Okada, Masahiro; Yasuda, Shoji; Kimura, Tsuyoshi; Iwasaki, Mitsunobu; Ito, Seishiro; Kishida, Akio; Furuzono, Tsutomu
2006-01-01
A composite consisting of titanium dioxide (TiO2) particle, the surface of which was modified with amino groups, and a silicone substrate through covalent bonding at their interface was developed, and antibacterial and cell adhesion activities of the composite were evaluated. The density of the amino groups on the TiO2 particle surface was controlled by the reaction time of the modification reaction. The degradation rate of CH3CHO in the presence of the TiO2 particles under UV irradiation decreased with an increase in the amino group density on the TiO2 surface. On the other hand, the number of L929 cells adhering on the TiO2/silicone composite increased with an increase in the amino group density. From the above two results, the optimum density of amino groups for both photoreactivity and cell adhesiveness was estimated to be 2.0-4.0 molecules/nm2. The optimum amino group-modified TiO2/silicone composite sheet (amino group density, 3.0 molecules/nm2) showed an effective antibacterial activity for Escherichia coli bacteria under UV irradiation. (c) 2005 Wiley Periodicals, Inc
Raman and surface enhanced Raman spectroscopy of amino acids and peptide
NASA Astrophysics Data System (ADS)
Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao
2009-08-01
Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.
NASA Astrophysics Data System (ADS)
Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang
2017-07-01
Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.
Tailoring pore properties of MCM-48 silica for selective adsorption of CO2.
Kim, Sangil; Ida, Junichi; Guliants, Vadim V; Lin, Jerry Y S
2005-04-07
Four different types of amine-attached MCM-48 silicas were prepared and investigated for CO(2) separation from N(2). Monomeric and polymeric hindered and unhindered amines were attached to the pore surface of the MCM-48 silica and characterized with respect to their CO(2) sorption properties. The pore structures and amino group content in these modified silicas were investigated by XRD, FT-IR, TGA, N(2) adsorption/desorption at 77 K and CHN/Si analysis, which confirmed that in all cases the amino groups were attached to the pore surface of MCM-48 at 1.5-5.2 mmol/g. The N(2) adsorption/desorption analysis showed a considerable decrease of the pore volume and surface area for the MCM-48 silica containing a polymeric amine (e.g., polyethyleneimine). The CO(2) adsorption rates and capacities of the amine-attached MCM-48 samples were studied employing a sorption microbalance. The results obtained indicated that in addition to the concentration of surface-attached amino groups, specific interactions between CO(2) and the surface amino groups, and the resultant pore structure after amine group attachment have a significant impact on CO(2) adsorption properties of these promising adsorbent materials.
Surface Propensity of Atmospherically Relevant Amino Acids Studied by XPS.
Mocellin, Alexandra; Gomes, Anderson Herbert de Abreu; Araújo, Oscar Cardoso; de Brito, Arnaldo Naves; Björneholm, Olle
2017-04-27
Amino acids constitute an important fraction of the water-soluble organic nitrogen (WSON) compounds in aerosols and are involved in many processes in the atmosphere. In this work, we applied X-ray photoelectron spectroscopy (XPS) to study aqueous solutions of four amino acids, glycine, alanine, valine, and methionine, in their zwitterionic forms. We found that amino acids with hydrophilic side chains and smaller size, GLY and ALA, tend to stay in the bulk of the liquid, while the hydrophobic and bigger amino acids, VAL and MET, are found to concentrate more on the surface. We found experimental evidence that the amino acids have preferential orientation relative to the surface, with the hydrophobic side chain being closer to the surface than the hydrophilic carboxylate group. The observed amino acid surface propensity has implications in atmospheric science as the surface interactions play a central role in cloud droplet formation, and they should be considered in climate models.
Controlled drug release on amine functionalized spherical MCM-41
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szegedi, Agnes, E-mail: szegedi@chemres.hu; Popova, Margarita; Goshev, Ivan
2012-10-15
MCM-41 silica with spherical morphology and small particle sizes (100 nm) was synthesized and modified by post-synthesis method with different amounts of 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, was carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, elemental analysis, thermal analysis and FT-IR spectroscopy. A new method was developed for the quantitative determination of amino groups in surface modified mesoporous materials by the ninhydrin reaction. Good correlation was found between the amino content of the MCM-41 materials determined by the ninhydrin methodmore » and their ibuprofen adsorption capacity. Amino modification resulted in high degree of ibuprofen loading and slow release rate in comparison to the parent non-modified MCM-41. - Graphical abstract: Determination of surface amino groups by ninhidrin method. Highlights: Black-Right-Pointing-Pointer Spherical MCM-41 modified by different amounts of APTES was studied. Black-Right-Pointing-Pointer Ibuprofen (IBU) adsorption and release characteristics was tested. Black-Right-Pointing-Pointer The ninhydrin reaction was used for the quantitative determination of amino groups. Black-Right-Pointing-Pointer Stoichiometric amount of APTES is enough for totally covering the surface with amino groups. Black-Right-Pointing-Pointer Good correlation was found between the amino content and IBU adsorption capacity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.
2014-07-01
Mesoporous silicas with hexagonally arranged pore channels were synthesized in water–ethanol-ammonia solution using cetyltrimethylammonium bromide as template. Directed modification of silica surface with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups was realized by postsynthetic activation of halogenoalkylsilicas, which have surface uniformly or selectively distributed 3-chloropropyl groups, with 2-aminodiphenylamine in the liquid phase. Chemical composition of silica materials was estimated by IR spectroscopy and chemical analysis of the surface products of reactions. Characteristics of porous structure of MCM-41-type silicas were determined from X-ray and low-temperature nitrogen ad-desorption measurements. Release ability of synthesized silica carriers was established on encapsulation of 4-aminobenzoic acid in pore channels and subsequentmore » delivery at pH=6.86 and pH=1.00. It was found that N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups block pore entrances at neutral pH preventing 4-aminobenzoic acid release. At pH=1.00 repulsion of positively charged surface aromatic amino groups localized near pore orifices provides unhindered liberation of aromatic amino acid from mesoporous channels. - Graphical abstract: Blocking of pores with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups at pH=6.86 for storage of ABA and opening of pore entrances at pH=1.00 for unhindered ABA liberation. - Highlights: • Modification of MCM-41 with N-[N′-(N′-phenyl)-2-aminophenyl]-3-aminopropyl groups. • Study of release ability of synthesized silica carriers in relation to amino acid. • Controlled blocking and opening of pores by amino groups at pH change were performed. • Retention of amino acid at pH=6.86 and its liberation at pH=1.00 was proved.« less
Magneto-Sensitive Adsorbents Modified by Functional Nitrogen-Containing Groups
NASA Astrophysics Data System (ADS)
Melnyk, Inna V.; Gdula, Karolina; Dąbrowski, Andrzej; Zub, Yuriy L.
2016-02-01
In order to obtain amino-functionalized silica materials with magnetic core, one-step synthesis was carried out. Several materials, differ in number and structure of amino groups, were synthesized on the basis of sol-gel method. The synthesized materials were examined by several analytical techniques. The presence and content of amino groups were measured by using Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy and acid-base titration, respectively. Specific surface areas were measured by nitrogen/adsorption desorption isotherms. It was proved that sol-gel approach leads to obtain materials with high content of amino groups built into their surfaces (in the range 1.6-2.7 mmol/g). As-obtained materials were tested as potential adsorbents for copper(II) ions. The received maximum adsorption capacities were in the range 0.4-0.7 mmol/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Nana; Cheng, Lu; Wang, Jianpu, E-mail: iamjpwang@njtech.edu.cn
Amino acid self-assembled monolayers are used in the fabrication of light-emitting diodes based on organic-inorganic halide perovskites. The monolayers of amino acids provide modified interfaces by anchoring to the surfaces of ZnO charge-transporting layers using carboxyl groups, leaving the amino groups to facilitate the nucleation of MAPbBr{sub 3} perovskite films. This surface-modification strategy, together with chlorobenzene-assisted fast crystallization method, results in good surface coverage and reduced defect density of the perovskite films. These efforts lead to green perovskite light emitting diodes with a low turn-on voltage of 2 V and an external quantum efficiency of 0.43% at a brightness of ∼5000 cdmore » m{sup −2}.« less
Liu, Liuxie; Li, Kai; Chen, Xiao; Liang, Xiaoqin; Zheng, Yan; Li, Laicai
2018-03-29
The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory. Through the analysis of adsorption geometries, amino group and side chains of AAs have been identified as the major side to adsorb on TiO 2 , while the carboxyl group prefers to stay outside to avoid the repulsion between negatively charged oxygen from TiO 2 and AAs. On the surface, two-coordinated oxygen is the major site to stabilize AAs through O-H interactions. The above conclusion does not change when it is in the aqueous solution based on the calculations with AAs surrounded by explicit water molecules. The above knowledge is helpful in predicting how AAs and even peptides adsorb on inorganic materials. Graphical abstract The adsorption of 20 amino acids (AAs) on the (101) surface of anatase titanium dioxide (TiO 2 ) has been investigated under the scheme of density functional theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei
2015-10-20
Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. Amore » series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.« less
Wang, Lingren; He, Min; Gong, Tao; Zhang, Xiang; Zhang, Lincai; Liu, Tao; Ye, Wei; Pan, Changjiang; Zhao, Changsheng
2017-11-21
It has been widely recognized that functional groups on biomaterial surfaces play important roles in blood compatibility. To construct an effective antithrombotic bio-interface onto the poly(ether sulfone) (PES) membrane surface, bio-functional groups of sodium carboxylic (-COONa), sodium sulfonic (-SO 3 Na) and amino (-NH 2 ) groups were introduced onto the PES membrane surface in three steps: the synthesis of PES with carboxylic (-COOH) groups (CPES) and water-soluble PES with sodium sulfonic (-SO 3 Na) groups and amino (-NH 2 ) groups (SNPES); the introduction of carboxylic groups onto the PES membrane by blending CPES with PES; and the grafting of SNPES onto CPES/PES membranes via the coupling of amino groups and carboxyl groups. The physical/chemical properties and bioactivities were dependent on the proportions of the additives. After introducing bio-functional groups, the excellent hemocompatibility of the modified membranes was confirmed by the inhibited platelet adhesion and activation, prolonged clotting times, suppressed blood-related complement and leukocyte-related complement receptor activations. Furthermore, cell tests indicated that the modified membranes showed better cytocompatibility in endothelial cell proliferation than the pristine PES membrane due to the synergistic promotion of the functional groups. To sum up, these results suggested that modified membranes present great potential in fields using blood-contacting materials, such as hemodialysis and surface endothelialization.
Zhang, Ziyang; Li, Haiyan; Liu, Huijuan
2018-03-01
In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Qiaoyi
2018-03-01
We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.
NASA Astrophysics Data System (ADS)
Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong
2016-09-01
Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.
Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong
2016-01-01
Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990
A hydroxyapatite coating covalently linked onto a silicone implant material.
Furuzono, T; Sonoda, K; Tanaka, J
2001-07-01
A novel composite consisting of hydroxyapatite (HAp) microparticles covalently coupled onto a silicone sheet was developed. Initially, an acrylic acid (AAc) -grafted silicone sheet with a 16.7 microg/cm(2) surface graft density was prepared by corona-discharge treatment. The surface of sintered, spherical, carbonated HAp particles with an average diameter of 2.0 microm was subsequently modified with amino groups. The amino group surface density of the HAp particles was calculated to be approximately one amino molecule per 1.0 nm(2) of particle surface area. These samples were characterized with Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy. After the formation of ammonium ionic bonds between both samples under aqueous conditions, they were reacted at 180 degrees C for 6 h in vacuo to form covalent bonds through a solid-phase condensation. The HAp particles were coupled to the AAc-grafted silicone surface by a covalent linkage. Further improvements in the adhesive and bioactive properties of the HAp-coated silicone material are expected.
NASA Astrophysics Data System (ADS)
He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu
2018-05-01
The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.
Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.
Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song
2015-08-12
Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of amino acids based zwitterionic antifouling strategy in ophthalmology. This strategy is also applicable to substrates including filtration membranes, microspheres and nanofibers as well. It is a versatile method for amino acids grafting onto polymer substrates to construct zwitterionic surfaces and achieve antifouling properties.
NASA Astrophysics Data System (ADS)
Zainal, Israa G.; Al-Shammari, Ahmed Majeed; Kachi, Wjeah
2018-05-01
Surface functionalization of magnetic iron oxide nanoparticles (NPs) is a kind of functional materials, which have been widely used in the biotechnology and catalysis. In this study, Nickel-Zinc ferrite nanoparticles was functionalized with amino propyl triethoxy silane (APTES) by silanization reaction and both non coated and organosilane-coated magnetite characterized by energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometry, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy. Basic groups of amino anchored on the external surface of the coated magnetite were observed. Our study procedure nanoparticles which have surface with free - NH2 groups which can carry out ionic interaction with carboxylic groups and act as a carrier of biological molecules, drugs and metals.
Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui
2013-03-01
The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.
NASA Astrophysics Data System (ADS)
Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa
2017-08-01
This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.
Gauvreau, Virginie; Chevallier, Pascale; Vallières, Karine; Petitclerc, Eric; Gaudreault, René C; Laroche, Gaétan
2004-01-01
This study presents two-step and multistep reactions for modifying the surface of plasma-functionalized poly(tetrafluoroethylene) (PTFE) surfaces for subsequent conjugation of biologically relevant molecules. First, PTFE films were treated by a radiofrequency glow discharge (RFGD) ammonia plasma to introduce amino groups on the fluoropolymer surface. This plasma treatment is well optimized and allows the incorporation of a relative surface concentration of approximately 2-3.5% of amino groups, as assessed by chemical derivatization followed by X-ray photoelectron spectroscopy (XPS). In a second step, these amino groups were further reacted with various chemical reagents to provide the surface with chemical functionalities such as maleimides, carboxylic acids, acetals, aldehydes, and thiols, that could be used later on to conjugate a wide variety of biologically relevant molecules such as proteins, DNA, drugs, etc. In the present study, glutaric and cis-aconitic anhydrides were evaluated for their capability to provide carboxylic functions to the PTFE plasma-treated surface. Bromoacetaldehyde diethylacetal was reacted with the aminated PTFE surface, providing a diethylacetal function, which is a latent form of aldehyde functionality. Reactions with cross-linkers such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB) were evaluated to provide a highly reactive maleimide function suitable for further chemical reactions with thiolated molecules. Traut reagent (2-iminothiolane) was also conjugated to introduce a thiol group onto the fluoropolymer surface. PTFE-modified surfaces were analyzed by XPS with a particular attention to quantify the extent of the reactions that occurred on the polymer. Finally, surface immobilization of fibronectin performed using either glutaric anhydride or sulfo-SMPB activators demonstrated the importance of selecting the appropriate conjugation strategy to retain the protein biological activity.
[Studies on interaction of acid-treated nanotube titanic acid and amino acids].
Zhang, Huqin; Chen, Xuemei; Jin, Zhensheng; Liao, Guangxi; Wu, Xiaoming; Du, Jianqiang; Cao, Xiang
2010-06-01
Nanotube titanic acid (NTA) has distinct optical and electrical character, and has photocatalysis character. In accordance with these qualities, NTA was treated with acid so as to enhance its surface activity. Surface structures and surface groups of acid-treated NTA were characterized and analyzed by Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectrometry (FT-IR). The interaction between acid-treated NTA and amino acids was investigated. Analysis results showed that the lengths of acid-treated NTA became obviously shorter. The diameters of nanotube bundles did not change obviously with acid-treating. Meanwhile, the surface of acid-treated NTA was cross-linked with carboxyl or esterfunction. In addition, acid-treated NTA can catch amino acid residues easily, and then form close combination.
grosse Holthaus, Svea; Köppen, Susan; Frauenheim, Thomas; Ciacchi, Lucio Colombi
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101̄0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to form predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holthaus, Svea große; Köppen, Susan, E-mail: koeppen@hmi.uni-bremen.de; Frauenheim, Thomas
2014-06-21
We investigate the adsorption behavior of four different amino acids (glutamine, glutamate, serine, cysteine) on the zinc oxide (101{sup ¯}0) surface, comparing the geometry and energy associated with a number of different adsorption configurations. In doing this, we highlight the benefits and limits of using density-functional tight-binding (DFTB) with respect to standard density functional theory (DFT). The DFTB method is found to reliably reproduce the DFT adsorption geometries. Analysis of the adsorption configurations emphasizes the fundamental role of the first hydration layer in mediating the interactions between the amino acids and the surface. Direct surface-molecule bonds are found to formmore » predominantly via the carboxylate groups of the studied amino acids. No surface-mediated chemical reactions are observed, with the notable exception of a proton transfer from the thiol group of cysteine to a hydroxyl group of the surface hydration layer. The adsorption energies are found to be dominated both by the formation of direct or indirect surface-molecule hydrogen bonds, but also by the rearrangement of the hydrogen-bond network in surface proximity in a non-intuitive way. Energetic comparisons between DFTB and DFT are made difficult on one side by the long time necessary to achieve convergence of potential energy values in MD simulations and on the other side by the necessity of including higher-order corrections to DFTB to obtain a good description of the hydrogen bond energetics. Overall, our results suggest that DFTB is a good reference method to set the correct chemical states and the initial geometries of hybrid biomolecule/ZnO systems to be simulated with non-reactive force fields.« less
NASA Astrophysics Data System (ADS)
Liu, Xiang; Zheng, Hong-Ning; Yan, Qin; Wang, Cuie; Ma, Yin-Zhou; Tang, Yan-Chun; Xiao, Shou-Jun
2011-06-01
A facile approach was established to construct polyamidoamine (PAMAM) dendrons from polymer brushes of poly(poly(ethylene glycol) monomethacrylate) (Si-g-P(PEGMA-OH)) grafted from a planar silicon hydride surface. First the Si-g-P(PEGMA-OH) brushes were grown via surface-initiated atom transfer radical polymerization with robust Si-C links on silicon surfaces. The side-chain hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride and further chlorines were substituted with amino groups of ethylenediamine, giving terminal primary amines. Borrowing the solution synthesis approach, we constructed second and third generations of PAMAM dendrons on-chip by surface-initiated alternative growth of two monomers, methyl acrylate and ethylenediamine. Two applications of silicon-based PAMAM dendrons were shown: the dense amino groups were activated via a cross-linker, N-succinimidyl-6-maleimidylhexanoate, to capture a free-thiol-carrying peptide of oxytocin and the third generation of PAMAM dendrons was used as a platform to on-chip synthesize a three amino acid peptide of Arg-Gly-Asp (RGD). The above conclusions were mainly derived from a home-built multiple transmission-reflection infrared spectroscopy, and complemented by X-ray photoelectron spectroscopy, UV-Vis spectroscopy and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry.
Tan, Shu-Zhen; Hu, Yan-Jun; Gong, Fu-Chun; Cao, Zhong; Xia, Jiao-Yun; Zhang, Ling
2009-03-23
A novel technique of covalent immobilization of indicator dyes in the preparation of fluorescence sensors is developed. Silver nanoparticles are used as bridges and carriers for anchoring indicator dyes. 3-amino-9-ethylcarbazole (AEC) was employed as an example of indicator dyes with terminal amino groups and covalently immobilized onto the outmost surface of a quartz glass slide. First, the glass slide was functionalized by (3-mercaptopropyl) trimethoxysilane (MPS) to form a thiol-terminated self-assembled monolayer, where silver nanoparticles were strongly bound to the surface through covalent bonding. Then, 16-mercaptohexadecanoic acid (MHDA) was self-assembled to bring carboxylic groups onto the surface of silver nanoparticles. A further activation by using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) converted the carboxylic groups into succinimide esters. Finally, the active succinimide esters on the surface of silver nanoparticles were reacted with AEC. Thus, AEC was covalently bound to the glass slide and an AEC-immobilized sensor was obtained. The sensor exhibited very satisfactory reproducibility and reversibility, rapid response and no dye-leaching. Rutin can quench the fluorescence intensity of the sensor and be measured by using the sensor. The linear response of the sensor to rutin covers the range from 2.0 x 10(-6) to 1.5 x 10(-4) molL(-1) with a detection limit of 8.0 x 10(-7) molL(-1). The proposed technique may be feasible to the covalent immobilization of other dyes with primary amino groups.
Jung, Min-Jung; Jeong, Euigyung; Cho, Seho; Yeo, Sang Young; Lee, Young-Seak
2012-09-01
The surface of phenol-based activated carbon (AC) was seriatim amino-fluorinated with solution of ammonium hydroxide and hydrofluoric acid in varying ratio to fabricate electrode materials for use in an electric double-layer capacitor (EDLC). The specific capacitance of the amino-fluorinated AC-based EDLC was measured in a 1 M H(2)SO(4) electrolyte, in which it was observed that the specific capacitances increased from 215 to 389 Fg(-1) and 119 and 250 Fg(-1) with the current densities of 0.1 and 1.0 Ag(-1), respectively, in comparison with those of an untreated AC-based EDLC when the amino-fluorination was optimized via seriatim mixed solution of 7.43 mol L(-1) ammonium hydroxide and 2.06 mol L(-1) hydrofluoric acid. This enhancement of capacitance was attributed to the synergistic effects of an increased electrochemical activity due to the formation of surface N- and F-functional groups and increased, specific surface area, and mesopore volumes, all of which resulted from the amino-fluorination of the electrode material. Copyright © 2012 Elsevier Inc. All rights reserved.
Kurouski, Dmitry; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K
2014-01-07
Amyloid fibrils are β-sheet-rich protein aggregates that are strongly associated with a variety of neurodegenerative maladies, such as Alzheimer's and Parkinson's diseases. Even if the secondary structure of such fibrils is well characterized, a thorough understanding of their surface organization still remains elusive. Tip-enhanced Raman spectroscopy (TERS) is one of a few techniques that allow the direct characterization of the amino acid composition and the protein secondary structure of the amyloid fibril surface. Herein, we investigated the surfaces of two insulin fibril polymorphs with flat (flat) and left-twisted (twisted) morphology. It was found that the two differ substantially in both amino acid composition and protein secondary structure. For example, the amounts of Tyr, Pro, and His differ, as does the number of carboxyl groups on the respective surfaces, whereas the amounts of Phe and of positively charged amino and imino groups remain similar. In addition, the surface of protofilaments, the precursors of the mature flat and twisted fibrils, was investigated using TERS. The results show substantial differences with respect to the mature fibrils. A correlation of amino acid frequencies and protein secondary structures on the surface of protofilaments and on flat and twisted fibrils allowed us to propose a hypothetical mechanism for the propagation to specific fibril polymorphs. This knowledge can shed a light on the toxicity of amyloids and define the key factors responsible for fibril polymorphism. Finally, this work demonstrates the potential of TERS for the surface characterization of amyloid fibril polymorphs. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Infrared Spectroscopic Evidence of Surface Speciation of Amino Acids on Titanium Dioxide
NASA Astrophysics Data System (ADS)
Jonsson, C. M.; Jonsson, C. L.; Parikh, S. J.; Sverjensky, D. A.; Cleaves, H. J.; Hazen, R. M.
2008-12-01
Interactions that occur at the interface between molecules and mineral surfaces in the presence of water are integral to many chemical and physical processes, including the behavior of pollutants in the environment, metal implants in the human body, and perhaps the origin of life. During the emergence of life, mineral surfaces may have played a role in the selection of amino acids, leading to the formation of proteins that are essential building blocks of life. To investigate this hypothesis, we are studying two amino acids, glutamic (Glu) and aspartic (Asp) acid, and their adsorption to the rutile form of titanium dioxide as a function of pH and surface coverage in electrolyte solutions. The objective is to get a fundamental understanding of the speciation and coordination chemistry of these amino acids at the rutile surface. We used attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption of Glu on rutile, and a previously published ATR-FTIR study [1] of Asp and Glu adsorption on an amorphous titanium dioxide film was used as a guide to peak assignment and interpretation of our FTIR spectra. Binding of Glu to both surfaces occurs primarily through one or both of the carboxyl groups, implying that at least two types of surface complexes are formed in a proportion presumably dependent on surface coverage and pH. The interpretation of our results suggests that Glu binds to rutile in a mixed chelating-monodentate fashion involving both carboxyl groups (Glu lying down at the surface), and in a chelating fashion involving only the gamma carboxyl group (Glu standing up at the surface). FTIR results also show that the intensity of the amine peak increases with sorption, which is possibly a consequence of the amine group being brought closer to the surface but not binding directly to it. Glu adsorption on rutile is favored at low pH, based on results from batch adsorption experiments. We have commenced a systematic investigation of Glu and Asp interactions with the rutile surface using potentiometric titrations, adsorption experiments and FTIR spectroscopy. The spectroscopic evidence integrated with quantitative adsorption data and potentiometric titration data are used to describe the adsorption with surface complexation models. [1] Roddick-Lanzilotta A.D. and McQuillan A.J. (2000) J. Colloid & Interface Sci. 227, 48-54.
Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming
2015-08-15
The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.
Du, Yanqiu; Li, Chunming; Jin, Jing; Li, Chao; Jiang, Wei
2018-01-01
Amino acid-based P(acryloyl-6-aminocaproic acid) (PAACA) brushes were fabricated on polyisobutylene (PIB) surface combined with plasma pre-treatment and UV-induced grafting polymerization to construct an antifouling and functional material. The hydrophilicity and hemocompatibility of PIB were largely improved by surface modification of AACA, which were confirmed by water contact angle and platelet adhesion, respectively. PAACA brushes were precisely located onto the surface of PIB to create a patterned PIB-g-PAACA structure, and then the carboxyl groups on PAACA was activated to immobilize functional protein-Concanavalin A (Con A). The obtained Con A-coupled microdomains could further capture erythrocytes. This method developed a platform on commercial PIB surface via amino acid-based polymer brushes which had a promising application in drug delivery and disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.
DNA sequencing using fluorescence background electroblotting membrane
Caldwell, K.D.; Chu, T.J.; Pitt, W.G.
1992-05-12
A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings
1985-01-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm. PMID:3968182
Ghinea, N; Simionescu, N
1985-02-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm.
Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Hu, Qichi
2017-03-13
Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletionmore » of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs« less
Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces
NASA Astrophysics Data System (ADS)
Laskin, Julia; Hu, Qichi
2017-07-01
Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS + 2H]2+, and two charge states of ubiquitin, [U + 5H]5+ and [U + 13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs.
Ghosh, Sudipa; Fang, Tan Hui; Uddin, M S; Hidajat, K
2013-05-01
Chiral resolution aromatic amino acids, DL-tryptophan (DL-Trp), DL-phenylalanine (DL-Phe), DL-tyrosine (DL-Tyr) from phosphate buffer solution was achieved in present study employing the concept of selective adsorption by surface functionalized magnetic nanoparticles (MNPs). Surfaces of magnetic nanoparticles were functionalized with silica and carboxymethyl-β-cyclodextrin (CMCD) to investigate their adsorption resolution characteristics. Resolution of enantiomers from racemic mixture was quantified in terms of enantiomeric excess using chromatographic method. The MNPs selectively adsorbed L-enantiomers of DL-Trp, DL-Phe, and DL-Tyr from racemic mixture and enantiomeric excesses (e.e.) were determined as 94%, 73% and 58%, respectively. FTIR studies demonstrated that hydrophobic portion of enantiomer penetrated into hydrophobic cavity of cyclodextrin molecules to form inclusion complex. Furthermore, adsorption site was explored using XPS and it was revealed that amino group at chiral center of the amino acid molecule formed hydrogen bond with secondary hydroxyl group of CMCD molecule and favorability of hydrogen bond formation resulted in selective adsorption of L-enantiomer. Finally, stability constant (K) and Gibbs free energy change (-ΔG°) for inclusion complexation of CMCD with L-/D-enantiomers of amino acids were determined using spectroflurometry in aqueous buffer solution. Higher binding constants were obtained for inclusion complexation of CMCD with L-enantiomers compared to D-enantiomers which stimulated enantioselective properties of CMCD functionalized magnetite silica nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface
NASA Astrophysics Data System (ADS)
Xiaojuan, Yuan; Huaimin, Gu; Jiwei, Wu
2010-08-01
Raman and SERS spectra of homodipeptide Gly-Gly and Gly were recorded and compared in this paper, and band assignment for the functional groups contained in these molecules was analyzed in detail. Time-dependent and pH-dependent SERS spectra of Gly-Gly molecule adsorbed on nano-colloidal silver surface were also studied. The time-dependent SERS spectra of Gly-Gly are characterized by the increase in intensity of bands primarily representing the vibrational signatures emanating from the amino and amide moiety of Gly-Gly molecule. It is found that the adsorption style of Gly-Gly on the silver colloid changes as time goes on; at 5 min after adding the sample to the silver colloid, Gly-Gly adsorbs on silver surface firstly through the carboxylate, amino and amide groups, and then the carboxylate group is far away from the silver surface at 10 min to 3 days. The SERS variation of Gly-Gly with the change of pH suggests that the adsorption style is pH-dependent, the different adsorption behavior of the Gly-Gly occurs on silver surface at different pH values.
NASA Astrophysics Data System (ADS)
Saraswati, T. E.; Astuti, A. R.; Rismana, N.
2018-03-01
Carbon-based nanoparticles must be modified due to their wide array of applications, especially when they are used as biomaterials. After modifying, quantitative analysis of the functional group is essential to evaluate a number of the available functional groups applied for further functionalization. In this study, we modified the carbon-based nanoparticles by amino group using submerged arc discharge in different liquids. The attached amino groups were then characterised and quantified by UV-Vis spectroscopy. This amino group functionalization was also confirmed by Fourier transform infrared (FTIR) spectra. The FTIR spectra of amine-modified nanoparticles show the definitive absorption peaks of N—H amine, C—H, C=O, C—N and Fe—O at 3418.97; 3000–2850 1700–1600 1400–1100 and 480-550 cm-1, respectively. The amine groups have different performance signals between the amine-modified and unmodified nanoparticles. The FTIR spectra results were correlated with the UV-Vis absorption spectroscopy method using acidic methyl orange. The UV-Vis absorption spectroscopy shows that the absorbance of methyl orange represented to amino groups number was 1.3 times higher when the pH of the solution was increased. The absorbance intensity was then used to estimate the quantity of amine groups attached.
Two Dimensional Polymer That Generates Nitric Oxide.
McDonald, William F.; Koren, Amy B.
2005-10-04
A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.
NASA Astrophysics Data System (ADS)
Viswan, Anchu; Chou, Han; Sugiura, Kuniaki; Nagatsu, Masaaki
2016-09-01
Graphite-encapsulated iron nanoparticles with an average diameter of 20 nm were synthesized using the DC arc discharge method. For biomedical application, the nanoparticles were functionalized with amino groups using an inductively coupled radio-frequency (RF) plasma. The Ar, NH3, and Ar/NH3 plasmas that were used for functionalization were diagnosed using optical emission spectroscopy, confirming the presence of the required elements. The best conditions for functionalization were optimized by changing various parameters. The pretreatment time with Ar plasma was varied from 0 to 12.5 min, the post-treatment time from 30 s to 3 min. The dependence of the RF power and the gas mixture ratio of Ar/NH3 on the amino group population was also analyzed. From Raman spectroscopy, x-ray photoelectron spectroscopy, and determination of absolute number of amino groups through chemical derivatization, it was found that 5 min of Ar pretreatment and 6%NH3/94%Ar plasma post-treatment for 3 min with an RF power of 80 W gives the best result of about 5 × 104 amino groups per particle. The nanoparticles that were amino functionalized under optimized conditions and immobilized with an Escherichia coli (E.coli) antibody on their surface were incubated with E.coli bacteria to determine the efficiency of collection by direct culture assay.
NASA Astrophysics Data System (ADS)
Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua
2016-12-01
Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.
Gemini surfactants from natural amino acids.
Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa
2014-03-01
In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed. © 2013.
Immobilization of mesoporous silica particles on stainless steel plates
NASA Astrophysics Data System (ADS)
Pasqua, Luigi; Morra, Marco
2017-03-01
A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Wang, Yun; Dai, Xiao
2015-08-01
In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.
