW regeneration cycles, the adsorption rates and capacities of GACs could maintain relatively high levels, even higher than those of virgin GACs, as indicated by AO7 breakthrough curves and adsorption isotherms. The improvement of GAC adsorption properties resulted from the modification of pore size distribution and surface chemistry by MW irradiation.
Electron transport in ethanol & methanol absorbed defected graphene
NASA Astrophysics Data System (ADS)
Dandeliya, Sushmita; Srivastava, Anurag
2018-05-01
In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.
Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I
2009-10-15
The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.
Evaluation of current techniques for isolation of chars as natural adsorbents
Chun, Y.; Sheng, G.; Chiou, C.T.
2004-01-01
Chars in soils or sediments may potentially influence the soil/sediment sorption behavior. Current techniques for the isolation of black carbon including chars rely often on acid demineralization, base extraction, and chemical oxidation to remove salts and minerals, humic acid, and refractory kerogen, respectively. Little is known about the potential effects of these chemical processes on the char surface and adsorptive properties. This study examined the effects of acid demineralization, base extraction, and acidic Cr2O72- oxidation on the surface areas, surface acidity, and benzene adsorption characteristics of laboratory-produced pinewood and wheat-residue chars, pure or mixed with soils, and a commercial activated carbon. Demineralization resulted in a small reduction in the char surface area, whereas base extraction showed no obvious effect. Neither demineralization nor base extraction caused an appreciable variation in benzene adsorption and presumably the char surface properties. By contrast, the Cr2O 72- oxidation caused a >31% reduction in char surface area. The Boehm titration, supplemented by FTIR spectra, indicated that the surface acidity of oxidized chars increased by a factor between 2.3 and 12 compared to nonoxidized chars. Benzene adsorption with the oxidized chars was lower than that with the non-oxidized chars by a factor of >8.9; both the decrease in char surface area and the increase in char surface acidity contributed to the reduction in char adsorptive power. Although the Cr 2O72- oxidation effectively removes resistant kerogen, it is not well suited for the isolation of chars as contaminant adsorbents because of its destructive nature. Alternative nondestructive techniques that preserve the char surface properties and effectively remove kerogen must be sought.
Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng
2007-05-01
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).
Schneckenburger, Tatjana; Riefstahl, Jens; Fischer, Klaus
2018-01-01
Aliphatic (poly)hydroxy carboxylic acids [(P)HCA] occur in natural, e.g. soils, and in technical (waste disposal sites, nuclear waste repositories) compartments . Their distribution, mobility and chemical reactivity, e.g. complex formation with metal ions and radionuclides, depend, among others, on their adsorption onto mineral surfaces. Aluminium hydroxides, e.g. gibbsite [α-Al(OH) 3 ], are common constituents of related solid materials and mimic the molecular surface properties of clay minerals. Thus, the study was pursued to characterize the adsorption of glycolic, threonic, tartaric, gluconic, and glucaric acids onto gibbsite over a wide pH and (P)HCA concentration range. To consider specific conditions occurring in radioactive wastes, adsorption applying an artificial cement pore water (pH 13.3) as solution phase was investigated additionally. The sorption of gluconic acid at pH 4, 7, 9, and 12 was best described by the "two-site" Langmuir isotherm, combining "high affinity" sorption sites (adsorption affinity constants [Formula: see text] > 1 L mmol -1 , adsorption capacities < 6.5 mmol kg -1 ) with "low affinity" sites ([Formula: see text] < 0.1 L mmol -1 , adsorption capacities ≥ 19 mmol kg -1 ). The total adsorption capacities at pH 9 and 12 were roughly tenfold of that at pH 4 and 7. The S-shaped pH sorption edge of gluconic acid was modelled applying a constant capacitance model, considering electrostatic interactions, hydrogen bonding, surface complex formation, and formation of solved polynuclear complexes between Al 3+ ions and gluconic acid. A Pearson and Spearman rank correlation between (P)HCA molecular properties and adsorption parameters revealed the high importance of the size and the charge of the adsorbates. The adsorption behaviour of (P)HCAs is best described by a combination of adsorption properties of carboxylic acids at acidic pH and of polyols at alkaline pH. Depending on the molecular properties of the adsorbates and on pH, electrostatic interactions, hydrogen bonding, and ternary surface complexation contribute in varying degrees to the adsorption process. Linear distribution coefficients K d between 8.7 and 60.5 L kg -1 (1 mmol L -1 initial PHCA concentration) indicate a considerable mineral surface affinity at very high pH, thus lowering the PHCA fraction available for the complexation of metal ions including radionuclides in solution and their subsequent mobilization.
Li, Shanshan; Yang, Dingyun; Tu, Haiyang; Deng, Hongtao; Du, Dan; Zhang, Aidong
2013-07-15
This work reports a study of protein adsorption and cell adhesion on binary self-assembled monolayers (SAMs) of alkanethiols with terminal perfluoroalkyl (PFA) and oligo(ethylene glycol) (OEG) chains in varying ratios. The surface chemistry of the SAMs was characterized by contact angle measurement, grazing angle infrared spectroscopy (GIR), X-ray photoelectron spectroscopy, and the effect on protein adsorption was investigated by surface plasmon resonance, GIR, and immunosorbent assay. Hela cell adhesion on these surfaces was also studied by fluorescence microscopy. Results reveal that, compared to OEG, PFA tended to be a higher fraction of the composition in SAM than in the assembly solution. More interestingly, the nearly 38% PFA SAM had a strong antifouling property whereas the 74% PFA SAM showed a high adsorption capacity to protein and cell. The binary PFA/OEG SAMs were favorable for maintaining the fibrinogen conformation, hence its high activity. The findings may have important implications for constructing PFA-containing surfaces with the distinct properties that is highly resistant or highly favorable toward protein adsorption and cell adhesion. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tzvetkov, George; Kaneva, Nina; Spassov, Tony
2017-04-01
A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn2+-organic complexes followed by a treatment in Zn(CH3COO)2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV-vis spectroscopy measurements along with N2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m2 g-1 and total pore volume of 0.26 cm3 g-1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g-1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.
Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun
2015-09-15
Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.
van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth
2012-05-01
Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.
Hartvig, Rune A; van de Weert, Marco; Østergaard, Jesper; Jorgensen, Lene; Jensen, Henrik
2011-03-15
The understanding of protein adsorption at charged surfaces is important for a wide range of scientific disciplines including surface engineering, separation sciences and pharmaceutical sciences. Compared to chemical entities having a permanent charge, the adsorption of small ampholytes and proteins is more complicated as the pH near a charged surface can be significantly different from the value in bulk solution. In this work, we have developed a phenomenological adsorption model which takes into account the combined role of interfacial ion distribution, interfacial charge regulation of amino acids in the proximity of the surface, electroneutrality, and mass balance. The model is straightforward to apply to a given set of experimental conditions as most model parameters are obtained from bulk properties and therefore easy to estimate or are directly measurable. The model provides a detailed understanding of the importance of surface charge on adsorption and in particular of how changes in surface charge, concentration, and surface area may affect adsorption behavior. The model is successfully used to explain the experimental adsorption behavior of the two model proteins lysozyme and α-lactalbumin. It is demonstrated that it is possible to predict the pH and surface charge dependent adsorption behavior from experimental or theoretical estimates of a preferred orientation of a protein at a solid charged interface.
Gas adsorption properties of hybrid graphene-MOF materials.
Szczęśniak, Barbara; Choma, Jerzy; Jaroniec, Mietek
2018-03-15
Nowadays, hybrid porous materials consisting of metal-organic frameworks (MOFs) and graphene nanosheets become more and more attractive because of their growing applications in adsorption, catalysis and related areas. Incorporation of graphene oxide into MOFs can provide benefits such as increased water resistance and thermal stability as well as enhanced surface area and adsorption properties. Graphene oxide is one of the best additives to other materials owing to its two main virtues: high atomic density and large amount of surface functional groups. Due to its dense array of atoms, graphene oxide can significantly increase dispersion forces in graphene-MOF materials, which is beneficial for adsorption of small molecules. This work presents a concise appraisal of adsorption properties of MOFs and graphene-MOF hybrids toward CO 2 , volatile organic compounds, hydrogen and methane. It shows that the graphene-MOF materials represent an important class of materials with potential applications in adsorption and catalysis. A special emphasis of this article is placed on their adsorption applications for gas capture and storage. A large number of graphene-MOF adsorbents has been so far explored and their appraisal could be beneficial for researchers interested in the development of hybrid adsorbents for adsorption-based applications. Copyright © 2017 Elsevier Inc. All rights reserved.
p-Chlorophenol adsorption on activated carbons with basic surface properties
NASA Astrophysics Data System (ADS)
Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek
2010-05-01
The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.
Adsorption of acids and bases from aqueous solutions onto silicon dioxide particles.
Zengin, Huseyin; Erkan, Belgin
2009-12-30
The adsorption of acids and bases onto the surface of silicon dioxide (SiO(2)) particles was systematically studied as a function of several variables, including activation conditions, contact time, specific surface area, particle size, concentration and temperature. The physical properties of SiO(2) particles were investigated, where characterizations were carried out by FT-IR spectroscopy, and morphology was examined by scanning electron microscopy (SEM). The SEM of samples showed good dispersion and uniform SiO(2) particles with an average diameter of about 1-1.5 microm. The adsorption results revealed that SiO(2) surfaces possessed effective interactions with acids and bases, and greatest adsorption capacity was achieved with NaOH, where the best fit isotherm model was the Freundlich adsorption model. The adsorption properties of raw SiO(2) particles were further improved by ultrasonication. Langmuir monolayer adsorption capacity of NaOH adsorbate at 25 degrees C on sonicated SiO(2) (182.6 mg/g) was found to be greater than that of the unsonicated SiO(2) (154.3mg/g). The spontaneity of the adsorption process was established by decreases in DeltaG(ads)(0), which varied from -10.5 to -13.6 kJ mol(-1), in the temperature range 283-338K.
Liu, S X; Chen, X; Chen, X Y; Liu, Z F; Wang, H L
2007-03-06
In the present work, activated carbon (AC) with excellent Cr(VI) adsorption performance especially at low concentrations was prepared by an acid-base surface modification method. Raw activated carbon (AC(0)) was first oxidized in boiling HNO(3) (AC(1)), then treated with a mixture of NaOH and NaCl (AC(2)). Batch equilibrium and continuous column adsorption were conducted to evaluate the adsorption performance. Boehm titration, elemental analysis, and N(2)/77K adsorption isotherm methods were used to characterize the surface properties and pore structure of modified ACs. The results revealed that the modified AC exhibited excellent Cr(VI) adsorption performance in terms of adsorption capacity and adsorption rate: AC(2)>AC(1)>AC(0). Modification caused S(BET) to decrease and the total number of surface oxygen acidic groups to increase. HNO(3) oxidization produced positive acid groups, and subsequently NaOH treatment replaced H(+) of surface acid groups by Na(+), and the acidity of AC decreased. The main cause of higher Cr(VI) adsorption capacity and rate for AC(2) was the presence of more oxygen surface acidic groups and suitable surface acidity. HNO(3)-NaOH modification shows potential for the preparation of high quality AC for the effective removal of low concentrations of Cr(VI).
Rojewska, Monika; Biadasz, Andrzej; Kotkowiak, Michał; Olejnik, Anna; Rychlik, Joanna; Dudkowiak, Alina; Prochaska, Krystyna
2013-10-01
The adsorption properties of surfactant mixtures containing two types of quaternary derivatives of lysosomotropic substances: alkyl N,N-dimethylalaninates methobromides and alkyl N,N-dimethylglycinates methobromides were studied. Quantitative and qualitative description of the adsorption process was carried out on the basis of experimentally obtained equilibrium surface tension isotherms. The results indicated that most of the systems studied revealed synergistic effect both in adsorption and wetting properties. In vitro studies on human cancer cells were undertaken and the data obtained showed that the mixtures suppressed the cancer cells' proliferation more effectively than individual components. Results of preliminary research on the interaction of catanionic mixtures with phospholipids suggested a possibility of a strong penetration of cell membranes by the mixtures investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mojica-Sepulveda, Ruth Dary; Mendoza-Herrera, Luís Joaquín; Grumel, Eduardo; Soria, Delia Beatriz; Cabello, Carmen Inés; Trivi, Marcelo
2018-07-01
Adsorption phenomena have several technological applications such as desiccants, catalysts, and separation of gases. Their uses depend on the textural properties of the solid adsorbent and the type of the adsorbed liquid or gas. Therefore, it is important to determine these properties. The most common measurement methods are physicochemical based on adsorption of N2 to determine the surface area and the distribution of pores size. However these techniques present certain limitations for microporous materials. In this paper we propose the use of the Dynamic Laser Speckle (DLS) technique to measure the hygroscopic capacity of a microporous natural zeolite and their modified forms. This new approach based on the adsorption of water by solids allows determine their specific surface area (S). To test the DLS results, we compared the obtained S values to those calculated by different conventional isotherms using the N2 adsorption-desorption method.
Stauffer, D; Dragneva, N; Floriano, W B; Mawhinney, R C; Fanchini, G; French, S; Rubel, O
2014-07-28
Graphene Oxide (GO) has been shown to exhibit properties that are useful in applications such as biomedical imaging, biological sensors, and drug delivery. The binding properties of biomolecules at the surface of GO can provide insight into the potential biocompatibility of GO. Here we assess the intrinsic affinity of amino acids to GO by simulating their adsorption onto a GO surface. The simulation is done using Amber03 force-field molecular dynamics in explicit water. The emphasis is placed on developing an atomic charge model for GO. The adsorption energies are computed using atomic charges obtained from an ab initio electrostatic potential based method. The charges reported here are suitable for simulating peptide adsorption to GO.
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes.
Cho, Hyun-Hee; Smith, Billy A; Wnuk, Joshua D; Fairbrother, D Howard; Ball, William P
2008-04-15
As greater quantities of carbon nanotubes (CNTs) enter the environment, they will have an increasingly important effect on the availability and transport of aqueous contaminants. As a consequence of purification, deliberate surface functionalization, and/or exposure to oxidizing agents after release to the environment, CNTs often contain surface oxides (i.e., oxygen containing functional groups). To probe the influence that surface oxides exert on CNT sorption properties, multiwalled CNTs (MWCNTs) with varying oxygen concentrations were studied with respect to their sorption properties toward naphthalene. For pristine (as-received) MWCNTs, the sorption capacity was intermediate between that of a natural char and a granular activated carbon. Sorption data also reveal that a linear relationship exists between the oxygen content of MWCNTs and their maximum adsorption capacity for naphthalene, with 10% surface oxygen concentration resulting in a roughly 70% decrease in maximum adsorption capacity. The relative distribution of sorption energies, as characterized by Freundlich isotherm exponents was, however, unaffected by oxidation. Thus, the data are consistent with the idea that incorporated surface oxides create polar regions that reduce the surface area available for naphthalene sorption. These results highlight the important role of surface chemistry in controlling the environmental properties of CNTs.
Coelho, Cláudia; Oliveira, Ana Sofia; Pereira, Manuel Fernando R; Nunes, Olga C
2006-11-16
In the present study, the effect of the textural and surface chemistry properties of the activated carbon were evaluated in a combined treatment system to remove the herbicide molinate from waters. The process consists of an initial adsorption step followed by the bio-regeneration of the activated carbon through the utilization of a defined bacterial mixed culture (DC), previously described as able to mineralize molinate. Molinate adsorption and partial bio-regeneration was favoured with activated carbons with larger pores, consisting mainly of meso and macropores. In order to study the effect of different surface chemical characteristics while maintaining the original textural properties, a commercial activated carbon was submitted to thermal and nitric acid treatments. The thermal treatment improved the molinate adsorption capacity of activated carbon. However, the bio-regeneration of the nitric acid oxidised activated carbon was slightly higher. With all the activated carbon materials used it was observed that the biological consumption of molinate present in the liquid phase displaced the equilibrium towards the activated carbon partial regeneration.
Adsorption of different amphiphilic molecules onto polystyrene latices.
Jódar-Reyes, A B; Ortega-Vinuesa, J L; Martín-Rodríguez, A
2005-02-15
In order to know the influence of the surface characteristics and the chain properties on the adsorption of amphiphilic molecules onto polystyrene latex, a set of experiments to study the adsorption of ionic surfactants, nonionic surfactants and an amphiphilic synthetic peptide on different latex dispersions was performed. The adsorbed amount versus the equilibrium surfactant concentration was determined. The main adsorption mechanism was the hydrophobic attraction between the nonpolar tail of the molecule and the hydrophobic regions of the latex surface. This attraction overcame the electrostatic repulsion between chains and latex surface with identical charge sign. However, the electrostatic interactions chain-surface and chain-chain also played a role. General patterns for the adsorption of ionic chains on charged latex surfaces could be established. Regarding the shape, the isotherms presented different plateaus corresponding to electrostatic effects and conformational changes. The surfactant size also affects the adsorption results: the higher the hydrophilic moiety in the surfactant molecule the lower the adsorbed amount.
Fluoride adsorption properties of three modified forms of activated alumina in drinking water.
Duan, Ying; Wang, Chenchen; Li, Xuede; Xu, Wei
2014-12-01
The study describes the removal of fluoride from drinking water using activated alumina (AA). AA was modified with H2SO4, FeCl3 and a combination of the two to enhance fluoride adsorption. The AA adsorbents were characterized using Brunauer-Emmett-Teller surface area analysis and X-ray fluorescence. The maximum adsorption capacity of H2SO4- and FeCl3-modified AA adsorbents was 4.98 mg/g, which is 3.4 times higher compared with that of normal AA. The results showed that the surface area of AA increased when modified with H2SO4. AA modified with FeCl3 enhanced fluoride adsorption ability through ion-exchange between chlorine ions and fluoride ions. The fluoride adsorption properties of AA modified with both H2SO4 and FeCl3 were consistent with the Langmuir model. The fluoride adsorption kinetics of the adsorbents were well described by the pseudo-second-order kinetic model.
Zheng, Penglei; Luo, Zhimin; Chang, Ruimiao; Ge, Yanhui; Du, Wei; Chang, Chun; Fu, Qiang
2015-09-01
On account of the specificity and reproducibility for the determination of penicilloic acid in penicillin, this study aims to prepare penicilloic acid imprinted polymers (PEOA-MIPs) by surface polymerization method at the surface of modified silica particles by using penicilloic acid (PEOA) as the template molecule, methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate ( EGDMA) as the cross linker, and methanol/acetonitrile as the solvents. The synthesis conditions were optimized, and PEOA-MIPs had the best adsorption capacity when the molar ratio of template molecule/functional monomer was 1 :4, cross linking degree was 85% and the solvent ratio of methanol/acetonitrile was 1 :1 (v/v). The adsorption properties were evaluated by adsorption experiments, including the adsorption isotherms, kinetics and selectivity. The adsorption process between PEOA-MIPs and PEOA fitted the Langmuir adsorption isotherm with the maximum adsorption capacity of 122. 78 mg/g and the pseudo-second-order reaction kinetics with fast adsorption kinetics (the equilibrium time of 45 min). The as-synthesized PEOA-MIPs were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermal gravimetric analysis (TGA). The results indicated that the MIPs layer has been successfully grafted on the surface of SiO2 microparticles and the PEOA-MIPs had the excellent thermal stability. The PEOA-MIPs showed the highest selective recognition for PEOA. The PEOA-MIPs possess a high adsorption capacity, rapid mass-transfer rate and high selectivity to PEOA when compared with non-imprinted polymers (PEOA-NIPs). The PEOA-MIPs was expected to be used as the solid phase extraction medium and this study provides the potential applications for fast recognition and analysis of the penicilloic acid in penicillin.
NASA Astrophysics Data System (ADS)
Mizushima, S.
2004-06-01
The adsorption isotherms on SiO2/Si(100) surfaces were measured using a vacuum mass comparator. Samples with a surface area difference of 816.6 cm2 were used for the measurement, and a substitution weighing method was adopted to reduce the uncertainty due to the drift and non-linearity of the indication of the mass comparator. We measured adsorption isotherms of water vapour on the SiO2/Si(100) surfaces outgassed at a temperature of 500 °C and found that dissociative adsorption caused an irreversible increase of 0.028 µg cm-2 with an uncertainty of 0.004 µg cm-2 (k = 1). We also found that the physical adsorption of water molecules on hydroxylated surfaces had a monolayer capacity of 0.004 µg cm-2 with an uncertainty of 0.002 µg cm-2 (k = 1). In addition, the adsorption isotherms for ethanol vapour and n-octane vapour, which were different from water vapour in adsorption properties, were measured and analysed.
NASA Technical Reports Server (NTRS)
Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.
1972-01-01
Knowledge of the reactivity of lunar material surfaces is important for understanding the effects of the lunar or space environment upon this material, particularly its nature, behavior and exposure history in comparison to terrestrial materials. Adsorptive properties are one of the important techniques for such studies. Gas adsorption measurements were made on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples. Surface area measurements were made on the latter two. Adsorbate gases used were N2, A, O2 and H2O. Krypton was used for the surface area determinations. Runs were made at room and liquid nitrogen temperature in volumetric and gravimetric systems. It was found that the adsorptive/desorptive behavior was in general significantly different from that of terrestrial materials of similar type and form. Specifically (1) the UHV-stored sample exhibited very high initial adsorption indicative of high surface reactivity, and (2) the N2-stored samples at room and liquid nitrogen temperatures showed that more gas was desorbed than introduced during adsorption, indicative of gas release from the samples. The high reactivity is a scribed cosmic ray track and solar wind damage.
Adsorption and catalytic properties of sulfated aluminum oxide modified with cobalt ions
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Bannykh, A. A.; Vlasenko, E. V.; Krotova, I. N.; Obrezkov, O. N.; Shilina, M. I.
2017-01-01
The adsorption properties of sulfated aluminum oxide (9% SO 4 2- /γ-Al2O3) and a cobalt-containing composite (0.5%Co/SO 4 2- /γ-Al2O3) based on it are studied via dynamic sorption. The adsorption isotherms of such test adsorbates as n-hydrocarbons (C6-C8), benzene, ethylbenzene, chloroform, and diethyl ether are measured, and their isosteric heats of adsorption are calculated. It is shown that the surface sulfation of aluminum oxide substantially improves its electron-accepting properties, and so the catalytic activity of SO 4 2- /γ-Al2O3 in the liquid-phase alkylation of benzene with octene-1 at temperatures of 25-120°C is one order of magnitude higher than for the initial aluminum oxide. It is established that additional modification of sulfated aluminum oxide with cobalt ions increases the activity of this catalyst by 2-4 times. It is shown that adsorption sites capable of strong specific adsorption with both donating (aromatics, diethyl ether chemosorption) and accepting molecules (chloroform) form on the surface of sulfated γ-Al2O3 promoted by cobalt salt.
IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...
Mercury adsorption properties of sulfur-impregnated adsorbents
Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.
2002-01-01
Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.
Inhibiting Corrosion Cracking: Crack Tip Chemistry and Physics.
1986-03-14
suggests that a surface film is formed by adsorption of nitrite on the C- metal surface, followed by a reaction to form oxide and ammonia. The same A... adsorption -reaction mechanism was proposed for other oxidizing inhibitors, e.g., chrmnate and molybdate. Although nonoxidizing inhibitors, require the...properties are attributed either to a capacity to "repair" the oxide film formed on the metal in an electrolyte, or to adsorption of the oxyanicn
Abraham, Sinoj; Bahniuk, Markian S; Unsworth, Larry D
2012-12-01
Protein-surface interactions are crucial to the overall biocompatability of biomaterials, and are thought to be the impetus towards the adverse host responses such as blood coagulation and complement activation. Only a few studies hint at the ultra-low fouling potential of zwitterionic poly(carboxybetaine methacrylate) (PCBMA) grafted surfaces and, of those, very few systematically investigate their non-fouling behavior. In this work, single protein adsorption studies as well as protein adsorption from complex solutions (i.e. human plasma) were used to evaluate the non-fouling potential of PCBMA grafted silica wafers prepared by nitroxide-mediated free radical polymerization. PCBMAs used for surface grafting varied in charge separating spacer groups that influence the overall surface charges, and chain end-groups that influence the overall hydrophilicity, thereby, allows a better understanding of these effects towards the protein adsorption for these materials. In situ ellipsometry was used to quantify the adsorbed layer thickness and adsorption kinetics for the adsorption of four proteins from single protein buffer solutions, viz, lysozyme, α-lactalbumin, human serum albumin and fibrinogen. Total amount of protein adsorbed on surfaces differed as a function of surface properties and protein characteristics. Finally, immunoblots results showed that human plasma protein adsorption to these surfaces resulted, primarily, in the adsorption of human serum albumin, with total protein adsorbed amounts being the lowest for PCBMA-3 (TEMPO). It was apparent that surface charge and chain hydrophilicity directly influenced protein adsorption behavior of PCBMA systems and are promising materials for biomedical applications.
Palma-Salgado, Sindy Paola; Storm, Andrew Page; Feng, Hao; Juvik, John A.; Nguyen, Thanh H.
2015-01-01
Foodborne diseases are a persistent problem in the United States and worldwide. Fresh produce, especially those used as raw foods like salad vegetables, can be contaminated, causing illness. In this study, we determined the number of rotaviruses adsorbed on produce surfaces using group A porcine rotaviruses and 24 cultivars of leafy vegetables and tomato fruits. We also characterized the physicochemical properties of each produce’s outermost surface layer, known as the epicuticle. The number of rotaviruses found on produce surfaces varied among cultivars. Three-dimensional crystalline wax structures on the epicuticular surfaces were found to significantly contribute to the inhibition of viral adsorption to the produce surfaces (p = 0.01). We found significant negative correlations between the number of rotaviruses adsorbed on the epicuticular surfaces and the concentrations of alkanes, fatty acids, and total waxes on the epicuticular surfaces. Partial least square model fitting results suggest that alkanes, ketones, fatty acids, alcohols, contact angle and surface roughness together can explain 60% of the variation in viral adsorption. The results suggest that various fresh produce surface properties need to be collectively considered for efficient sanitation treatments. Up to 10.8% of the originally applied rotaviruses were found on the produce surfaces after three washing treatments, suggesting a potential public health concern regarding rotavirus contamination. PMID:26181904
Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Gallego, Nidia C.; Thibaud-Erkey, Catherine
The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC formore » measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.« less
Effective adsorption of phenolic compound from aqueous solutions on activated semi coke
NASA Astrophysics Data System (ADS)
Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng
2017-03-01
Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.
Cheng, Jingsi; Wang, Ping; Hua, Chao; Yang, Yintang; Zhang, Zhiyong
2018-03-12
The structural stability, electronic structure, and optical properties of an iron-adsorbed ZnO (0001) surface with three high-symmetry adsorption sites are investigated with first-principle calculations on the basis of density functional theory and the Hubbard-U method. It is found that the iron adatom in the H₃ adsorption site of ZnO (0001) surface has the lowest adsorption energy of -5.665 eV compared with T₄ and Top sites. For the Top site, compared with the pristine ZnO (0001) surface, the absorption peak located at 1.17 eV has a red shift, and the elevation of the absorption coefficient is more pronounced in the visible-light region, because the Fe-related levels are introduced in the forbidden band and near the Fermi level. The electrostatic potential computation reveals that the work function of the ZnO (0001) surface is significantly decreased from 2.340 to 1.768 eV when iron is adsorbed on the Top site. Furthermore, the degradation mechanism based on the band structure is analyzed. It can be concluded that the adsorption of iron will promote the separation of photoinduced carriers, thus improving the photocatalytic activity of ZnO (0001) surface. Our study benefits research on the photocatalytic activity of ZnO and the utilization rate of solar energy.
Staufenbiel, Sven; Merino, Marian; Li, Wenzhong; Huang, Mao-Dong; Baudis, Stefan; Lendlein, Andreas; Müller, Rainer H; Wischke, Christian
2015-05-15
The surface properties of intravenously injected nanoparticles determine the acquired blood protein adsorption pattern and subsequently the organ distribution and cellular recognition. A series of poly[acrylonitrile-co-(N-vinyl pyrrolidone)] (PANcoNVP) model nanoparticles (133-181 nm) was synthesized, in which the surface properties were altered by changing the molar content of NVP (0-33.8 mol%) as the more hydrophilic repeating unit. The extent of achieved surface property variation was comprehensively characterized. The residual sodium dodecyl sulfate (SDS) content from the synthesis was in the range 0.3-1.6 μgml(-1), potentially contributing to the surface properties. Surface hydrophobicity was determined by Rose Bengal dye adsorption, hydrophobic interaction chromatography (HIC) and aqueous two-phase partitioning (TPP). Particle charge was quantified by zeta potential (ZP) measurements including ZP-pH profiles. The interaction with proteins was analyzed by ZP measurements in serum and by adsorption studies with single proteins. Compared to hydrophobic polystyrene model nanoparticles, all PANcoNVP particles were very hydrophilic. Differences in surface hydrophobicity could be detected, which did not linearly correlate with the systematically altered bulk composition of the PANcoNVP nanoparticles. This proves the high importance of a thorough surface characterization applying a full spectrum of methods, complementing predictions solely based on bulk polymer composition. Copyright © 2015. Published by Elsevier B.V.
Theoretical study of adsorption of organic phosphines on transition metal surfaces
NASA Astrophysics Data System (ADS)
Lou, Shujie; Jiang, Hong
2018-04-01
The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.
The adsorption properties of titanium dioxide
NASA Astrophysics Data System (ADS)
Lanin, S. N.; Vlasenko, E. V.; Kovaleva, N. V.; Zung, Fam Tien
2008-12-01
The adsorption properties of titanium dioxide were studied by gas chromatography. We used organic compounds from different classes, namely, n-alkanes, n-alkenes (C6-C8), and polar compounds (electron donors and acceptors) as test adsorbates. The differential heats of adsorption and the contributions of dispersion and specific intermolecular interaction energies were determined for the systems from the experimental retention data. The electron-donor and electron-acceptor characteristics of the ultimately hydroxylated surface of TiO2 were evaluated.
A comparative study of fibrinogen adsorption onto metal oxide thin films
NASA Astrophysics Data System (ADS)
Silva-Bermudez, P.; Muhl, S.; Rodil, S. E.
2013-10-01
One of the first events occurring upon foreign material-biological medium contact is the adsorption of proteins, which evolution greatly determines the cells response to the material. Protein-surface interactions are a complex phenomenon driven by the physicochemical properties of the surface, protein(s) and liquid medium involve in the interaction. In this article the adsorption of fibrinogen (Fbg) onto Ta2O5, Nb2O5, TiO2 and ZrO2 thin films is reported. The adsorption kinetics and characteristics of the adsorbed fibrinogen layer were studied in situ using dynamic and spectroscopic ellipsometry. The films wettability, surface energy (γLW/AB) and roughness were characterized aiming to elucidate their correlations with Fbg adsorption. The adsorption rate changed accordingly to the film; the fastest adsorption rate and highest Fbg surface mass concentration (Γ) was observed on ZrO2. The hydrophobic/hydrophilic character of the oxide highly influenced Fbg adsorption. On Ta2O5, Nb2O5 and TiO2, which were either hydrophilic or in the breaking-point between hydrophilicity and hydrophobicity, Γ was correlated to the polar component of γLW/AB and roughness of the surface. On ZrO2, clearly hydrophobic, Γ increased significantly off the correlation observed for the other films. The results indicated different adsorption dynamics and orientations of the Fbg molecules dependent on the surface hydrophobic/hydrophilic character.
Xu, H; Thomas, R K; Penfold, J; Li, P X; Ma, K; Welbourne, R J L; Roberts, D W; Petkov, J T
2018-02-15
The methyl ester sulfonates represent a promising group of anionic surfactants which have the potential for improved performance and biocompatibility in a range of applications. Their solution properties, in particular their tolerance to hard water, suggests that surface ordering may occur in the presence of multi-valent counterion. Understanding their adsorption properties in a range of different circumstances is key to the exploitation of their potential. Neutron reflectivity and surface tension have been used to characterise the adsorption at the air-aqueous solution interface of the anionic surfactant sodium tetradecanoic 2-sulfo 1-methyl ester, C 14 MES, in the absence of electrolyte and in the presence of mono, di, and tri-valent counterions, Na + , Ca 2+ , and Al 3+ . In particular the emphasis has been on exploring the tendency to form layered structures at the interface. In the absence of electrolyte and in the presence of NaCl and CaCl 2 and AlCl 3 at low concentrations monolayer adsorption is observed, and the addition of electrolyte results in enhanced adsorption. In the presence of NaCl and CaCl 2 only monolayer adsorption is observed. However at higher AlCl 3 concentrations surface multilayer formation is observed, in which the number of bilayers at the surface depends upon the surfactant and AlCl 3 concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobina, E.; Zimathis, A.; Prinz, C.; Emmerling, F.; Unger, W.; de Santis Neves, R.; Galhardo, C. E.; De Robertis, E.; Wang, H.; Mizuno, K.; Kurokawa, A.
2016-01-01
CCQM key comparison K-136 Measurement of porosity properties (specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous Al2O3 has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The objective of this key comparison is to compare the equivalency of the National Metrology Institutes (NMIs) and Designated Institutes (DIs) for the measurement of specific adsorption, BET specific surface area, specific pore volume and pore diameter) of nanoporous substances (sorbents, catalytic agents, cross-linkers, zeolites, etc) used in advanced technology. In this key comparison, a commercial sorbent (aluminum oxide) was supplied as a sample. Five NMIs participated in this key comparison. All participants used a gas adsorption method, here nitrogen adsorption at 77.3 K, for analysis according to the international standards ISO 15901-2 and 9277. In this key comparison, the degrees of equivalence uncertainties for specific adsorption, BET specific surface area, specific pore volume and pore diameter was established. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
First-principles calculation of adsorption of shale gas on CaCO3 (100) surfaces.
Luo, Qiang; Pan, Yikun; Guo, Ping; Wang, Zhouhua; Wei, Na; Sun, Pengfei; Liu, Yuxiao
2017-06-16
To demonstrate the adsorption strength of shale gas to calcium carbonate in shale matrix, the adsorption of shale gas on CaCO3 (100) surfaces was studied using the first-principles method, which is based on the density functional theory (DFT). The structures and electronic properties of CH4, C2H6, CO2 and N2 molecules were calculated by the generalized gradient approximation (GGA), for a coverage of 1 monolayer (ML). Under the same conditions, the density of states (DOS) of CaCO3 (100) surfaces before and after the adsorption of shale gas molecules at high-symmetry adsorption sites were compared. The results showed that the adsorption energies of CH4, C2H6, CO2 and N2 on CaCO3 (100) surfaces were between 0.2683 eV and -0.7388 eV. When a CH4 molecule was adsorbed at a hollow site and its 2 hydrogen atoms were parallel to the long diagonal (H3) on the CaCO3 (100) surface, it had the most stable adsorption, and the adsorption energy was only -0.4160 eV. The change of adsorption energy of CH4 was no more than 0.0535 eV. Compared with the DOS distribution of CH4 before adsorption, it shifted to the left overall after adsorption. At the same time, the partial density of states (PDOS) curves of CaCO3 (100) surfaces before and after adsorption basically overlapped. This work showed that the adsorption effect of shale gas on calcium carbonate is very weak, and the adsorption is physisorption at the molecular level.
Ji, Liangliang; Chen, Wei; Xu, Zhaoyi; Zheng, Shourong; Zhu, Dongqiang
2013-01-01
Graphenes are an emerging class of carbon nanomaterials whose adsorption properties toward organic compounds have not been well understood. In the present study, graphene nanosheets were prepared by reoxidation and abrupt heating of graphite oxide, which was prepared by sequential chemical oxidation of commercial nonporous graphite powder. Adsorption properties of three aromatic compounds (naphthalene, 2-naphthol, and 1-naphthylamine) and one pharmaceutical compound (tylosin) on graphene nanosheets and graphite oxide were examined to explore the potential of these two adsorbents for the removal of organic contaminants from aqueous solutions. Compared with the literature data of adsorption on carbon nanotubes, adsorption of bulky, flexible tylosin on graphene nanosheets exhibited markedly faster adsorption kinetics, which can be attributed to their opened-up layer structure. Graphene nanosheets and graphite oxide showed similar sequences of adsorption affinity: 1-naphthylamine > 2-naphthol > tylosin > naphthalene (with much larger differences observed on graphite oxide). It was proposed that the strong adsorption of the three aromatic compounds was mainly due to π-π electron donor-acceptor interactions with the graphitic surfaces of adsorbents. Additionally, Lewis acid-base interaction was likely an important factor contributing to the strong adsorption of 1-naphthylamine and tylosin, especially for the O-functionality-abundant graphite oxide. After being normalized on the basis of adsorbent surface area, adsorption affinities of all four tested adsorbates on graphene nanosheets were very close to those on nonporous graphite powder, reflecting complete accessibility of the adsorbent surface area in adsorption. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Huang, Yi; Han, Minfang
2011-10-15
Fly ash-based geopolymer with α-Al(2)O(3) addition were synthesized and used to remove formaldehyde from indoor air. The microstructure, mechanical and formaldehyde adsorption properties of the geopolymer products obtained were investigated. The results showed that α-Al(2)O(3) addition with appropriate amount (such as 5 wt%) increased the geopolymerization extent, resulting in the increase of surface area and compressive strength. In addition, the improvement of structural ordering level for geopolymer sample with 5 wt% α-Al(2)O(3) addition was found through FTIR analysis. By contrast, excessive addition (such as 10 wt%) had the opposite effect. The test of formaldehyde adsorption capacity confirmed that fly ash-based geopolymer product exhibited much better property of adsorbing indoor formaldehyde physically and chemically than fly ash itself. The surface area was an important but not unique factor influencing the adsorption capacity of geopolymers. Copyright © 2011 Elsevier B.V. All rights reserved.
Adsorption of dyes using different types of clay: a review
NASA Astrophysics Data System (ADS)
Adeyemo, Aderonke Ajibola; Adeoye, Idowu Olatunbosun; Bello, Olugbenga Solomon
2017-05-01
Increasing amount of dyes in the ecosystem particularly in wastewater has propelled the search for more efficient low-cost adsorbents. The effective use of the sorption properties (high surface area and surface chemistry, lack of toxicity and potential for ion exchange) of different clays as adsorbents for the removal of different type of dyes (basic, acidic, reactive) from water and wastewater as potential alternatives to activated carbons has recently received widespread attention because of the environmental-friendly nature of clay materials. Insights into the efficiencies of raw and modified/activated clay adsorbents and ways of improving their efficiencies to obtain better results are discussed. Acid-modified clay resulted in higher rate of dye adsorption and an increased surface area and porosity (49.05 mm2 and 53.4 %). Base-modified clay has lower adsorption capacities, while ZnCl2-modified clay had the least rate of adsorption with a surface area of 44.3 mm2 and porosity of 43.4 %. This review also explores the grey areas of the adsorption properties of the raw clays and the improved performance of activated/modified clay materials with particular reference to the effects of pH, temperature, initial dye concentration and adsorbent dosage on the adsorption capacities of the clays. Various challenges encountered in using clay materials are highlighted and a number of future prospects for the adsorbents are proposed.
Inhibiting the corrosion of MNZh 5-1 alloy in neutral solutions of 5-chloro-1,2,3-benzotrialzol
NASA Astrophysics Data System (ADS)
Kuznetsov, Yu. I.; Agafonkina, M. O.; Andreeva, N. P.; Arkhipushkin, I. A.; Kazansky, L. P.
2017-11-01
The adsorption and protective properties of 5-chloro-1,2,3-benzotriazol (5-chloro-BTA) are studied in relation to MNZh 5-1 alloy in a chloride borate buffer solution with pH 7.4. It is shown that this inhibitor can stabilize the passive state of the alloy at a concentration of 0.12 mmol/g. The adsorption of 5-chloro-BTA on a surface of MNZh 5-1 alloy is polymolecular; the free energy of adsorption is about 80 kJ/mol. The advantages of adsorption and protective properties of 5-chloro-BTA compared to BTA on both MNZh 5-1 alloy and the metals contained in the alloy (Ni, Cu) are shown. XPS data indicate a 5-chloro-BTA monolayer formed on the surface of the alloy. This monolayer was composed of inhibitor molecules, which are normally oriented toward a surface and are not removed during ultrasonic washing of the electrode.
NASA Astrophysics Data System (ADS)
Fabre, Héloïse; Mercier, Dimitri; Galtayries, Anouk; Portet, David; Delorme, Nicolas; Bardeau, Jean-François
2018-02-01
Controlling adsorption of proteins onto medical devices is a key issue for implant-related infections. As self-assembled monolayers (SAMs) on titanium oxide represent a good model to study the surface-protein interactions, TiO2 surface properties were modified by grafting bisphosphonate molecules terminated with hydrophilic poly(ethylene glycol) groups and hydrophobic perfluoropolyether ones, respectively. Characterisation of the surface chemistry and surface topography of the modified surfaces was performed using XPS and atomic force microscopy (AFM). Quartz-crystal microbalance with dissipation (QCM-D) was used to determine the mass of adsorbed proteins as well as its kinetics. Poly(ethylene glycol)-terminated SAMs were the most effective surfaces to limit the adsorption of both BSA and fibrinogen in comparison to perfluorinated-terminated SAMs and non-modified TiO2 surfaces, as expected. The adsorption was not reversible in the case of BSA, while a partial reversibility was observed with Fg, most probably due to multilayers of proteins. The grafted surfaces adsorbed about the same quantity of proteins in terms of molecules per surface area, most probably in monolayer or island-like groups of adsorbed proteins. The adsorption on pristine TiO2 reveals a more important, non-specific adsorption of proteins.
Surface complexation modeling of proton and Cd adsorption onto an algal cell wall.
Kaulbach, Emily S; Szymanowski, Jennifer E S; Fein, Jeremy B
2005-06-01
This study quantifies Cd adsorption onto the cell wall of the algal species Pseudokirchneriella subcapitata by applying a surface complexation approach to model the observed adsorption behavior. We use potentiometric titrations to determine deprotonation constants and site concentrations for the functional groups on the algal cell wall. Adsorption and desorption kinetics experiments illustrate that adsorption of Cd onto the cell wall is rapid and reversible, except under low pH conditions. Adsorption experiments conducted as a function of pH and total Cd concentration yield the stoichiometry and site-specific stability constants for the important Cd-algal surface complexes. We model the acid/base properties of the algal cell wall by invoking four discrete surface functional group types, with pKa values of 3.9 +/- 0.3, 5.4 +/- 0.1, 7.6 +/- 0.3, and 9.6 +/- 0.4. The results of the Cd adsorption experiments indicate that the first, third, and fourth sites contribute to Cd adsorption under the experimental conditions, with calculated log stability constant values of 4.1 +/- 0.5, 5.4 +/- 0.5, and 6.1 +/- 0.4, respectively. Our results suggest that the stabilities of the Cd-surface complexes are high enough for algal adsorption to affect the fate and transport of Cd under some conditions and that on a per gram basis, algae and bacteria exhibit broadly similar extents of Cd adsorption.
Investigation of Dynamic Oxygen Adsorption in Molten Solder Jetting Technology
NASA Technical Reports Server (NTRS)
Megaridis, Constantine M.; Bellizia, Giulio; McNallan, Michael; Wallace, David B.
2003-01-01
Surface tension forces play a critical role in fluid dynamic phenomena that are important in materials processing. The surface tension of liquid metals has been shown to be very susceptible to small amounts of adsorbed oxygen. Consequently, the kinetics of oxygen adsorption can influence the capillary breakup of liquid-metal jets targeted for use in electronics assembly applications, where low-melting-point metals (such as tin-containing solders) are utilized as an attachment material for mounting of electronic components to substrates. By interpreting values of surface tension measured at various surface ages, adsorption and diffusion rates of oxygen on the surface of the melt can be estimated. This research program investigates the adsorption kinetics of oxygen on the surface of an atomizing molten-metal jet. A novel oscillating capillary jet method has been developed for the measurement of dynamic surface tension of liquids, and in particular, metal melts which are susceptible to rapid surface degradation caused by oxygen adsorption. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine the variation of the instability growth rate, and, in turn, surface tension of the liquid as a function of surface age measured from the exit orifice. The conditions investigated so far focus on a time window of 2-4ms from the jet orifice. The surface properties of the eutectic 63%Sn-37%Pb solder alloy have been investigated in terms of their variation due to O2 adsorption from a N2 atmosphere containing controlled amounts of oxygen (from 8 ppm to 1000 ppm). The method performed well for situations where the oxygen adsorption was low in that time window. The value of surface tension for the 63Sn-37Pb solder in pure nitrogen was found to be 0.49 N/m, in good agreement with previously published work. A characteristic time of O(1ms) or less was determined for the molten-metal surface to be saturated by oxygen at 1000 ppm concentration in N2.
NASA Astrophysics Data System (ADS)
Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad
2017-08-01
This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Nurazar, Roghaye
2014-03-01
The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.
2017-01-01
Layered transition-metal chalcogenides have emerged as a fascinating new class of materials for catalysis. Here, we present periodic density functional theory (DFT) calculations of the adsorption of thiophene and the direct desulfurization reaction pathways on the (001), (011), and (111) surfaces of layered FeS. The fundamental aspects of the thiophene adsorption, including the initial adsorption geometries, adsorption energies, structural parameters, and electronic properties, are presented. From the calculated adsorption energies, we show that the flat adsorption geometries, wherein the thiophene molecule forms multiple π-bonds with the FeS surfaces, are energetically more favorable than the upright adsorption geometries, with the strength of adsorption decreasing in the order FeS(111) > FeS(011) > FeS(001). The adsorption of the thiophene onto the reactive (011) and (111) surfaces is shown to be characterized by charge transfer from the interacting Fe d-band to the π-system of the thiophene molecule, which causes changes of the intramolecular structure including loss of aromaticity and elongation of the C–S bonds. The thermodynamic and kinetic analysis of the elementary steps involved in the direct desulfurization of thiophene on the reactive FeS surfaces is also presented. Direct desulfurization of thiophene occurs preferentially on the (111) surface, as reflected by the overall exothermic reaction energy calculated for the process (ER = −0.15 eV), with an activation energy of 1.58 eV. PMID:29348782
Chen, Ran; Zhang, Yuntao; Sahneh, Faryad Darabi; Scoglio, Caterina M; Wohlleben, Wendel; Haase, Andrea; Monteiro-Riviere, Nancy A; Riviere, Jim E
2014-09-23
Quantitative characterization of nanoparticle interactions with their surrounding environment is vital for safe nanotechnological development and standardization. A recent quantitative measure, the biological surface adsorption index (BSAI), has demonstrated promising applications in nanomaterial surface characterization and biological/environmental prediction. This paper further advances the approach beyond the application of five descriptors in the original BSAI to address the concentration dependence of the descriptors, enabling better prediction of the adsorption profile and more accurate categorization of nanomaterials based on their surface properties. Statistical analysis on the obtained adsorption data was performed based on three different models: the original BSAI, a concentration-dependent polynomial model, and an infinite dilution model. These advancements in BSAI modeling showed a promising development in the application of quantitative predictive modeling in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R. C.; ...
2017-02-24
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J Phys Chem C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. Here in thismore » work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [100] > [101] > [102] > [0001] > [112] > [104] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Lastly, due to similar water adsorption energies on bastnäsite [101] and calcite [104] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.« less
Goverapet Srinivasan, Sriram; Shivaramaiah, Radha; Kent, Paul R C; Stack, Andrew G; Riman, Richard; Anderko, Andre; Navrotsky, Alexandra; Bryantsev, Vyacheslav S
2017-03-15
Bastnäsite, a fluoro-carbonate mineral, is the single largest mineral source of light rare earth elements (REE), La, Ce and Nd. Enhancing the efficiency of separation of the mineral from gangue through froth flotation is the first step towards meeting an ever increasing demand for REE. To design and evaluate collector molecules that selectively bind to bastnäsite, a fundamental understanding of the structure and surface properties of bastnäsite is essential. In our earlier work (J. Phys. Chem. C, 2016, 120, 16767), we carried out an extensive study of the structure, surface stability and water adsorption energies of La-bastnäsite. In this work, we make a comparative study of the surface properties of Ce-bastnäsite, La-bastnäsite, and calcite using a combination of density functional theory (DFT) and water adsorption calorimetry. Spin polarized DFT+U calculations show that the exchange interaction between the electrons in Ce 4f orbitals is negligible and that these orbitals do not participate in bonding with the oxygen atom of the adsorbed water molecule. In agreement with calorimetry, DFT calculations predict larger surface energies and stronger water adsorption energies on Ce-bastnäsite than on La-bastnäsite. The order of stabilities for stoichiometric surfaces is as follows: [101[combining macron]0] > [101[combining macron]1] > [101[combining macron]2] > [0001] > [112[combining macron]2] > [101[combining macron]4] and the most favorable adsorption sites for water molecules are the same as for La-bastnäsite. In agreement with water adsorption calorimetry, at low coverage water molecules are strongly stabilized via coordination to the surface Ce 3+ ions, whereas at higher coverage they are adsorbed less strongly via hydrogen bonding interaction with the surface anions. Due to similar water adsorption energies on bastnäsite [101[combining macron]1] and calcite [101[combining macron]4] surfaces, the design of collector molecules that selectively bind to bastnäsite over calcite must exploit the structural differences in the predominantly exposed facets of these minerals.
2017-01-01
Reactive mineral–water interfaces exert control on the bioavailability of contaminant arsenic species in natural aqueous systems. However, the ability to accurately predict As surface complexation is limited by the lack of molecular-level understanding of As–water–mineral interactions. In the present study, we report the structures and properties of the adsorption complexes of arsenous acid (As(OH)3) on hydrated mackinawite (FeS) surfaces, obtained from density functional theory (DFT) calculations. The fundamental aspects of the adsorption, including the registries of the adsorption complexes, adsorption energies, and structural parameters are presented. The FeS surfaces are shown to be stabilized by hydration, as is perhaps to be expected because the adsorbed water molecules stabilize the low-coordinated surface atoms. As(OH)3 adsorbs weakly at the water–FeS(001) interface through a network of hydrogen-bonded interactions with water molecules on the surface, with the lowest-energy structure calculated to be an As–up outer-sphere complex. Compared to the water–FeS(001) interface, stronger adsorption was calculated for As(OH)3 on the water–FeS(011) and water–FeS(111) interfaces, characterized by strong hybridization between the S-p and O-p states of As(OH)3 and the surface Fe-d states. The As(OH)3 molecule displayed a variety of chemisorption geometries on the water–FeS(011) and water–FeS(111) interfaces, where the most stable configuration at the water–FeS(011) interface is a bidentate Fe–AsO–Fe complex, but on the water–FeS(111) interface, a monodentate Fe–O–Fe complex was found. Detailed information regarding the adsorption mechanisms has been obtained via projected density of states (PDOS) and electron density difference iso-surface analyses and vibrational frequency assignments of the adsorbed As(OH)3 molecule. PMID:28233994
Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon
2017-03-29
Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption uptake on account of protein spreading and can be utilized in conjunction with covalent cross-linking strategies to prepare well-coated protein adlayers for improved surface passivation.