Güleç, Hacı Ali
2013-04-01
The aim of this study was to investigate the effects of surface characteristics of plain and plasma modified cellulose acetate (CA) membranes on the immobilization yield of β-galactosidases from Kluyveromyces lactis (KLG) and its galacto-oligosaccharide (GOS) yield, respectively. Low pressure plasma treatments involving oxygen plasma activation, plasma polymerization (PlsP) of ethylenediamine (EDA) and PlsP of 2-mercaptoethanol were used to modify plain CA membrane surfaces. KLG enzyme was immobilized onto plain and oxygen plasma treated membrane surfaces by simple adsorption. Oxygen plasma activation increased the hydrophylicity of CA membrane surfaces and it improved the immobilization yield of the enzyme by 42%. KLG enzyme was also immobilized onto CA membrane surfaces through amino groups created by PlsP of EDA via covalent binding. Plasma action at 60W plasma power and 15 min. exposure time improved the amount of membrane bounded enzyme by 3.5-fold. The enrichment of the amount of amino groups via polyethyleneimine (PEI) addition enhanced this increase from 3.5-fold to 4.5-fold. Although high enzyme loading was achived (65-83%), both of the methods dramatically decreased the enzyme activity (11-12%) and GOS yield due to probably negative effects of active amino groups. KLG enzyme was more effectively immobilized onto thiolated CA membrane surface created by PlsP of 2-mercaptoethanol with high immobilization yield (70%) and especially high enzyme activity (46%). Immobilized enzymes on the CA membranes treated by PlsP were successively reutilized for 5-8 cycles at 25°C and enzymatic derivatives retained approximately 75-80% of their initial activites at the end of the reactions. Copyright © 2012 Elsevier B.V. All rights reserved.
FAST TRACK COMMUNICATION: Deposition of amino-rich thin films by RF magnetron sputtering of nylon
NASA Astrophysics Data System (ADS)
Kylián, O.; Hanuš, J.; Choukourov, A.; Kousal, J.; Slavínská, D.; Biederman, H.
2009-07-01
RF magnetron sputtering of a nylon target in different gas mixtures was studied in order to evaluate the capability of this process to deposit amino-rich coatings needed in a wide range of biomedical applications. It has been demonstrated that both the deposition rate of the coatings and the surface density of primary amino groups are strongly linked with working gas mixture composition. From this point of view, a sufficiently high deposition rate as well as the highest amine efficiency reaching a NH2/C value of 18% was observed in the N2/H2 discharge, which leads to the surface exhibiting a high rate of protein adsorption.
NASA Astrophysics Data System (ADS)
Forbes, Lauren Marie
Heterogeneous catalysts have widespread industrial applications. Platinum nanomaterials in particular, due to their particularly high electrocatalytic activity and durability, are used to catalyze a wide variety of reactions, including oxygen reduction, which is frequently used as the cathode reaction in fuel cells. As platinum is a very expensive material, a high priority in fuel cell research is the exploration of less expensive, more efficient catalysts for the oxygen reduction reaction (ORR). We demonstrate here the use of phage display to identify peptides that bind to Pt (100) which were then used to synthesize platinum cubes in solution. However, while the peptides were able to control particle growth, the bio-synthesized Pt particles showed extremely poor activity when tested for ORR. This could be attributed to peptide coverage on the surface or strong interactions between particular amino acids and the metal that are detrimental for catalysis. To investigate this further, we decided to investigate the role of individual amino acids on Pt nanocrystal synthesis and catalysis. For this, we conjugated the R-groups of single amino acids to polyethylene glycol (PEG) chains. Through this work we have determined that the identity of the amino acid R-group is important in both the synthesis and the catalytic activity of the particles. For Pt nanoparticle synthesis, we found that the hydrophobicity of the functional groups affected their ability to interact well with the particles during nucleation and growth, and thus only the hydrophilic functional groups were capable of mediating the synthesis to produce well-defined faceted particles. With respect to ORR, we found distinct trends that showed that the inclusion of certain amino acids could significantly enhance catalysis---even at high polymer loadings. This work presents evidence that counters the common conception that organic capping ligands decrease catalytic activity; in fact activity may actually be improved over bare metal through judicious choice and design of ligands that inhibit Pt oxidation and control chain packing at the Pt surface. Therefore, it may be possible to have ligands on a nanoparticle surface that allow the particles to be well-dispersed on an electrode surface, while simultaneously enhancing catalysis.
Production of superparamagnetic nanobiocatalysts for green chemistry applications.
Gasser, Christoph A; Ammann, Erik M; Schäffer, Andreas; Shahgaldian, Patrick; Corvini, Philippe F-X
2016-08-01
Immobilization of enzymes on solid supports is a convenient method for increasing enzymatic stability and enabling enzyme reuse. In the present work, a sorption-assisted surface conjugation method was developed and optimized to immobilize enzymes on the surface of superparamagnetic nanoparticles. An oxidative enzyme, i.e., laccase from Trametes versicolor was used as model enzyme. The immobilization method consists of the production of superparamagnetic nanoparticles by co-precipitation of FeCl2 and FeCl3. Subsequently, the particle surface is modified with an organosilane containing an amino group. Next, the enzymes are adsorbed on the particle surface before a cross-linking agent, i.e., glutaraldehyde is added which links the amino groups on the particle surface with the amino groups of the enzymes and leads to internal cross-linking of the enzymes as well. The method was optimized using response surface methodology regarding optimal enzyme and glutaraldehyde amounts, pH, and reaction times. Results allowed formulation of biocatalysts having high specific enzymatic activity and improved stability. The biocatalysts showed considerably higher stability compared with the dissolved enzymes over a pH range from 3 to 9 and in the presence of several chemical denaturants. To demonstrate the reusability of the immobilized enzymes, they were applied as catalysts for the production of a phenoxazinone dye. Virtually, 100 % of the precursor was transformed to the dye in each of the ten conducted reaction cycles while on average 84.5 % of the enzymatic activity present at the beginning of a reaction cycle was retained after each cycle highlighting the considerable potential of superparamagnetic biocatalysts for application in industrial processes.
2007-04-01
MWNTs.20 These defects would provide sites for the electrophilic substitution reaction. In our previous work, FT-IR had been used to characterize the...various surface functionalities.22 In this study, MWNTs containing polar surface groups such as amino-, hydroxyl-, and fluorine groups displayed similar
NASA Astrophysics Data System (ADS)
Dave, Kashyap; Dhayal, Marshal
2017-02-01
A hydrosol approach developed to synthesize fluorescence quenched fluorescein isothiocyanate (FITC) functionalized colloidal suspension of graphene oxide nanoparticles (GONP). UV-vis spectroscopic measurements showed characteristic peak at 236 nm and 300 nm due to pi-pi* interaction in Cdbnd C and n-pi* transition in Cdbnd O bond of GONP, respectively. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra showed reduced intensity of 1429 cm-1 IR band of GONP due to the electrostatic and pi-pi interactions of FITC with GONP in FITC-GONP. ATR-FTIR spectra of different amino acid co-functionalised FITC-GONP showed an increase in the FTIR band intensity at 1429 cm-1 which was significantly reduced due to electrostatic/pi-pi interactions of FITC with GONP in the absence of the amino acids. A peak at 1084 cm-1 in ATR-FTIR spectra appears which confirms the interaction between amine group of amino acids and sbnd COO- groups at GONP surface. The FITC interaction with GONP lead to fluorescence resonance energy transfers (FRET) and resulted in a liner decrease in the FITC fluorescence with an increase of GONP concentration. An increase in the reappearance of FITC fluorescence observed while the amino acid concentration was increased in co-functionalised FITC-GONP. The quantified amount of reappeared fluorescence of FITC in amino acid co-functionalised FITC-GONP depends on the concentration, polar and non-polar nature of amino acids. The reappearance of FITC from the surface of FITC-GONP with the addition of amino acid was found to be consistent with the organic substitute, size of amino acids and their functionalities. Therefore, FRET based method using FITC-GONP colloidal suspension may have potential application in determining the binding nature of biomolecules with GONP for biomedical applications.
Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2009-06-01
To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.
Antithrombogenic Polymer Coating.
Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2003-01-21
An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.
NASA Astrophysics Data System (ADS)
Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin
2016-03-01
Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.
Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi
2016-01-01
In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)-MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN-MTX. The loading of MIT into the surface pores of MSNN-MTX produced nanostructured MSNN-MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN-MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN-MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN-MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively.
Vera, María L; Cánneva, Antonela; Huck-Iriart, Cristián; Requejo, Felix G; Gonzalez, Mónica C; Dell'Arciprete, María L; Calvo, Alejandra
2017-06-15
The encapsulation of fluorescent dyes inside silica nanoparticles is advantageous to improve their quality as probes. Inside the particle, the fluorophore is protected from the external conditions and its main emission parameters remains unchanged even in the presence of quenchers. On the other hand, the amine-functionalized nanoparticle surface enables a wide range of applications, as amino groups could be easily linked with different biomolecules for targeting purposes. This kind of nanoparticle is regularly synthesized by methods that employ templates, additional nanoparticle formation or multiple pathway process. However, a one-step synthesis will be an efficient approach in this sort of bifunctional hybrid nanoparticles. A co-condensation sol-gel synthesis of hybrid fluorescent silica nanoparticle where developed. The chemical and morphological characterization of the particles where investigated by DRIFTS, XPS, SEM and SAXS. The nanoparticle fluorescent properties were also assessed by excitation-emission matrices and time resolved experiments. We have developed a one-pot synthesis method that enables the simultaneous incorporation of functionalities, the fluorescent molecule and the amino group, by controlling co-condensation process. An exhaustive characterization allows the definition of the spatial distribution of the fluorescent probe, fluorescein isothiocyanate, inside the particle and reactive amino groups on the surface of the nanoparticle with diameter about 100nm. Copyright © 2017 Elsevier Inc. All rights reserved.
Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi
2016-01-01
In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)−MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN−MTX. The loading of MIT into the surface pores of MSNN−MTX produced nanostructured MSNN−MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN−MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN−MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN−MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively. PMID:27621591
Ida; Matsuyama; Yamamoto
2000-07-01
Glucoamylase, as a model enzyme, was immobilized on a ceramic membrane modified by surface corona discharge induced plasma chemical process-chemical vapor deposition (SPCP-CVD). Characterizations of the immobilized enzyme were then discussed. Three kinds of ceramic membranes with different amounts of amino groups on the surface were prepared utilizing the SPCP-CVD method. Each with 1-time, 3-times and 5-times surface modification treatments and used for supports in glucoamylase immobilization. The amount of immobilized glucoamylase increased with the increase in the number of surface modification treatments and saturated to a certain maximum value estimated by a two-dimensional random packing. The operational stability of the immobilized glucoamylase also increased with the increase in the number of the surface treatment. It was almost the same as the conventional method, while the activity of immobilized enzyme was higher. The results indicated the possibility of designing the performance of the immobilized enzyme by controlling the amount of amino groups. The above results showed that the completely new surface modification method using SPCP was effective in modifying ceramic membranes for enzyme immobilization.
Structure and composition of insulin fibril surfaces probed by TERS
Kurouski, Dmitry; Deckert-Gaudig, Tanja; Deckert, Volker; Lednev, Igor K.
2012-01-01
Amyloid fibrils associated with many neurodegenerative diseases are the most intriguing targets of modern structural biology. Significant knowledge has been accumulated about the morphology and fibril-core structure recently. However, no conventional methods could probe the fibril surface despite its significant role in the biological activity. Tip-enhanced Raman spectroscopy (TERS) offers a unique opportunity to characterize the surface structure of an individual fibril due to a high depth and lateral spatial resolution of the method in the nanometer range. Here, TERS is utilized for characterizing the secondary structure and amino acid residue composition of the surface of insulin fibrils. It was found that the surface is strongly heterogeneous and consists of clusters with various protein conformations. More than 30% of the fibril surface is dominated by β-sheet secondary structure, further developing Dobson’s model of amyloid fibrils (Jimenez et al. Proc. Natl. Acad. Sci. USA 2002). The propensity of various amino acids on the fibril surface and specific surface secondary structure elements were evaluated. β-sheet areas are rich in cysteine and aromatic amino acids, such as phenylalanine and tyrosine, whereas proline was found only in α-helical and unordered protein clusters. In addition, we showed that carboxyl, amino and imino groups are nearly equally distributed over β-sheet and α-helix/unordered regions. Overall, this study provides valuable new information about the structure and composition of the insulin fibril surface and demonstrates the power of TERS for fibril characterization. PMID:22813355
NASA Astrophysics Data System (ADS)
Mosebach, Bastian; Ozkaya, Berkem; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido
2017-10-01
Single molecule force spectroscopy (SMFS) was employed to investigate the interaction forces between aliphatic amino, hydroxyl and ether groups and aluminum oxide single crystal surfaces in an aqueous electrolyte at pH = 6. The force studies were based on the variation of the terminal group of polyethylene glycol which was bound via a Ssbnd Au bond to the gold coated AFM tip. X-ray Photoelectron Spectroscopy (XPS) was performed to characterize the surface chemistry of the substrate. Force distance curves were measured between the PEG-NH2, sbnd OH and sbnd OCH3 functionalized atomic force microscope (AFM) tip and the non-polar single crystalline Al2O3(11-20) surface. The experimental results exhibit non-equilibrium desorption events which hint at acid-base interactions of the electron donating hydroxyl and amino groups with Al-ions in the surface of the oxide. The observed desorption forces for the sbnd NH2, sbnd OH/Al2O3(11-20) were in the range of 100-200 pN.
Ndao, Moise; Ash, Jason T.; Breen, Nicholas F.; Goobes, Gil; Stayton, Patrick S.; Drobny, Gary P.
2011-01-01
The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids – D1, E4, and E5 – are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized 13C{31P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the δ-carboxyl 13C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and 31P spins of the phosphate groups at the HAP surface. 13C{31P} REDOR studies of glutamic-5-13C acid incorporated at positions E4 and E26 indicate a 13C–31P distance of more than 6.5 Å between the side chain carboxyl 13C spin of E4 and the closest 31P in the HAP surface. In contrast, the carboxyl 13C spin at E5 has a much shorter 13C–31P internuclear distance of 4.25±0.09 Å, indicating that the carboxyl group of this side chain interacts directly with the surface. 13C T1ρ and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces. PMID:19678690
Fundeanu, Irina; Klee, Doris; Schouten, Arend J; Busscher, Henk J; van der Mei, Henny C
2010-11-01
Silicone rubber is a frequently employed biomaterial that is prone to bacterial adhesion and biofilm formation. In this study, the surface of silicone rubber was solvent-free functionalized by chemical vapor deposition (CVD) of poly(o-amino-p-xylylene-co-p-xylylene (amino-PPX). Subsequently, the amino groups of the amino-PPX layer were used to introduce the initiator from a vapor phase for atom transfer radical polymerization of acrylamide to form polyacrylamide (PAAm) brushes. The modification steps were verified by means of X-ray photoelectron spectroscopy and attenuated total reflection-Fourier transform infrared spectroscopy. Adhesion of Staphylococcus aureus ATCC 12600 and Escherichia coli 3.14 to an amino-PPX-PAAm brush coating in a parallel plate flow chamber was strongly reduced with respect to non-coated silicone rubber - by 93% and 99%, respectively. For E. coli 3.14, this reduction is larger than that obtained for solvent functionalization of γ-aminopropyltriethoxysilane-PAAm brushes due to the higher density of amino groups introduced by the CVD of amino-PPX. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazlan, Siti Zulaikha; Hanifah, Sharina Abu
2014-09-01
Immobilization of laccase on the modified copolymer methacrylate-acrylate microspheres was studied. A poly (glycidyl methacrylate-co-n-butyl acrylate) microsphere consists of epoxy groups were synthesized using suspension photocuring technique. The epoxy group in poly (GMA-nBA) microspheres were converted into amino groups with aldehyde group. Laccase immobilization is based on having the amino groups on the enzyme surface and aldehyde group on the microspheres via covalent binding. Fourier transform infrared spectroscopy (FT-IR) analysis proved the successful surface modification on microspheres. The FTIR spectrum shows the characteristic peaks at 1646 cm-1 assigned to the conformation of the polymerization that took place between monomer GMA and nBA respectively. In addition, after modification, FTIR peaks that assigned to the epoxy ring (844 cm-1 and 904 cm-1) were decreased. The results obtained from FTIR method signify good agreement with the epoxy content method. Hence, the activity of the laccase-immobilized microspheres increased upon increasing the epoxy content. Furthermore, poly (GMA-nBA) exhibited uniform microspheres with below 2 μm surface. Immobilized enzyme showed a broader pH profile and higher temperature compared native enzyme.
NASA Astrophysics Data System (ADS)
Bhaumik, Nilendu Sekhar; Konar, Adwaita; Roy, Alok Nath; Samanta, Ashis Kumar
2017-12-01
Jute fabric was treated with mixed natural amino acids obtained from waste soya bean seed extract for chemical modification of jute for its cataionization and to enhance its dyeability with anionic dyes (like direct, reactive and acid dye) as well enabling soya modified jute for salt free dyeing with anionic reactive dyes maintaining its eco-friendliness. Colour interaction parameters including surface colour strength were assessed and compared for both bleached and soya-modified jute fabric for reactive dyeing and compared with direct and acid dye. Improvement in K/S value (surface colour strength) was observed for soya-modified jute even in absence of salt applied in dye bath for reactive dyes as well as for direct and acid dyes. In addition, reactive dye also shows good dyeability even in acid bath in salt free conditions. Colour fastness to wash was evaluated for bleached and soya-modified jute fabric after dyeing with direct, acid and reactive dyes are reported. Treatment of jute with soya-extracted mixed natural amino acids showed anchoring of some amino/aldemine groups on jute cellulosic polymer evidenced from Fourier Transform Infra-Red (FTIR) Spectroscopy. This amino or aldemine group incorporation in bleached jute causes its cationization and hence when dyed in acid bath for reactive dye (instead of conventional alkali bath) showed dye uptake for reactive dyes. Study of surface morphology by Scanning Electron Microscopy (SEM) of said soya-modified jute as compared to bleached jute was studied and reported.
NASA Astrophysics Data System (ADS)
Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık
2016-05-01
A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.
d'Orlyé, Fanny; Varenne, Anne; Georgelin, Thomas; Siaugue, Jean-Michel; Teste, Bruno; Descroix, Stéphanie; Gareil, Pierre
2009-07-01
In view of employing functionalized nanoparticles (NPs) in the context of an immunodiagnostic, aminated maghemite/silica core/shell particles were synthesized so as to be further coated with an antibody or an antigen via the amino groups at their surface. Different functionalization rates were obtained by coating these maghemite/silica core/shell particles with 3-(aminopropyl)triethoxysilane and 2-[methoxy(polyethyleneoxy)propyl]-trimethoxysilane at different molar ratios. Adequate analytical performances with CE coupled with UV-visible detection were obtained through semi-permanent capillary coating with didodecyldimethyl-ammonium bromide, thus preventing particle adsorption. First, the influence of experimental conditions such as electric field strength, injected particle amount as well as electrolyte ionic strength and pH, was evaluated. A charge-dependent electrophoretic mobility was evidenced and the separation selectivity was tuned according to electrolyte ionic strength and pH. The best resolutions were obtained at pH 8.0, high ionic strength (ca. 100 mM), and low total particle volume fraction (ca. 0.055%), thus eliminating interference effects between different particle populations in mixtures. A protocol derived from Kaiser's original description was performed for quantitation of the primary amino groups attached onto the NP surface. Thereafter a correlation between particle electrophoretic mobility and the density of amino groups at their surface was established. Eventually, CE proved to be an easy, fast, and reliable method for the determination of NP effective surface charge density.
Amino acid-based zwitterionic polymers: antifouling properties and low cytotoxicity.
Li, Wenchen; Liu, Qingsheng; Liu, Lingyun
2014-01-01
A group of five amino acid containing zwitterionic vinyl monomers, based on serine, lysine, ornithine, glutamic acid, and aspartic acid, respectively, were proposed and developed for potential antifouling applications. Their polymer brushes were grafted on gold chips by surface-initiated photoiniferter-mediated polymerization. We then compared their performance in resisting protein adsorption from full human serum and plasma. All five polymers can reduce protein adsorption by more than 90% compared to the unmodified gold. The ornithine-based and aspartic acid-based poly(methacrylamide) can most strongly resist protein adsorption from serum and plasma, compared to the other three. The ability of surfaces to suppress bacterial adhesion is another criterion in evaluating antifouling properties of materials. Our results show that the five polymer-grafted surfaces can significantly suppress Escherichia coli K12 adhesion to 99% compared to the bare gold surface. The zwitterionic structure of amino acids, with homogenously distributed and balanced positive and negative charges, is responsible for the outstanding antifouling properties. Considering multiple potential applications (e.g. medical devices and drug delivery) of the antifouling materials, we further systematically evaluated the cytotoxicity of both monomers and polymer nanogels for all five materials at various concentrations. Very low cytotoxicity was observed for all tested amino acid-based monomers and nanogels, which is comparable or even lower than the traditional and some newly developed antifouling materials, which might be related to the biomimetic nature of amino acids.
Modified polyether-sulfone membrane: a mini review
Alenazi, Noof A.; Hussein, Mahmoud A.; Alamry, Khalid A.; Asiri, Abdullah M.
2017-01-01
Abstract Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane. PMID:29491825
Modified polyether-sulfone membrane: a mini review.
Alenazi, Noof A; Hussein, Mahmoud A; Alamry, Khalid A; Asiri, Abdullah M
2017-01-01
Polyethersulfone has been widely used as a promising material in medical applications and waste-treatment membranes since it provides excellent mechanical and thermal properties. Hydrophobicity of polyethersulfone is considered one main disadvantage of using this material because hydrophobic surface causes biofouling effects to the membrane which is always thought to be a serious limitation to the use of polyethersulfone in membrane technology. Chemical modification to the material is a promising solution to this problem. More specifically surface modification is an excellent technique to introduce hydrophilic properties and functional groups to the polyethersulfone membrane surface. This review covers chemical modifications of the polyethersulfone and covers different methods used to enhance the hydrophilicity of polyethersulfone membrane. In particular, the addition of amino functional groups to polyethersulfone is used as a fundamental method either to introduce hydrophilic properties or introduce nanomaterials to the surface of polyethersulfone membrane. This work reviews also previous research reports explored the use of amino functionalized polyethersulfone with different nanomaterials to induce biological activity and reduce fouling effects of the fabricated membrane.
Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.
Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch
2016-02-16
A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.
2015-01-01
To study the importance of the surface charge for cellular uptake of silica nanoparticles (NPs), we synthesized five different single- or multifunctionalized fluorescent silica NPs (FFSNPs) by introducing various ratios of amino and sulfonate groups into their surface. The zeta potential values of these FFSNPs were customized from highly positive to highly negative, while other physicochemical properties remained almost constant. Irrespective of the original surface charge, serum proteins adsorbed onto the surface, neutralized the zeta potential values, and prevented the aggregation of the tailor-made FFSNPs. Depending on the surface charge and on the absence or presence of serum, two opposite trends were found concerning the cellular uptake of FFSNPs. In the absence of serum, positively charged NPs were more strongly accumulated by human osteoblast (HOB) cells than negatively charged NPs. In contrast, in serum-containing medium, anionic FFSNPs were internalized by HOB cells more strongly, despite the similar size and surface charge of all types of protein-covered FFSNPs. Thus, at physiological condition, when the presence of proteins is inevitable, sulfonate-functionalized silica NPs are the favorite choice to achieve a desired high rate of NP internalization. PMID:26030456
Xu, Hesheng Victor; Zheng, Xin Ting; Zhao, Yanli; Tan, Yen Nee
2018-06-13
Natural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots. It was found that the amino acids with reactive R groups, including amine, hydroxyl, and carboxyl functional groups form unique C-O-C/C-OH and N-H bonds in the AA dots which stabilize the surface defects, giving rise to brightly luminescent AA dots. Furthermore, the AA dots were found to be amorphous and the length of the R group was observed to affect the final morphology (e.g., disclike nanostructure, nanowire, or nanomesh) of the AA dots, which in turn influence their photoluminescent properties. It is noteworthy to highlight that the hydroxyl-containing amino acids, that is, Ser and Thr, form the brightest AA dots with a quantum yield of 30.44% and 23.07%, respectively, and possess high photostability with negligible photobleaching upon continuous UV exposure for 3 h. Intriguingly, by selective mixing of Ser or Thr with another amino acid precursor, the resulting mixed AA dots could inherit unique properties such as improved photostability and significant red shift in their emission wavelength, producing enhanced green and red fluorescent intensity. Moreover, our cellular studies demonstrate that the as-synthesized AA dots display outstanding biocompatibility and excellent intracellular uptake, which are highly desirable for imaging applications. We envision that the material design rules discovered in this study will be broadly applicable for the rational selection of amino acid precursors in the tailored synthesis of biodots.
NASA Astrophysics Data System (ADS)
El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.
2012-10-01
Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.
McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.
2005-09-06
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.
McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.
2004-09-28
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.
Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.
Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister
2017-03-07
Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C 12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.
Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B
2017-01-01
Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.
NASA Technical Reports Server (NTRS)
Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael
2003-01-01
Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).
Controlling Properties and Cytotoxicity of Chitosan Nanocapsules by Chemical Grafting
De Matteis, Laura; Alleva, Maria; Serrano-Sevilla, Inés; García-Embid, Sonia; Stepien, Grazyna; Moros, María; de la Fuente, Jesús M.
2016-01-01
The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery. PMID:27706041
Photofunctionalization of Titanium: An Alternative Explanation of Its Chemical-Physical Mechanism
Pompella, Alfonso; Kubacki, Jerzy; Szade, Jacek; Roy, Robert A.; Hedzelek, Wieslaw
2016-01-01
Objectives To demonstrate that titanium implant surfaces as little as 4 weeks from production are contaminated by atmospheric hydrocarbons. This phenomenon, also known as biological ageing can be reversed by UVC irradiation technically known as photofunctionalization. To propose a new model from our experimental evidence to explain how the changes in chemical structure of the surface will affect the adsorption of amino acids on the titanium surface enhancing osteointegration. Methods In our study XPS and AES were used to analyze the effects of UVC irradiation (photofunctionalization) in reversing biological ageing of titanium. SEM was used to analyze any possible effects on the topography of the surface. Results UVC irradiation was able to reverse biological ageing of titanium by greatly reducing the amount of carbon contamination present on the implant surface by up to 4 times, while the topography of the surface was not affected. UVC photon energy reduces surface H2O and increases TiOH with many –OH groups being produced. These groups explain the super-hydrophilic effect from photofunctionalization when these groups come into contact with water. Significance Photofunctionalization has proven to be a valid method to reduce the amount of hydrocarbon contamination on titanium dental implants and improve biological results. The chemisorption mechanisms of amino acids, in our study, are dictated by the chemical structure and electric state present on the surface, but only in the presence of an also favourable geometrical composition at the atomical level. PMID:27309723
Biofunctionalized silicon nitride platform for sensing applications.
Hoi, Hiofan; Rezaie, Salva S; Gong, Lu; Sen, Payel; Zeng, Hongbo; Montemagno, Carlo; Gupta, Manisha
2018-04-15
Silicon nitride (SiN x ) based biosensors have the potential to converge on the technological achievements of semiconductor microfabrication and biotechnology. Development of biofunctionalized SiN x surface and its integration with other devices will allow us to integrate the biosensing capability with probe control, data acquisition and data processing. Here we use the hydrogen plasma generated by inductively coupled plasma-reactive ion etching (ICP-RIE) technique to produce amino-functionality on the surface of SiN x which can then be readily used for biomolecule immobilization. ICP-RIE produces high-density hydrogen ions/radicals at low energy, which produces high-density amino group on the SiN x surface within a short duration of time and with minimal surface damage. In this work, we have demonstrated selective amination of SiN x surface as compared to Si surface. The as-activated SiN x surface can be readily biofunctionalized with both protein and oligonucleotide through covalent immobilization. N-5-azido-2-nitrobenzoyloxysuccinimide, a photoactivable amino reactive bifunctional crosslinker, was used and greater than 90% surface coverage was achieved for protein immobilization. In addition, ssDNA immobilization and hybridization with its complemented strand was shown. Thus, we demonstrate a uniform, reliable, fast and economical technique for creating biofunctionalized SiN x surface that can be used for developing compact high-sensitivity biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.
Coloration of tyrosine by organic-semiconductor interfacial charge-transfer transitions
NASA Astrophysics Data System (ADS)
Fujisawa, Jun-ichi; Kikuchi, Natsumi; Hanaya, Minoru
2016-11-01
L-tyrosine (Tyr) plays a crucial role as a proteinogenic amino acid and also as a precursor to several neurotransmitters and hormones. Here we demonstrate coloration of Tyr based on organic-semiconductor interfacial charge-transfer (ICT) transitions. The ICT transitions from Tyr to TiO2 are induced by the chemisorption of Tyr on TiO2 surfaces via the hydroxy group of the phenol moiety. Because other amino acids possess no chemical group to induce ICT transitions, this coloration method enables to detect Tyr selectively without drastic structural change in contrast to the conventional coloration methods.
Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.
Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo
2016-10-03
Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.
NASA Astrophysics Data System (ADS)
Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.
2017-10-01
Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.
Ferreira, Ricardo B; da Silva, César R; Pastore, Heloise O
2008-12-16
Despite its wide application, the synthesis of aminopropyl-modified magnesium-phyllosilicates was known only in the case where every silicon atom bore an organic pending group. This paper shows the preparation of aminopropyl-modified talc where tailored amounts of silicon atoms are bound to an aminopropyl group. The decrease in the concentration of the organoamino group leaves a proportional concentration of interlayer SiOH groups that can be used to react with other silylation agents. The amino group reacts with CO2, forming a carbamate functionality; it seems that the presence of this group avoids delamination in water as performed for the parent compound. Bearing in mind that the aminopropyl group can be changed by other groups, the present synthesis strategy demonstrates ways to produce solids with controlled surface properties with interlayer amino and SiOH groups in variable concentrations, allowing formation of several other interlayer functionalities.
Laucirica, Gregorio; Marmisollé, Waldemar A; Azzaroni, Omar
2017-03-22
Although not always considered a preponderant interaction, amine-phosphate interactions are omnipresent in multiple chemical and biological systems. This study aims to answer questions that are still pending about their nature and consequences. We focus on the description of the charge state as surface charges constitute directing agents of the interaction of amine groups with either natural or synthetic counterparts. Our results allow us to quantitatively determine the relative affinities of HPO 4 2- and H 2 PO 4 - from the analysis of the influence of phosphates on the zeta-potential of amino-functionalized surfaces in a broad pH range. We show that phosphate anions enhance the protonation of amino groups and, conversely, charged amines induce further proton dissociation of phosphates, yielding a complex dependence of the surface effective charge on the pH and phosphate concentration. We also demonstrate that phosphate-amine interaction is specific and the modulation of surface charge occurs in the physiological phosphate concentration range, emphasizing its biochemical and biotechnological relevance and the importance of considering this veiled association in both in vivo and in vitro studies.
DNA sequencing using fluorescence background electroblotting membrane
Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.
1992-01-01
A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.
Glycosyltransferases A and B: Four Critical Amino Acids Determine Blood Type
NASA Astrophysics Data System (ADS)
Rose, Natisha L.; Palcic, Monica M.; Evans, Stephen V.
2005-12-01
Human A, B, and O blood type is determined by the presence or absence of distinct carbohydrate structures on red blood cells. Type O individuals have α-fucose(1→2)galactose disaccharides [O(H) structures] on their cell surfaces while in type A or B individuals, the O antigen is capped by the addition of an α- N -acetylgalactosamine or α-galactose residue, respectively. The addition of these monosaccharides is catalyzed by glycosyltransferase A (GTA) or glycosyltransferase B (GTB). These are homologous enzymes differing by only 4 amino acids out of 354 that change the specificity from GTA to GTB. In this review the chemistry of the blood group ABO system and the role of GTA, GTB, and the four critical amino acids in determining blood group status are discussed. See JCE Featured Molecules .
Room-temperature processing of CdSe quantum dots with tunable sizes
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Jeong, Da-Woon; Lee, Chan-Gi; Kim, Bum-Sung; Park, Hyun-Su; Kim, Woo-Byoung
2017-06-01
In this work, CdSe quantum dots (QDs) with tunable sizes have been fabricated via photo-induced chemical etching at room temperature, and the related reaction mechanism was investigated. The surface of QDs was oxidized by the holes generated through photon irradiation of oxygen species, and the obtained oxide layer was dissolved in an aqueous solution of 3-amino-1-propanol (APOL) with an APOL:H2O volume ratio of 5:1. The generated electrons promoted QD surface interactions with amino groups, which ultimately passivated surface defects. The absorption and photoluminescence emission peaks of the produced QDs were clearly blue-shifted about 26 nm with increasing time, and the resulting quantum yield for an 8 h etched sample was increased from 20% to 26%, as compared to the initial sample.
Role of functional groups on Aspergillus niger biomass in the detoxification of hexavalent chromium.
Narvekar, Sneha; Vaidya, Varsha K
2009-10-01
Chromium (VI) contamination is not uncommon, especially near industries involved in leather tanning, chrome painting, metal cleaning and processing, wood preservation and alloy preparation. The mutagenic and carcinogenic properties of Chromium (VI) necessitate effective remedial processes. Difficulties associated with chemical and physical techniques to remediate a Chromium (VI) contaminated site to EPA recommended level (50 ppm), in addition to higher costs involved, assert the need for bioremedial measures. Biosorption can be one such solution to clean up heavy metal contamination. The objective of this study was to examine the main aspects of a possible strategy for the removal of Chromium (VI), employing Aspergillus niger biomass. The roles played by amines, carboxylic acids, phosphates, in Chromium (VI) biosorption were studied. Amino and the carboxy groups on the fungal cell wall play an important role in sorption. However, the role of carboxy group was far less than amino group. Surface adsorption of Chromium (VI) was also seen by scanning electron microscopy (SEM) thus indicating involvement of ion-exchange and surface adsorption mechanism in removal of Chromium (VI) ions.
Xu, Dazhuang; Liu, Meiying; Huang, Qiang; Chen, Junyu; Huang, Hongye; Deng, Fengjie; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2018-04-15
Recently, fullerene (C 60 ) and its derivatives have been widely explored for many applications owing to their enriched physical and chemical properties. Specifically, the synthesis and biomedical applications of fluorescent C 60 have been extensively investigated previously. However, the preparation of polymer-functionalized fluorescent C 60 has not been reported thus far. In this study, water-dispersible fluorescent C 60 polymer composites were successfully synthesized through the combination of the thiol-ene click reaction and subsequent ring-opening polymerization. First, 2-aminoethanethiol was introduced on the surface of C 60 by the thiol-ene click reaction. The surface of amino group-functionalized C 60 (C 60 -NH 2 ) was further modified with poly(amino acid)s via ring-open polymerization of GluEG N-carboxyanhydrides (NCAs). The morphology, functional groups, optical properties and biocompatibility were examined by a number of characterization equipment and assays in detail. We demonstrated that the resultant fluorescent C 60 poly(amino acid) (C 60 -GluEG) composites have a small size (about 5 nm), high water dispersibility, intense fluorescence and high photostability. Cell viability results implied that the C 60 -GluEG composites possess low cytotoxicity. Moreover, these C 60 -GluEG composites can easily penetrate into live cells, indicating their great potential for biological imaging applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Ganbold, Erdene-Ochir; Yoon, Jinha; Cho, Kwang-Hwi; Joo, Sang-Woo
2015-01-01
The adsorption structures of 2-thiocytosine (2TC) on gold surfaces were examined by means of vibrational Raman spectroscopy and quantum mechanical density functional theory calculations. The 1H-thione-amino form was calculated to be most stable among the six examined tautomers. The three plausible binding geometries of sulfur, pyrimidine nitrogen, and amino group binding modes were calculated to estimate the binding energies of the 1H-thione-amino form with six gold cluster atoms. Thiouracils including 2-thiouracil (2TU), 4-thiouracil (4TU), and 6-methyl-2-thiouracil (6M2TU) were also studied to compare their relative binding energies on gold atoms. The intracellular localization of a DNA base analog of 2TC on gold nanoparticles (AuNPs) in HeLa cells was identified by means of surface-enhanced Raman scattering. AuNPs were modified with 2TC by self-assembly. Our dark-field microscopy and z-depth-dependent confocal Raman spectroscopy indicated that 2TC-assembled AuNPs could be found inside cancer cells. On the other hand, we did not observe noticeably strong Raman peaks in the cases of thiouracils including 2TU, 4TU, and 6M2TU. This may be due to the additional amino group of 2TC, which can lead to a stronger binding of adsorbates on AuNPs. Copyright © 2015. Published by Elsevier B.V.
Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups
NASA Astrophysics Data System (ADS)
Zhao, Zhiyuan; Yang, Zhanhong; Hu, Youwang; Li, Jianping; Fan, Xinming
2013-07-01
In this paper, carboxyl and amino groups have been introduced onto the surface of the multi-walled carbon nanotubes (MWCNTs) by the mixed acid treatment and the diazonium reaction, respectively. The presence of multifunctionality groups on the MWCNTs has been characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TGA) analysis, Raman spectra, scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS). The multifunctionalized carbon nanotubes were further utilized to react with acetyl chloride and ethylenediamine (EDA). The formation of the amide bond in the grafting reaction has been confirmed by FT-IR spectroscopy. The result indicates that the further grafting is successful. The multifunctionalized MWCNTs can be a new versatile platform for many interesting applications.
Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Zhou, Min; Zhang, Lida; Shi, Xianming
2016-09-01
Magnetic separation has great advantages over traditional bio-separation methods and has become popular in the development of methods for the detection of bacterial pathogens, viruses, and transgenic crops. Functionalization of magnetic nanoparticles is a key factor for efficient capture of the target analytes. In this paper, we report the synthesis of amino-rich silica-coated magnetic nanoparticles using a one-pot method. This type of magnetic nanoparticle has a rough surface and a higher density of amino groups than the nanoparticles prepared by a post-modification method. Furthermore, the results of hydrochloric acid treatment indicated that the magnetic nanoparticles were stably coated. The developed amino-rich silica-coated magnetic nanoparticles were used to directly adsorb DNA. After magnetic separation and blocking, the magnetic nanoparticles and DNA complexes were used directly for the polymerase chain reaction (PCR), without onerous and time-consuming purification and elution steps. The results of real-time quantitative PCR showed that the nanoparticles with higher amino group density resulted in improved DNA capture efficiency. The results suggest that amino-rich silica-coated magnetic nanoparticles are of great potential for efficient bio-separation of DNA prior to detection by PCR. Copyright © 2016. Published by Elsevier B.V.
Dayyani, Nahid; Khoee, Sepideh; Ramazani, Ali
2015-06-15
Novel pH-sensitive, biocompatible and biodegradable magneto-dendrimers with OH and/or NH2 functional groups based on poly amino-ester were synthesized for delivery of anti-cancer drugs. Magnetite nanoparticles (MNPs) were synthesized by the co-precipitation method and their surfaces were modified by 3-aminopropyl triethoxysilane. The first and second generations of the magneto-dendrimer with hydroxyl end groups were produced by sequential acrylation and Michael addition reactions using the required amounts of acryloyl chloride and diethanolamine, respectively. The dendrimer containing amino functional surface groups up to second generation was synthesized by the same method using the necessary amounts of acryloyl chloride and ethylenediamine. These dendrimers were fully characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), dynamic light scattering (DLS) and zeta potential analysis, vibrating-sample magnetometer (VSM), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). In-vitro release profiles of the drug-loaded magnetic nanoparticles and their cytotoxicity assay were investigated at two pHs (7.4 and 5.8). The hydrolytic degradation behavior of magneto-dendrimers was evaluated in PBS buffer. Our research suggests that magneto-dendrimers having amine or hydroxyl functional groups could be considered as the suitable nanocarriers for therapy applications. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Shi, Chaohong; Zhu, Nengwu; Kang, Naixin; Wu, Pingxiao; Zhang, Xiaoping; Zhang, Yanhong
2017-09-01
Biorecovery is emerging as a promising process to retrieve gold from secondary resources. The present study aimed to explore the uptake pattern of Pycnoporus sanguineus biomass for gold, identify the effective functional groups in gold recovery process, and thus further intensify the process via microbial surface modification. Results showed that P. sanguineus biomass could effectively recover gold with the formation of highly crystal AuNPs without any exogeneous electron donor. Under the conditions of various initial gold concentrations (1.0, 2.0, and 3.0 mM), biomass dosage of 2.0 g/L, solution pH value of 4.0, and incubation temperature of 30°C, the uptake equilibrium established after 4, 8, and 12 h, respectively. The uptake process could be well described by pseudo-second order kinetics model (R 2 = 0.9988) and Langmuir isotherm model (R 2 = 0.9958). The maximum uptake capacity of P. sanguineus reached as high as 358.69 mg/g. Further analysis indicated that amino, carboxyl and hydroxyl groups positively contributed to the uptake process. Among them, amino group significantly favored the uptake of gold during recovery process. When P. sanguineus biomass was modified by introduction of amino group, the gold uptake process was successfully intensified by shortening the uptake period and enhancing the uptake capacity. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1314-1322, 2017. © 2017 American Institute of Chemical Engineers.
Li, Huihui; Zhu, Houjuan; Sun, Mingtai; Yan, Yehan; Zhang, Kui; Huang, Dejian; Wang, Suhua
2015-08-11
Herein, we report a novel approach to the rapid visual detection of gaseous sulfur dioxide (SO2) by manipulating the surface chemistry of 3-aminopropyltriethoxysilane (APTS)-modified quantum dots (QDs) using fluorescent coumarin-3-carboxylic acid (CCA) for specific reaction with SO2. The CCA molecules are attached to the surface amino groups of the QDs through electrostatic attraction, thus the fluorescence of CCA is greatly suppressed because of the formation of an ion-pair complex between the ATPS-modified QDs and CCA. Such an interaction is vulnerable to SO2 because SO2 can readily react with surface amino groups to form strong charge-transfer complexes and subsequently release the strongly fluorescent CCA molecules. The mechanism has been carefully verified through a series of control experiments. Upon exposure to different amounts of SO2, the fluorescent color of the nanoparticle-based sensor displays continuously changes from red to blue. Most importantly, the approach owns high selectivity for SO2 and a tolerance of interference, which enables the sensor to detect SO2 in a practical application. Using this fluorescence-based sensing method, we have achieved a visual detection limit of 6 ppb for gaseous SO2.
NASA Astrophysics Data System (ADS)
Viswan, Anchu; Sugiura, Kuniaki; Nagatsu, Masaaki
2015-09-01
Carbon-encapsulated iron nanoparticles (Fe@C NPs) were synthesized by DC arc discharge method. Carbon encapsulation makes the particles hydrophobic, however for most of the biomedical applications they need to be hydrophilic. To attain this, the particles were amino functionalized by RF plasma. Effect of gas mixture ratio (Ar/NH3), pretreatment, post-treatment times and RF power were optimized. By varying the RF plasma conditions, the amino group population on the surface of Fe@C NPs were increased. With conventional chemical method the amino group population on particles, synthesized in different conditions was found to be ranging from 3-7 × 104 per particle. Bioconjugation efficiency of the nanoparticles was examined by biotin-avidin system, which can be simulated for antigen-antibody reactions. Results from the UV absorption and fluorescence spectroscopy shows increment in bioconjugation efficiency, with the increase of amino group population on the nanoparticles. After confirming the bioconjugation efficiency, the amino functionalized Fe@C NPs were modified with antibodies for targeting specific microorganisms. Our aim is to capture the microbes in viable and concentrated form even from less populated samples, with lesser time compared to the presently available methods. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the Japan Society for the Promotion of Science (JSPS).
Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.
Huang, Chun-Jen; Chu, Sz-Hau; Wang, Lin-Chuan; Li, Chien-Hung; Lee, T Randall
2015-10-28
Great care has been paid to the biointerface between a bulk material and the biological environment, which plays a key role in the optimized performance of medical devices. In this work, we report a new superhydrophilic adsorbate, called L-cysteine betaine (Cys-b), having branched zwitterionic groups that give rise to surfaces and nanoparticles with enhanced chemical stability, biofouling resistance, and inertness to environmental changes. Cys-b was synthesized from the amphoteric sulfur-containing amino acid, L-cysteine (Cys), by quaternization of its amino group. Gold surfaces modified with Cys-b exhibited prominent repellence against the nonspecific adsorption of proteins, bacteria, and fibroblast cells. In addition, Cys-b existed in zwitterionic form over a wide pH range (i.e., pH 3.4 to 10.8), and showed excellent suppression in photoinduced oxidation on gold substrates. Furthermore, the modification of hollow Ag@Au nanoshells with Cys-b gave rise to nanoparticles with excellent colloidal stability and resistance to coordinative interaction with Cu(2+). Taken together, the unique features of Cys-b offer a new nanoscale coating for use in a wide spectrum of applications.
Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells
Zhang, Zhijian; Xu, Liping; Zhang, Chunlong
2015-01-01
The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498
Particles from bird feather: a novel application of an ionic liquid and waste resource.
Sun, Ping; Liu, Zhao-Tie; Liu, Zhong-Wen
2009-10-30
The dissolution and regeneration of the waste chicken feathers in an ionic liquid of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) were demonstrated for preparing chicken feather based particles. The structure and properties of the regenerated chicken feathers were investigated by FT-IR, XRD, SEM, BET and water contact angle. The crystallinity of the regenerated chicken feathers was decreased, and the content of beta-sheet was 31.71%, which was clearly lower than the raw feather (47.19%). The surface property of chicken feather changed from hydrophobicity to hydrophilicity after regenerated from [BMIM]Cl as indicated by the change of the water contact angle from 138 to 76 degrees . The chicken feather particles regenerated from [BMIM]Cl showed an excellent efficiency (63.5-87.7%) for removing Cr(VI) ions in wastewater at the concentrations from 2 to 80 ppm. The Freundlich constant (k(F)) for the adsorption of Cr(VI) ion by the particles of the regenerated chicken feather was four times larger than that of the raw chicken feather, the possible reason is the hydrophilic groups such as amino and carboxyl groups were tend to self-assemble towards surface when the dissolved CF were regenerated by water, amino group will partly hydrate to cationic amino and Cr(VI) ion occurs as an anion in the aqueous phase, so the cationic amino will adsorb the anionic Cr(VI) ion onto the RCF particles through electrostatic attraction. This work demonstrated a new application of the ionic liquid for dissolving chicken feather and a renewable application of waste chicken feather for removing Cr(VI) ion in water.
NASA Astrophysics Data System (ADS)
He, Xianyun; Wang, Yingjun; Wu, Gang
2012-10-01
In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.
Alves de Sá Siqueira, Mariana; Martins, Marcela Anjos; Rodrigues Pereira, Natália; Bandeira Moss, Monique; Santos, Sérgio F F; Mann, Giovanni E; Mendes-Ribeiro, Antônio C; Brunini, Tatiana M C
2007-01-01
Nitric oxide (NO), a key endogenous mediator involved in the maintenance of platelet function, is synthesized from the amino acid L-arginine. We have shown that L-arginine transport in platelets is rate-limiting for NO synthesis. A disturbance in the L-arginine-NO pathway in platelets was previously described in chronic renal failure (CRF) patients. Detailed kinetic studies were performed in platelets from controls (n = 60) and hemodialysis patients (n = 26). The transport of L-arginine in platelets is mediated via system y+L, which is competitively inhibited by L-leucine in the presence of Na+ and by the irreversible inhibitor pCMB. In platelets, system y+L is markedly stimulated by an Na+/K+-ATPase inhibitor, ouabain, and by changes in surface potential, while it is downregulated by intraplatelet amino acid depletion (zero-trans) and by thrombin. In CRF patients, activation of L-arginine transport was limited to well-nourished patients compared to malnourished patients and controls, where it was reduced and did not differ significantly among the groups under zero-trans conditions. Our results provide the first evidence that system y+L in platelets is modulated by zero-trans conditions, surface potential, thrombin and intraplatelet Na+ concentration. Our findings suggest that enhanced transport in CRF involves increased L-arginine exchange with intraplatelet neutral amino acids.
Hoefling, Martin; Iori, Francesco; Corni, Stefano; Gottschalk, Kay-Eberhard
2010-06-01
Interactions of proteins with inorganic surfaces are of high importance in biological events and in modern biotechnological applications. Therefore, peptides have been engineered to recognize inorganic surfaces with high specificity. However, the underlying interactions are still not well understood. Here, we investigated the adsorption of amino acids as protein building blocks onto a Au(111) surface. In particular, using molecular dynamics simulations, we calculated the potential of mean force between all the 20 amino acids and the gold surface. We found a strong dependence of the binding affinities on the chemical character of the amino acids. Additionally, the interaction free energy is correlated with the propensity of amino acids to form beta-sheets, hinting at design principles for gold binding peptides and induction of beta-sheet formation near surfaces.
Preferential amino acid sequences in alumina-catalyzed peptide bond formation.
Bujdák, J; Rode, B M
2002-05-21
The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.
Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial.
Villegas, María F; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel
2017-09-26
This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm -1 and bands at 1625 and 1415 cm -1 corresponding to -NH 3+ /COO - pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.
Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial
Villegas, María F.; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J.; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel
2017-01-01
This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion. PMID:28952559
Surface engineering of nanoparticles in suspension for particle based bio-sensing
Sen, Tapas; Bruce, Ian J.
2012-01-01
Surface activation of nanoparticles in suspension using amino organosilane has been carried out via strict control of a particle surface ad-layer of water using a simple but efficient protocol ‘Tri-phasic Reverse Emulsion’ (TPRE). This approach produced thin and ordered layers of particle surface functional groups which allowed the efficient conjugation of biomolecules. When used in bio-sensing applications, the resultant conjugates were highly efficient in the hybrid capture of complementary oligonucleotides and the detection of food borne microorganism. TPRE overcomes a number of fundamental problems associated with the surface modification of particles in aqueous suspension viz. particle aggregation, density and organization of resultant surface functional groups by controlling surface condensation of the aminosilane. The approach has potential for application in areas as diverse as nanomedicine, to food technology and industrial catalysis. PMID:22872809
Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity
Wu, Zhuo-Fu; Wang, Zhi; Zhang, Ye; Ma, Ya-Li; He, Cheng-Yan; Li, Heng; Chen, Lei; Huo, Qi-Sheng; Wang, Lei; Li, Zheng-Qiang
2016-01-01
Functional molecules synthesized by self-assembly between inorganic salts and amino acids have attracted much attention in recent years. A simple method is reported here for fabricating hybrid organic–inorganic nanoflowers using copper (II) ions as the inorganic component and natural amino acids as the organic component. The results indicate that the interactions between amino acid and copper ions cause the growth of the nanoflowers composed by C, N, Cu, P and O elements. The Cu ions and Cu(AA)n complexes containing Cu-O bond are present in the nanoflowers. The nanoflowers have flower-like porous structure dominated by the R groups of amino acids with high surface-to-volume ratios, which is beneficial for exerting its peroxidase-like activity depending on Fenton-like reaction mechanism with ABTS and Rhodamine B as the substrates. It is expected that the nanoflowers hold great promise as enzyme mimics for application in the field of biosensor, bioanalysis and biocatalysis. PMID:26926099
Synthesis of new oligothiophene derivatives and their intercalation compounds: Orientation effects
Ibrahim, M.A.; Lee, B.-G.; Park, N.-G.; Pugh, J.R.; Eberl, D.D.; Frank, A.J.
1999-01-01
The orientation dependence of intercalated oligothiophene derivatives in vermiculite and metal disulfides MS2 (M = Mo, Ti and Zr) on the pendant group on the thiophene ring and the host material was studied by X-ray diffraction (XRD) and solid state nuclear magnetic resonance spectroscopy. Amino and nitro derivatives of bi-, ter- and quarter-thiophenes were synthesized for the first time. The amino-oligothiophenes were intercalated into vermiculite by an exchange reaction with previously intercalated octadecylammonium vermiculite and into MS2 by the intercalation-exfoliation technique. Analysis of the XRD data indicates that a monolayer of amino-oligothiophene orients perpendicularly to the silicate surface in vermiculite and lies flat in the van der Waals gap of MS2.
Functionally charged nanosize particles differentially activate BV2 microglia.
The effect of particle surface charge on the biological activation of immortalized mouse microglia (BV2) was examined. Nanosize (860-950 nm) spherical polystyrene microparticles (SPM) were coated with carboxyl (COOH-) or dimethyl amino (CH3)2-N- groups to give a net negative or p...
Holinga, George J; York, Roger L; Onorato, Robert M; Thompson, Christopher M; Webb, Nic E; Yoon, Alfred P; Somorjai, Gabor A
2011-04-27
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.
Amino acid-based surfactants – do they deserve more attention?
Bordes, Romain; Holmberg, Krister
2015-08-01
The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications. Copyright © 2015 Elsevier B.V. All rights reserved.
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-08
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.
Simple, benign, aqueous-based amination of polycarbonate surfaces
VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; ...
2015-03-18
Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.
Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.
Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin
2015-06-01
In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability. Copyright © 2015 Elsevier Inc. All rights reserved.
Polyethylene Glycol Propionaldehydes
NASA Technical Reports Server (NTRS)
Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.
1992-01-01
New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.
Determination of the Adsorption Free Energy for Peptide–Surface Interactions by SPR Spectroscopy
Wei, Yang; Latour, Robert A.
2009-01-01
To understand and predict protein adsorption behavior, we must first understand the fundamental interactions between the functional groups presented by the amino acid residues making up a protein and the functional groups presented by the surface. Limited quantitative information is available, however, on these types of submolecular interactions. The objective of this study was therefore to develop a reliable method to determine the standard state adsorption free energy (ΔG°ads) of amino acid residue–surface interactions using surface plasma resonance (SPR) spectroscopy. Two problems are commonly encountered when using SPR for peptide adsorption studies: the need to account for “bulk-shift” effects and the influence of peptide–peptide interactions at the surface. Bulk-shift effects represent the contribution of the bulk solute concentration to the SPR response that occurs in addition to the response due to adsorption. Peptide–peptide interactions, which are assumed to be zero for Langmuir adsorption, can greatly skew the isotherm shape and result in erroneous calculated values of ΔG°ads. To address these issues, we have developed a new approach for the determination of ΔG°ads using SPR that is based on the chemical potential. In this article, we present the development of this new approach and its application for the calculation of ΔG°ads for a set of peptide–surface systems where the peptide has a host–guest amino acid sequence of TGTG-X-GTGT (where G and T are glycine and threonine residues and X represents a variable residue) and the surface consists of alkanethiol self-assembled monolayers (SAMs) with methyl (CH3) and hydroxyl (OH) functionality. This new approach enables bulk-shift effects to be directly determined from the raw SPR versus peptide concentration data plots and the influence of peptide–peptide interaction effects to be minimized, thus providing a very straightforward and accurate method for the determination of ΔG °ads for peptide adsorption. Further studies are underway to characterize ΔG°ads for a large library of peptide–SAM combinations. PMID:18507411
NASA Astrophysics Data System (ADS)
Nagatsu, Masaaki
2015-09-01
In this study we will present our recent results on the virus and bacteria detection system using the surface-functionalized carbon-encapsulated magnetic nanoparticles (NPs) fabricated by dc arc discharge, and carbon nanotube(CNT) dot-array prepared with a combined thermal and plasma CVD system. Surface functionalization of their surfaces has been carried out by plasma chemical modification using a low-pressure RF plasma for carbon-encapsulated magnetic NPs, and an ultrafine atmospheric pressure plasma jet(APPJ) for CNT dot-array substrate. After immobilization of the relevant biomolecules onto the surface of nano-structured materials, we have carried out the experiments on virus or bacteria detection using these surface-functionalized nano-structured materials. From the preliminary experiments with carbon-encapsulated magnetic NPs, we confirmed that influenza A (H1N1) virus concentration of 17.3-fold was achieved by using anti-influenza A virus hemagglutinin (HA) antibody. We have also confirmed a rapid and sensitive detection of Salmonella using the proposed method. The feasibility of CNT dot-array as a microarray biosensor has been studied by maskless functionalization of amino (-NH2) and carboxyl (-COOH) groups onto CNTs by using a ultrafine APPJ with a micro-capillary. The experimental results of chemical derivatization with the fluorescent dye showed that the CNT dot-array was not only functionalized with amino group and carboxyl group, but was also functionalized without any interference between functional groups. The success of maskless functionalization in the line pattern provides a feasibility of a multi-functionalization CNT dot-array device for future application of a microarray biosensor. This work has been supported in part by Grant-in-Aid for Scientific Research (Nos. 21110010 and 25246029) from the JSPS and the International Research Collaboration and Scientific Publication Grant (DIPA-23.04.1.673453/2015) from DGHE Indonesia.
Minimalism in radiation synthesis of biomedical functional nanogels.
Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio
2012-06-11
A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.
Identification of Group B Streptococcal Sip Protein, Which Elicits Cross-Protective Immunity
Brodeur, Bernard R.; Boyer, Martine; Charlebois, Isabelle; Hamel, Josée; Couture, France; Rioux, Clément R.; Martin, Denis
2000-01-01
A protein of group B streptococci (GBS), named Sip for surface immunogenic protein, which is distinct from previously described surface proteins, was identified after immunological screening of a genomic library. Immunoblots using a Sip-specific monoclonal antibody indicated that a protein band with an approximate molecular mass of 53 kDa which did not vary in size was present in every GBS strain tested. Representatives of all nine GBS serotypes were included in the panel of strains. Cloning and sequencing of the sip gene revealed an open reading frame of 1,305 nucleotides coding for a polypeptide of 434 amino acid residues, with a calculated pI of 6.84 and molecular mass of 45.5 kDa. Comparison of the nucleotide sequences from six different strains confirmed with 98% identity that the sip gene is highly conserved among GBS isolates. N-terminal amino acid sequencing also indicated the presence of a 25-amino-acid signal peptide which is cleaved in the mature protein. More importantly, immunization with the recombinant Sip protein efficiently protected CD-1 mice against deadly challenges with six GBS strains of serotypes Ia/c, Ib, II/R, III, V, and VI. The data presented in this study suggest that this highly conserved protein induces cross-protective immunity against GBS infections and emphasize its potential as a universal vaccine candidate. PMID:10992461
Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf
2002-01-01
We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842
Surface modification of closed plastic bags for adherent cell cultivation
NASA Astrophysics Data System (ADS)
Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.
2011-07-01
In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.
Sakaguchi, Yohei; Kinumi, Tomoya; Yamazaki, Taichi; Takatsu, Akiko
2015-03-21
We have developed a novel amino acid analysis method using derivatization of multiple functional groups (amino, carboxyl, and phenolic hydroxyl groups). The amino, carboxyl, and phenolic hydroxyl groups of the amino acids were derivatized with 1-bromobutane so that the hydrophobicities and basicities of the amino acids were improved. The derivatized amino acids, including amino group-modified amino acids, could be detected with high sensitivity using liquid chromatography/tandem mass spectrometry (LC-MS/MS). In this study, 17 amino acids obtained by hydrolyzing proteins and 4 amino group-modified amino acids found in the human body (N,N-dimethylglycine, N-formyl-L-methionine, L-pyroglutamic acid, and sarcosine) were selected as target compounds. The 21 derivatized amino acids could be separated using an octadecyl-silylated silica column within 20 min and simultaneously detected. The detection limits for the 21 amino acids were 5.4-91 fmol, and the calibration curves were linear over the range of 10-100 nmol L(-1) (r(2) > 0.9984) with good repeatability. A confirmatory experiment showed that our proposed method could be applied to the determination of a protein certified reference material using the analysis of 12 amino acids combined with isotope dilution mass spectrometry. Furthermore, the proposed method was successfully applied to a stable isotope-coded derivatization method using 1-bromobutane and 1-bromobutane-4,4,4-d3 for comparative analysis of amino acids in human serum.
Are amino groups advantageous to insensitive high explosives (IHEs)?
Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang
2012-10-01
There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs.
NASA Astrophysics Data System (ADS)
Baio, Joseph E.
There are many techniques that allow surface scientists to study interfaces. However, few are routinely applied to probe biological surfaces. The work presented here demonstrates how detailed information about the conformation, orientation, chemical state, and molecular structure of biological molecules immobilized onto a surface can be assessed by electron spectroscopy, mass spectrometry, and nonlinear vibrational spectroscopy techniques. This investigation began with the development of simple model systems (small proteins, and peptides) and evolved into a study of more complex --- real world systems. Initially, two model systems based on the chemical and electrostatic immobilization of a small rigid protein (Protein G B1 domain, 6kDa) were built to develop the capabilities of time-of-flight secondary ion mass spectrometry (ToFSIMS), near edge X-ray absorption fine structure spectroscopy (NEXAFS) and sum frequency generation (SFG) spectroscopy as tools to probe the structure of surface immobilized proteins. X-ray photoelectron spectroscopy (XPS) was used to measure the amount of immobilized protein and ToF-SIMS sampled the amino acid composition of the exposed surface of the protein film. Within the ToF-SIMS spectra, an enrichment of secondary ions from amino acids located at opposite ends of the proteins were used to describe protein orientation. SFG spectral peaks characteristic of ordered alpha-helix and beta-sheet elements were observed for both systems and the phase of the peaks indicated a predominantly upright orientation for both the covalent and electrostatic configurations. Polarization dependence of the NEXAFS signal from the N 1s to pi* transition of the peptide bonds that make up the beta-sheets also indicated protein ordering at the surface. Building upon the Protein G B1 studies, the orientation and structure of a surface immobilized antibody (HuLys Fv: variant of humanized anti-lysozyme variable fragment, 26kDa) was characterized across two immobilization schemes. This protein contained both a hexahistidine tag and a cysteine residue, introduced at opposite ends of the HuLys Fv, for immobilization onto nitrilotriacetic acid (NTA) and maleimide oligo- (ethylene glycol) (MEG)-terminated substrates. The thiol group on the cysteine residue selectively binds to the MEG groups, while the his-tag selectively binds to the Ni-loaded NTA groups. XPS was used to monitor protein coverage on both surfaces by following the change in the nitrogen atomic %. The ToF-SIMS data provided a clear differentiation between the two samples due to the intensity differences of secondary ions originating from asymmetrically located amino acids in HuLys Fv. Indicating that the HuLys Fv fragment when adsorbed into the NTA and MEG substrates will be induced into two different orientations. On the NTA substrate the protein's binding site is accessible, while on the MEG substrate the binding site is oriented towards the surface. By taking advantage of the electron pathway through the heme group in cytochrome c (CytoC) electrochemists have built sensors based upon CytoC immobilized onto functionalized metal electrodes. When immobilized onto a charged surface, CytoC, with its distribution of lysine and glutamate residues around its surface, should orient and form a well-ordered protein film. Here a detailed examination of CytoC orientation when electrostatically immobilized onto both amine (NH 3+) and carboxyl (COO-) functionalized gold is presented. Again, protein coverage, on both surfaces, was monitored by the change in the atomic % N, as determined by XPS. ToF-SIMS data demonstrated a clear separation between the two samples based on the intensity differences of secondary ions stemming from amino acids located asymmetrically within CytoC, indicating opposite orientations of the protein on the two different surfaces. Spectral features within the in situ sum frequency generation vibrational spectra, acquired for the protein interacting with positively and negatively charged surfaces, indicates that these electrostatic interactions do induce the protein into a well ordered film.