NASA Astrophysics Data System (ADS)
Liu, Yufeng; Jin, Zu; Meng, Hao; Zhang, Xia
2018-01-01
The adsorption and immobilization of enzymes onto solid carriers has been focused on due to their many advantages, such as improved stability against a thermal or organic solvent and a good cycle usability. TiO2 nanoparticles is one of excellent nano-adsorbents owing to its excellent biocompatibility, non-inflammatory, and abundant surface hydroxyl groups, which are convenient to be combined with various functional groups. In this paper polyacrylic acid (PAA) modified TiO2 nanoparticles were synthesized through an in situ light-induced polymerization of acrylic acid on the surface of TiO2 nanoparticles. The structure and surface physicochemical properties of the PAA/TiO2 nanoparticles were characterized by TEM, XRD, FT-IR, Zeta potential measurements and TG-DSC. The experimental results showed that the isoelectric point of PAA/TiO2 significantly reduced to 1.82 compared with that of pure TiO2 nanoparticles (6.08). In the adsorption tests of lysozyme (Lyz), the PAA/TiO2 nanoparticles displayed enhanced adsorption activity compared with pristine TiO2. The maximum adsorption capacity of PAA/TiO2 for Lyz was 225.9 mg g-1 under the optimum conditions where the initial concentration of Lyz was 300 mg ml-1, the addition amount of PAA/TiO2 was 6.4 mg, the adsorption time was 30 min and the pH value was 7.0. The sodium dodecyl sulfate (SDS, 0.5%) presented the best efficiency (76.86%) in the removal of adsorbed Lyz, and the PAA/TiO2 nanoparticles showed excellent adsorption stability based on five cyclic adsorption-desorption tests. The fitting calculation results of the adsorption isotherm and the thermodynamics indicated the adsorption was an exothermic, entropy increasing, spontaneous and monomolecular layer adsorption process.
Craig, Laura; Stillings, Lisa; Decker, David L.
2017-01-01
Adsorption using activated alumina is a simple method for removing fluoride from drinking water, but to be cost effective the adsorption capacity must be high and effective long-term. The intent of this study was to assess changes in its adsorption capacity under varied conditions. This was determined by evaluating the physico-chemical properties, surface charge, and fluoride (F−) adsorption capacity and rate of activated alumina under conditions such as hydration period, particle size, and slow vs. fast titrations. X-ray diffraction and scanning electron microscopy analyses show that the mineralogy of activated alumina transformed to boehmite, then bayerite with hydration period and a corresponding reduction in adsorption capacity was expected; while surface area analyses show no notable changes with hydration period or particle size. The pH dependent surface charge was three times higher using slow potentiometric titrations as compared to fast titrations (due largely to diffusion into pore space), with the surface acidity generally unaffected by hydration period. Results from batch adsorption experiments similarly show no change in fluoride adsorption capacity with hydration period. There was also no notable difference in fluoride adsorption capacity between the particle size ranges of 0.5–1.0 mm and 0.125–0.250 mm, or with hydration period. However, adsorption rate increased dramatically with the finer particle sizes: at an initial F− concentration of 0.53 mmol L−1 (10 mg L−1), 90% was adsorbed in the 0.125–0.250 mm range after 1 h, while the 0.5–1.0 mm range required 24 h to achieve 90% adsorption. Also, the pseudo-second-order adsorption rate constants for the finer vs. larger particle sizes were 3.7 and 0.5 g per mmol F− per min respectively (24 h); and the initial intraparticle diffusion rate of the former was 2.6 times faster than the latter. The results show that adsorption capacity of activated alumina remains consistent and high under the conditions evaluated in this study, but in order to increase adsorption rate, a relatively fine particle size is recommended.
The adsorption of CH3 and C6H6 on corundum-type sesquioxides: The role of van der Waals interactions
NASA Astrophysics Data System (ADS)
Dabaghmanesh, Samira; Partoens, Bart; Neyts, Erik
Van der Waals (vdW) interactions play an important role in the adsorption of atoms and molecules on the surface of solids. This role becomes more significant whenever the interaction between the adsorbate and surface is physisorption. Thanks to recent developments in density functional theory (DFT), we are now able to employ different vdW methods that helps us to account for the long-range vdW forces. However, the choice of the most efficient vdW functional for different materials is still an open question. In our study, we examine different vdW approaches to compute bulk and molecular adsorption properties of M2O3 oxides (M: Cr, Fe, and Al) as well-known examples of the corundum family. For the bulk properties, we compare our results for the heat of formation, cohesive energy, lattice parameters and bond distances as obtained using the different vdW functionals and available experimental data. Next we compute the adsorption energies of the benzene molecule (as an example of physisorption) and CH3 (as an example of chemisorption) on top of the (0001) M-terminated and MO-terminated surfaces. Calculating the vdW contributions into the adsorption energies, we find that the vdW functionals play important role not just in the weak adsorptions but even in strong adsorption.
Adsorption Characteristics of Pb(2+) onto Wine Lees-Derived Biochar.
Zhu, Qihong; Wu, Jun; Wang, Lilin; Yang, Gang; Zhang, Xiaohong
2016-08-01
Biochar has great advantages in soil amendment and polluted soil remediation. Herein, the pore and adsorption properties of wine lees-derived biochar were explored. Specifically, the adsorption isotherm and kinetics of Pb(2+) onto wine lees-derived biochar were examined. Experimental results revealed that wine lees-derived biochar featured large specific surface area and total pore volume, and high contents of -COOH and -OH on its surface. Adsorption of Pb(2+) onto wine lees-derived biochar proceeded via a multilayer adsorption mechanism, as described by the Freundlich adsorption model. Adsorption kinetics followed the Lagergren pseudo-second-order kinetics model; adsorption equilibrium was achieved within 30-60 min. Furthermore, the effect of solution pH on the adsorption of Pb(2+) was investigated. Within the studied pH range of 3-6, the adsorption capacity increased with increasing pH. Under established optimized conditions, wine lees-derived biochar achieved a Pb(2+) adsorption capacity of 79.12 mg/g.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
He, Lin; Liu, Fei-Fei; Zhao, Mengyao; Qi, Zhen; Sun, Xuefei; Afzal, Muhammad Zaheer; Sun, Xiaomin; Li, Yanhui; Hao, Jingcheng; Wang, Shuguang
2018-04-01
Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface. Copyright © 2017. Published by Elsevier B.V.
CH3Br adsorption on MgO/Mo ultrathin films: A DFT study
NASA Astrophysics Data System (ADS)
Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco
2018-06-01
The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.
Szczepanowicz, Krzysztof; Kruk, Tomasz; Świątek, Wiktoria; Bouzga, Aud M; Simon, Christian R; Warszyński, Piotr
2018-06-01
Formation of protein-resistant surfaces is a major challenge in the design of novel biomaterials and an important strategy to prevent protein adsorption is the formation of protein-resistant coatings. It can be achieved by proper modification of surfaces, e.g., by immobilization of hydrophilic polymers such as poly(ethylene glycol) (PEG). An appropriate method to immobilize PEG at charged surfaces is the adsorption of copolymers with PEG chains grafted onto polyelectrolyte backbone. The growing interest in the use of polyelectrolyte multilayer coatings in biomedical applications to improve biocompatibility and/or to prepare coating with antiadhesive properties has been the main reason for these studies. Therefore the aim was to produce protein resistant polyelectrolyte multilayer films. They were formed via the layer-by-layer approach, while their pegylation by the deposition of pegylated polyanion, PGA-g-PEG, as an external layer. The influence of PEG chain length and grafting density of PGA-g-PEG copolymers on the protein antiadhesive properties of pegylated polyelectrolyte multilayer films was investigated. To monitor the formation of pegylated and non-pegylated multilayer films, adsorption of the following proteins: HSA, Fibrinogen, and FBS were measured by quartz crystal microbalance (QCM - D). We found that protein adsorption onto all pegylated polyelectrolyte multilayers was significantly reduced in comparison to non-pegylated ones. Long-term performance tests confirmed the stability and the durability of the protein resistant properties of the pegylated multilayers. Antiadhesive properties of tested surfaces pegylated by PGA-g-PEG were compared to the available data for pegylated polycation PLL-g-PEG. Copyright © 2018 Elsevier B.V. All rights reserved.
Adsorption and Retardation of PFASs in Soil
NASA Astrophysics Data System (ADS)
Chen, W.; Yan, N.; Fu, X.; Carroll, K. C.; Holguin, F. O. O.; Brusseau, M. L.
2017-12-01
Per- and poly-fluorinated alkyl substances (PFASs) are emerging contaminants of concern that are present in the subsurface at numerous military and industrial facilities. Knowledge of the retention behavior of these compounds in the subsurface environment is critical for effective risk characterization and remediation. The objective of this research is to investigate the role of adsorption at the air-water interface on PFAS retention in vadose-zone systems. Surface tensions were measured for select PFAS to determine interfacial adsorption coefficients. Column experiments were conducted to characterize retardation and transport under saturated and unsaturated flow conditions. The impact of soil properties and groundwater constituents on surface tension, solid-phase adsorption, and interfacial adsorption was investigated.
The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.
Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D
2014-09-28
Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.
The adsorption interaction of a rutin-biopolymer complex with nanosized silica particles
NASA Astrophysics Data System (ADS)
Fedyanina, T. V.; Barvinchenko, V. N.; Lipkovskaya, N. A.; Pogorelyi, V. K.
2008-10-01
The influence of complex formation with biopolymers on the optical and acid properties of natural flavonoid rutin was studied. The adsorption interaction of biologically active flavonoids from officinal plants with the surface of nanosized silica particles was found to depend on the chemical nature of the biopolymer and adsorbate and solution properties.
Adsorption and electronic properties of pentacene on thin dielectric decoupling layers.
Koslowski, Sebastian; Rosenblatt, Daniel; Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus; Schlickum, Uta
2017-01-01
With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.
Adsorption and electronic properties of pentacene on thin dielectric decoupling layers
Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus
2017-01-01
With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping. PMID:28900594
NASA Astrophysics Data System (ADS)
Wang, Yuebo; Su, Xiaoli; Xu, Zhen; Wen, Ke; Zhang, Ping; Zhu, Jianxi; He, Hongping
2016-02-01
A new type of surface-functionalized porous clay heterostructures (SF-PCH) was synthesized via carbonization of the template agents with sulfuric acid. The converted carbons deposited on the porous surface of the SF-PCH samples and changed their surface chemical properties. The composites possessed a maximum carbon content of 5.35%, a large specific surface area of 428 m2/g and micropore volume of approximately 0.2 cm3/g. The layered and porous structure of SF-PCH was retained after carbonization and calcination when sulfuric acid solution with a mild concentration was used. Analysis by XPS confirmed that the carbonaceous matter in the pore channels was functionalized with various organic groups, including carbonaceous, nitrogenous, and sulfated groups. Both the surface chemical property and structural characteristic of adsorbents have effects on the adsorption properties of SF-PCH for toluene. The SF-PCH samples exhibited a stronger adsorption affinity to toluene compared with untreated PCH in the low pressure region, which is more valuable in the practical applications. These results demonstrate that carbonization of soft-template is a feasible process for the surface modification of PCH, enabling the resulting composites to become promising candidates for application in toluene emission control.
Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials
NASA Astrophysics Data System (ADS)
Ruegsegger, Mark Andrew
A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was calculated to be 0.86 ligands/nm2 for PVAm(Pep)(100%), as determined by total internal reflection fluorescence (TIRF) spectroscopy. Similar cell growth was observed on the 100% peptide surfactant as for the fibronectin control, and no cell growth was seen on the 0% peptide. Increasing cell viability was observed for the surfaces with increasing peptide density. These results indicate much promise for surfactant polymers in surface modification and the capability to mimic the passive and active properties of the cell glycocalyx.
Interplay of polyelectrolytes with different adsorbing surfaces
NASA Astrophysics Data System (ADS)
Xie, Feng
We study the adsorption of polyelectrolytes from solution onto different adsorbing surfaces, focusing on the electrostatic interactions. Measurements of the surface excess, fractional ionization of chargeable groups, segmental orientation, and adsorption kinetics were made using Fourier transform infrared spectroscopy in the mode of attenuated total reflection. Different adsorbing surfaces, from single solid surfaces, solid surfaces modified with adsorbed polymer layer, to fluid-like surfaces-biomembranes were adopted. Both atomic force microscopy (AFM) and fluorescent techniques were employed to investigate the fluid-like surfaces in the absence and in the presence of polyelectrolytes. The work focuses on three primary issues: (i) the charge regulation of weak polyelectrolytes on both homogeneous and heterogeneous surfaces, (ii) the dynamics of adsorption when the surface possesses reciprocal mobility, i.e., biomembrane surface, and (iii) the structural and dynamical properties of the fluid-like surfaces interacting with polyelectrolytes. We find that the ionization of chargeable groups in weak polyelectrolytes is controlled by the charge balance between the adsorbates and the surfaces. A new interpretation of ionization in the adsorbed layer provides a new insight into the fundamental problem of whether ions of opposite charge associate or remain separate. Bjerrum length is found to be a criterion for the onset of surface ionization suppression, which helps to predict and control the conformation transition of proteins. In addition to the effect of different surfaces on the adsorption behavior of polyelectrolytes, we also focused on the response of the surfaces to the adsorbates. Chains that encountered sparsely-covered surfaces spread to maximize the number of segment-surface contacts at rates independent of the molar mass. Surface reconstruction rather than molar mass of the adsorbing molecules appeared to determine the rate of spreading. This contrasts starkly with traditional polymer adsorption onto surfaces whose structure is "frozen" and unresponsive. Finally, preliminary studies on dynamical properties of biomembrane surfaces interacting with polyelectrolytes are presented, using fluorescence correlation spectroscopy (FCS). The significance is to characterize domains induced by polyelectrolyte binding.
A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
Grivé, M; García, D; Domènech, C; Richard, L; Rojo, I; Martínez, X; Rovira, M
2013-01-01
Granular activated carbon (GAC) is commonly used as adsorbent in water treatment plants given its high capacity for retaining organic pollutants in aqueous phase. The current knowledge on GAC behaviour is essentially empirical, and no quantitative description of the chemical relationships between GAC surface groups and pollutants has been proposed. In this paper, we describe a quantitative model for the adsorption of atrazine onto GAC surface. The model is based on results of potentiometric titrations and three types of adsorption experiments which have been carried out in order to determine the nature and distribution of the functional groups on the GAC surface, and evaluate the adsorption characteristics of GAC towards atrazine. Potentiometric titrations have indicated the existence of at least two different families of chemical groups on the GAC surface, including phenolic- and benzoic-type surface groups. Adsorption experiments with atrazine have been satisfactorily modelled with the geochemical code PhreeqC, assuming that atrazine is sorbed onto the GAC surface in equilibrium (log Ks = 5.1 ± 0.5). Independent thermodynamic calculations suggest a possible adsorption of atrazine on a benzoic derivative. The present work opens a new approach for improving the adsorption capabilities of GAC towards organic pollutants by modifying its chemical properties.
Effect of adsorption on the surface tensions of solid-fluid interfaces.
Ward, C A; Wu, Jiyu
2007-04-12
A method is proposed for determining the surface tensions of a solid in contact with either a liquid or a vapor. Only an equilibrium adsorption isotherm at the solid-vapor interface needs to be added to Gibbsian thermodynamics to obtain the expressions for the solid-vapor and the solid-liquid surface tensions, gamma[1](SV) and gamma[1](SL), respectively. An equilibrium adsorption isotherm relation is formulated that has the essential property of not predicting an infinite amount adsorbed when the pressure is equal to the saturation-vapor pressure. Five different solid-vapor systems from the literature are examined, and found to be well described by the new isotherm relation. The surface-tension expressions obtained from the isotherm relation are examined by determining the surface tension of the solid in the absence of adsorption, gamma[1](S0), a material property of a solid surface. The value of gamma[1](S0) can be determined by adsorbing different vapors on the same solid, determining the isotherm parameters in each case, and then from the expression for gamma[1](SV) taking the limit of the pressure vanishing to determine gamma[1](S0). From previously reported measurements of benzene and of n-hexane adsorbing on graphitized carbon, the same value of gamma[1](S0) is obtained.
Zhang, Jian; Kong, Ni; Niu, Jialin; Shi, Yongjuan; Li, Haiyan; Zhou, Yue; Yuan, Guangyin
2014-03-01
Fluoride treatment is a commonly used technique or pre-treatment to optimize the degradation kinetic and improve the biocompatibility of magnesium-based implant. The influence of changed surface properties and degradation kinetics on subsequent protein adsorption and cytocompatibility is critical to understand the biocompatibility of the implant. In this study, a patent magnesium alloy Mg-Nd-Zn-Zr alloy (JDBM) designed for cardiovascular stent application was treated by immersion in hydrofluoric acid. A 1.5 μm thick MgF2 layer was prepared. The surface roughness was increased slightly while the surface zeta potential was changed to a much more negative value after the treatment. Static contact angle test was performed, showing an increase in hydrophilicity and surface energy after the treatment. The MgF2 layer slowed down in vitro degradation rate, but lost the protection effect after 10 days. The treatment enhanced human albumin adsorption while no difference of human fibrinogen adsorption amount was observed. Direct cell adhesion test showed many more live HUVECs retained than bare magnesium alloy. Both treated and untreated JDBM showed no adverse effect on HUVEC viability and spreading morphology. The relationship between changed surface characteristics, degradation rate and protein adsorption, cytocompatibility was also discussed.
NASA Astrophysics Data System (ADS)
Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash
2011-02-01
A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.
Chemically Modified Polyvinyl Chloride for Removal of Thionine Dye (Lauth’s Violet)
Silva, Cleuzilene V.; Royer, Betina; Rodrigues Filho, Guimes; Cerqueira, Daniel A.; Assunção, Rosana M. N.
2017-01-01
The chemical modification of hydrophobic polymer matrices is an alternative way to elchange their surface properties. The introduction of sulfonic groups in the polymer changes the surface properties such as adhesion, wettability, catalytic ability, and adsorption capacity. This work describes the production and application of chemically modified polyvinyl chloride (PVC) as adsorbent for dyes removal. Chemical modification of PVC was evaluated by infrared spectroscopy and elemental analysis, which indicated the presence of sulfonic groups on PVC. The chemically modified PVC (PVCDS) showed an ion exchange capacity of 1.03 mmol−1, and efficiently removed the thionine dye (Lauth’s violet) from aqueous solutions, reaching equilibrium in 30 min. The adsorption kinetics was better adjusted for a pseudo second order model. This result indicates that the adsorption of thionine onto PVCDS occurs by chemisorption. Among the models for the state of equilibrium, SIPS and Langmuir exhibited the best fit to the experimental results and PVCDS showed high adsorption capacities (370 mg−1). Thus, it is assumed that the system presents homogeneous characteristics to the distribution of active sites. The modification promoted the formation of surface characteristics favorable to the dye adsorption by the polymer. PMID:29137158
Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng
2017-07-12
The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.
NASA Astrophysics Data System (ADS)
Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang
2017-07-01
Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.
Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes.
Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador; Gallegos-Suarez, Esteban; Guerrero-Ruiz, Antonio; Rodríguez-Ramos, Inmaculada
2015-10-01
Adsorption of three representative emerging pollutants - 1,8-dichlorooctane, nalidixic acid and 2-(4-methylphenoxy)ethanol- on different carbon nanotubes was studied in order to determine the influence of the morphological and chemical properties of the materials on their adsorption properties. As adsorbents, multiwall carbon nanotubes (MWCNTs) without functionalization and with oxygen or nitrogen surface groups, as well as carbon nanotubes doped with nitrogen were used. The adsorption was studied in aqueous phase using batch adsorption experiments, results being fitted to both Langmuir and Freundlich models. The adsorption capacity is strongly dependent on both the hydrophobicity of the adsorbates and the morphology of the adsorbents. Thermodynamic parameters were determined observing strong interactions between the aromatic rings of the emerging pollutant and the nitrogen modified adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets.
Wang, Jun; Chen, Zaiming; Chen, Baoliang
2014-05-06
The adsorption of naphthalene, phenanthrene, and pyrene onto graphene (GNS) and graphene oxide (GO) nanosheets was investigated to probe the potential adsorptive sites and molecular mechanisms. The microstructure and morphology of GNS and GO were characterized by elemental analysis, XPS, FTIR, Raman, SEM, and TEM. Graphene displayed high affinity to the polycyclic aromatic hydrocarbons (PAHs), whereas GO adsorption was significantly reduced after oxygen-containing groups were attached to GNS surfaces. An unexpected peak was found in the curve of adsorption coefficients (Kd) with the PAH equilibrium concentrations. The hydrophobic properties and molecular sizes of the PAHs affected the adsorption of G and GO. The high affinities of the PAHs to GNS are dominated by π-π interactions to the flat surface and the sieving effect of the powerful groove regions formed by wrinkles on GNS surfaces. In contrast, the adsorptive sites of GO changed to the carboxyl groups attaching to the edges of GO because the groove regions disappeared and the polar nanosheet surfaces limited the π-π interactions. The TEM and SEM images initially revealed that after loading with PAH, the conformation and aggregation of GNS and GO nanosheets dramatically changed, which explained the observations that the potential adsorption sites of GNS and GO were unusually altered during the adsorption process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
Sarikurt, Sevil; Çakır, Deniz; Keçeli, Murat; ...
2018-01-01
The structural model ( i.e. adsorption site of oxygen atom on the surface of MXene) has a paramount impact on the electronic and thermoelectric properties of MXene crystals, which can be exploited to engineer the thermoelectric properties of these materials.
NASA Astrophysics Data System (ADS)
Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni
2016-04-01
Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.
Hao, L; Lawrence, J
2004-03-15
Magnesia partially stabilised zirconia (MgO-PSZ), a bioinert ceramic, exhibits high mechanical strength, excellent corrosion resistance and good biocompatibility, but it does not naturally form a direct bond with bone resulting in a lack of osteointegration. The surface properties and structure of a biomaterial play an essential role in protein adsorption. As such, changes in the surface properties and structure of biomaterials may in turn alter their bioactivity. So, the fundamental reactions at the interface of biomaterials and tissue should influence their integration and bone-bonding properties. To this end, CO2 laser radiation was used to modify the surface roughness, crystal size, phase and surface energy of the MgO-PSZ. The basic mechanisms active in improving the surface energy were analysed and found to be the phase change and augmented surface area. The adsorption of human serum albumin (HSA), which is a non-cell adhesive protein, was compared on the untreated and CO2 laser modified MgO-PSZ. It was observed that the thickness of the adsorbed HSA decreased as the polar surface energy of the MgO-PSZ increased, indicating that HSA adsorbed more effectively on the hydrophobic MgO-PSZ surface than the hydrophilic surface. The current study provided important information regarding protein-biomaterial interactions and possible mechanisms behind the cell interaction and in vivo behaviour.
Fuller, C.C.; Davis, J.A.; Coston, J.A.; Dixon, E.
1996-01-01
Several geochemical properties of an aquifer sediment that control metal-ion adsorption were investigated to determine their potential use as indicators of the spatial variability of metal adsorption. Over the length of a 4.5-m-long core from a sand and gravel aquifer, lead (Pb2+) and zinc (Zn2+) adsorption at constant chemical conditions (pH 5.3) varied by a factor of 2 and 4, respectively. Pb2+ and Zn2+ were adsorbed primarily by Fe- and Al-oxide coatings on quartz-grain surfaces. Per unit surface area, both Pb2+ and Zn2+ adsorption were significantly correlated with the amount of Fe and Al that dissolved from the aquifer material in a partial chemical extraction. The variability in conditional binding constants for Pb2+ and Zn2+ adsorption (log KADS) derived from a simple non-electrostatic surface complexation model were also predicted by extracted Fe and Al normalized to surface area. Because the abundance of Fe- and Al-oxide coatings that dominate adsorption does not vary inversely with grain size by a simple linear relationship, only a weak, negative correlation was found between the spatial variability of Pb2+ adsorption and grain size in this aquifer. The correlation between Zn2+ adsorption and grain size was not significant. Partial chemical extractions combined with surface-area measurements have potential use for estimating metal adsorption variability in other sand and gravel aquifers of negligible carbonate and organic carbon content.
Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels.
Sánchez-Polo, M; Rivera-Utrilla, J; Salhi, E; von Gunten, U
2006-08-01
The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)
Shen, Jia-Wei; Wu, Tao; Wang, Qi; Kang, Yu; Chen, Xin
2009-06-02
Ordered hydration shells: The more ordered hydration shells outside the charged CNT surfaces prevent more compact adsorption of the peptide in the charged CNT systems [picture: see text], but peptide binding strengths on the charged CNT surfaces are stronger due to the electrostatic interaction.Studies of adsorption dynamics and stability for peptides/proteins on single-walled carbon nanotubes (SWNTs) are of great importance for a better understanding of the properties and nature of nanotube-based biosystems. Herein, the dynamics and mechanism of the adsorption of the insulin chain B peptide on different charged SWNTs are investigated by explicit solvent molecular dynamics simulations. The results show that all types of surfaces effectively attract the model peptide. Water molecules play a significant role in peptide adsorption on the surfaces of charged carbon nanotubes (CNTs). Compared to peptide adsorption on neutral CNT surfaces, the more ordered hydration shells outside the tube prevent more compact adsorption of the peptide in charged CNT systems. This shield effect leads to a smaller conformational change and van der Waals interaction between the peptide and surfaces, but peptide binding strengths on charged CNT surfaces are stronger than those on the neutral CNT surface due to the strong electrostatic interaction. The result of these simulations implies the possibility of improving the binding strength of peptides/proteins on CNT surfaces, as well as keeping the integrity of the peptide/protein conformation in peptide/protein-CNT complexes by charging the CNTs.
A semiflexible alternating copolymer chain adsorption on a flat and a fluctuating surface.
Mishra, Pramod Kumar
2010-04-21
A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two (square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of the surface and at a suitable value of monomer surface attraction, the copolymer chain gets adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the directed walk model has been solved analytically using the generating function method to discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no interaction with the surface. Results obtained in the flat surface case show that, for a stiffer copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption transition point is independent of bending energy of the copolymer chain. These features are similar to that of a semiflexible homopolymer chain adsorption.
Kojima, Taisuke
2018-01-01
Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.
Basconi, Joseph E; Carta, Giorgio; Shirts, Michael R
2015-04-14
Multiscale simulation is used to study the adsorption of lysozyme onto ion exchangers obtained by grafting charged polymers into a porous matrix, in systems with various polymer properties and strengths of electrostatic interaction. Molecular dynamics simulations show that protein partitioning into the polymer-filled pore space increases with the overall charge content of the polymers, while the diffusivity in the pore space decreases. However, the combination of greatly increased partitioning and modestly decreased diffusion results in macroscopic transport rates that increase as a function of charge content, as the large concentration driving force due to enhanced pore space partitioning outweighs the reduction in the pore space diffusivity. Matrices having greater charge associated with the grafted polymers also exhibit more diffuse intraparticle concentration profiles during transient adsorption. In systems with a high charge content per polymer and a low protein loading, the polymers preferentially partition toward the surface due to favorable interactions with the surface-bound protein. These results demonstrate the potential of multiscale modeling to illuminate qualitative trends between molecular properties and the adsorption equilibria and kinetic properties observable on macroscopic scales.
Genuino, Divine Angela D; de Luna, Mark Daniel G; Capareda, Sergio C
2018-02-01
Biochar produced from the slow pyrolysis of municipal solid waste was activated with KOH and thermal treatments to enhance its surface and adsorptive properties. The effects of KOH concentration, activation temperature and time on the specific surface area (SSA) of the activated biochar were evaluated and optimized using central composite design (CCD) of the response surface methodology (RSM). Results showed that the activation of biochar enhanced its SSA from 402.8 ± 12.5 to 662.4 ± 28.6 m 2 g -1 . The adsorptive capacities of the pristine biochar (PBC) and activated biochar (ABC) were compared using methylene blue (MB) dye as model compound. For MB concentrations up to 25 mg L -1 , more than 99% dye removal was achieved with ABC, while only a maximum of 51% was obtained with PBC. Results of the isotherm study showed that the Langmuir model best described MB adsorption on ABC with adsorption capacity of 37.0-41.2 mg g -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon
NASA Astrophysics Data System (ADS)
Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.
2008-03-01
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.
Self-organized molecular films with long-range quasiperiodic order.
Fournée, Vincent; Gaudry, Émilie; Ledieu, Julian; de Weerd, Marie-Cécile; Wu, Dongmei; Lograsso, Thomas
2014-04-22
Self-organized molecular films with long-range quasiperiodic order have been grown by using the complex potential energy landscape of quasicrystalline surfaces as templates. The long-range order arises from a specific subset of quasilattice sites acting as preferred adsorption sites for the molecules, thus enforcing a quasiperiodic structure in the film. These adsorption sites exhibit a local 5-fold symmetry resulting from the cut by the surface plane through the cluster units identified in the bulk solid. Symmetry matching between the C60 fullerene and the substrate leads to a preferred adsorption configuration of the molecules with a pentagonal face down, a feature unique to quasicrystalline surfaces, enabling efficient chemical bonding at the molecule-substrate interface. This finding offers opportunities to investigate the physical properties of model 2D quasiperiodic systems, as the molecules can be functionalized to yield architectures with tailor-made properties.
Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites
NASA Astrophysics Data System (ADS)
Egodawatte, Shani Nirasha
Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous silica as well as a judicious choice of pH. Modified magnetic mesoporous silica material was also found to have high adsorption capacity for high and low pH aqueous solutions of Uranium (VI). Tuning the loading and release of a small drug molecule (5-FU) onto these iron oxide/ mesoporous silica core-shell materials was also investigated. The polarity of the solvent used to load 5-FU onto the host had an impact not only on the loading but also on the release percentage of 5-FU. The synthesis of a novel core-shell material with a hematite nanofiber core and a SBA type mesoporous silica shell was also explored.
Adsorption of Cu2+ to biomass ash and its modified product.
Xu, Lei; Cui, Hongbiao; Zheng, Xuebo; Liang, Jiani; Xing, Xiangyu; Yao, Lunguang; Chen, Zhaojin; Zhou, Jing
2017-04-01
Ash produced by biomass power plants has great potential for the removal of heavy metal ions from aqueous solution. The pollution of toxic heavy metals to water is a worldwide environmental problem. Discharges containing copper, in particular, are strictly controlled because the excessive copper can cause serious harm to the environment and human health. This work aims to investigate the adsorption characteristics of copper ions in aqueous solution by biomass ash and the modified products, and to evaluate their potential application in water pollution control. The biomass ash was modified with a mesoporous siliceous material and functionalized with 3-aminopropyltriethoxysilane. The surface properties of the biomass ash and the new matrix were studied to evaluate their adsorption property for Cu 2+ ions at different pHs, initial metal concentrations and the thermodynamic and kinetic were studied. The chemical and morphological properties of this modified material are analyzed; the specific surface area of the modified biomass ash was nine times that of the initial ash. Both of the two materials showed a strong affinity for Cu 2+ , and the Langmuir model could best represent the adsorption characteristics of Cu 2+ on the two kinds of materials. The adsorption capacity of copper on the material increased with the increase of pH and pH 6 was the optimum pH. Thermodynamic analysis results showed that the adsorption of Cu 2+ was spontaneous and endothermic in nature. The adsorptions of Cu 2+ onto the modified biomass ash followed pseudo-second-order kinetics.
Song, Xianyu; Zhao, Shuangliang; Fang, Shenwen; Ma, Yongzhang; Duan, Ming
2016-11-08
The dissipative particle dynamics (DPD) method is used to investigate the adsorption behavior of PEO-PPO-PEO triblock copolymers at the liquid/solid interface. The effect of molecular architecture on the self-assembled monolayer adsorption of PEO-PPO-PEO triblock copolymers on hydrophobic surfaces is elucidated by the adsorption process, film properties, and adsorption morphologies. The adsorption thicknesses on hydrophobic surfaces and the diffusion coefficient as well as the aggregation number of Pluronic copolymers in aqueous solution observed in our simulations agree well with previous experimental and numerical observations. The radial distribution function revealed that the ability of self-assembly on hydrophobic surfaces is P123 > P84 > L64 > P105 > F127, which increased with the EO ratio of the Pluronic copolymers. Moreover, the shape parameter and the degree of anisotropy increase with increasing molecular weight and mole ratio of PO of the Pluronic copolymers. Depending on the conformation of different Pluronic copolymers, the morphology transition of three regimes on hydrophobic surfaces is present: mushroom or hemisphere, progressively semiellipsoid, and rectangle brush regimes induced by decreasing molecular weight and mole ratio of EO of Pluronic copolymers.
Kaija, A R; Wilmer, C E
2017-09-08
Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.
NASA Astrophysics Data System (ADS)
Needham, Erin Michelle
As drinking water sources become increasingly impaired with nutrients and wastewater treatment plant (WWTP) effluent, formation of disinfection byproducts (DBPs)--such as trihalomethanes (THMs), dihaloacetonitriles (DHANs), and N-nitrosamines--during water treatment may also increase. N-nitrosamines may comprise the bulk of the chronic toxicity in treated drinking waters despite forming at low ng/L levels. This research seeks to elucidate physicochemical properties of carbon nanotubes (CNTs) for removal of DBP precursors, with an emphasis on total N-nitrosamines (TONO). Batch experiments with CNTs were completed to assess adsorption of THM, DHAN, and TONO precursors; physiochemical properties of CNTs were quantified through gas adsorption isotherms and x-ray photoelectron spectroscopy. Numerical modeling was used to elucidate characteristics of CNTs controlling DBP precursor adsorption. Multivariate models developed with unmodified CNTs revealed that surface carboxyl groups and, for TONO precursors, cumulative pore volume (CPV), controlled DBP precursor adsorption. Models developed with modified CNTs revealed that specific surface area controlled adsorption of THM and DHAN precursors while CPV and surface oxygen content were significant for adsorption of TONO precursors. While surrogates of THM and DHAN precursors leverage metrics from UV absorbance and fluorescence spectroscopy, a TONO precursor surrogate has proved elusive. This is important as measurements of TONO formation potential (TONOFP) require large sample volumes and long processing times, which impairs development of treatment processes. TONO precursor surrogates were developed using samples that had undergone oxidative or sorption treatments. Precursors were analyzed with asymmetric flow field-flow fractionation (AF4) with inline fluorescence detection (FLD) and whole water fluorescence excitation-emission matrices (EEMs). TONO precursor surrogates were discovered, capable of predicting changes in TONOFP in WWTP samples that have undergone oxidation (R2 = 0.996) and sorption (R2 = 0.576). Importantly, both surrogates only require just 2 mL of sample volume to measure and take only 1 hour. Application of the sorption precursor surrogate revealed that DBP precursor adsorption was feasible with freeform CNT microstructures with various dimensions and surface chemistries, establishing a framework for development of this novel CNT application for drinking water treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rad, Ali Shokuhi, E-mail: a.shokuhi@gmail.com; Shabestari, Sahand Sadeghi; Mohseni, Soheil
2016-05-15
We investigated the structure, adsorption, electronic states, and charge transfer of O{sub 3}, SO{sub 2} and SO{sub 3} molecules on the surface of a B-doped graphene using density functional theory (DFT). We found weak physisorption of SO{sub 2} (−10.9 kJ/mole, using B3LYP-D) and SO{sub 3} (−15.7 kJ/mole, using B3LYP-D) on the surface of B-doped graphene while there is strong chemisorption for O{sub 3} (−96.3 kJ/mole, using B3LYP-D ) on this surface. Our results suggest the potential of B-doped graphene as a selective sensor/adsorbent for O{sub 3} molecule. We noticed some change in hybridizing of boron from sp{sup 2} to sp{supmore » 3} upon adsorption of O{sub 3} which cases transformation of the adsorbent from 2D to 3D. - Graphical abstract: The electronic property of B-doped graphene is responsible to highly adsorption of O{sub 3} molecules while the adsorption of SO{sub 2} and SO{sub 3} molecules on this surface exhibits only a weak interaction. - Highlights: • B-doped graphene clearly is n-type semiconductor. • High negatively charge of C-atoms neighboring the boron dopant. • Chemisorption of O{sub 3} and physisorption of SO{sub 2} and SO{sub 3} on the surface of B-doped graphene.« less
Hydrogen adsorption in metal-decorated silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-09-01
Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.
NASA Astrophysics Data System (ADS)
Sun, Fei; Gao, Jihui; Liu, Xin; Tang, Xiaofan; Wu, Shaohua
2015-12-01
For the aim to break through the long-term roadblock to porous carbon based SO2 removal technology, typical coal-based activated cokes differing in terms of surface area, pore configuration and surface functional properties, were employed to investigate the SO2 removal dynamics. Among the employed activated cokes, the one with a hierarchically porous structure greatly enhanced the SO2 removal dynamics under the simulated flue gas compositions. More detailedly, SO2 separate adsorption property under normal temperature and pressure evidenced that monolayer SO2 molecules anchoring on micropore surface is the main adsorption pattern. The catalytic oxidation of SO2 follows the Eley-Rideal mechanism by which SO2 was firstly oxidized by molecular oxygen into SO3 which could depart partially to release the active sites for further adsorption. For the role of hierarchical pore configuration, it was proposed that micropores serve as gas adsorption and reaction accommodation, meso-/macropores act as byproduct H2SO4 transport and buffing reservoirs, which may in turn gives rise to the recovery of active sites in micropores and guarantees the continuous proceeding of sulfur-containing species transformation in the micropores. The present results suggest that pore configuration or interconnecting pattern, but not mere surface area or pore volume, should be favourably considered for optimizing heterogeneous gas-solid adsorption and reaction.
Surface Tension of Solids in the Absence of Adsorption
2009-01-01
A method has been recently proposed for determining the value of the surface tension of a solid in the absence of adsorption, γS0, using material properties determined from vapor adsorption experiments. If valid, the value obtained for γS0 must be independent of the vapor used. We apply the proposed method to determine the value of γS0 for four solids using at least two vapors for each solid and find results that support the proposed method for determining γS0. PMID:19719092
Definition and effect of chemical properties of surfaces in friction, wear, and lubrication
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Chemical properties relative to their role in adhesion, friction, wear and lubrication discussed in this paper will include: (1) adsorption, both physical and chemical; (2) orientation of the solid as well as the lubricant; (3) surface energy; (4) surface segregation; (5) surface versus bulk metallurgical effects; (6) electronic nature of the surface; and (7) bonding mechanisms.
Surface rheology of saponin adsorption layers.
Stanimirova, R; Marinova, K; Tcholakova, S; Denkov, N D; Stoyanov, S; Pelan, E
2011-10-18
Extracts of the Quillaja saponaria tree contain natural surfactant molecules called saponins that very efficiently stabilize foams and emulsions. Therefore, such extracts are widely used in several technologies. In addition, saponins have demonstrated nontrivial bioactivity and are currently used as essential ingredients in vaccines, food supplements, and other health products. Previous preliminary studies showed that saponins have some peculiar surface properties, such as a very high surface modulus, that may have an important impact on the mechanisms of foam and emulsion stabilization. Here we present a detailed characterization of the main surface properties of highly purified aqueous extracts of Quillaja saponins. Surface tension isotherms showed that the purified Quillaja saponins behave as nonionic surfactants with a relatively high cmc (0.025 wt %). The saponin adsorption isotherm is described well by the Volmer equation, with an area per molecule of close to 1 nm(2). By comparing this area to the molecular dimensions, we deduce that the hydrophobic triterpenoid rings of the saponin molecules lie parallel to the air-water interface, with the hydrophilic glucoside tails protruding into the aqueous phase. Upon small deformation, the saponin adsorption layers exhibit a very high surface dilatational elasticity (280 ± 30 mN/m), a much lower shear elasticity (26 ± 15 mN/m), and a negligible true dilatational surface viscosity. The measured dilatational elasticity is in very good agreement with the theoretical predictions of the Volmer adsorption model (260 mN/m). The measured characteristic adsorption time of the saponin molecules is 4 to 5 orders of magnitude longer than that predicted theoretically for diffusion-controlled adsorption, which means that the saponin adsorption is barrier-controlled around and above the cmc. The perturbed saponin layers relax toward equilibrium in a complex manner, with several relaxation times, the longest of them being around 3 min. Molecular interpretations of the observed trends are proposed when possible. Surprisingly, in the course of our study we found experimentally that the drop shape analysis method (DSA method) shows a systematically lower surface elasticity, in comparison with the other two methods used: Langmuir trough and capillary pressure tensiometry with spherical drops. The possible reasons for the observed discrepancy are discussed, and the final conclusion is that the DSA method has specific problems and may give incorrect results when applied to study the dynamic properties of systems with high surface elasticity, such as adsorption layers of saponins, lipids, fatty acids, solid particles, and some proteins. The last conclusion is particularly important because the DSA method recently became the preferred method for the characterization of fluid interfaces because of its convenience. © 2011 American Chemical Society
Chen, Fengli; Bai, Dongjie; Wang, Yao; He, Minghui; Gao, Xiaoxia; He, Yabing
2018-01-15
The combination of an angular diisophthalate ligand, 5,5'-(naphthyl-2,7-yl)diisophthalate (H 4 L), and copper ions under different solvothermal conditions afforded two polymorphous metal-organic frameworks (ZJNU-77 and ZJNU-78) with the same framework composition of [Cu 2 (L)(H 2 O) 2 ], providing a platform to investigate the relationship between MOF polymorphism and gas adsorption properties. As determined by single-crystal X-ray diffraction, ZJNU-77 and ZJNU-78 exhibited three-dimensional networks crystallizing in different space groups. Their structural differences were mainly manifested by the ligand's conformation, the level of framework interpenetration and the network's topology. Interestingly, gas adsorption studies showed that the two compounds after desolvation displayed comparable gas adsorption properties with respect to C 2 H 2 , CO 2 and CH 4 , despite their different surface areas and pore volumes. The C 2 H 2 , CO 2 , and CH 4 uptake capacities at 298 K and 1 atm are 120.2, 78.1, and 18.4 cm 3 (STP) g -1 for ZJNU-77, and 122.0, 82.0, and 18.9 cm 3 (STP) g -1 for ZJNU-78, respectively. The IAST adsorption selectivities for the equimolar C 2 H 2 /CH 4 and CO 2 /CH 4 mixtures are 28.6 and 5.7 for ZJNU-77, and 28.4 and 5.9 for ZJNU-78 at 298 K and 1 atm. These results indicate that besides the surface area, the pore size also plays a crucial role in gas adsorption. This work not only represents an intriguing example of MOF polymorphism achieved by controlling solvothermal conditions, but also provides an insight into the correlation between MOF polymorphism and gas adsorption properties.
Adsorption of guaiacol on Fe (110) and Pd (111) from first principles
NASA Astrophysics Data System (ADS)
Hensley, Alyssa J. R.; Wang, Yong; McEwen, Jean-Sabin
2016-06-01
The catalytic properties of surfaces are highly dependent upon the effect said surfaces have on the geometric and electronic structure of adsorbed reactants, products, and intermediates. It is therefore crucial to have a surface-level understanding of the adsorption of the key species in a reaction in order to design active and selective catalysts. Here, we study the adsorption of guaiacol on Fe (110) and Pd (111) using dispersion-corrected density functional theory calculations as both of these metals are of interest as hydrodeoxygenation catalysts for the conversion of bio-oils to useable biofuels. Both vertical (via the oxygen functional groups) and horizontal (via the aromatic ring) adsorption configurations were examined and the resulting adsorption and molecular distortion energies showed that the vertical sites were only physisorbed while the horizontal sites were chemisorbed on both metal surfaces. A comparison of guaiacol's horizontal adsorption on Fe (110) and Pd (111) showed that guaiacol had a stronger adsorption on Pd (111) while the Fe (110) surface distorted the Csbnd O bonds to a greater degree. Electronic analyses on the horizontal systems showed that the greater adsorption strength for guaiacol on Pd (111) was likely due to the greater charge transfer between the aromatic ring and the surface Pd atoms. Additionally, the greater distortion of the Csbnd O bonds in adsorbed guaiacol on Fe (110) is likely due to the greater degree of interaction between the oxygen and surface Fe atoms. Overall, our results show that the Fe (110) surface has a greater degree of interaction with the functional groups and the Pd (111) surface has a greater degree of interaction with the aromatic ring.
NASA Astrophysics Data System (ADS)
Taft, Michael J., Sr.
Alcohol conversion to hydrogen, via steam reforming, is an alternative energy process that is promising for the future of clean energy economies. With advancements in fuel cell technologies, on-board hydrogen reforming could leverage already existing automotive designs and fuel infrastructure. The design of catalytic materials with tunable properties requires a level of insight that has yet to be achieved experimentally. The central objective of this project is to develop a working model of metal-oxide surface mediated copper clusters, since such catalytic beds have a wide-range of applications. More specifically, we investigate the catalytic framework of this process with theoretical models of the active metal (Cu) and metaloxide support (TiO2). We employ a Density Functional Theory (DFT)-Generalized Gradient Approximation (GGA) approach for the quantum level electronic structure calculations of Cu, TiO2 and CH3OH. Additionally, we have generated anatase (A(001), A(101)) and rutile (R(100), R(110)) surface morphologies and 7atom copper cluster complexes with those planes. To examine the possible influence of TiO2 on the adsorption properties of our active metal, Cu7, we have carried out adsorption studies with CH3OH. Our final data and observations predict that the Cu7 cluster adopts a symmetric pentagonal bipyramidal geometry with D5h symmetry. We find that the anatase morphology has a greater overall stability than rutile. The adsorption strength of the Cu7 cluster has been predicted in this study to be according to the following order: A(001) > A(101)> R(110). Indeed, the R(100) surface appears to be an unfavorable surface for metal cluster binding. Our data indicates that copper cluster stabilization on the metal-oxide surface depends on the nature of the crystal face. Again, we studied the adsorption properties of methanol on nascent Cu7 cluster, Cu7-TiO 2 complex and on pure TiO2-surface in A(001) polymorphic form. The calculations revealed that methanol adsorbs more efficiently on TiO2-bound copper clusters than either the copper cluster alone or the surface of TiO2. Additionally, we find that the metal-oxide support plays a significant role in stabilizing the catalytic reactions of CH3OH adsorption. Here, we have shown that TiO2 clearly enhances the catalytic properties of copper clusters.
NASA Astrophysics Data System (ADS)
Lymperakis, L.; Neugebauer, J.; Himmerlich, M.; Krischok, S.; Rink, M.; Kröger, J.; Polyakov, V. M.
2017-05-01
The adsorption of hydrogen at nonpolar GaN (1 1 ¯00 ) surfaces and its impact on the electronic and vibrational properties is investigated using surface electron spectroscopy in combination with density functional theory (DFT) calculations. For the surface mediated dissociation of H2 and the subsequent adsorption of H, an energy barrier of 0.55 eV has to be overcome. The calculated kinetic surface phase diagram indicates that the reaction is kinetically hindered at low pressures and low temperatures. At higher temperatures ab initio thermodynamics show, that the H-free surface is energetically favored. To validate these theoretical predictions experiments at room temperature and under ultrahigh vacuum conditions were performed. They reveal that molecular hydrogen does not dissociatively adsorb at the GaN (1 1 ¯00 ) surface. Only activated atomic hydrogen atoms attach to the surface. At temperatures above 820 K, the attached hydrogen gets desorbed. The adsorbed hydrogen atoms saturate the dangling bonds of the gallium and nitrogen surface atoms and result in an inversion of the Ga-N surface dimer buckling. The signatures of the Ga-H and N-H vibrational modes on the H-covered surface have experimentally been identified and are in good agreement with the DFT calculations of the surface phonon modes. Both theory and experiment show that H adsorption results in a removal of occupied and unoccupied intragap electron states of the clean GaN (1 1 ¯00 ) surface and a reduction of the surface upward band bending by 0.4 eV. The latter mechanism largely reduces surface electron depletion.
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-04-01
*The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.
Chen, Jie; Shu, Chiajung; Wang, Ning; Feng, Jiangtao; Ma, Hongyu; Yan, Wei
2017-06-01
More than 20 countries are still suffering problems of excessive fluoride containing water, and greater than 8mg/L fluoride groundwater has been reported in some villages in China. In order to meet the challenge in the drinking water defluoridation engineering, a high efficiency and affinity defluoridation adsorbent PPy/TiO 2 composite was designed and synthetized by in-situ chemical oxidative polymerization. Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction Investigator (XRD), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TG), N 2 isotherm analysis, Scanning Electron Microscopy (SEM) and Zeta potential analysis were conducted to characterize surface and textural properties of the as-prepared PPy/TiO 2 , and the possibility of fluoride adsorption was carefully estimated by adsorption isotherm and kinetic studies. Characterization investigations demonstrate the uniqueness of surface and textural properties, such as suitable specific surface area and abundant positively charged nitrogen atoms (N + ), which indicate the composite is a suitable material for the fluoride adsorption. Adsorption isotherms and kinetics follow better with Langmuir and pseudo-second-order model, respectively. The maximum adsorption capacity reaches 33.178mg/g at 25°C according to Langmuir model, and particular interest was the ability to reduce the concentration of fluoride from 11.678mg/L to 1.5mg/L for drinking water at pH of 7 within 30min. Moreover, the adsorbent can be easily recycled without the loss of adsorption capacity after six cycles, greatly highlighting its outstanding affinity to fluoride, low-cost and novel to be used in the purification of fluoride containing water for drinking. Furthermore, the adsorption mechanism was extensively investigated and discussed by FTIR investigation and batch adsorption studies including effect of pH, surface potential and thermodynamics. The adsorption is confirmed to be a spontaneous and exothermic process with decreasing entropy, which is prominently conducted through electrostatic attraction, and ionic exchange, and chelation may be also involved. Hydroxyls and positively charged nitrogen atoms play important roles in the adsorption. Copyright © 2017 Elsevier Inc. All rights reserved.