Conformational Preferences of β– and γ–Aminated Proline Analogues
Flores-Ortega, Alejandra; Casanovas, Jordi; Nussinov, Ruth; Alemán, Carlos
2010-01-01
Quantum mechanical calculations have been used to investigate how the incorporation of an amino group to the Cβ- or Cγ-positions of the pyrrolidine ring affects the intrinsic conformational properties of the proline. Specifically, a conformational study of the N-acetyl-N′-methylamide derivatives of four isomers of aminoproline, which differ not only in the β- or γ-position of the substituent but also in its cis or trans relative disposition, has been performed. In order to further understand the role of the intramolecular hydrogen bonds between the backbone carbonyl groups and the amino side group, a conformational study was also performed on the corresponding four analogues of dimethylaminoproline. In addition, the effects of solvation on aminoproline and dimethylaminoproline dipeptides have been evaluated using a Self Consistent Reaction Field model, and considering four different solvents (carbon tetrachloride, chloroform, methanol and water). Results indicate that the incorporation of the amino substituent into the pyrrolidine ring affects the conformational properties, with backbone⋯side chain intramolecular hydrogen bonds detected when it is incorporated in a cis relative disposition. In general, the incorporation of the amino side group tends to stabilize those structures where the peptide bond involving the pyrrolidine nitrogen is arranged in cis. The aminoproline isomer with the substituent attached to the Cγ-position with a cis relative disposition is the most stable in the gas-phase and in chloroform, methanol and water solutions. Replacement of the amino side group by the dimethylamino substituent produces significant changes in the potential energy surfaces of the four investigated dimethylaminoproline-containing dipeptides. Thus, these changes affect not only the number of minima, which increases considerably, but also the backbone and pseudorotational preferences. In spite of these effects, comparison of the conformational preferences, i.e. the more favored conformers, calculated for different isomers of aminoproline and dimethylaminoproline dipeptides showed a high degree of consistency for the two families of compounds. PMID:18842022
NASA Astrophysics Data System (ADS)
Gargiulo, Valentina; Alfè, Michela; Ammendola, Paola; Raganati, Federica; Chirone, Riccardo
2016-01-01
The use of solid sorbents is a convenient option in post-combustion CO2 capture strategies. Sorbents selection is a key point because the materials are required to be both low-cost and versatile in typical post-combustion conditions in order to guarantee an economically advantageous overall process. This work compares strategies to tailor the chemico-physical features of carbon black (CB) by surface-modification and/or coating with a CO2-sorbent phase. The influence of the CB microporosity, enhanced by chemical/thermal treatments, is also taken into account. Three CB surface modifications are performed and compared: (i) oxidation and functionalization with amino-groups, (ii) coating with iron oxides and (iii) impregnation with an ionic liquid (IL). The CO2 capture performance is evaluated on the basis of the breakthrough curves measured at atmospheric pressure and room temperature in a lab-scale fixed bed micro-reactor. Most of tested solids adsorb a CO2 amount significantly higher than a 13X zeolite and DARCO FGD (Norit) activated carbon (up to 4 times more in the best case). The sorbents bearing basic functionalities (amino-groups and IL) exhibit the highest CO2 sorption capacity. The use of a microporous carbonaceous support limits the accessibility of CO2 toward the adsorbing phase (IL or FM) lowering the number of accessible binding sites for CO2.
Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications
NASA Astrophysics Data System (ADS)
Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki
2014-08-01
This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.
NASA Astrophysics Data System (ADS)
Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.
2013-06-01
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.
Stereochemistry of amino acids in surface samples of a marine sediment
NASA Technical Reports Server (NTRS)
Pollock, G. E.; Kvenvolden, K. A.
1978-01-01
In two surface samples of marine sediment, the percentages of D-alanine and D-aspartic acid are significantly higher than the other D-amino acids and are similar to the range found in soils. The percentage of D-glutamic acid is also higher than the other amino acids but less than D-alanine and D-aspartic acid. These D-amino acids may come mainly from bacteria.
Stereochemistry of amino acids in surface samples of a marine sediment
Pollock, G.E.; Kvenvolden, K.A.
1978-01-01
In two surface samples of marine sediment, the percentages of d-alanine and d-aspartic acid are significantly higher than the other d-amino acids and are similar to the range found in soils. The percentage of d-glutamic acid is also higher than the other amino acids but less than d-alanine and d-aspartic acid. These d-amino acids may come mainly from bacteria. ?? 1978.
NASA Astrophysics Data System (ADS)
Zhiani, Rahele
2017-07-01
The binding properties of the adsorption of five different classes of amino acids, namely, alanine (Ala), arginine (Arg), asparagine (Asn), histidine (His) and cysteine (Cys) on the surface of the graphene (Gra) and the born-nitride (BN) nano-sheet structures were studied from molecular viewpoint using quantum mechanics methods. Density functional theory (DFT) and DFT-D3 calculations were carried out to investigate the electronic properties and the dispersion interaction of the amino acid/adsorbent complexes. Several parameters affecting the interactions between the amino acids and the adsorbent surfaces such as solvent effect, adsorption energy and separation distance were investigated. Findings show that Arg forms the most stable complexes with the graphene and the BN nano-sheet compare to the other amino acids used in this study. The observed frequency results which were related to the band gap energies were consistent with the above statement. Results exhibit that adsorption of the amino acids on the surface of the BN nano-sheet and the graphene accompanied with the release of the energy. Calculations show that there are no bonded interactions between the amino acids and adsorbent surfaces. The polarity of the BN nano-sheet provides the more affinity towards the amino acids. These results were proved by the quantum chemistry studies.
USDA-ARS?s Scientific Manuscript database
Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...
NASA Astrophysics Data System (ADS)
Mossine, Valeri V.; Barnes, Charles L.; Mawhinney, Thomas P.
2018-05-01
Sorbosamine and psicosamine are the last two 1-amino-1-deoxy-hexuloses for which no structural data were available. We report on a13C NMR and a single crystal X-ray diffraction study of 1-deoxy-1-(N-methylphenylamino)-D-sorbose (1) and 1-deoxy-1-(N-methylphenylamino)-D-psicose (2). In solutions, both aminosugars are conformationally unstable and establish equilibria, with 90.7% α-pyranose, 3.8% α-furanose, 1.0% β-pyranose, 0.5% β-furanose, and 4.0% acyclic keto form for 1 and 32.4% α-furanose, 27.2% α-pyranose, 21.0% β-pyranose, 9.1% β-furanose, and 11.0% acyclic keto form for 2. X-ray diffraction data provided detailed structural information on 1 and 2 in the α-pyranose form. Both molecules adopt the 5C2 ring conformations, the bond distances and valence angles compare well with respective pyranose structures. All hydroxyl groups in crystal structures of both 1 and 2 participate in two-dimensional hydrogen bonding networks, the H-bonding pattern in 1 is dominated by co-crystallized water molecules. The Hirshfeld surface analysis revealed a significant contribution of non- or weakly polar interactions to the packing forces for both molecules, with crystal structure of 2 featuring short H⋯H contacts. Other structural features found in 2 are a significant planarity of the tertiary amino group (the pyramid heights are 0.127 Å in 2 vs 0.231 Å in 1), a concomitant non-involvement of the amine nitrogen in heteroatom contacts, and a unique anti-periplanar conformation around the C1sbnd C2 bond.
Nakayama, Hidekazu; Nakanishi, Jun; Shimizu, Takahiro; Yoshino, Yutaro; Iwai, Hideo; Kaneko, Shingo; Horiike, Yasuhiro; Yamaguchi, Kazuo
2010-03-01
Patterned immobilization of synthetic and biological ligands on material surfaces with controlled surface densities is important for various bioanalytical and cell biological purposes. This paper describes the synthesis, characterization, and application of a novel silane coupling agent bearing a photoremovable succinimidyl carbonate, which enables the photopatterning of various primary amines on glass and silicon surfaces. The silane coupling agent is 1-[5-methoxy-2-nitro-4-(3-trimethoxysilylpropyloxy)phenyl]ethyl N-succinimidyl carbonate. The distinct feature of this molecule is that it has a photocleavable 2-nitrobenzyl switch between a trimethoxysilyl group and a succinimidyl carbonate, each reactive to the hydroxy groups of inorganic oxides and primary amines. Based on this molecular design, the compound allows for the one-step introduction of succinimidyl carbonates onto the surface of glass and silicon, immobilization of primary amines, and region-selective and dose-dependent release of the amines by near-UV irradiation. Therefore, we were able to pattern amine ligands on the substrates in given surface densities and arbitrary geometries by controlling the doses and regions of photoirradiation. These features were verified by UV-vis spectroscopy, contact angle measurements, infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM). The compound was applied to form a chemical density gradient of amino-biotin on a silicon substrate in a range of 0.87-0.12 chains/nm(2) by controlling photoirradiation under a standard fluorescence microscope. Furthermore, we also succeeded in forming a chemical density gradient at a lower surface density range (0.15-0.011 chains/nm(2)) on the substrate by diluting the feed amino-biotin with an inert control amine.
Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip
NASA Astrophysics Data System (ADS)
Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs
2013-12-01
Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.
Presence of closely spaced protein thiols on the surface of mammalian cells.
Donoghue, N.; Yam, P. T.; Jiang, X. M.; Hogg, P. J.
2000-01-01
It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active. PMID:11206065
NASA Astrophysics Data System (ADS)
Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.
2017-08-01
This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.
Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization
Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan
2016-01-01
A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834
Dadarlat, Voichita M.; Post, Carol Beth
2016-01-01
In this paper we use the results from all atom MD simulations of proteins and peptides to assess individual contribution of charged atomic groups to the enthalpic stability of the native state of globular proteins and investigate how the distribution of charged atomic groups in terms of solvent accessibility relates to protein enthalpic stability. The contributions of charged groups is calculated using a comparison of nonbonded interaction energy terms from equilibrium simulations of charged amino acid dipeptides in water (the “unfolded state”) and charged amino acids in globular proteins (the “folded state”). Contrary to expectation, the analysis shows that many buried, charged atomic groups contribute favorably to protein enthalpic stability. The strongest enthalpic contributions favoring the folded state come from the carboxylate (COO−) groups of either Glu or Asp. The contributions from Arg guanidinium groups are generally somewhat stabilizing, while NH3+ groups from Lys contribute little toward stabilizing the folded state. The average enthalpic gain due to the transfer of a methyl group in an apolar amino acid from solution to the protein interior is described for comparison. Notably, charged groups that are less exposed to solvent contribute more favorably to protein native-state enthalpic stability than charged groups that are solvent exposed. While solvent reorganization/release has favorable contributions to folding for all charged atomic groups, the variation in folded state stability among proteins comes mainly from the change in the nonbonded interaction energy of charged groups between the unfolded and folded states. A key outcome is that the calculated enthalpic stabilization is found to be inversely proportional to the excess charge density on the surface, in support of an hypothesis proposed previously. PMID:18303881
The adsorption of biogenic amines on carbon nanotubes
NASA Astrophysics Data System (ADS)
Sidorenko, I. G.; Markitan, O. V.; Vlasova, N. N.; Zagorovskii, G. M.; Lobanov, V. V.
2009-06-01
The adsorption of phenylethylamine, tryptamine, and tyramine on carbon nanotubes from aqueous solutions (pH 7.4) was studied depending on time and sorbate concentration. The suggestion was made that their interaction with electrodes was determined by electrostatic attraction between protonated amino groups and oxygen-containing functional groups of the surface of carbon. An increase in the adsorption of biological amines was caused by the interaction of the π systems of their aromatic rings with carbon surface hexagons. The adsorption of biogenic amines on carbon nanotubes was necessary for their possible electrooxidation and analytic determination by electrochemical methods with the use of carbon electrodes.
NASA Astrophysics Data System (ADS)
Chang, Xijiang; Kunii, Kazuki; Liang, Rongqing; Nagatsu, Masaaki
2013-04-01
A large-area planar surface-wave plasma (SWP) source driven by a 915 MHz ultrahigh frequency (UHF) wave was developed. To avoid using large, thick dielectric plates as vacuum windows, we propose a cavity launcher consisting of a cylindrical cavity with several small quartz discs at the bottom. Three types of launchers with quartz discs located at different positions were tested to compare their plasma production efficiencies and spatial distributions of electron density. With the optimum launcher, large-area plasma discharges with a radial uniformity within ±10% were obtained in a radius of about 25-30 cm in Ar gas at 8 Pa for incident power in the range 0.5-2.5 kW. The maximum electron density and temperature were approximately (0.95-1.1) × 1011 cm-3 and 1.9-2.0 eV, respectively, as measured by a Langmuir probe located 24 cm below the bottom of the cavity launcher. Using an Ar/NH3 SWP with the optimum launcher, we demonstrated large-area amino-group surface modification of polyurethane sheets. Experimental results indicated that a uniform amino-group modification was achieved over a radius of approximately 40 cm, which is slightly larger than the radial uniformity of the electron density distribution.
Fujita, Satomi; Cho, Su-Hee; Yoshida, Ayako; Hasebe, Fumihito; Tomita, Takeo; Kuzuyama, Tomohisa; Nishiyama, Makoto
2017-09-16
LysK is an M20 peptidase family enzyme that hydrolyzes the isopeptide bond between the carrier protein LysW and lysine in order to release lysine, which is the last step of lysine biosynthesis in Thermus thermophilus. In the present study, we determined the crystal structure of LysK in complex with lysine at a resolution of 2.4 Å. The α-amino group of the bound lysine was oriented toward the catalytic center, which was composed of the residues coordinating divalent metal ions for the hydrolysis of the isopeptide bond. An 11 Å-long path was observed from the active site binding lysine to the protein surface, which may be responsible for recognizing the C-terminal extension domain of LysW with the conserved EDWGE sequence. A positively-charged surface region was detected around the exit of the path, similar to other lysine biosynthetic enzymes using LysW as the carrier protein. Mutational studies of the surface residues provided a plausible model for the electrostatic interaction with LysW. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of a versatile procedure for the biofunctionalization of Ti-6Al-4V implants
NASA Astrophysics Data System (ADS)
Rezvanian, Parsa; Arroyo-Hernández, María; Ramos, Milagros; Daza, Rafael; Elices, Manuel; Guinea, Gustavo V.; Pérez-Rigueiro, José
2016-11-01
Titanium (Ti) and titanium alloys are among the most-commonly used metallic materials for implantation in the human body for the purpose of replacing hard tissue. Although Ti and its alloys are widely used for such an aim, in implants of a long duration they exhibit some shortcomings due to the loosening of the very implant. This phenomenon is highly dependent on the interaction between the organic tissues and the surface of the implant. In this study, the authors introduce a surface treatment technique for functionalization of the surface of Ti-6Al-4V alloy with amino groups that could help to control this interaction. The functionalized layer was deposited by activated vapor silanization (AVS), which has been proven as a reliable and robust technique with other materials. The resulting biofunctional layers were characterized by atomic force microscopy and fluorescence microscopy, with the optimal conditions for the deposition of a homogeneous film with a high density of amino groups being determined. Additionally, the non-toxic nature and stability of the biofunctional layer were confirmed by cell culturing. The results show the formation of a homogeneous biofunctional amine layer on Ti-6Al-4V alloy that may be used as a platform for the subsequent covalent immobilization of proteins or other biomolecules.
Non-specific cellular uptake of surface-functionalized quantum dots
NASA Astrophysics Data System (ADS)
Kelf, T. A.; Sreenivasan, V. K. A.; Sun, J.; Kim, E. J.; Goldys, E. M.; Zvyagin, A. V.
2010-07-01
We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.
Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater.
Lau, Abbe Y T; Tsang, Daniel C W; Graham, Nigel J D; Ok, Yong Sik; Yang, Xin; Li, Xiang-Dong
2017-02-01
Bioretention systems have been recommended as one of the best management practices for low impact development for water recycling/reuse systems. Although improvement of the stormwater quality has been reported regarding pollutants eliminations such as suspended solids and heavy metals, a substantial removal of indicator bacteria is required for possible non-potable reuse. This study investigated the efficiency of wood biochar with H 2 SO 4 -, H 3 PO 4 -, KOH-, and amino-modifications for E. coli removal from synthetic stormwater under intermittent flow. The H 2 SO 4 -modified biochar showed a specific surface area of 234.7 m 2 g -1 (approximately double the area of original biochar), whereas a substantial reduction in surface area was found with amino-modified biochar. The E. coli removal (initial concentration of 0.3-3.2 × 10 6 CFU mL -1 ) by modified biochars as filter media was very promising with, for example, over 98% removal efficiency in the first 20 pore volumes of stormwater infiltration and over 92% removal by the end of the second infiltration cycle. Only a small portion of E. coli attached on the modified biochars (<0.3%, except KOH- and amino-modified biochars) was remobilized during the drainage phase of intermittent flow. The high removal capacity and stability against drainage were attributed to the high surface area, porous structure, and surface characteristics (e.g. hydrophobicity and O-containing functional groups) of the biochars. Thus, the H 2 SO 4 -modified biochar appeared to give the best treatment performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene
NASA Astrophysics Data System (ADS)
Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos
2017-07-01
Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo
2018-02-01
We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.
NASA Technical Reports Server (NTRS)
Hoover, Richard B.; Kolb, Vera M.
2009-01-01
The early search for the amino acids on the lunar surface fines indicated such a low amount of the amino acids that it was deemed insignifi cant. While the later studies seemed to depart in some ways from the earlier results, they were not pursued. In this paper we critically ev aluate the results from the Apollo missions from the new perspective with considerations of the sensitivity of the instrumentation availabl e at the time. We discuss the possible relevance of the lunar results to the findings of the amino acids on the surfaces of other extraterrestrial bodies, such as Mars.
Surface Enhanced Raman Scattering studies of L-amino acids adsorbed on silver nanoclusters
NASA Astrophysics Data System (ADS)
Botta, Raju; Rajanikanth, A.; Bansal, C.
2015-01-01
Silver nanocluster films were prepared using plasma inert gas phase condensation technique. These were used as Raman active substrates for Surface Enhanced Raman Scattering (SERS) studies of 19 standard L-amino acids adsorbed on the surface of Ag nanoclusters via Agsbnd N bonds. A detailed study of two essential aromatic amino acids viz. L-Phenylalanine and L-Tryptophan showed a correlation between the Raman intensity of the characteristic lines of phenol and indole side chains and their molar concentrations in the range 1 μM-1 mM. This indicates that Raman studies can be used for quantitative determination of the amino acids in proteins.
Highly selective covalent organic functionalization of epitaxial graphene
NASA Astrophysics Data System (ADS)
Bueno, Rebeca A.; Martínez, José I.; Luccas, Roberto F.; Del Árbol, Nerea Ruiz; Munuera, Carmen; Palacio, Irene; Palomares, Francisco J.; Lauwaet, Koen; Thakur, Sangeeta; Baranowski, Jacek M.; Strupinski, Wlodek; López, María F.; Mompean, Federico; García-Hernández, Mar; Martín-Gago, José A.
2017-05-01
Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.
NASA Astrophysics Data System (ADS)
Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong
2017-11-01
Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.
Švorc, Ĺubomír; Jambrec, Daliborka; Vojs, Marian; Barwe, Stefan; Clausmeyer, Jan; Michniak, Pavol; Marton, Marián; Schuhmann, Wolfgang
2015-09-02
The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.
Aragona, Pasquale; Rania, Laura; Roszkowska, Anna M; Spinella, Rosaria; Postorino, Elisa; Puzzolo, Domenico; Micali, Antonio
2013-09-01
To evaluate the effect of aminoacid enriched artificial tears on the ocular surface of patients with dysfunctional tear syndrome (DTS). Forty patients were divided into two groups: group 1 treated for 90 days with sodium hyaluronate (SH) 0.15% 1 drop × 5 times/day; group 2 treated for 90 days with SH 0.15% + aminoacids mixture 1 drop × 5 times/day. Symptom score questionnaire, tear break-up time (TBUT), corneal fluorescein stain, Shirmer's I test and confocal microscopy were performed at baseline and after 30 and 90 days. Confocal images underwent morphometric analysis. Both treatments improved symptoms after 1 month. Group 2 patients showed at 1 month an improvement of TBUT and corneal stain, maintained throughout the study. Also Shirmer's I test improved after 3 months. In group 1, an improvement of TBUT and corneal stain was observed after 3 months. The morphometric analysis of confocal images demonstrated at month 1 an improvement of nerve tortuosity in group 2; after 3 months both groups showed a significant improvement versus baseline. The epithelium showed, in both groups, a reduction in hyperreflective large cells starting from 1 month; the area of the cells was significantly reduced after 3 months, with a significant higher reduction in group 2. The perineural stromal opacity was significantly increased after 3 months, particularly in group 2. This is the first study addressing corneal changes after amino acids administration in a DTS population. The treatment with amino acids enriched SH can be considered a useful tool in the treatment of DTS. © 2013 The Authors Acta Ophthalmologica © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by Blackwell Publishing Ltd.
Modulation of protein stability and aggregation properties by surface charge engineering.
Raghunathan, Govindan; Sokalingam, Sriram; Soundrarajan, Nagasundarapandian; Madan, Bharat; Munussami, Ganapathiraman; Lee, Sun-Gu
2013-09-01
An attempt to alter protein surface charges through traditional protein engineering approaches often affects the native protein structure significantly and induces misfolding. This limitation is a major hindrance in modulating protein properties through surface charge variations. In this study, as a strategy to overcome such a limitation, we attempted to co-introduce stabilizing mutations that can neutralize the destabilizing effect of protein surface charge variation. Two sets of rational mutations were designed; one to increase the number of surface charged amino acids and the other to decrease the number of surface charged amino acids by mutating surface polar uncharged amino acids and charged amino acids, respectively. These two sets of mutations were introduced into Green Fluorescent Protein (GFP) together with or without stabilizing mutations. The co-introduction of stabilizing mutations along with mutations for surface charge modification allowed us to obtain functionally active protein variants (s-GFP(+15-17) and s-GFP(+5-6)). When the protein properties such as fluorescent activity, folding rate and kinetic stability were assessed, we found the possibility that the protein stability can be modulated independently of activity and folding by engineering protein surface charges. The aggregation properties of GFP could also be altered through the surface charge engineering.
The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.
Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu
2010-01-01
An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.
Nomura, Youhei; Fukahori, Shuji; Fukada, Haruhisa; Fujiwara, Taku
2017-10-15
Removal efficiencies of sulfamonomethoxine (SMM) and its degradation intermediates formed by treatment with zeolite/TiO 2 composites through adsorption and photocatalysis were investigated in fresh aquaculture wastewater (FAWW). Coexistent substances in the FAWW showed no inhibitory effects against SMM adsorption. Although coexistent substances in the FAWW inhibited the photocatalytic decomposition of SMM, the composites mitigated the inhibition, possibly because of concentration of SMM on their surface by adsorption. LC/MS/MS analyses revealed that hydroxylation of amino phenyl and pyrimidinyl portions, transformation of the amino group in the amino phenyl portion into a nitroso group, and substitution of the methoxy group with a hydroxyl group occurring in the initial reaction resulted in the formation of various intermediates during the photocatalysis of SMM. All detected intermediates had a ring structure, and almost all intermediates disappeared at the same time SMM was completely decomposed. Ph-OH formed by hydroxylation of the phenyl portion was detected upon decomposition of SMM during photocatalysis. The removal of Ph-OH by the composites proceeded more rapidly than that by TiO 2 alone under ultraviolet irradiation. The SMM and Ph-OH were completely degraded by the composites within 30min, showing that the zeolite/TiO 2 composites were effective in removing SMM and its intermediates from FAWW. Copyright © 2017 Elsevier B.V. All rights reserved.
Kathiravan, Perumal; Balakrishnan, Thangavelu; Venkatesan, Perumal; Ramamurthi, Kandasamy; Percino, María Judith; Thamotharan, Subbiah
2016-01-01
The title molecular salt, C9H12NO4 +·Cl−·C9H11NO4, is isotypic with that of the bromide counterpart [Kathiravan et al. (2016 ▸). Acta Cryst. E72, 1544–1548]. The title salt is a second monoclinic polymorph of the l-dopa HCl structure reported earlier in the monoclinic space group P21 [Jandacek & Earle (1971 ▸). Acta Cryst. B27, 841–845; Mostad & Rømming (1974 ▸). Acta Chemica Scand. B28, 1161–1168]. In the title compound, monoclinic space group I2, one of the dopa molecules has a positive charge with a protonated α-amino group and the α-carboxylic acid group uncharged, while the second dopa molecule has a neutral charge, the α-amino group is protonated and the α-carboxylic acid is deprotonated. In the previously reported form, a single dopa molecule is observed in which the α-amino group is protonated and the α-carboxylic acid group is uncharged. The invariant and variations of various types of intermolecular interactions present in these two forms of dopa HCl structures are discussed with the aid of two-dimensional fingerprint plots. PMID:27840723
Ohno, Hiroyuki; Fukumoto, Kenta
2007-11-01
The preparation of ionic liquids derived from amino acids, and their properties, are outlined. Since amino acids have both a carboxylic acid residue and an amino group in a single molecule, they can be used as either anions or cations. These groups are also useful in their ability to introduce functional group(s). Twenty different natural amino acids were used as anions, to couple with the 1-ethyl-3-methylimidazolium cation. The salts obtained were all liquid at room temperature. The properties of the resulting ionic liquids (AAILs) depend on the side groups of the amino acids involved. These AAILs, composed of an amino acid with some functional groups such as a hydrogen bonding group, a charged group, or an aromatic ring, had an increased glass transition (or melting) temperature and/or higher viscosity as a result of additional interactions among the ions. Viscosity is reduced and the decomposition temperature of imidazolium-type salts is improved by using the tetrabutylphosphonium cation. The chirality of AAILs was maintained even upon heating to 150 degrees C after acetylation of the free amino group. The amino group was also modified to introduce a strong acid group so as to form hydrophobic and chiral ionic liquids. Unique phase behavior of the resulting hydrophobic ionic liquids and water mixture is found; the mixture is clearly phase separated at room temperature, but the solubility of water in this IL increases upon cooling, to give a homogeneous solution. This phase change is reversible, and separation occurs again by raising the temperature a few degrees. It is extraordinary for an IL/water mixture to display such behavior with a lower critical solution temperature. Some likely applications are proposed for these amino acid derived ionic liquids.
Physicist's simple access to protein structures: the computer program WHAT IF
NASA Astrophysics Data System (ADS)
Altenberg-Greulich, Brigitte; Zech, Stephan G.; Stehlik, Dietmar; Vriend, Gert
2001-06-01
We describe the computer program WHAT IF and its application to two physical examples. For the DNA binding protein, OCT-1 (pou domain) the location of amino acids with a sidechain amino group is shown. Such knowledge is required when staining this molecule with a fluorescence dye, which binds chemically to the amino terminus as well as amino groups in sidechains. The program shows that most sidechain amino groups are protected when DNA is bound to OCT-1, allowing selective staining of the amino terminal NH2 group. A protein stained this way can be used in fluorescence spectroscopic studies on function aspects of OCT-1.
Application of UHPLC for the determination of free amino acids in different cheese varieties.
Mayer, Helmut K; Fiechter, Gregor
2013-10-01
A rapid ultra-high performance liquid chromatography (UHPLC) protocol for the determination of amino acids as their respective 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatives was successfully applied for assessing free amino acid levels in commercial cheese samples representing typical product groups (ripening protocols) in cheesemaking. Based on the Waters AccQ.Tag™ method as a high performance liquid chromatography (HPLC) amino acid solution designed for hydrolyzate analyses, method adaptation onto UHPLC was performed, and detection of AQC derivatives was changed from former fluorescence (λ(Ex) 250 nm/λ(Em) 395 nm) to UV (254 nm). Compared to the original HPLC method, UHPLC proved to be superior by facilitating excellent separations of 18 amino acids within 12 min only, thus demonstrating significantly shortened runtimes (>35 min for HPLC) while retaining the original separation chemistry and amino acid elution pattern. Free amino acid levels of the analyzed cheese samples showed a high extent of variability depending on the cheese type, with highest total amounts found for original Italian extra-hard cheeses (up to 9,000 mg/100 g) and lowest for surface mold- or bacterial smear-ripened soft cheeses (200-600 mg/100 g). Despite the intrinsic variability in both total and specific concentrations, the established UHPLC method enabled reliable and interference-free amino acid profiling throughout all cheese types, thus demonstrating a valuable tool to generate high quality data for the characterization of cheese ripening.
Paul, Geo; Musso, Giorgia Elena; Bottinelli, Emanuela; Cossi, Maurizio; Marchese, Leonardo; Berlier, Gloria
2017-04-05
The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH 2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH 3 + groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zia, Khalid Mahmood; Tabassum, Shazia; Barkaat-ul-Hasin, Syed; Zuber, Mohammad; Jamil, Tahir; Jamal, Muhammad Asghar
2011-04-01
A series of amino silicone based softeners with different emulsifiers were prepared and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. Factors affecting the performance properties of the finished substrate such as post-treatment with amino functional silicone based softener varying different emulsifiers in their formulations and its concentration on different processed fabrics were studied. Fixation of the amino-functional silicone softener onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. The results of the experiments indicate that the amino silicone can form a hydrophobic film on both cotton and blends of cotton/polyester fabrics and its coating reduces the surface roughness significantly. Furthermore, the roughness becomes lesser with an increase in the applied strength of amino silicone based softener. Copyright © 2011 Elsevier B.V. All rights reserved.
Spiers Memorial Lecture. Ions at aqueous interfaces.
Jungwirth, Pavel
2009-01-01
Studies of aqueous interfaces and of the behavior of ions therein have been profiting from a recent remarkable progress in surface selective spectroscopies, as well as from developments in molecular simulations. Here, we summarize and place in context our investigations of ions at aqueous interfaces employing molecular dynamics simulations and electronic structure methods, performed in close contact with experiment. For the simplest of these interfaces, i.e. the open water surface, we demonstrate that the traditional picture of an ion-free surface is not valid for large, soft (polarizable) ions such as the heavier halides. Both simulations and spectroscopic measurements indicate that these ions can be present and even enhanced at surface of water. In addition we show that the ionic product of water exhibits a peculiar surface behavior with hydronium but not hydroxide accumulating at the air/water and alkane/water interfaces. This result is supported by surface-selective spectroscopic experiments and surface tension measurements. However, it contradicts the interpretation of electrophoretic and titration experiments in terms of strong surface adsorption of hydroxide; an issue which is further discussed here. The applicability of the observed behavior of ions at the water surface to investigations of their affinity for the interface between proteins and aqueous solutions is explored. Simulations show that for alkali cations the dominant mechanism of specific interactions with the surface of hydrated proteins is via ion pairing with negatively charged amino acid residues and with the backbone amide groups. As far as halide anions are concerned, the lighter ones tend to pair with positively charged amino acid residues, while heavier halides exhibit affinity to the amide group and to non-polar protein patches, the latter resembling their behavior at the air/water interface. These findings, together with results for more complex molecular ions, allow us to formulate a local model of interactions of ions with proteins with the aim to rationalize at the molecular level ion-specific Hofmeister effects, e.g. the salting out of proteins.
Hafezeqoran, Ali; Koodaryan, Roodabeh
2017-09-21
Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide denture base. Amino-functionalized silica coating could represent a more applicable and convenient option for improving the repair strength of autopolymerizing resin to polyamide polymer. © 2017 by the American College of Prosthodontists.
Wang, Zifeng; Liu, Na; Ma, Zhanfang
2014-03-15
In this work, platinum porous nanoparticles (PtPNPs) absorbed metal ions as electrochemical signals were fabricated. Clean-surface PtPNPs were prepared by a surfactant-free method and decorated with amino groups via 2-aminoethanethiol. Amino capped PtPNPs complexation with Cd(2+) and Cu(2+) to form PtPNPs-Cd(2+) and PtPNPs-Cu(2+) hybrids, respectively. Anti-CEA and Anti-AFP separately labeled with PtPNPs-Cd(2+) and PtPNPs-Cu(2+) were used as distinguishable signal tags for capturing antigens. The metal ions were detected in a single run through differential pulse voltammetry (DPV) without acid dissolution, electric potentials and peak heights of which reflected the identity and concentrations of the corresponding antigen. Ionic liquid reduced graphene oxide (IL-rGO) modified glassy carbon electrode (GCE) was used as a substrate, which was rich in amino groups to immobilize antibodies by glutaraldehyde through cross-link between aldehyde groups and amino groups. Using the proposed probes and platform, a novel sandwich-type electrochemical immunosensor for simultaneous detecting carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) was successfully developed. This immunoassay possessed good linearity from 0.05 ng mL(-1) to 200 ng mL(-1) for both CEA and AFP. The detection limit of CEA was 0.002 ng mL(-1) and that of AFP was 0.05 ng mL(-1) (S/N=3). Furthermore, analysis of clinical serum samples using this immunosensor was well consistent with the data determined by the enzyme-linked immunosorbent assay (ELISA). It suggested that the proposed electrochemical immunoassay provided a potential application of clinical screening for early-stage cancers. © 2013 Published by Elsevier B.V.
Adsorption of Pb(II) ions onto biomass from Trifolium resupinatum: equilibrium and kinetic studies
NASA Astrophysics Data System (ADS)
Athar, Makshoof; Farooq, Umar; Aslam, Muhammad; Salman, M.
2013-09-01
The present study provides information about the binding of Pb(II) ions on an eco-friendly and easily available biodegradable biomass Trifolium resupinatum. The powdered biomass was characterized by FTIR, potentiometric titration and surface area analyses. The FTIR spectrum showed the presence of hydroxyl, carbonyl and amino functional groups and Pb(II) ions bound with the oxygen- and nitrogen-containing sites (hydroxyl and amino groups). The acidic groups were also confirmed by titrations. Effects of various environmental parameters (time, pH and concentration) have been studied. The biosorption process achieved equilibrium in a very short period of time (25 min). Non-linear approach for Langmuir and Freundlich models was used to study equilibrium process and root mean-square error was used as an indicator to decide the fitness of the mathematical model. The biosorption process was found to follow pseudo-second-order kinetics and was very fast. Thus, the biomass can be cost-effectively used for the binding of Pb(II) ions from aqueous solutions.
Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation.
Štenglová-Netíková, Irena R; Petruželka, Luboš; Šťastný, Martin; Štengl, Václav
2018-01-01
Nanostructured titanium(IV) oxide was used for the destructive adsorption and photocatalytic degradation of mitoxantrone (MTX), a cytostatic drug from the group of anthracycline antibiotics. During adsorption on a titania dioxide surface, four degradation products of MTX, mitoxantrone dicarboxylic acid, 1,4-dihydroxy-5-((2-((2-hydroxyethyl)amino)ethyl)amino)-8-((2-(methylamino)ethyl)amino)anthracene-9,10-dione, 1,4-dihydroxy-5,8-diiminoanthracene-9,10(5H,8H)-dione and 1,4-dihydroxy-5-imino-8-(methyleneamino)anthracene-9,10(5H,8H)-dione, were identified. In the case of photocatalytic degradation, only one degradation product after 15 min at m/z 472 was identified. This degradation product corresponded to mitoxantrone dicarboxylic acid, and complete mineralization was attained in one hour. Destructive adsorbent manganese(IV) oxide, MnO2, was used only for the destructive adsorption of MTX. Destructive adsorption occurred only for one degradation product, mitoxantrone dicarboxylic acid, against anatase TiO2.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Etminan, Nazanin
2016-07-01
In order to explore a new novel L-amino acid/transition metal doped single walled carbon nanotube based biosensor, density functional theory calculations were studied. These hybrid structures of organic-inorganic nanobiosensors are able to detect the smallest amino acid building block of proteins. The configurations of amine and carbonyl group coordination of tryptophan aromatic amino acid adsorbed on Pd/doped single walled carbon nanotube were compared. The frontier molecular orbital theory, quantum theory atom in molecule and natural bond orbital analysis were performed. The molecular electrostatic potential and the electron density surfaces were constructed. The calculations indicated that the Pd/SWCNT was sensitive to tryptophan suggesting the importance of interaction with biological molecule and potential detecting application. The proposed nanobiosensor represents a highly sensitive detection of protein at ultra-low concentration in diagnosis applications.
1989-01-01
Several members of the Ig superfamily are expressed on neural cells where they participate in surface interactions between cell bodies and processes. Their Ig domains are more closely related to each other than to Ig variable and constant domains and have been grouped into the C2 set. Here, we report the cloning and characterization of another member of this group, the mouse neuronal cell surface antigen F3. The F3 cDNA sequence contains an open reading frame that could encode a 1,020-amino acid protein consisting of a signal sequence, six Ig-like domains of the C2 type, a long premembrane region containing two segments that exhibit sequence similarity to fibronectin type III repeats and a moderately hydrophobic COOH-terminal sequence. The protein does not contain a typical transmembrane segment but appears to be attached to the membrane by a phosphatidylinositol anchor. Antibodies against the F3 protein recognize a prominent 135-kD protein in mouse brain. In fetal brain cultures, they stain the neuronal cell surface and, in cultures maintained in chemically defined medium, most prominently neurites and neurite bundles. The mouse f3 gene maps to band F of chromosome 15. The gene transcripts detected in the brain by F3 cDNA probes are developmentally regulated, the highest amounts being expressed between 1 and 2 wk after birth. The F3 nucleotide and deduced amino acid sequence show striking similarity to the recently published sequence of the chicken neuronal cell surface protein contactin. However, there are important differences between the two molecules. In contrast to F3, contactin has a transmembrane and a cytoplasmic domain. Whereas contactin is insoluble in nonionic detergent and is tightly associated with the cytoskeleton, about equal amounts of F3 distribute between buffer-soluble, nonionic detergent-soluble, and detergent- insoluble fractions. Among other neural cell surface proteins, F3 most resembles the neuronal cell adhesion protein L1, with 25% amino acid identity between their extracellular domains. Based on its structural similarity with known cell adhesion proteins of nervous tissue and with L1 in particular, we propose that F3 mediates cell surface interactions during nervous system development. PMID:2474555
Lindsay, D. G.; Shall, S.
1971-01-01
The acetylation of the free amino groups of insulin was studied by reaction of the hormone with N-hydroxysuccinimide acetate at pH6.9 and 8.5. The products formed were separated by chromatography on DEAE-Sephadex and were characterized by isoelectric focusing, by end-group analysis, by the incorporation of [3H]acetyl groups in the molecule, and by treatment with trypsin that had been treated with 1-chloro-4-phenyl-3-toluene-p-sulphonamidobutan-2-one (`tosylphenylalanyl chloromethyl ketone'). Three monosubstituted products, two disubstituted products and one trisubstituted derivative were prepared. The α-amino groups of the terminal residues and the ∈-amino group of the lysine-B29 were the sites of reaction. Acetylation of any of the free amino groups did not affect the biological activity of insulin. It was demonstrated, however, that substitution at the glycine-A1 amino group by the larger residues, acetoacetyl or thiazolidinecarbonyl, produced a decrease in biological activity. Modification of the lysine-B29 or phenylalanine-B1 amino groups with these larger reagents did not affect the biological activity. Modification of the phenylalanine-B1 amino group by any of the three substituents resulted in a large decrease in the affinity of insulin for anti-insulin antibodies raised in the guinea pig. Modification of the other two amino groups did not affect the reaction with antibody. These observations are correlated with the tertiary structure of insulin. ImagesFig. 4. PMID:5113488
L-Tryptophan on Cu(111): engineering a molecular labyrinth driven by indole groups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yitamben, E. N.; Clayborne, A.; Darling, Seth B.
2015-05-21
The present article investigates the adsorption and molecular orientation of L-Tryptophan, which is both an essential amino acid important for protein synthesis and of particular interest for the development of chiral molecular electronics and biocompatible processes and devices, on Cu(111) using scanning tunneling microscopy and spectroscopy at 55 K and at room temperature. The arrangement of chemisorbed L-Tryptophan on the copper surface varies with both temperature and surface coverage. At low coverage, small clusters form on the surface irrespective of temperature, while at high coverage an ordered chain structure emerges at room temperature, and a tightly packed structure forms amore » molecular labyrinth at low temperature. The dominating superstructure of the adsorbates arises from intermolecular hydrogen bonding, and pi-bonding interactions between the indole groups of neighboring molecules and the Cu surface.« less
Mallon, Dermot H; Bradley, J Andrew; Winn, Peter J; Taylor, Craig J; Kosmoliaptsis, Vasilis
2015-02-01
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity. Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties. Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted. We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel
2009-01-01
Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939
Afrin, Rehana; Ganbaatar, Narangerel; Aono, Masashi; Cleaves, H. James; Yano, Taka-aki; Hara, Masahiko
2018-01-01
The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces. PMID:29370126
Robertson, Alex W; Zhu, Guomin; Mehdi, B Layla; Jacobs, Robert M J; De Yoreo, James; Browning, Nigel D
2018-06-22
We demonstrate that silanization can control the adhesion of nanostructures to the SiN windows compatible with liquid-cell transmission electron microscopy (LC-TEM). Formation of an (3-aminopropyl)triethoxysilane (APTES) self-assembled monolayer on a SiN window, producing a surface decorated with amino groups, permits strong adhesion of Au nanoparticles to the window. Many of these nanoparticles remain static, undergoing minimal translation or rotation during LC-TEM up to high electron beam current densities due to the strong interaction between the APTES amino group and Au. We then use this technique to perform a direct comparative LC-TEM study on the behavior of ligand and nonligand-coated Au nanoparticles in a Au growth solution. While the ligand coated nanoparticles remain consistent even under high electron beam current densities, the naked nanoparticles acted as sites for secondary Au nucleation. These nucleated particles decorated the parent nanoparticle surface, forming consecutive monolayer assemblies of ∼2 nm diameter nanoparticles, which sinter into the parent particle when the electron beam was shut off. This method for facile immobilization of nanostructures for LC-TEM study will permit more sophisticated and controlled in situ experiments into the properties of solid-liquid interfaces in the future.
Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel
2015-08-26
The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.
Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanismof antimicrobial α-peptide–β-peptoid chimeras. Langmuirmonolayers composed of 1,2-dipalmitoylsn- glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria,while lipopolysaccharide Kdo2-lipid Amonolayersweremimicking the outer membrane of Gram-negative species.We report the results of themeasurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecularmechanisms of peptidomimetic interaction with bacterialmembranes.We found guanidinomore » group-containing chimeras to exhibit greater disruptive activity on DPPGmonolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharidemonolayerswhere the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less
Laursen, Jonas S.; Citterio, Linda; Hein-Kristensen, Line; Gram, Lone; Kuzmenko, Ivan; Olsen, Christian A.; Gidalevitz, David
2014-01-01
A promising class of potential new antibiotics are the antimicrobial peptides or their synthetic mimics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Two separate Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and lipopolysaccharide Kdo2-lipid A were applied to model the outer membranes of Gram-positive and Gram-negative bacteria, respectively. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies. PMID:24878450
De novo design and structure-activity relationships of peptide emulsifiers and foaming agents.
Enser, M; Bloomberg, G B; Brock, C; Clark, D C
1990-04-01
A series of eight amphipathic peptides (8, 11, 15, 2 x 18, 22, 26, 29 amino acids in length) were designed to investigate the effects of amino acid composition, peptide length and secondary structure on surface activity assessed as emulsification and foaming activity. The potential for alpha-helix formation at the hydrophobic/hydrophilic interface was maximized through the use of helix-forming amino acids, a relatively large hydrophobic surface of 200 degrees of arc and ion pairs between basic and acidic amino acids on the hydrophilic surface. Emulsification activity increased rapidly between 11 and 22 residues as alpha-helicity in aqueous solution increased. Despite their small size, the peptides produced exceptionally stable emulsions, compared with proteins. Foaming activity was enhanced by the presence of aromatic amino acids and the activity of the best peptide examined was superior to that of bovine serum albumin and beta-lactoglobulin.
Relative reactivity of amino acids with chlorine in mixtures.
Na, Chongzheng; Olson, Terese M
2007-05-01
The relative reactivity of chlorine with amino acids is an important determinant of the resulting chlorination products in systems where chlorine is the limiting reagent, for example, in the human gastrointestinal tract after consumption of chlorine-containing water, or during food preparation with chlorinated water. Since few direct determinations of the initial reactivity of chlorine with amino acids have been made, 17 amino acids were compared in this study using competitive kinetic principles. The experimental results showed that (1) most amino acids have similar initial reactivities at neutral pH; (2) amino acids with thiol groups such as methionine and cysteine are exceptionally reactive and produce sulfoxides; (3) amino acids without thiol groups primarily undergo monochlorination of the amino nitrogen; and (4) glycine and proline are the least reactive. Dichlorination was estimated to occur with approximately 26% of the amino acid groups when the total amino acid: chlorine concentrations were equal.
An electrochemiluminescence sensor based on a Ru(bpy)3(2+)-silica-chitosan/nanogold composite film.
Cai, Zhi-min; Wu, Yan-fang; Huang, Yun-he; Li, Qiu-ping; Chen, Xiao-mei; Chen, Xi
2012-05-30
Chitosan, a cationic polysaccharide containing amino and hydroxyl groups, was used to fabricate an electrochemiluminescence (ECL) sensor. In the sensor construction, a glassy carbon electrode (GCE) was first coated by a chitosan film which embedded gold nanoparticles, and then the film was modified by introducing carboxyl groups on the surface, which were used to immobilize tris(2,2'-bipyridyl)ruthenium(II) doped amino-functional silica nanoparticles (NH(2)-RuSiNPs) through amido links. The successful modification was confirmed by scanning electronic microscopy and cyclic voltammetry. A binding model between the chitosan/nanogold composite film and NH(2)-RuSiNPs was also proposed, in which the amido link was the dominant bonding, accompanied with hydrogen bond interaction. ECL studies revealed that the sensor had very good response to different concentrations of 2-(dibutylamino) ethanol. This sensor was also applied in methamphetamine determination. Copyright © 2012 Elsevier B.V. All rights reserved.
Covalent enzyme immobilization onto carbon nanotubes using a membrane reactor
NASA Astrophysics Data System (ADS)
Voicu, Stefan Ioan; Nechifor, Aurelia Cristina; Gales, Ovidiu; Nechifor, Gheorghe
2011-05-01
Composite porous polysulfone-carbon nanotubes membranes were prepared by dispersing carbon nanotubes into a polysulfone solution followed by the membrane formation by phase inversion-immersion precipitation technique. The carbon nanotubes with amino groups on surface were functionalized with different enzymes (carbonic anhydrase, invertase, diastase) using cyanuric chloride as linker between enzyme and carbon nanotube. The composite membrane was used as a membrane reactor for a better dispersion of carbon nanotubes and access to reaction centers. The membrane also facilitates the transport of enzymes to active carbon nanotubes centers for functionalization (amino groups). The functionalized carbon nanotubes are isolated by dissolving the membranes after the end of reaction. Carbon nanotubes with covalent immobilized enzymes are used for biosensors fabrications. The obtained membranes were characterized by Scanning Electron Microscopy, Thermal analysis, FT-IR Spectroscopy, Nuclear Magnetic Resonance, and functionalized carbon nanotubes were characterized by FT-IR spectroscopy.
Schwarz, Frank; Ferrari, Daniel; Popovski, Kristian; Hartig, Brigitte; Becker, Jürgen
2009-01-01
Studies have indicated that oral biofilm formation at structured titanium surfaces interferes with cell adhesion and proliferation, and its removal by means of conventional treatment procedures may not be sufficient to render these surfaces biologically acceptable. Therefore, the aim of the study was to evaluate the influence of different air-abrasive powders on cell viability at biologically contaminated titanium dental implant surfaces. Intraoral splints were used to collect an in vivo biofilm on sandblasted and acid-etched titanium discs for 48 h. A single (1x) and repeated (2x) use of four different powders (amino acid glycine or sodium bicarbonate particles; range of mean particle size (d(v50)):20-75 microm) was applied at two distances (1 and 2 mm) and angles (30 degrees and 90 degrees) to the surfaces. Specimens (2x) were incubated with SaOs-2 cells for 7 days. Residual biofilm (RB) areas (%), and surface alterations (SEM) (1x and 2x), as well as SaOs-2 cell viability, expressed as mitochondrial cell activity (MA) (counts/second) (2x specimens), were assessed. Comparable mean RB areas were observed within and between groups after both 1x (RB: 0.0% +/- 0.0% to 5.7% +/- 5.7%) and 2x (RB: 0.0% +/- 0.0%) treatments. All surface treatments did not lead to MA (2x) values comparable to the sterile control group. However, sodium bicarbonate particles resulted in significantly higher MA (2x) values than amino acid glycine powders of different sizes. This was associated with pronounced alterations of the surface morphology (2x). Within the limits of the present study, it was concluded that SaOs-2 cell viability at biologically contaminated titanium surfaces was mainly influenced by the particle type of the powder. (c) 2008 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.
2005-01-01
This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy
Fujita, Yasuki; Tokunaga, Chiharu; Yamaguchi, Sayo; Nakamura, Kayo; Horiguchi, Yuu; Kaneko, Michiko; Iwakura, Takeo
2014-09-01
Amino acid administration helps to prevent intraoperative hypothermia but may enhance thermogenesis when combined with glucose infusion. The aim of this study was to examine the effect of intraoperative amino acid administration, with or without glucose infusion, on temperature regulation during laparoscopic colectomy. Twenty-one patients whose physical status was classified I or II by the American Society of Anesthesiologists, and who were undergoing elective laparoscopic colectomy were enrolled. The exclusion criteria were a history of diabetes and/or obesity, preoperative high levels of C-reactive protein, high blood glucose and/or body temperature after anesthesia induction, and surgical time >500 minutes. Each patient received an acetate ringer solution and was randomly assigned to one of three groups. Group A patients were given only amino acids. Group AG patients were given amino acids and glucose. Group C patients were given neither amino acids nor glucose. Tympanic membrane temperatures and blood glucose and insulin levels were measured intraoperatively. Intraoperative amino acid infusion significantly increased body temperature during surgery as compared with either Group AG or C. The blood glucose levels in Group AG were significantly higher than those in Groups A and C. However, there were no significant differences between Groups A and C. Two hours after anesthesia induction, serum insulin levels in Groups A and AG significantly increased compared with Group C. No significant differences in the postoperative complications or patient hospitalization lengths were detected between the groups. Intraoperative amino acid infusion without glucose administration maintains body temperature more effectively than combined amino acid and glucose infusion in patients undergoing laparoscopic colectomy, despite unaltered intraoperative insulin levels. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gao, Jiajia; Jansen, Boris; Cerli, Chiara; Kalbitz, Karsten
2015-04-01
Interaction of organic matter molecules with the soil's solid phase is a key factor influencing the stabilization of carbon in soils and thus forms a crucial aspect of the global carbon cycle. While subject of much research attention so far, we still have much to learn about such interactions at the molecular level; in particular in the light of competition between different classes of organic molecules and in the presence of previously adsorbed soil organic matter. We studied the interaction of a group of low molecular weight (LMW) aromatic acids (salicylic, syringic, vanillic and ferulic acid) and amino acids (lysine, glutamic, leucine and phenylalanine) on goethite, kaolinite and bentonite with and without previously adsorbed dissolved organic matter (DOM). For this we used batch experiments at pH = 6.0 where some of the organic compounds were positively charged (i.e. lysine) or negatively charged (i.e. glutamic and salicylic acid) while the minerals also displayed positively (i.e. goethite) or negatively charged surfaces (i.e. bentonite). We found much higher sorption of salicylic acid and lysine than other compounds. On the bare minerals we found a great variety of sorption strength, with salicylic acid strongly adsorbed, while syringic, vanillic and ferulic acid showed little or no adsorption. For the amino acids, protonated lysine showed a stronger affinity to negatively charged kaolinite and bentonite than other amino acids. While deprotonated glutamic acid showed the strongest adsorption on goethite. Leucine and phenylalanine showed hardly any adsorption on any of the minerals. When present concurrently, amino acids decreased the sorption of salicylic acid on the three types of mineral, while the presence of LMW aromatic acids increased the sorption of lysine on kaolinite and bentonite and the sorption of glutamic acid on goethite. The presence of previously adsorbed DOM reduced the sorption of salicylic acid and lysine. The results confirm that interactions of different classes of organic molecules with solid soil phases cannot be understood in isolation, but must be interpreted in the context of the presence of other classes of molecules. It seems that the presence of methoxy groups decreases the adsorption of aromatic acids to minerals. We did not find evidence for protein conditioning of any mineral surface, i.e. increased adsorption of aromatic acids after adsorption of amino acids.
Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi
2017-09-01
This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamagaki, Tohru; Sugahara, Kohtaro; Watanabe, Takehiro
2014-01-01
To elucidate the influence of amino (-NH2) and acetamide (-NHCOCH3, -NAc) groups in sugar chains on their ionization and fragmentation, cycloamyloses (cyclodextrins, CyDs) and lacto-oligosaccharide are analyzed by MALDI TOF/TOF and ESI Q-TOF mass spectrometry. CyD derivatives substituted by amino or acetamide groups are ideal analytes to extract the function group effects, which are amino-CyD with one hexosamine (HexNH2) and acetamide-CyD with one N-acetyl hexosamine (HexNAc). Interestingly, the relative ion intensities and isotope-like patterns in their product ion spectra depend on the functional groups and ion forms of sugar chains. Consequently, the results indicate that a proton (H+) localizes on the amino group of the amino sugar, and that the proton (H+) induces their fragmentation. Sodium cation (Na+) attachment is independent from amino group and exerts no influence on their fragmentation patterns in amino group except for mono- and disaccharide fragment ions because there is the possibility of the reducing end effect. In contrast, a sodium cation localizes much more frequently on the acetamide group in acetamide-CyDs because the chemical species with HexNAc are stable. Thus, their ions with HexNAc are abundant. These results are consistent with the fragmentation of lacto-neo- N-tetraose and maltotetraose, suggesting that a sodium cation generally localizes much more frequently on the acetamide group in sugar chains.
Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.
Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou
2014-06-25
We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.
Chiang, Chunyi; Karuri, Stella W; Kshatriya, Pradnya P; Schwartz, Jeffrey; Schwarzbauer, Jean E; Karuri, Nancy W
2012-01-10
We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.
Immobilization of magnetic nanoparticles onto conductive surfaces modified by diazonium chemistry.
Ktari, Nadia; Quinson, Jonathan; Teste, Bruno; Siaugue, Jean-Michel; Kanoufi, Frédéric; Combellas, Catherine
2012-08-28
Core-shell γ-Fe(2)O(3)@SiO(2) nanoparticles (NPs) substituted by PEG and NH(2) groups may be immobilized on metal surfaces (glassy carbon or gold) substituted by 4-carboxyphenyl groups through electrostatic interactions. Such immobilization is evidenced by (i) IRRAS owing to the Si-O band, (ii) SEM images, which show that the surface coverage by the NPs is nearly 100%, and (iii) the NPs film thickness measured by ellipsometry or AFM, which corresponds to about one NPs monolayer. Such NPs film is permeable to redox probes, which allows us to propose electrochemical methods based on direct or local measurements as a way to inspect the NPs assembly steps through their ability to alter mass and charge transfer. This process also applies to patterned polystyrene surfaces, and selective immobilization of NPs substituted by amino groups was carried out onto submillimeter patterns obtained by local oxidation. Biological applications are then expected for hyperthermia activation of the NPs to trigger cellular death. Finally, some tests were performed to further derivatize the immobilized NPs onto surfaces through either a covalent bond or electrostatic interactions. Future work will be dedicated to the recovery of such Janus NPs from the substrate surface.
Michelou, Vanessa K.; Cottrell, Matthew T.; Kirchman, David L.
2007-01-01
We examined the contribution of photoheterotrophic microbes—those capable of light-mediated assimilation of organic compounds—to bacterial production and amino acid assimilation along a transect from Florida to Iceland from 28 May to 9 July 2005. Bacterial production (leucine incorporation at a 20 nM final concentration) was on average 30% higher in light than in dark-incubated samples, but the effect varied greatly (3% to 60%). To further characterize this light effect, we examined the abundance of potential photoheterotrophs and measured their contribution to bacterial production and amino acid assimilation (0.5 nM addition) using flow cytometry. Prochlorococcus and Synechococcus were abundant in surface waters where light-dependent leucine incorporation was observed, whereas aerobic anoxygenic phototrophic bacteria were abundant but did not correlate with the light effect. The per-cell assimilation rates of Prochlorococcus and Synechococcus were comparable to or higher than those of other prokaryotes, especially in the light. Picoeukaryotes also took up leucine (20 nM) and other amino acids (0.5 nM), but rates normalized to biovolume were much lower than those of prokaryotes. Prochlorococcus was responsible for 80% of light-stimulated bacterial production and amino acid assimilation in surface waters south of the Azores, while Synechococcus accounted for on average 12% of total assimilation. However, nearly 40% of the light-stimulated leucine assimilation was not accounted for by these groups, suggesting that assimilation by other microbes is also affected by light. Our results clarify the contribution of cyanobacteria to photoheterotrophy and highlight the potential role of other photoheterotrophs in biomass production and dissolved-organic-matter assimilation. PMID:17630296
Iyer, Bharat Ramasubramanian; Zadafiya, Punit; Vetal, Pallavi Vijay
2017-01-01
The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain. PMID:28592485
NASA Astrophysics Data System (ADS)
Jagvaral, Yesukhei; He, Haiying; Pandey, Ravindra
2018-01-01
Silicene is an emerging 2D material, and an understanding of its interaction with amino acids, the basic building blocks of protein, is of fundamental importance. In this paper, we investigate the nature of adsorption of amino-acid analogues on silicene employing density functional theory and an implicit solvation model. Amino acid analogues are defined as CH3-R molecules, where R is the functional group of the amino acid side chain. The calculated results find three distinct groups within the amino-acid analogues considered: (i) group I, which includes MeCH3 and MeSH, interacts with silicene via the van der Waals dispersive terms leading to physisorbed configurations; (ii) group II strongly interacts with silicene forming Si-O/N chemical bonds in the chemisorbed configurations; and (iii) group III, which consists of the phenyl group, interacts with silicene via π-π interactions leading to physisorbed configurations. The results show that the lateral chains of the amino acids intrinsically determine the interactions between protein and silicene at the interface under the given physiological conditions.
Mink, Tineke; Voorhaar, Annelies; Stoel, Reinoud; de Puit, Marcel
2013-09-01
The analysis of the constituents of fingerprints has been described numerous times, mainly with the purpose of determining the aging effect on fingerprints or showing the differences between donors or groups of donors. In this paper we describe the use of derivatized amino acids to determine the efficacy of the visualization reagents 1,8-diazafluoren-9-one (DFO) and ninhydrin. At present certain conditions are used for the application of these reagents, as determined by trial-and-error investigations, to the effect on fingerprints. The recovery of amino acids from a porous surface can be used as a measure for the efficacy of a visualization agent. In this paper we describe a method for the determination of the amount of amino acid left after reaction with well known fingerprint visualization reagents. This will allow a more scientific approach to method development for fingermark enhancement techniques. Furthermore, investigations on the influence of the concentration of fingermark amino acids, the order of application of and exposure time to reagents and the influence of age of the amino acids were carried out. These studies have resulted in a broader understanding of the mechanism involved in visualization of fingermarks using DFO and ninhydrin. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
pH-responsive drug release and real-time fluorescence detection of porous silica nanoparticles.
Zhang, Xu; Wang, Yamin; Zhao, Yanbao; Sun, Lei
2017-08-01
In this work, pH-sensitive "dual-switch" porous silica (pSiO 2 ) nanoparticles (NPs) were constructed for drug delivery. Poly(acrylic acid) (PAA) was grafting onto the internal and external surfaces of amino groups functionalized porous silica (pSiO 2 -NH 2 ) NPs by the amidation between the amino groups and the carboxyl groups of PAA for pH triggered drug release. The resultant pSiO 2 /PAA NPs have an average diameter of 50-60nm and high specific surface area (914m 2 ·g -1 ). To improve the loading capacity, ZnO quantum dots (QDs) were used to block the partial pores of pSiO 2 /PAA and the loading capacity reached to 28% for methotrexate (MTX) model drug. The in vitro cellular cytotoxicity test and a hemolysis assay demonstrated that the pSiO 2 /PAA/ZnO NPs were highly biocompatible and suitable to utilize as drug carriers. The MTX-loaded pSiO 2 /PAA/ZnO NPs displayed more efficient cytotoxic to HepG2 cells than free MTX. The pSiO 2 /PAA/ZnO NPs displayed low premature, pH-responsive release and pH-dependent fluorescence. Moreover, pH-dependent fluorescence enables to trace MTX release behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
α-Amino Acid-Isosteric α-Amino Tetrazoles
Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt
2016-01-01
The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531
DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.
Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika
2013-09-19
Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.
Jäger, Kristin; Garreis, Fabian; Posa, Andreas; Dunse, Matthias; Paulsen, Friedrich P
2010-04-20
The ocular surface, constantly exposed to environmental pathogens, is particularly vulnerable to infection. Hence an advanced immune defence system is essential to protect the eye from microbial attack. Antimicrobial peptides, such as beta-defensins, are essential components of the innate immune system and are the first line of defence against invaders of the eye. High concentrations of L-arginine and L-lysine are necessary for the expression of beta-defensins. These are supplied by epithelial cells in inflammatory processes. The limiting factor for initiation of beta-defensin production is the transport of L-arginine and L-lysine into the cell. This transport is performed to 80% by only one transporter system in the human, the y(+)-transporter. This group of proteins exclusively transports the cationic amino acids L-arginine, L-lysine and L-ornithine and is also known under the term cationic amino acid transporter proteins (CAT-proteins). Various infections associated with L-arginine deficiency (for example psoriasis, keratoconjuctivitis sicca) are also associated with an increase in beta-defensin production. For the first time, preliminary work has shown the expression of human CATs in ocular surface epithelia and tissues of the lacrimal apparatus indicating their relevance for diseases of the ocular surface. In this review, we summarize current knowledge on the human CATs that appear to be integrated in causal regulation cascades of beta-defensins, thereby offering novel concepts for therapeutic perspectives. Copyright 2010 Elsevier GmbH. All rights reserved.
Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups
NASA Technical Reports Server (NTRS)
Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.
2012-01-01
Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.
Adsorption of amino acids by fullerenes and fullerene nanowhiskers
NASA Astrophysics Data System (ADS)
Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi
2015-12-01
We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.
Filgueras, Renata S; Gatellier, Philippe; Ferreira, Claude; Zambiazi, Rui C; Santé-Lhoutellier, Véronique
2011-09-01
The nutritional value of proteins was investigated after the storage and cooking of rhea M. Gastrocnemius pars interna. Oxidation of basic and aromatic amino acids, surface hydrophobicity and aggregation state of proteins, were determined in raw and cooked meat. In addition, myofibrillar proteins were exposed in vitro to proteases of the digestive tract. Cooking markedly affected the protein surface hydrophobicity. The BBP bound content was three times greater in cooked than in fresh rhea meat. A small increment in tryptophan content after cooking was observed. Storage influenced Schiff bases formation indicating the presence of protein-aldehyde adducts after cooking. High content of Schiff bases was found after cooking of samples stored for 5 days, demonstrating a probable implication of free amino groups, most likely from lysine. Cooking decreased the myofibrillar protein susceptibility to pepsin activity. After cooking, the proteolysis rate by pancreatic enzymes increased. Our findings support the importance of protein aggregation in the nutritional value of meat proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zardini, Hadi Zare; Amiri, Ahmad; Shanbedi, Mehdi; Maghrebi, Morteza; Baniadam, Majid
2012-04-01
Multi-walled carbon nanotubes (MWCNTs) were first functionalized by arginine and lysine under microwave radiation. Surface functionalization was confirmed by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM). After the MWCNTs were functionalized by arginine and lysine, the antibacterial activity of all treated samples was increased significantly against all bacteria that were tested. Based on the observed minimum inhibitory concentration and radial diffusion assay, the sequence of antibacterial activity was MWCNTs-arginine>MWCNTs-lysine>pristine MWCNTs. The functionalized MWCNTs were especially effective against gram-negative bacteria (e.g., Escherichia coli and Salmonella typhimurium). Interestingly, the MWCNT samples were effective against the resistant strain Staphylococcos aureus. The enhanced antibacterial activity was attributed to electrostatic adsorption of bacteria membrane due to positive charges of the functional groups on MWCNTs surface. Since MWCNTs have lower cytotoxicity than single-walled carbon nanotubes, their functionalization with cationic amino acids could be a beneficial approach in the disinfection industry. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Xin-Ying; Li, Ning; Gu, Jun; Li, Wei-Qin; Li, Jie-Shou
2003-03-01
To investigate the formula of amino acid enriched BCAA on nutritional support in traumatic patients after operation. 40 adult patients after moderate or large abdominal operations were enrolled in a prospective, randomly and single-blind-controlled study, and received total parenteral nutrition (TPN) with either formula of amino acid (AA group, 20 cases) or formula of amino acid enriched BCAA (BCAA group, 20 cases). From the second day after operation, total parenteral nutrition was infused to the patients in both groups with equal calorie and equal nitrogen by central or peripheral vein during more than 12 hours per day for 6 days. Meanwhile, nitrogen balance was assayed by collecting 24 hours urine for 6 days. The markers of protein metabolism were investigated such as amino acid patterns, levels of total protein, albumin, prealbumin, transferrin and fibronectin in serum. The positive nitrogen balance in BCAA group occurred two days earlier than that in AA group. The serum levels of total protein and albumin in BCAA group were increased more obviously than that in AA group. The concentration of valine was notably increased and the concentration of arginine was markedly decreased in BCAA group after the formula of amino acids enriched BCAA transfusion. The formula of amino acid enriched BCAA may normalize the levels of serum amino acids, reduce the proteolysis, increase the synthesis of protein, improve the nutritional status of traumatic patients after operation.