Yan, Jinlong; Jiang, Tao; Yao, Ying; Lu, Song; Wang, Qilei; Wei, Shiqiang
2016-04-01
Iron oxide (FeO) coated by natural organic matter (NOM) is ubiquitous. The associations of minerals with organic matter (OM) significantly changes their surface properties and reactivity, and thus affect the environmental fate of pollutants, including nutrients (e.g., phosphorus (P)). In this study, ferrihydrite/goethite-humic acid (FH/GE-HA) complexes were prepared and their adsorption characteristics on P at various pH and ionic strength were investigated. The results indicated that the FeO-OM complexes showed a decreased P adsorption capacity in comparison with bare FeO. The maximum adsorption capacity (Qmax) decreased in the order of FH (22.17 mg/g)>FH-HA (5.43 mg/g)>GE (4.67 mg/g)>GE-HA (3.27 mg/g). After coating with HA, the amorphous FH-HA complex still showed higher P adsorption than the crystalline GE-HA complex. The decreased P adsorption observed might be attributed to changes of the FeO surface charges caused by OM association. The dependence of P adsorption on the specific surface area of adsorbents suggests that the FeO component in the complexes is still the main contributor for the adsorption surfaces. The P adsorptions on FeO-HA complexes decreased with increasing initial pH or decreasing initial ionic strength. A strong dependence of P adsorption on ionic strength and pH may demonstrate that outer-sphere complexes between the OM component on the surface and P possibly coexist with inner-sphere surface complexes between the FeO component and P. Therefore, previous over-emphasis on the contributions of original minerals to P immobilization possibly over-estimates the P loading capacity of soils, especially in humic-rich areas. Copyright © 2015. Published by Elsevier B.V.
Charge transfer properties of pentacene adsorbed on silver: DFT study
NASA Astrophysics Data System (ADS)
N, Rekha T.; Rajkumar, Beulah J. M.
2015-06-01
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.
Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.
Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu
2016-02-03
Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.
Adsorption of rare gases on the C20 nanocage: a theoretical investigation
NASA Astrophysics Data System (ADS)
Rahimi, Rezvan; Kamalinahad, Saeedeh; Solimannejad, Mohammad
2018-03-01
The adsorption of rare gases (Rg) on the external surface of pristine and Sc-doped C20 (ScC19) nanocage is investigated using density functional theory (DFT). Also, time-dependent density functional theory (TD-DFT) and natural bond orbital (NBO) calculations are performed at the CAM-B3LYP/6-31G (d) level. The NBO analyses indicate that the adsorption of Rg molecules with studied nanocage significantly alters its electronic nature. Theoretical results have shown that Rg is weakly adsorbed on the pristine C20, so this nanocage cannot be a proper sensor for detecting and sensing rare gases. In order to improve properties of the nanocage as a promising sensor, Sc-doping process was investigated. The more negative adsorption energies (Eads) of Rg/ScC19 means that adsorption of Rg on the surface of ScC19 is energetically more favored than C20 and other nano-structures as reported in previous studies. It is expected that significant changes in the electronic properties caused by Rg may be used for designing new sensors for detection of rare gases.
Managing numerical errors in random sequential adsorption
NASA Astrophysics Data System (ADS)
Cieśla, Michał; Nowak, Aleksandra
2016-09-01
Aim of this study is to examine the influence of a finite surface size and a finite simulation time on a packing fraction estimated using random sequential adsorption simulations. The goal of particular interest is providing hints on simulation setup to achieve desired level of accuracy. The analysis is based on properties of saturated random packing of disks on continuous and flat surfaces of different sizes.
A theoretical study of structural and electronic properties of pentacene/Al(100) interface.
Saranya, G; Nair, Shiny; Natarajan, V; Kolandaivel, P; Senthilkumar, K
2012-09-01
The first principle calculations within the framework of density functional theory have been performed for the pentacene molecule deposited on the aluminum Al(100) substrate to study the structural and electronic properties of the pentacene/Al(100) interface. The most stable configuration was found at bridge site with 45° rotation of the pentacene molecule on Al(100) surface with a vertical distance of 3.4 Å within LDA and 3.8 Å within GGA functionals. The calculated adsorption energy reveals that the adsorption of pentacene molecule on Al(100) surface is physisorption. For the stable adsorption geometry the electronic properties such as density of states (DOS), partial density of states (PDOS), Mulliken population analysis and Schottky barrier height are studied. The analysis of atomic charge, DOS and PDOS show that the charge is transferred from the Al(100) surface to pentacene molecule, and the transferred charge is about -0.05 electrons. For the adsorbed system, the calculated Schottky barrier height for hole and electron transport is 0.27 and 1.55 eV, respectively. Copyright © 2012 Elsevier Inc. All rights reserved.
Zhao, Xiaoyan; Zeng, Xiaolan; Qin, Yu; Li, Xiang; Zhu, Tianle; Tang, Xiaolong
2018-04-26
The adsorption performance of toluene and chlorobenzene on prepared coconut shell derived carbon (CDC) is investigated and compared with commercial activated carbon (CAC) by experiment and theory calculation. Textural properties of prepared adsorbents are characterized by N 2 adsorption, infrared spectra (FT-IR), Raman spectra and X-ray photoelectron spectra (XPS). Adsorption isotherms of toluene and chlorobenzene are obtained and fitted using structure optimizations, Grand Canonical Monte Carlo (GCMC) simulation and thermodynamic models. The results indicate that CDC shows better volatile organic compounds (VOCs) removal performance than CAC, and chlorobenzene is easily adsorbed than toluene. On the aspect of textural characteristics, CDC possesses more micropores ratio and narrower pore size distribution than CAC. Furthermore, amounts of electron-withdrawing carbonyl groups on the CAC surface reduce the electron density of adsorbents, thus weakening the interaction between VOCs and adsorbents. On the aspect of model fitting, the Yoon and Nelson (Y-N) and Dubinin-Astakhov (D-A) models can well describe the dynamic adsorption and the adsorption equilibrium of toluene and chlorobenzene on CDC respectively. It is believed that substituent groups of adsorbates, making the charge distribution deviate, lead to adsorption potentials of chlorobenzene larger than toluene. In general, both the pore structure and the surface property of adsorbents affect the VOCs adsorption behaviors on CDC. Copyright © 2018. Published by Elsevier Ltd.
Molecular simulation of fibronectin adsorption onto polyurethane surfaces
USDA-ARS?s Scientific Manuscript database
Polyethylene glycol-based polyurethanes have been widely used in biomedical applications, however are prone to swelling. A natural polyol, castor oil can be incorporated into these polyurethanes to control the degree of the swelling, which alters mechanical properties and protein adsorption characte...
NASA Astrophysics Data System (ADS)
Shahabi, Dana; Tavakol, Hossein
2017-10-01
In this study, noncovalent interactions between Fluoxetine (FX) and different carbon nanotubes (CNTs) or sulfur doped carbon nanotubes (SCNTs) were fully considered using DFT, natural bond orbital (NBO) and molecular docking calculations. Two different CNTs (and SCNTs) with 7,7 and 8,8 chiralities were considered as the adsorbents and the adsorption of FX by these adsorbents were studied in two cases: into the nanotubes and on their surfaces. The results of DFT and NBO calculations proposed that the 8,8 nanotubes are more suitable adsorbents for FX because the energies of their adsorptions are minimum. Population: analyses were also proposed that the adsorption of FX by SCNTs lead to more changes in electronic and sensing properties than the adsorption by CNTs. Moreover, the adsorption energies, obtained from molecular docking calculations (using 94 different models), proposed that the adsorption of FX into (versus out of) the nanotubes, adsorption processes by double-walled or triple-walled (versus single-walled) nanotubes and the adsorption by nanotubes with 8,8 chiralities are the most favorable adsorption processes.
Characterization of recycled rubber media for hydrogen sulphide (H2S) control.
Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G
2014-01-01
Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.
Pulsed laser deposited metal oxide thin films mediated controlled adsorption of proteins
NASA Astrophysics Data System (ADS)
Kim, Se Jin
Several metal oxide thin films were grown on Si substrate by pulsed laser deposition for controlling adsorption of proteins. No intentional heating of substrate and introduction of oxygen gas during growth were employed. Additionally, fibrinogen, bovine serum albumin (BSA), and lysozyme were used as model protein in this study. The film properties such as cyratllinity, surface roughness, surface electrical charge and chemistry were investigated by many techniques in order to obtain the relationship with protein adsorption. Firstly, as grown Ta2O5 and ZnO thin film were used to study the effects of surface charge on the behaviors of BSA and lysozyme adsorption. The protein thickness results by ellipsometry showed that negatively charged Ta2O5 had a stronger affinity to positively charged lysozyme, while positively charged ZnO had a stronger affinity to negatively charged BSA. The results confirmed electrostatic interaction due to surface charge is one of main factors for determining adsorption of proteins. Furthermore, annealing studies were performed by heat treatment of as grown Ta2O5 and ZnO at 800°C in air ambience. Annealed Ta2O5 thin film had almost wetting property (from 10.02° to less than 1˜2°) and the change of cystallinity (from amorphous to cyrsalline) while annealed ZnO thin film had a reduced contact angle (from 75.65° to 39.41°) and remained to crystalline structure. The fibrinogen thickness on annealed Ta2O5 film was increased compared with as grown sample, while heat treated ZnO film showed much reduction of fibrinogen adsorption. Binary Ta-Zn oxide thin films (TZ) were grown by preparing PLD target composed of 50 wt% Ta2O5 and 50 wt% ZnO. This binary film had IEP pH 7.1 indicating nearly neutral charge in pH 7.4 PBS solution, and hydrophilic property. Ellipsometrical results showed that TZ film had the lowest fibrinogen, BSA and lysozyme thickness after 120 min adsorption compared with Ta2O5 and ZnO. Other samples, bilayer oxide films in which Ta2O5 and ZnO coexist were also employed to study adsorption behaviors. Especially, Ta2O 5-based bilayer films revealed zero adsorption of lysozyme.
Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping
2018-04-09
First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.
Adsorption heights and bonding strength of organic molecules on a Pb-Ag surface alloy
NASA Astrophysics Data System (ADS)
Stadtmüller, Benjamin; Haag, Norman; Seidel, Johannes; van Straaten, Gerben; Franke, Markus; Kumpf, Christian; Cinchetti, Mirko; Aeschlimann, Martin
2016-12-01
The understanding of the fundamental geometric and electronic properties of metal-organic hybrid interfaces is a key issue on the way to improving the performance of organic electronic and spintronic devices. Here, we studied the adsorption heights of copper-II-phthalocyanine (CuPc) and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on a Pb1Ag2 surface alloy on Ag(111) using the normal-incidence x-ray standing waves technique. We find a significantly larger adsorption height of both molecules on the Pb-Ag surface alloy compared to the bare Ag(111) surface which is caused by the larger size of Pb. This increased adsorption height suppresses the partial chemical interaction of both molecules with Ag surface atoms. Instead, CuPc and PTCDA molecules bond only to the Pb atoms with different interaction strength ranging from a van der Waals-like interaction for CuPc to a weak chemical interaction with additional local bonds for PTCDA. The different adsorption heights for CuPc and PTCDA on Pb1Ag2 are the result of local site-specific molecule-surface bonds mediated by functional molecular groups and the different charge donating and accepting character of CuPc and PTCDA.
The Effect of Hydrophobic Pockets in Human Serum Albumin Adsorption to Self-Assembled Monolayers
NASA Astrophysics Data System (ADS)
Choi, Eugene J.; Jia, Shijin; Petrash, Stanislaw; Foster, Mark D.
2001-04-01
Molecular properties of proteins and their interactions with surfaces have an effect on protein adsorption, which is one of the first and most important events that occurs when a biological fluid contacts a surface. For biomaterials applications, blood reaction to foreign objects can cause thrombosis. To understand thrombosis, it is necessary to understand the mechanism of adsorption of blood proteins onto artificial surfaces. Such interactions as hydrophobicity^1,2, electrostatics^3 and specific binding^4 have been found to be driving forces for protein adsorption. Self-assembled monolayers (SAMs) provide an ideal surface for which protein adsorption behavior can be studied.^1 SAMs provide chemical homogeneity, robustness, and variable surface functionality. The hydrophobicity of SAMs has been of great interest in studying surface interactions with proteins.^1, 2 The packing density of alkyl chains of SAMs can also be varied in order to obtain different surface properties. The most abundant protein in the blood is human serum albumin (HSA). Because HSA acts as a fatty acid transporter, it has six binding sites for fatty acids. Pitt and Cooper^4 have shown that alkylation of surfaces increases the initial adsorption rate of delipidized (fatty acid free) HSA. Petrash et al.^5 have shown that delipidized HSA binds more tenaciously to less densely packed alkyl SAMs than to densely packed alkyl SAMs when desorbed by sodium dodecyl sulfate. Using X-ray reflectivity to study the adsorbed protein layer thickness, lipidized HSA (fatty acid bound) adsorption and desorption studies showed that specific binding of HSA is one of the main factors in binding tenacity between HSA and less densely packed alkyl SAMs. Atomic force microscopy was used as a complementary technique to confirm these results, and neutron reflectivity and spectroscopy techniques will also be used to study the adsorption behaviors of HSA and other blood proteins in future work. 1. Prime, K. L.; Whitesides, G. M. Science 1991, 252, 1164. 2. Lu, J. R.; Su, T. J.; Thirtle, P. N.; Thomas, R. K.; Rennie, A. R.; Cubitt, R. J. Colloid Interface Sci. 1998, 206, 212. 3. Su, T. J.; Lu, J.R.; Thomas, R. K.; Cui, Z. F. J. Phys. Chem. B. 1999, 103, 3727. 4. Pitt, W. G.; Cooper, S. L. J. Biomed. Mater. Res. 1988, 22, 359. 5. Petrash, S.; Sheller, N. B.; Dando, W.; Foster, M. D. Langmuir 1997, 13, 1881.
Wang, Yifei; Yang, Qing; Dong, Junqing; Huang, Haiou
2018-04-01
Natural organic matter (NOM) and pharmaceuticals and personal care products (PPCP) are known to compete for adsorption sites on carbon nanotubes (CNT), resulting in decreasing PPCP adsorption onto CNT. In this study, four types of PPCP, as such acetaminophen (AAP), caffeine (CAF), triclosan (TCS), and carbendazim (CBD) were used to investigate the effects of PPCP properties and NOM coagulation on the competitive adsorption of PPCP and NOM. Coagulation preferentially removed HS from a natural surface water, thereby increasing adsorption of AAP, CAF, TCS and CBD by 19%, 13%, 17% and 11%, respectively. Similar trends were obtained with synthetic natural waters, for which the adsorption of AAP, CAF, TCS, and CBD increased by 29%, 7%, 44% and 69%, respectively, as humic acid (HA) concentration decreased from 10mgL -1 to 0mgL -1 . Furthermore, PPCP properties also affected their competition with NOM for adsorption by CNT membranes Because CAF existed in cationic form at pH ranging from 7 to 8.3, its adsorption was less affected by the presence/coagulation of NOM than AAP, CBD, and TCS. Based upon these findings, coagulation has the potential to be integrated with CNT adsorption for the removal of PPCP compounds during advanced drinking water treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
A density functional theory study of CO oxidation on CuO1-x(111).
Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong
2015-08-01
The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.
Zhang, Zheng; Chen, Shengfu; Jiang, Shaoyi
2006-12-01
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.
Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.
2011-01-01
Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.
Wan, Zhi-Li; Wang, Li-Ying; Wang, Jin-Mei; Yuan, Yang; Yang, Xiao-Quan
2014-07-16
The adsorption of the mixtures of soy glycinin (11S) with a biosurfactant stevioside (STE) at the air-water interface was studied to understand its relation with foaming properties. A combination of several techniques such as dynamic surface tension, dilatational rheology, fluorescence spectroscopy, and isothermal titration calorimetry (ITC) was used. In the presence of intermediate STE concentrations (0.25-0.5%), the weak binding of STE with 11S in bulk occurred by hydrophobic interactions, which could induce conformational changes of 11S, as evidenced by fluorescence and ITC. Accordingly, the strong synergy in reducing surface tension and the plateau in surface elasticity for mixed 11S-STE layers formed from the weakly interacting mixtures were clearly observed. This effect could be explained by the complexation with STE, which might facilitate the partial dissociation and further unfolding of 11S upon adsorption, thus enhancing the protein-protein and protein-STE interfacial interactions. These surface properties were positively reflected in foams produced by the weakly interacting system, which exhibited good foaming capacity and considerable stability probably due to better response to external stresses. However, at high STE concentrations (1-2%), as a consequence of the interface dominated by STE due to the preferential adsorption of STE molecules, the surface elasticity of layers dramatically decreased, and the resultant foams became less stable.
Unexpected carboxylate like CO adsorption at the Sr3Ru2O7 (001) surface
NASA Astrophysics Data System (ADS)
Hieckel, Marcel; Mittendorfer, Florian; Redinger, Josef; Stoeger, Bernhard; Wang, Zhiming; Schmid, Michael; Diebold, Ulrike
2014-03-01
Oxide perovskite materials have attracted enormous attention because of a variety of intriguing physical properties ranging from catalysis to multiferroicity. We present a combined experimental and ab-initio (DFT) study with the Vienna Ab initio Simulation Package (VASP) on the adsorption of CO at the Sr3Ru2O7 (001) surface. We identify both a physisorbed and a chemisorbed CO configuraton. Unexpectedly, in the latter case adsorption occurs in a carboxylate (COO) like state. Both configurations have been confirmed by detailed STM experiments and simulations. In addition we find only a small barrier for the carboxylate formation on the surface. Work supported by the Austrian FWF, SFB F45 (FOXSI).
Adsorption of methanol molecule on graphene: Experimental results and first-principles calculations
NASA Astrophysics Data System (ADS)
Zhao, X. W.; Tian, Y. L.; Yue, W. W.; Chen, M. N.; Hu, G. C.; Ren, J. F.; Yuan, X. B.
2018-04-01
Adsorption properties of methanol molecule on graphene surface are studied both theoretically and experimentally. The adsorption geometrical structures, adsorption energies, band structures, density of states and the effective masses are obtained by means of first-principles calculations. It is found that the electronic characteristics and conductivity of graphene are sensitive to the methanol molecule adsorption. After adsorption of methanol molecule, bandgap appears. With the increasing of the adsorption distance, the bandgap, adsorption energy and effective mass of the adsorption system decreased, hence the resistivity of the system decreases gradually, these results are consistent with the experimental results. All these calculations and experiments indicate that the graphene-based sensors have a wide range of applications in detecting particular molecules.
NASA Technical Reports Server (NTRS)
Hays, Charles C.
2003-01-01
The study of the charge transfer and interfacial reactions of the purine bases in physiological solutions provides valuable knowledge, as these processes are relevant to the origins of life. It has been proposed that the adsorption of the adsorption of the purine bases on an inorganic surface could serve as a template for specifying the arrangement of amino acids in peptides.
NASA Astrophysics Data System (ADS)
Zhiani, Rahele
2017-07-01
The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.
Rhamnolipid surface thermodynamic properties and transport in agricultural soil.
Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang
2014-03-01
Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport. Published by Elsevier B.V.
Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike
2017-11-01
In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.
Venault, A; Vachoud, L; Pochat, C; Bouyer, D; Faur, C
2008-12-01
Composite hydrogels were prepared by a wet-casting process by blending a biopolymer, chitosan, with activated carbon (AC) for use in water treatment. Adsorption properties of the composite gels for an organic micro-pollutant (phenol) which may be encountered in wastewaters was studied with an experimental design approach as a function of: - the concentration of raw materials and thus the AC weight within the chitosan matrix. - the accessibility of AC in the polymeric matrix, which is assumed to be related to the coating and thus to the pH of the immersion bath. ESEM observations showed that at a higher pH of gelation (pH = 14), AC particles were entrapped at the surface of the polymer matrix because of a faster gelation kinetic than at a lower pH (13.3). Adsorption kinetic tests showed that phenol adsorption occurred according to two mechanisms. During the first step, phenol molecules were adsorbed by the AC particles located at the surface. The second step corresponded to a slow diffusion through chitosan chains leading to an adsorption by AC particles entrapped within the polymeric matrix coupled to an adsorption on to the chitosan. A mass transfer model was used to describe this two-step adsorption phenomenon. However, due to a heterogeneous coating of AC by chitosan, this phenomenon was not supported by experimental design results: the initial kinetic coefficients were associated with a high experimental error which didn't allow for an analysis of the influence of elaboration parameters on kinetic coefficients. Regardling equilibrium adsorption properties, it was shown that composite gels were good adsorbents for phenol with removal ranging from 94% to 98% corresponding to adsorption capacities from 30 to 41 mg g(-1). The pH of the immersion bath had no influence on equilibrium adsorption properties, contrary to the AC weight within the chitosan matrix which wasdemonstrated to influence significantly adsorption capacities. Because carbon particles may improve mechanical properties, mechanical tests were carried out on the composite gels. For a total amount of dried matter in the compositekept constant, the increase in chitosan content led to an increase in the mechanical properties, because of an increase in thenumber of interactions between chitosan chains. The influence of sonication during the stirring step, leading to a better homogenisation of AC particules within the polymer matrix, was also examined.
Detection of 2,4-dinitrotoluene by graphene oxide: first principles study
NASA Astrophysics Data System (ADS)
Abdollahi, Hassan; Kari, Akbar; Samaeifar, Fatemeh
2018-05-01
The surface of graphene oxide (GO) with different oxidation level is widely used in gas sensing applications. Otherwise, detection of 2,4-dinitrotoluene (DNT) have been extensively attend as a high explosive and environmental sources by various methods. Atomic level modelling are widely employed to explain the sensing mechanism at a microscopic level. The present work is an attempt to apply density functional theory (DFT) to investigate the structural and electronic properties of GO and adsorption of oxygen atom and hydroxyl on graphene surface. The focus is on the adsorption mechanisms of DNT molecule on the GO monolayer surface to detect DNT molecule. The calculated adsorption energy of DNT molecule on the GO surface indicates physisorption mechanism with ‑0.7 eV adsorption energy. Moreover, basis-set superposition errors correction based on off site orbitals consideration leads to ‑0.4 eV adsorption energy which it is more in the physisorption regime. Consequently, the results could shed more light to design and fabrication an efficient DNT sensor based on GO layers.
SFG experiment and ab initio study of the chemisorption of CN - on low-index platinum surfaces
NASA Astrophysics Data System (ADS)
Tadjeddine, M.; Flament, J.-P.; Le Rille, A.; Tadjeddine, A.
2006-05-01
A dual analysis is proposed in order to have a better understanding of the adsorption of the cyanide ions on a platinum electrode. The SFG (Sum Frequency Generation) spectroscopy allows the in situ vibrational study and the SFG spectra of the CN - species adsorbed on single crystal Pt electrode allow a systematic study of the low-index platinum surfaces. This experimental work is supported by ab initio calculations using density functional theory and cluster models. For each surface orientation and each geometry, a cluster model of 20-30 Pt atoms has been built in order to interpret the chemisorption of the CN - ions through four kinds of adsorption geometry: on-top or bridge site, bonding via C or N atoms. Geometries have been optimized and adsorption energies, electronic properties and vibrational frequencies have been computed. From the electronic properties, we can propose an analysis of the bonding mechanism for each studied kind of adsorption. The SFG spectra of the CN -/Pt(1 1 1) system present an unique resonance owing to the top C adsorption. It is mainly the same for the CN -/Pt(1 0 0) system. It is also the case for the SFG spectra of the CN -/Pt(1 1 0) system recorded at negative electrochemical voltage; at more positive voltage, a second resonance appears at a lower frequency, owing to the top N adsorption. Experimental and theoretical values of the C-N stretching frequencies are in excellent agreement.
Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie
2018-03-01
A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.
Suppression of protein adsorption on a charged phospholipid polymer interface.
Xu, Yan; Takai, Madoka; Ishihara, Kazuhiko
2009-02-09
High capability of a charged interface to suppress adsorption of both anionic and cationic proteins was reported. The interface was covalently constructed on quartz by modifying with an anionic phospholipid copolymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-potassium 3-methacryloyloxypropyl sulfonate (PMPS)-co-3-methacryloxypropyl trimethoxysilane (MPTMSi)) (PMBSSi). The PMBSSi interfaces were very hydrophilic and homogeneous and could function effectively for a long time even under long-term fluidic working conditions. The PMBSSi density on the interface, which was controllable by adjusting the PMBSSi concentration of the modification solution, affected the surface properties, including the surface contact angle, the surface roughness, and the surface zeta-potential. When a PMBSSi modification was applied, the adsorption of various proteins (isoelectric point varying from 1.0 to 11.0) on quartz was reduced to at least 87% in amount, despite the various electrical natures these proteins have. The protein adsorption behavior on the PMBSSi interface depended more on the PMBSSi density than on the surface charge. The PMBSSi modification had a stable impact on the surface, not only at the physiologic ionic strength, but also over a range of the ionic strength, suggesting that electrostatic interactions do not dominate the behavior of protein adsorption to the PMBSSi surface.
Activated carbon oxygen content influence on water and surfactant adsorption.
Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander
2002-02-15
This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.
Nagarajan, V; Chandiramouli, R
2017-05-01
The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.
Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne
2009-03-01
The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.
Cui, Zhumei; Chen, Yeming; Kong, Xiangzhen; Zhang, Caimeng; Hua, Yufei
2014-02-19
The adsorption of heat-denatured soy proteins at the oil/water (O/W) interface during emulsification was studied. Protein samples were prepared by heating protein solutions at concentrations of 1-5% (w/v) and were then diluted to 0.3% (w/v). The results showed that soy proteins that had been heated at higher concentrations generated smaller droplet size of emulsion. Increase in homogenizer rotating speed resulted in higher protein adsorption percentages and lower surface loads at the O/W interface. Surface loads for both unheated and heated soy proteins were linearly correlated with the unadsorbed proteins' equilibrium concentration at various rotating speeds. With the rise in NaCl addition level, protein adsorption percentage and surface loads of emulsions increased, whereas lower droplet sizes were obtained at the ionic strength of 0.1 M. The aggregates and non-aggregates displayed different adsorption behaviors when rotating speed or NaCl concentration was varied.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
NASA Astrophysics Data System (ADS)
Chang, Shih-Hang; Chen, Jian-Zhang; Hsiao, Sou-Hui; Lin, Guan-Wei
2014-01-01
This study preliminarily assesses the biomedical applications of CuAlO2 coatings according to nanoindentation, electrochemical, and protein adsorption tests. Nanoindentation results revealed that the surface hardness of 316L stainless steel increased markedly after coating with CuAlO2 films. Electrochemical tests of corrosion potential, breakdown potential, and corrosion current density showed that the corrosion resistance properties of 316L stainless steel are considerably improved by CuAlO2 coatings. Bicinchoninic acid (BCA) protein assay results revealed that the protein adsorption behavior of 316L stainless steel did not exhibit notable differences with or without CuAlO2 coatings. A CuAlO2 coating of 100 nm thickness improved the surface nanohardness and corrosion resistance ability of 316L stainless steel. CuAlO2 is a potential candidate for biomaterial coating applications, particularly for surface modification of fine, delicate implants.
Adsorption of thiophene on transition metal surfaces with the inclusion of van der Waals effects
NASA Astrophysics Data System (ADS)
Malone, Walter; Matos, Jeronimo; Kara, Abdelkader
2018-03-01
We use density functional theory with the inclusion of the van der Waals interaction to study the adsorption of thiophene, C4H4S, on Pt, Rh, Pd, Au, and Ag (100) surfaces. The five van der Waals (vdW) inclusive functionals we employ are optB86b-vdW, optB88-vdW, optPBE-vdW, revPBE-vdW, and rPW86-vdW2. For comparison we also run calculations with the GGA- Perdew Burke and Ernzerhof (PBE) functional. We examine several adsorption sites with the plane of the molecule parallel or perpendicular to the surface. The most stable configuration on all metals was the site where the center of the thiophene lies over a 4-fold hollow site with the sulfur atom lying close to a top site. Furthermore, we examine several electronic and geometric properties of the adsorbate including charge transfer, modification of the d-band, adsorption energy, tilt angle, and adsorption height. For the coinage metals PBE gives the lowest adsorption energy. For reactive transition metal substrates, revPBE-vdW and rPW86-vdW2 give lower adsorption energies than PBE.
Li, Zhenjiang; Sun, Yongkai; Xing, Jing; Xing, Yucheng; Meng, Alan
2018-06-15
Adsorption is an effective means to remove organic pollutant. However, it is challenging to prepare the adsorbents with high adsorption capacities and their regeneration. Herein, Co/Cr-codoped ZnO nanoparticles (NPs) with superb adsorption for dyes and antibiotics have been successfully synthesized by a mild solvothermal method. At the optimal Co:Cr:Zn doping moral ratio of 4:6:100, the maximum adsorption capacities of methyl orange (MO) and tetracycline hydrochloride (TC-HCl) on Co/Cr-codoped ZnO NPs is 1057.90 mg g -1 and 874.46 mg g -1 , respectively. The adsorption process of the sample over MO and TC-HCl both agreed well with the pseudo-second-order kinetic model and Langmuir isotherm model. Adsorption thermodynamics proved that the adsorption of MO and TC-HCl on Co/Cr-codoped ZnO NPs was a spontaneous and endothermic process. The mechanism shows that the surface of Co/Cr-codoped ZnO NPs have more positive charges, larger specific surface area and more crystal defects due to Co 3+ and Cr 3+ substitutes Zn 2+ in ZnO lattice, improving their adsorption property. In addition, Co/Cr-codoped ZnO NPs have also excellent adsorption capacity for Direct Red, Congo Red, Evans Blue and Methyl Blue. More importantly, the regeneration of adsorbents was studied to achieve the reuse of materials, and avoid secondary pollution. Co/Cr-codoped ZnO NPs will be a promising choice for wastewater treatment owing to its excellent adsorption capacity and relatively low cost. Copyright © 2018 Elsevier B.V. All rights reserved.
Jet blown PTFE for control of biocompatibility
NASA Astrophysics Data System (ADS)
Leibner, Evan Scott
The development of fully hemocompatible cardiovascular biomaterials will have a major impact on the practice of modern medicine. Current artificial surfaces, unlike native vascular surfaces, are not able to control clot and thrombus formation. Protein interactions are an important component in hemocompatibility and can result in decreased patency due to thrombus formation or surface passivation which can improve endothelization. It is believed that controlling these properties, specifically the nanometer sizes of the fibers on the material's surface, will allow for better control of biological responses. The biocompatibility of Teflon, a widely used polymer for vascular grafts, would be improved with nanostructured control of surface features. Due to the difficultly in processing polytetrafluoroethylene (PTFE), it has not been possible to create nanofibrous PTFE surfaces. The novel technique of Jet Blowing allows for the formation of nanostructured PTFE (nPTFE). A systematic investigation into controlling polymer properties by varying the processing conditions of temperature, pressure, and gas used in the Jet Blowing allows for an increased understanding of the effects of plasticization on the material's properties. This fundamental understanding of the material science behind the Jet Blowing process has enabled control of the micro and nanoscale structure of nPTFE. While protein adsorption, a key component of biocompatibility, has been widely studied, it is not fully understood. Major problems in the field of biomaterials include a lack of standard protocols to measure biocompatibility, and inconstant literature on protein adsorption. A reproducible protocol for measuring protein adsorption onto superhydrophobic surfaces (ePTFE and nPTFE) has been developed. Both degassing of PBS buffer solutions and evacuation of the air around the expanded PTFE (ePTFE) prior to contact with protein solutions are essential. Protein adsorption experiments show a four-fold difference in the measure of proteins adsorbed using radiometry (I-125 labeled human serum albumin (HSA)) and electrophoresis (unlabeled HSA). This provides evidence that the standard method of radiolabeled protein for measuring adsorption does not fully account for changes to the HSA molecules due to labeling. The differences between measured protein values can be attributed to the radiolabel affecting the HSA hydrophobicity resulting in a change in the protein's interactions with the hydrophobic surface. Additionally, our work has provided repeatable results showing that the amount of protein adsorbed onto the polymer surface, after washing, accounted for only 65% of the amount of protein that was removed from solution based on depletion analysis. This implies that measurement of the amount of strongly bound protein on the material significantly underestimates the actual amount of protein adsorbing into the surface region of the material interface. HSA adsorption isotherms demonstrate an increase in protein adsorption capacity on the nPTFE surface compared to adsorption on the same surface area of ePTFE. Preliminary cell work shows that the nPTFE surfaces had a larger number of cells growing on the surface of the material when compared to ePTFE surfaces. The research also shows that while most endothelial cells were not viable on the ePTFE surface after 96 hours, they remained alive on the nPTFE surface during that same time period. Surface functionalization using ammonia plasma has been performed. X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of amine groups on the nPTFE surface. The amine groups can be used to couple polypeptides onto the PTFE surface in the future. The selection of different peptides will allow for selective control of cell adhesion. This research shows that nPTFE has potential for improved biocompatibility over standard ePTFE, based on increased protein adsorption capacity, increased viability of endothelial cells, and the ability to plasma modify the PTFE surface.
NASA Astrophysics Data System (ADS)
Li, Lei
The objectives were (1) to identify activated pore structure and surface chemistry characteristics that assure the effective removal of trace organic contaminants from aqueous-solution, and (2) to develop a procedure to predict the adsorption capacity of activated carbons from fundamental adsorbent and adsorbate properties. A matrix of activated carbon fibers (ACFs) (with three activation levels and four surface chemistry levels) and three commercially available granular activated carbons (GACs) served as the adsorbents. BET surface area, pore size distribution, elemental composition, point of zero charge and infrared spectroscopy data were obtained to characterize the adsorbents. The adsorption of relative hydrophilic methyl tertiary-butyl ether (MTBE) and relative hydrophobic trichloroethene (TCE) were conducted in both ultrapure water and Sacramento-San Joaquin Delta water. The results showed that an effective adsorbent for the removal of micropollutants from water requires (1) a large volume of micropores with widths that are about 1.5 times larger than the kinetic diameter of the target adsorbate, (2) a micropore size distribution that extends to widths that are approximately twice the kinetic diameter of the target adsorbate to prevent pore blockage by NOM, and (3) a hydrophobic pore surface chemistry with the sum of oxygen and nitrogen contents less than 2 to 3 mmol/g. A procedure based on the Polanyi Potential Theory (PPT) was developed to predict the adsorption capacities of activated carbons from fundamental adsorbent and adsorbate properties. A correlation between the coalescing factor for water adsorption and adsorbent oxygen content was developed. Based on this correlation, the PPT yielded reasonable estimates of aqueous phase adsorption capacities for both relatively polar and non-polar adsorbates on both relatively hydrophobic and hydrophilic activated carbons. With the developed procedure, the adsorption capacities of organic compounds that are partially miscible in water can be predicted from (1) N2 and CO2 adsorption isotherms of a given adsorbent, (2) the adsorbent oxygen content, and (3) the molar volume and parachor of the target adsorbate.
NASA Astrophysics Data System (ADS)
Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon
2014-05-01
A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.
NASA Astrophysics Data System (ADS)
Syrkov, A. G.; Kabirov, V. R.; Silivanov, M. O.
2017-07-01
For the first time the change of the water repellent properties of dispersed copper, modified using quaternary ammonium compounds on 24 h time scale in saturated water vapours was studied. Exponential time dependences of the water repellent properties of dispersed copper with adsopted QAC were derived and characterized. It was established that the samples modified in mixed and consistent modes by both modifiers reach the saturation state faster than others, due to the small number of hydrophilic centers on the surface of metals. The last conclusion was confirmed by the distribution spectra of centers of adsorption, which were obtained by the adsorption of acid-base indicators for more dispersed samples based on aluminum powder.
Jachimska, B; Świątek, S; Loch, J I; Lewiński, K; Luxbacher, T
2018-06-01
Bovine β-lactoglobulin (LGB) is a transport protein that can bind to its structure hydrophobic bioactive molecules. Due to the lack of toxicity, high stability and pH-dependent molecular binding mechanism, lactoglobulin can be used as a carrier of sparingly soluble drugs. Dynamic light scattering has confirmed LGB's tendency to create oligomeric forms. The hydrodynamic diameter of LGB molecules varies from 4 nm to 6 nm in the pH range of 2-10 and ionic strength I = 0.001-0.15 M, which corresponds to the presence of mono or dimeric LGB forms. The LGB zeta potential varies from 26.5 mV to -33.3 mV for I = 0.01 M and from 13.3 mV to -16 mV for I = 0.15 M in the pH range of 2-10. The isoelectric point is at pH 4.8. As a result of strong surface charge compensation, the maximum effective ionization degree of the LGB molecule is 35% for ionic strength I = 0.01 M and 22% for I = 0.15 M. The effectiveness of adsorption is linked with the properties of the protein, as well as those of the adsorption surface. The functionalization of gold surfaces with β-lactoglobulin (LGB) was studied using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). The effectiveness of LGB adsorption correlates strongly with a charge of gold surface and the zeta potential of the molecule. The greatest value of the adsorbed mass was observed in the pH range in which LGB has a positive zeta potential values, below pH 4.8. This observation shows that electrostatic interactions play a dominant role in LGB adsorption on gold surfaces. Based on the adsorbed mass, protein orientation on gold surfaces was determined. The preferential side-on orientation of LGB molecules observed in the adsorption layer is consistent with the direction of the molecule dipole momentum determined by molecular dynamics simulations of the protein (MD). The use of the QCM-D method also allowed us to determine the effectiveness of adsorption of LGB on gold surface. Knowing the mechanism of LGB adsorption is significant importance for determining the optimum conditions for immobilizing this protein on solid surfaces. As β-lactoglobulin is a protein that binds various ligands, the binding properties of immobilized β-lactoglobulin can be used to design controlled protein structures for biomedical applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Thermal effects on electronic properties of CO/Pt(111) in water.
Duan, Sai; Xu, Xin; Luo, Yi; Hermansson, Kersti; Tian, Zhong-Qun
2013-08-28
Structure and adsorption energy of carbon monoxide molecules adsorbed on the Pt(111) surfaces with various CO coverages in water as well as work function of the whole systems at room temperature of 298 K were studied by means of a hybrid method that combines classical molecular dynamics and density functional theory. We found that when the coverage of CO is around half monolayer, i.e. 50%, there is no obvious peak of the oxygen density profile appearing in the first water layer. This result reveals that, in this case, the external force applied to water molecules from the CO/Pt(111) surface almost vanishes as a result of the competitive adsorption between CO and water molecules on the Pt(111) surface. This coverage is also the critical point of the wetting/non-wetting conditions for the CO/Pt(111) surface. Averaged work function and adsorption energy from current simulations are consistent with those of previous studies, which show that thermal average is required for direct comparisons between theoretical predictions and experimental measurements. Meanwhile, the statistical behaviors of work function and adsorption energy at room temperature have also been calculated. The standard errors of the calculated work function for the water-CO/Pt(111) interfaces are around 0.6 eV at all CO coverages, while the standard error decreases from 1.29 to 0.05 eV as the CO coverage increases from 4% to 100% for the calculated adsorption energy. Moreover, the critical points for these electronic properties are the same as those for the wetting/non-wetting conditions. These findings provide a better understanding about the interfacial structure under specific adsorption conditions, which can have important applications on the structure of electric double layers and therefore offer a useful perspective for the design of the electrochemical catalysts.
Choi, Jae-Hyeok; Kim, Seong-Oh; Linardy, Eric; Dreaden, Erik C; Zhdanov, Vladimir P; Hammond, Paula T; Cho, Nam-Joon
2015-06-15
Owing to its biocompatibility, resistance to biofouling, and desirable physicochemical and biological properties, hyaluronic acid (HA) has been widely used to modify the surface of various materials. The role of various physicochemical factors in HA adsorption remains, however, to be clarified. Herein, we employed quartz crystal microbalance with dissipation (QCM-D) in order to investigate HA adsorption at different pH conditions onto three substrates-silicon oxide, amine-terminated self-assembled monolayer (SAM) on gold, and carboxylic acid-terminated SAM on gold. The QCM-D experiments indicated specific pH conditions where either strong or weak HA adsorption occurs. The morphology of the adsorbed HA layers was investigated by atomic force microscopy (AFM), and we identified that strong HA adsorption produced a complete, homogenous and smooth HA layer, while weak HA adsorption resulted in rough and inhomogeneous HA layers. The observed specifics of the kinetics of HA adsorption, including a short initial linear phase and subsequent long non-linear phase, were described by using a mean-field kinetic model taking HA diffusion limitations and reconfiguration in the adsorbed state into account. The findings extend the physicochemical background of design strategies for improving the use of passive HA adsorption for surface modification applications. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Pham, Khang D.; Zhdanova, Tatiana P.; Phuc, Huynh V.; Hieu, Nguyen N.; Nguyen, Chuong V.
2017-12-01
In this paper, we systematically investigate the atomic structure, electronic and thermodynamic properties of adsorbed W atoms on the polar Ti-terminated TixCy (111) surface with different configurations of adsorptions using first principle calculations. The bond length, adsorption energy, and formation energy for different reconstructions of the atomic structure of the W/TixCy (111) systems were established. The effect of the tungsten coverage on the electronic structure and the adsorption mechanism of tungsten atom on the TixCy (111) are also investigated. We also suggest the possible mechanisms of W nucleation on the TixCy (111) surface. The effective charges on W atoms and nearest-neighbor atoms in the examined reconstructions were identified. Additionally, we have established the charge transfer from titanium atom to tungsten and carbon atoms which determine by the reconstruction of the local atomic and electronic structures. Our calculations showed that the charge transfer correlates with the electronegativity of tungsten and nearest-neighbor atoms. We also determined the effective charge per atom of titanium, carbon atoms, and neighboring adsorbed tungsten atom in different binding configurations. We found that, with reduction of the lattice symmetry associated with titanium and carbon vacancies, the adsorption energy increases by 1.2 times in the binding site A of W/TixCy systems.
Ion dehydration controls adsorption at the micellar interface: hydrotropic ions.
Lima, Filipe S; Andrade, Marcos F C; Mortara, Laura; Gustavo Dias, Luís; Cuccovia, Iolanda M; Chaimovich, Hernan
2017-11-22
The properties of ionic micelles depend on the nature of the counterion, and these effects become more evident as the ion adsorption at the interface increases. Prediction of the relative extent of ion adsorption is required for rational design of ionic micellar aggregates. Unlike the well understood adsorption of monatomic ions, the adsorption of polyatomic ions is not easily predicted. We combined experimental and computational methods to evaluate the affinity of hydrotropic ions, i.e., ions with polar and apolar regions, to the surface of positively charged micelles. We analyzed cationic micelles of dodecyltrimethylammonium and six hydrotropic counterions: methanesulfonate, trifluoromethanesulfonate, benzenesulfonate, acetate, trifluoroacetate and benzoate. Our results demonstrated that the apolar region of hydrotropic ions had the largest influence on micellar properties. The dehydration of the apolar region of hydrotropic ions upon their adsorption at the micellar interface determined the ion adsorption extension, differently to what was expected based on Collins' law of matching affinities. These results may lead to more general models to describe the adsorption of ions, including polyatomic ions, at the micellar interface.
NASA Astrophysics Data System (ADS)
Han, Sancan; Liu, Kerui; Hu, Linfeng; Teng, Feng; Yu, Pingping; Zhu, Yufang
2017-03-01
Herein we report superior dye-adsorption performance for flower-like nanostructure composed of two dimensional (2D) MoS2 nanosheets by a facile hydrothermal method, more prominent adsorption of cationic dye compared with anodic dye indicates the dye adsorption performance strongly depends on surface charge of MoS2 nanosheets. The adsorption mechanism of dye is analyzed, the kinetic data of dye adsorption fit well with the pseudo-second-order model, meanwhile adsorption capability at different equilibrium concentrations follows Langmuir model, indicating the favorability and feasibility of dye adsorption. The regenerable property for MoS2 with full adsorption of dye molecules by using alkaline solution were demonstrated, showing the feasibility of reuse for the MoS2, which is promising in its practical water treatment application.
Preventing Protein Adsorption and Macrophage Uptake of Gold Nanoparticles via a Hydrophobic Shield
Larson, Timothy A.; Joshi, Pratixa P.; Sokolov, Konstantin
2012-01-01
Polyethylene glycol (PEG) surface coatings are widely used to render stealth properties to nanoparticles in biological applications. There is abundant literature on benefits of PEG coatings and their ability to reduce protein adsorption, to diminish non-specific interactions with cells, and to improve pharmacokinetics, but very little discussion of the limitations of PEG coatings. Here, we show that physiological concentrations of cysteine and cystine can displace methoxy-PEG-thiol molecules from the gold nanoparticle (GNP) surface that leads to protein adsorption and cell uptake in macrophages within 24 hours. Furthermore, we address this problem by incorporating an alkyl linker between the PEG and the thiol moieties that provides a hydrophobic shield layer between the gold surface and the hydrophilic outer PEG layer. The mPEG-alkyl-thiol coating greatly reduces protein adsorption on GNPs and their macrophage uptake. This has important implications for the design of GNP for biological systems. PMID:23009596
Omichi, Masaaki; Matsusaki, Michiya; Maruyama, Ikuro; Akashi, Mitsuru
2012-01-01
ART-123 is a recombinant soluble human thrombomodulin (hTM) with potent anticoagulant activity, and is available for developing antithrombogenic surfaces by immobilization. We focused on improving blood compatibility on the dialyzer surface by the physical adsorption of ART-123 as a safe yet simple method without using chemical reagents. The physical adsorption mechanism and anticoagulant activities of adsorbed hTM on the surface of a polysulfone (PSF) membrane containing polyvinylpyrrolidone (PVP) as a model dialyzer were investigated in detail. The PVP content of the PSF-PVP films was saturated at 20 wt% after immersion in Tris-HCl buffer, even with the addition of over 20 wt% PVP. The surface morphology of the PSF-PVP films was strongly influenced by the PVP content, because PVP covered the outermost surface of the PSF-PVP films. The adsorption speed of hTM slowed dramatically with increasing PVP content up to 10 wt%, but the maximum adsorption amount of hTM onto the PSF-PVP film surface was almost the same, regardless of the PVP content. The PSF-PVP film with the physically adsorbed hTM showed higher protein C activity as compared to the PSF film, it showed excellent blood compatibility due to the protein C activity and the inhibition properties of platelet adhesion. The physical adsorption of hTM can be useful as a safe yet simple method to improve the blood compatibility of a dialyzer surface.
Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption
Mastalerz, Maria; Solano-Acosta, W.; Schimmelmann, A.; Drobniak, A.
2009-01-01
This paper investigates changes in the high-volatile bituminous Lower Block Coal Member from Indiana owing to moisture availability and oxidation in air at ambient pressure and temperature over storage time. Specifically, it investigates changes in chemistry, in surface area, and pore structure, as well as changes in methane and carbon dioxide adsorption capacities. Our results document that the methane adsorption capacity increased by 40%, whereas CO2 adsorption capacity increased by 18% during a 13-month time period. These changes in adsorption are accompanied by changes in chemistry and surface area of the coal. The observed changes in adsorption capacity indicate that special care must be taken when collecting samples and preserving coals until adsorption characteristics are measured in the laboratory. High-pressure isotherms from partially dried coal samples would likely cause overestimation of gas adsorption capacities, lead to a miscalculation of coal-bed methane prospects, and provide deceptively optimistic prognoses for recovery of coal-bed methane or capture of anthropogenic CO2. ?? 2009 Elsevier B.V. All rights reserved.
Li, Yin; Fu, Jie; Deng, Shuguang; Lu, Xiuyang
2014-06-15
Sixteen mesoporous carbon adsorbents were synthesized by varying the ratio of soft to hard templates in order to optimize the pore textural properties of these adsorbents. The mesoporous carbon adsorbents have a high BET specific surface area (1590.3-2193.5 m(2)/g), large pore volume (1.72-2.56 cm(3)/g), and uniform pore size distribution with a median pore diameter ranging from 3.51 nm to 4.52 nm. It was observed that pore textural properties of the carbon adsorbents critically depend on the molar ratio of carbon sources to templates, and the hard template plays a more important role than the soft template in manipulating the pore textures. Adsorption isotherms of berberine hydrochloride at 303 K were measured to evaluate the adsorption efficacy of these adsorbents. The adsorption of berberine hydrochloride from aqueous solutions on the sixteen mesoporous carbon adsorbents synthesized in this work is very efficient, and the adsorption equilibrium capacities on all samples are more than double the adsorption capacities of berberine hydrochloride of the benchmark adsorbents (polymer resins and spherical activated carbons) at similar conditions. It was observed from the adsorption experiments that the equilibrium adsorption amounts of berberine hydrochloride are strongly correlated with the BET specific surface area and pore volume of the adsorbents. The adsorbent with the highest BET of 2193.5 m(2)/g displayed the largest adsorption capacity of 574 mg/g at an equilibrium concentration of 0.10mg/mL of berberine hydrochloride in an aqueous solution. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalin, M.; Simič, R.
2013-04-01
Polar molecules are known to affect the friction and wear of steel contacts via adsorption onto the surface, which represents one of the fundamental boundary-lubrication mechanisms. Since the basic chemical and physical effects of polar molecules on diamond-like carbon (DLC) coatings have been investigated only very rarely, it is important to find out whether such molecules have a similar effect on DLC coatings as they do on steel. In our study the adsorption of hexadecanol in various concentrations (2-20 mmol/l) on DLC was studied under static conditions using an atomic force microscope (AFM). The amount of surface coverage, the size and the density of the adsorbed islands of alcohol molecules were analyzed. Tribological tests were also performed to correlate the wear and friction behaviours with the adsorption of molecules on the surface. In this case, steel surfaces served as a reference. The AFM was successfully used to analyze the adsorption ability of polar molecules onto the DLC surfaces and a good correlation between the AFM results and the tribological behaviour of the DLC and the steel was found. We confirmed that alcohols can adsorb physically and chemically onto the DLC surfaces and are, therefore, potential boundary-lubrication agents for the DLC coatings. The adsorption of alcohol onto the DLC surfaces reduces the wear of the coatings, but it is less effective in reducing the friction because of the already inherently low-friction properties of DLC. Tentative adsorption mechanisms that include the environmental species effect, the temperature effect and the tribological rubbing effect are proposed for DLC and steel surfaces.
Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto
2012-08-02
The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.
Hatch, Courtney; Orlando, Roberto
2012-01-01
The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293
Modeling of adsorption dynamics at air-liquid interfaces using statistical rate theory (SRT).