Influence of the Amino Acid Sequence on Protein-Mineral Interactions in Soil
NASA Astrophysics Data System (ADS)
Chacon, S. S.; Reardon, P. N.; Purvine, S.; Lipton, M. S.; Washton, N.; Kleber, M.
2017-12-01
The intimate associations between protein and mineral surfaces have profound impacts on nutrient cycling in soil. Proteins are an important source of organic C and N, and a subset of proteins, extracellular enzymes (EE), can catalyze the depolymerization of soil organic matter (SOM). Our goal was to determine how variation in the amino acid sequence could influence a protein's susceptibility to become chemically altered by mineral surfaces to infer the fate of adsorbed EE function in soil. We hypothesized that (1) addition of charged amino acids would enhance the adsorption onto oppositely charged mineral surfaces (2) addition of aromatic amino acids would increase adsorption onto zero charged surfaces (3) Increase adsorption of modified proteins would enhance their susceptibility to alterations by redox active minerals. To test these hypotheses, we generated three engineered proxies of a model protein Gb1 (IEP 4.0, 6.2 kDA) by inserting either negatively charged, positively charged or aromatic amino acids in the second loop. These modified proteins were allowed to interact with functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnessite) at pH 5 and 7. We used LC-MS/MS and solution-state Heteronuclear Single Quantum Coherence Spectroscopy NMR to observe modifications on engineered proteins as a consequence to mineral interactions. Preliminary results indicate that addition of any amino acids to a protein increase its susceptibility to fragmentation and oxidation by redox active mineral surfaces, and alter adsorption to the other mineral surfaces. This suggest that not all mineral surfaces in soil may act as sorbents for EEs and chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Fragmentation of proteins by minerals can bypass the need to produce proteases, but microbial acquisition of other nutrients that require enzymes such as cellulases, ligninases or phosphatases may be hampered by mineral association.
Eckenrode, Heather M; Dai, Hai-Lung
2004-10-12
A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society
Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.
Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân
2017-08-22
Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Skepö, M.
2008-11-01
The structural properties of the salivary protein statherin upon adsorption have been examined using a coarse-grained model and Monte Carlo simulation. A simple model system with focus on electrostatic interactions and short-ranged attractions among the uncharged amino acids has been used. To mimic hydrophobically modified surfaces, an extra short-ranged interaction was implemented between the amino acids and the surface. It has been shown that the adsorption and the thickness of the adsorbed layer are determined by (i) the affinity for the surface, i.e., denser layer with an extrashort-ranged potential, and (ii) the distribution of the charges along the chain. If all the amino acids have a high affinity for the surface, the protein adsorbs in a train conformation, if the surface is negatively charged the protein adsorbs in a tail-train conformation, whereas if the surface is positively charged the protein adsorbs in a loop conformation. The latter gives rise to a more confined adsorbed layer.
NASA Astrophysics Data System (ADS)
Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine
2017-11-01
In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.
Neutrally Charged Gas/Liquid Interface by a Catanionic Langmuir Monolayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaknin, David; Bu, Wei
Surface-sensitive synchrotron X-ray scattering and spectroscopic experiments were performed to explore the characteristics of Langmuir monolayers of oppositely charged mixed amphiphiles. A premixed (molar 1:1 stearic acid/stearylamine) solution was spread as a monolayer at the gas/liquid interface on pure water and on mono- and divalent salt solutions, revealing that the negatively charged carboxyl groups and positively charged amine groups are miscible into one another and tend to bond together to form a nearly neutral surface. Similar control experiments on pure stearic acid (SA) and stearylamine (ST) were also conducted for comparison. Due to the strong bonding, hexagonal structures in smallmore » domains with acyl-chains normal to the liquid surface are formed at zero surface pressures, that is, at molecular areas much larger than those of the densely packed acyl chains. In-plane X-ray diffraction indicates that the catanionic surface is highly ordered and modifies the structure of the water surface and thus can serve as a model system for interactions of an amino acid template with solutes.« less
New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes
2015-01-01
A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444
Mukherjee, Joy; Ow, Saw Yen; Noirel, Josselin; Biggs, Catherine A
2011-02-01
Cell surface physicochemical characterization techniques were combined with quantitative changes in protein expression, to investigate the biological and biophysical changes of Escherichia coli MG1655 cells when grown as a biofilm (BIO). The overall surface charge of BIO cells was found to be less negative, highlighting the need for a lower electrophoretic mobility for attachment to occur. Comparison of the chemical functional groups on the cell surface showed similar profiles, with the absorbance intensity higher for proteins and carbohydrates in the BIO cells. Quantitative proteomic analysis demonstrated that 3 proteins were significantly increased, and 9 proteins significantly decreased in abundance, in cells grown as a BIO compared to their planktonic counterparts, with 7 of these total 12 proteins unique to this study. Proteins showing significant increased or decreased abundance include proteins involved in acid resistance, DNA protection and binding and ABC transporters. Further predictive analysis of the metabolic pathways showed an increased abundance of the amino acid metabolism and tricarboxylic acid (TCA) cycle, with a decrease in expression within the pentose phosphate and glycolysis pathways. It is therefore hypothesized that cells grown as a BIO are still energetically viable potentially using amino acids as an indirect carbon backbone source into the TCA cycle. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bruni, R; Taeusch, H W; Waring, A J
1991-01-01
The mechanisms by which pulmonary surfactant protein B (SP-B) affects the surface activity of surfactant lipids are unclear. We have studied the peptide/lipid interactions of the amino-terminal amphipathic domain of SP-B by comparing the secondary conformations and surface activities of a family of synthetic peptides based on the native human SP-B sequence, modified by site-specific amino acid substitutions. Circular dichroism measurements show an alpha-helical structure correlating with the ability of the peptides to interact with lipids and with the surface activity of peptide/lipid dispersions. Amino acid substitutions altering either the charge or the hydrophobicity of the residues lowered the helical content and reduced the association of the aminoterminal segment with lipid dispersions. Surface activity of peptide/lipid mixtures was maximally altered by reversal of charge in synthetic peptides. These observations indicate that electrostatic interactions and hydrophobicity are important factors in determining optimal structure and function of surfactant peptides in lipid dispersions. Images PMID:1871144
Wang, Ke; Fan, Xingliang; Zhang, Xiaoyong; Zhang, Xiqi; Chen, Yi; Wei, Yen
2016-08-01
Poly(2-methacryloyloxyethyl phosphorylcholine) conjugated red fluorescent chitosan nanoparticles (GCC-pMPC) were facilely fabricated by "grafting from" method via surface initiated atom transfer radical polymerization (ATRP). Firstly, glutaraldehyde crosslinked red fluorescent chitosan nanoparticles (GCC NPs) with many amino groups and hydroxyl groups on their surface were prepared, which were then reacted with 2-bromoisobutyryl bromide to form GCC-Br; subsequently, poly(MPC) (pMPC) brushes were grafted onto GCC NPs surface using GCC-Br as initiator via ATRP. Compared with PEGylated nanoparticles, zwitterionic polymers modified nanoparticles demonstrated better performance in their cellular uptake. Moreover, the obtained GCC-pMPC demonstrated excellent water-dispersibility, biocompatibility, and photostability, which made them highly potential for long-term tracing applications. Importantly, the successful live cell imaging of GCC-pMPC would remarkably advance the research of their further bioapplications. Copyright © 2016 Elsevier B.V. All rights reserved.
Hachache, Naima; Bal, Youcef; Debarnot, Dominique; Poncin-Epaillard, Fabienne
2014-02-01
Polypropylene fiber meshes were plasma-treated in order to attach new chemical functions corresponding to acidic or basic groups without altering the roughness of such thin material. An almost complete wettability of these plasma-treated materials is obtained. Because of the plasma-grafting of acid or amino moieties, such surface treatment allows increasing the adsorption rate of quaternary ammonium molecule like Aliquat 336. This increase was explained by specific interactions of ammonium head of the Aliquat 336 and hydrophilic group of plasma-treated PP, followed by the adsorption of a further layer of Aliquat 336 through hydrophobic interactions of its hydrocarbon chain. These interactions between the carrier and the polymeric surface were characterized leading to physisorption mechanism. Such new material could be applied to the extraction process since no evidence of aging was given. Copyright © 2013 Elsevier B.V. All rights reserved.
Formation of diamond nanoparticle thin films by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki
2016-03-01
Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.
Mechanisms of volatile production from non-sulfur amino acids by irradiation
NASA Astrophysics Data System (ADS)
Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang
2016-02-01
Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.
Kingsbury, K. J.; Kay, L.; Hjelm, M.
1998-01-01
AIM: There is little information on the plasma free amino acid patterns of elite athletes against which fatigue and nutrition can be considered. Therefore the aim was to include analysis of this pattern in the medical screening of elite athletes during both especially intense and light training periods. METHODS: Plasma amino acid analysis was undertaken in three situations. (1) A medical screening service was offered to elite athletes during an intense training period before the 1992 Olympics. Screening included a blood haematological/biochemical profile and a microbial screen in athletes who presented with infection. The athletes were divided into three groups who differed in training fatigue and were considered separately. Group A (21 track and field athletes) had no lasting fatigue; group B (12 judo competitors) reported heavy fatigue at night but recovered overnight to continue training; group C (18 track and field athletes, one rower) had chronic fatigue and had been unable to train normally for at least several weeks. (2) Athletes from each group were further screened during a post- Olympic light training period. (3) Athletes who still had low amino acid levels during the light training period were reanalysed after three weeks of additional protein intake. RESULTS: (1) The pre-Olympics amino acid patterns were as follows. Group A had a normal amino acid pattern (glutamine 554 (25.2) micromol/l, histidine 79 (6.1) micromol/l, total amino acids 2839 (92.1) micromol/l); all results are means (SEM). By comparison, both groups B and C had decreased plasma glutamine (average 33%; p<0.001) with, especially in group B, decreased histidine, glucogenic, ketogenic, and branched chain amino acids (p<0.05 to p<0.001). None in group A, one in group B, but ten athletes in group C presented with infection: all 11 athletes had plasma glutamine levels of less than 450 micromol/l. No intergroup differences in haematological or other blood biochemical parameters, apart from a lower plasma creatine kinase activity in group C than in group B (p<0.05) and a low neutrophil to lymphocyte ratio in the athletes with viral infections (1.2 (0.17)), were found. (2) During post-Olympic light training, group A showed no significant amino acid changes. In contrast, group B recovered normal amino acid levels (glutamine 528 (41.4) micromol/l, histidine 76 (5.3) micromol/l, and total amino acids 2772 (165) micromol/l) (p<0.05 to p<0.001) to give a pattern comparable with that of group A, whereas, in group C, valine and threonine had increased (p<0.05), but glutamine (441 (24.5) micromol/l) and histidine (58 (5.3) micromol/l) remained low. Thus none in group A, two in group B, but ten (53%) in group C still had plasma glutamine levels below 450 micromol/l, including eight of the 11 athletes who had presented with infection. (3) With the additional protein intake, virtually all persisting low glutamine levels increased to above 500 micromol/l. Plasma glutamine rose to 592 (35.1) micromol/l and histidine to 86 (6.0) micromol/l. Total amino acids increased to 2761 (128) micromol/l (p<0.05 to p<0.001) and the amino acid pattern normalised. Six of the ten athletes on this protein intake returned to increased training within the three weeks. CONCLUSION: Analysis of these results provided contrasting plasma amino acid patterns: (a) a normal pattern in those without lasting fatigue; (b) marked but temporary changes in those with acute fatigue; (c) a persistent decrease in plasma amino acids, mainly glutamine, in those with chronic fatigue and infection, for which an inadequate protein intake appeared to be a factor. PMID:9562160
Various fates of neuronal progenitor cells observed on several different chemical functional groups
NASA Astrophysics Data System (ADS)
Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan
2011-12-01
Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.
Interfacial properties of aluminum/glass-fiberreinforced polypropylene sandwich composites
NASA Astrophysics Data System (ADS)
Baştürk, S. B.; Guruşçu, A.; Tanoğlu, M.
2013-07-01
Aluminum/glass-fiber-reinforced polypropylene (Al/GFPP) laminates were manufactured by using various surface pretreatment techniques. Adhesion at the composite/metal interface was achieved by a surface pretreatment of Al sheets with amino-based silane coupling agents, incorporation of a polyolefin-based adhesive film and modification with a PP-based film containing 20 wt.% of maleic-anhydride-modified polypropylene (PP-g-MA). In order to increase the effect of bonding between components of the laminates, the combination of silane treatment and the addition of the PP-based film was also investigated. The mechanical properties (shear, peel, and bending strengths) of adhesively bonded Al/GFPP laminates were examined to evaluate the effects of the surface treatments mentioned. It was revealed that the adhesion in the laminated Al/GFPP systems could be improved by the treatment of aluminum surface with an amino-based silane coupling agent. Judging from the results of peel and bending strength, with incorporation of polyolefin-based films, adhesion in the Al/GFPP laminates increased significantly. The modification of Al/GFPP interfaces with a PP-g-MA/PP layer led to the highest improvement in their adhesion properties. The combination of surface modification with silane and addition of PP-based films did not yield the high bending strength desired. This may be due to the insufficient bonding between silane groups and PP-based films.
DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers
Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika
2014-01-01
Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415
NASA Astrophysics Data System (ADS)
Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T.; Dias, Carlos M. F.; Sobral, Abilio J. F. N.
2017-04-01
In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.
Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N
2017-04-05
In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO 2 (TPAPP/TiO 2 ) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO 2 was prepared by sol-gel method. Before making a TPAPP/TiO 2 composite, the surface modification of TiO 2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO 2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO 2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO 2 under sun light. Copyright © 2017 Elsevier B.V. All rights reserved.
Silica coating of nanoparticles by the sonogel process.
Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting
2008-02-05
A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.
Acquisition of an X-Ray Diffractometer with WAXS and SAXS for Materials Research
2015-03-31
2. This ligand is known as a sensitizer for applications in dye -sensitized solar cells, and the presence of the amino groups could potentially...achieve different surface properties, thus making them excellent candidates for use as fillers in bio-based biodegradable composite materials...These CNCs are environmentally safe sustainable, biodegradable , carbon neutral, and have low environmental, health and safety risks. Figure 9 below
Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement.
Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping
2017-12-01
In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.
Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement
NASA Astrophysics Data System (ADS)
Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping
2017-12-01
In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.
NASA Astrophysics Data System (ADS)
Sangeetha, M.; Mathammal, R.
2017-09-01
We report on a cocrystal of 2-(benzyl amino) pyridine (BAP) with oxalic acid (OA) in the ratio 1:1. The cocrystal was synthesised and single crystals were grown under slow evaporation technique at room temperature. Single crystal X-ray diffraction (SCXRD) analysis determined the structure of the cocrystal formed and it belongs to orthorhombic system with Cc space group. It was also subjected to X-ray Powder diffraction (XRPD) to confirm the cocrystal structure. Hirshfeld surfaces and fingerprints were plotted to analyze the intermolecular interactions. Spectroscopic techniques such as FTIR, FT-Raman and NMR were carried out to identify the functional groups present in the cocrystal. The bioactivity of the cocrystal was revealed from the UV-Vis analysis. Computational Density Functional Theory (DFT) was adopted at the B3LYP/6-31+G** level to calculate the optimized geometrical parameters and the vibrational frequencies of the cocrystal. The non-linear optical property of the cocrystal was revealed from the SHG test. The different types of interactions and delocalization of charge were analysed from Natural Bond Orbital (NBO) calculations. The HOMO-LUMO energies and MEP surface maps confirmed the pharmaceutical importance of the (1:1) BAPOA cocrystal. The cocrystal has been explored for the invitro antioxidant activity and insilico molecular docking studies.
Yatabe, Rui; Onodera, Takeshi; Toko, Kiyoshi
2013-01-01
In this study, we modified a surface plasmon resonance immunosensor chip with a polymer using surface-initiated atom transfer polymerization (SI-ATRP) for the highly sensitive detection of 2,4,6-trinitrotoluene (TNT). To immobilize a TNT analogue on the polymer, mono-2-(methacryloyloxy)ethylsuccinate (MES), which has a carboxyl group, was used in this study. However, the anti-TNT antibody may adsorb non-specifically on the polymer surface by an electrostatic interaction because MES is negatively charged. Therefore, a mixed monomer with MES and diethylaminoethylmethacrylate (DEAEM), which has a tertiary amino group and is positively charged, was prepared to obtain electroneutrality for suppressing the nonspecific adsorption. The detection of TNT was performed by inhibition assay using the polymer surface. To ensure high sensitivity to TNT, the affinity between the surface and the antibody was optimized by controlling the density of the initiator for ATRP by mixing two types of self-assembled monolayer reagents. As a result, a limit of detection of 5.7 pg/mL (ppt) for TNT was achieved using the optimized surface. PMID:23877126
Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.; ...
2014-05-28
In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Konstantin; Bianchi, Christopher; Laursen, Jonas S.
In this study, antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing mechanism of antimicrobial α-peptide–β-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of Gram-negative species. We report the results of the measurements using an array of techniques, including high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity tomore » study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity of these antimicrobials into both model membrane systems examined, which may be useful for future cellular localization studies.« less
Polymers with complexing properties. Simple poly(amino acids)
NASA Technical Reports Server (NTRS)
Roque, J. M.
1978-01-01
The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.
2017-01-01
Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384
VARIABLE CHARGE SOILS: MINERALOGY AND CHEMISTRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Ranst, Eric; Qafoku, Nikolla; Noble, Andrew
2016-09-19
Soils rich in particles with amphoteric surface properties in the Oxisols, Ultisols, Alfisols, Spodosols and Andisols orders (1) are considered to be variable charge soils (2) (Table 1). The term “variable charge” is used to describe organic and inorganic soil constituents with reactive surface groups whose charge varies with pH and ionic concentration and composition of the soil solution. Such groups are the surface carboxyl, phenolic and amino functional groups of organic materials in soils, and surface hydroxyl groups of Fe and Al oxides, allophane and imogolite. The hydroxyl surface groups are also present on edges of some phyllosilicate mineralsmore » such as kaolinite, mica, and hydroxyl-interlayered vermiculite. The variable charge is developed on the surface groups as a result of adsorption or desorption of ions that are constituents of the solid phase, i.e., H+, and the adsorption or desorption of solid-unlike ions that are not constituents of the solid phase. Highly weathered soils and subsoils (e.g., Oxisols and some Ultisols, Alfisols and Andisols) may undergo isoelectric weathering and reach a “zero net charge” stage during their development. They usually have a slightly acidic to acidic soil solution pH, which is close to either the point of zero net charge (PZNC) (3) or the point of zero salt effect (PZSE) (3). They are characterized by high abundances of minerals with a point of zero net proton charge (PZNPC) (3) at neutral and slightly basic pHs; the most important being Fe and Al oxides and allophane. Under acidic conditions, the surfaces of these minerals are net positively charged. In contrast, the surfaces of permanent charge phyllosilicates are negatively charged regardless of ambient conditions. Variable charge soils therefore, are heterogeneous charge systems.« less
Heinrich, Hannah T M; Bremer, Phil J; Daughney, Christopher J; McQuillan, A James
2007-02-27
Acid-base functional groups at the surface of Anoxybacillus flavithermus (AF) were assigned from the modeling of batch titration data of bacterial suspensions and compared with those determined from in situ infrared spectroscopic titration analysis. The computer program FITMOD was used to generate a two-site Donnan model (site 1: pKa = 3.26, wet concn = 2.46 x 10(-4) mol g(-1); site 2: pKa = 6.12, wet concn = 6.55 x 10(-5) mol g(-1)), which was able to describe data for whole exponential phase cells from both batch acid-base titrations at 0.01 M ionic strength and electrophoretic mobility measurements over a range of different pH values and ionic strengths. In agreement with information on the composition of bacterial cell walls and a considerable body of modeling literature, site 1 of the model was assigned to carboxyl groups, and site 2 was assigned to amino groups. pH difference IR spectra acquired by in situ attenuated total reflection infrared (ATR-IR) spectroscopy confirmed the presence of carboxyl groups. The spectra appear to show a carboxyl pKa in the 3.3-4.0 range. Further peaks were assigned to phosphodiester groups, which deprotonated at slightly lower pH. The presence of amino groups could not be confirmed or discounted by IR spectroscopy, but a positively charged group corresponding to site 2 was implicated by electrophoretic mobility data. Carboxyl group speciation over a pH range of 2.3-10.3 at two different ionic strengths was further compared to modeling predictions. While model predictions were strongly influenced by the ionic strength change, pH difference IR data showed no significant change. This meant that modeling predictions agreed reasonably well with the IR data for 0.5 M ionic strength but not for 0.01 M ionic strength.
Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid
Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.
2016-01-01
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001
Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.
Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M
2016-01-01
Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. © 2016 The Author(s).
Characterization of Mg-based bimetal treatment of insensitive munition 2,4-dinitroanisole.
Hadnagy, Emese; Mai, Andrew; Smolinski, Benjamin; Braida, Washington; Koutsospyros, Agamemnon
2018-06-16
The manufacturing of insensitive munition 2,4-dinitroanisole (DNAN) generates waste streams that require treatment. DNAN has been treated previously with zero-valent iron (ZVI) and Fe-based bimetals. Use of Mg-based bimetals offers certain advantages including potential higher reactivity and relative insensitivity to pH conditions. This work reports preliminary findings of DNAN degradation by three Mg-based bimetals: Mg/Cu, Mg/Ni, and Mg/Zn. Treatment of DNAN by all three bimetals is highly effective in aqueous solutions (> 89% removal) and wastewater (> 91% removal) in comparison with treatment solely with zero-valent magnesium (ZVMg; 35% removal). Investigation of reaction byproducts supports a partial degradation pathway involving reduction of the ortho or para nitro to amino group, leading to 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Further reduction of the second nitro group leads to 2,4-diaminoanisole (DAAN). These byproducts are detected in small quantities in the aqueous phase. Carbon mass balance analysis suggests near-complete closure (91%) with 12.4 and 78.4% of the total organic carbon (TOC) distributed in the aqueous and mineral bimetal phases, respectively. Post-treatment surface mineral phase analysis indicates Mg(OH) 2 as the main oxidized species; oxide formation does not appear to impair treatment.
Ramezani, Fatemeh; Habibi, Mostafa; Rafii-Tabar, Hashem; Amanlou, Massoud
2015-01-29
Gold nanoparticles now command a great deal of attention for medical applications. Despite the importance of nano-bio interfaces, interaction between peptides and proteins with gold surfaces is not still fully understood, especially in a molecular level. In the present study computational simulation of adsorption of 20 amino acids, in three forms of mono-amino acid, homo di-peptide and homo tri-peptide, on the gold nanoparticles was performed by Gromacs using OPLSAA force field. The flexibility, stability, and size effect of the peptides on the gold nanoparticles were studied as well as the molecular structure of them. According to our results, adsorbed homo tri-peptides on the gold surface had more flexibility, more gyration, and the farthest distance from the GNP in comparison with homo di-peptides and mono-amino acids. Our findings provide new insights into the precise control of interactions between amino acids anchored on the GNPs.
Pinaud, Fabien [Berkeley, CA; King, David [San Francisco, CA; Weiss, Shimon [Los Angeles, CA
2011-08-16
Particles are bioactivated by attaching bioactivation peptides to the particle surface. The bioactivation peptides are peptide-based compounds that impart one or more biologically important functions to the particles. Each bioactivation peptide includes a molecular or surface recognition part that binds with the surface of the particle and one or more functional parts. The surface recognition part includes an amino-end and a carboxy-end and is composed of one or more hydrophobic spacers and one or more binding clusters. The functional part(s) is attached to the surface recognition part at the amino-end and/or said carboxy-end.
Ziegler, Thomas R; Judd, Suzanne E; Ruff, Joshua H; McComsey, Grace A; Eckard, Allison Ross
2017-07-01
Amino acids play critical roles in metabolism, cell function, body composition and immunity, but little data on plasma amino acid concentrations in HIV are available. We evaluated plasma amino acid concentrations and associations with CD4 counts and inflammatory biomarkers in HIV-infected youth. HIV-infected subjects with a high (≥500 cells/mm 3 ) and low (<500 cells/mm 3 ) current CD4 + T cell counts were compared to one another and to a matched healthy control group. Plasma concentrations of 19 amino acids were determined with an amino acid analyzer. Plasma levels of interleukin-6, tumor necrosis factor receptor-I, and soluble vascular cellular adhesion molecule-I were also measured. Seventy-nine HIV-infected subjects (40 and 39 with high and low CD4 + T cell counts, respectively) and 40 controls were included. There were no differences in amino acid concentrations between HIV-infected subjects with high or low CD4 + T cell counts. When combined, the HIV-infected group exhibited significantly lower median plasma concentrations compared to controls for total, essential, branched-chain and sulfur amino acids, as well as for 12 individual amino acids. Glutamate was the only amino acid that was higher in the HIV-infected group. There were no significant correlations between amino acid endpoints and inflammatory biomarkers for either HIV-infected group or controls. Plasma amino acid concentrations were lower in HIV-infected youth compared to healthy controls, regardless of immune status, while glutamate concentrations were elevated. These findings can inform future interventional studies designed to improve metabolic and clinical parameters influenced by amino acid nutriture.
Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Aponte, Jose C.; Blackmond, Donna G.; Burton, Aaron S.; Dworkin, Jason P.; Glavin, Daniel P.
2016-01-01
The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplied by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large -enantiomeric excesses of some extraterrestrial protein amino acids (up to 60) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work.
Liu, Zhen; Li, Ping; Bian, Weiwei; Yu, Jingkai; Zhan, Jinhua
2016-01-01
Surface oxidation states of ultrafine particulate matter can influence the proinflammatory responses and reactive oxygen species levels in tissue. Surface active species of vehicle-emission soot can serve as electron transfer-mediators in mitochondrion. Revealing the role of surface oxidation state in particles-proteins interaction will promote the understanding on metabolism and toxicity. Here, the surface oxidation state was modeled by nitro/amino ligands on nanoparticles, the interaction with blood proteins were evaluated by capillary electrophoresis quantitatively. The nitro shown larger affinity than amino. On the other hand, the affinity to hemoglobin is 103 times larger than that to BSA. Further, molecular docking indicated the difference of binding intensity were mainly determined by hydrophobic forces and hydrogen bonds. These will deepen the quantitative understanding of protein-nanoparticles interaction from the perspective of surface chemical state. PMID:27181651
Energetics of amino acid synthesis in hydrothermal ecosystems
NASA Technical Reports Server (NTRS)
Amend, J. P.; Shock, E. L.
1998-01-01
Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.
Fluorescent Nanodiamonds in Biomedical Applications.
Mitura, Katarzyna Anna; Włodarczyk, Elżbieta
2018-04-18
Nanoparticles have an extended surface and a large surface area, which is the ratio of the size of the surfacearea to the volume. A functionalized surface can give rise to more modifications and therefore allows this nanomaterial to have new properties. Fluorescent molecules contain fluorophore, which is capable of being excited via the absorption of light energy at a specific wavelength and subsequently emitting radiation energy of a longer wavelength. A chemically modified surface of nanodiamond (ND; by carboxylation) demonstrated biocompatibility with DNA, cytochrome C, and antigens. In turn, fluorescent nanodiamonds (FNDs) belong to a group of new nanomaterials. Their surface can be modified by joining functional groups such as carboxyl, hydroxyl, or amino, after which they can be employed as a fluorescence agent. Their fluorescent properties result from defects in the crystal lattice. FNDs reach dimensions of 4-100 nm, have attributes such as photostability, long fluorescence lifetimes (10 ns), and fluorescence emission between 600 and 700 nm. They are also nontoxic, chemically inert, biocompatible, and environmentally harmless. The main purpose of this article was to present the medical applications of various types of modified NDs.
The radiolysis and radioracemization of amino acids on silica surfaces
NASA Technical Reports Server (NTRS)
Bonner, W. A.; Lemmon, R. M.
1981-01-01
Results are presented of experiments on the radioracemization of amino acids in the presence of silica surfaces such as may have been found on the prebiotic earth. L-leucine and a DL-leucine mixture deposited on samples of 1-quartz and an amorphous silica preparation (Syloid 63) was subjected to Co-60 gamma-ray irradiation, then analyzed by gas chromatography to determine the radiolysis and racemization rates. The quartz surface is found to have a marginal efficacy in enhancing radiolysis when compared with a crystalline L-leucine control, although enhancing radioracemization symmetrically by a factor of two. Both the radiolysis and radioracemization of L-leucine and DL-leucine on a Syloid-63 silica surface are observed to increase with increasing radiation dose, and to be substantially greater than in the crystalline controls. Additional experiments with the nonprotein amino acid isovaline deposited on Syloid 63 confirm the greater radiolysis susceptibility of amino acids deposited on silica with respect to the crystalline state, although racemization is not observed. The observations suggest that the presence of a silica surface would have a deleterious effect on any mechanism for the origin of molecular chirality relying on stereoselective beta-radiolysis.
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-01-01
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity. PMID:26333629
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-09-01
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
Li, Xiaoyu; Ouyang, Jing; Zhou, Yonghua; Yang, Huaming
2015-09-03
Nanocomposites of aluminosilicate minerals, kaolins (kaolinite and halloysite) with natural different morphologies assembling with palladium (Pd) nanoparticles have been successfully synthesized through strong electrostatic adsorption and chemical bonding after surface modification with 3-aminopropyl triethoxysilane (APTES). Meanwhile, the influence of different morphologies supports on catalytic hydrogenation properties was explored. The surface concentration of amino groups on the kaolins was related to the morphology and surface nature. Electronmicroscopy revealed that the monodisperse Pd nanoparticles were uniformly deposited onto the surface of kaolins, ranging in diameter from 0.5 nm to 5.5 nm. The functional groups could not only improve the dispersion of kaolins with different morphologies in solution, but also enhance the interaction between Pd precursors and kaolins, thus preventing small Pd nanoparticles from agglomerating and leading to high activity for the catalytic hydrogenation of styrene. Pd-FK@APTES was more active compared to other samples. Selecting the kaolin morphology with a different surface nature allows the selective surface modification of a larger fraction of the reactive facets on which the active sites can be enriched and tuned. This desirable surface coordination of catalytically active atoms could substantially improve catalytic activity.
Isoda, Takaaki; Urushibara, Ikuko; Sato, Hikaru; Yamauchi, Noriyoshi
2012-01-01
We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO2 adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions were investigated. The detection of specific cations without the presence of chelate molecules on the free electrode was also examined. By comparing both sets of results the complexation ability of the studied chelate molecules onto the electrode was evaluated. Five pairs of source-drain electrodes(×8 arrays) were fabricated on a glass substrate of 20 × 30mm in size. The individual Au/Cr (1.0/0.1μm thickness) electrodes had widths of 50 μm and an inter-electrode interval of 100μm.The fabricated source-drain electrodes were further coated with an insulation layer comprising a porous SiO2 particle modified amino-group to adsorb the chelate molecules. The electrode chip was equipped with a handy-type sensor signal analyzer that was mounted on an amplifier circuit using a Miniship™ or a system in a packaged LSI device. For electrode surfaces containing different adsorbed chelate molecules an increase in the sensor voltage depended on a combination of host-guest reactions and generally decreased in the following order:5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine, tetrakis(p-toluenesulfonate) (TMPyP)as a Cu2+chelator and Cu2+>2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol(nitroso-PSAP) as an Fe2+chelator and Fe2+>4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BPDSA) as an Fe2+chelatorand Fe2+>3-[3-(2,4-dimethylphenylcarbamoyl)-2-hydroxynaphthalene-1-yl-azo]-4-hydroxybenzenesulfonic acid, sodium salt (XB-1) as a Mg2+chelator and Mg2+>2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BCIDSA) as a Cu2+chelator and Cu2+, respectively. In contrast, for the electrode surfaces with adsorbed O,O′-bis(2-aminoethyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid (GEDTA) or O,O′-bis(2-aminophenyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid, tetrapotassium salt, hydrate (BAPTA) as a Ca2+chelator no increase in the detection voltage was found for all the electrode tests conducted in the presence of Ca2+.To determine the differences in electrode detection, molecular orbital (MO) calculations of the chelate molecules and surface molecular modeling of the adsorbents were carried out. In accordance with frontier orbital theory, the lowest unoccupied MO (LUMO) of the chelate molecules can accept two lone pair electrons at the highest occupied MO (HOMO) of the amino group on the model surface structure of the SiO2 particle. As a result, a good correlation was obtained between the LUMO-HOMO difference and the ion response of all the electrodes tested. Based on the results obtained, the order of adsorbed chelate molecules on adsorption particles reflects the different metal ion detection abilities of the electrode chips. PMID:22969407
Piletska, Elena V; Piletsky, Sergey A
2010-03-16
The correlation between the size of biotinylated nanoparticles and their affinity in relation to interactions with the solid surface was investigated. The silica particles with a diameter of 50-200 nm containing amino groups on the surface were labeled with different quantities of biotin. The affinity properties of biotinylated nanoparticles were studied using a Biacore 3000 instrument equipped with a streptavidin-coated sensor chip (SA chip). It was shown that the increase in the particle size from 50 to 200 nm reduced the affinity (K(D)) of biotin-streptavidin interactions from 1.2 x 10(-12) to 1.2 x 10(-10) M. It was found that the particles with higher concentrations of immobilized biotin on particle surfaces demonstrated stronger binding with streptavidin.