Biswas, M E; Chatzis, I; Ioannidis, M A; Chen, P
2005-06-01
A large number of natural and technological processes involve mass transfer at interfaces. Interfacial properties, e.g., adsorption, play a key role in such applications as wetting, foaming, coating, and stabilizing of liquid films. The mechanistic understanding of surface adsorption often assumes molecular diffusion in the bulk liquid and subsequent adsorption at the interface. Diffusion is well described by Fick's law, while adsorption kinetics is less understood and is commonly described using Langmuir-type empirical equations. In this study, a general theoretical model for adsorption kinetics/dynamics at the air-liquid interface is developed; in particular, a new kinetic equation based on the statistical rate theory (SRT) is derived. Similar to many reported kinetic equations, the new kinetic equation also involves a number of parameters, but all these parameters are theoretically obtainable. In the present model, the adsorption dynamics is governed by three dimensionless numbers: psi (ratio of adsorption thickness to diffusion length), lambda (ratio of square of the adsorption thickness to the ratio of adsorption to desorption rate constant), and Nk (ratio of the adsorption rate constant to the product of diffusion coefficient and bulk concentration). Numerical simulations for surface adsorption using the proposed model are carried out and verified. The difference in surface adsorption between the general and the diffusion controlled model is estimated and presented graphically as contours of deviation. Three different regions of adsorption dynamics are identified: diffusion controlled (deviation less than 10%), mixed diffusion and transfer controlled (deviation in the range of 10-90%), and transfer controlled (deviation more than 90%). These three different modes predominantly depend on the value of Nk. The corresponding ranges of Nk for the studied values of psi (10(-2)
Liu, Yuanyuan; Gonçalves, Alexandre A S; Zhou, Yang; Jaroniec, Mietek
2018-05-07
Application of zeolitic imidazolate framework-67 (ZIF-67) as an adsorbent has been greatly hindered by slow mass transfer of adsorbate molecules due to its inherent microporosity. To address this limitation, we have developed binary nanostructures composed of ZIF-67 and γ-alumina (GA) containing respectively micropores and large mesopores. The nanostructured composites were successfully prepared by coupling ZIF-67 and GA with and without surface modification with imidazole silane that mimics the building blocks of ZIF-67 to obtain GA-Im-ZIF-67 (with imidazole silane) and GA-ZIF-67 (without imidazole silane). The sizes of ZIF-67 crystals in these composites were smaller as compared to those of pure ZIF-67, and the textural properties of these composites with and without surface modification were quite similar. However, the surface grafting of alumina with imidazole silane played an important role in improving interfacial coupling between GA and ZIF-67, which resulted in significant changes in the dispersion of ZIF-67 crystals and better adsorption properties. The presence of large mesopores in the alumina-based composites containing smaller ZIF-67 crystals improved their adsorption properties toward dyes such as Rhodamine B (RhB). The RhB adsorption capacity of GA-Im-ZIF-67 was much higher than that of GA-ZIF-67, suggesting that the imidazole silane modification of GA before its coupling with ZIF-67 and the GA mesoporosity were essential for a substantial increase in the adsorption capacity of RhB. Copyright © 2018 Elsevier Inc. All rights reserved.
Li, Wei; Wang, Longjun; Liu, Fan; Liang, Xiaoliang; Feng, Xionghan; Tan, Wenfeng; Zheng, Lirong; Yin, Hui
2016-07-01
Al substitution in goethite is common in soils, and has strong influence on the structure and physicochemical properties of goethite. In this research, a series of Al-doped goethites were synthesized, and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The adsorption behavior of these samples towards PO4(3-) was also investigated. Characterization results demonstrated that increasing Al content in goethite led to a reduction in crystallinity, increase in specific surface area (SSA), and morphology change from needle-like to granular. Rietveld structure refinement revealed that the lattice parameter a remained almost constant and b slightly decreased, but c was significantly reduced, and the calculated crystal density increased. EXAFS analysis demonstrated that the Fe(Al)-O distance in the structure of the doped goethites was almost the same, but the Fe-Fe(Al) distance decreased with increasing Al content. Surface analysis showed that, with increasing Al content, the content of OH groups on the mineral surface increased. The adsorption of phosphate per unit mass of Al-doped goethite increased, while adsorption per unit area decreased owing to the decrease of the relative proportion of (110) facets in the total surface area of the minerals. The results of this research facilitate better understanding of the effect of Al substitution on the structure and properties of goethite and the cycling of phosphate in the environment. Copyright © 2016. Published by Elsevier B.V.
Niasar, Hojatallah Seyedy; Li, Hanning; Das, Sreejon; Kasanneni, Tirumala Venkateswara Rao; Ray, Madhumita B; Xu, Chunbao Charles
2018-04-01
This study employed Box-Behnken design and response surface methodology to optimize activation parameters for the production of activated petroleum coke (APC) adsorbent from petroleum coke (PC) to achieve highest adsorption capacity for three model naphthenic acids. Activated petroleum coke (APC) adsorbent with a BET surface area of 1726 m 2 /g and total pore volume of 0.85 cc/g was produced at the optimum activation conditions (KOH/coke mass ratio) of 3.0, activation temperature 790 °C, and activation time 3.47 h). Effects of the activation parameters on the adsorption pefromances (adsortion capaciy and kinetics) were investigated. With the APC obtained at the optimum activation condition, the maximum adsorption capacity of 451, 362, and 320 (mg/g) was achieved for 2-naphthoic acid, diphenylacetic acid and cyclohexanepentanoic acid (CP), respectively. Although, generally APC adsorbents with a higher specific surface area and pore volume provide better adsorption capacity, the textural properties (surface areas and pore volume) are not the only parameters determining the APC adsorbents' adsorption capacity. Other parameters such as surface functionalities play effective roles on the adsorption capacity of the produced APC adsorbents for NAs. The KOH activation process, in particular the acid washing step, distinctly reduced the sulfur and metals contents in the raw PC, decreasing the leaching potential of metals from APC adsorbents during adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.
Marriott, Andrew S; Hunt, Andrew J; Bergström, Ed; Thomas-Oates, Jane; Clark, James H
2016-09-01
The effect of pyrolysis rate on the properties of alginic acid-derived carbonaceous materials, termed Starbon ® , was investigated. Thermal Gravimetry-IR was used to prepare porous carbons up to 800 °C at several rates and highlighted increased CO 2 production at higher pyrolysis rates. N 2 porosimetry of the resultant carbons shows how pyrolysis rate affects both the mesopore structure and thus surface area and surface energy. Surface capacity of these carbons was analysed by methylene blue dye adsorption. In general, as the rate of pyrolysis increased, the mesopore content and adsorbent capacity decreased. It is considered here that the rapid production of volatiles at these higher rates causes structural collapse of the non-templated pore network. The work here demonstrates that pyrolysis rate is a key variable which needs to be controlled to maximise the textural properties of Starbon ® required for adsorption applications.
Influence of Al substitution on magnetism and adsorption properties of hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shanshan; Kang, Feifei; Yang, Xin
2015-08-15
A series of Al-substituted hematite was prepared. The structures and properties of as-prepared samples were characterized by various techniques. The magnetic property of the samples was determined and the adsorption of three dyes Acid Blue 74, Methylene Blue and Phenol Red onto the samples was investigated. The results showed that Al incorporation into the crystal structure of hematite occurs via isomorphous ionic substitution of Al for Fe. With increasing Al content, the particle size of samples decreases, the magnetization increases and the remanent magnetization remains unchanged. The coercivity of the samples increases with Al substitution up to n{sub Al}/n{sub Fe}more » 0.03, and then decreases as Al content further increases. Compared with Al-free hematite, Al-substituted samples exhibit better adsorption ability to all of the three dyes. The adsorption rates of the three dyes on the surface of Al substituted samples depend on the structure of dye, pH and Al content in hematite. - Graphical abstract: Effect of Al on the structure, magnetic properties and adsorption performance of hematite was investigated. - Highlights: • A series of Al-substituted α-Fe{sub 2}O{sub 3} was prepared. • Effect of Al content on the crystal structure and magnetic property of hematite was investigated. • Al-substituted hematite exhibits better adsorption ability than hematite.« less
pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.
Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng
2004-08-03
The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.
Zuo, Linzi; Ai, Jing; Fu, Heyun; Chen, Wei; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang
2016-04-01
The presence of sulfonamide antibiotics in aquatic environments poses potential risks to human health and ecosystems. In the present study, a highly porous activated carbon was prepared by KOH activation of an anthracite coal (Anth-KOH), and its adsorption properties toward two sulfonamides (sulfamethoxazole and sulfapyridine) and three smaller-sized monoaromatics (phenol, 4-nitrophenol and 1,3-dinitrobenzene) were examined in both batch and fixed-bed adsorption experiments to probe the interplay between adsorbate molecular size and adsorbent pore structure. A commercial powder microporous activated carbon (PAC) and a commercial mesoporous carbon (CMK-3) possessing distinct pore properties were included as comparative adsorbents. Among the three adsorbents Anth-KOH exhibited the largest adsorption capacities for all test adsorbates (especially the two sulfonamides) in both batch mode and fixed-bed mode. After being normalized by the adsorbent surface area, the batch adsorption isotherms of sulfonamides on PAC and Anth-KOH were displaced upward relative to the isotherms on CMK-3, likely due to the micropore-filling effect facilitated by the microporosity of adsorbents. In the fixed-bed mode, the surface area-normalized adsorption capacities of Anth-KOH for sulfonamides were close to that of CMK-3, and higher than that of PAC. The irregular, closed micropores of PAC might impede the diffusion of the relatively large-sized sulfonamide molecules and in turn led to lowered fixed-bed adsorption capacities. The overall superior adsorption of sulfonamides on Anth-KOH can be attributed to its large specific surface area (2514 m(2)/g), high pore volume (1.23 cm(3)/g) and large micropore sizes (centered at 2.0 nm). These findings imply that KOH-activated anthracite coal is a promising adsorbent for the removal of sulfonamide antibiotics from aqueous solution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biocompatilibity-related surface characteristics of oxidized NiTi.
Danilov, Anatoli; Tuukkanen, Tuomas; Tuukkanen, Juha; Jämsä, Timo
2007-09-15
In the present study, we examined the effect of NiTi oxidation on material surface characteristics related to biocompatibility. Correspondence between electron work function (EWF) and adhesive force predicted by electron theory of adsorption as well as the effect of surface mechanical stress on the adhesive force were studied on the nonoxidized and oxidized at 350, 450, and 600 degrees C NiTi alloy for medical application. The adhesive force generated by the material surface towards the drops of alpha-minimal essential medium (alpha-MEM) was used as a characteristic of NiTi adsorption properties. The study showed that variations in EWF and mechanical stress caused by surface treatment were accompanied by variations in adhesive force. NiTi oxidation at all temperatures used gave rise to decrease in adhesive force and surface stress values in comparison to the nonoxidized state. In contrary, the EWF value revealed increase under the same condition. Variations in surface oxide layer thickness and its phase composition were also followed. The important role of oxide crystallite size in EWF values within the range of crystallite dimensions typical for NiTi surface oxide as an instrument for the fine regulation of NiTi adsorption properties was demonstrated. The comparative oxidation of pure titanium and NiTi showed that the effect of Ni on the EWF value of NiTi surface oxide is negligible. Copyright 2007 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Skepö, M.
2008-11-01
The structural properties of the salivary protein statherin upon adsorption have been examined using a coarse-grained model and Monte Carlo simulation. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. To mimic hydrophobically modified surfaces, an extra short-ranged interaction was implemented between the amino acids and the surface. It has been shown that the adsorption and the thickness of the adsorbed layer are determined by (i) the affinity for the surface, i.e., denser layer with an extrashort-ranged potential, and (ii) the distribution of the charges along the chain. If all the amino acids have a high affinity for the surface, the protein adsorbs in a train conformation, if the surface is negatively charged the protein adsorbs in a tail-train conformation, whereas if the surface is positively charged the protein adsorbs in a loop conformation. The latter gives rise to a more confined adsorbed layer.
Adsorption behaviour of hydrogarnet for humic acid
NASA Astrophysics Data System (ADS)
Maeda, Hirotaka; Kurosaki, Yuichi; Nakayama, Masanobu; Ishida, Emile Hideki; Kasuga, Toshihiro
2018-04-01
Discharge of humic acid (HA) in aqueous environments is a key health and aesthetic issue. The present work investigates the use of hydrogarnet as a novel adsorbent for HA. Hydrogarnet was hydrothermally synthesized with different solvents to control the chemical composition. Hydrogarnet with three types of chemical compositions had better adsorption properties for HA than hydrogarnet with a single chemical composition. Controlling the chemical composition of hydrogarnet increased the number of hydroxyl groups and the overall binding energy of the system, leading to changes in the zeta potential. The enhancement of these adsorption properties is related to the increased numbers of hydroxyl groups on the surface and their diverse binding energies.
Oshihara, Wataru; Fujieda, Hiroaki; Ueno, Yoshiyuki
2017-01-01
Poly(methyl methacrylate) (PMMA) membranes adsorb several kinds of proteins and can remove high-molecular-weight proteins, including uremic toxins, which are not removed efficiently by hemodialysis or hemodiafiltration. However, the antithrombogenicity of PMMA membranes is insufficient due to their adsorptive properties. Coagulation during hemodialysis occurs because proteins that are adsorbed to the PMMA membrane undergo structural changes and are recognized by platelets, which are then activated by adhesion to the membrane surface. In developing a new PMMA membrane dialyzer, NF, we intended to inhibit platelet adhesion to the membrane surface by suppressing the structural change in the proteins adsorbed on the membrane. In addition, we give examples of clinical trials of the NF in Japan and describe its advantages. Key Message: PMMA membrane dialyzers have been used for 40 years. The PMMA dialyzer NF can suppress the adhesion of platelets to the membrane while maintaining protein adsorption. © 2017 S. Karger AG, Basel.
Marxer, C Galli; Coen, M Collaud; Bissig, H; Greber, U F; Schlapbach, L
2003-10-01
Interpretation of adsorption kinetics measured with a quartz crystal microbalance (QCM) can be difficult for adlayers undergoing modification of their mechanical properties. We have studied the behavior of the oscillation amplitude, A(0), and the decay time constant, tau, of quartz during adsorption of proteins and cells, by use of a home-made QCM. We are able to measure simultaneously the frequency, f, the dissipation factor, D, the maximum amplitude, A(0), and the transient decay time constant, tau, every 300 ms in liquid, gaseous, or vacuum environments. This analysis enables adsorption and modification of liquid/mass properties to be distinguished. Moreover the surface coverage and the stiffness of the adlayer can be estimated. These improvements promise to increase the appeal of QCM methodology for any applications measuring intimate contact of a dynamic material with a solid surface.
Water adsorption on the Fe3O4(111) surface: dissociation and network formation.
Zaki, Eman; Mirabella, Francesca; Ivars-Barceló, Francisco; Seifert, Jan; Carey, Spencer; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Li, Xiaoke; Paier, Joachim; Sauer, Joachim
2018-06-13
We monitored adsorption of water on a well-defined Fe3O4(111) film surface at different temperatures as a function of coverage using infrared reflection-absorption spectroscopy, temperature programmed desorption, and single crystal adsorption calorimetry. Additionally, density functional theory was employed using a Fe3O4(111)-(2 × 2) slab model to generate 15 energy minimum structures for various coverages. Corresponding vibrational properties of the adsorbed water species were also computed. The results show that water molecules readily dissociate on regular surface Fetet1-O ion pairs to form "monomers", i.e., terminal Fe-OH and surface OH groups. Further water molecules adsorb on the hydroxyl covered surface non-dissociatively and form "dimers" and larger oligomers, which ultimately assemble into an ordered (2 × 2) hydrogen-bonded network structure with increasing coverage prior to the formation of a solid water film.
NASA Astrophysics Data System (ADS)
Li, Rui; Jin, Jing; Sun, Yingchun
2014-05-01
Protein adsorption is a dynamic process and plays a major role in determining the hemocompatibility of biomaterials. We have obtained different poly (ethylene glycol) (PEG) graft concentrations of SEBS-g-PEG and the surface chemical compositions are confirmed by X-ray photoelectron spectroscopy (XPS). Graft concentration is defined by peak-area ratio of [C--O]/[C] on modified SEBS surface. With increasing graft concentration, water contact angles of the modified SEBS have significantly decreased. The platelet adhesion and static protein adsorption demonstrate that the hemocompatibility of copolymers films are improved effectively and SEBS-g-PEG-2 with larger graft concentration has more superior anticoagulation than that of SEBS-g-PEG-1. Moreover, we have quantitatively investigated the adsorption process of bovine serum albumin (BSA) and fibrinogen (Fib) on the surfaces of pristine SEBS and modified SEBS using quartz crystal microbalance with dissipation (QCM-D) in real time. The results indicate that the inactivated BSA on the pristine SEBS can continuously induce the subsequent Fib adsorption. The hemocompatibility of SEBS-g-PEG-2 with the graft concentration of 0.207 has excellent anti-protein property and the bio-inert BSA layer on the film can resist the subsequent Fib adsorption.
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-01-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity. PMID:27108562
Computational screening of biomolecular adsorption and self-assembly on nanoscale surfaces.
Heinz, Hendrik
2010-05-01
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer-scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface-solute-solvent system, the solute-solvent system, the solvent system, and the surface-solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zen, Federico; Angione, M. Daniela; Behan, James A.; Cullen, Ronan J.; Duff, Thomas; Vasconcelos, Joana M.; Scanlan, Eoin M.; Colavita, Paula E.
2016-04-01
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30-90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.
The role of poly(methacrylic acid) conformation on dispersion behavior of nano TiO2 powder
NASA Astrophysics Data System (ADS)
Singh, Bimal P.; Nayak, Sasmita; Samal, Samata; Bhattacharjee, Sarama; Besra, Laxmidhar
2012-02-01
To exploit the advantages of nanoparticles for various applications, controlling the dispersion and agglomeration is of paramount importance. Agglomeration and dispersion behavior of titanium dioxide (TiO2) nanoparticles was investigated using electrokinetic and surface chemical properties. Nanoparticles are generally stabilized by the adsorption of a dispersant (polyelectrolyte) layer around the particle surface and in this connection ammonium salt of polymethacrylic acid (Darvan C) was used as dispersant to stabilize the suspension. The dosages of polyelectrolyte were optimized to get best dispersion stability by techniques namely particle charge detector (13.75 mg/g) and adsorption (14.57 mg/g). The surface charge of TiO2 particles changed significantly in presence of dispersant Darvan C and isoelectric point (iep) shifted significantly towards lower pH from 5.99 to 3.37. The shift in iep has been quantified in terms of free energy of interaction between the surface sites of TiO2 and the adsorbing dispersant Darvan C. Free energies of adsorption were calculated by electrokinetic data (-9.8 RT unit) and adsorption isotherms (-10.56 RT unit), which corroborated well. The adsorption isotherms are of typical Langmuir type and employed for calculation of free energy. The results indicated that adsorption occurs mainly through electrostatic interactions between the dispersant molecule and the TiO2 surface apart from hydrophobic interactions.
Etemadi, Omid; Yen, Teh Fu
2007-09-01
Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).
Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles
Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.
2006-01-01
Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.
Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul
2016-09-15
A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
pH-Switchable Interaction of a Carboxybetaine Ester-Based SAM with DNA and Gold Nanoparticles.
Filip, Jaroslav; Popelka, Anton; Bertok, Tomas; Holazova, Alena; Osicka, Josef; Kollar, Jozef; Ilcikova, Marketa; Tkac, Jan; Kasak, Peter
2017-07-11
We describe a self-assembled monolayer (SAM) on a gold surface with a carboxybetaine ester functionality to control the interaction between DNA and gold nanoparticles via pH. The negatively charged phosphate backbone of DNA interacts with and adsorbs to the positively charged carboxybetaine esters on the SAM. DNA release can be achieved by the hydrolysis of carboxybetaine ester (CBE) to a zwitterionic carboxybetaine state. Furthermore, the adsorption of negatively charged citrate-capped gold nanoparticles to a SAM-modified plain gold surface can be controlled by the pH. The SAM based on carboxybetaine ester allows for the homogeneous adsorption of particles, whereas the SAM after hydrolysis at high pH repels AuNP adsorption. The antifouling surface properties of the surface modified with carboxybetaine were investigated with protein samples.
Cell surface engineering of microorganisms towards adsorption of heavy metals.
Li, Peng-Song; Tao, Hu-Chun
2015-06-01
Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.
The adsorption of rare earth ions using carbonized polydopamine nano shells
Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...
2016-01-07
Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less
Adsorption properties of Silochrom chemically modified with nickel acetylacetonate
NASA Astrophysics Data System (ADS)
Pakhnutova, Evgeniya; Slizhov, Yuriy
2017-11-01
One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.
NASA Astrophysics Data System (ADS)
Wang, Fangfang; Xia, Wei; Mu, Xichuan; Chen, Kun; Si, Huimin; Li, Zhihao
2018-05-01
ZrO2-based catalysts doped with Y were prepared by co-precipitation method. The effect of yttrium modification on the selective conversion of bio-ethanol to propylene over ZrO2 catalysts was investigated. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption method, temperature programmed desorption and X-ray diffraction. The maximum yield of propylene reached 44.0% over 0.03Y/ZrO2 catalyst. A coordination of acid-base properties accounts for the remarkable improvement of reaction activities over Y-doped ZrO2 catalysts in this investigation. On the basis of calculation results, it can be concluded that significant charge transfer occurs as a result of introduction of Y or O-vacancy. The adsorption of ethanol and propylene on perfect t-ZrO2 (1 0 1), defect t-ZrO2 (1 0 1) and Y/ZrO2 (1 0 1) surfaces were investigated with density functional theory (DFT). The adsorption for ethanol on Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces are more stable than that on perfect t-ZrO2 (1 0 1). On the defect t-ZrO2 (1 0 1) surface, ethanol dominantly absorbs at the O-vacancy site, indicating that O-vacancy becomes the favorable adsorption site. On the Y/ZrO2 (1 0 1) and defect t-ZrO2 (1 0 1) surfaces, the adsorption energy of propylene decreases, which makes propylene desorb quickly after formation.
Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium
Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny
2012-01-01
A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102
Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces.
Smith, Benjamin J; Rawal, Aditya; Funkhouser, Gary P; Roberts, Lawrence R; Gupta, Vijay; Israelachvili, Jacob N; Chmelka, Bradley F
2011-05-31
Sugar molecules adsorbed at hydrated inorganic oxide surfaces occur ubiquitously in nature and in technologically important materials and processes, including marine biomineralization, cement hydration, corrosion inhibition, bioadhesion, and bone resorption. Among these examples, surprisingly diverse hydration behaviors are observed for oxides in the presence of saccharides with closely related compositions and structures. Glucose, sucrose, and maltodextrin, for example, exhibit significant differences in their adsorption selectivities and alkaline reaction properties on hydrating aluminate, silicate, and aluminosilicate surfaces that are shown to be due to the molecular architectures of the saccharides. Solid-state (1)H, (13)C, (29)Si, and (27)Al nuclear magnetic resonance (NMR) spectroscopy measurements, including at very high magnetic fields (19 T), distinguish and quantify the different molecular species, their chemical transformations, and their site-specific adsorption on different aluminate and silicate moieties. Two-dimensional NMR results establish nonselective adsorption of glucose degradation products containing carboxylic acids on both hydrated silicates and aluminates. In contrast, sucrose adsorbs intact at hydrated silicate sites and selectively at anhydrous, but not hydrated, aluminate moieties. Quantitative surface force measurements establish that sucrose adsorbs strongly as multilayers on hydrated aluminosilicate surfaces. The molecular structures and physicochemical properties of the saccharides and their degradation species correlate well with their adsorption behaviors. The results explain the dramatically different effects that small amounts of different types of sugars have on the rates at which aluminate, silicate, and aluminosilicate species hydrate, with important implications for diverse materials and applications.
Xu, Longhua; Tian, Jia; Wu, Houqin; Deng, Wei; Yang, Yaohui; Sun, Wei; Gao, Zhiyong; Hu, Yuehua
2017-11-01
The anisotropic adsorption of sodium oleate (NaOL) on feldspar surfaces was investigated to elucidate the different flotation properties of feldspar particles of four different size ranges. Microflotation experiments showed that the feldspar flotation recovery of particles with sizes spanning different ranges decreased in the order 0-19>19-38>45-75>38-45μm. Zeta potential and FTIR measurements showed that NaOL was chemically adsorbed on the Al sites of the feldspar surface. The anisotropic surface energies and broken bond densities estimated by density functional theory calculations showed that, although feldspar mostly exposed (010) and (001) surfaces, only the (001) surfaces contained the Al sites needed for NaOL adsorption. The interaction energies calculated by molecular dynamics simulations confirmed the more favorable NaOL adsorption on (001) than (010) surfaces, which may represent the main cause for the anisotropic NaOL adsorption on feldspar particles of different sizes. SEM measurements showed that the main exposed surfaces on coarse and fine feldspar particles were the side (010) and basal (001) ones, respectively. A higher fraction of Al-rich (001) surfaces is exposed on fine feldspar particles, resulting in better floatability compared with coarse particles. XPS and adsorption measurements confirmed that the Al content on the feldspar surface varied with the particle size, explaining the different NaOL flotation of feldspar particles of different sizes. Therefore, the present results suggest that coarsely ground ore should be used for the separation of feldspar gangue minerals. Further improvements in the flotation separation of feldspar from associated valuable minerals can be achieved through selective comminution or grinding processes favoring the exposure of (010) surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project
ERIC Educational Resources Information Center
Tribe, Lorena; Barja, Beatriz C.
2004-01-01
A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…
Adsorption and inhibitive properties of sildenafil (Viagra) for zinc in hydrochloric acid solution
NASA Astrophysics Data System (ADS)
Fouda, A. S.; Ibrahim, H.; Atef, M.
Sildenafil (Viagra) was investigated as corrosion inhibitor for Zn in 1 M HCl solution using chemical and electrochemical methods at 25 °C. Electrochemical results showed that this drug is efficient inhibitor for Zn in HCl and the inhibition efficiency (IE) reached to 91% at 300 ppm. The IE increases with the drug concentration and decreases with increasing temperature. The adsorption of this drug on Zn surface follows Langmuir adsorption isotherm. The polarization plots revealed that Sildenafil acts as a mixed-type inhibitor. The thermodynamic parameters of activation and adsorption were calculated and discussed. The surface morphology of the Zn specimens was evaluated using scanning electron microscope (SEM), energy dispersive X-ray (EDX), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) techniques.
Jiang, Zong-You; Zhao, Zong-Yan
2017-08-23
Noble metals supported on TiO 2 surfaces have shown extraordinary photocatalytic properties in many important processes such as hydrogenation, water splitting, degradation of hazards, and so on. Using density functional theory calculations, this work has systematically investigated the microstructure and electronic structure of three different Au 9 isomers loaded on anatase TiO 2 (001) surface. The calculated results show that the interaction between the Au 9 cluster and the TiO 2 support is closely related to the adsorption site and the stability of the Au 9 cluster in the gas phase. The adsorption energy of the 2D configuration is larger than that of the 3D configuration of the Au 9 cluster, owing to the stronger interactions between more adsorption sites. The stable adsorption site for Au 9 clusters deposited on the anatase TiO 2 (001) surface tends to be the O 2c -O 2c hollow site. The presentation of the MIGS of the Au 9 cluster, the disappearance of surface states of the TiO 2 (001) surface, and the shifting of the Fermi level from the top of the valence band to the bottom of the conduction band suggest strong interactions between the Au 9 clusters and the TiO 2 (001) surface. Importantly, the electron transfer from the Au 9 clusters to the TiO 2 support occurs mainly through Au-O 2c interactions, which are mainly localized at the contact layer of the Au 9 clusters. These conclusions are useful to understand various physical and chemical properties of noble metal clusters loaded onto an oxide surface, and helpful to design novel metal/semiconductor functional composite materials and devices.
Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.
Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming
2008-06-15
In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.
Habish, Amal Juma; Lazarević, Slavica; Janković-Častvan, Ivona; Jokić, Bojan; Kovač, Janez; Rogan, Jelena; Janaćković, Đorđe; Petrović, Rada
2017-01-01
Natural (SEP) and partially acid-activated (AAS) sepiolites were used to prepare composites with nanoscale zerovalent iron (nZVI) at different (SEP or AAS)/nZVI ratios in order to achieve the best nZVI dispersibility and the highest adsorption capacity for Cd 2+ . Despite the higher surface area and pore volume of AAS, better nZVI dispersibility was achieved by using SEP as the support. On the other hand, a lower oxidation degree was achieved during the synthesis using AAS. X-ray photoelectron spectroscopy (XPS) analysis of the composite with the best nZVI dispersibility, before and after Cd 2+ adsorption, confirmed that the surface of the nZVI was composed of oxidized iron species. Metallic iron was not present on the surface, but it was detected in the subsurface region after sputtering. The content of zerovalent iron decreased after Cd 2+ adsorption as a result of iron oxidation during Cd 2+ adsorption. The XPS depth profile showed that cadmium was present not only at the surface of the composite but also in the subsurface region. The adsorption isotherms for Cd 2+ confirmed that the presence of SEP and AAS decreased the agglomeration of the nZVI particles in comparison to the pure nZVI, which provided a higher adsorption capacity. The results showed that the prevention of both aggregation and oxidation during the synthesis was necessary for obtaining an SEP/AAS-nZVI composite with a high adsorption capacity, but oxidation during adsorption was beneficial for Cd 2+ removal. The formation of strong bonds between Cd 2+ and the adsorbents sites of different energy until monolayer formation was proposed according to modeling of the adsorption isotherms.
Adsorption and reaction of CO and H2O on WC(0001) surface: A first-principles investigation
NASA Astrophysics Data System (ADS)
Tong, Yu-Jhe; Wu, Shiuan-Yau; Chen, Hsin-Tsung
2018-01-01
We have performed a spin-polarized density functional theory (DFT) study for understanding the detailed reaction mechanism of CO and H2O on WC (0001) surface. The adsorption properties and vibrational frequencies of H2O, OH, O, H, CO and CO2 on the WC (0001) surface were illustrated. These results are well in consistent with the experimental observations studied by temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). Based on the adsorption results, potential energy profiles of H2O and OH dehydrogenation and HCO, COH, COOH, and CO2 formation on the WC (0001) surface were predicted. The calculation results demonstrated that the WC (0001) surface as Fe (110) surface exhibits significantly reaction activity toward the dehydrogenation of H2O and OH but less activity toward the formation of HCO, COH, COOH and CO2 compared to the Cu (111) and Pt (111) surfaces.
NASA Astrophysics Data System (ADS)
Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja
2014-11-01
Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly bonded OC and disaggregation. In contrast, 'M/C 1.0' coprecipitates showed a comparable rate of As uptake as the adsorption complexes. While small mesopores (2-10 nm) promoted the fast As uptake particularly to 'M/C 0.1' coprecipitates, the presence of micropores (<2 nm) appeared to impair As desorption. This study shows that the environmental reactivity of poorly crystalline Fe(III) oxides in terrestrial and aquatic systems can largely vary depending on the formation conditions. Carbon-rich Fe phases precipitated at low M/C ratios may play a more important role in oxyanion immobilization and Fe and C cycling than phases formed at higher M/C ratios or respective adsorption complexes.
Hosseinzadeh, Hossein; Pashaei, Shahryar; Hosseinzadeh, Soleyman; Khodaparast, Zahra; Ramin, Sonia; Saadat, Younes
2018-05-31
In the present work, polymer-coated multiwalled carbon nanotube (MWCNT) was prepared via RAFT method. First, a novel trithiocarbonate-based RAFT agent was prepared attached chemically into the surface of MWCNT. In addition, the RAFT co-polymerization of acrylic acid and acrylamide monomers was conducted through the prepared RAFT agent. In the next age, the surface morphology and chemical properties of the prepared components were fully examined by using FTIR, 1 HNMR, SEM, TEM, XRD and TGA/DTG techniques. Finally, the modified MWCNT composite was employed as an excellent adsorbent for the adsorption of copper (II) ions. The results indicated that ion adsorption basically relies on adsorbing time, solution pH, initial copper concentration, and adsorbent dosage. Further, the adsorption kinetics and isotherm analysis demonstrated that the adsorption mode was fitted with the pseudo-second-order and Langmuir isotherm models, respectively. Based on the results of thermodynamic study, the ion adsorption process was endothermic and spontaneous. Finally, based on the experimental results, the surface functionalized MWCNT with hydrophilic groups could be successfully used as a promising selective adsorbent material in wastewater treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou
2014-05-15
A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xia, Zije; Williams, Evan R.
2018-01-01
Theta glass electrospray emitters can rapidly mix solutions to investigate fast reactions that occur as quickly as 1 μs, but emitters with submicron tips have the unusual properties of desalting protein ions and affecting the observed abundances of some proteins as a result of protein-surface interactions. The role of protein physical properties on ion signal was investigated using 1.7 ± 0.1 μm and 269 ± 7 nm emitters and 100 mM aqueous ammonium acetate or ammonium bicarbonate solutions. Protein ion desalting occurs for both positive and negative ions. The signal of a mixture of proteins with the 269 nm tips is time-dependent and the order in which ions of each protein is observed is related to the expected strengths of the protein-surface interactions. These results indicate that it is not just the high surface-to-volume ratio that plays a role in protein adsorption and reduction or absence of initial ion signal, but the small diffusion distance and extremely low flow rates of the smaller emitters can lead to complete adsorption of some proteins and loss of signal until the adsorption sites are filled and the zeta potential is significantly reduced. After about 30 min, signals for a protein mixture from the two different size capillaries are similar. These results show the advantages of submicron emitters but also indicate that surface effects must be taken into account in experiments using such small tips or that coating the emitter surface to prevent adsorption should be considered. [Figure not available: see fulltext.
Montmorillonite-supported Pd0, Fe0, Cu0 and Ag0 nanoparticles: Properties and affinity towards CO2
NASA Astrophysics Data System (ADS)
Bouazizi, Nabil; Barrimo, Diana; Nousir, Saadia; Ben Slama, Romdhane; Roy, René; Azzouz, Abdelkrim
2017-04-01
This study reports the carbon dioxide (CO2) adsorption on montmorillonite (NaMt) incorporating Cu0, Fe0, Pd0 and Ag0 as metallic nanoparticles (MNPs). The changes in structural, textural, morphological and adsorption properties of the resulting materials (NaMt-MNPs) were investigated. Electron microscopy and X-ray diffraction showed that dispersion of fine MNPs occurs mainly within the interlayer space of NaMt, producing a slight structure expansion. This was accompanied by a visible enhancement of the affinity towards CO2, as supported by thermal programmed desorption measurements. NaMt-MNPs displayed high CO2 retention capacity (CRC) of ca. 657 μmol/g for NaMt-Cu as compared to NaMt. This was explained in terms of increased number of available adsorption sites due to enlarged interlayer spaces caused by MNP insertion. The differences in CO2 adsorption capacities clearly demonstrate the key role of MNPs in improving the surface properties and adsorption capacity. The results reported herein open new prospects for clay supported metal nanoparticles as efficient adsorbents for CO2.
Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Tringe, Joseph; Castro, Ricardo H R; Faller, Roland; Stroeve, Pieter
2016-11-08
Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N 2 , Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.
NASA Technical Reports Server (NTRS)
Manning, J. R.
1981-01-01
Measurement of materials properties and thermophysical properties is described. The topics discussed are: surface tensions and their variations with temperature and impurities; convection during unidirectional solidification: measurement of high temperature thermophysical properties of tungsten liquid and solid; thermodynamic properties of refractory materials at high temperatures; and experimental and theoretical studies in wetting and multilayer adsorption.
The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.
Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline
2015-01-23
In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.
Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less
Zeitler, T. R.; Greathouse, J. A.; Cygan, R. T.; ...
2017-10-05
Low-salinity water flooding, a method of enhanced oil recovery, consists of injecting low ionic strength fluids into an oil reservoir in order to detach oil from mineral surfaces in the underlying formation. Although highly successful in practice, the approach is not completely understood at the molecular scale. Molecular dynamics simulations have been used to investigate the effect of surface protonation on the adsorption of an anionic crude oil component on clay mineral edge surfaces. A set of interatomic potentials appropriate for edge simulations has been applied to the kaolinite (010) surface in contact with an aqueous nanopore. Decahydro-2-napthoic acid inmore » its deprotonated form (DHNA –) was used as a representative resin component of crude oil, with monovalent and divalent counterions, to test the observed trends in low-salinity water flooding experiments. Surface models include fully protonated (neutral) and deprotonated (negative) edge sites, which require implementation of a new deprotonation scheme. The surface adsorptive properties of the kaolinite edge under neutral and deprotonated conditions have been investigated for low and high DHNA – concentrations with Na + and Ca 2+ as counterions. The tendency of DHNA – ions to coordinate with divalent (Ca 2+) rather than monovalent (Na +) ions greatly influences adsorption tendencies of the anion. Additionally, the formation of net positively charged surface sites due to Ca 2+ at deprotonated sites results in increased DHNA – adsorption. Divalent cations such as Ca 2+ are able to efficiently bridge surface sites and organic anions. Replacing those cations with monovalent cations such as Na + diminishes the bridging mechanism, resulting in reduced adsorption of the organic species. As a result, a clear trend of decreased DHNA – adsorption is observed in the simulations as Ca 2+ is replaced by Na + for deprotonated surfaces, as would be expected for oil detachment from reservoir formations following a low-salinity flooding event.« less
NASA Astrophysics Data System (ADS)
Jiang, Jingxian; Fu, Yuchen; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu
2017-08-01
The traditional nonfouling materials are powerless against bacterial cells attachment, while the hydrophobic bactericidal surfaces always suffer from nonspecific protein adsorption and dead bacterial cells accumulation. Here, amphiphilic polyurethane (PU) networks modified with poly(dimethylsiloxane) (PDMS) and cationic carboxybetaine diol through simple crosslinking reaction were developed, which had an antibacterial efficiency of 97.7%. Thereafter, the hydrolysis of carboxybetaine ester into zwitterionic groups brought about anti-adhesive properties against bacteria and proteins. The surface chemical composition and wettability performance of the PU network surfaces were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and contact angle analysis. The surface distribution of PDMS and zwitterionic segments produced an obvious amphiphilic heterogeneous surface, which was demonstrated by atomic force microscopy (AFM). Enzyme-linked immunosorbent assays (ELISA) were used to test the nonspecific protein adsorption behaviors. With the advantages of the transition from excellent bactericidal performance to anti-adhesion and the combination of fouling resistance and fouling release property, the designed PDMS-based amphiphilic PU network shows great application potential in biomedical devices and marine facilities.
A review of the different techniques for solid surface acid-base characterization.
Sun, Chenhang; Berg, John C
2003-09-18
In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).
NASA Astrophysics Data System (ADS)
Dong, Xingchen; Zhang, Xiaoxing; Cui, Hao; Zhang, Jun
2017-11-01
Gas insulated switchgear has been widely used in modern electric systems due to its significantly excellent performances such as compact structure and low land occupation as well as the security stability. However, inside defects caused during manufacture process can lead to partial discharge which might develop into serious insulation failure. Online monitoring method on basis of gas sensors is considered a promising way of detecting partial discharge for alarm ahead of time. Research has found that TiO2 nanotubes sensors show good response to SO2, SOF2, SO2F2, the decomposition components as a result of partial discharge. In order to investigate the gas-sensing mechanism of nitrogen-doped TiO2 prepared via plasma treatment methods to SO2, SOF2, and SO2F2, the adsorption structures of both three gas molecules and anatase TiO2 (101) surface were built, and DFT calculations were then carried out for calculation and analysis of adsorption parameters. Adsorption property comparison of anatase TiO2 (101) surface after nitrogen doping with Au doping and without doping shows that nitrogen doping can obviously enhance the adsorption energy for SO2 and SOF2 adsorption and no charge transfer for SO2F2 adsorption, further explaining the adsorption mechanism and doping influence of different doping elements.
Protein adsorption on tailored substrates: long-range forces and conformational changes
NASA Astrophysics Data System (ADS)
Bellion, M.; Santen, L.; Mantz, H.; Hähl, H.; Quinn, A.; Nagel, A.; Gilow, C.; Weitenberg, C.; Schmitt, Y.; Jacobs, K.
2008-10-01
Adsorption of proteins onto solid surfaces is an everyday phenomenon that is not yet fully understood. To further the current understanding, we have performed in situ ellipsometry studies to reveal the adsorption kinetics of three different proteins, lysozyme, α-amylase and bovine serum albumin. As substrates we offer Si wafers with a controlled Si oxide layer thickness and a hydrophilic or hydrophobic surface functionalization, allowing the tailoring of the influence of short- and long-range interactions. Our studies show that not only the surface chemistry determines the properties of an adsorbed protein layer but also the van der Waals contributions of a composite substrate. We compare the experimental findings to results of a colloidal Monte Carlo approach that includes conformational changes of the adsorbed proteins induced by density fluctuations.
Immobilization of Cu2+ and Cd2+ by earthworm manure derived biochar in acidic circumstance.
Wang, Zhanghong; Shen, Fei; Shen, Dekui; Jiang, Yahui; Xiao, Rui
2017-03-01
Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700°C and biochar treated by HCl (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu 2+ and Cd 2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCl treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl CO, aromatic CC and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu 2+ and Cd 2+ adsorption on UBC were 36.56 and 29.31mg/g, respectively, which were higher than that of WBC (8.64 and 12.81mg/g, respectively), indicating that HCl treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl CO and aromatic CC). Copyright © 2016. Published by Elsevier B.V.
Nano-based systems for oil spills control and cleanup.
Avila, Antonio F; Munhoz, Viviane C; de Oliveira, Aline M; Santos, Mayara C G; Lacerda, Glenda R B S; Gonçalves, Camila P
2014-05-15
This paper reports the development of superhydrophobic nanocomposite systems which are also oleophilic. As hydrophobicity is based on low energy surface and surface roughness, the electrospinning technique was selected as the manufacturing technique. N,N' dimethylformamide (DMF) was employed as the polystyrene (PS) solvent. The "Tea-bag" (T-B) nanocomposite system is based on exfoliated graphite surrounded by PS superhydrophobic membranes. The T-B systems were tested regarding its adsorption and absorption rates. To test these properties, it was employed three different water/oil emulsions, i.e., new and used motor oil, which have physical properties (viscosity and specific gravity) similar to heavy crude oil extracted in Brazil, and vacuum pump oil (which does not form oil/water emulsion). It was observed that oil adsorption rate is dependent on oil surface tension, while the absorption rate is mainly dependent on membrane/exfoliated graphite surface area. Experimental data show that oil absorption rates ranged between 2.5g/g and 40g/g, while the adsorption rate oscillated from 0.32g/g/min to 0.80g/g/min. Furthermore, T-B systems were tested as containment barriers and sorbent materials with good results including its recyclability. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueshima, Masato; Toda, Eriko; Nakajima, Yuki; Sugiyama, Kazuo
2010-08-01
Microwave non thermal plasma irradiation was conducted on active carbon (AC) preliminarily impregnated with poly(vinyl alcohol) (PVA) in order to modify the adsorption properties of active carbon, particularly to increase hydrophobicity. The plasma was produced by applying microwave power on the PVA-impregnated active carbon (PVA/AC) placed in a low vacuum chamber (<10 Torr). The surface of the plasma-treated PVA/AC was imaged using scanning electron microscopy and atomic force microscopy (SEM and AFM, respectively), and analyzed using X-ray photoelectron spectroscopy (XPS). Hydrophobicity of the plasma-treated PVA/AC was compared to that of untreated PVA/AC and AC by a sinking test in water/methanol mixed solutions. The hydrophobicity drastically increased for PVA/AC treatment with 1-min plasma irradiation. The AFM results indicated that the surface roughness of the PVA/AC was dependent upon the hydrophobicity, rather than reduction of free energy due to reduction of polarized functional groups. NaOH and HCl adsorption onto the plasma-treated PVA/AC was also measured. Adsorption capacity of plasma-treated PVA/AC increased for NaOH, whereas it decreased for HCl. The plasma treatment not only increased the hydrophobicity of PVA/AC, but also changed its acid-base adsorption properties. We have developed a new material based on active carbon, which is light, hydrophobic and electrically conductive by using a combination of PVA sintering and plasma irradiation.
NASA Astrophysics Data System (ADS)
Budnyak, T. M.; Yanovska, E. S.; Kichkiruk, O. Yu.; Sternik, D.; Tertykh, V. A.
2016-11-01
Natural minerals are widely used in treatment technologies as mineral fertilizer, food additive in animal husbandry, and cosmetics because they combine valuable ion-exchanging and adsorption properties together with unique physicochemical and medical properties. Saponite (saponite clay) of the Ukrainian Podillya refers to the class of bentonites, a subclass of layered magnesium silicate montmorillonite. Clinoptilolits are aluminosilicates with carcase structure. In our work, we have coated biopolymer chitosan on the surfaces of natural minerals of Ukrainian origin — Podilsky saponite and Sokyrnitsky clinoptilolite. Chitosan mineral composites have been obtained by crosslinking of adsorbed biopolymer on saponite and clinoptilolite surface with glutaraldehyde. The obtained composites have been characterized by the physicochemical methods such as thermogravimetric/differential thermal analyses (DTA, DTG, TG), differential scanning calorimetry, mass analysis, nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between the silica and chitosan molecule. The adsorption of microquantities of cations Cu(II), Zn(II), Fe(III), Cd(II), and Pb(II) by the obtained composites and the initial natural minerals has been studied from aqueous solutions. The sorption capacities and kinetic adsorption characteristics of the adsorbents were estimated. It was found that the obtained results have shown that the ability of chitosan to coordinate heavy metal ions Zn(II), Cu(II), Cd(II), and Fe(III) is less or equal to the ability to retain ions of these metals in the pores of minerals without forming chemical bonds.
Li, Guifeng; Wan, Jianxin; Huang, Xiangqian; Zeng, Qiao; Tang, Jing
2011-08-01
In recent years, multi-walled carbon nanotubes (MWCTs) are very favorable to the adsorption of middle molecular substances in the hemoperfusion because of their multiporous structure, large surface area and high reactivity, which are beneficial to the excellent absorption properties. The purpose of this study was to study the MWCTs on the adsorption capacity of the middle molecular substances. Vitamin B12 (VB12) was selected as a model of the middle molecular substances. The morphologies of MWCTs and activated carbon from commercial "carbon kidney" were observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The adsorption behavior of VB12 was compared to each other with UV-visible absorption spectra. The MWCTs formed a sophistaicate gap structure, and compared to the activated carbon, MWCTs had a larger surface area. By Langmuir equation and Freundlich equation fitting analysis, VB12 adsorption on MWCTs is fit for multi-molecular layer adsorption, and the adsorption type of activated carbon is more inclined to the model corresponding to Langmuir monolayer adsorption. The adsorption rate of MWCTs is faster than that of the activated carbon and the adsorption capacity is greater, which could be expected to become the new adsorbent in the hemoperfusion.
Poliovirus adsorption by 34 minerals and soils.
Moore, R S; Taylor, D H; Sturman, L S; Reddy, M M; Fuhs, G W
1981-12-01
The adsorption of radiolabeled infectious poliovirus type 2 by 34 well-defined soils and mineral substrates was analyzed in a synthetic freshwater medium containing 1 mM CaCl(2) and 1.25 mM NaHCO(3) at pH 7. In a model system, adsorption of poliovirus by Ottawa sand was rapid and reached equilibrium within 1 h at 4 degrees C. Near saturation, the adsorption could be described by the Langmuir equation; the apparent surface saturation was 2.5 x 10(6) plaque-forming units of poliovirus per mg of Ottawa sand. At low surface coverage, adsorption was described by the Freundlich equation. The soils and minerals used ranged from acidic to basic and from high in organic content to organic free. The available negative surface charge on each substrate was measured by the adsorption of a cationic polyelectrolyte, polydiallyldimethylammonium chloride. Most of the substrates adsorbed more than 95% of the virus. In general, soils, in comparison with minerals, were weak adsorbents. Among the soils, muck and Genesee silt loam were the poorest adsorbents; among the minerals, montmorillonite, glauconite, and bituminous shale were the least effective. The most effective adsorbents were magnetite sand and hematite, which are predominantly oxides of iron. Correlation coefficients for substrate properties and virus adsorption revealed that the elemental composition of the adsorbents had little effect on poliovirus uptake. Substrate surface area and pH, by themselves, were not significantly correlated with poliovirus uptake. A strong negative correlation was found between poliovirus adsorption and both the contents of organic matter and the available negative surface charge on the substrates as determined by their capacities for adsorbing the cationic polyelectrolyte, polydiallyldimethylammonium chloride.
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
Wettability of magnesium based alloys
NASA Astrophysics Data System (ADS)
Ornelas, Victor Manuel
The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.
The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobczak, Izabela, E-mail: sobiza@amu.edu.pl; Rydz, Michal; Ziolek, Maria
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Interaction of gold with K leads to the change of electronic state and redox properties of gold. ► The amount of potassium incorporated into Au-zeolites determines the size of gold particles. ► K(0.2 wt.%)/Au-Beta exhibits the best performance in decomposition of N{sub 2}O and removal of Bu{sub 2}S. -- Abstract: Beta zeolite was applied as support for gold introduced by gold-precipitation method and potassium added by impregnation or adsorption. The effect of zeolite composition and the amount of potassium introduced on the surface properties of the final materials was considered. Moreover, the interaction ofmore » gold and potassium species was found to be related to the adsorptive and catalytic behaviour of zeolites in NO reduction with propene and deodorization. K/Au-Beta(Impregnated) exhibits the best performance in the above mentioned processes because of the small gold particles (between 2 and 5 nm) and interaction of gold with potassium species leading to the change of electronic properties of the surface (the appearance of cationic gold species). Potassium added as a promoter improves the catalytic properties of Au-zeolite in N{sub 2}O decomposition and also in deodorization (increase of the ability to dibutyl sulphide oxidation). The catalysts prepared were characterized by XRD, XPS, UV–vis, TEM, pyridine adsorption combined with FTIR and test reaction (2-propanol transformation).« less
Croteau, T; Bertram, A K; Patey, G N
2008-10-30
Grand canonical Monte Carlo calculations are used to determine water adsorption and structure on defect-free kaolinite surfaces as a function of relative humidity at 235 K. This information is then used to gain insight into ice nucleation on kaolinite surfaces. Results for both the SPC/E and TIP5P-E water models are compared and demonstrate that the Al-surface [(001) plane] and both protonated and unprotonated edges [(100) plane] strongly adsorb at atmospherically relevant relative humidities. Adsorption on the Al-surface exhibits properties of a first-order process with evidence of collective behavior, whereas adsorption on the edges is essentially continuous and appears dominated by strong water lattice interactions. For the protonated and unprotonated edges no structure that matches hexagonal ice is observed. For the Al-surface some of the water molecules formed hexagonal rings. However, the a o lattice parameter for these rings is significantly different from the corresponding constant for hexagonal ice ( Ih). A misfit strain of 14.0% is calculated between the hexagonal pattern of water adsorbed on the Al-surface and the basal plane of ice Ih. Hence, the ring structures that form on the Al-surface are not expected to be good building-blocks for ice nucleation due to the large misfit strain.