NASA Technical Reports Server (NTRS)
Beegle, L. W.; Terrell, C. A.; Kim, H.; Kanik, I.
2003-01-01
One of the primary goals of the current NASA thrust in Astrobiology is the detection and identification of organic molecules as part of an in-situ lander platform on the surface of Mars or Europa. The identification of these molecules should help determine whether indigenous organisms exist on the surface of Mars or in an undersea environment on Europa. In addition, a detailed organic chemical inventory of surface and near surface molecules will help elucidate the possibilities of life elsewhere in the Universe. Terrestrial life has, as its backbone, the family of molecules known as the amino acids (AA), and while AA can be found in the terrestrial environments as part of more complex molecules, such as peptides, and proteins, they also exist as individual molecules due to of the hydrolyses of biopolymers. In terrestrial biochemistry, there are 20 principal amino acids which are necessary for life. However, some forms of these molecules can be found in nature synthesized via abiotic process. For example, they are known to exist extraterrestrially as a component of carbonaceous meteorites. The idea that amino acids are readily created by abiotic means has been demonstrated by their positive identification in the Murchison CM2 meteorite, which fell in 1969. This meteorite was analyzed before contamination by terrestrial microbes could result. Three laboratories individually tested parts of the meteorite and concluded that the amino acids present in them were indigenous to the meteorite because, among other reasons, they had equal L- and D- enantiomers. Final identification of the constituents of the Murchison included 33 amino acids which have no known biotic source, 11 amino acids which have limited distribution and 8 (Glycine, Alanine, Valine, Proline, Leucine, Isoleucine, Aspartic Acid, and Glutamic Acid), which readily occur in terrestrial proteins.
An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation
Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan
2013-01-01
Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116
Biomimetic PEGylation of carbon nanotubes through surface-initiated RAFT polymerization.
Shi, Yingge; Zeng, Guanjian; Xu, Dazhuang; Liu, Meiying; Wang, Ke; Li, Zhen; Fu, Lihua; Zhang, Qingsong; Zhang, Xiaoyong; Wei, Yen
2017-11-01
Carbon nanotubes (CNTs) are a type of one-dimensional carbon nanomaterials that possess excellent physicochemical properties and have been potentially utilized for a variety of applications. Surface modification of CNTs with polymers is a general route to expand and improve the performance of CNTs and has attracted great research interest over the past few decades. Although many methods have been developed previously, most of these methods still showed some disadvantages, such as low efficiency, complex experimental procedure and harsh reaction conditions etc. In this work, we reported a practical and novel way to fabricate CNTs based polymer composites via the combination of mussel inspired chemistry and reversible addition fragmentation chain transfer (RAFT) polymerization. First, the amino group was introduced onto the surface of CNTs via self-polymerization of dopamine. Then, chain transfer agent can be immobilized on the amino groups functionalized CNTs to obtain CNT-PDA-CTA, which can be utilized for surface-initiated RAFT polymerization. A water soluble and biocompatible monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) was adopted to fabricate pPEGMA functionalized CNTs through RAFT polymerization. The successful preparation of CNTs based polymer composites (CNT-pPEGMA) was confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy in details. The CNT-pPEGMA showed good dispersibility and desirable biocompatibility, making them highly potential for biomedical applications. More importantly, a large number of CNTs based polymer composites could also be fabricated through the same strategy when different monomers were used due to the good monomer adaptability of RAFT polymerization. Therefore, this strategy should be a general method for preparation of various multifunctional CNTs based polymer composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Mutual Exclusion of Urea and Trimethylamine N-oxide from Amino Acids in Mixed Solvent Environment
NASA Astrophysics Data System (ADS)
Ganguly, Pritam; Hajari, Timir; Shea, Joan-Emma; van der Vegt, Nico F. A.
2015-03-01
We study the solvation thermodynamics of individual amino acids in mixed urea and trimethylamine N-oxide (TMAO) solutions using molecular dynamics simulations and the Kirkwood-Buff theory. Our results on the preferential interactions between the amino acids and the cosolvents (urea and TMAO) show a mutual exclusion of both the cosolvents from the amino acid surface in the mixed cosolvent condition which is followed by an increase in the cosolvent-cosolvent aggregation away from the amino acid surface. The effects of the mixed cosolvents on the association of the amino acids and the preferential solvation of the amino acids by water are found to be highly non-linear in terms of the effects of the individual cosolvents. A similar result has been found for the association of the protein backbone, mimicked by triglycine. Our results have been confirmed by different TMAO force-fields and the mutual exclusions of the cosolvents from the amino acids are found to be independent of the choice of the strength of the TMAO-water interactions. Based on our data, a general mechanism can potentially be proposed for the effects of the mixed cosolvents on the preferential solvations of the solutes including the case of cononsolvency.
Key mediators of intracellular amino acids signaling to mTORC1 activation.
Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong
2015-05-01
Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.
Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir
2011-01-01
The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511
Amino acids at water-vapor interfaces: surface activity and orientational ordering.
Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro
2010-10-14
The surface activity and orientational ordering of amino acids at water-vapor interfaces were studied with molecular dynamics simulations in combination with thermodynamic integration and umbrella sampling. Asparagine, representing amino acids with polar side chains, displays no surface activity. Tryptophan, in contrast, with its hydrophobic indole ring as side chain unveils a free energy minimum at the water-vapor interface, which lies 6 kJ/mol under the hydration free energy. To study the orientational ordering of tryptophan along the interface, the order parameter was calculated. At the free energy minimum and at the Gibbs dividing surface, the order parameter reveals a parallel alignment of the indole ring with the water surface exposing the π-system to electrophiles in the hydrophobic phase and indicating polarization dependent spectroscopy. In the vicinity of this position a perpendicular orientation is obtained. The surface excess, calculated from the potential of mean force along the interface, is in excellent agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Fiorilli, Sonia; Rivoira, Luca; Calì, Giada; Appendini, Marta; Bruzzoniti, Maria Concetta; Coïsson, Marco; Onida, Barbara
2017-07-01
Iron oxide clusters were incorporated into amino-functionalized SBA-15 in order to obtain a magnetically recoverable adsorbent. The physical-chemical properties of the material were characterized by FE-SEM, STEM, XRD, TGA, XPS, FT-IR and acid-base titration analysis. Iron oxide nanoparticles were uniformly dispersed into the pore of mesoporous silica and that the adsorbent is characterized high specific surface area (177 m2/g) and accessible porosity. The sorbent was successfully tested for the removal of glyphosate in real water matrices. Despite the significant content of inorganic ions, a quantitative removal of the contaminant was found. The complete regeneration of the sorbent after the adsorption process through diluted NaOH solution was also proved.
An Amino Acid Code to Define a Protein’s Tertiary Packing Surface
Fraga, Keith J.; Joo, Hyun; Tsai, Jerry
2015-01-01
One difficult aspect of the protein-folding problem is characterizing the non-specific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes in order to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of non-polar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design and prediction of protein structure. PMID:26575337
Ion Chromatography Based Urine Amino Acid Profiling Applied for Diagnosis of Gastric Cancer
Fan, Jing; Hong, Jing; Hu, Jun-Duo; Chen, Jin-Lian
2012-01-01
Aim. Amino acid metabolism in cancer patients differs from that in healthy people. In the study, we performed urine-free amino acid profile of gastric cancer at different stages and health subjects to explore potential biomarkers for diagnosing or screening gastric cancer. Methods. Forty three urine samples were collected from inpatients and healthy adults who were divided into 4 groups. Healthy adults were in group A (n = 15), early gastric cancer inpatients in group B (n = 7), and advanced gastric cancer inpatients in group C (n = 16); in addition, two healthy adults and three advanced gastric cancer inpatients were in group D (n = 5) to test models. We performed urine amino acids profile of each group by applying ion chromatography (IC) technique and analyzed urine amino acids according to chromatogram of amino acids standard solution. The data we obtained were processed with statistical analysis. A diagnostic model was constructed to discriminate gastric cancer from healthy individuals and another diagnostic model for clinical staging by principal component analysis. Differentiation performance was validated by the area under the curve (AUC) of receiver-operating characteristic (ROC) curves. Results. The urine-free amino acid profile of gastric cancer patients changed to a certain degree compared with that of healthy adults. Compared with healthy adult group, the levels of valine, isoleucine, and leucine increased (P < 0.05), but the levels of histidine and methionine decreased (P < 0.05), and aspartate decreased significantly (P < 0.01). The urine amino acid profile was also different between early and advanced gastric cancer groups. Compared with early gastric cancer, the levels of isoleucine and valine decreased in advanced gastric cancer (P < 0.05). A diagnosis model constructed for gastric cancer with AUC value of 0.936 tested by group D showed that 4 samples could coincide with it. Another diagnosis model for clinical staging with an AUC value of 0.902 tested by 3 advanced gastric cancer inpatients of group D showed that all could coincide with the model. Conclusions. The noticeable differences of urine-free amino acid profiles between gastric cancer patients and healthy adults indicate that such amino acids as valine, isoleucine, leucine, methionine, histidine and aspartate are important metabolites in cell multiplication and gene expression during tumor growth and metastatic process. The study suggests that urine-free amino acid profiling is of potential value for screening or diagnosing gastric cancer. PMID:22888338
Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction
NASA Astrophysics Data System (ADS)
Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.
2013-02-01
The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.
Effect of p-amino-diphenyl ethers on hepatic microsomal cytochrome P450.
Jiang, Huidi; Xuan, Guida
2003-09-01
The present paper aims to investigate whether p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450. Mice were given daily intraperitoneal (ip) injections of p-amino-2',4'-dichlorodiphenyl ether (0.25 mmol/kg) or p-amino-4'-methyldiphenyl ether (0.25 mmol/kg) for 4 days and tested at 24 h and 48 h after the last dose injection. The results showed the mice pentobarbital sleeping time was shorter and the P450 content of hepatic microsome increased significantly in the group pretreated with p-amino-4'-methyldiphenyl ether when compared with the control group, while in mice pretreated with p-amino-2',4'-dichlorodiphenyl ether the hepatic microsome P450 content increased but the pentobarbital sleeping time was extended in clear contrast to the control group. The sleeping time of the phenobarbital group (80 mg/kg daily ip injection for 4 days) was shortened at 24 h after the last injection with increased P450 content of hepatic microsome, but it showed no difference at 48 h. The zoxazolamine-paralysis times of mice treated with p-amino-2',4'-dichlorodiphenyl ether were longer than those of the control mice, while the same dose of zoxazolamine did not lead to paralysis in mice pretreated with BNF. p-Amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether inhibited the activity of 7-ethoxyresorufin O-deethylase from rat hepatic microsome induced by BNF in vitro by 70.0% and 50.1% respectively. These results suggest that p-amino-2',4'-dichlorodiphenyl ether and p-amino-4'-methyldiphenyl ether are inhibitors as well as inducers of P450.
Chemical modification of M13 bacteriophage and its application in cancer cell imaging.
Li, Kai; Chen, Yi; Li, Siqi; Nguyen, Huong Giang; Niu, Zhongwei; You, Shaojin; Mello, Charlene M; Lu, Xiaobing; Wang, Qian
2010-07-21
The M13 bacteriophage has been demonstrated to be a robust scaffold for bionanomaterial development. In this paper, we report on the chemical modifications of three kinds of reactive groups, i.e., the amino groups of lysine residues or N-terminal, the carboxylic acid groups of aspartic acid or glutamic acid residues, and the phenol group of tyrosine residues, on M13 surface. The reactivity of each group was identified through conjugation with small fluorescent molecules. Furthermore, the regioselectivity of each reaction was investigated by HPLC-MS-MS. By optimizing the reaction condition, hundreds of fluorescent moieties could be attached to create a highly fluorescent M13 bacteriophage. In addition, cancer cell targeting motifs such as folic acid could also be conjugated onto the M13 surface. Therefore, dual-modified M13 particles with folic acid and fluorescent molecules were synthesized via the selective modification of two kinds of reactive groups. Such dual-modified M13 particles showed very good binding affinity to human KB cancer cells, which demonstrated the potential applications of M13 bacteriophage in bioimaging and drug delivery.
Nosov, Roman; Padnya, Pavel; Shurpik, Dmitriy; Stoikov, Ivan
2018-05-08
A convenient approach to the synthesis of multithiacalix[4]arene derivatives containing amino groups and phthalimide fragments by the formation of quaternary ammonium salts is presented. As the initial macrocycle for the synthesis of multithiacalix[4]arenes, a differently substituted p-tert- butylthiacalix[4]arene containing bromoacetamide and three phthalimide fragments was used in a 1,3-alternate conformation. The macrocycle in cone conformation containing the tertiary amino groups was found to be a convenient core for the multithiacalix[4]arene systems. Interaction of the core multithiacalix[4]arene with monobromoacetamide derivatives of p-tert- butylthiacalix[4]arene resulted in formation in high yields of pentakisthiacalix[4]arene containing quaternary ammonium and phthalimide fragments. The removal of phthalimide groups led to the formation of amino multithiacalix[4]arene in a good yield. Based on dynamic light scattering, it was shown that the synthesized amino multithiacalix[4]arene, with pronounced hydrophobic and hydrophilic fragments, formed dendrimer-like nanoparticles in water via direct supramolecular self-assembly.
Human Rhinovirus Diversity and Evolution: How Strange the Change from Major to Minor.
Lewis-Rogers, Nicole; Seger, Jon; Adler, Frederick R
2017-04-01
Rhinoviruses are the most common causes of the common cold. Their many distinct lineages fall into "major" and "minor" groups that use different cell surface receptors to enter host cells. Minor-group rhinoviruses are more immunogenic in laboratory studies, although their patterns of transmission and their cold symptoms are broadly similar to those of the major group. Here we present evolutionary evidence that minor-group viruses are also more immunogenic in humans. A key finding is that rates of amino acid substitutions at exposed sites in the capsid proteins VP2, VP3, and VP1 tend to be elevated in minor-group relative to major-group viruses, while rates at buried sites show no consistent differences. A reanalysis of historical virus watch data also indicates a higher immunogenicity of minor-group viruses, consistent with our findings about evolutionary rates at amino acid positions most directly exposed to immune surveillance. The increased immunogenicity and speed of evolution in minor-group lineages may contribute to the very large numbers of rhinovirus serotypes that coexist while differing in virulence. IMPORTANCE Most colds are caused by rhinoviruses (RVs). Those caused by a subset known as the minor-group members of rhinovirus species A (RV-A) are correlated with the inception and aggravation of asthma in at-risk populations. Genetically, minor-group viruses are similar to major-group RV-A, from which they were derived, although they tend to elicit stronger immune responses. Differences in their rates and patterns of molecular evolution should be highly relevant to their epidemiology. All RV-A strains show high rates of amino acid substitutions in the capsid proteins at exposed sites not previously identified as being immunogenic, and this increase is significantly greater in minor-group viruses. These findings will inform future studies of the recently discovered RV-C, which also appears to exacerbate asthma in adults and children. In addition, these findings draw attention to the difficult problem of explaining the long-term coexistence of many serotypes of major- and minor-group RVs. Copyright © 2017 American Society for Microbiology.
Determination of Selected Amino Acids in Serum of Patients with Liver Disease.
Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander
2016-01-01
The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.
Porous article with surface functionality and method for preparing same
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
2000-01-01
Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article. The surface-functionalized article may be used, for example, as a solid support in organic synthesis or in the chromatographic purification of organic or biochemicals.
Porous article with surface functionality and method for preparing same
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
2004-01-01
Porous organic articles having no surface functionality may be treated by remote plasma discharge to thereby introduce functionality to the surface of the article. The functionality is introduced throughout the article's surface, including the exterior surface and the surfaces of the pores. Little or no degradation of the porous organic article occurs as a result of the functionalization. Amino, hydroxyl, carbonyl and carboxyl groups may be introduced to the article. In this way, an essentially inert hydrophobic porous article, made from, for example, polyethylene, can have its surface modified so that the surface becomes hydrophilic. The remote plasma discharge process causes essentially no change in the bulk properties of the organic article. The remote plasma discharge process is preferably conducted so that no photons, and particularly no ultraviolet radiation, is transmitted from the plasma glow to the porous article. The surface-functionalized article may be used, for example, as a solid support in organic synthesis or in the chromatographic purification of organic or biochemicals.
NASA Astrophysics Data System (ADS)
Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde
2017-10-01
Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.
Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories
2016-01-01
The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780
Cyanobacteria as efficient producers of mycosporine-like amino acids.
Jain, Shikha; Prajapat, Ganshyam; Abrar, Mustari; Ledwani, Lalita; Singh, Anoop; Agrawal, Akhil
2017-09-01
Mycosporine-like amino acids are the most common group of transparent ultraviolet radiation absorbing intracellular secondary metabolites. These molecules absorb light in the range of ultraviolet-A and -B with a maximum absorbance between 310 and 362 nm. Cyanobacteria might have faced the most deleterious ultraviolet radiation, which leads to an evolution of ultraviolet protecting mycosporine-like amino acids for efficient selection in the environment. In the last 30 years, scientists have investigated various cyanobacteria for novel mycosporine-like amino acids, applying different induction techniques. This review organizes all the cyanobacterial groups that produce various mycosporine-like amino acids. We found out that cyanobacteria belonging to orders Synechococcales, Chroococcales, Oscillatoriales, and Nostocales are frequently studied for the presence of mycosporine-like amino acids, while orders Gloeobacterales, Spirulinales, Pleurocapsales, and Chroococcidiopsidales are still need to be investigated. Nostoc and Anabaena strains are major studied genus for the mycosporine-like amino acids production. Hence, this review will give further insight to the readers about potential mycosporine-like amino acid producing cyanobacterial groups in future investigations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen
2017-04-19
An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Song; Ding, Jingjing; Liu, Ying; Kong, Jilie; Hofstetter, Oliver
2006-11-01
This work describes a highly enantioselective and sensitive immunosensor for the detection of chiral amino acids based on capacitive measurement. The sensor was prepared by first binding mercaptoacetic acid to the surface of a gold electrode, followed by modification with tyramine utilizing carbodiimide activation. The hapten 4-amino-D-phenylalanine was then covalently immobilized onto the electrode by diazotization. Stereoselective binding of an anti-D-amino acid antibody to the hapten-modified sensor surface resulted in capacitance changes that were detected with high sensitivity by a potentiostatic step method. Using capacitance measurement, detection limits of 5 pg of antibody/mL were attained. The exquisite stereoselectivity of the antibody was also utilized in a competitive setup to quantitatively determine the concentration of the analyte d-phenylalanine in nonracemic samples containing both enantiomers of this amino acid. Trace impurities of d-phenylalanine as low as 0.001% could be detected.
Molecular-level Design of Heterogeneous Chiral Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilfred T. Tysoe
2007-04-25
It has been shown previously that the adsorption of a chiral 2-butanol template on Pd(111) leads to enantioselective adsorption of chiral propylene oxide probe molecules. Enantioselectivity is expressed over a narrow coverage range where the maximum value of enantioselectivity ratio (ER defined as Θ(R-propylene oxide)/Θ(S-propylene oxide), where Θ is the coverage) reaches ~2. Probe coverages in this case were measured using either reflection-absorption infrared spectroscopy (RAIRS) or temperature-programmed desorption (TPD) [1,2]. The enantioselectivity disappears when the 2-butanol-covered surface was heated to ~200 K since the adsorbed butoxy species decomposes by a β-hydride elimination reaction to yield a non-chiral ketone. Montemore » Carlo calculations of the effect of chiral modifiers have yielded results that are consistent with these experimental observations [3,4]. Similar experiments using 2-methyl butanoic acid as a template, where the chiral center is identical to that in 2-butanol but is now anchored by a carboxylate group rather than by an alkoxide, shows no enantioselectivity. In this case, propylene oxide coverages were measured using the King and Wells method. RAIRS experiments and density functional calculations suggest that the 2-butyl group of the 2-butoxy species is oriented parallel to the surface. A possible origin for the lack of enantioselectivity of a 2-methyl butanoic acid-covered surface may be that the 2-butyl group is farther from the surface, allowing it to rotate more freely, averaging out any asymmetry, resulting in a loss of chirality. In order to test this idea, the alkyl group on the carboxylic acid was functionalized with an amine to anchor the chiral center to the surface. Using the amino-acids alanine and 2-amino butanoic acid as templates restored the enantioselectivity and yielded ER values of 2.0 ± 0.2 and 1.75 ± 0.15 respectively. These results suggest that a two-point attachment of the chiral template is required, one for surface adsorption and the other to allow the enantioselectivity to be expressed. Low-energy electron diffraction (LEED) intensity versus energy (I/E) measurements are used to measure the structure of templates and probes on the Pd(111) surface, where these results will be compared with calculations carried out by the Sholl group. Since the aminoacids are relatively large, initial experiments were carried out to determine the structure of carboxylates on the surface to determine the carboxylate group anchoring site. Since carboxylates do not form ordered structures on Pd(111), we have exploited a method recently developed in collaboration with Professor Saldin to measure structures of disordered overlayers [5]. Results show that the formate OCO plane is oriented perpendicular to the surface with the oxygen atoms located across a short bridge on the (111) surface. The effect of the size of the functional group on the amino acid template (RCH(NH2)COOH) was also investigated where the maximum ER values obtained using propylene oxide were 2.0 ± 0.2 (R=CH3), 1.75 ± 0.15 (R=C2H5), 1.65 ± 0.15 (R=C3H6) and 1.30 ± 0.15 (R=CH2CH(CH3)2) thus showing a decreasing trend with increasing size of the side chain. The enantioselectivity of S-(1-naphthyl) ethylamine-covered surfaces have been explored using propylene oxide as a probe, but these systems showed no enantioselectivity. However, using 2-butanol as a probe lead to enantioselective chemisorption implying that one-to-one modification requires a direct hydrogen-bonding interaction between the probe and modifier. 1. Enantioselective Chemisorption on a Chirally Patterned Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxy-Covered Pd(111), D. Stacchiola, L. Burkholder and W.T. Tysoe, J. Am. Chem. Soc., 124, 8984 (2002) 2. Enantioselective Chemisorption on a Chirally Modified Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxide-Covered Pd(111), Darío Stacchiola, Luke Burkholder and Wilfred T. Tysoe, J. Mol. Catal A: Chemical, 216, 215 (2004) 3. Theoretical Analysis of the Coverage Dependence of Enantioselective Chemisorption on a Chirally Patterned Surface, F. Roma, D. Stacchiola, G. Zgrablich and W. T. Tysoe, Journal of Chemical Physics, 118, 6030 (2003) 4. Lattice-gas Modeling of Enantioselective Adsorption by Template Chiral Substrates, F. Romá, D. Stacchiola, W.T. Tysoe and G. Zgrablich, Physica A., 338, 493 (2004) 5. Structure Determination of Disordered Organic Molecules on Surfaces from the Bragg Spots of Low Energy Electron Diffraction and Total Energy Calculations, H. C. Poon, M. Weinert, D. K. Saldin, D. Stacchiola, T. Zheng and W. T. Tysoe, Phys. Rev. B., 69, 35401 (2004)« less
NASA Astrophysics Data System (ADS)
Lu, Xiaoyan; Ji, Cai; Jin, Tingting; Fan, Xiaohui
2015-05-01
Engineered nanoparticles, with unconventional properties, are promising platforms for biomedical applications. Since they may interact with a wide variety of biomolecules, it is critical to understand the impact of the physicochemical properties of engineered nanoparticles on biological systems. In this study, the effects of particle size and surface modification alone or in combination of amorphous silica particles (SPs) on biological responses were determined using a suite of general toxicological assessments and metabonomics analysis in mice model. Our results suggested that amino or carboxyl surface modification mitigated the liver toxicity of plain-surface SPs. 30 nm SPs with amino surface modification were found to be the most toxic SPs among all the surface-modified SP treatments at the same dosage. When treatment dose was increased, submicro-sized SPs with amino or carboxyl surface modification also induced liver toxicity. Biodistribution studies suggested that 70 nm SPs were mainly accumulated in liver and spleen regardless of surface modifications. Interestingly, these two organs exhibited different uptake trends. Furthermore, metabonomics studies indicated that surface modification plays a more dominant role to affect the liver metabolism than particle size.
Wang, Qian; He, Wen; Huang, Junqi; Liu, Siwei; Wu, Guifu; Teng, Wei; Wang, Qinmei; Dong, Yugang
2011-03-10
We report the synthesis and characterization of a polysaccharide crosslinker of tetraaniline grafting oxidized sodium alginate with large aldehyde and carboxylic groups. We demonstrate that this copolymer has the following properties: it is water soluble under any pH, biodegradable, electroactive, and noncytotoxic; it can self-assemble into nanoparticles with large active functional groups on the outer surface; it can crosslink materials with amino and aminoderivative groups like gelatin to form hydrogels, and thus the electroactivity is readily introduced to the materials. This copolymer has potential applications in biomedical fields such as tissue engineering, drug delivery, and nerve probes where electroactivity is required. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural Relationships Between Minor and Major Proteins of Hepatitis B Surface Antigen
Stibbe, Werner; Gerlich, Wolfram H.
1983-01-01
The minor glycoproteins from hepatitis B surface antigen, GP33 and GP36, contain at their carboxy-terminal part the sequence of the major protein P24. They have 55 additional amino acids at the amino-terminal part which are coded by the pre-S region of the viral DNA. Images PMID:6842680
Azuma, Kazuo; Osaki, Tomohiro; Tsuka, Takeshi; Imagawa, Tomohiro; Okamoto, Yoshiharu; Takamori, Yoshimori; Minami, Saburo
2011-01-01
We examined the effects of oral glucosamine hydrochloride (GlcN), N-acetyl-d-glucosamine (GlcNAc) and d-glucose (Glc) administration on plasma total free amino acid (PFAA) concentrations in dogs. The PFAA concentrations increased in the control group and the GlcNAc group at one hour after feeding, and each amino acid concentration increased. On the other hand, in the GlcN group and the Glc group PFAA concentrations decreased at one hour after feeding. A significant decrease in amino acid concentration was observed for glutamate, glycine and alanine. Our results suggest the existence of differences in PFAA dynamics after oral administration of GlcN and GlcNAc in dogs. PMID:21673884
NASA Astrophysics Data System (ADS)
Carneiro, Cristine E. A.; Ivashita, Flávio F.; de Souza, Ivan Granemann; de Souza, Cláudio M. D.; Paesano, Andrea; da Costa, Antonio C. S.; di Mauro, Eduardo; de Santana, Henrique; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.
2013-04-01
This study investigated the synthesis of goethite under conditions resembling those of the prebiotic Earth. The artificial seawater used contains all the major elements as well as amino acids (α-Ala, β-Ala, Gly, Cys, AIB) that could be found on the prebiotic Earth. The spectroscopic methods (FT-IR, EPR, Raman), scanning electron microscopy (SEM) and X-ray diffraction showed that in any condition Gly and Cys favoured the formation of goethite, artificial seawater plus β-Ala and distilled water plus AIB favoured the formation of hematite and for the other synthesis a mixture of goethite and hematite were obtained. Thus in general no protein amino acids (β-Ala, AIB) favoured the formation of hematite. As shown by surface enhanced Raman spectroscopy (SERS) spectra the interaction between Cys and Fe3+ of goethite is very complex, involving decomposition of Cys producing sulphur, as well as interaction of carboxylic group with Fe3+. SERS spectra also showed that amino/CN and C-CH3 groups of α-Ala are interacting with Fe3+ of goethite. For the other samples the shifting of several bands was observed. However, it was not possible to say which amino acid groups are interacting with Fe3+. The pH at point of zero charge of goethites increased with artificial seawater and decreased with amino acids. SEM images showed when only goethite was synthesized the images of the samples were acicular and when only hematite was synthesized the images of the samples were spherical. SEM images for the synthesis of goethite with Cys were spherical crystal aggregates with radiating acicular crystals. The highest resonance line intensities were obtained for the samples where only hematite was obtained. Electron paramagnetic resonance (EPR) and Mössbauer spectra showed for the synthesis of goethite with artificial seawater an isomorphic substitution of iron by seawater cations. Mössbauer spectra also showed that for the synthesis goethite in distilled water plus Gly only goethite was synthesized and in artificial seawater plus Cys a doublet due to interaction of iron with artificial seawater/Cys was observed. It should be pointed out that EPR spectroscopy did not show the interaction of iron with artificial seawater/Cys.
NASA Astrophysics Data System (ADS)
He, Lijie; Langlet, Michel; Stambouli, Valerie
2017-03-01
The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.
NASA Astrophysics Data System (ADS)
Wu, Yu; Yuan, Liu; Sheng, Nai-an; Gu, Zi-qi; Feng, Wen-hao; Yin, Hai-yue; Morsi, Yosry; Mo, Xiu-mei
2017-09-01
Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (ASA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff's base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff's base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.
Abraham, Jose P; Sajan, D; Joe, I Hubert; Jayakumar, V S
2008-11-15
The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment (mu) and the first hyperpolarizability (beta) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C=O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C=O...H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C=O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.
NASA Astrophysics Data System (ADS)
Abraham, Jose P.; Sajan, D.; Joe, I. Hubert; Jayakumar, V. S.
2008-11-01
The infrared absorption, Raman spectra and SERS spectra of p-amino acetanilide have been analyzed with the aid of density functional theory calculations at B3LYP/6-311G(d,p) level. The electric dipole moment ( μ) and the first hyperpolarizability ( β) values of the investigated molecule have been computed using ab initio quantum mechanical calculations. The calculation results also show that the synthesized molecule might have microscopic nonlinear optical (NLO) behavior with non-zero values. Computed geometries reveal that the PAA molecule is planar, while secondary amide group is twisted with respect to the phenyl ring is found, upon hydrogen bonding. The hyperconjugation of the C dbnd O group with adjacent C-C bond and donor-acceptor interaction associated with the secondary amide have been investigated using computed geometry. The carbonyl stretching band position is found to be influenced by the tendency of phenyl ring to withdraw nitrogen lone pair, intermolecular hydrogen bonding, conjugation and hyperconjugation. The existence of intramolecular C dbnd O⋯H hydrogen bonded have been investigated by means of the natural bonding orbital (NBO) analysis. The influence of the decrease of N-H and C dbnd O bond orders and increase of C-N bond orders due to donor-acceptor interaction has been identified in the vibrational spectra. The SERS spectral analysis reveals that the large enhancement of in-plane bending, out of plane bending and ring breathing modes in the surface-enhanced Raman scattering spectrum indicates that the molecule is adsorbed on the silver surface in a 'atleast vertical' configuration, with the ring perpendicular to the silver surface.
Fonseca Guerra, Célia; Sanz Miguel, Pablo J; Cebollada, Andrea; Bickelhaupt, F Matthias; Lippert, Bernhard
2014-07-28
The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp(2) hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp(3) hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-01-01
The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group. PMID:28059513
Hulshof, Tetske G; Rutherfurd, Shane M; Sforza, Stefano; Bikker, Paul; van der Poel, Antonius F B; Hendriks, Wouter H
2017-02-01
The specificity of O-methylisourea (OMIU) to bind to the ε-amino group of Lys, an important supposition for the OMIU-reactive Lys analysis of foods, feeds, ingredients, and digesta, was investigated. Crystalline l-Lys incubated under standard conditions with OMIU resulted in low homoarginine recoveries. The reaction of OMIU with the α-amino group of Lys was confirmed by MS analysis, with double derivatized Lys being identified. None of the changes in reaction conditions (OMIU pH, OMIU to Lys ratio, and reaction time) with crystalline l-Lys resulted in 100% recovery of homoarginine. The average free Lys content in ileal digesta of growing pigs and broilers was found to be 13% of total Lys, which could result in a significant underestimation of the reactive Lys content. The reaction of OMIU with α-amino groups may necessitate analysis of free Lys to accurately quantify reactive lysine in samples containing a large proportion of Lys with a free α-amino group.