NASA Astrophysics Data System (ADS)
Wan, Yiqun; Wang, Xiaofen; Gu, Yun; Guo, Lan; Xu, Zhaodi
2016-03-01
A kind of novel composite ZnS/In(OH)3/In2S3 is synthesized using zinc oxide nanoplates as zinc raw material during hydrothermal process. Although the obtained samples are composited of ZnS and In(OH)3 and In2S3 phase, the samples possess different structure, morphology and optical absorption property depending on molar ratio of raw materials. Zeta potential analysis indicates different surface electrical property since various content and particle size of the phases. The equilibrium adsorption study confirms the composite ZnS/In(OH)3/In2S3 with surface negative charge is good adsorbent for Rhodamine B (Rh B) dye. In addition, the degradation of Rh B over the samples with surface negative charge under visible light (λ ≥ 420 nm) is more effective than the samples with surface positive charge. The samples before and after adsorbing Rh B molecule are examined by FTIR spectra and Zetasizer. It is found that the three function groups of Rh B molecule, especially carboxyl group anchors to surface of the sample through electrostatic adsorption, coordination and hydrogen-bond. It contributes to rapid transformation of photogenerated electron to conduction band of In(OH)3 and suppresses the recombination of photogenerated carrier. The possible adsorption modes of Rh B are discussed on the basis of the experiment results.
Water adsorption on surface-modified cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Wei, Zonghui; Sinko, Robert; Keten, Sinan; Luijten, Erik
Cellulose nanocrystals (CNCs) have attracted much attention as a filler phase for polymer nanocomposites due to their impressive mechanical properties, low cost, and environmental sustainability. Despite their promise for this application, there are still numerous obstacles that prevent optimal performance of CNC-polymer nanocomposites, such as poor filler dispersion and high levels of water absorption. One way to mitigate these negative effects is to modify CNC surfaces. Computational approaches can be utilized to obtain direct insight into the properties of modified CNC surfaces and probe the interactions of CNCs with other materials to facilitate the experimental design of nanocomposites. We use atomistic grand-canonical Monte Carlo simulations to study how surface modification of ion-exchanged sulfated cellulose nanocrystals (Na-CNCs) impacts water adsorption. We find that methyl(triphenyl)phosphonium-exchanged CNCs adsorb less water than Na-CNCs at the same relative humidity, supporting recent experimental dynamic vapor sorption measurements. By characterizing the distribution and configuration of water molecules near the modified CNC surfaces we determine how surface modifications disrupt CNC-water interactions.
Wu; Timmons; Jen; Molock
2000-10-01
The pulsed plasma polymerization of low molecular weight molecules containing only one (ethylene oxide vinyl ether) and two (diethylene oxide vinyl ether) ethylene oxide units were investigated. The surface density of EO units retained in the polymer films increases sharply with decreasing average power input during deposition, particularly at very low plasma duty cycles. The protein adsorption properties of these plasma synthesized polymer were investigated using 125I-labeled albumin and fibrinogen. Surprisingly effective, non-fouling surfaces were observed with films synthesized from the monomer containing two ethylene oxide units; however, the monomer containing only one EO unit gave surfaces that were not particularly effective in preventing protein adsorptions. The results obtained show that ultra short chain length PEO modified surfaces can be biologically non-fouling. This, in turn, has interesting consequences in terms of trying to identify the basic reason for the effectiveness of EO units in preventing biomolecule adsorptions on surfaces.
Work Functions for Models of Scandate Surfaces
NASA Technical Reports Server (NTRS)
Mueller, Wolfgang
1997-01-01
The electronic structure, surface dipole properties, and work functions of scandate surfaces have been investigated using the fully relativistic scattered-wave cluster approach. Three different types of model surfaces are considered: (1) a monolayer of Ba-Sc-O on W(100), (2) Ba or BaO adsorbed on Sc2O3 + W, and (3) BaO on SC2O3 + WO3. Changes in the work function due to Ba or BaO adsorption on the different surfaces are calculated by employing the depolarization model of interacting surface dipoles. The largest work function change and the lowest work function of 1.54 eV are obtained for Ba adsorbed on the Sc-O monolayer on W(100). The adsorption of Ba on Sc2O3 + W does not lead to a low work function, but the adsorption of BaO results in a work function of about 1.6-1.9 eV. BaO adsorbed on Sc2O3 + WO3, or scandium tungstates, may also lead to low work functions.
Qiu, Yuping; Xiao, Xiaoyu; Cheng, Haiyan; Zhou, Zunlong; Sheng, G Daniel
2009-07-01
Loading two organic acids of known molecular structures onto a black carbon was conducted to study the influence of pH and dissolved organic matter on the adsorption of pesticides. Tannic acid at the loading rates of 100 and 300 micromol/g reduced the surface area of black carbon by 18 and 63%, respectively. This was due principally to the blockage of micropores, as verified by measured pore volumes and pore-size distributions. With a comparatively much smaller molecular structure, gallic acid did not apparently influence these properties. The intrinsic acidities of the two acids increased the surface acidity from 1.88 mmol/g of black carbon to 1.93-2.02 mmol/g after DOM loading, resulting in a reduction in isoelectric point pH from 1.93 to 1.66-1.82. The adsorption of propanil, 2,4-D and prometon by black carbon free and loaded of DOM was dependent on pH because major adsorptive forces were the interactions between neutral pesticide molecules and uncharged carbon surfaces. The adsorption was diminished considerably by the deprotonation of 2,4-D and protonation of prometon, as well as the surface charge change of black carbon. Tannic acid of 100 and 300 micromol/g on black carbon reduced the pesticide adsorption at the equilibrium concentration of 10 mg/L by an average of 46 and 81%, respectively, consistent with the reductions of 42 and 81% in micropore volume. At the equilibrium concentration of 30 mg/L, the mesopore surface became the additional adsorptive domain for propanil. Loading tannic acid made the mesopore surface less accessible, due presumably to the enhanced obstruction by tannic acid.
Zhao, Heng; Liu, Xue; Cao, Zhen; Zhan, Yi; Shi, Xiaodong; Yang, Yi; Zhou, Junliang; Xu, Jiang
2016-06-05
The adsorption behavior of different emerging contaminants (3 chloramphenicols, 7 sulfonamides, and 3 non-antibiotic pharmaceuticals) on five types of multi-walled carbon nanotubes (MWCNTs), and the underlying factors were studied. Adsorption equilibriums were reached within 12h for all compounds, and well fitted by the Freundlich isotherm model. The adsorption affinity of pharmaceuticals was positively related to the specific surface area of MWCNTs. The solution pH was an important parameter of pharmaceutical adsorption on MWCNTs, due to its impacts on the chemical speciation of pharmaceuticals and the surface electrical property of MWCNTs. The adsorption of ionizable pharmaceuticals decreased in varying degrees with the increased ionic strength. MWCNT-10 was found to be the strongest adsorbent in this study, and the Freundlich constant (KF) values were 353-2814mmol(1-n)L(n)/kg, 571-618mmol(1-n)L(n)/kg, and 317-1522mmol(1-n)L(n)/kg for sulfonamides, chloramphenicols, and non-antibiotic pharmaceuticals, respectively. The different adsorption affinity of sulfonamides might contribute to the different hydrophobic of heterocyclic substituents, while chloramphenicols adsorption was affected by the charge distribution in aromatic rings via substituent effects. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kolesnikova, Anna S.; Mazepa, Margarita M.
2018-02-01
In nowadays the nanoscale materials are actively used in medicine, based on the properties of adsorption. One of the main problems of this field of medicine is the increase in specific surface of sorbent. We proposed to use carbon composites consisting of an extended in its directions graphene sheet with attached to it by chemical bonds zigzag carbon nanotubes (CNT). This paper presents the results of a theoretical study of the mechanical properties of graphene based on the CNT zigzag depending on the geometric dimensions of the composite (length and diameter of CNTs).
Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface
NASA Astrophysics Data System (ADS)
Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka
2018-06-01
Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.
Nelson, Joey; Wasylenki, Laura; Bargar, John R.; ...
2017-08-05
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Joey; Wasylenki, Laura; Bargar, John R.
Metal ion-mineral surface interactions and the attendant isotopic fractionation depend on the properties of the mineral surface and the local atomic-level chemical environment. Furthermore, these factors have not been systematically examined for phases of the same composition with different levels of surface disorder.
NASA Astrophysics Data System (ADS)
Yanovska, E. S.; Vretik, L. O.; Nikolaeva, O. A.; Polonska, Y.; Sternik, D.; Kichkiruk, O. Yu.
2017-03-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
Yanovska, E S; Vretik, L O; Nikolaeva, O A; Polonska, Y; Sternik, D; Kichkiruk, O Yu
2017-12-01
Copolymer of 4-vinylpyridine with styrene was in situ immobilized on silica gel surface via the heterogeneous radical polymerization. Anchorage of the copolymer on the surface layer was confirmed by IR spectroscopy. The quantity of copolymer on the silica gel surface was evaluated as 25.73 wt.% by TG and DSC-MS analysis. "Islet" location of polymer layer on the silica surface was confirmed by the scanning electron microscopy. A high adsorption activity of silica gel with immobilized copolymer towards microquantitatives of Cu(II), Cd(II), Pb(II), Fe(III), and Ni(II) ions in steady state conditions as well as of Ni(II) ions in dynamic regime was found.
NASA Astrophysics Data System (ADS)
Biswas, Nandita; Thomas, Susy; Sarkar, Anjana; Mukherjee, Tulsi; Kapoor, Sudhir
2009-09-01
Surface-enhanced Raman scattering (SERS) of thiamazole have been investigated in aqueous solution. Thiamazole is an important anti-thyroid drug that is used in the treatment of hyperthyroidism (over activity of the thyroid gland). Due to its medicinal importance, the surface adsorption properties of thiamazole have been studied. The experimental Raman and SERS data are supported with DFT calculations using B3LYP functional with LANL2DZ basis set. From the SERS spectra as well as theoretical calculations, it has been inferred that thiamazole is chemisorbed to the silver surface directly through the sulphur atom and the ring N atom, with a tilted orientation.
Surface properties of CNTs and their interaction with silica.
Sobolkina, Anastasia; Mechtcherine, Viktor; Bellmann, Cornelia; Khavrus, Vyacheslav; Oswald, Steffen; Hampel, Silke; Leonhardt, Albrecht
2014-01-01
In order to improve the embedding of carbon nanotubes (CNTs) in cement-based matrices, silica was deposited on the sidewall of CNTs by a sol-gel method. Knowledge of the conditions of CNTs' surfaces is a key issue in understanding the corresponding interaction mechanisms. In this study various types of CNTs synthesized using acetonitrile, cyclohexane, and methane were investigated with regard to their physicochemical surface properties. Significant differences in surface polarity as well as in the wetting properties of the CNTs, depending on the precursors used, were revealed by combining electro-kinetic potential and contact angle measurements. The hydrophobicity of CNTs decreases by utilising the carbon sources in the following order: cyclohexane, methane, and finally acetonitrile. The XPS analysis, applied to estimate the chemical composition at the CNT surface, showed nitrogen atoms incorporated into the tube structure by using acetonitrile as a carbon source. It was found that the simultaneous presence of nitrogen- and/or oxygen-containing sites with different acid-base properties increased the surface polarity of the CNTs, imparting amphoteric characteristics to them and improving their wetting behaviour. Regarding the silica deposition, strong differences in adsorption capacity of the CNTs were observed. The mechanism of silica adsorption through interfacial bond formation was discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Stoliker, Deborah L; Kent, Douglas B; Zachara, John M
2011-10-15
Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.
Hirayama, Yo; Oda, Shigeto; Wakabayashi, Kiyohito; Sadahiro, Tomohito; Nakamura, Masataka; Watanabe, Eizo; Tateishi, Yoshihisa
2011-01-01
We sought to identify the most relevant hemofilter for cytokine removal based on the mechanisms of filtration and adsorption. Ascites were filtered using four types of hemofilters composed of different membrane materials (polymethyl methacrylate, PMMA, cellulose triacetate, CTA, or polysulfone, PS) and different surface areas (1.0 or 2.1 m(2)) to investigate the rate of interleukin-6 (IL-6) filtration. Next, ascites were perfused through each hemofilter without obtaining a filtrate to study each filter's adsorptive capability. The PMMA hemofilters resulted in a marginal observed IL-6 filtration rates, whereas the CTA and PS hemofilters resulted in highly effective IL-6 filtration. Regarding the IL-6 adsorptive capabilities of the filters, the PMMA hemofilter with a large surface area showed the highest level of IL-6 clearance. The present findings suggest that when cytokine removal based on filtration is desired, CTA or PS hemofilters should be selected. When IL-6 removal based on adsorption is desired, a PMMA hemofilter with a large surface area should be selected. Copyright © 2010 S. Karger AG, Basel.
Performance of different carbonaceous materials for emerging pollutants adsorption.
Patiño, Yolanda; Díaz, Eva; Ordóñez, Salvador
2015-01-01
The adsorption of three representative emerging pollutants over different kinds of carbonaceous adsorbents has been studied in this work. The adsorbates were nalidixic acid (NAL, representative of a pharmaceutical), 1,8-dichlorooctane (DCO, a chloroparaffin) and methyl-phenoxy-ethanol (MPET, a surfactant). Activated carbons, carbon nanofibers, carbon nanotubes and high surface area graphites have been tested as adsorbents. Adsorption isotherms, carried out in a batch system, were fitted using both a Langmuir and a Freundlich model. It was shown that the capacity of adsorption follows the order DCO≫NAL>MPET for all the adsorbents, and among the adsorbents, the external morphology (surface area and mesoporous volume) is the key parameter. The results from thermodynamic analysis show, however, that both morphological and chemical properties of both adsorbates and adsorbents influenced their behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular Level Investigation of CH 4 and CO 2 Adsorption in Hydrated Calcium–Montmorillonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Mal-Soon; McGrail, B. Peter; Rousseau, Roger
2017-11-17
We have studied the mechanism of intercalation and methane adsorption from a H2O/CH4/CO2 mixture on a prototypical shale component, Ca-montmorillonite. We employed ab initio molecular dynamics simulations at 323 K and 90 bar to obtain molecular level information of adsorption energetics, speciation, and structural and thermodynamic properties. Interaction of CH4 with surface Lewis acidic sites (Ca2+, surface OH) results in large induced dipoles (~1 D) that lead to relatively strong adsorption energies that level off once a full CH4 layer is formed. Intercalated CH4, also exhibits induced dipoles at low hydration levels, when the interaction with Ca2+ cations are lessmore » hindered. CO2 displaces CH4 in the coordination sphere of the cations (in the interlayer) or in the surface, thereby driving CH4 extraction. Our simulations indicate that there is a Goldilocks pressure range (~60-100 bar) where scCO2 –facilitated CH4 extraction will be maximized.« less
Using carbonized low-cost materials for removal of chemicals of environmental concern from water.
Weidemann, Eva; Niinipuu, Mirva; Fick, Jerker; Jansson, Stina
2018-06-01
Adsorption on low-cost biochars would increase the affordability and availability of water treatment in, for example, developing countries. The aim of this study was to identify the precursor materials and hydrochar surface properties that yield efficient removal of compounds of environmental concern (CEC). We determined the adsorption kinetics of a mixture containing ten CECs (octhilinone, triclosan, trimethoprim, sulfamethoxasole, ciprofloxacin, diclofenac, paracetamol, diphenhydramine, fluconazole, and bisphenol A) to hydrochars prepared from agricultural waste (including tomato- and olive-press wastes, rice husks, and horse manure). The surface characteristics of the hydrochars were evaluated via diffuse reflectance infrared spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and N 2 -adsorption. Kinetic adsorption tests revealed that removal efficiencies varied substantially among different materials. Similarly, surface analysis revealed differences among the studied hydrochars and the degree of changes that the materials undergo during carbonization. According to the DRIFTS data, compared with the least efficient adsorbent materials, the most efficient hydrochars underwent more substantial changes during carbonization.
NASA Technical Reports Server (NTRS)
Bailey, R. R.; Wightman, J. P.
1975-01-01
The influence of outgas conditions and temperature on the adsorptive properties of two aluminas Alon-c and Al6sG were studied using adsorption isotherm measurements. Alon-C and Al6SG were characterized using X-ray powder diffraction, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and BET nitrogen surface areas. Some of these techniques were applied to two other aluminas but no isotherm data was obtained. Isotherm data and techniques applied to each alumina are summarized in tabular form.
Craig, Laura; Stillings, Lisa; Decker, David L.; Thomas, James M.
2015-01-01
Fluoride is considered beneficial to teeth and bones when consumed in low concentrations, but at elevated concentrations it can cause dental and skeletal fluorosis. Most fluoride-related health problems occur in poor, rural communities of the developing world where groundwater fluoride concentrations are high and the primary sources of drinking water are from community hand-pump borehole drilled wells. One solution to drinking high fluoride water is to attach a simple de-fluoridation filter to the hand-pump; and indigenous materials have been recommended as low-cost sorbents for use in these filters. In an effort to develop an effective, inexpensive, and low-maintenance de-fluoridation filter for a high fluoride region in rural northern Ghana, this study conducted batch fluoride adsorption experiments and potentiometric titrations to investigate the effectiveness of indigenous laterite and bauxite as sorbents for fluoride removal. It also determined the physical and chemical properties of each sorbent. Their properties and the experimental results, including fluoride adsorption capacity, were then compared to those of activated alumina, which has been identified as a good sorbent for removing fluoride from drinking water. The results indicate that, of the three sorbents, bauxite has the highest fluoride adsorption capacity per unit area, but is limited by a low specific surface area. When considering fluoride adsorption per unit weight, activated alumina has the highest fluoride adsorption capacity because of its high specific surface area. Activated alumina also adsorbs fluoride well in a wider pH range than bauxite, and particularly laterite. The differences in adsorption capacity are largely due to surface area, pore size, and mineralogy of the sorbent.
Bui, Tung Xuan; Choi, Heechul
2010-08-01
The adsorption of four wide-use pharmaceuticals (carbamazepine, diclofenac, ibuprofen, and ketoprofen) onto a porous silica was investigated under varied ionic strengths, different anions, divalent cations (Ca(2+) and Mg(2+)), trivalent cations (Al(3+) and Fe(3+)), and natural organic matter (NOM). The experiments demonstrated that at a given pH the adsorption was most affected by ionic strength, trivalent cations, and properties of pharmaceuticals. The increase of ionic strength resulted in an increase in the adsorption of ketoprofen, but a decrease in the adsorption of carbamazepine. Trivalent metal cations made intense increases in the adsorption of three acidic pharmaceuticals, which could be due to the formation of inner-sphere complex of the cations on the surface and/or complexation of the pharmaceuticals with both surface and aqueous metal species. It was found that the adsorption of carbamazepine was not affected by divalent and trivalent cations, whereas the adsorption of diclofenac was solely impacted by the presence of Al(3+). Moreover, divalent cations at low concentration could slightly enhance the adsorption of ibuprofen and ketoprofen, whereas NOM caused a reduction in the adsorption of the tested pharmaceuticals except for diclofenac. These results suggest that ionic strength, divalent cations, trivalent cations, and NOM are notable factors affecting the adsorption of pharmaceuticals and thus the ultimate fate of pharmaceuticals in the aqueous environment. Copyright 2010 Elsevier Ltd. All rights reserved.
Jong, Tony; Parry, David L
2004-07-01
The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.
Cotton and Protein Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.
The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, itmore » may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.« less
NASA Astrophysics Data System (ADS)
Vincent, Abhilash
Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in studying the interaction forces as well as the mechanical properties of nanobiomaterials. The research protocol employed in the earlier part of the dissertation is specifically aimed to understand the operation of F-D spectroscopy technique. The elastic properties of thin films of silicon dioxide NPs were investigated using F-D spectroscopy in the high force regime of few 100 nN to 1 microN. Here, sol-gel derived porous nanosilica thin films of varying surface morphology, particle size and porosity were prepared through acid and base catalyzed process. AFM nanoindentation experiments were conducted on these films using the F-D spectroscopy mode and the nanoscale elastic properties of these films were evaluated. The major contribution of this dissertation is a study exploring the interaction forces acting between CNPs and transferrin proteins in picoNewton scale regime using the force-distance spectroscopy technique. This study projects the importance of obtaining appropriate surface charges and surface chemistry so that the NP can exhibit enhanced protein adsorption and NP cellular uptake.
Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.
Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke
2013-11-01
Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ng, Kim Choon; Burhan, Muhammad; Shahzad, Muhammad Wakil; Ismail, Azahar Bin
2017-09-06
The adsorbate-adsorbent thermodynamics are complex as it is influenced by the pore size distributions, surface heterogeneity and site energy distribution, as well as the adsorbate properties. Together, these parameters defined the adsorbate uptake forming the state diagrams, known as the adsorption isotherms, when the sorption site energy on the pore surfaces are favorable. The available adsorption models for describing the vapor uptake or isotherms, hitherto, are individually defined to correlate to a certain type of isotherm patterns. There is yet a universal approach in developing these isotherm models. In this paper, we demonstrate that the characteristics of all sorption isotherm types can be succinctly unified by a revised Langmuir model when merged with the concepts of Homotattic Patch Approximation (HPA) and the availability of multiple sets of site energy accompanied by their respective fractional probability factors. The total uptake (q/q*) at assorted pressure ratios (P/P s ) are inextricably traced to the manner the site energies are spread, either naturally or engineered by scientists, over and across the heterogeneous surfaces. An insight to the porous heterogeneous surface characteristics, in terms of adsorption site availability has been presented, describing the unique behavior of each isotherm type.
NASA Astrophysics Data System (ADS)
Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang
2017-10-01
Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.
Mitropoulos, Varvara; Mütze, Annekathrin; Fischer, Peter
2014-04-01
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates. Copyright © 2013 Elsevier B.V. All rights reserved.
Magnuson, Matthew L; Speth, Thomas F
2005-10-01
Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.
Proceedings of the 13th biennial conference on carbon. Extended abstracts and program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-01-01
Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling. (GHT)
Characteristics of rapeseed oil cake using nitrogen adsorption
NASA Astrophysics Data System (ADS)
Sokołowska, Z.; Bowanko, G.; Boguta, P.; Tys, J.; Skiba, K.
2013-09-01
Adsorption of nitrogen on the rapeseed oil cake and rapeseed oil cake with wheat meal extrudates was investigated. The results are presented as adsorption-desorption isotherms. The Brunauer-Emmet and Teller equation was used to analyse the experimental sorption data. To obtain estimates of the surface area and surface fractal dimension, the sorption isotherms were analyzed using the Brunauer-Emmet and Teller and Frenkel-Halsey-Hill equations. Mesopore analysis was carried out using the Dollimore and Heal method. The properties and surface characteristic of rapeseed oil cake extrudates are related to different basic properties of particular samples and duration of the extrusion process. Extrusion conditions lead to essential differences in particular products. For all kinds of rapeseed oil cakes the amount of adsorbed nitrogen was different, but for the rapeseed oil cake extrudates a large amount of adsorbed nitrogenwas observed. The average surface area of the rapeseed oil cake extrudates was about 6.5-7.0 m2 g-1, whereas it was equal to about 4.0-6.0 m2 g-1 for rapeseed oil cake with the wheat meal extrudates. In the case of non-extruded rapeseed oil cake and wheat meal, the dominant group included ca. 2 and 5 nmpores. The values of surface fractal dimension suggested that the surface of the extrudates was more homogenous than that of the raw material. Duration of the extrusion process to 80 s resulted in a decrease in the specific surface area, surface fractal dimension, and porosity of the extrudates.
Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin
2016-01-01
In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012
Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.
Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi
2009-05-30
Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.
Protein adsorption at the electrified air-water interface: implications on foam stability.
Engelhardt, Kathrin; Rumpel, Armin; Walter, Johannes; Dombrowski, Jannika; Kulozik, Ulrich; Braunschweig, Björn; Peukert, Wolfgang
2012-05-22
The surface chemistry of ions, water molecules, and proteins as well as their ability to form stable networks in foams can influence and control macroscopic properties such as taste and texture of dairy products considerably. Despite the significant relevance of protein adsorption at liquid interfaces, a molecular level understanding on the arrangement of proteins at interfaces and their interactions has been elusive. Therefore, we have addressed the adsorption of the model protein bovine serum albumin (BSA) at the air-water interface with vibrational sum-frequency generation (SFG) and ellipsometry. SFG provides specific information on the composition and average orientation of molecules at interfaces, while complementary information on the thickness of the adsorbed layer can be obtained with ellipsometry. Adsorption of charged BSA proteins at the water surface leads to an electrified interface, pH dependent charging, and electric field-induced polar ordering of interfacial H(2)O and BSA. Varying the bulk pH of protein solutions changes the intensities of the protein related vibrational bands substantially, while dramatic changes in vibrational bands of interfacial H(2)O are simultaneously observed. These observations have allowed us to determine the isoelectric point of BSA directly at the electrolyte-air interface for the first time. BSA covered air-water interfaces with a pH near the isoelectric point form an amorphous network of possibly agglomerated BSA proteins. Finally, we provide a direct correlation of the molecular structure of BSA interfaces with foam stability and new information on the link between microscopic properties of BSA at water surfaces and macroscopic properties such as the stability of protein foams.
Adsorption and Wetting in Model Mesoporous Silicas and in Complex Metal Oxide Catalysts
NASA Astrophysics Data System (ADS)
Jayaraman, Karthik
The surface of most metal oxides is covered by hydroxyl groups which influence many surface phenomena such as adsorption and wetting, catalysis and surface reactions. Surface chemistry of silica is a subject of exhaustive studies owing to a wide variety of practical applications of silica. In Chapter 1, a brief review of classification, synthesis and characterization of silica is provided. The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups on the surface is of utmost importance for its practical applications. In Chapter 2, a brief introduction to surface hydration of silica is provided followed by the gas adsorption measurements and characterization. Pore wetting is critical to many applications of mesoporous adsorbents, catalysts, and separation materials. In the work presented in Chapter 3, we employed the combined vapor adsorption study using nitrogen (77K) and water (293K) isotherms to evaluate the water contact angles for a series of ordered mesoporous silicas (ex:SBA-15). The proposed method of contact angle relies on the statistical film thickness (t-curve) of the adsorbed water. There were no t-curves for water for dehydroxylated or hydrophobic surfaces in literature and we addressed this issue by measuring t-curves for a series of model surfaces with known and varying silanol coverage. Using the radius of menisci ((H2O)), statistical film thickness t(H2O) from water isotherm, and the true radius of pores (rp(N 2)), from nitrogen isotherms, the water contact angle inside pores were calculated. As it was anticipated, the results obtained showed that the silica pore contact angles were strongly influenced by the number of the surface silanol groups and, therefore, by the thermal and hydration treatments of silicas. Phthalocyanines (Pcs) present an interesting class of catalytically active of molecules with unique spectroscopic, photoelectric, and sometimes magnetic properties. In the work presented in Chapter 4, we have undertaken a systematic study to explore the possibility of preparing a supported catalyst material i.e loading fluorinated metal phthalocyanines onto metal oxide surfaces by two other techniques in addition to solution adsorption. Techniques or procedures that have been used to immobilize MPcs include: i) physical adsorption (from solution) onto metal oxide surface, ii) deposition by pore filling and encapsulation and iii) mesopore entrapment or confinement. The MPcs are loaded on to metal oxides with an aim to: a) maximize the surface area of the Pcs by distributing it over the support, b) immobilize the Pcs so that they do not leach into the solution environment, c) improve the thermal stability of the Pcs and d) attempt to achieve single-site catalysis. All the immobilization techniques were carried out with F64PcZn as the model MPc, acetone as the immobilization solvent and silica or alumina as adsorbents (solid support). An understanding of gas adsorption mechanisms on metal phthalocyanines (MPcs) is essential for their practical application in biological processes, gas sensing, and catalysis. In this work, the surface characteristics were probed by performing nitrogen and water adsorption on the free-form MPcs (without immobilization on solid support) and characterization of their physical properties. The combined vapor adsorption study (developed in Chapter 3) enabled in understanding the affinity of Pcs towards water vapor i.e number of water molecules adsorbed per phthalocyanine molecule was obtained. This information is very relevant towards using Pcs as catalyst since water vapor is guaranteed to be present in most of the catalytic reaction environment.
Metallic MoN layer and its application as anode for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Qiaoxuan; Ma, Jiachen; Lei, Ming; Quhe, Ruge
2018-04-01
Recently, two-dimensional (2D) metallic MoN was manufactured successfully in experiment. Its intrinsic properties remain to be explored theoretically, in depth. The intrinsic properties of a MoN monolayer are investigated by first-principles calculations. The distinct geometric properties of the outermost Mo and N surfaces are discovered. We predict an extremely high work function of 6.3 eV of the N surface, which indicates the great value of the 2D MoN for application in the semiconductor industry. We further explore the potential of 2D MoN as anode material for lithium-ion batteries. It is found that the adsorption energy of a single Li atom on an MoN surface can be as low as -4.04 eV. The small diffusion barriers (0.41 eV) and high theoretical maximum capacity (406 mAh · g-1 with the inclusion of multilayer adsorption) all imply an outstanding lithium-ion battery performance by 2D MoN.
Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M
2017-02-01
The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.
A review on the removal of antibiotics by carbon nanotubes.
Cong, Qiao; Yuan, Xing; Qu, Jiao
2013-01-01
Increasing concerns have been raised regarding the potential risks of antibiotics to human and ecological health due to their extensive use. Carbon nanotubes (CNTs) have drawn special research attention because of their unique properties and potential applications as a kind of adsorbents. This review summarizes the currently available research on the adsorption of antibiotics on CNTs, and will provide useful information for CNT application and risk assessment. Four different models, the Freundlich model (FM), Langmuir model (LM), Polanyi-Mane model (PMM), and Dubinin-Ashtakhov model (DAM), are often used to fit the adsorption isotherms. Because different mechanisms may act simultaneously, including electrostatic interactions, hydrophobic interactions, π-π bonds, and hydrogen bonds, the prediction of organic chemical adsorption on CNTs is not straightforward. Properties of CNTs, such as specific surface area, adsorption sites, and oxygen content, may influence the adsorption of antibiotics on CNTs. Adsorption heterogeneity and hysteresis are two features of antibiotic-CNT interactions. In addition, CNTs with adsorbed antibiotics may have potential risks for human health. So, further research examining how to reduce such risks is needed.
Solution Properties of Dissymmetric Sulfonate-type Anionic Gemini Surfactants.
Yoshimura, Tomokazu; Akiba, Kazuki
2016-01-01
Dissymmetric and symmetric anionic gemini surfactants, N-alkyl-N'-alkyl-N,N'dipropanesulfonylethylenediamine (CmCnSul, where m and n represent alkyl chain lengths of m-n = 4-16, 6-14, 8-12, 10-10, and 12-12), were synthesized by two- or three-step reactions. Their physicochemical properties were characterized by equilibrium surface tension measurements, steady-state fluorescence spectroscopy of pyrene, and dynamic light scattering. The critical micelle concentration (CMC) of the dissymmetric surfactants C4C16Sul, C6C14Sul, and C8C12Sul was slightly lower than that of the symmetric surfactant C10C10Sul. The occupied area per molecule (A) of C8C12Sul was smaller than that of C10C10Sul, indicating that C8C12Sul has a high surface activity. However, the increase in the degree of dissymmetry from C8C12Sul to C6C14Sul and then to C4C16Sul resulted in high surface tension and large A. Based on the surface tension, the standard free energies of micellization (∆G°mic) and adsorption (∆G°ads), the efficiency of surface adsorption (pC20), and the effectiveness of surface adsorption (CMC/C20) were obtained. These parameters suggested that C8C12Sul formed micelles more readily than the other surfactants. The properties determined from the surface tension indicated that C8C12Sul's ability is intermediate between those of C10C10Sul and C12C12Sul. The pyrene fluorescence and dynamic light scattering results revealed that the micelle size depends on the longer of the two alkyl chains in dissymmetric surfactants.
Ling, Li-Li; Liu, Wu-Jun; Zhang, Shun; Jiang, Hong
2017-09-05
Lead (Pb) pollution in natural water bodies is an environmental concern due to toxic effects on aquatic ecosystems and human health, while adsorption is an effective approach to remove Pb from the water. Surface interactions between adsorbents and adsorbates play a dominant role in the adsorption process, and properly engineering a material's surface property is critical to the improvement of adsorption performance. In this study, the magnesium oxide (MgO) nanoparticles stabilized on the N-doped biochar (MgO@N-biochar) were synthesized by one-pot fast pyrolysis of an MgCl 2 -loaded N-enriched hydrophyte biomass as a way to increase the exchangeable ions and N-containing functional groups and facilitate the adsorption of Pb 2+ . The as-synthesized MgO@N-biochar has a high performance with Pb in an aqueous solution with a large adsorption capacity (893 mg/g), a very short equilibrium time (<10 min), and a large throughput (∼4450 BV). Results show that this excellent adsorption performance can be maintained with various environmentally relevant interferences including pH, natural organic matter, and other metal ions, suggesting that the material may be suitable for the treatment of wastewater, natural bodies of water, and even drinking water. In addition, MgO@N-biochar quickly and efficiently removed Cd 2+ and tetracycline. Multiple characterizations and comparative tests have been performed to demonstrate the surface adsorption and ion exchange contributed to partial Pb adsorption, and it can be inferred from these results that the high performance of MgO@N-biochar is mainly due to the surface coordination of Pb 2+ and C═O or O═C-O, pyridinic, pyridonic, and pyrrolic N. This work suggests that engineering surface functional groups of biochar may be crucial for the development of high performance heavy metal adsorbents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres
Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less
Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...
2017-08-18
Mo 2C catalysts are widely used in hydrogenation reactions; however, the role of the C and Mo terminations in these catalysts is not clear. Understanding the binding of adsorbates is key for explaining the activity of Mo 2C. The adsorption of acetylene and ethylene, probe molecules representing alkynes and olefins, respectively, was studied in this paper on a β-Mo 2C(100) surface with C and Mo terminations using calculations based on periodic density functional theory. Moreover, the role of the C/Mo molar ratio was investigated to compare the catalytic potential of cubic (δ-MoC) and orthorhombic (β-Mo 2C) surfaces. The geometry andmore » electronic properties of the clean δ-MoC(001) and β-Mo 2C(100) surfaces have a strong influence on the binding of unsaturated hydrocarbons. The adsorption of ethylene is weaker than that of acetylene on the surfaces of the cubic and orthorhombic systems; adsorption of the hydrocarbons was stronger on β-Mo 2C(100) than on δ-MoC(001). The C termination in β-Mo 2C(100) actively participates in both acetylene and ethylene adsorption and is not merely a spectator. Finally, the results of this work suggest that the β-Mo 2C(100)-C surface could be the one responsible for the catalytic activity during the hydrogenation of unsaturated C≡C and C=C bonds, while the Mo-terminated surface could be poisoned or transformed by the strong adsorption of C and CH x fragments.« less
NASA Astrophysics Data System (ADS)
Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing
2008-10-01
We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.
Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D
2010-12-01
This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.
Krivosheeva, Olga; Dėdinaitė, Andra; Linder, Markus B; Tilton, Robert D; Claesson, Per M
2013-02-26
Hydrophobins are relatively small globular proteins produced by filamentous fungi. They display unusual high surface activity and are implied as mediators of attachment to surfaces, which has resulted in high scientific and technological interest. In this work we focus on kinetic and equilibrium aspects of adsorption and desorption properties of two representatives of class II hydrophobins, namely HFBI and HFBII, at a negatively charged hydrophilic solid/water interface and at the air/water interface. The layers formed at the air/liquid interface were examined in a Langmuir trough, whereas layers formed at the solid/liquid interface were studied using dual polarization interferometry (DPI) under different flow conditions. For comparison, another globular protein, lysozyme, was also investigated. It was found that both the adsorbed amount and the adsorption kinetics were different for HFBI and HFBII, and the adsorption behavior of both hydrophobins on the negatively charged surface displayed some unusual features. For instance, even though the adsorption rate for HFBI was slowed down with increasing adsorbed amount as expected from packing constraints at the interface, the adsorption kinetics curves for HFBII displayed a region indicating adsorption cooperativity. Further, it was found that hydrophobin layers formed under flow partly desorbed when the flow was stopped, and the desorption rate for HFBII was enhanced in the presence of hydrophobins in solution.
NASA Astrophysics Data System (ADS)
Lanfranco, R.; Giavazzi, F.; Salina, M.; Tagliabue, G.; Di Nicolò, E.; Bellini, T.; Buscaglia, M.
2016-05-01
Amorphous fluorinated plastic can be produced with a refractive index similar to that of water, a condition that makes it essentially invisible when immersed in aqueous solutions. Because of this property, even a small amount of adsorbed molecules on the plastic-water interface provides a detectable optical signal. We investigate two distinct substrates made of this material, characterized by different interface areas: a prism and a microporous membrane. We demonstrate that both substrates enable the label-free detection of molecular compounds in water even without any surface functionalization. The adsorption of molecules on the planar surface of the prism provides an increase of optical reflectivity, whereas the adsorption on the internal surface of the microporous membrane yields an increase of scattered light. Despite the different mechanisms, we find a similar optical response upon adsorption. We confirm this result by a theoretical model accounting for both reflection and scattering. We investigate the spontaneous adsorption process for different kinds of molecules: surfactants with different charges, a protein (lysozyme), and a constituent of gasoline (hexane). The measured equilibrium and kinetic constants for adsorption differ by orders of magnitudes among the different classes of molecules. By suitable analytical models, accounting for the effects of mass limitation and transport, we find a simple and general scaling of the adsorption parameters with the molecular size.
Wang, En-Jie; Sui, Zhu-Yin; Sun, Ya-Nan; Ma, Zhuang; Han, Bao-Hang
2018-05-22
In this work, a series of highly porous sulfur-doped carbons are prepared through physical activation methods by using polythiophene as a precursor. The morphology, structure, and physicochemical properties are revealed by a variety of characterization methods, such as scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and nitrogen sorption measurement. Their porosity parameters and chemical compositions can be well-tuned by changing the activating agents (steam and carbon dioxide) and reaction temperature. These sulfur-doped porous carbons possess specific surface area of 670-2210 m 2 g -1 , total pore volume of 0.31-1.26 cm 3 g -1 , and sulfur content of 0.6-4.9 atom %. The effect of porosity parameters and surface chemistry on carbon dioxide adsorption in sulfur-doped porous carbons is studied in detail. After a careful analysis of carbon dioxide uptake at different temperatures (273 and 293 K), pore volumes from small pore size (less than 1 nm) play an important role in carbon dioxide adsorption at 273 K, whereas surface chemistry is the key factor at a higher adsorption temperature or lower relative pressure. Furthermore, sulfur-doped porous carbons also possess good gas adsorption selectivity and excellent recyclability for regeneration.
NASA Astrophysics Data System (ADS)
Perez-Aguilar, Nancy Veronica; Muñoz-Sandoval, Emilio; Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene
2010-02-01
Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 °C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Sol-gel synthesis and adsorption properties of mesoporous manganese oxide
NASA Astrophysics Data System (ADS)
Ivanets, A. I.; Kuznetsova, T. F.; Prozorovich, V. G.
2015-03-01
Sol-gel synthesis of mesoporous xerogels of manganese oxide with different phase compositions has been performed. The manganese oxide sols were obtained by redox reactions of potassium permanganate with hydrogen peroxide or manganese(II) chloride in aqueous solutions. The isotherms of the low-temperature adsorption-desorption of nitrogen with manganese oxide xerogels treated at 80, 200, 400, and 600°C were measured. The samples were studied by electron microscopy and thermal and XRD analysis. The phase transformation and the changes in the adsorption and capillary-condensation properties of manganese oxide were shown to depend on the sol synthesis conditions and the temperature of the thermal treatment of the gel. The X-ray amorphous samples heated at 80°C were shown to have low values of the specific surface; at higher temperatures, the xerogel crystallized into mixed phases with various compositions and its surface area increased at 200-400°C and decreased at 600°C.
The structural and electronic properties of metal atoms adsorbed on graphene
NASA Astrophysics Data System (ADS)
Liu, Wenjiang; Zhang, Cheng; Deng, Mingsen; Cai, Shaohong
2017-09-01
Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.
2014-01-01
The presence of water in biofuels poses the question of how it affects the frictional performance of additives in fuels containing organic substances. To investigate the effect of water on the adsorption of molecules present in fuel and its additives we simulated within the framework of density functional theory the adsorption of ethanol, isooctane (2,2,4-trimethylpentane), and acetic acid on a bare and a water-covered Fe(100) surface. Van der Waals interactions are taken into account in our computations. In those molecules, where dispersion forces contribute significantly to the binding mechanism, the water layer has a stronger screening effect. Additionally, this effect can be enhanced by the presence of polar functional groups in the molecule. Thus, with the introduction of a water layer, the adsorption energy of isooctane and ethanol is reduced but it is increased in the case of the acetic acid. The adsorption configuration of ethanol is changed, while the one of acetic acid is moderately, and for isooctane only very slightly altered. Therefore, the effect of a water layer in the adsorption of organic molecules on an Fe(100) surface strongly depends on the type of bond and consequently, so do the tribological properties. PMID:25243045
Modification of polystyrene-based activated carbon spheres to improve adsorption of dibenzothiophene
NASA Astrophysics Data System (ADS)
Wang, Qin; Liang, Xiaoyi; Qiao, Wenming; Liu, Chaojun; Liu, Xiaojun; Zhang, Rui; Ling, Licheng
2009-01-01
Polystyrene-based activated carbon spheres (PACS) were modified with either air, HNO 3, (NH 4) 2S 2O 8, H 2O 2 or H 2 to improve their adsorption properties of dibenzothiophene (DBT). The texture and surface chemistry of PACS were characterized by N 2 adsorption, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), acid-base titration and elemental analysis. The results showed that HNO 3 and (NH 4) 2S 2O 8 treatments introduced large amount of acidic groups such as carboxylic, lactones and anhydride groups, while air and H 2O 2 had relatively mild effects and introduced a small quantity of phenol, carbonyl and ether groups. In the HNO 3 treatment, the acidic groups might be fixed on the internal and external surface of PACS, which may act as active sites of adsorption, resulting in increase of the adsorption amount by 45%. Whereas H 2O 2 and (NH 4) 2S 2O 8 treatments might fix more oxygen-containing groups on the external surface, which may hinder DBT molecule enter into micropores, leading to rather lower adsorption capacity with the extent of oxidation. So, the concentration, distribution and types of the acidic functional groups are responsible for the removal of DBT.
Modified Nanodiamonds for Detoxification
NASA Astrophysics Data System (ADS)
Gibson, Natalie Marie
Nanodiamonds (NDs) are an emerging class of biomaterials that are reaching worldwide attention due to their biocompatible, nontoxic properties and abundant surface chemistries that lend them to a wide range of biomedical applications. Furthermore, surface functional groups of NDs can easily be tailored to exhibit desirable chemical, physical and biological properties. Such characteristics naturally allow for NDs' surface to be considered as ideal carriers for various molecules and biomolecules intended for the delivery or removal of molecules in vivo. NDs have already shown to have a high affinity for various biological molecules, including DNA and proteins. This dissertation, however, expands NDs' use to the adsorption of carcinogenic mycotoxins, aflatoxin B1 (AfB1) and ochratoxin A (OTA). It has been estimated that myocotoxins are found in approximately 25 % of the world's crops each year. Ingestion of mycotoxins contaminated crops has been linked to hepatocellular carcinoma, disease and death. Therefore, we aim to develop ND enterosorbents, for the binding and removal of mycotoxins within the gastrointestinal (GI) tract, thereby eliminating the effects of these toxins. While NDs are readily available, raw, unmodified NDs, like those typically received from vendors, possess inhomogeneous aggregate sizes and surface characteristics. Our research first explored several ND modification techniques to enhance ND's adsorption of AfB1 and OTA. Modification methods assessed in this research include size reduction techniques, plasma treatments, silane surface coatings and homogenous surface group termination, including carboxylation, hydrogenation and hydroxylation. The effectiveness of these NDs for mycotoxins removal was determined by calculations of maximum capacities and binding constants, as obtained through the Langmuir isotherm and related transform equations. Several of these treatments also showed heightening of the NDs' inherent zeta potentials (ZPs), which were essential for interacting with charged molecules, like OTA. Furthermore, the increased ZPs lead to improved colloidal stabilities over a wide range of pH, which is important for their interaction in the GI tract. While the dyes and OTA illustrated primarily electrostatic adsorption mechanisms, neutrally charged AfB1's adsorption was predominantly based upon the aggregate size of the ND substrate. In addition to mycotoxins, fluorescent dyes, including propidium iodide, pyranine and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), were initially utilized during methodological development. Fluorescent dye investigations helped assesses the adsorption mechanisms of NDs and demonstrated the significance of electrostatic interactions. Beyond electrostatic adsorption mechanisms, surface functional groups were also responsible for the amount of dye adsorbed, as was also true in OTA adsorption. Therefore, surface characterization was carried out for several ND samples by FTIR, TOF-SIMS and TDMS analysis. Final results of our studies show that our modified NDs perform better than yeast cells walls and other NDs but comparable to activated charcoal in the adsorption of AfB1, and outperform clay minerals in OTA studies. Moreover, it was demonstrated that adsorption can be maintained in a wide range of pH, thereby, increasing the possibility of NDs use in mycotoxins enterosorbent applications.
Contributions of depth filter components to protein adsorption in bioprocessing.
Khanal, Ohnmar; Singh, Nripen; Traylor, Steven J; Xu, Xuankuo; Ghose, Sanchayita; Li, Zheng J; Lenhoff, Abraham M
2018-04-16
Depth filtration is widely used in downstream bioprocessing to remove particulate contaminants via depth straining and is therefore applied to harvest clarification and other processing steps. However, depth filtration also removes proteins via adsorption, which can contribute variously to impurity clearance and to reduction in product yield. The adsorption may occur on the different components of the depth filter, that is, filter aid, binder, and cellulose filter. We measured adsorption of several model proteins and therapeutic proteins onto filter aids, cellulose, and commercial depth filters at pH 5-8 and ionic strengths <50 mM and correlated the adsorption data to bulk measured properties such as surface area, morphology, surface charge density, and composition. We also explored the role of each depth filter component in the adsorption of proteins with different net charges, using confocal microscopy. Our findings show that a complete depth filter's maximum adsorptive capacity for proteins can be estimated by its protein monolayer coverage values, which are of order mg/m 2 , depending on the protein size. Furthermore, the extent of adsorption of different proteins appears to depend on the nature of the resin binder and its extent of coating over the depth filter surface, particularly in masking the cation-exchanger-like capacity of the siliceous filter aids. In addition to guiding improved depth filter selection, the findings can be leveraged in inspiring a more intentional selection of components and design of depth filter construction for particular impurity removal targets. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Gao, Wenli; Feng, Bo; Ni, Yuxiang; Yang, Yongli; Lu, Xiong; Weng, Jie
2010-11-01
Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Grafting of activated carbon cloths for selective adsorption
NASA Astrophysics Data System (ADS)
Gineys, M.; Benoit, R.; Cohaut, N.; Béguin, F.; Delpeux-Ouldriane, S.
2016-05-01
Chemical functionalization of an activated carbon cloth with 3-aminophthalic acid and 4-aminobenzoic acid groups by the in situ formation of the corresponding diazonium salt in aqueous acidic solution is reported. The nature and amount of selected functions on an activated carbon surface, in particular the grafted density, were determined by potentiometric titration, elemental analysis and X-ray photoelectron spectroscopy (XPS). The nanotextural properties of the modified carbon were explored by gas adsorption. Functionalized activated carbon cloth was obtained at a discrete grafting level while preserving interesting textural properties and a large porous volume. Finally, the grafting homogeneity of the carbon surface and the nature of the chemical bonding were investigated using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) technique.
Adsorption and release of ofloxacin from acid- and heat-treated halloysite.
Wang, Qin; Zhang, Junping; Zheng, Yue; Wang, Aiqin
2014-01-01
Halloysite nanotube is an ideal vehicle of the controlled release of drugs. In this study, we systematically investigated the effects of acid- and heat-treatments on the physicochemical properties, structure and morphology of halloysite by XRD, FTIR, SEM and TEM. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that HCl treatment has no influence on the crystal structure of halloysite, whereas it becomes amorphous after calcined at temperature higher than 500 °C. Both acid- and heat-treatments have no evident influence on the tubular structure of halloysite. OFL was adsorbed onto halloysite via electrostatic interaction between protonated OFL and negative halloysite surface, cation exchange as well as electrostatic interaction between the OFL-Al(3+) complexes and the negative halloysite surface. Acid-treatment facilitates the release of the adsorbed OFL compared with the natural halloysite in spite of a slight decrease of adsorption capacity. However, heat-treatment results in a sharp decrease of adsorption capacity for OFL owning to the OFL-promoted dissolution of aluminum and the disappearance of the porous structure. Although heat-treatment also facilitates release of the adsorbed OFL, the amount of OFL released is in fact less than the natural halloysite owing to the very low adsorption capacity. Thus, acid-activation is an effective protocol to improve the adsorption and release of halloysite for cationic drug molecules. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia
2016-01-01
Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and surface composition. The film-pore-surface diffusion model successfully captures features on enzyme adsorption on ultrafine grinding pretreated corn stover. These findings identify wherein the probable rate-limiting factors for the enzyme adsorption reside and could, therefore, provide a basis for enhanced cellulose hydrolysis processes.
Effects of oxidation on surface heterogeneity of carbosils
NASA Astrophysics Data System (ADS)
Charmas, B.; Leboda, R.; Gérard, G.; Villiéras, F.
2002-08-01
Carbon-silica adsorbents (carbosils), prepared by pyrolysis of methylene chloride (CH 2Cl 2) on the surface of a porous silica gel, were subjected to an oxidizing hydrothermal treatment (HTT) at 200 °C, using a hydrogen peroxide water solution as a modification medium. Conventional nitrogen adsorption volumetry and low-pressure argon and nitrogen adsorption techniques were used to analyze and compare textural properties and surface heterogeneity of initial and hydrothermally treated samples. In the presence of carbon, the mesoporous network of silica gel is protected from the massive collapse generally observed after oxidizing HTT. For carbosils, some changes occur during HTT, leading to a slight decrease of specific surface areas accompanied by an increase in mean mesopore size. The argon and nitrogen condensation energy distributions, derived from low-pressure adsorption experiments, indicate that both silica and pyrocarbon materials were modified during HTT. Depolymerization and recondensation processes occur for silica, creating new silica surfaces. These processes are responsible of the decrease in specific surface areas. For pyrocarbon, similar depolymerization and recondensation processes probably occur, creating new and high-energy surface sites.
Adsorption dynamics of CVD graphene investigated by a contactless microwave method
NASA Astrophysics Data System (ADS)
Black, N. C. G.; Rungger, I.; Li, B.; Maier, S. A.; Cohen, L. F.; Gallop, J. C.; Hao, L.
2018-07-01
We use a contactless microwave dielectric resonator gas sensing platform to study the adsorption dynamics of NO2 gas present in air onto a graphene surface. The use of microwaves removes the need for metal contacts that would otherwise be necessary for traditional conductivity measurements, and therefore allows non-invasive determination of NO2 concentrations to sub parts per million. As a result, gas‑metal interactions and localised graphene doping in the vicinity of metal contacts are eliminated, with the advantage that only graphene‑gas adsorbate interactions are responsible for the measured signal. We show that the sensor response for all considered concentrations can be described using a surface coverage dependent Langmuir model. We demonstrate that the possible variation of the NO2 binding energy, which is frequently considered as the main parameter, plays only a secondary role compared to the rising adsorption energy barrier with increasing NO2 coverage. The continuous distribution of the properties of the graphene adsorption sites used in the theoretical model is supported by our Kelvin probe and Raman surface analysis. Our results demonstrate that the non-invasive microwave method is a promising alternative platform for gas sensing. Moreover it provides valuable insights towards the understanding of the microscopic processes occurring in graphene based gas sensors, which is a key factor in the realization of reproducible and optimized device properties.
Alcaide, María; Papaioannou, Stavros; Taylor, Andrew; Fekete, Ladislav; Gurevich, Leonid; Zachar, Vladimir; Pennisi, Cristian Pablo
2016-05-01
Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media.
Policicchio, Alfonso; Zhao, Yunxia; Zhong, Qin; Agostino, Raffaele G; Bandosz, Teresa J
2014-01-08
CO2 adsorption isotherms on Cu-BTC/aminated graphite oxide composites were measured in the pressure range up to 1.5 MPa at three different temperatures close to ambient. Adsorption capacity, isosteric heat of adsorption, and regenerability were investigated. They are considered as significant factors determining the practical application of materials for CO2 capture. The results indicate a significant improvement in the performance of the composites as CO2 adsorbents in comparison with the parent Cu-BTC MOF. Among all samples analyzed, the composite of Cu-BTC and modified graphite oxide with the highest N content (MOF/GO-U3) is the best performing sample. On its surface 13.41 mmol/g CO2 was adsorbed at room temperature and 1.5 MPa. A high selectivity for CO2 adsorption over that of CH4 was found. The selectivities for CO2 adsorption over N2 are governed by the properties of the MOF phase. A relatively low heat of CO2 adsorption and the high degree of surface homogeneity cause that the composites can be fully regenerated and used in multicycle adsorption with the minimum energy demand.
Defining reactive sites on hydrated mineral surfaces: Rhombohedral carbonate minerals
NASA Astrophysics Data System (ADS)
Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S.; Schott, Jacques
2009-08-01
Despite the success of surface complexation models (SCMs) to interpret the adsorptive properties of mineral surfaces, their construct is sometimes incompatible with fundamental chemical and/or physical constraints, and thus, casts doubts on the physical-chemical significance of the derived model parameters. In this paper, we address the definition of primary surface sites (i.e., adsorption units) at hydrated carbonate mineral surfaces and discuss its implications to the formulation and calibration of surface equilibria for these minerals. Given the abundance of experimental and theoretical information on the structural properties of the hydrated (10.4) cleavage calcite surface, this mineral was chosen for a detailed theoretical analysis of critical issues relevant to the definition of primary surface sites. Accordingly, a single, generic charge-neutral surface site ( tbnd CaCO 3·H 2O 0) is defined for this mineral whereupon mass-action expressions describing adsorption equilibria were formulated. The one-site scheme, analogous to previously postulated descriptions of metal oxide surfaces, allows for a simple, yet realistic, molecular representation of surface reactions and provides a generalized reference state suitable for the calculation of sorption equilibria for rhombohedral carbonate minerals via Law of Mass Action (LMA) and Gibbs Energy Minimization (GEM) approaches. The one-site scheme is extended to other rhombohedral carbonate minerals and tested against published experimental data for magnesite and dolomite in aqueous solutions. A simplified SCM based on this scheme can successfully reproduce surface charge, reasonably simulate the electrokinetic behavior of these minerals, and predict surface speciation agreeing with available spectroscopic data. According to this model, a truly amphoteric behavior is displayed by these surfaces across the pH scale but at circum-neutral pH (5.8-8.2) and relatively high ΣCO 2 (⩾1 mM), proton/bicarbonate co-adsorption becomes important and leads to the formation of a charge-neutral H 2CO 3-like surface species which may largely account for the surface charge-buffering behavior and the relatively wide range of pH values of isoelectric points (pH iep) reported in the literature for these minerals.
Bhosale, Shivaji V; Kanhe, Nilesh S; Bhoraskar, Sudha V; Bhat, Suresh K; Bulakhe, Ravindra N; Shim, Jae-Jin; Mathe, Vikas L
2015-08-01
The paper presents the experimental studies pertaining to the adsorption of bovine serum albumin (BSA) on the nanoparticles of nickel ferrite (NiFe2O4) with a view of correlating the adsorption properties to their microstructure and zeta potentials. Physical properties of two kinds of nickel ferrites, one synthesized by thermal plasma route and the other by chemical co-precipitation method, are compared. Maximum adsorption (231.57 μg/mg) of BSA onto nickel ferrite nanoparticles, at body temperature (37 °C) was observed at pH-value of 5.58 for the thermal plasma synthesized particles showing its higher adsorption capacity than those synthesized by wet chemical means (178.71 μg/mg). Under the same physical conditions the value of zeta potential, obtained for the former, was higher than that of the latter over a wide range of pH values (3.64-9.66). This is attributed to the differences in the specific surface energies of the two kinds of nanoparticles arising from the degree of crystallinity. The paper presents the experimental evidence for the single crystalline nature of the individual nanoparticles, with mean size of 32 nm, for the thermal plasma synthesized particles as evidenced from the high resolution transmission electron microscopy and electron diffraction analysis. The measurements also reveal the poor crystalline morphology in the chemically prepared particles (mean size of 28 nm) although the X-ray diffraction patterns are not much different. The atomic force microscopy images confirm that the surfaces of plasma synthesized nanoparticles possesses higher surface roughness than that of chemically synthesized one. Presence of adsorbed protein was confirmed by vibrational spectroscopy. The Langmuir adsorption model is found to fit into the experimental data better than the Freundlich adsorption model.
Modulating surface rheology by electrostatic protein/polysaccharide interactions.
Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H
2006-11-21
There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.
NASA Astrophysics Data System (ADS)
Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.
2010-03-01
A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77 K.
NASA Astrophysics Data System (ADS)
Ilyasov, Victor V.; Ershov, Igor V.; Popova, Inna G.; Pham, Khang D.; Nguyen, Chuong V.
2018-05-01
In this paper, we investigate systematically the structural, electronic, magnetic and adsorption properties of Bernal-stacked bilayer graphene on MnO(111) surface terminated by an oxygen atom, as a function of nonstoichiometric composition of the BLG/MnOx(111) interface. For additional functionalization of the BLG/MnOx(111) system, we also studied the adsorption properties of oxygen adsorbed on the BLG/MnOx(111) interface. Our results showed that the BLG is bound to the MnOx(111) substrate by the weak interaction for both spin-up and spin-down. Furthermore, we found that BLG adsorbed on the MnOx(111) substrate with a reduced oxygen symmetry in the interface is accompanied with a downshift of the Fermi level, which identifies the band structure of BLG as a p-type semiconductor. Upon interaction between BLG and MnOx(111) substrate, a forbidden gap of about 350 meV was opened between its bonding and antibonding π bands. A forbidden gap and the local magnetic moments in bilayer graphene can be controlled by changing the oxygen nonstoichometry or by oxygen adsorption. Additionally, magnetism has been predicted in the bilayer graphene adsorbed on the polar MnOx(111) surface with oxygen vacancies in the BLG/MnOx(111) interface, and its nature has also been discussed in this work. These results showed that the adsorption of bilayer graphene on the MnO(111) substrate can be used for developing novel generation of electronic and spintronic devices.
Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders
2017-02-01
To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenol adsorption by activated carbon produced from spent coffee grounds.
Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C
2011-01-01
The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.
Porous carbon from local coconut shell char by CO2 and H2O activation in the presence of K2CO3
NASA Astrophysics Data System (ADS)
Vi, Nguyen Ngoc Thuy; Truyen, Dang Hai; Trung, Bien Cong; An, Ngo Thanh; Van Dung, Nguyen; Long, Nguyen Quang
2017-09-01
Vietnamese coconut shell char was activated by steam and carbon dioxide at low temperatures with the presence of K2CO3 as a catalyst. The effects of process parameters on adsorption capability of the product including different ratio of impregnation of activation agents, activation temperature, activation time were investigated in this study. Iodine number, methylene blue adsorption capacity, specific surface area and pore size distribution were measured to assess the properties of the activated carbon. Accordingly, the porous carbon was applied for toluene removal by adsorption technology. Significant increases in specific surface area and the toluene adsorption capacity were observed when the coconut shell char was activated in CO2 flow at 720 °C for 150 minutes and the K2CO3/char weight ratio of 0.5.
Adsorption of polyethyleneimine and polymethacrylic acid onto synthesized hematite.
Chibowski, S; Patkowski, J; Grzadka, E
2009-01-01
An influence of different functional groups of polymer, its molecular weight, polydispersity ratio (M(w)/M(n)) and presence of impurities on its adsorption in different pH values (3, 6 and 9) onto synthesized hematite (Fe(2)O(3)) was measured. A structure of adsorbed macromolecules of PMA and PEI was obtained according to S-F theory. Two polymers were used: polymethacrylic acid (PMA) of 6500 and 75,100 molecular weight as well as polyethyleneimine (PEI) 25,000 commercial and fractionated. Electrokinetic properties of the interface oxide-polymer solution (surface charge density and zeta potential) were also measured as well as adsorption layer thicknesses (with use of viscosimetric measurements). Obtained data show, that all above-mentioned factors do influence not only the adsorption process itself but also a surface charge, zeta potential and structure of adsorbed polymer layers on polymer/hematite interface.
Dehydrogenation of benzene on Pt(111) surface
NASA Astrophysics Data System (ADS)
Gao, W.; Zheng, W. T.; Jiang, Q.
2008-10-01
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
Dehydrogenation of benzene on Pt(111) surface.
Gao, W; Zheng, W T; Jiang, Q
2008-10-28
The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.
Hu, Jingyi; Shang, Ran; Heijman, Bas; Rietveld, Luuk
2015-09-01
Spent granular activated carbons (sGACs) for drinking water treatments were reused via pulverizing as low-cost adsorbents for micro-pollutant adsorption from a secondary treated wastewater effluent. The changes of physicochemical characteristics of the spent carbons in relation to the fresh carbons were determined and were correlated to the molecular properties of the respective GAC influents (i.e. a surface water and a groundwater). Pore size distribution analysis showed that the carbon pore volume decreased over a wider size range due to preloading by surface water, which contains a broader molecular weight distribution of organic matter in contrast to the groundwater. However, there was still considerable capacity available on the pulverized sGACs for atrazine adsorption in demineralized water and secondary effluent, and this was particularly the case for the groundwater spent GAC. However, as compared to the fresh counterparts, the decreased surface area and the induced surface acidic groups on the pulverized sGACs contributed both to the lower uptake and the more impeded adsorption kinetic of atrazine in the demineralized water. Nonetheless, the pulverized sGACs, especially the one preloaded by surface water, was less susceptible to adsorption competition in the secondary effluent, due to its negatively charged surface which can repulse the accessibility of the co-present organic matter. This suggests the reusability of the drinking water spent GACs for micro-pollutant adsorption in the treated wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Radin, Shula; Ducheyne, P.; Ayyaswamy, P. S.
2003-01-01
Biomimetically modified bioactive materials with bone-like surface properties are attractive candidates for use as microcarriers for 3-D bone-like tissue engineering under simulated microgravity conditions of NASA designed rotating wall vessel (RWV) bioreactors. The simulated microgravity environment is attainable under suitable parametric conditions of the RWV bioreactors. Ca-P containing bioactive glass (BG), whose stimulatory effect on bone cell function had been previously demonstrated, was used in the present study. BG surface modification via reactions in solution, resulting formation of bone-like minerals at the surface and adsorption of serum proteins is critical for obtaining the stimulatory effect. In this paper, we report on the major effects of simulated microgravity conditions of the RWV on the BG reactions surface reactions and protein adsorption in physiological solutions. Control tests at normal gravity were conducted at static and dynamic conditions. The study revealed that simulated microgravity remarkably enhanced reactions involved in the BG surface modification, including BG dissolution, formation of bone-like minerals at the surface and adsorption of serum proteins. Simultaneously, numerical models were developed to simulate the mass transport of chemical species to and from the BG surface under normal gravity and simulated microgravity conditions. The numerical results showed an excellent agreement with the experimental data at both testing conditions.
A chemical equilibrium model for metal adsorption onto bacterial surfaces
NASA Astrophysics Data System (ADS)
Fein, Jeremy B.; Daughney, Christopher J.; Yee, Nathan; Davis, Thomas A.
1997-08-01
This study quantifies metal adsorption onto cell wall surfaces of Bacillus subtilis by applying equilibrium thermodynamics to the specific chemical reactions that occur at the water-bacteria interface. We use acid/base titrations to determine deprotonation constants for the important surface functional groups, and we perform metal-bacteria adsorption experiments, using Cd, Cu, Pb, and Al, to yield site-specific stability constants for the important metal-bacteria surface complexes. The acid/base properties of the cell wall of B. subtilis can best be characterized by invoking three distinct types of surface organic acid functional groups, with pK a values of 4.82 ± 0.14, 6.9 ± 0.5, and 9.4 ± 0.6. These functional groups likely correspond to carboxyl, phosphate, and hydroxyl sites, respectively, that are displayed on the cell wall surface. The results of the metal adsorption experiments indicate that both the carboxyl sites and the phosphate sites contribute to metal uptake. The values of the log stability constants for metal-carboxyl surface complexes range from 3.4 for Cd, 4.2 for Pb, 4.3 for Cu, to 5.0 for Al. These results suggest that the stabilities of the metal-surface complexes are high enough for metal-bacterial interactions to affect metal mobilities in many aqueous systems, and this approach enables quantitative assessment of the effects of bacteria on metal mobilities.
Multifunctional clickable and protein-repellent magnetic silica nanoparticles
NASA Astrophysics Data System (ADS)
Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel
2016-01-01
Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. Electronic supplementary information (ESI) available: Detailed synthetic procedures and additional experimental light scattering and zeta-potential data. See DOI: 10.1039/c5nr08258g
NASA Astrophysics Data System (ADS)
Zhang, Zhenxin; Huang, Kaijin; Yuan, Fangli; Xie, Changsheng
2014-05-01
The detection of trichloroethylene has attracted much attention because it has an important effect on human health. The sensitivity of the SnO2 flat-type coplanar gas sensor arrays to 100 ppm trichloroethylene in air was investigated. The adsorption and surface reactions of trichloroethylene were investigated at 100-200 °C by in-situ diffuse reflection Fourier transform infrared spectroscopy (DIRFTS) on SnO2 films. Molecularly adsorbed trichloroethylene, dichloroacetyl chloride (DCAC), phosgene, HCl, CO, H2O, CHCl3, Cl2 and CO2 surface species are formed during trichloroethylene adsorption at 100-200 °C. A possible mechanism of the reaction process is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in
Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less
NASA Astrophysics Data System (ADS)
Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.
2018-03-01
Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.
Kim, Kyung-Jo; Jang, Am
2017-10-01
The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhi, Keke; Wang, Lulu; Zhang, Yagang; Jiang, Yingfang; Zhang, Letao; Yasin, Akram
2018-05-11
The influence of various silica gel supports with different shapes and sizes on the recognition properties of surface molecular imprinted polymers (MIPs) was investigated. MIPs for selective recognition and adsorption of gossypol were synthesized via the sol⁻gel process with a surface imprinting technique on silica gel substrates. 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) were chosen as the functional monomer and the cross-linker. The morphology and structure of the gossypol-MIPs were characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a standard Brunauer⁻Emett⁻Teller (BET) analysis. Results indicated that the surface imprinted polymer layer facilitated the removal and rebinding of the template, and thus, achieved fast binding kinetics. Compared with the MIPs prepared on irregularly shaped silica with a broad particle size distribution, the MIPs using regularly-shaped silica of uniform size showed higher imprinting factor (IF), and the MIP made with a relatively larger sized (60 μm) spherical silica, demonstrated higher adsorption capacity compared to the MIPs made with smaller sized, spherical silica. The MIP prepared with 60 μm spherically shaped silica, featured a fast adsorption kinetic of 10 min, and a saturated adsorption capacity of 204 mg·g −1 . The gossypol-MIP had higher selectivity (IF = 2.20) for gossypol over its structurally-similar analogs ellagic acid (IF = 1.13) and quercetin (IF = 1.20). The adsorption data of the MIP correlated well with the pseudo-second-order kinetic model and the Freundlich isotherm model, which implied that chemical adsorption dominated, and that multilayer adsorption occurred. Furthermore, the MIP exhibited an excellent regeneration performance, and the adsorption capacity of the MIP for gossypol only decreased by 6% after six reused cycles, indicating good application potential for selective adsorption of gossypol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel
2015-09-07
Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi levelmore » is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.« less
Adsorption of CGA on colloidal silver particles: DFT and SERS study
NASA Astrophysics Data System (ADS)
Biswas, Nandita; Kapoor, Sudhir; Mahal, Harbir S.; Mukherjee, Tulsi
2007-08-01
Raman and surface-enhanced Raman scattering (SERS) of chlorogenic acid (CGA) have been investigated. CGA is an important plant metabolite with anti-viral and anti-bacterial properties and thus, it is useful to study its surface adsorption characteristics. The experimental Raman data is supported with DFT calculations using B3LYP functional with 6-31G ∗ and LANL2DZ basis set. This is the first report on the vibrational analysis of CGA and its silver complex. From the SERS spectra as well as theoretical calculations, it has been inferred that the molecule is chemisorbed to the silver surface through the oxygen atoms of the carboxylate group.
Li, Qun; Sun, Jie; Ren, Tianhao; Guo, Lin; Yang, Zhilin; Yang, Qi; Chen, Hai
2018-04-01
Adsorption by carbon materials is one of the relatively fast methods in present research, which is widely used in emergency events. Activated carbon fiber (ACF) modified by nitric acid (N-ACF) was studied in this research to determine the adsorption performance for 2,4-dichlorophenoxyacetic acid (2,4-D). Subsequently, influence factors, adsorption isotherm models, kinetics and thermodynamic were investigated in a batch system to realize this adsorption. Experimental results showed that ACF modified by 0.1M nitric acid had a better removal ability than 2,4-D. Removal rate of 2,4-D by N-ACF was greatly influenced by pH with the optimum pH at 2. The superiority of the Langmuir isotherm model in describing the adsorption equilibrium was revealed by correlation coefficients R2 (R 2 ≥ 0.997). Furthermore, adsorption kinetics was well described by pseudo-second-order model. The results of thermodynamic showed that adsorption was a spontaneous, endothermic process with randomness increasing. Additionally, surface structure properties of adsorbent were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy, Specific surface area analysis of Brunauer, Emmett and Teller and Boehm's titration. It turned out that the micropore structure and functional groups on N-ACF all can contribute to the removal of 2,4-D.
NASA Astrophysics Data System (ADS)
Jorgetto, Alexandre de O.; da Silva, Adrielli C. P.; Wondracek, Marcos H. P.; Silva, Rafael I. V.; Velini, Edivaldo D.; Saeki, Margarida J.; Pedrosa, Valber A.; Castro, Gustavo R.
2015-08-01
Through very simple and inexpensive processes, pata-de-vaca leaves were turned into a powder and applied as an adsorbent for the uptake of Cu(II) and Cd(II) from water. The material was characterized through SEM, EDX, FTIR and surface area measurement. The material had its point of zero charge determined (5.24), and its adsorption capacity was evaluated as a function of time, pH and metal concentration. The material presented fast adsorption kinetics, reaching adsorption equilibrium in less than 5 min and it had a good correlation with the pseudo-second order kinetic model. Optimum pH for the adsorption of Cu(II) and Cd(II) were found to be in the range from 4 to 5, approximately. In the experiment as a function of the analyte concentration, analogously to gas adsorption, the material presented a type II isotherm, indicating the formation of multilayers for both species. Such behavior was explained with basis in the alternation between cations and anions over the material's surface, and the maximum adsorption capacity, considering the formation of the multilayers were found to be 0.238 mmol L-1 for Cu(II) and 0.113 mmol L-1 for Cd(II).
NASA Astrophysics Data System (ADS)
Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia
2016-07-01
Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.
NASA Technical Reports Server (NTRS)
Siriwardane, R.; Wightman, J. P.
1980-01-01
The acid-base properties of titanium 6-4 plates (low surface area) were investigated after three different pretreatments, namely Turco, phosphate-fluoride and Pasa-Jell. A series of indicators was used and color changes were detected using diffuse reflectance visible spectroscopy. Electron spectroscopy for chemical analysis was used to examine the indicator on the Ti 6-4 surface. Specular reflectance infra-red spectroscopy was used to study the adsorption of stearic acid from cyclohexane solutions on the Ti 6-4 surface.
Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M
2009-08-15
The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.
NASA Astrophysics Data System (ADS)
Chen, Congjin; Li, Xin; Tong, Zhangfa; Li, Yue; Li, Mingfei
2014-10-01
Granular fir-based activated carbon (GFAC) was modified with H2O2, and orthogonal array experimental design method was used to optimize the process. The properties of the original and modified GFAC were characterized by N2 adsorption-desorption isotherms, Brunauer-Emmett-Teller (BET) equation, Barett-Joyner-Halenda (BJH) equation, field emission scanning electron microscopy (FESEM), and Fourier transform infrared spectroscopy (FT-IR) analysis, etc. When 10.00 g of GFAC with particle size of 0.25-0.85 mm was modified by 150.0 ml of aqueous H2O2 solution, the optimized conditions were found to be as follows: aqueous H2O2 solution concentration 1.0 mol·l-1, modification temperature 30.0 °C, modification time 4.0 h. Modified under the optimized conditions, decolonization of caramel, methylene blue adsorption, phenol adsorption and iodine number of the modified GFAC increased by 500.0%, 59.7%, 32.5%, and 15.1%, respectively. The original and optimally modified GFAC exhibited adsorption isotherms of hybrid Type I-IV isotherms with H4 hysteresis. BET surface area, micropore area, total pore volume, micropore volume, and microporosity of the modified GFAC increased by 7.33%, 11.25%, 3.89%, 14.23%, 9.91%, respectively. Whereas the average pore width decreased by 3.16%. In addition, the amount of surface oxygen groups (such as carbonyl or carboxyl) increased in the modified GFAC.
Wetting properties of molecularly rough surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.
2015-09-14
We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less
Influence of silver content on rifampicin adsorptivity for magnetite/Ag/rifampicin nanoparticles
NASA Astrophysics Data System (ADS)
Ivashchenko, Olena; Coy, Emerson; Peplinska, Barbara; Jarek, Marcin; Lewandowski, Mikołaj; Załęski, Karol; Warowicka, Alicja; Wozniak, Anna; Babutina, Tatiana; Jurga-Stopa, Justyna; Dolinsek, Janez; Jurga, Stefan
2017-02-01
Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.
NASA Astrophysics Data System (ADS)
Tzvetkov, George; Spassov, Tony; Kaneva, Nina; Tsyntsarski, Boyko
Here, a series of cellular-structured and predominantly mesoporous carbons were prepared via carbonization of glucose-fructose syrup (GFS) with sulfuric acid and subsequent calcination between 400∘C and 700∘C. Comparative results on the microstructure, chemical and textural properties of the newly produced carbons are presented. Furthermore, their adsorption performance for removal of acetaminophen from water was tested and it was found that the carbon calcined at 700∘C has a maximum adsorption capacity (98.7mgṡg-1) among all samples due to its suitable textural properties (BET surface area of 418m2ṡg-1 and total pore volume of 0.2cm3ṡg-1). This study demonstrates the potential use of GFS as a precursor in the preparation of carbonaceous materials for removal of biologically-active micropollutants from water.
NASA Astrophysics Data System (ADS)
Farmanzadeh, Davood; Tabari, Leila
2015-01-01
Using density functional theory (DFT), we have investigated the adsorption of picric acid (PA) molecule on the surface of (8,0) single-walled ZnO nanotube (ZnONT). The results show that the PA molecule can be chemisorbed on the surface of ZnONT with adsorption energies of -82.01 and -75.26 kJ/mol in gas and aqueous phase, respectively. Frontier molecular orbital analysis show that HOMO/LUMO gap of ZnONT reduces from 1.66 and 1.75 eV in the pristine nanotube to 0.83 and 0.72 eV in PA-adsorbed form in gas and aqueous phase, respectively. It suggests that the process can affect the electronic properties of the studied nanotube which would lead to its conductance change upon the adsorption of PA molecule. The modifying effect on the electrical conductance of ZnONT underlies the working mechanism of gas sensors for detecting the PA molecules. Analyses of the adsorption behavior of the electrically charged ZnONT toward PA molecule in the gas phase show that the PA molecule can be strongly adsorbed on the negatively charged ZnONT surface with significant adsorption energy (-135.1 kJ/mol). However, from the HOMO/LUMO gap changes, it can be concluded that the positive ZnONT might sensitively detect the PA molecule in comparison to the negative tube. These results can provide helpful information for experimental investigation to develop novel nanotube-based sensors.
Zhang, Lei; Li, Bao; Xia, Yangchao; Liu, Shengyu
2017-09-01
Lignite is an important and useful fossil fuel in the world and the strong hydrophilicity of it limits its applications. Surfactant adsorption on lignite is an effective way to make it hydrophobic. In this work, aiming to examine the effect of the degree of ethoxylation on the adsorption behavior of dodecyl poly ethoxylated surfactants on lignite and the wettability modification of modified lignite by surfactant adsorption, different combined systems formed by surfactants, water and a model surface of Wender lignite have been studied using molecular dynamics simulation. The adsorption configurations vary with the degree of ethoxylation. At the same adsorption amounts, increasing the degree of ethoxylation can make the adsorption layer more compactness and bring stronger adsorption strength. The results of binding energy and its components show that the adsorption of alkyl polyoxyethylene ethers surfactant on lignite is physically adsorbed rather than electrostatically or chemisorbed. Meanwhile, van der Waals interaction plays a dominant role in the adsorption. The addition of surfactant could reduce the possibility of the interaction between water and lignite. Compared to the original lignite, the interaction between them is weakened after surfactant adsorption in water/surfactant/lignite system, thus strengthening the hydrophobicity of lignite. Similar to the adsorption strength, hydrophobicity of modified lignite increases with the increase of the degree of ethoxylation. The lignite surface properties are changed due to surfactant adsorption by analyzing the compositions of interaction energy and the change of hydrogen bonds. Copyright © 2017 Elsevier Inc. All rights reserved.
Supramolecular structures on silica surfaces and their adsorptive properties.
Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F
2005-05-01
The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.
Sumaraj; Padhye, Lokesh P
2017-10-01
Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patel, M; Sanches, F F; Mallia, G; Harrison, N M
2014-10-21
Periodic hybrid-exchange density functional theory calculations are used to explore the first layer of water at model oxide surfaces, which is an important step for understanding the photocatalytic reactions involved in solar water splitting. By comparing the structure and properties of SnO2(110) and TiO2(110) surfaces in contact with water, the effects of structural and electronic differences on the water chemistry are examined. The dissociative adsorption mode at low coverage (1/7 ML) up to monolayer coverage (1 ML) on both SnO2 and TiO2(110) surfaces is analysed. To investigate further the intermolecular interactions between adjacent adsorbates, monolayer adsorption on each surface is explored in terms of binding energies and bond lengths. Analysis of the water adsorption geometry and energetics shows that the relative stability of water adsorption on SnO2(110) is governed largely by the strength of the chemisorption and hydrogen bonds at the surface of the adsorbate-substrate system. However on TiO2(110), a more complicated scenario of the first layer of water on its surface arises in which there is an interplay between chemisorption, hydrogen bonding and adsorbate-induced atomic displacements in the surface. Furthermore the projected density of states of each surface in contact with a mixture of adsorbed water molecules and adsorbed hydroxyls is presented and sheds some light on the nature of the crystalline chemical bonds as well as on why adsorbed water has often been reported to be unstable on rutile SnO2(110).
NASA Astrophysics Data System (ADS)
Schwartz, R.
1994-01-01
Adsorption layers on stainless steel mass standards (OIML classes E1 and E2) have been determined directly and precisely by the optical method of ellipsometry as a function of relative humidity in the range 0,03 <= h <= 0,77, the relevant influencing factors being surface cleanliness, roughness, steel composition and ambient temperature. Under the same environmental conditions, two pairs of 1 kg artefacts, having geometrical surfaces differing in area by about δ A = 390 cm2, but the same material properties and surface finish as the mass standards, have been compared on a 1 kg mass comparator. The two independent measuring techniques yield strongly correlated results, the standard uncertainties of the measured surface coverings being
NASA Astrophysics Data System (ADS)
You, Xiaofang; Wei, Hengbin; Zhu, Xianchang; Lyu, Xianjun; Li, Lin
2018-07-01
Molecular dynamics simulations were employed to study the effects of oxygen functional groups for structure and dynamics properties of interfacial water molecules on the subbituminous coal surface. Because of complex composition and structure, the graphite surface modified by hydroxyl, carboxyl and carbonyl groups was used to represent the surface model of subbituminous coal according to XPS results, and the composing proportion for hydroxyl, carbonyl and carboxyl is 25:3:5. The hydration energy with -386.28 kJ/mol means that the adsorption process between water and coal surface is spontaneous. Density profiles for oxygen atoms and hydrogen atoms indicate that the coal surface properties affect the structural and dynamic characteristics of the interfacial water molecules. The interfacial water exhibits much more ordering than bulk water. The results of radial distribution functions, mean square displacement and local self-diffusion coefficient for water molecule related to three oxygen moieties confirmed that the water molecules prefer to absorb with carboxylic groups, and adsorption of water molecules at the hydroxyl and carbonyl is similar.
Tao, Jun; Huo, Peili; Fu, Zongheng; Zhang, Jin; Yang, Zhen; Zhang, Dengfeng
2017-10-05
The preparation of activated carbon (AC) using tea residue was addressed in this work. The preparation process incorporated two-step pyrolysis and activation using NaOH. The influence of activation temperature between 500°C and 700°C on the properties of the AC sample was investigated. The physicochemical properties of the AC sample were characterized. The results show that the optimum temperature for the activation process is 700°C, which generates the AC sample with higher specific surface area and total pore volume, respectively, of 819 m 2 g -1 and 0.443 cm 3 g -1 . The oxygen-containing functional groups evolve on the AC sample during the activation process. The phenol adsorption test was performed to evaluate the adsorption performance of the AC sample. The adsorption data confirm that phenol adsorption on the AC sample obtained at 700°C follows the pseudo-second-order kinetics model. Hereby, the electron donor-acceptor interaction mechanism can describe the adsorption process. The AC sample obtained at 700°C performs superior phenol adsorption performance. The maximum phenol adsorption capacity is 320 mg g -1 , which is higher than that of several AC samples reported previously. Thus, the tea residue acts as a good precursor for the AC with promising adsorption capacity by the NaOH chemical activation method.
New Insights into the Role of Pb-BHA Complexes in the Flotation of Tungsten Minerals
NASA Astrophysics Data System (ADS)
Yue, Tong; Han, Haisheng; Hu, Yuehua; Sun, Wei; Li, Xiaodong; Liu, Runqing; Gao, Zhiyong; Wang, Li; Chen, Pan; Zhang, Chenyang; Tian, Mengjie
2017-11-01
Lead ions (lead nitrate) were introduced to modify the surface properties of tungsten minerals, effectively improving the floatability, with benzohydroxamic acid (BHA) serving as the collector. Flotation tests indicated that Pb-BHA complexes were the active species responsible for flotation of the tungsten minerals. The developed Pb-BHA complexes and the novel flotation process effectively increased the recovery of scheelite and wolframite, simplified the technological process, and led to reduced costs. Fourier transform infrared spectra data showed the presence of adsorbed Pb-BHA complexes on the surface of the minerals. The characteristic peaks of BHA shifted by a considerable extent, indicating that chemical adsorption plays an important role in the flotation process. Zeta potential results confirmed physical adsorption of the positively charged Pb-BHA complexes on the mineral surfaces. The synergistic effect between chemical and physical adsorption facilitated the maximum flotation recovery of scheelite and wolframite.
Hachache, Naima; Bal, Youcef; Debarnot, Dominique; Poncin-Epaillard, Fabienne
2014-02-01
Polypropylene fiber meshes were plasma-treated in order to attach new chemical functions corresponding to acidic or basic groups without altering the roughness of such thin material. An almost complete wettability of these plasma-treated materials is obtained. Because of the plasma-grafting of acid or amino moieties, such surface treatment allows increasing the adsorption rate of quaternary ammonium molecule like Aliquat 336. This increase was explained by specific interactions of ammonium head of the Aliquat 336 and hydrophilic group of plasma-treated PP, followed by the adsorption of a further layer of Aliquat 336 through hydrophobic interactions of its hydrocarbon chain. These interactions between the carrier and the polymeric surface were characterized leading to physisorption mechanism. Such new material could be applied to the extraction process since no evidence of aging was given. Copyright © 2013 Elsevier B.V. All rights reserved.
Gu, Xia-li; He, Hong-liang; Shi, Li-ying; Gao, Yan-kun; Chen, Li-na
2015-05-01
Taking mesoporous molecular sieve MCM-41 as a substrate, baicalin (BA) as template, acrylamide (AM) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linking agent, ethanol as solvent, under thermal polymerization initiator of azobis isobutyronitrilo (AIBN) , a kind of selective recognition of baicalin surface molecularly imprinted polymer was synthesized. The surface morphologies and characteristics of the MIPs were characterized by infrared spectroscopy (IR) and transmission electron microscope (TEM). The adsorption properties of polymer microsphere for the template were tested by the dynamic adsorption equilibrium experiments and static adsorption equilibrium experiments. The experiment showed that the imprinting process was successfully and the well-ordered one-dimensional pore structure of MCM-41 was still preserved. Furthermore, molecularly imprinted polymers had higher selective ability for BA, then provided a new method for the efficient separation and enrichment of baicalin active ingredients from medicinal plants Scutellaria baicalensis.
Synthesis and applications of titania nanotubes: Drug delivery and ionomer composites
NASA Astrophysics Data System (ADS)
Kulkarni, Harsha Prabhakar
In this dissertation, the potential of a tubular form of titania (titanium dioxide) has been explored for two diverse applications, in the field of targeted drug delivery for medical applications and in the field of composite materials for structural applications. We introduce the tubular form of titania, a material well known for its catalytic properties. The tubes are synthesized by hydrothermal procedure and are nanometers in dimension, with an inside diameter of 5-6 nm, outside diameter of 10-12, and an aspect ratio of ˜100:1 (l:d), structures both chemically and thermally stable. Biocompatible titania nanotubes with large catalytic surface area are used as vehicles for carrying Doxorubicin, an anticancer chemotherapeutic drug, to explore its potential in targeted drug delivery. Optical properties of Doxorubicin are used to study adsorption and release of the drug molecule from the nanotube surface. Pilot experiments show strong adsorption of 4 wt% of doxorubicin on the nanotube surface characterized by the quenching of its absorption centered at 490 nm. Quinone and protonated amino groups on the drug molecule, involved in protonation and deprotonation with the surface hydroxyls and molecular water on the nanotube surface, are responsible for adsorption. Doxorubicin adsorbed on the nanotube surface show pH specific release, with 40% release at a physiological pH of 7.4 as compared to 4% and 10% at pH values of 3.4 and 5.7 respectively under sink conditions. In vitro cytotoxicity experiments, used to characterize the anticancer potential of the nanotube-drug conjugate, shows comparable toxicity for the conjugates as the free drug. Nanotubes with strong adsorption of doxorubicin, large surface area, pH controlled release, and effective toxicity, demonstrate its potential as a vehicle for targeted drug delivery. If nanotube-drug conjugates with reversible bonds between them, and a pH controlled release in an aqueous solution are promising for medical applications, nanotube-polymer conjugates with nanotubes as reinforcing structures in a polymer matrix with improved mechanical properties are equally promising for structural applications. Nanotubes are used as reinforcing structures in Surlyn, a polyethylene-co-methacrylic acid polymer containing ions. When cooled from the melt, Surlyn shows strong aging effects on mechanical properties over periods of several days to months. Structures in the matrix of the polymer which form with time are responsible for these aging effects on mechanical properties. Aging at short times after cooling from the melt reveal subtle contributions from these structures not fully formed and mechanical properties not fully recovered. Nanotubes are used as reinforcing structures to improve the mechanical properties at short aging times, a property desired for high temperature applications demanding a quick recovery of mechanical properties. A unique Atomic Force Microscope (AFM) based Local Thermal Analysis (LTA) probe is used to study the mechanical properties of Surlyn and Nanotube-Surlyn composite. Nanotube-Surlyn composites show superior mechanical properties at both short and long aging times after cooling from the melt, as the structures in the matrix continue to form at long aging times.
Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content.
Yin, Qianqian; Ren, Huaipu; Wang, Ruikun; Zhao, Zhenghui
2018-08-01
Biochars with different Al contents (i.e., 5, 10, 15, and 20 wt%) were prepared to evaluate their adsorption capacities for nitrate (NO 3 - ) and phosphate (PO 4 3- ) from eutrophic water. Several techniques, including N 2 adsorption-desorption, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectrometry, were applied to characterize the physical-chemical properties of the biochars. We found that the NO 3 - and PO 4 3- adsorptions significantly improved on the Al-modified biochars because of their multifunctional and surface charge properties. In single-solute adsorption, 15 Al/BC and 20 Al/BC exhibited optimal NO 3 - and PO 4 3- adsorption capacities, respectively. In bi-solute coadsorption, the PO 4 3- adsorption on the biochar was less affected with the coexistence of NO 3 - , whereas the coexistence of PO 4 3- had a significant impact on the NO 3 - adsorption. The optimal solution pH for NO 3 - adsorption was 6, and pH < 6 was advantageous to PO 4 3- adsorption. In the kinetic study, the pseudo-second-order model could describe the NO 3 - and PO 4 3- adsorptions on biochar well, indicating that chemical adsorption was the main adsorption mechanism. The Langmuir-Freundlich model agreed well with the NO 3 - and PO 4 3- adsorptions on the biochars, and the maximum adsorption capacities for NO 3 - and PO 4 3- reached 89.58 mg/g and 57.49 mg/g, respectively. Therefore, the Al-modified biochar was a good choice for the remediation of eutrophic water. Copyright © 2018 Elsevier B.V. All rights reserved.
Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L
2002-05-01
To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.
Controlled surface chemistry of diamond/β-SiC composite films for preferential protein adsorption.
Wang, Tao; Handschuh-Wang, Stephan; Yang, Yang; Zhuang, Hao; Schlemper, Christoph; Wesner, Daniel; Schönherr, Holger; Zhang, Wenjun; Jiang, Xin
2014-02-04
Diamond and SiC both process extraordinary biocompatible, electronic, and chemical properties. A combination of diamond and SiC may lead to highly stable materials, e.g., for implants or biosensors with excellent sensing properties. Here we report on the controllable surface chemistry of diamond/β-SiC composite films and its effect on protein adsorption. For systematic and high-throughput investigations, novel diamond/β-SiC composite films with gradient composition have been synthesized using the hot filament chemical vapor deposition (HFCVD) technique. As revealed by scanning electron microscopy (SEM), the diamond/β-SiC ratio of the composite films shows a continuous change from pure diamond to β-SiC over a length of ∼ 10 mm on the surface. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed to unveil the surface termination of chemically oxidized and hydrogen treated surfaces. The surface chemistry of the composite films was found to depend on diamond/β-SiC ratio and the surface treatment. As observed by confocal fluorescence microscopy, albumin and fibrinogen were preferentially adsorbed from buffer: after surface oxidation, the proteins preferred to adsorb on diamond rather than on β-SiC, resulting in an increasing amount of proteins adsorbed to the gradient surfaces with increasing diamond/β-SiC ratio. By contrast, for hydrogen-treated surfaces, the proteins preferentially adsorbed on β-SiC, leading to a decreasing amount of albumin adsorbed on the gradient surfaces with increasing diamond/β-SiC ratio. The mechanism of preferential protein adsorption is discussed by considering the hydrogen bonding of the water self-association network to OH-terminated surfaces and the change of the polar surface energy component, which was determined according to the van Oss method. These results suggest that the diamond/β-SiC gradient film can be a promising material for biomedical applications which require good biocompatibility and selective adsorption of proteins and cells to direct cell migration.
Electronic structure and surface properties of MgB2(0001) upon oxygen adsorption
NASA Astrophysics Data System (ADS)
Kim, Chang-Eun; Ray, Keith G.; Bahr, David F.; Lordi, Vincenzo
2018-05-01
We use density-functional theory to investigate the bulk and surface properties of MgB2. The unique bonding structure of MgB2 is investigated by Bader's atoms-in-molecules, charge density difference, and occupancy projected band structure analyses. Oxygen adsorption on the charge-depleted surfaces of MgB2 is studied by a surface potential energy mapping method, reporting a complete map including low-symmetry binding sites. The B-terminated MgB2(0001) demonstrates reconstruction of the graphenelike B layer, and the reconstructed geometry exposes a threefold site of the subsurface Mg, making it accessible from the surface. Detailed reconstruction mechanisms are studied by simulated annealing method based on ab initio molecular dynamics and nudged elastic band calculations. The surface clustering of B atoms significantly modifies the B 2 p states to occupy low energy valence states. The present paper emphasizes that a thorough understanding of the surface phase may explain an apparent inconsistency in the experimental surface characterization of MgB2. Furthermore, these results suggest that the surface passivation can be an important technical challenge when it comes to development of a superconducting device using MgB2.
THE EFFECT OF WATER CHEMISTRY ON THE PROPERTIES OF IRON PARTICLES AND IRON SUSPENSIONS
The structure and properties of iron colloids in aquatic systems is important in understanding their behavior in environmental and engineering systems. For example the adsorption of contaminants onto iron colloids and subsequent transport through ground water aquifers and surface...
Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.
Meng, Long-Yue; Park, Soo-Jin
2010-12-15
In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.
Khan, S Sudheer; Mukherjee, Amitava; Chandrasekaran, N
2011-10-01
Silver nanoparticles (SNPs) are being increasingly used in many consumer products like textile fabrics, cosmetics, washing machines, food and drug products owing to its excellent antimicrobial properties. Here we have studied the adsorption and toxicity of SNPs on bacterial species such as Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Bacillus barbaricus and Klebsiella pneumoniae. The influence of zeta potential on the adsorption of SNPs on bacterial cell surface was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations (0.05, 0.1, 0.5, 1 and 1.5 M). The survival rate of bacterial species decreased with increase in adsorption of SNPs. Maximum adsorption and toxicity was observed at pH 5, and NaCl concentration of <0.5 M. A very less adsorption was observed at pH 9 and NaCl concentration >0.5 M, there by resulting in less toxicity. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium and kinetics of the adsorption process were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. These findings form a basis for interpreting the interaction of nanoparticles with environmental bacterial species. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai
2017-08-01
A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.
Early stages of Cs adsorption mechanism for GaAs nanowire surface
NASA Astrophysics Data System (ADS)
Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu
2018-03-01
In this study, the adsorption mechanism of Cs adatoms on the (100) surface of GaAs nanowire with [0001] growth direction is investigated utilizing first principles method based on density function theory. The adsorption energy, work function, atomic structure and electronic property of clean surface and Cs-covered surfaces with different coverage are discussed. Results show that when only one Cs is adsorbed on the surface, the most favorable adsorption site is BGa-As. With increasing Cs coverage, work function gradually decreases and gets its minimum at 0.75 ML, then rises slightly when Cs coverage comes to 1 ML, indicating the existence of 'Cs-kill' phenomenon. According to further analysis, Cs activation process can effectively reduce the work function due to the formation of a downward band bending region and surface dipole moment directing from Cs adatom to the surface. As Cs coverage increases, the conduction band minimum and valence band maximum both shift towards lower energy side, contributed by the orbital hybridization between Cs-5s, Cs-5p states and Ga-4p, As-4s, As-4p states near Fermi level. The theoretical calculations and analysis in this study can improve the Cs activation technology for negative electron affinity optoelectronic devices based on GaAs nanowires, and also provide a reference for the further Cs/O or Cs/NF3 activation process.
NASA Astrophysics Data System (ADS)
Downs, Emily Elizabeth
Protein-nanostructure conjugates, particularly particles, are a subject of significant interest due to changes in their fundamental behavior compared to bulk surfaces. As the size scale of nano-structured materials and proteins are on the same order of magnitude, nanomaterial properties can heavily influence how proteins adsorb and conform to the surface. Previous work has demonstrated the ability of nanoscale surfaces to modulate protein activity, conformation, and retention by modifying the particle surface curvature, morphology, and surface charge. This work has improved our understanding of the protein material interactions, but a complete understanding is still lacking. The goal of this thesis is to investigate two missing areas of understanding using two distinct systems. The first system utilizes a particle with controlled surface energy to observe the impact of surface energy on protein-particle interactions, while the second system uses a modified Listeria-specific protein to determine how protein structure and flexibility affects protein adsorption and activity on particles. Spherical, amorphous, and uniformly doped Zn-silica particles with tailored surface energies were synthesized to understand the impact of surface energy on protein adsorption behavior. Particle surface energy increased with a decrease in particle size and greater dopant concentrations. Protein adsorption and structural loss increased with both particle size and particle surface energy. Higher surface energies promoted protein-particle association and increased protein unfolding. Particle curvature and protein steric hindrance effects limited adsorption and structural loss on smaller particles. Protein surface charge heterogeneity was also found to be linked to both protein adsorption and unfolding behavior on larger particles. Greater surface charge heterogeneity led to higher adsorption concentrations and multilayer formation. These multilayers transitioned from protein-particle interactions to protein-protein interactions and were thicker with greater surface energy, which resulted in the recovery of secondary structure in the outermost layer. To help understand the impact of protein structure on nano-bio conjugate interactions, a listeria specific protein was used. This system was chosen as it has applications in the food industry in preventing bacterial contamination. The insertion of an amino acid linker between the enzymatic and binding domain of the protein improved the flexibility between domains, leading to increased adsorption, and improved activity in both cell-wall and plating assays. Additionally, linker modified protein incorporated into the silica-polymer nanocomposite showed significant activity in a real-world example of contaminated lettuce. This thesis study has isolated the impact of surface energy and protein flexibility on protein adsorption and structure. Particle surface energy affects adsorbed protein concentration and conformation. Coupled with protein surface charge, surface energy was also found to dictate multilayer thickness. The conformational flexibility of the protein was shown to help in controlling not only protein adsorption concentration but also in retaining protein activity after immobilization. Also, a controllable synthesis method for particles with adjustable surface energy, an ideal platform for studying protein-particle interactions, has been established.
[Studies on the saliva adsorption and the salivary film property on the hydroxyapatite surface].
Yao, Jiang-wu; Chen, Guo-yang; Lin, Feng; Lin, Chang-jian; Tao, Tao
2012-07-01
To evaluate the thickness and viscoelasticity of whole saliva (WS), parotid saliva (PS) and submandibular/sublingual gland saliva (SMSLS) film adsorption on the hydroxyapatite (HA) surface. Ultra-thin layer of HA nanocrystals was coated on the dissipation TiO(2) sensor of gold quartz crystal microbalance using electrophoretic deposition technique. The thickness of the HA layer was measured by the ellipsometer, and element analysis was conducted using X-ray photoelectron spectroscopy. Atomic force microscopy and scanning electron microscope were used to observe its morphology. The in-situ adsorption thickness, the shear elastic modulus and the shear viscosity of salivary layers (WS, PS and SMSLS) on HA surfaces were investigated. The statistical data were analysed by an one-way ANOVA analysis followed by a SNK-q test. The results show that the HA layer was a plate-like morphology with 1.53 ± 0.12 in Ca/P molar ratio, (19.1 ± 0.9) nm in the thickness and (6.5 ± 1.6) nm in the roughness. The thickness of salivary film was SMSLS [(21.84 ± 1.25) nm] > WS[(17.91 ± 1.35) nm] > PS [(14.30 ± 1.03 nm) (P < 0.05). The shear elastic modulus of salivary film was PS [(0.61 ± 0.01) MPa] > SMSLS [(0.31 ± 0.09) MPa] and WS [(0.25 ± 0.03) MPa] (P < 0.05). The trend of the shear viscosity was opposite to one of thickness. The characteristics of saliva adsorption on HA surface suggest that the thicker, softer and more hydrated properties for the SMSLS and WS films are likely to afford a stronger lubrication to protect oral surfaces from wear and dehydration. The viscoelasticity of the PS film is probably related to the retention covering the oral cavity.
Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside.
Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław
2014-02-01
Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Thermodynamic properties of rhamnolipid micellization and adsorption.
Mańko, Diana; Zdziennicka, Anna; Jańczuk, Bronisław
2014-07-01
of the surface tension, density, viscosity and conductivity of aqueous solutions of rhamnolipid at natural and controlled pH were made at 293 K. On the basis of the obtained results the critical micelle concentration of rhamnolipid and its Gibbs surface excess concentration at the water-air interface were determined. The maximal surface excess concentration was considered in the light of the size of rhamnolipid molecule. Next the Gibbs standard free energy of rhamnolipid adsorption at this interface was determined on the basis of the different approaches to this energy. The standard free energy of adsorption was also deduced on the basis of the surface tension of n-hexane and water-n-hexane interface tension. Standard free energy obtained in this way was close to those determined by using the Langmuir, Szyszkowski, Aronson and Rosen, Gu and Zhu as well as modified Gamboa and Olea equations. The standard free energy of rhamnolipid adsorption at the water-air interface was compared to its standard free energy of micellization which was determined from the Philips equation taking into account the degree of rhamnolipid dissociation in the micelles. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.
2016-01-28
This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less
Ahmad, Mahtab; Lee, Sang Soo; Dou, Xiaomin; Mohan, Dinesh; Sung, Jwa-Kyung; Yang, Jae E; Ok, Yong Sik
2012-08-01
Conversion of crop residues into biochars (BCs) via pyrolysis is beneficial to environment compared to their direct combustion in agricultural field. Biochars developed from soybean stover at 300 and 700 °C (S-BC300 and S-BC700, respectively) and peanut shells at 300 and 700 °C (P-BC300 and P-BC700, respectively) were used for the removal of trichloroethylene (TCE) from water. Batch adsorption experiments showed that the TCE adsorption was strongly dependent on the BCs properties. Linear relationships were obtained between sorption parameters (K(M) and S(M)) and molar elemental ratios as well as surface area of the BCs. The high adsorption capacity of BCs produced at 700 °C was attributed to their high aromaticity and low polarity. The efficacy of S-BC700 and P-BC700 for removing TCE from water was comparable to that of activated carbon (AC). Pyrolysis temperature influencing the BC properties was a critical factor to assess the removal efficiency of TCE from water. Copyright © 2012 Elsevier Ltd. All rights reserved.
Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength
NASA Astrophysics Data System (ADS)
Ams, D.; Swanson, J. S.; Reed, D. T.
2010-12-01
Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic strength effects as the electronic double layer is compressed with increasing ionic strength. These results further highlight the importance of electrostatic interactions in the adsorption process between dissolved metals and bacterial surfaces. This work expands the understanding of actinide-bacteria adsorption phenomena to high ionic strength environmental conditions that are relevant as an aid to predicting Np(V) fate and transport behavior in areas such as the vicinity of salt-based nuclear waste repositories and high ionic-strength groundwaters at DOE sites.
Anions adsorption onto nanoparticles: effects on colloid stability and mobility in the environment
NASA Astrophysics Data System (ADS)
Missana, Tiziana; Benedicto, Ana; Mayordomo, Natalia; Alonso, Ursula
2013-04-01
Nanoparticles and colloids can enhance the contaminant transport in groundwater, if the contaminant is irreversibly adsorbed onto their surface; additionally colloids must be stable and mobile under the chemical conditions of the environment of interest. Colloid stability and mobility are factors directly related to the chemistry of the water, which determines the charge and size of the particles, but these colloidal properties can also be affected by the contaminant adsorption. This last point, which is potentially very relevant on the overall colloid-driven transport, is scarcely investigated. The evaluation of the stability of a colloidal system is generally carried out by measuring the aggregation kinetic after the change of a specific chemical condition, mainly pH or ionic strength of the aqueous solution. The effect of anion adsorption onto the stability of colloidal systems is mostly neglected. Parameters of the nanoparticles,as the point of zero charge (pH PCZ) or the isoelectric point (pH IEP) are determined with "inert" electrolytes and this might not be representative of their real behavior in natural systems. In this work, the effects of the Se(IV) (selenite) adsorption on alumina (Al2O3) nanoparticles have been analyzed. Selenite adsorption was studied in a wide range of pH (2-12) and ionic strengths (0.0005 - 0.1 M in NaClO4) and the effect of the adsorption on the main properties of the colloids (size and charge) were analyzed. Se adsorption on Al2O3 is almost independent of the ionic strength and decreases with increasing pH; sorption data were successfully fit by surface complexation modeling. Selenite adsorption (at medium-high surface occupancies) clearly affected the stability of Al2O3 colloids, with a clear shift of the isoelectric point towards more acid pH and enhancing colloid aggregation when the ionic strength increases. Considering the obtained results, the effect of anions in the chemical composition of natural water, frequently not accounted for in stability studies, will be discussed, as well as their implications on possible colloid-driven selenite transport in the environment.
NASA Astrophysics Data System (ADS)
Hasanzade, Zohre; Raissi, Heidar
2017-11-01
In this work, the adsorption of Thioguanine (TG) anticancer drug on the surface of Graphene oxide (GO) nanosheet has investigated using density functional theory (DFT) and molecular dynamics simulation (MDs). Quantum mechanics calculations by two methods including M06-2X/6-31G**and ωB97X-D/6-31G** have been employed to calculate the details of energetic, geometric, and electronic properties of the TG molecule interacting with Graphene oxide nanosheet (GONS). DFT calculations confirmed that the strongest adsorption is observed when hydrogen bond interactions between TG molecule and the functional groups of Graphene oxide nanosheet are predominate. In all calculations, solvent effects have been considered in water using the PCM method. It is found that TG molecule can be adsorbed on Graphene oxide with negative solvation energy, indicating the TG adsorption on Graphene oxide surfaces is thermodynamically favored. Moreover, MD simulations are examined to understand the solvent/co-solvent effect (water, ethanol, nicotine) on the Thioguanine drug delivery through Graphene oxide. The results of RDF patterns and the van der Waals energy calculations show that interaction between TG drugs and the Graphene oxide surface is stronger in water solvent compared to the other co-solvent. The obtained MD results illustrate that when nicotine and ethanol exist in the system, the drug takes longer time to bind with GO nanosheet and the system becomes unstable. It can be concluded that Graphene oxide can be a promising candidate in water media for delivery the TG molecule.
Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.
Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948
Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha
2014-01-01
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modifying protein adsorption by layers of glutathione pre-adsorbed on Au(111)
NASA Astrophysics Data System (ADS)
Vallée, Anne; Humblot, Vincent; Méthivier, Christophe; Dumas, Paul; Pradier, Claire-Marie
2011-12-01
Molecular interaction with metal surfaces raises fundamental questions regarding their binding tendency, their dispersion on the surface, as well as their conformation which may change their biological properties; addressing these questions, and being able to tune protein interactions, is of primary importance for the control of biointerfaces. In this study, one tripeptide, GSH (glu-cys-gly), was used to condition gold surfaces and thus influence the adsorption of bovine serum albumin (BSA). Depending on the pH value of the GSH solution, cationic, zwitterionic or anionic forms of the tripeptide could be stabilised on the surface, before interacting with BSA solutions. The amount of proteins was observed to depend both on the chemical state of the adsorbed underlying peptide and on the solvent of the protein solution, indicating an important role of electrostatic interactions upon protein adsorption. Moreover, atomic force microscopy (AFM), and synchrotron IR microscopy revealed a heterogeneous distribution of proteins on the GSH layer.
NASA Astrophysics Data System (ADS)
Ramos Guivar, Juan A.; Bustamante D., Angel; Gonzalez, J. C.; Sanches, Edgar A.; Morales, M. A.; Raez, Julia M.; López-Muñoz, María-José; Arencibia, Amaya
2018-10-01
Bare maghemite nanoparticles (Nps), binary, and ternary magnetic nanocomposites prepared with titanium dioxide (TiO2) and graphene oxide (GO) were synthesized by a facile and cheap co-precipitation chemical route, and used as magnetic nanoadsorbents to remove arsenite (As(III)) and arsenate (As(V)) from water. The structural, morphological, magnetic and surface properties were analyzed by XRD, TEM microscopy, FTIR and Raman vibrational spectroscopy, Mössbauer technique and N2 adsorption-desorption measurements. It was found that materials were composed of maghemite nanoparticles with crystallites diameters varying from 9 to 13 nm for bare Nps, binary and ternary nanocomposites, these nanocomposites contain a high percentage of maghemite phase (80%). The presence of TiO2 and GO in the binary and ternary materials was also confirmed. All the samples were found to show magnetic properties and a slight porosity, with a specific surface area that increases up to 82 m2/g when the metal oxides Nps were supported on GO. The aqueous arsenic adsorption performance was studied from kinetic and equilibrium point of view, and the pH adsorption capacity dependence was evaluated aiming to explain the adsorption mechanism. The three nanocomposites prepared in this work exhibit high adsorption capacity for arsenic species, with values of maximum adsorption capacity ranging from 83.1 to 110.4 mg/g for As(III) and from 90.2 to 127.2 mg/g for As(V) from bare to ternary nanocomposites, being possible to be separated with a permanent magnet of neodymium (Nd) in less than 10 min. Therefore, these nanosystems can be proposed as good adsorbents for both arsenic species from water.
Toko, Kiyoshi; Hara, Daichi; Tahara, Yusuke; Yasuura, Masato; Ikezaki, Hidekazu
2014-01-01
The bitterness of bitter substances can be measured by the change in the membrane electric potential caused by adsorption (CPA) using a taste sensor (electronic tongue). In this study, we examined the relationship between the CPA value due to an acidic bitter substance and the amount of the bitter substance adsorbed onto lipid/polymer membranes, which contain different lipid contents, used in the taste sensor. We used iso-α-acid which is an acidic bitter substance found in several foods and beverages. The amount of adsorbed iso-α-acid, which was determined by spectroscopy, showed a maximum at the lipid concentration 0.1 wt % of the membrane, and the same phenomenon was observed for the CPA value. At the higher lipid concentration, however, the amount adsorbed decreased and then remained constant, while the CPA value decreased monotonically to zero. This constant adsorption amount was observed when the membrane potential in the reference solution did not change with increasing lipid concentration. The decrease in CPA value in spite of the constant adsorption amount is caused by a decrease in the sensitivity of the membrane as the surface charge density increases. The reason why the peaks appeared in both the CPA value and adsorption amount is based on the contradictory adsorption properties of iso-α-acid. The increasing charged lipid concentration of the membrane causes an increasing electrostatic attractive interaction between iso-α-acid and the membrane, but simultaneously causes a decreasing hydrophobic interaction that results in decreasing adsorption of iso-α-acid, which also has hydrophobic properties, onto the membrane. Estimates of the amount of adsorption suggest that iso-α-acid molecules are adsorbed onto both the surface and interior of the membrane. PMID:25184491
Production of silica gel from Tunisian sands and its adsorptive properties
NASA Astrophysics Data System (ADS)
Lazaar, K.; Hajjaji, W.; Pullar, R. C.; Labrincha, J. A.; Rocha, F.; Jamoussi, F.
2017-06-01
Thanks to its highly absorbent character, silica gel is used in several applications, such as air moisture removal, as a treatment agent for effluents. In this study, silica gels were synthesised from Tunisian sands, collected from the Fortuna and Sidi Aich Formations in northern and central Tunisia. The collected quartz sand raw materials, as well as the prepared silica gels, were characterised by different techniques, such as X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM). XRD patterns of quartz sands showed quartz as main phase (86.1-98%), with lower contents of potassic feldspars, along with kaolinite and calcite. These quartz sands presented relatively small quantities of Fe2O3 (0.3%-0.5%) and TiO2 (0.1%-0.6%). The synthesised silica gels exhibited pore diameters exceeding 20 Å and surface areas up to 194 m2/g, comparable with those described in the literature and commercial silica gel. N2 adsorption isotherms showed that the silica gels prepared from Tunisian sands are mesoporous materials with high adsorption capacities. To understand better their adsorbent properties and applicability on an industrial scale, these gels were tested for methylene blue (MB) absorption. Maximum decolourisation rates (up to 96% after a contact time of 180 min) occurred with products synthesised at pH 3. The adsorption mechanism fitted better with a Langmuir model, revealing a monolayer coverage process of MB molecules over the gel surface, and the adsorption kinetics of the dye on these materials is well described by the second order model. The corresponding equilibrium adsorption capacities obtained from experimental data (Qexp = 292-214 mg/g) were close to the estimated maximum adsorption capacities (Qe = 333-250 mg/g), and to that of an industrial silica gel (250 mg/g).
Adsorption of lead onto smectite from aqueous solution.
Mhamdi, M; Galai, H; Mnasri, N; Elaloui, E; Trabelsi-Ayadi, M
2013-03-01
The purpose of this research is to study the effect of a new method of adsorption using membrane filtration to determine the maximum amount of lead adsorbed by clay and investigate the behavior of the clay after adsorption of the said metal. Treatment of wastewater contaminated with heavy metals depends on the characteristics of the effluent, the amount of final discharge, the cost of treatment, and the compatibility of the treatment process. The process of adsorption of heavy metals by clays may be a simple, selective, and economically viable alternative to the conventional physical-chemical treatment. This is justified by the importance of the surface developed by this material, the presence of negative charges on the said surface, the possibility of ion exchange taking place, and its wide availability in nature. The removal of lead from wastewater was studied by using the adsorption technique and using clay as the adsorbent. A method was optimized for adsorption through a membrane approaching natural adsorption. This new method is simple, selective, and the lead adsorption time is about 3 days. The various properties of clay were determined. It was observed that the cation exchange capacity of the clay was 56 meq/100 g of hydrated clay for the raw sample and 82 meq/100 g for the purified sample. The total surface area determined by the methylene blue method was equal to 556 and 783 m(2)/g for the raw and purified samples, respectively. The adsorption kinetics depends on several parameters. The Pb(II) clay, obeys the Langmuir, Freundlich, and the Elovich adsorption isotherms with high regression coefficients. The use of this adsorbent notably decreases the cost of treatment. It was concluded that clay shows a strong adsorption capacity on Pb(II), the maximum interaction occurring with purified clay treated at high concentration of lead. It is proposed that this adsorption through a membrane be extended for the treatment of effluents containing other metals.
2011-01-01
Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109
Wang, Jun; Chen, Baoliang; Xing, Baoshan
2016-04-05
To create more wrinkles and folds as available adsorption sites, graphene nanosheets (GNS) were thermally treated with KOH for morphological alteration. The surface structures and properties of the activated graphene nanosheets (AGN) were characterized by BET-N2, SEM, TEM, Raman, XRD, XPS, and FTIR. After KOH etching, the highly crystal structure was altered, self-aggregation of graphene layers were evidently relieved, and more single to few layer graphene nanosheets were created with wrinkles and folds. Also both specific surface area and micropore volume of AGN increased relative to GNS. The adsorption of AGN toward p-nitrotoluene, naphthalene and phenanthrene were greatly enhanced in comparison with GNS, and gradually promoted with increasing degree of KOH etching. Adsorption rate of organic contaminants on AGN was very fast and efficient, whereas small molecules showed higher adsorption rates due to the more porous surface of graphene. In addition to π-π interaction, the high affinities of p-nitrotoluene to AGN are suggested from strong electron charge transfer interactions between nitro groups on p-nitrotoluene and defect sites of AGN. A positively linear correlation between organic molecule uptake and the micropore volume of AGN indicated that pore-filling mechanism may play an important role in adsorption. Morphological wrinkles and folds of graphene nanosheets can be regulated to enhance the adsorption capability and kinetics for efficient pollutant removal and to selectively preconcentrate adsorbates with different sizes for detection.
Adsorption of human fibrinogen and albumin onto hydrophobic and hydrophilic Ti6Al4V powder
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Jesús; Gallardo-Moreno, Amparo M.; Bruque, José M.; González-Martín, M. Luisa
2016-07-01
Adsorption of proteins on solid surfaces has been widely studied because of its importance in various biotechnological, medical and technical applications, such as medical implants or biosensors. One of the main problems is the adsorption-induced conformational changes because they often modify the biological activity of the proteins, which is believed to be a key factor on the subsequent cellular adhesion. The aim of this work is the study of the adsorption of human fibrinogen (Fg) and human serum albumin (HSA) onto Ti6Al4V particles, commercially available on different size, that are used to elaborate scaffolds to provide structural support to cell proliferation, promoting tissue development and bone regeneration among others. The study was done through the analysis of the adsorption isotherms and the electrical characterization of surfaces after adsorption in terms of the zeta potential (ζ). From this analysis it seems that Fg adsorbs preferentially vertically oriented (end-on) and HSA moves sequentially over the surface of the Ti6Al4V particles through dimmer formation, allowing adsorption progress over this initial bilayer. The zeta potential values of both proteins remain constant when the monolayer is formed. The study also extends the analysis of both adsorption behaviour and ζ potential characterization factors to the influence of the substrate hydrophobicity as this property can be modified for the Ti6Al4V by irradiating it with ultraviolet light (UV-C) without changes on its chemical composition [1,2]. Differences at low protein concentrations were found for both isotherms and zeta-potential values.
NASA Astrophysics Data System (ADS)
Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.
2011-12-01
Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the combined processes of interlayer cation hydration, surface adsorption, and capillary condensation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work is supported by the DOE Sandia LDRD Program.
Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...
2016-12-06
A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew–Burke–Ernzerhof exchange–correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than $-$3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) ($-$1.78 eV to –0.66 eV). Adsorption energies, charge density difference plotsmore » and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C–C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C 2H 2 adsorption, surface carbon sites remain available, which are necessary for H 2 dissociation. Furthermore, these sites were occupied when C 2H 2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.« less
NaCl strongly modifies the physicochemical properties of aluminum hydroxide vaccine adjuvants.
Art, Jean-François; Vander Straeten, Aurélien; Dupont-Gillain, Christine C
2017-01-30
The immunostimulation capacity of most vaccines is enhanced through antigen adsorption on aluminum hydroxide (AH) adjuvants. Varying the adsorption conditions, i.e. pH and ionic strength (I), changes the antigen adsorbed amount and therefore the ability of the vaccine to stimulate the immune system. Vaccine formulations are thus resulting from an empirical screening of the adsorption conditions. This work aims at studying the physicochemical effects of adjusting the ionic strength of commercial AH adjuvant particles suspensions with sodium chloride (NaCl). X-ray photoelectron spectroscopy data show that AH particles surface chemical composition is neither altered by I adjustment with NaCl nor by deposition on gold surfaces. The latter result provides the opportunity to use AH-coated gold surfaces as a platform for advanced surface analysis of adjuvant particles, e.g. by atomic force microscopy (AFM). The morphology of adjuvant particles recovered from native and NaCl-treated AH suspensions, as studied by scanning electron microscopy and AFM, reveals that AH particles aggregation state is significantly altered by NaCl addition. This is further confirmed by nitrogen adsorption experiments: I adjustment to 150mM with NaCl strongly promotes AH particles aggregation leading to a strong decrease of the developed specific surface area. This work thus evidences the effect of NaCl on AH adjuvant structure, which may lead to alteration of formulated vaccines and to misinterpretation of data related to antigen adsorption on adjuvant particles. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Landscape of Water and Ethanol on Silica Surfaces
Wu, Di; Guo, Xiaofeng; Sun, Hui; ...
2015-06-26
Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δh ads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually untilmore » reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less
NASA Astrophysics Data System (ADS)
Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.
2015-01-01
A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.
Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.
Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos
2017-12-20
In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Sorescu, D.C.; Yates, J.T., Jr.
The adsorption and vibrational properties of chemisorbed HCN on Lewis acid sites, Lewis base sites, and Brønsted Al-OH acid sites on a partially hydroxylated [gamma]-Al2O3 surface have been obtained by a combination of FTIR and density functional theory studies. The vibrational modes from the molecular and dissociative adsorption of HCN were assigned by using deuterium and 13C-labeled D13CN molecules at 170 K. In addition, [eta]2(C, N)-HCN bonding is also found from the [nu](CdN) vibrational spectra. Good correlation of the calculated vibrational frequencies for the adsorbed species with experimental data is found. The effect of triethylenediamine (TEDA) (also called 1, 4-diazabicyclomore » [2.2.2]octane, DABCO) on the adsorption of hydrogen cyanide (HCN) on the high area [gamma]-Al2O3 surface has been investigated using transmission FTIR spectroscopy. During HCN adsorption on TEDA-functionalized surfaces, there is no spectral change or emerging feature in either the TEDA or HCN spectral regions, indicating that no direct interaction occurs between these two molecules. Instead, we found that TEDA competes with HCN for the active sites on [gamma]-Al2O3. The observed [nu](C [identical with] N) mode on a TEDA-precovered surface is due to the HCN adsorption on Lewis base sites (Al-O-Al) which are less affected by TEDA preadsorption.« less
NASA Astrophysics Data System (ADS)
Garcia-Ochoa, E.; Guzmán-Jiménez, S. J.; Hernández, J. Guadalupe; Pandiyan, Thangarasu; Vásquez-Pérez, José M.; Cruz-Borbolla, Julián
2016-09-01
The corrosion inhibition of N,N‧-bis(benzimidazole-2-yl-methyl)amine (L1) and N, N‧-bis(benzimidazole-2-yl-methyl)hydroxyethylamine (L2) was analyzed by electrochemical and theoretical methods. The data show that ligands form an adsorption layer over an iron surface, obeying the Langmuir isotherm (Δ Gads° of -32.96 kJ mol-1); the value are higher than -20 kJ mol-1 but less than -40 kJ mol-1, belonging to a conversion stage of physical adsorption to chemical adsorption or a comprehensive adsorption. This is consistent with fractal dimension of the electrode surface, estimated by an impedance depression angle of a semicircle that the surface is homogeneously covered by the formation of an inhibitor film. Furthermore, the electronic parameters of the ligands were analyzed by DFT, showing that L1 and L2 possesses corrosion inhibition properties that give up its p orbital electron density through its HOMO orbital to the metal LUMO to form an adsorption layer, and this has been proved theoretically by the interaction of ligands with Fe30. In addition, we have collected corrosion inhibition data for around 70 organic compounds reported in the literature, and the inhibition data plotted against different inhibitors, showing that amine ligands are good corrosion inhibitors.
Álvarez-Torrellas, S; Muñoz, M; Zazo, J A; Casas, J A; García, J
2016-12-01
Chemically activated carbon materials prepared from pine sawdust-Onopordum acanthium L. were studied for the removal of diclofenac and naproxen from aqueous solution. Several carbons, using different proportions of precursors were obtained (carbon C1 to carbon C5) and the chemical modification by liquid acid and basic treatments of C1 were carried out. The textural properties of the carbons, evaluated by N2 adsorption-desorption isotherms, revealed that the treatments with nitric acid and potassium hydroxide dramatically reduced the specific surface area and the pore volume of the carbon samples. The surface chemistry characterization, made by thermal programmed decomposition studies, determination of isoelectric point and Boehm's titration, showed the major presence of lactone and phenol groups on the activated carbons surface, being higher the content when the acidic strength of the carbon increased. Diclofenac and naproxen kinetic data onto C1 carbon followed pseudo-second order model. The adsorption equilibrium isotherms of C1 and the modified carbons were well described by both Sips and GAB isotherm equations. The highest adsorption capacity was found for naproxen onto C1 activated carbon, 325 mg g(-1), since the liquid acid and basic functionalization of the carbon led to a severe decreasing in the adsorption removal of the target compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng
2015-05-01
Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Xiao, Jin; Yu, Bailie; Zhong, Qifan; Yuan, Jie; Yao, Zhen; Zhang, Liuyun
2017-10-01
This paper examines a novel method of regenerating saturated activated carbon after adsorption of complex phenolic, polycyclic aromatic hydrocarbons with low energy consumption by using superheated water pretreatment combined with CO 2 activation. The effects of the temperature of the superheated water, liquid-solid ratio, soaking time, activation temperature, activation time, and CO 2 flow rate of regeneration and adsorption of coal-powdered activated carbon (CPAC) were studied. The results show that the adsorption capacity of iodine values on CPAC recovers to 102.25% of the fresh activated carbon, and the recovery rate is 79.8% under optimal experimental conditions. The adsorption model and adsorption kinetics of methylene blue on regenerated activated carbon (RAC) showed that the adsorption process was in accordance with the Langmuir model and the pseudo-second-order kinetics model. Furthermore, the internal diffusion process was the main controlling step. The surface properties, Brunauer-Emmett-Teller (BET) surface area, and pore size distribution were characterized by Fourier transform infrared spectroscopy (FT-IR) and BET, which show that the RAC possesses more oxygen-containing functional groups with a specific surface area of 763.39 m 2 g -1 and a total pore volume of 0.3039 cm 3 g -1 . Micropores account for 79.8% and mesopores account for 20.2%.
Adsorption coefficients for TNT on soil and clay minerals
NASA Astrophysics Data System (ADS)
Rivera, Rosángela; Pabón, Julissa; Pérez, Omarie; Muñoz, Miguel A.; Mina, Nairmen
2007-04-01
To understand the fate and transport mechanisms of TNT from buried landmines is it essential to determine the adsorption process of TNT on soil and clay minerals. In this research, soil samples from horizons Ap and A from Jobos Series at Isabela, Puerto Rico were studied. The clay fractions were separated from the other soil components by centrifugation. Using the hydrometer method the particle size distribution for the soil horizons was obtained. Physical and chemical characterization studies such as cation exchange capacity (CEC), surface area, percent of organic matter and pH were performed for the soil and clay samples. A complete mineralogical characterization of clay fractions using X-ray diffraction analysis reveals the presence of kaolinite, goethite, hematite, gibbsite and quartz. In order to obtain adsorption coefficients (K d values) for the TNT-soil and TNT-clay interactions high performance liquid chromatography (HPLC) was used. The adsorption process for TNT-soil was described by the Langmuir model. A higher adsorption was observed in the Ap horizon. The Freundlich model described the adsorption process for TNT-clay interactions. The affinity and relative adsorption capacity of the clay for TNT were higher in the A horizon. These results suggest that adsorption by soil organic matter predominates over adsorption on clay minerals when significant soil organic matter content is present. It was found that, properties like cation exchange capacity and surface area are important factors in the adsorption of clayey soils.
Tucker, Ian M; Petkov, Jordan T; Penfold, Jeffrey; Thomas, Robert K; Cox, Andrew R; Hedges, Nick
2015-09-15
The adsorption of the proteins β-casein, β-lactoglobulin, and hydrophobin, and the protein mixtures of β-casein/hydrophobin and β-lactoglobulin/hydrophobin have been studied at the air-water interface by neutron reflectivity, NR. Changing the solution pH from 7 to 2.6 has relatively little impact on the adsorption of hydrophobin or β-lactoglobulin, but results in a substantial change in the structure of the adsorbed layer of β-casein. In β-lactoglobulin/hydrophobin mixtures, the adsorption is dominated by the hydrophobin adsorption, and is independent of the hydrophobin or β-lactoglobulin concentration and solution pH. At pH 2.6, the adsorption of the β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption over the range of β-casein concentrations studied. At pH 4 and 7, the adsorption of β-casein/hydrophobin mixtures is dominated by the hydrophobin adsorption at low β-casein concentrations. At higher β-casein concentrations, β-casein is adsorbed onto the surface monolayer of hydrophobin, and some interpenetration between the two proteins occurs. These results illustrate the importance of pH on the intermolecular interactions between the two proteins at the interface. This is further confirmed by the impact of PBS, phosphate buffered saline, buffer and CaCl2 on the coadsorption and surface structure. The results provide an important insight into the adsorption properties of protein mixtures and their application in foam and emulsion stabilization.
STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Hurt; Eric Suuberg; John Veranth
2002-09-10
The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourthmore » project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.« less
Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate
NASA Astrophysics Data System (ADS)
Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus
2016-10-01
The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.
Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants
NASA Astrophysics Data System (ADS)
Thalla, Pradeep Kumar
The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and carboxymethylated dextran (CMD), using the combination of an adhesive peptide (KQAGDV/RGD) and epidermal growth factor (EGF). CMD was chosen as an alternative to PEG due to its better low-fouling properties and the presence of abundant carboxyl terminal groups. Although the QCM-D technique enabled us to optimize the combined immobilization of KQAGDV/RGD and EGF, cell adhesion assay results did not show improvement of vascular smooth muscle cell (VSMC) adhesion on peptide-modified PEG or CMD surfaces. Among the reasons explaining low cell adhesion on peptides grafted low-fouling surfaces is the difficulty of preventing protein adsorption/platelet adhesion without significantly reducing cell adhesion. Preliminary data in our laboratory indicated that CS could be an ideal substrate to find this compromise. For that reason, the final objective of this PhD consisted in evaluating the potential of chondroitin sulfate (CS) coating by comparing its properties with well-known low-fouling polymers such as PEG and CMD. It was shown that CS presents selective low-fouling properties, low-platelet adhesion and pro-endothelial cell (EC) adhesive properties As demonstrated by QCM-D and fluorescence measurements, CS was as effective as PEG in reducing fibrinogen adsorption, but it reduced adsorption of bovine serum albumin (BSA) and fetal bovine serum (FBS) to a lower extent than PEG and CMD surfaces. Whole blood perfusion assays indicated that all three surfaces drastically decreased platelet adhesion and activation to levels significantly lower than PET surfaces. However, while EC adhesion and growth were found to be very limited on PEG and CMD, cell attachment on CS was strong, with focal adhesion points and resistance to shear stress. CS coatings therefore form a low-thrombogenic background promoting the formation of a confluent endothelium layer, which may then act as an active anti-thrombogenic surface. CS coating can also be used to further graft biomolecules. Combination of LP, CS coating followed by GF immobilization shows great promise as a bioactive coating to optimize the biocompatibility and clinical outcome of vascular implants, in particular vascular grafts.
Composition-dependent surface chemistry of colloidal Ba xSr 1-xTiO 3 perovskite nanocrystals
Margossian, Tigran; Culver, Sean P.; Larmier, Kim; ...
2016-11-01
Ba xSr 1-xTiO 3 perovskite nanocrystals, prepared by the vapor diffusion sol-gel method and characterized by state of the art surface techniques, display significantly different O-H stretching frequencies and adsorption properties towards CO 2 as a function of the alkaline earth composition (Ba vs. Sr). Lastly, the difference of properties can be associated with the more basic nature of BaO-rich than SrO-rich surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Girish; Wu, Qiyuan; Moon, Juhyuk
An investigation of the adsorptive property of hydrated cement particle system for sulfur dioxide (SO2) removal was conducted. In situ and ex situ experiments using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and X-ray Absorption Near Edge Spectroscopy (XANES) characterization techniques were employed to identify surface species formed during the exposure to SO2. Oxidation of SO2 to sulfate and sulfite species observed during these experiments indicated dominant reaction pathways for SO2 reaction with concrete constituents, such as calcium hydroxide, which were also moderated by adsorption on porous surfaces of crushed aggregates. The impact of variable composition of concrete on itsmore » adsorption capacity and reaction mechanisms was also proposed in this work.« less
NASA Astrophysics Data System (ADS)
Shokuhi Rad, Ali; Sani, Emad; Binaeian, Ehsan; Peyravi, Majid; Jahanshahi, Mohsen
2017-04-01
In this study, we used density functional theory (DFT) to search on the adsorption properties of three important compounds of ether family; diethyl ether (DEE), ethyl methyl ether (EME), and dimethyl ether (DME) on the surface of Gallium doped graphene (GaG). We used three functionals (B3LYP, wb97xd, and MPW1PW91) for optimization and calculation of adsorption energy. After fully optimization, we scrutinized on the charge allocations on the adsorbed ethers as well as GaG (at the area of interaction) based on natural bond orbitals (NBO). Besides, we have calculated the amount of charge transfer upon adsorption of each analyte. We revel that GaG is an ideal adsorbent for chemisorption of all above-mentioned ethers. There is a little difference between the values of adsorption; -123.5, -120, and -118.3 kJ/mol (based on wb97xd) for DEE, EME, and DME, respectively. We found significant changes in the electronic structure of both adsorbent and adsorbate upon adsorption. Moreover, results of charge analyses confirm GaG is a p-type semiconductor.
Adsorption effect on the formation of conductive path in defective TiO2: ab initio calculations
NASA Astrophysics Data System (ADS)
Li, Lei; Li, Wenshi; Qin, Han; Yang, Jianfeng; Mao, Ling-Feng
2017-10-01
Although the metal/TiO2/metal junctions providing resistive switching properties have attracted lots of attention in recent decades, revealing the atomic-nature of conductive path in TiO2 active layer remains a critical challenge. Here the effects of metal adsorption on defective TiO2(1 1 0) surface are theoretically investigated via ab initio calculations. The dependence of the conductive path on the adsorption of Ti/Zr/Cu/Pt/O atoms above a lattice Ti-ion in (1 1 0) plane and at 〈1 1 0〉 direction of the defective TiO2(0 0 1) surface are compared. It is found that Ti adsorptions in both sites give larger contributions to the presence of conductive path with more stability and larger transport coefficients at Fermi level, whereas the O adsorptions at both sites fail to produce conductive path. Moreover, the adsorptions of Zr/Cu/Pt atoms reduce the existence possibility of conductive path, especially absorbed above the lattice Ti-ion at 〈1 1 0〉 direction. Thus, it is helpful to clarify the interaction of the metal electrode and oxide layer in resistive random access memory.
Tian, Lei; Shi, Zhenqing; Lu, Yang; Dohnalkova, Alice C; Lin, Zhang; Dang, Zhi
2017-09-19
Quantitative understanding the kinetics of toxic ion reactions with various heterogeneous ferrihydrite binding sites is crucial for accurately predicting the dynamic behavior of contaminants in environment. In this study, kinetics of As(V), Cr(VI), Cu(II), and Pb(II) adsorption and desorption on ferrihydrite was studied using a stirred-flow method, which showed that metal adsorption/desorption kinetics was highly dependent on the reaction conditions and varied significantly among four metals. High resolution scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed that all four metals were distributed within the ferrihydrite aggregates homogeneously after adsorption reactions. Based on the equilibrium model CD-MUSIC, we developed a novel unified kinetics model applicable for both cation and oxyanion adsorption and desorption on ferrihydrite, which is able to account for the heterogeneity of ferrihydrite binding sites, different binding properties of cations and oxyanions, and variations of solution chemistry. The model described the kinetic results well. We quantitatively elucidated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites and the formation of various surface complexes controlled the adsorption and desorption kinetics at different reaction conditions and time scales. Our study provided a unified modeling method for the kinetics of ion adsorption/desorption on ferrihydrite.
NASA Astrophysics Data System (ADS)
Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.
2018-04-01
In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.
Thermodynamic study of quercetin and rutin mixtures with alcohols
NASA Astrophysics Data System (ADS)
Szymczyk, Katarzyna; Taraba, Anna
2018-04-01
The paper presents interactions between quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) and its glycoside, rutin with short chain alcohols, methanol, ethanol and 1-propanol studied by the surface tension measurements. An attempt was made to investigate the effect of flavonoid and alcohol concentrations as well as temperature on the thermodynamic parameters of alcohols adsorption at the water-air interface that is the standard free enthalpy, enthalpy and entropy of adsorption as well as the infinite dilution activity coefficient. The obtained results show that the mixtures of quercetin with methanol and rutin with ethanol are characterized by the best adsorption properties but all studied systems become less structured after adsorption.
Eddy, Nnabuk Okon; Ebenso, Eno E
2010-07-01
Inhibitive and adsorption properties of Penicillin G, Amoxicillin and Penicillin V potassium were studied using gravimetric, gasometric and quantum chemical methods. The results obtained indicate that these compounds are good adsorption inhibitors for the corrosion of mild steel in HCl solution. The adsorption of the inhibitors on mild steel surface is spontaneous, exothermic and supports the mechanism of physical adsorption. From DFT results, the sites for nucleophilic attacks in the inhibitors are the carboxylic acid functional group while the sites for electrophilic attacks are in the phenyl ring. There was a strong correlation between theoretical and experimental inhibition efficiencies.
Cordoba de Torresi, Susana Ines; Dourado, Andre H B; Silva, Rubens A; Torresi, Roberto M; Sumodjo, Paulo T A; Arenz, Matthias
2018-06-05
A quartz crystal microbalance method with dissipation (QCM-D) and attenuated total reflection infrared (ATR-FTIRS) spectroscopy were used to study the adsorption of L-cysteine (L-Cys) on Pt. Using QCM-D, it was possible to verify that the viscoelastic properties of the adsorbed species play an important role in the adsorption, rendering Sauerbrey's equation inapplicable. The modelling of QCM-D data exposed two different processes for the adsorption reaction. The first one had an activation time and is fast, whereas the second is slow. These processes were also resolved by ATR-FTIRS identified to be water and anion adsorption preceded by L-Cys adsorption. Both techniques reveal that the degree of surface coverage is pH dependent. Spectroscopic data indicate that the conformation of L-Cys(ads) changes with pH and that the structures do not fully agree with those proposed in literature for other metallic surfaces. The assembling of the adsorbed monolayer appeared to be very fast, and it was not possible to determine or quantify this kinetics. The conformation is also controlled by applied potential, and the anion adsorption and interfacial water depends on the conformation of the adsorbed molecules. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hafizovic, Jasmina; Bjørgen, Morten; Olsbye, Unni; Dietzel, Pascal D C; Bordiga, Silvia; Prestipino, Carmelo; Lamberti, Carlo; Lillerud, Karl Petter
2007-03-28
MOF-5 is the archetype metal-organic framework and has been subjected to numerous studies the past few years. The focal point of this report is the pitfalls related to the MOF-5 phase identification based on powder XRD data. A broad set of conditions and procedures have been reported for MOF-5 synthesis. These variations have led to materials with substantially different adsorption properties (specific surface areas in the range 700 to 3400 m(2)/g). The relatively low weight loss observed for some as synthesized samples upon solvent removal is also indicative of a low pore volume. Regrettably, these materials have all been described as MOF-5 without any further comments. Furthermore, the reported powder XRD patterns hint at structural differences: The variations in surface area are accompanied by peak splitting phenomena and rather pronounced changes in the relative peak intensities in the powder XRD patterns. In this work, we use single-crystal XRD to investigate structural differences between low and high surface area MOF-5. The low surface area MOF-5 sample had two different classes of crystals. For the dominant phase, Zn(OH)2 species partly occupied the cavities. The presence of Zn species makes the hosting cavity and possibly also adjacent cavities inaccessible and thus efficiently reduces the pore volume of the material. Furthermore, the minor phase consisted of doubly interpenetrated MOF-5 networks, which lowers the adsorption capacity. The presence of Zn species and lattice interpenetration changes the symmetry from cubic to trigonal and explains the peak splitting observed in the powder XRD patterns. Pore-filling effects from the Zn species (and partly the solvent molecules) are also responsible for the pronounced variations in powder XRD peak intensities. This latter conclusion is particularly useful for predicting the adsorption properties of a MOF-5-type material from powder XRD.
Cirtiu, Ciprian Mihai; Hassani, Hicham Oudghiri; Bouchard, Nicolas-Alexandre; Rowntree, Paul A; Ménard, Hugues
2006-07-04
The electrocatalytic hydrogenation (ECH) of phenol has been studied using palladium supported on gamma-alumina (10% Pd-Al2O3) catalysts. The catalyst powders were suspended in aqueous supporting electrolyte solutions containing methanol and short-chain aliphatic acids (acetic acid, propionic acid, or butyric acid) and were dynamically circulated through a reticulated vitreous carbon cathode. The efficiency of the hydrogenation process was measured as a function of the total electrolytic charge and was compared for different types of supporting electrolyte and for various solvent compositions. Our results show that these experimental parameters strongly affect the overall ECH efficiency of phenol. The ECH efficiency and yields vary inversely with the quantity of methanol present in the electrolytic solutions, whereas the presence of aliphatic carboxylic acids increased the ECH efficiency in proportion to the chain length of the specific acids employed. In all cases, ECH efficiency was directly correlated with the adsorption properties of phenol onto the Pd-alumina catalyst in the studied electrolyte solution, as measured independently using dynamic adsorption isotherms. It is shown that the alumina surface binds the aliphatic acids via the carboxylate terminations and transforms the catalyst into an organically functionalized material. Temperature-programmed mass spectrometry analysis and diffuse-reflectance infrared spectroscopy measurements confirm that the organic acids are stably bound to the alumina surface below 200 degrees C, with coverages that are independent of the acid chain length. These reproducibly functionalized alumina surfaces control the adsorption/desorption equilibrium of the target phenol molecules and allow us to prepare new electrocatalytic materials to enhance the efficiency of the ECH process. The in situ grafting of specific aliphatic acids on general purpose Pd-alumina catalysts offers a new and flexible mechanism to control the ECH process to enhance the selectivity, efficiency, and yields according to the properties of the specific target molecule.
Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments.
NASA Technical Reports Server (NTRS)
Cadenhead, D. A.; Wagner, N. J.; Jones, B. R.; Stetter, J. R.
1972-01-01
Comprehensive survey of the physical surface characteristics of Apollo 14 fines, two fragments of a breccia (14321), and a crystalline rock (14310). The survey was carried out with optical and both scanning and transmission electron microscopy and by studying the adsorption of a variety of gases including nitrogen, hydrogen, and water vapor. Our objective in the optical microscope study was to relate the visible geological and petrological features to the surface properties. Electron microscopy particularly helped relate surface roughness and particle fusion to gas adsorption and pore structure. The fine sample (14163,111) had a surface area of 0.210 sq m/g and a helium density of 2.9 g/cc. Similar values have been observed with breccia fragments. Other observations include physical adsorption of molecular hydrogen at low temperatures and of water vapor at ambient temperatures. It is concluded that these particular lunar materials, while capable of adsorbing water vapor, do not retain it for any significant time at low pressures, nor, under lunar conditions, is there any indication of absorption or penetration.
Synthesis of graphene aerogel for adsorption of bisphenol A
NASA Astrophysics Data System (ADS)
Trinh, Truong Thi Phuong Nguyet Xuan; Long, Nguyen Huynh Bach Son; Quang, Dong Thanh; Hieu, Nguyen Huu
2018-04-01
In this research, graphene aerogel (GA) was synthesized by chemical reduction method using ethylene diamine as a reducing agent. The morphology and properties of GA were characterized by calculating apparent density, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and Brunauer-Emmett-Teller (BET) specific surface area. High-performance liquid chromatography (HPLC) was used to quantify the amount of the residual bisphenol A (BPA) concentration. The analysis results showed that GA exhibited low density ranging from 4-8 mg/cm3, hydrophobicity, high porosity, and specific surface area of 1883 m2/g according to BET. The obtained GA was used as an adsorbent for BPA. The effects of pH, contact time, and initial BPA concentration on the adsorption were investigated. The adsorption equilibrium time could be reached within 240 minutes. The adsorption data were well-fitted to pseudo-second-order kinetic equation and Langmuir isotherm model. The maximum adsorption capacity of GA for BPA calculated by the Langmuir model was 185.185 mg/g at pH 7. Accordingly, GA could be considered as promising adsorbents for BPA in water.
Li, Lei; Quinlivan, Patricia A; Knappe, Detlef R U
2005-05-01
A method based on the Polanyi-Dubinin-Manes (PDM) model is presented to predict adsorption isotherms of aqueous organic contaminants on activated carbons. It was assumed that trace organic compound adsorption from aqueous solution is primarily controlled by nonspecific dispersive interactions while water adsorption is controlled by specific interactions with oxygen-containing functional groups on the activated carbon surface. Coefficients describing the affinity of water for the activated carbon surface were derived from aqueous-phase methyl tertiary-butyl ether (MTBE) and trichloroethene (TCE) adsorption isotherm data that were collected with 12 well-characterized activated carbons. Over the range of oxygen contents covered by the adsorbents (approximately 0.8-10 mmol O/g dry, ash-free activated carbon), a linear relationship between water affinity coefficients and adsorbent oxygen content was obtained. Incorporating water affinity coefficients calculated from the developed relationship into the PDM model, isotherm predictions resulted that agreed well with experimental data for three adsorbents and two adsorbates [tetrachloroethene (PCE), cis-1,2-dichloroethene (DCE)] that were not used to calibrate the model.
Li, Hao; Mahyoub, Samah Awadh Ali; Liao, Wenjie; Xia, Shuqian; Zhao, Hechuan; Guo, Mengya; Ma, Peisheng
2017-01-01
The magnetic biochars were easily fabricated by thermal pyrolysis of Fe(NO 3 ) 3 and distillation residue derived from rice straw pyrolysis oil at 400, 600 and 800°C. The effects of pyrolysis temperature on characteristics of magnetic biochars as well as adsorption capacity for aromatic contaminants (i.e., anisole, phenol and guaiacol) were investigated carefully. The degree of carbonization of magnetic biochars become higher as pyrolysis temperature increasing. The magnetic biochar reached the largest surface area and pore volume at the pyrolysis temperature of 600°C due to pores blocking in biochar during pyrolysis at 800°C. Based on batch adsorption experiments, the used adsorbent could be magnetically separated and the adsorption capacity of anisole on magnetic biochars was stronger than that of phenol and guaiacol. The properties of magnetic biochar, including surface area, pore volume, aromaticity, grapheme-like-structure and iron oxide (γ-Fe 2 O 3 ) particles, showed pronounced effects on the adsorption performance of aromatic contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Cao, Bo; Zhao, Lulu; Sun, Lili; Gao, Yan; Li, Jiaojiao; Yang, Fan
2018-01-01
To explore potential in application for simultaneous removal of atrazine and lead ions (Pd2+), the adsorption and coadsorption of atrazine and Pd2+ is evaluated onto a novel biochar-supported reduced graphene oxide composite (RGO-BC), which has been successfully developed via slow pyrolysis of graphene oxide (GO) pretreated corn straws. Structure and morphology analysis reveal that GO nanosheets are coated on the surface of biochar (BC) mainly through π-π interactions, notably, GO nanosheets after annealing reduction can basically retain the original morphology, meanwhile, the change of physico-chemical properties on the surface endow excellent adsorption capaities of 26.10 mg g-1 for Pb2+ and 67.55 mg g-1 for atrazine. A significant difference is in sorption of Pb2+ and atrazine on RGO-BC sample in both single- and binary-solute systems. The adsorption capacity of RGO-BC still remained above 54.58 mg g-1 after four times regeneration (81% adsorption capacity remained), demonstrating a promising candidate for the application of removal contaminant in the environment.
Biogas upgrading: optimal activated carbon properties for siloxane removal.
Cabrera-Codony, Alba; Montes-Morán, Miguel A; Sánchez-Polo, Manuel; Martín, Maria J; Gonzalez-Olmos, Rafael
2014-06-17
A total of 12 commercial activated carbons (ACs) have been tested for the removal of octamethylcyclotetrasiloxane (D4) in dynamic adsorption experiments using different carrier gases and D4 concentrations. Characterization of the ACs included several physical and chemical techniques. The D4 adsorption capacities were strongly related with the textural development of the ACs. Results showed that the optimum adsorbent for D4 is a wood-based chemically activated carbon, which rendered an adsorption capacity of 1732 ± 93 mg g(-1) using 1000 ppm (v/v) of D4 with dry N2 as the carrier gas. When the concentration of D4 was lowered to typical values found in biogas, the adsorption capacity was halved. The presence of major biogas compounds (i.e., CH4 and CO2) and humidity further reduced the D4 adsorption capacity. The polymerization of D4 over the surface of all ACs was found to be relevant after prolonged contact times. The extent of this phenomenon, which may negatively affect the thermal regeneration of the AC, correlated reasonably well with the presence of phenolic and carboxylic groups on the carbon surfaces.
Adsorption of trichloroethylene and benzene vapors onto hypercrosslinked polymeric resin.
Liu, Peng; Long, Chao; Li, Qifen; Qian, Hongming; Li, Aimin; Zhang, Quanxing
2009-07-15
In this research, the adsorption equilibria of trichloroethylene (TCE) and benzene vapors onto hypercrosslinked polymeric resin (NDA201) were investigated by the column adsorption method in the temperature range from 303 to 333 K and pressures up to 8 kPa for TCE, 12 kPa for benzene. The Toth and Dubinin-Astakov (D-A) equations were tested to correlate experimental isotherms, and the experimental data were found to fit well by them. The good fits and characteristic curves of D-A equation provided evidence that a pore-filling phenomenon was involved during the adsorption of TCE and benzene onto NDA-201. Moreover, thermodynamic properties such as the Henry's constant and the isosteric enthalpy of adsorption were calculated. The isosteric enthalpy curves varied with the surface loading for each adsorbate, indicating that the hypercrosslinked polymeric resin has an energetically heterogeneous surface. In addition, a simple mathematic model developed by Yoon and Nelson was applied to investigate the breakthrough behavior on a hypercrosslinked polymeric resin column at 303 K and the calculated breakthrough curves were in high agreement with corresponding experimental data.
Entropic contributions enhance polarity compensation for CeO2(100) surfaces
NASA Astrophysics Data System (ADS)
Capdevila-Cortada, Marçal; López, Núria
2017-03-01
Surface structure controls the physical and chemical response of materials. Surface polar terminations are appealing because of their unusual properties but they are intrinsically unstable. Several mechanisms, namely metallization, adsorption, and ordered reconstructions, can remove thermodynamic penalties rendering polar surfaces partially stable. Here, for CeO2(100), we report a complementary stabilization mechanism based on surface disorder that has been unravelled through theoretical simulations that: account for surface energies and configurational entropies; show the importance of the ion distribution degeneracy; and identify low diffusion barriers between conformations that ensure equilibration. Disordered configurations in oxides might also be further stabilized by preferential adsorption of water. The entropic stabilization term will appear for surfaces with a high number of empty sites, typically achieved when removing part of the ions in a polar termination to make the layer charge zero. Assessing the impact of surface disorder when establishing new structure-activity relationships remains a challenge.
Zell, Zachary A; Isa, Lucio; Ilg, Patrick; Leal, L Gary; Squires, Todd M
2014-01-14
The self-assembly of polymer-based surfactants and nanoparticles on fluid-fluid interfaces is central to many applications, including dispersion stabilization, creation of novel 2D materials, and surface patterning. Very often these processes involve compressing interfacial monolayers of particles or polymers to obtain a desired material microstructure. At high surface pressures, however, even highly interfacially active objects can desorb from the interface. Methods of directly measuring the energy which keeps the polymer or particles bound to the interface (adsorption/desorption energies) are therefore of high interest for these processes. Moreover, though a geometric description linking adsorption energy and wetting properties through the definition of a contact angle can be established for rigid nano- or microparticles, such a description breaks down for deformable or aggregating objects. Here, we demonstrate a technique to quantify desorption energies directly, by comparing surface pressure-density compression measurements using a Wilhelmy plate and a custom-microfabricated deflection tensiometer. We focus on poly(ethylene oxide)-based polymers and nanoparticles. For PEO-based homo- and copolymers, the adsorption energy of PEO chains scales linearly with molecular weight and can be tuned by changing the subphase composition. Moreover, the desorption surface pressure of PEO-stabilized nanoparticles corresponds to the saturation surface pressure for spontaneously adsorbed monolayers, yielding trapping energies of ∼10(3) k(B)T.
Wang, Xuefeng; Ohlin, C André; Lu, Qinghua; Hu, Jun
2006-09-15
Biomaterial surface modification is an efficient way of improving cell-material interactions. In this study, sub-micrometer laser-induced periodic surface structures (LIPSS) were produced on polystyrene by laser irradiation. FT-IR analysis confirmed that this treatment also led to surface oxidation and anisotropic orientation of the produced carbonyl groups. As a consequence, the surface energy of the laser-treated polystyrene was 1.45 times that of the untreated polystyrene, as measured by contact-angle goniometry. Protein adsorption and rat C6 glioma cell behavior on the two substrates were investigated, showing that the changed physicochemical properties of laser-modified polystyrene surface led to an increase in the quantity of adsorbed bovine serum albumin and significantly affected the behavior of rat C6 glioma cells. In the early stages of cell spreading, cells explored their microenvironment using filopodium as the main sensor. Moreover, cells actively aligned themselves along the direction of LIPSS gradually and cell attachment and proliferation were significantly enhanced. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.
NASA Astrophysics Data System (ADS)
Kirovskaya, I. A.; Kasatova, I. Yu.
2011-07-01
The acid-base properties of the surface of solid solutions and binary components of the CdTe-ZnS system are studied by hydrolytic adsorption, nonaqueous conductometric titration, mechanochemistry, IR spectroscopy, and Raman scattering spectroscopy. The strength, nature, and concentration of acid centers on the original surface and that exposed to CO are determined. The changes in acid-base properties in dependence on the composition of the system under investigation in the series of CdB6, ZnB6 analogs are studied.
Molino, Paul J; Higgins, Michael J; Innis, Peter C; Kapsa, Robert M I; Wallace, Gordon G
2012-06-05
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.
Biotribological properties at the stem-cement interface lubricated with different media.
Zhang, H Y; Luo, J B; Zhou, M; Zhang, Y; Huang, Y L
2013-04-01
Debonding of the stem-cement interface occurs inevitably in-vivo under physiological loading, and pseudo-synovial fluid is subsequently pumped into this interface, serving as the lubricant. However, the influence of protein adsorption onto the femoral stem surface has not been well taken into consideration in previous in vitro studies. The biotribological properties at the stem-cement interface were investigated through a series of fretting frictional tests using polished stainless steel 316L stem and smooth bone cement, lubricated by three different media at body temperature, i.e. 100% calf serum, 25% calf serum, and 0.9% saline solution. The surface characterization of the femoral stem was evaluated sequentially using optical microscope, optical interferometer, scanning electron microscope, and Raman spectroscopy. The friction coefficient generally kept stable during the test, and the minimum value (0.254) was obtained when 100% calf serum was used as the lubricant. Slight scratches were detected within the contact area for the stainless steel 316L stems lubricated by 100% calf serum and 25% calf serum, which was further surrounded by the adsorbed protein film with alveolate feature. Additionally, a wear scar was present within the contact area when 0.9% saline solution was used as the lubricant. Protein adsorption onto the stainless steel 316L stem surface affected the biotribological properties at the stem-cement interface under oscillatory fretting mechanism. Generation of wear debris at the stem-cement interface may be postponed by modification of physicochemical properties of the femoral stem to promote protein adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.
Shales and geological waste repositories: from microstructure description to macro-scale properties
NASA Astrophysics Data System (ADS)
Tournassat, C.; Steefel, C. I.; Gaboreau, S.
2017-12-01
The mineralogical and chemical properties of clays have been the subject of longstanding study for the long-term disposal of nuclear wastes in geological repositories. The low permeability of clay materials, including shales, provides at least part of the safety functions for radionuclide contaminants confinement. From a geochemical and mineralogical point of view, the high adsorption capacity of clay minerals adds to the effect of low hydraulic conductivities by greatly increasing the retardation of radionuclides and other contaminants, making clays ideal where isolation from the biosphere is desired. While their low permeability and high adsorption capacity are widely acknowledged, it is clear nonetheless that there is a need for an improved understanding of how the chemical and mineralogical properties of shales impact their macroscopic properties. It is at the pore-scale that the chemical properties of clay minerals become important since their electrostatic properties can play a large role. The negative electrostatic potential field at the clay mineral surfaces results in the presence of porosity domains where electroneutrality is not achieved: cations are attracted by the surfaces while anions are repulsed from them, resulting in the presence of a diffuse ion swarm - or diffuse layer. Numerical methods for modeling macroscopic properties of clay media with the consideration of the presence of a diffuse ion swarm have met a growing interest in diverse communities in the past years. In this presentation we will highlight the complex interplays of mineralogical, chemical and microstructural characteristics of clay materials that are ultimately responsible for a remarkable array of macro-scale properties such as specific adsorption, high swelling pressure, semi-permeable membrane properties, and non-Fickian diffusional behavior.
Wang, Changhui; Jiang, He-Long; Xu, Huacheng; Yin, Hongbin
2016-01-01
The use of phosphorus (P) inactivating agents to reduce internal P loading from sediment for lake restoration has attracted increasing attention. Reasonably, the physicochemical properties of P inactivating agents may vary with the interference of various environmental factors, leading to the change of control effectiveness and risks. In this study, the effect of fulvic acid (FA) adsorption on the properties of two agents, drinking water treatment residuals (DWTRs) and Phoslock®, was investigated. The results showed that after adsorption, there was little change for the main structures of DWTRs and Phoslock®, but the thermostability of Phoslock®, as well as the particle size and settleability of the two agents decreased. The specific surface area and pore volume of DWTRs also decreased, while those of Phoslock® increased. Further analysis indicated that aluminum and iron in DWTRs were stable during FA adsorption, but a substantial increase of lanthanum release from Phoslock® was observed, in particular at first (P < 0.01). Moreover, the P immobilization capability of DWTRs had little change after FA adsorption, while the capability of Phoslock® after FA adsorption decreased in solutions (P < 0.001) and sediments (P < 0.1); interestingly, from the view of engineering application, the performance of Phoslock® was not substantially affected. Overall, each P inactivating agent had its own particular responses of the physicochemical properties to environment factors, and detailed investigations on the applicability of each agent were essential before practical application.
Surface charge effects in protein adsorption on nanodiamonds
NASA Astrophysics Data System (ADS)
Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.
2015-03-01
Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids. Electronic supplementary information (ESI) available: The FTIR spectrum of nanodiamonds, QCM-D profiles of 50 nm nanodiamond adsorption on silica surfaces, QCM-D profiles of protein desorption after rinsing with water (rinsing experiment) and the full FTIR spectrum of proteins before and after adsorption on ND particles. See DOI: 10.1039/c5nr00250h
Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim; Kim, Im-Soon; Yang, Jae-Kyu; Koduru, Janardhan Reddy; Chang, Yoon-Young
2017-03-15
For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41nm and 32.16nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333±2K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity. Copyright © 2016 Elsevier B.V. All rights reserved.
Acid-base behavior of the gaspeite (NiCO3(s)) surface in NaCl solutions.
Villegas-Jiménez, Adrián; Mucci, Alfonso; Pokrovsky, Oleg S; Schott, Jacques
2010-08-03
Gaspeite is a low reactivity, rhombohedral carbonate mineral and a suitable surrogate to investigate the surface properties of other more ubiquitous carbonate minerals, such as calcite, in aqueous solutions. In this study, the acid-base properties of the gaspeite surface were investigated over a pH range of 5 to 10 in NaCl solutions (0.001, 0.01, and 0.1 M) at near ambient conditions (25 +/- 3 degrees C and 1 atm) by means of conventional acidimetric and alkalimetric titration techniques and microelectrophoresis. Over the entire experimental pH range, surface protonation and electrokinetic mobility are strongly affected by the background electrolyte, leading to a significant decrease of the pH of zero net proton charge (PZNPC) and the pH of isoelectric point (pH(iep)) at increasing NaCl concentrations. This challenges the conventional idea that carbonate mineral surfaces are chemically inert to background electrolyte ions. Multiple sets of surface complexation reactions (i.e., ionization and ion adsorption) were formulated within the framework of three electrostatic models (CCM, BSM, and TLM) and their ability to simulate proton adsorption and electrokinetic data was evaluated. A one-site, 3-pK, constant capacitance surface complexation model (SCM) reproduces the proton adsorption data at all ionic strengths and qualitatively predicts the electrokinetic behavior of gaspeite suspensions. Nevertheless, the strong ionic strength dependence exhibited by the optimized SCM parameters reveals that the influence of the background electrolyte on the surface reactivity of gaspeite is not fully accounted for by conventional electrostatic and surface complexation models and suggests that future refinements to the underlying theories are warranted.
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
2015-08-30
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
Lyu, Honghong; Gao, Bin; He, Feng; Zimmerman, Andrew R; Ding, Cheng; Huang, Hua; Tang, Jingchun
2018-02-01
With the goal of combining the advantages of ball-milling and biochar technologies, a variety of ball-milled biochars (BM-biochars) were synthesized, characterized, and tested for nickel (Ni(II)) removal from aqueous solution. Ball milling increased only the external surface area of low temperature biochars, but still dramatically enhanced their ability to sorb aqueous Ni(II). For higher temperature biochars with relatively low surface area, ball milling increased both external and internal surface area. Measurements of pH, zeta potential, stability, and Boehm titration demonstrated that ball milling also added oxygen-containing functional groups (e.g., carboxyl, lactonic, and hydroxyl) to biochar's surface. With these changed, all the BM-biochars showed much better Ni(II) removal efficiency than unmilled biochars. Ball-milled 600 °C bagasse biochar (BMBG600) showed the greatest Ni(II) adsorption capacity (230-650 compared to 26-110 mmol/kg for unmilled biochar) and the adsorption was dosage and pH dependent. Compared with the unmilled biochar, BMBG600 also displayed faster adsorption kinetics, likely due to an increase in rates of intra-particle diffusion in the latter. Experimental and modeling results suggest that the increase in BM-biochar's external and internal surface areas exposed its graphitic structure, thus enhancing Ni(II) adsorption via strong cation-π interaction. In addition, the increase in acidic surface functional groups enhanced Ni(II) adsorption by BM-biochar via electrostatic interaction and surface complexation. Ball milling thus has great potential to increase the efficiency of environmentally friendly biochar for various environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding oxygen adsorption on 9.375 at. % Ga-stabilized δ-Pu (111) surface: A DFT study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, Sarah C.; Wilkerson, Marianne P.; Huda, Muhammad N.
Plutonium (Pu) metal reacts rapidly in the presence of oxygen (O), resulting in an oxide layer that will eventually have an olive green rust appearance over time. Recent experimental work suggested that the incorporation of gallium (Ga) as an alloying impurity to stabilize the highly symmetric high temperature δ-phase lattice may also provide resistance against corrosion/oxidation of plutonium. In this paper, we modeled a 9.375 at. % Ga stabilized δ-Pu (111) surface and investigated adsorption of atomic O using all-electron density functional theory. Key findings revealed that the O bonded strongly to a Pu-rich threefold hollow fcc site with amore » chemisorption energy of –5.06 eV. Migration of the O atom to a Pu-rich environment was also highly sensitive to the surface chemistry of the Pu–Ga surface; when the initial on-surface O adsorption site included a bond to a nearest neighboring Ga atom, the O atom relaxed to a Ga deficient environment, thus affirming the O preference for Pu. Only one calculated final on-surface O adsorption site included a Ga-O bond, but this chemisorption energy was energetically unfavorable. Chemisorption energies for interstitial adsorption sites that included a Pu or Pu-Ga environment suggested that over-coordination of the O atom was energetically unfavorable as well. Electronic structure properties of the on-surface sites, illustrated by the partial density of states, implied that the Ga 4p states indirectly but strongly influenced the Pu 6d states strongly to hybridize with the O 2p states, while also weakly influenced the Pu 5f states to hybridize with the O 2p states, even though Ga was not participating in bonding with O.« less
Yang, Dingzheng; Yan, Bin; Xiang, Li; Xu, Haolan; Wang, Xiaogang; Zeng, Hongbo
2018-06-13
Understanding the surface properties and rheology of colloidal suspensions in the presence of polymer additives with high salinity are of great importance in formulating construction materials and optimizing process conditions in the mining and petroleum industry. In this work, the surface properties and rheology of a model spherical silica aqueous suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer at various salt concentrations have been investigated. Adsorption measurements using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) align well with zeta potential tests and show that polymer adsorption on silica surfaces is enhanced at high salinity (i.e., 3 M NaCl) than at low salinity (i.e., 1 mM NaCl) due to the suppression of the electrical double layer. Surface Forces Apparatus (SFA) measurements reveal that for interactions between two mica surfaces (the basal plane of which has a similar structure as silica) at a high polymer concentration (e.g., 2 wt%), steric repulsion dominates in 1 mM NaCl while bridging attraction is observed in 3 M NaCl. Surface force measurements agree with rheological results on silica suspensions with 0.5 to 2 wt% of PAA/PEO addition, which shows a significant decrease in yield stress in 1 mM NaCl due to steric repulsion but an insignificant variation in yield stress in 3 M NaCl due to attractive bridging interactions. This work provides useful information regarding the surface properties and rheological properties of comb-type polymer-mediated silica suspensions under different salinity conditions, with implications on designing and processing complex colloidal suspensions with polymer additives for various applications.
Real-time single-molecule observations of proteins at the solid-liquid interface
NASA Astrophysics Data System (ADS)
Langdon, Blake Brianna
Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the surface for longer time intervals. Surface chemistry and surface spatial heterogeneity (i.e. surface sites with different binding strengths) were shown to influence adsorption, desorption, and interfacial protein-protein associations. For example, faster protein diffusion on hydrophobic surfaces increased protein-protein associations and, at higher protein surface coverage, led to proteins remaining on hydrophobic surfaces longer than on hydrophilic surfaces. Ultimately these studies suggested that surface properties (chemistry, heterogeneity) influence not only protein-surface interactions but also interfacial mobility and protein-protein associations, implying that surfaces that better control protein adsorption can be designed by accounting for these processes.
Carnal, Fabrice; Stoll, Serge
2011-10-27
Complex formation between a weak flexible polyelectrolyte chain and one positively charged nanoparticle in presence of explicit counterions and salt particles is investigated using Monte Carlo simulations. The influence of parameters such as the nanoparticle surface charge density, salt valency, and solution property such as the pH on the chain protonation/deprotonation process and monomer adsorption at the nanoparticle surface are systematically investigated. It is shown that the nanoparticle presence significantly modifies chain acid/base and polyelectrolyte conformational properties. The importance of the attractive electrostatic interactions between the chain and the nanoparticle clearly promotes the chain deprotonation leading, at high pH and nanoparticle charge density, to fully wrapped polyelectrolyte at the nanoparticle surface. When the nanoparticle bare charge is overcompensated by the polyelectrolyte charges, counterions and salt particles condense at the surface of the polyelectrolyte-nanoparticle complex to compensate for the excess of charges providing from the adsorbed polyelectrolyte chain. It is also shown that the complex formation is significantly affected by the salt valency. Indeed, with the presence of trivalent salt cations, competition is observed between the nanoparticle and the trivalent cations. As a result, the amount of adsorbed monomers is less important than in the monovalent and divalent case and chain conformations are different due to the collapse of polyelectrolyte segments around trivalent cations out of the nanoparticle adsorption layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greathouse, Jeffery A.; Boyle, Timothy J.; Kemp, Richard A.
Molecular tracers that can be selectively placed underground and uniquely identified at the surface using simple on-site spectroscopic methods would significantly enhance subsurface fluid monitoring capabilities. To ensure their widespread utility, the solubility of these tracers must be easily tuned to oil- or water-wet conditions as well as reducing or eliminating their propensity to adsorb onto subsurface rock and/or mineral phases. In this work, molecular dynamics simulations were used to investigate the relative solubilities and mineral surface adsorption properties of three candidate tracer compounds comprising Mg–salen derivatives of varying degrees of hydrophilic character. Simulations in water–toluene liquid mixtures indicate thatmore » the partitioning of each Mg–salen compound relative to the interface is strongly influenced by the degree of hydrophobicity of the compound. Simulations of these complexes in fluid-filled mineral nanopores containing neutral (kaolinite) and negatively charged (montmorillonite) mineral surfaces reveal that adsorption tendencies depend upon a variety of parameters, including tracer chemical properties, mineral surface type, and solvent type (water or toluene). Simulation snapshots and averaged density profiles reveal insight into the solvation and adsorption mechanisms that control the partitioning of these complexes in mixed liquid phases and nanopore environments. As a result, this work demonstrates the utility of molecular simulation in the design and screening of molecular tracers for use in subsurface applications.« less
Greathouse, Jeffery A.; Boyle, Timothy J.; Kemp, Richard A.
2018-04-11
Molecular tracers that can be selectively placed underground and uniquely identified at the surface using simple on-site spectroscopic methods would significantly enhance subsurface fluid monitoring capabilities. To ensure their widespread utility, the solubility of these tracers must be easily tuned to oil- or water-wet conditions as well as reducing or eliminating their propensity to adsorb onto subsurface rock and/or mineral phases. In this work, molecular dynamics simulations were used to investigate the relative solubilities and mineral surface adsorption properties of three candidate tracer compounds comprising Mg–salen derivatives of varying degrees of hydrophilic character. Simulations in water–toluene liquid mixtures indicate thatmore » the partitioning of each Mg–salen compound relative to the interface is strongly influenced by the degree of hydrophobicity of the compound. Simulations of these complexes in fluid-filled mineral nanopores containing neutral (kaolinite) and negatively charged (montmorillonite) mineral surfaces reveal that adsorption tendencies depend upon a variety of parameters, including tracer chemical properties, mineral surface type, and solvent type (water or toluene). Simulation snapshots and averaged density profiles reveal insight into the solvation and adsorption mechanisms that control the partitioning of these complexes in mixed liquid phases and nanopore environments. As a result, this work demonstrates the utility of molecular simulation in the design and screening of molecular tracers for use in subsurface applications.« less
Wang, Zhengfang; Shi, Mo; Li, Jihua; Zheng, Zheng
2014-03-01
A novel adsorbent based on iron oxide dispersed over activated carbon (AC) were prepared, and used for phosphate removal from aqueous solutions. The influence of pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing AC were determined. Two series of ACs, non-oxidized and oxidized carbon modified by iron (denoted as AC-Fe and AC/O-Fe), resulted in a maximum impregnated iron of 4.03% and 7.56%, respectively. AC/O-Fe showed 34.0%-46.6% higher phosphate removal efficiency than the AC-Fe did. This was first attributed to the moderate pre-oxidation of raw AC by nitric acid, achieved by dosing Fe(II) after a pre-oxidation, to obtain higher iron loading, which is favorable for phosphate adsorption. Additionally, the in-situ formed active site on the surface of carbon, which was derived from the oxidation of Fe(II) by nitric acid dominated the remarkably high efficiency with respect to the removal of phosphate. The activation energy for adsorption was calculated to be 10.53 and 18.88 kJ/mol for AC-Fe and AC/O-Fe, respectively. The results showed that the surface mass transfer and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Todoran, R.; Todoran, D.; Anitas, E. M.; Szakács, Zs
2016-08-01
We propose reflectance measurements as a method for the evaluation of the kinetics of adsorption processes, to compute the diffusion times of the adsorption products at the thin layers formed at the sphalerite natural mineral-potassium ethyl xanthate solution interface. The method is based on the intensity measurement of the reflected monochromatic radiation obtained from the mineral-xanthate thin layer as a function of time. These determinations were made at the thin layer formed between the sphalerite or activated sphalerite natural minerals with potassium ethyl xanthate, for different solutions concentrations and pH values at constant temperature. Diffusion times of desorbed molecular species into the liquid bring important information about the global kinetics of the ions in this phase during adsorption processes at interfaces. Analysing the time dependence of this parameter one concluded on the diffusion properties of the xanthate molecule in the solution depending on its concentration and pH, knowing that at the initial time these molecules had a uniform spread. This method enabled us to determine that, in time interval of approximately 35 minutes to achieve dynamic equilibrium in the formation of the interface layer, one had three different kinetic behaviours of our systems. In the first 5-8 min one had highly adsorbent character, the state of equilibrium is followed by low adsorbent properties. Gaining information on the adsorption kinetics in the case of xanthate on mineral surface leads to the optimization of the industrial froth flotation process.
NASA Technical Reports Server (NTRS)
Grossman, J. J.; Mukherjee, N. R.; Ryan, J. A.
1972-01-01
Gas adsorption measurements on an Apollo 12 ultrahigh vacuum-stored sample and Apollo 14 and 15 N2-stored samples, show that the cosmic ray track and solar wind damaged surface of lunar soil is very reactive. Room temperature monolayer adsorption of N2 by the Apollo 12 sample at 0.0001 atm was observed. Gas evolution of Apollo 14 lunar soil at liquid nitrogen temperature during adsorption/desorption cycling is probably due to cosmic ray track stored energy release accompanied by solar gas release from depths of 100-200 nm.
Antigenic differences in the surfaces of hyphae and rhizoids in allomyces.
Fultz, S A; Sussman, A S
1966-05-06
Immunofluorescent techniques have demonstrated a difference in surface components of hyphae and rhizoids of Allomyces macrogynus. An antigenic component detected on the rhizoidal surface may be present, but masked, in the hyphal-wall matrix material. The system also allows visualization of the hyphal wall during aging, when changes from a smooth to a fissured surface are noted, and differences in adsorptive properties occur.
Wei, Lan; Huang, Yufen; Li, Yanliang; Huang, Lianxi; Mar, Nyo Nyo; Huang, Qing; Liu, Zhongzhen
2017-02-01
Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m 2 g -1 ). RHBC produced at the highest temperature (750 °C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 °C) to 339.94-765.24 (pyrolysis at 750 °C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 °C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 °C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.
Atomic structure of water/Au, Ag, Cu and Pt atomic junctions.
Li, Yu; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu
2017-02-08
Much progress has been made in understanding the transport properties of atomic-scale conductors. We prepared atomic-scale metal contacts of Cu, Ag, Au and Pt using a mechanically controllable break junction method at 10 K in a cryogenic vacuum. Water molecules were exposed to the metal atomic contacts and the effect of molecular adsorption was investigated by electronic conductance measurements. Statistical analysis of the electronic conductance showed that the water molecule(s) interacted with the surface of the inert Au contact and the reactive Cu ant Pt contacts, where molecular adsorption decreased the electronic conductance. A clear conductance signature of water adsorption was not apparent at the Ag contact. Detailed analysis of the conductance behaviour during a contact-stretching process indicated that metal atomic wires were formed for the Au and Pt contacts. The formation of an Au atomic wire consisting of low coordination number atoms leads to increased reactivity of the inert Au surface towards the adsorption of water.
Characteristics of cellulose-microalgae composite
NASA Astrophysics Data System (ADS)
Hwang, Kyo-Jung; Kwon, Gu-Joong; Yang, Ji-Wook; Kim, Sung-yeol; Kim, Dae-Young
2017-10-01
The composites were prepared in order of mixing the cellulose with the N. commune, dissolution-regeneration procedure by LiOH/Urea aqueous solution and freeze-drying. Before the freeze-drying, internal pores of the composites were substituted with an organic solvent. SEM analysis showed that the increase of N. commune results in blockage of cellulose network structure. Brunauer-Emmett-Teller (BET) surface area analysis showed the decrease of mesopore and macropore as the N. commune ratio increases, also the decrease of the specific surface area was shown. The composites appear to have different thermogravimetric analysis properties with the pure N. commune or cellulose itself. Fourier transform infrared spectroscopy (FT-IR) spectra of the composites have specific peaks of the cellulose and N. commune, and increase of N. commune ratio results broadening of peaks relevant to proteins, lipids, and fatty acids. The composites showed higher adsorptivity as the N. commune ratio increases. Especially, the adsorptivity was higher than active carbon before 120 minutes of adsorption. The composite is expected to be used for the situations which need urgent adsorption.
Bhattacharya, Kakoli; Parasar, Devaborniny; Mondal, Bholanath; Deb, Pritam
2015-01-01
Porous magnetic secondary nanostructures exhibit high surface area because of the presence of plentiful interparticle spaces or pores. Mesoporous Fe3O4 secondary nanostructures (MFSNs) have been studied here as versatile adsorbent for heavy metal scavenging. The porosity combined with magnetic functionality of the secondary nanostructures has facilitated efficient heavy metal (As, Cu and Cd) remediation from water solution within a short period of contact time. It is because of the larger surface area of MFSNs due to the porous network in addition to primary nanostructures which provides abundant adsorption sites facilitating high adsorption of the heavy metal ions. The brilliance of adsorption property of MFSNs has been realized through comprehensive adsorption studies and detailed kinetics. Due to their larger dimension, MFSNs help in overcoming the Brownian motion which facilitates easy separation of the metal ion sorbed secondary nanostructures and also do not get drained out during filtration, thus providing pure water. PMID:26602613
Esrafili, Mehdi D; Mousavian, Parisasadat; Arjomandi Rad, Farzad
2018-06-01
Using the dispersion-corrected DFT calculations, different adsorption modes of formamide molecule are studied over the pristine and Al-doped boron nitride nanosheets (BNNS). It is found that the interaction between the Al atom and its neighboring N atoms in the Al-doped BNNS is very strong, which would hinder the dispersion and clustering of the Al atoms over the BNNS surface. Unlike the pristine nanosheet, the electronic properties of Al-doped BNNS are very sensitive to the formamide adsorption. The adsorption energies of formamide over the Al-doped sheet are in the range of -0.93 to -1.85 eV, which indicates the quite strong interaction of this molecule with the surface. Moreover, the dehydrogenation of formamide over the Al-doped BNNS is examined. According to our results, the N-H bond scission of formamide is more energetically favorable than the C-H one. Copyright © 2018 Elsevier Inc. All rights reserved.
Elvira, Gutiérrez-Bonilla; Francisco, Granados-Correa; Víctor, Sánchez-Mendieta; Alberto, Morales-Luckie Raúl
2017-07-01
A series of MgO-based adsorbents were prepared through solution-combustion synthesis and ball-milling process. The prepared MgO-based powders were characterized using X-ray diffraction, scanning electron microscopy, N 2 physisorption measurements, and employed as potential adsorbents for CO 2 adsorption. The influence of structural and textural properties of these adsorbents over the CO 2 adsorption behaviour was also investigated. The results showed that MgO-based products prepared by solution-combustion and ball-milling processes, were highly porous, fluffy, nanocrystalline structures in nature, which are unique physico-chemical properties that significantly contribute to enhance their CO 2 adsorption. It was found that the MgO synthesized by solution combustion process, using a molar ratio of urea to magnesium nitrate (2:1), and treated by ball-milling during 2.5hr (MgO-BM2.5h), exhibited the maximum CO 2 adsorption capacity of 1.611mmol/g at 25°C and 1atm, mainly via chemisorption. The CO 2 adsorption behaviour on the MgO-based adsorbents was correlated to their improved specific surface area, total pore volume, pore size distribution and crystallinity. The reusability of synthesized MgO-BM2.5h was confirmed by five consecutive CO 2 adsorption-desorption times, without any significant loss of performance, that supports the potential of MgO-based adsorbent. The results confirmed that the special features of MgO prepared by solution-combustion and treated by ball-milling during 2.5hr are favorable to be used as effective MgO-based adsorbent in post-combustion CO 2 capture technologies. Copyright © 2016. Published by Elsevier B.V.
Activated Carbon Preparation and Modification for Adsorption
NASA Astrophysics Data System (ADS)
Cao, Yuhe
Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon. The adsorption capacities of these active carbon samples were almost three times that of zeolite. However, the un-modified active carbon had the highest adsorption capacity for butanol vapor (259.6 mg g-1), compared to 222.4 mg g-1 after 10% H2O2 hydrothermal treatment. Both modified and un-modified active carbon can be easily regenerated for repeatable adsorption by heating to 150 °C. Therefore, surface oxygen groups significantly reduced the adsorption capacity of active carbons for butanol vapor. In addition, original active carbon and AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb butanol vapor. The specific surface area and oxygen-containing functional groups of AC were tested before and after modification. The adsorption capacity of unmodified AC samples were the highest. Hydrothermal oxidation of AC with HNO3 increased the surface oxygen content, Brunauer-Emmett-Teller (BET) surface area, micropore, mesopore and total pore volume of AC. Although the pore structure and specific surface area were greatly improved after hydrothermal oxidization with 4 M HNO3, the increased oxygen on the surface of AC decreased the dynamic adsorption capacity. In order to get high adsorption capacity adsorbents, we used corn stalk as precursor to fabricate porous carbon. ACs were prepared through chemical activation of biochar from whole corn stalk (WCS) and corn stalk pith (CSP) at varying temperatures using potassium hydroxide as the activating agent. ACs were characterized via pore structural analysis and scanning electron microscopy (SEM). These adsorbents were then assessed for their adsorption capacity for butanol vapor. It was found that WCS activated at 900 °C for 1 h (WCS-900) had optimal butanol adsorption characteristics. The BET surface area and total pore volume of the WCS-900 were 2330 m2 g-1 and 1.29 cm3 g-1, respectively. The dynamic adsorption capacity of butanol vapor was 410.0 mg g-1, a 185.1 % increase compared to charcoal-based commercial AC (143.8 mg g -1). Based on the adsorption experiments of butanol vapor, we found the chemical properties of the AC surface play an important role in adsorbing molecules. The adsorption of creatinine on active carbons was also studied, which is a toxic compound generated by human. High levels of creatinine in the blood stream is normally caused by malfunction or failure of the kidneys. Activated carbons is taken by the patients orally to reduce creatinine level. In order to figure out whether chemical modification could increase the adsorption capacity of creatinine, AC samples modified by nitric acid hydrothermal modification were assessed for their ability to adsorb creatinine. The pore structure and surface properties of the AC samples were characterized by N 2 adsorption, temperature programmed desorption (TPD), Fourier Transform Infrared spectroscopy (FTIR), and X-ray photoelectron spectrometer (XPS). It indicated that 4M HNO3 hydrothermal modification with 180 °C was an efficient method in improvement of the creatinine adsorption. The improved adsorption capacity can be attributed mainly to an increase in the acidic oxygen-containing functional groups. The adsorption of creatinine over AC may involve an interaction with the acidic oxygen-containing groups on AC. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherm and isotherm constants. Equilibrium data fitted very well to the Freundlich model in the entire saturation range (3.58-59.08 mg L-1 ). The maximum adsorption capacities of AC modified with 180 °C is 62.5 mg g-1 according to the Langmuir model. Pseudo first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical adsorption was the rate-limiting step, instead of mass transfer. (Abstract shortened by ProQuest.).
Ota, Misaki; Hirota, Yuichiro; Uchida, Yoshiaki; Sakamoto, Yasuhiro; Nishiyama, Norikazu
2018-06-12
Carbon dioxide (CO 2 ) capture and storage (CCS) technologies have been attracting attention in terms of tackling with global warming. To date, various CO 2 capture technologies including solvents, membranes, cryogenics, and solid adsorbents have been proposed. Currently, a liquid adsorption method for CO 2 using amine solution (monoethanolamine) has been practically used. However, this liquid phase CO 2 adsorption process requires heat regeneration, and it can cause many problems such as corrosion of equipment and degradation of the solution. Meanwhile, solid adsorption methods using porous materials are more advantageous over the liquid method at these points. In this context, we here evaluated if hydrogen titanate (H 2 Ti 3 O 7 ) nanotubes and the surface modification effectively capture CO 2 . For this aim, we first developed a facile synthesis method of H 2 Ti 3 O 7 nanotubes different from any conventional methods. Briefly, they were converted from the precursors-amorphous TiO 2 nanoparticles at room temperature (25 °C). We then determined the outer and the inner diameters of the H 2 Ti 3 O 7 nanotubes as 3.0 and 0.7 nm, respectively. It revealed that both values were much smaller than the reported ones; thus the specific surface area showed the highest value (735 m 2 /g). Next, the outer surface of H 2 Ti 3 O 7 nanotubes was modified using ethylenediamine to examine if CO 2 adsorption capacity increases. The ethylendiamine-modified H 2 Ti 3 O 7 nanotubes showed a higher CO 2 adsorption capacity (50 cm 3 /g at 0 °C, 100 kPa). We finally concluded that the higher CO 2 adsorption capacity could be explained, not only by the high specific surface area of the nanotubes but also by tripartite hydrogen bonding interactions among amines, CO 2 , and OH groups on the surface of H 2 Ti 3 O 7 .
Saha, Dipendu; Orkoulas, Gerassimos; Chen, Jihua; ...
2017-03-01
In this research, we have synthesized two sulfur functionalized nanoporous carbons by post-synthesis modifications with sulfur bearing activating agents that simultaneously enhanced the surface area and introduced sulfur functionalities on the carbon surface. The Brunauer–Emmett–Teller (BET) surface areas of these materials were 2865 and 837 m 2/g with total sulfur contents of 8.2 and 12.9 %, respectively. The sulfur-functionalized carbons were characterized with pore textural properties, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electron microscopy (SEM and TEM). In both the carbons, CO 2 adsorption isotherms and kinetics were measured in three different temperatures of 298, 288 and 278more » K and pressures up to 760 torr. The gravimetric CO 2 uptake followed the trend with BET surface area but the surface area-based uptake was reversed and it followed the trend of sulfur content. The heat of adsorption of CO 2 in low uptake was 60-65 kJ/mol, which is the highest for CO 2 adsorption in porous carbons. In order to investigate the adsorptive separation of CO 2, N 2 and CH 4 adsorption isotherms were also measured at 298 K and 760 torr. The selectivity of separation for CO 2/N 2 and CO 2/CH 4 was calculated based on the Ideal Adsorbed Solution Theory (IAST) and all the results demonstrated the high CO 2 selectivity for the carbon with higher sulfur content. The adsorption isotherms were combined with mass balances to calculate the breakthrough behavior of the binary mixtures of CO 2/N 2 and CO 2/CH 4. The simulation results demonstrated that the dimensionless breakthrough time is a decreasing function of the mole fraction of CO 2 in the feed stream. The overall results suggest that the sulfurfunctionalized carbons can be employed as potential adsorbents for CO 2 separation.« less
Ning, Ping; Liu, Sijian; Wang, Chi; Li, Kai; Sun, Xin; Tang, Lihong; Liu, Gui
2018-02-01
Walnut-shell activated carbon (WSAC) supported ferric oxide was modified by non-thermal plasma (NTP), and the removal efficiency for hydrogen sulfide over Fe/WSAC modified by dielectric barrier discharge (DBD) was significantly promoted. The sample modified for 10min and 6.8kV output (30V input voltage) maintained 100% H 2 S conversion over a long reaction time of 390min. The surface properties of adsorbents modified by NTP under different conditions were evaluated by the methods of X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis and in-situ Fourier transform infrared spectroscopy (FTIR), to help understand the effect of the NTP treatment. NTP treatment enhanced the adsorption capacity of Fe/WSAC, which could due to the formation of micro-pores with sizes of 0.4, 0.5 and 0.75nm. XPS revealed that chemisorbed oxygen changed into lattice oxygen after NTP treatment, and lattice oxygen is beneficial for H 2 S oxidation. From the in-situ FTIR result, transformation of the reaction path on Fe/WSAC was observed after NTP modification. The research results indicate that NTP is an effective method to improve the surface properties of the Fe/WSAC catalyst for H 2 S adsorption-oxidation. Copyright © 2017. Published by Elsevier B.V.
Removal of sulfamethazine by hypercrosslinked adsorbents in aquatic systems.
Grimmett, Maria E
2013-01-01
Four hundred tons of sulfamethazine are fed to livestock annually in North America to prevent disease and promote growth, but most of the drug is excreted unmetabolized into the environment. Because of slow degradation and high mobility, sulfamethazine contaminates groundwater supplies and causes aquatic ecosystem damage. Current water treatment methods to remove pharmaceuticals are not universally effective and have considerable limitations, which necessitate newer remediation techniques. Hypercrosslinked adsorbents, polystyrene polymers 100% crosslinked with methylene bridges, show promise because of high surface areas, high mechanical strength, and regenerable properties. This study screened four Purolite hypercrosslinked adsorbents (MN152, MN250, PAD400, and PAD600) to remove sulfamethazine from contaminated water and then characterized the most efficient resin, MN250, with batch adsorption and desorption experiments to optimize its use. Sulfamethazine adsorption onto MN250 displayed an L-class isotherm shape consistent with monolayer adsorption, negligible solute-solute interactions at the adsorbent surface, and decreasing activation energies of desorption with increasing surface coverage. MN250 had a maximum experimental adsorption capacity of 111 mg g, showing high correlation to the Langmuir and Freundlich models. Adsorption kinetics revealed prolonged adsorption over 59 h and were best described by Ho's pseudo-second-order model. There was minimal desorption from MN250 in distilled water, indicating an irreversible adsorption process. MN250's high capacity for sulfamethazine adsorption, minimal desorption in water, and ability to be regenerated make it a practical solution for sulfamethazine removal in areas that have contaminated groundwater supplies (e.g., areas near concentrated livestock operations), especially as current treatment methods have significant drawbacks. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Two dimensional layered materials: First-principle investigation
NASA Astrophysics Data System (ADS)
Tang, Youjian
Two-dimensional layered materials have emerged as a fascinating research area due to their unique physical and chemical properties, which differ from those of their bulk counterparts. Some of these unique properties are due to carriers and transport being confined to 2 dimensions, some are due to lattice symmetry, and some arise from their large surface area, gateability, stackability, high mobility, spin transport, or optical accessibility. How to modify the electronic and magnetic properties of two-dimensional layered materials for desirable long-term applications or fundamental physics is the main focus of this thesis. We explored the methods of adsorption, intercalation, and doping as ways to modify two-dimensional layered materials, using density functional theory as the main computational methodology. Chapter 1 gives a brief review of density functional theory. Due to the difficulty of solving the many-particle Schrodinger equation, density functional theory was developed to find the ground-state properties of many-electron systems through an examination of their charge density, rather than their wavefunction. This method has great application throughout the chemical and material sciences, such as modeling nano-scale systems, analyzing electronic, mechanical, thermal, optical and magnetic properties, and predicting reaction mechanisms. Graphene and transition metal dichalcogenides are arguably the two most important two-dimensional layered materials in terms of the scope and interest of their physical properties. Thus they are the main focus of this thesis. In chapter 2, the structure and electronic properties of graphene and transition metal dichalcogenides are described. Alkali adsorption onto the surface of bulk graphite and metal intecalation into transition metal dichalcogenides -- two methods of modifying properties through the introduction of metallic atoms into layered systems -- are described in chapter 2. Chapter 3 presents a new method of tuning the electronic properties of 2D materials: resonant physisorption. An example is given for adsorption of polycyclic aromatic hydrocarbon molecules onto graphene. The energy levels of these molecules were fine tuned to make them resonate with the graphene Fermi level, thus enhancing the strength of their effect on the graphene electronic structure. Chapter 4 develops the idea of coupling two distinct surface adsorption systems across a suspended atomically thin membrane. We examine a system of dual-sided adsorption of potassium onto a graphene membrane. The sequence of adsorption patterns predicted undergoes a striking devil's staircase of intermediate coverage fractions as the difference in adsorbate chemical potential between the two sides of the membrane varies. Chapter 5 is devoted to magnetic and band structure engineering of transition metal dichalcogenides through introduction of magnetic atoms into the lattice. Semiconducting transition metal dichalcogenide systems such as MoS2 and WS2 have band gaps suitable for electronic and optoelectronic applications, but are not magnetic. By intercalating and doping in a carefully designed stoichiometric ratio that precisely controls the occupation and relative placement of the dopant and host levels, we can convert a semiconducting transition metal dichalcogenide system into a half-metal or -- more surprisingly -- a half-semiconductor, where the conduction band is fully spin polarized and the energy scale for magnetism is the band gap.
Benkoula, Safia; Sublemontier, Olivier; Patanen, Minna; Nicolas, Christophe; Sirotti, Fausto; Naitabdi, Ahmed; Gaie-Levrel, François; Antonsson, Egill; Aureau, Damien; Ouf, François-Xavier; Wada, Shin-Ichi; Etcheberry, Arnaud; Ueda, Kiyoshi; Miron, Catalin
2015-01-01
We describe an experimental method to probe the adsorption of water at the surface of isolated, substrate-free TiO2 nanoparticles (NPs) based on soft X-ray spectroscopy in the gas phase using synchrotron radiation. To understand the interfacial properties between water and TiO2 surface, a water shell was adsorbed at the surface of TiO2 NPs. We used two different ways to control the hydration level of the NPs: in the first scheme, initially solvated NPs were dried and in the second one, dry NPs generated thanks to a commercial aerosol generator were exposed to water vapor. XPS was used to identify the signature of the water layer shell on the surface of the free TiO2 NPs and made it possible to follow the evolution of their hydration state. The results obtained allow the establishment of a qualitative determination of isolated NPs’ surface states, as well as to unravel water adsorption mechanisms. This method appears to be a unique approach to investigate the interface between an isolated nano-object and a solvent over-layer, paving the way towards new investigation methods in heterogeneous catalysis on nanomaterials. PMID:26462615
Theoretical study of the adsorption of DNA bases on the acidic external surface of montmorillonite.
Mignon, Pierre; Sodupe, Mariona
2012-01-14
In the present study, DFT periodic plane wave calculations, at the PBE-D level of theory, were carried out to investigate the interaction of DNA nucleobases with acidic montmorillonite. The surface model was considered in its octahedral (Osub) and tetrahedral (Tsub) substituted forms, known to have different acidic properties. The adsorption of adenine, guanine and cytosine was considered in both orthogonal and coplanar orientations with the surface, interacting with the proton via a given heteroatom. In almost all considered cases, adsorption involved the spontaneous proton transfer to the nucleobase, with a more pronounced character in the Osub structures. The binding energy is about 10 kcal mol(-1) larger for Osub than for Tsub complexes mainly due to the larger acidity in Osub surfaces and due to the better stabilization by H-bond contacts between the negatively charged surface and the protonated base. The binding energy of coplanar orientations of the base is observed to be as large as the orthogonal ones due to a balance between electrostatic and dispersion contributions. Finally the binding of guanine and adenine on the acidic surface amounts to 50 kcal mol(-1) while that of cytosine rises to 44 kcal mol(-1).
Production of carbon molecular sieves from Illinois coal
Lizzio, A.A.; Rostam-Abadi, M.
1993-01-01
Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3.3, 4.3 and 5.0 A??, respectively. Kinetic and equilibrium adsorption data provided complementary information on the molecular sieving capabilities and microstructure of the prepared chars. ?? 1993.
Cougnaud, A; Faur, C; Le Cloirec, P
2005-08-01
The adsorption of pesticides (atrazin, atrazin-desethyl and triflusulfuron-methyl) from aqueous solution is performed by activated carbon fibers (ACF) and granular activated carbons (GAC) in static and dynamic reactors, in order to study the co-influence of adsorbent and adsorbate characteristics on the adsorption mechanisms. First, mono-component adsorption equilibrium is carried out in a batch reactor for a wide range of concentrations (from 5 microg 1(-1) to 21.4 mg 1(-1)). Classic models, like Freundlich and Langmuir equations, are applied: the maximum adsorption capacities are high, ranging between 63 and 509 mg g(-1). The comparison of single-solute isotherms tends to confirm the decisive role of the adsorbent properties in the adsorption capacity of pesticides by the activated carbons: the performance of ACF is significantly higher than that of GAC due to a narrower pore size distribution of fibers in the area of micropores. Furthermore, their small diameter (10 microm compared with 1 mm for grains) enables faster adsorption kinetics because of the larger surface area exposed to the fluid. The influence of adsorbate size is also demonstrated. A multiple linear regression enables the co-influence of adsorbent and adsorbate properties to be quantified, a relationship being assessed between Langmuir maximum adsorption capacity and pesticide molecular weight and adsorbent diameter (R2 = 0.90). Secondly, the adsorption of the three pesticides is studied in a dynamic reactor: in this case, the influence of operating conditions (inlet concentration C0, flow velocity U0) is also taken into account. As the initial concentration or flow velocity decreases, the column performance significantly improves. Both operating factors are included in a multiple linear regression (R2 = 0.91) used to predict saturation adsorption capacity, with molecular weight and particle diameter being again designed as influent explicative variables.
NASA Astrophysics Data System (ADS)
Wang, Lijun; Wang, Xiaoxia; Li, Jianfa; Feng, Xiaolan; Wang, Yusen
2017-09-01
In this work, hydrozincite and Zn/Al-CO3 2- hydrotalcite supported on silica aerogel were prepared via a simple and economical process and used as adsorbents for Pb(II) removal. The supported hydrozincite and Zn/Al-CO3 2- hydrotalcite possess ultra-thin thickness, high surface area, and weak crystallinity. In the batch Pb(II) adsorption experiments, the adsorbents with higher Zn(II) contents showed higher Pb(II) adsorption capacities, and the adsorption data fitted well with the Langmuir isotherm model and pseudo-second-order kinetic model, indicating a mechanism of surface chemisorption. The adsorption capacities calculated based Langmuir isotherm model are 684.9 mg/g and 555.6 mg/g for the supported hydrozincite and Zn/Al-CO3 2- hydrotalcite, respectively, higher than the adsorption capacities of other hydrotalcite-based adsorbents and most of other inorganic adsorbents reported previously. The XRD diffraction peaks of hydrozincite and Zn/Al-CO3 2- hydrotalcite disappeared after the adsorption, and the Pb(II) species were uniformly dispersed in the adsorbents in form of Pb3(CO3)2(OH)2 proven by TEM, EDS mapping and XRD analysis, demonstrating the nature of the adsorption is the precipitation conversion of hydrozincite or Zn/Al-CO3 2- hydrotalcite into Pb3(CO3)2(OH)2. These results demonstrate the synergic Pb(II) removal effect of the CO3 2- and OH- derived from hydrozincite and Zn/Al-CO3 2- hydrotalcite together with their ultra-thin thickness and high surface area contribute the excellent properties of the adsorbents.
Adsorption of Ten Microcystin Congeners to Common Laboratory-Ware Is Solvent and Surface Dependent.
Altaner, Stefan; Puddick, Jonathan; Wood, Susanna A; Dietrich, Daniel R
2017-04-06
Cyanobacteria can produce heptapetides called microcystins (MC) which are harmful to humans due to their ability to inhibit cellular protein phosphatases. Quantitation of these toxins can be hampered by their adsorption to common laboratory-ware during sample processing and analysis. Because of their structural diversity (>100 congeners) and different physico-chemical properties, they vary in their adsorption to surfaces. In this study, the adsorption of ten different MC congeners (encompassing non-arginated to doubly-arginated congeners) to common laboratory-ware was assessed using different solvent combinations. Sample handling steps were mimicked with glass and polypropylene pipettes and vials with increasing methanol concentrations at two pH levels, before analysis by liquid chromatography-tandem mass spectrometry. We demonstrated that MC adsorb to polypropylene surfaces irrespective of pH. After eight successive pipet actions using polypropylene tips ca. 20% of the MC were lost to the surface material, which increased to 25%-40% when solutions were acidified. The observed loss was alleviated by changing the methanol (MeOH) concentration in the final solvent. The required MeOH concentration varied depending on which congener was present. Microcystins only adsorbed to glass pipettes (loss up to 30% after eight pipet actions) when in acidified aqueous solutions. The latter appeared largely dependent on the presence of ionizable groups, such as arginine residues.
Study of adsorption mechanism of heavy metals onto waste biomass (wheat bran).
Ogata, Fumihiko; Kangawa, Moe; Tominaga, Hisato; Tanaka, Yuko; Ueda, Ayaka; Iwata, Yuka; Kawasaki, Naohito
2013-01-01
In this study, raw wheat bran (R-WB), a type of waste biomass (WB) was treated with Pectinase PL (P-WB), and the properties (yield percentage, carboxy group surface concentration, the solution pH, and specific surface area) of R-WB and P-WB were investigated. The surface concentration of carboxy groups on R-WB (3.56 mmol/g) was greater than that of P-WB (2.11 mmol/g). In contrast, the specific surface area of P-WB (24.98 m²/g) was greater than that of R-WB (3.25 m²/g). In addition, the adsorption of cadmium and lead ions to WB was evaluated. Adsorption of the heavy-metal ions reached equilibrium within 9 h, and the experimental data was fitted to a pseudo-second-order model. More heavy-metal ions were adsorbed onto R-WB than onto P-WB. The correlation coefficient between the amount of ions adsorbed and the number of carboxy groups or pectin exceeded 0.884 and 0.975, respectively. This study indicated that wheat bran was useful for the removal of cadmium or lead ions from aqueous solutions. The adsorption mechanism of cadmium and lead ions to WB was associated with presence of carboxy group in pectin.
Surface Adsorption in Nonpolarizable Atomic Models.
Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J
2014-12-09
Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.
NASA Astrophysics Data System (ADS)
Birajdar, Mallinath S.; Cho, Hyunjoo; Seo, Youngmin; Choi, Jonghoon; Park, Hansoo
2018-04-01
Poly (dimethyl siloxane) (PDMS) is widely used in various biomedical applications. However, the PDMS surface is known to cause bacterial adhesion and protein absorption issues due to its high hydrophobicity. Therefore, the development of antibacterial and anti-protein products is necessary to prevent these problems. In this study, to improve its antibacterial property and prevent protein adsorption, PDMS surfaces were conjugated with itaconic acid (IA) and poly (itaconic acid) (PIA) via a chemical method. Additionally, IA and PIA were physically blended with PDMS to compare the antibacterial properties of these materials with those of the chemically conjugated PDMS surfaces. The successful synthesis of the PIA polymer structure was confirmed by proton nuclear magnetic resonance (1H NMR) spectroscopy. The successful conjugation of IA and PIA on PDMS was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle measurements, and microbicinchoninic acid (BCA) protein assay analyses. The PDMS surfaces functionalized with IA and PIA by the conjugation method better prevented protein adsorption than the bare PDMS. Therefore, these surface-conjugated PDMS can be used in various biomedical applications.
Castells; Romero; Nardillo
1997-08-01
Thermodynamic properties of solution in 3-methylsydnone (3MS) and of adsorption at the nitrogen/3MS interface were gas chromatographically measured for a group of fifteen hydrocarbons at infinite dilution conditions. Retention volumes were measured at five temperatures within the range 37-52°C in six columns containing different loadings of 3MS on Chromosorb P AW. Partition and adsorption coefficients were calculated and from their temperature dependence the corresponding enthalpies were obtained, although with considerable error; infinite dilution activity coefficients of the hydrocarbons in the bulk and in the surface phases demonstrated a strong correlation. Bulk activity coefficients in 3MS were very much smaller than those previously measured for the same solutes in formamide (FA) and in ethyleneglycol (EG), and were also smaller than what could be predicted on account of 3MS cohesive energy density as estimated from the quotient sigma/v1/3 (sigma, surface tension; v, molar volume). There was not such a large difference between the surface activity coefficients in the three solvents; furthermore, the quotients (surface activity coefficient/bulk activity coefficient) for a given solute in 3MS were twice as large as in FA and about three times larger than in EG. These results make evident the difficulties inherent in the prediction of surface phase properties from those in the bulk and cast doubts on the pertinency of employing the surface tension to compare cohesive energy densities of polar solvents with important chemical differences.
Stenger, Patrick C; Wu, Guohui; Miller, Chad E; Chi, Eva Y; Frey, Shelli L; Lee, Ka Yee C; Majewski, Jaroslaw; Kjaer, Kristian; Zasadzinski, Joseph A
2009-08-05
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
Macroporous monoliths for trace metal extraction from seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, Yanfeng; Mayes, Richard; Gill, Gary A.
2015-05-29
The viability of seawater-based uranium recovery depends on the uranium adsorption rate and capacity, since the concentration of uranium in the oceans is relatively low (3.3 μgL⁻¹). An important consideration for a fast adsorption is to maximize the adsorption properties of adsorbents such as surface areas and pore structures, which can greatly improve the kinetics of uranium extraction and the adsorption capacity simultaneously. Following this consideration, macroporous monolith adsorbents were prepared from the copolymerization of acrylonitrile (AN) and N, N’-methylenebis(acrylamide) (MBAAm) based on a cryogel method using both hydrophobic and hydrophilic monomers. The monolithic sorbents were tested with simulated seawatermore » containing a high uranyl concentration (–6 ppm) and the uranium adsorption results showed that the adsorption capacities are strongly influenced by the ratio of monomer to the crosslinker, i.e., the density of the amidoxime groups. The preliminary seawater testing indicates the high salinity content of seawater does not hinder the adsorption of uranium.« less