Versatile Synthesis of Amino Acid Functional Polymers without Protection Group Chemistry.
Brisson, Emma R L; Xiao, Zeyun; Franks, George V; Connal, Luke A
2017-01-09
The copolymerization of N-isopropylacrylamide (NiPAm) with aldehyde functional monomers facilitates postpolymerization functionalization with amino acids via reductive amination, negating the need for protecting groups. In reductive amination, the imine formed from the condensation reaction between an amine and an aldehyde is reduced to an amine. In this work, we categorize amino acids into four classes based on the functionality of their side chains (acidic, polar neutral, neutral, and basic) and use their amine groups in condensation reactions with aldehyde functional polymers. The dynamic nature of the imine as well as the versatility of reductive amination to functionalize a polymer with a range of amino acids is highlighted. In this manner, amino acid functional polymers are synthesized without the use of protecting groups with high yields, demonstrating the high functional group tolerance of carbonyl condensation chemistry and the subsequent reduction of the imine. Prior to the reduction of the imine bond, transimination reactions are used to demonstrate dynamic polymers that shuffle from a glycine- to a histidine-functional polymer.
NASA Astrophysics Data System (ADS)
Hashir, Muhammad Ahsan; Stecher, Guenther; Mayr, Stefan; Bonn, Guenther K.
2009-01-01
In the present study, different silica gel modifications were evaluated for their application as target surface for material enhanced laser desorption/ionisation mass spectrometric (MELDI-MS) investigation of amino acids. 4,4'-Azodianiline (ADA-silica) modified silica gel was successfully employed for the qualitative analysis of amino acids in positive- and in negative-ion mode. Further no derivatisation of amino acids was necessary, as the introduced system allowed the direct analysis of targets and delivered spectra with excellent signal intensity and signal-to-noise ratio within a few minutes. The influence of surface chemistry, ionisation mode and the nature of analytes on signal intensity was studied and discussed. Detection limit of 2.10 pg (10 fmol) was achieved by employing ADA-silica in positive-ion mode. Finally, xylem saps from different types of trees were analysed. This proved the high performance and excellent behaviour of the introduced target surface material.
King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold
2011-10-13
Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.
N-nitrosations of basic amino acid residues in polypeptide.
Kuo, Wu-Nan; Ivy, Dynisha; Guruvadoo, Luvina; White, Atavia; Graham, Latia
2004-09-01
Changes in the electrophoretic pattern were noted in the products of polypeptides of identical basic amino acids preincubated with reactive or degraded PN, suggesting the occurrence of N-nitrosation of the epsilon-amino group of lysine, the guanido group of arginine and the imidazole group of histidine. Additionally, increase in the N-nitroso immunoreactivity of preincubated histones H2A and H2B was detected by Western blot analysis.
Determination of the pKa of the N-terminal amino group of ubiquitin by NMR
Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom
2017-01-01
Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051
Anisotropic growth of hydroxyapatite on the silk fibroin films
NASA Astrophysics Data System (ADS)
Li, Yucheng; Cai, Yurong; Kong, Xiangdong; Yao, Juming
2008-12-01
Bombyx mori silk fibroin is of practical interest for its excellent intrinsic properties utilizable in the biotechnological and biomedical fields. Here, the silk fibroin films were pretreated with different methods and then used as the template for the hydroxyapatite (HA) crystal growth. To study the effect of silk films' surface structure on the protein biomineralization, the films were immersed into 1.5 times simulated body fluid (1.5 × SBF) to induce the HA deposition at 37 °C. The results showed that an anisotropic growth of HA crystals was observed on the different films as judging from XRD, TEM and HRTEM data. This was thought that the positions and density of carboxyl groups, C dbnd O and amino groups on the surface of SF films may be different, which play the key effect on HA crystal growth.
NASA Astrophysics Data System (ADS)
Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang
2018-03-01
A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.
Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K
2018-04-25
Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.
NASA Astrophysics Data System (ADS)
Hassan, Hassan M. A.; Betiha, Mohamed A.; Mohamed, Shaimaa K.; El-Sharkawy, E. A.; Ahmed, Emad A.
2017-08-01
The synthesis of metal-organic frameworks (MOFs), porous coordination polymers with functional groups has received immense interest due to the functional groups can offer desirable properties and allow post-synthetic modification. Herein, for the first time, Zr(IV)-Sal Schiff base complex incorporated into amino-functionalized MIL-101(Cr) framework by salicylaldehyde condensing to amino group, and coordinating Zr(IV) ion have been successfully synthesized. The worthiness of the synthesized material as a catalyst has been examined for the esterification of oleic acid (free fatty acid) with methanol producing biodiesel (methyl oleate), Knoveonagel condensation reaction of aldehydes and Friedel-Crafts acylation of anisole. Our findings demonstrated that Salen-Zr(IV) grafted to framework of NH2-MIL-101(Cr) as a solid acid catalyst exhibited distinct catalytic performance for the production of biodiesel by esterification of oleic acid with methanol, Knoveonagel condensation and Friedel-Crafts acylation. These could be attributed to high surface area which allow high distribution of Zr(IV) species lead to a sufficient contact with the reactants species. Furthermore, the catalyst showed excellent recycling efficiency due to the strong interaction between the Zr(IV) ions and chelating groups in the NH2-MIL-101(Cr)-Sal.
Liu, Yanping; Yu, Faquan
2011-04-08
Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.
A Library of the Nanoscale Self-Assembly of Amino Acids on Metal Surfaces
NASA Astrophysics Data System (ADS)
Iski, Erin; Yitamben, Esmeralda; Guisinger, Nathan
2012-02-01
The investigation of the hierarchical self-assembly of amino acids on surfaces represents a unique test-bed for the origin of enantio-favoritism in biology and the transmission of chirality from single molecules to complete surface layers. These chiral systems, in particular the assembly of isoleucine and alanine on Cu(111), represent a direct link to the understanding of certain biological processes, specifically the preference for some amino acids to form alpha helices vs. beta-pleated sheets in the secondary structure of proteins. Low temperature, ultra-high vacuum, scanning tunneling microscopy (LT UHV-STM) is used to study the hierarchical self-assembly of different amino acids on a Cu(111) single crystal in an effort to build a library of their two-dimensional structure with molecular-scale resolution for enhanced protein and peptide studies. Both enantiopure and racemic structures are studied in order to elucidate how chirality can affect the self-assembly of the amino acids. In some cases, density functional theory (DFT) models can be used to confirm the experimental structure. The advent of such a library with fully resolved, two-dimensional structures at different molecular coverages would address some of the complex questions surrounding the preferential formation of alpha helices vs. beta-pleated sheets in proteins and lead to a better understanding of the key role played by these amino acids in protein sequencing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnino, S.; Chigorno, V.; Acquotti, D.
1989-01-10
A new procedure was used to synthesize a derivative of ganglioside GM1 containing a photoreactive nitrophenyl azide group at the end of the fatty acyl moiety, using deAc-deAcyl-GM1 obtained by deacetylation of the sialic acid and deacylation of the ceramide portion of GM1. This deAc-deAcyl-GM1 was first acylated at the long chain base amino group with 12-aminododecanoic acid, which has the amino group protected by a fluorenyl residue, and tritium labeled at the sialic acid amino group with ({sup 3}H)acetic anhydride of very high specific radioactivity. Cultured human fibroblasts were exposed to mixtures of radioactive photolabeled GM1 for different timesmore » and then illuminated and the radioactive protein patterns studied by SDS-PAGE. After 2 h of exposure, the photolabeled GM1 was stably associated to the cells and underwent almost no metabolic processing, behaving exactly as the underivatized natural GM1. Under these conditions very few proteins became radioactive. Thus, it is evident that the ganglioside binding to fibroblasts and insertion into the outer layer of the plasma membrane involve few individual proteins. When the incubation was prolonged to 24 h, photolabeled GM1 underwent extensive metabolic processing and gave origins to the corresponding ganglioside derivatives of GM2, GM3, and GD1a. Under these conditions many proteins became radioactive, a consequence of GM1 transfer from the surface to the interior or the cell and of the ready availability of interaction of GM1 and its metabolites.« less
Leenheer, J.A.
2004-01-01
A comprehensive isolation, fractionation, and characterization research approach was developed for dissolved and colloidal organic matter (DOM) in water, and it was applied to various surface- and groundwaters to assess DOM precursors, DOM diagenesis, and DOM reactivity to water treatment processes. Major precursors for natural DOM are amino sugars, condensed tannins, and terpenoids. Amino sugar colloids derived from bacterial cell walls are incompletely removed by drinking water treatment and foul reverse osmosis membranes, but are nearly quantitatively removed by soil/aquifer treatment. When chlorinated, amino sugars produce low yields of regulated disinfection by-products (DBFs) but they produce significant chlorine demand that is likely caused by chlorination of free amino groups. Condensed tannins are major precursors for "blackwater" DOM such as that found in the Suwannee River. This DOM produces high yields of DBPs upon chorination, and is efficiently removed by coagulation/flocculation treatment. Terpenoid-derived DOM appears to be biologically refractory, infiltrates readily into groundwater with little removal by soil/aquifer treatment, gives low DBF-yields upon chlorination and is poorly removed by coagulation/flocculation treatments. Peptides derived from proteins are major components of the base DOM fraction (10% or less of the mass of DOM), and this fraction produces large yields of haloacetonitriles upon chorination.
NASA Astrophysics Data System (ADS)
Benetoli, Luís O. B.; de Souza, Cláudio M. D.; da Silva, Klébson L.; de Souza, Ivan G.; de Santana, Henrique; Paesano, Andrea; da Costa, Antonio C. S.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.
2007-12-01
In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase (˜20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.
Gao, Runan; Lu, Yun; Xiao, Shaoliang; Li, Jian
2017-06-27
Nanofibrillated chitin/Ag 2 O aerogels were fabricated for radioiodine removal. Chitin was first fabricated into nanofibers with abundant acetyl amino groups (-NHCOCH 3 ) on the surface. Then, highly porous chitin nanofiber (ChNF) aerogels were obtained via freeze-drying. The ChNF aerogels exhibited a low bulk density of 2.19 mg/cm 3 and a high specific surface area of 179.71 m 2 /g. Ag 2 O nanoparticles were evenly anchored on the surfaces of ChNF scaffolds via strong interactions with -NHCOCH 3 groups, subsequently yielding Ag 2 O@ChNF heterostructured aerogels. The composites were used as efficient absorbents to remove radioiodine anions from water and capture a high amount of I 2 vapor in the forms of AgI and iodine molecules. The adsorption capacity of the composite monoliths can reach up to 2.81 mmol/g of I - anions. The high adsorbability of the composite monolithic aerogel signifies its potential applications in radioactive waste disposal.
Tang, Hua; Chen, Wei; Lin, Hao
2016-04-01
Immunoglobulins, also called antibodies, are a group of cell surface proteins which are produced by the immune system in response to the presence of a foreign substance (called antigen). They play key roles in many medical, diagnostic and biotechnological applications. Correct identification of immunoglobulins is crucial to the comprehension of humoral immune function. With the avalanche of protein sequences identified in postgenomic age, it is highly desirable to develop computational methods to timely identify immunoglobulins. In view of this, we designed a predictor called "IGPred" by formulating protein sequences with the pseudo amino acid composition into which nine physiochemical properties of amino acids were incorporated. Jackknife cross-validated results showed that 96.3% of immunoglobulins and 97.5% of non-immunoglobulins can be correctly predicted, indicating that IGPred holds very high potential to become a useful tool for antibody analysis. For the convenience of most experimental scientists, a web-server for IGPred was established at http://lin.uestc.edu.cn/server/IGPred. We believe that the web-server will become a powerful tool to study immunoglobulins and to guide related experimental validations.
Luminescence Mechanism of Carbon Dots by Tailoring Functional Groups for Sensing Fe3+ Ions
Yu, Jingjing; Liu, Chang; Yuan, Kang; Lu, Zunming; Cheng, Yahui; Li, Lanlan; Jin, Peng; Meng, Fanbin; Liu, Hui
2018-01-01
In this paper, spherical carbon dots (CDs) with distinct compositions and surface states have been successfully synthesized by a facile microwave method. From the fluorescence spectra, several characteristic luminescence features have been observed: surface amino groups are dominant in the whole emission spectra centering at 445 nm, and the fingerprint emissions relevant to the impurity levels formed by some groups related to C and N elements, including C-C/C=C (intrinsic C), C-N (graphitic N), N-containing heterocycles (pyridine N) and C=O groups, are located around 305 nm, 355 nm, 410 nm, and 500 nm, respectively. Those fine luminescence features could be ascribed to the electron transition among various trapping states within the band structure caused by different chemical bonds in carbon cores, or functional groups attached to the CDs’ surfaces. According to the theoretical calculations and experimental results, a scheme of the band structure has been proposed to describe the positions of those trapping states within the band gap. Additionally, it has also been observed that the emission of CDs is sensitive to the concentration of Fe3+ ions with a linear relation in the range of Fe3+ concentration from 12.5 to 250 μM. PMID:29649110
Xia, Sijing; Cartron, Michael; Morby, James; ...
2016-01-28
The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni 2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scalemore » patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. As a result, this simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces.« less
2016-01-01
The site-specific immobilization of histidine-tagged proteins to patterns formed by far-field and near-field exposure of films of aminosilanes with protein-resistant photolabile protecting groups is demonstrated. After deprotection of the aminosilane, either through a mask or using a scanning near-field optical microscope, the amine terminal groups are derivatized first with glutaraldehyde and then with N-(5-amino-1-carboxypentyl)iminodiacetic acid to yield a nitrilo-triacetic-acid-terminated surface. After complexation with Ni2+, this surface binds histidine-tagged GFP and CpcA-PEB in a site-specific fashion. The chemistry is simple and reliable and leads to extensive surface functionalization. Bright fluorescence is observed in fluorescence microscopy images of micrometer- and nanometer-scale patterns. X-ray photoelectron spectroscopy is used to study quantitatively the efficiency of photodeprotection and the reactivity of the modified surfaces. The efficiency of the protein binding process is investigated quantitatively by ellipsometry and by fluorescence microscopy. We find that regions of the surface not exposed to UV light bind negligible amounts of His-tagged proteins, indicating that the oligo(ethylene glycol) adduct on the nitrophenyl protecting group confers excellent protein resistance; in contrast, exposed regions bind His-GFP very effectively, yielding strong fluorescence that is almost completely removed on treatment of the surface with imidazole, confirming a degree of site-specific binding in excess of 90%. This simple strategy offers a versatile generic route to the spatially selective site-specific immobilization of proteins at surfaces. PMID:26820378
NASA Astrophysics Data System (ADS)
Kumar, Vikas; Singh, Ramesh; Thakur, Shipra; Ballabh Joshi, Khashti; Vinayak, Vandana
2018-04-01
Photosynthetic unicellular brown algae diatoms are considered as photobioreactors (PBRs) that synthesize and store oil in the form of lipid droplets and the much of the crude oil we use comes from fossil diatoms. The clean extraction of this crude oil from diatoms is difficult task. The construction of green chemical protocols for the clean separation of diatom oil from cells without killing or to harm the diatom cells is still in its primitive stage. In this report we would like to propose that facile doping of magnetite on diatoms can be used for clean oil separation in PBRs. We doped magnetite nanoparticles onto the surface of diatom Diadesmis confervaceae a diatom which oozes oil naturally. Doping magnetite onto diatoms can also facilitate easy separation of oil when cells are kept in an electromagnetic field. The cell wall of diatom besides having SiOH group has 281 amino acids of which 187–188 amino acids are conserved and are known for metal binding sites. The magnetite nanoparticles bind to the SiOH groups and metal binding sites of amino acids. The presence of appropriate amine functionalized linkers forming peptide aminosilane shells can further facilitate the binding of peptide/polypeptides which can be used in drug delivery. Besides this the magnetite doped diatoms have wide applications in removal of phosphates and chromium from waste water too.
The Effect of an Amino Acid Infusion on Central Thermoregulatory Control in Humans
Nakajima, Yasufumi; Takamata, Akira; Matsukawa, Takashi; Sessler, Daniel I.; Kitamura, Yoshihiro; Ueno, Hiroshi; Tanaka, Yoshifumi; Mizobe, Toshiki
2005-01-01
Background Administration of protein or amino acids enhances thermogenesis, presumably by stimulating oxidative metabolism. However, hyperthermia results even when thermoregulatory responses are intact, suggesting that amino acids also alter central thermoregulatory control. We thus tested the hypothesis that amino acid infusion increases the thermoregulatory setpoint. Methods Nine male volunteers each participated on four study days in randomized order: 1) intravenous amino acids infused at 4 kJ·kg−1·hr−1 for 2.5 h combined with skin-surface warming; 2) amino acid infusion combined with cutaneous cooling; 3) a saline infusion combined with skin-surface warming; and, 4) saline infusion combined with cutaneous cooling. Results Amino acid infusion increased resting core temperature by 0.3 ± 0.1°C (mean ± SD) and oxygen consumption by 18 ± 12%. Furthermore, amino acid infusion increased the calculated core temperature threshold (triggering core temperature at a designated mean-skin temperature of 34°C) for active cutaneous vasodilation by 0.3 ± 0.3°C, for sweating by 0.2 ± 0.2°C, for thermoregulatory vasoconstriction by 0.3 ± 0.3°C, and for thermogenesis by 0.4 ± 0.5°C. Amino acid infusion did not alter the incremental response intensity (i.e., gain) of thermoregulatory defenses. Conclusions Amino acid infusion increased the metabolic rate and resting core temperature. However, amino acids also produced a synchronous increase in all major autonomic thermoregulatory defense thresholds; the increase in core temperature was identical to the setpoint increase — even in a cold environment with amble potential to dissipate heat. In subjects with intact thermoregulatory defenses, amino acid-induced hyperthermia appears to result from an elevated setpoint increase rather than increased metabolic rate per se. PMID:15108979
PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles.
Luan, Hemi; Yang, Lin; Ji, Fenfen; Cai, Zongwei
2017-03-15
Alkyl chloroformate have been wildly used for the fast derivatization of metabolites with amino and/or carboxyl groups, coupling of powerful separation and detection systems, such as GC-MS, which allows the comprehensive analysis of non-amino organic acids and amino acids. The reagents involving n-alkyl chloroformate and n-alcohol are generally employed for providing symmetric labeling terminal alkyl chain with the same length. Here, we developed an asymmetric labeling strategy and positive chemical ionization gas chromatography-tandem mass spectrometry (PCI-GC-MS-MS) approach for determination of non-amino organic acids and amino acids, as well as the short chain fatty acids. Carboxylic and amino groups could be selectively labelled by propyl and ethyl groups, respectively. The specific neutral loss of C 3 H 8 O (60Da), C 3 H 5 O 2 (74Da) and C 4 H 8 O 2 (88Da) were useful in the selective identification for qualitative analysis of organic acids and amino acid derivatives. PCI-GC-MS-MS using multiple reaction monitoring (MRM) was applied for semi-quantification of typical non-amino organic acids and amino acids. This method exhibited a wide range of linear range, good regression coefficient (R 2 ) and repeatability. The relative standard deviation (RSD) of targeted metabolites showed excellent intra- and inter-day precision (<5%). Our method provided a qualitative and semi-quantitative PCI-GC-MS-MS, coupled with alkyl chloroformate derivatization. Copyright © 2016 Elsevier B.V. All rights reserved.
Licht, J D; Hanna-Rose, W; Reddy, J C; English, M A; Ro, M; Grossel, M; Shaknovich, R; Hansen, U
1994-01-01
We previously demonstrated that the Drosophila Krüppel protein is a transcriptional repressor with separable DNA-binding and transcriptional repression activities. In this study, the minimal amino (N)-terminal repression region of the Krüppel protein was defined by transferring regions of the Krüppel protein to a heterologous DNA-binding protein, the lacI protein. Fusion of a predicted alpha-helical region from amino acids 62 to 92 in the N terminus of the Krüppel protein was sufficient to transfer repression activity. This putative alpha-helix has several hydrophobic surfaces, as well as a glutamine-rich surface. Mutants containing multiple amino acid substitutions of the glutamine residues demonstrated that this putative alpha-helical region is essential for repression activity of a Krüppel protein containing the entire N-terminal and DNA-binding regions. Furthermore, one point mutant with only a single glutamine on this surface altered to lysine abolished the ability of the Krüppel protein to repress, indicating the importance of the amino acid at residue 86 for repression. The N terminus also contained an adjacent activation region localized between amino acids 86 and 117. Finally, in accordance with predictions from primary amino acid sequence similarity, a repression region from the Drosophila even-skipped protein, which was six times more potent than that of the Krüppel protein in the mammalian cells, was characterized. This segment included a hydrophobic stretch of 11 consecutive alanine residues and a proline-rich region. Images PMID:8196644
Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S
2014-09-05
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.
2015-01-01
We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine. PMID:25116734
Hol, Jaap W; Klimek, Markus; van der Heide-Mulder, Marieke; Stronks, Dirk; Vincent, Arnoud J; Klein, Jan; Zijlstra, Freek J; Fekkes, Durk
2009-04-01
In this prospective, observational, 2-armed study, we compared the plasma amino acid profiles of patients undergoing awake craniotomy to those undergoing craniotomy under general anesthesia. Both experimental groups were also compared with a healthy, age-matched and sex-matched reference group not undergoing surgery. It is our intention to investigate whether plasma amino acid levels provide information about physical and emotional stress, as well as pain during awake craniotomy versus craniotomy under general anesthesia. Both experimental groups received preoperative, perioperative, and postoperative dexamethasone. The plasma levels of 20 amino acids were determined preoperative, perioperative, and postoperatively in all groups and were correlated with subjective markers for pain, stress, and anxiety. In both craniotomy groups, preoperative levels of tryptophan and valine were significantly decreased whereas glutamate, alanine, and arginine were significantly increased relative to the reference group. Throughout time, tryptophan levels were significantly lower in the general anesthesia group versus the awake craniotomy group. The general anesthesia group had a significantly higher phenylalanine/tyrosine ratio, which may suggest higher oxidative stress, than the awake group throughout time. Between experimental groups, a significant increase in large neutral amino acids was found postoperatively in awake craniotomy patients, pain was also less and recovery was faster. A significant difference in mean hospitalization time was also found, with awake craniotomy patients leaving after 4.53+/-2.12 days and general anesthesia patients after 6.17+/-1.62 days; P=0.012. This study demonstrates that awake craniotomy is likely to be physically and emotionally less stressful than general anesthesia and that amino acid profiling holds promise for monitoring postoperative pain and recovery.
NASA Astrophysics Data System (ADS)
Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed
2016-11-01
In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.
Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C.
Dunstan, R Hugh; Sparkes, Diane L; Dascombe, Benjamin J; Macdonald, Margaret M; Evans, Craig A; Stevens, Christopher J; Crompton, Marcus J; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K
2016-01-01
Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32-34°C and 20-30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as "faux" sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32-34°C and 20-30% RH posed a potentially significant source of amino acid loss.
Sweat Facilitated Amino Acid Losses in Male Athletes during Exercise at 32-34°C
Dunstan, R. Hugh; Sparkes, Diane L.; Dascombe, Benjamin J.; Macdonald, Margaret M.; Evans, Craig A.; Stevens, Christopher J.; Crompton, Marcus J.; Gottfries, Johan; Franks, Jesse; Murphy, Grace; Wood, Ryan; Roberts, Timothy K.
2016-01-01
Sweat contains amino acids and electrolytes derived from plasma and athletes can lose 1-2L of sweat per hour during exercise. Sweat may also contain contributions of amino acids as well as urea, sodium and potassium from the natural moisturizing factors (NMF) produced in the stratum corneum. In preliminary experiments, one participant was tested on three separate occasions to compare sweat composition with surface water washings from the same area of skin to assess contributions from NMF. Two participants performed a 40 minute self-paced cycle session with sweat collected from cleansed skin at regular intervals to assess the contributions to the sweat load from NMF over the period of exercise. The main study investigated sweat amino acid composition collected from nineteen male athletes following standardised endurance exercise regimes at 32–34°C and 20–30% RH. Plasma was also collected from ten of the athletes to compare sweat and plasma composition of amino acids. The amino acid profiles of the skin washings were similar to the sweat, suggesting that the NMF could contribute certain amino acids into sweat. Since the sweat collected from athletes contained some amino acid contributions from the skin, this fluid was subsequently referred to as “faux” sweat. Samples taken over 40 minutes of exercise showed that these contributions diminished over time and were minimal at 35 minutes. In the main study, the faux sweat samples collected from the athletes with minimal NMF contributions, were characterised by relatively high levels of serine, histidine, ornithine, glycine and alanine compared with the corresponding levels measured in the plasma. Aspartic acid was detected in faux sweat but not in the plasma. Glutamine and proline were lower in the faux sweat than plasma in all the athletes. Three phenotypic groups of athletes were defined based on faux sweat volumes and composition profiles of amino acids with varying relative abundances of histidine, serine, glycine and ornithine. It was concluded that for some individuals, faux sweat resulting from exercise at 32–34°C and 20–30% RH posed a potentially significant source of amino acid loss. PMID:27936120
Ding, Feng; Miao, Xi-Li; Li, Yan-Xia; Dai, Jin-Fen; Yu, Hong-Gang
2016-01-01
The mechanism underlying the coexistence of hepatitis B surface antigen and antibodies to HBsAg in chronic hepatitis B patients remains unknown. This research aimed to determine the clinical and virological features of the rare pattern. A total of 32 chronic hepatitis B patients infected by HBV genotype C were included: 15 carrying both HBsAg and anti-HBs (group I) and 17 solely positive for HBsAg (group II). S gene and reverse transcriptase region sequences were amplified, sequenced and compared with the reference sequences. The amino acid variability within major hydrophilic region, especially the "a" determinant region, and within reverse transcriptase for regions overlapping the major hydrophilic region in group I is significantly higher than those in group II. Mutation sI126S/T within the "a" determinant was the most frequent change, and only patients from group I had the sQ129R, sG130N, sF134I, sG145R amino acid changes, which are known to alter immunogenicity. In chronic patients, the concurrent HBsAg/anti-HBs serological profile is associated with an increased aa variability in several key areas of HBV genome. Additional research on these genetic mutants are needed to clarify their biological significance for viral persistence. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun
2016-03-15
Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.
Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives.
Vijeetha, Tadla; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Surya Koppeswara Rao, Bhamidipati Venkata; Prasad, Rachapudi Badari Narayana; Kumar, Koochana Pranay; Surya Narayana Murthy, Upadyaula
2015-01-01
The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.
Rezaei, Behzad; Jamei, Hamid Reza; Ensafi, Ali Asghar
2018-05-09
An aptamer-based method is described for the electrochemical determination of lysozyme. A glassy carbon electrode was modified with a nanocomposite composed of reduced graphene oxide (rGO), multi-walled carbon nanotubes (MWCNTs), chitosan (CS), and a synthesized carbon quantum dot (CQD) from CS. The composition of the nanocomposite (rGO-MWCNT/CS/CQD) warrants a high surface-to-volume ratio, high conductivity, high stability, and great electrocatalytic activity. This nanocomposite provides a suitable site for better immobilization of aptamers due to the existence of many amino and carboxyl functional groups, and remaining oxygen-related defects properties in rGO. In addition, this nanocomposite allows considerable enhancement of the electrochemical signal and contributes to improving sensitivity. The amino-linked lysozyme aptamers were immobilized on the nanocomposite through covalent coupling between the amino groups of the aptamer and the amino groups of the nanocomposite using glutaraldehyde (GLA) linker. The modified electrode was characterized by electrochemical methods including differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). In the presence of lysozyme, the immobilized aptamer selectively caught the target lysozyme on the electrode interface that leads to a decrease in the DPV peak current and an increase in Charge Transfer Resistance (R ct ) in EIS as an analytical signal. Using the obtained data from DPV and EIS techniques, two calibration curves were drawn. The anti-lysozyme aptasensor proposed has two very low LODs. These measures are 3.7 and 1.9 fmol L -1 within the wide detection ranges of 20 fmol L -1 to 10 nmol L -1 , and 10 fmol L -1 to 100 nmol L -1 for DPV and EIS calibration curves, respectively. The GCE/rGO-MWCNT/CS/CQD showed sensitivity, high reproducibility, specificity and rapid response for lysozyme which can be used in biomedical fields. Copyright © 2018 Elsevier B.V. All rights reserved.
Removal of amino groups from anilines through diazonium salt-based reactions.
He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie
2014-09-28
This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.
Rate constants measured for hydrated electron reactions with peptides and proteins
NASA Technical Reports Server (NTRS)
Braams, R.
1968-01-01
Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.
Interactions and encapsulation of vitamins C, B3, and B6 with dendrimers in water.
Boisselier, Elodie; Liang, Liyuan; Dalko-Csiba, Maria; Ruiz, Jaime; Astruc, Didier
2010-05-25
Titrations of commercial diaminobutane (DAB) and polyamidoamine (PAMAM) dendrimers by vitamins C (ascorbic acid, AA), B(3) (nicotinic acid), and B(6) (pyridoxine) were monitored by (1)H NMR spectroscopy using the chemical shifts of both dendrimer and vitamin protons and analyzed by comparison with the titration of propylamine. Quaternarizations of the terminal primary amino groups and intradendritic tertiary amino groups, which are nearly quantitative with vitamin C, were characterized by more or less sharp variations (Deltadelta) of the (1)H chemical shift (delta) at the equivalence points. The peripheral primary amino groups of the DAB dendrimers were quaternarized first, but not selectively, whereas a sharp chemical-shift variation was recorded for the inner methylene protons near the tertiary amines, thereby indicating encapsulation, when all the dendritic amines were quaternarized. With DAB-G5-64-NH(2), some excess acid is required to protonate the inner amino groups, presumably because of basicity decrease due to excess charge repulsion. On the other hand, this selectivity was not observed with PAMAM dendrimers. The special case of the titration of the dendrimers by vitamin B(6) indicates only dominant supramolecular hydrogen-bonding interactions and no quaternarization, with core amino groups being privileged, which indicates the strong tendency to encapsulate vitamins. With vitamin B(3), a carboxylic acid, titration of DAB-G3-16-NH(2) shows that only six peripheral amino groups are protonated on average, even with excess vitamin B(3), because protonation is all the more difficult due to increased charge repulsion, as positive charges accumulate around the dendrimer. Inner amino groups interact with this vitamin, however, thus indicating encapsulation presumably with supramolecular hydrogen bonding without much charge transfer.
Amino Acid Contents of Meteorite Mineral Separates
NASA Technical Reports Server (NTRS)
Berger, E. L.; Burton, A. S; Locke, D.
2017-01-01
Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.
Evaluation of the Flavor Contribution of Products of the Maillard Reaction
the Maillard - type reaction between the products of autoxidized polyunsaturated fatty acids and free amino groups of phospholipids and within meat...intermolecular browning-type reaction with free amino groups, polymerization, etc., are liable to occur. Changes in these labile substances are known...proteins, and between the free amino groups of phospholipids and the monosaccharides present in meat. The reaction was elucidated and its products characterized and evaluated for its contribution to meat flavor.
Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.
Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas
2007-01-01
To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.
del Rocío Bustillos-Cristales, María; Corona-Gutierrez, Ivan; Castañeda-Lucio, Miguel; Águila-Zempoaltécatl, Carolina; Seynos-García, Eduardo; Hernández-Lucas, Ismael; Muñoz-Rojas, Jesús; Medina-Aparicio, Liliana; Fuentes-Ramírez, Luis Ernesto
2017-01-01
Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp301, the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce3+ or Ca2+. The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed. PMID:28855445
NASA Astrophysics Data System (ADS)
Nbili, W.; Kaabi, K.; Ferenc, W.; Cristovão, B.; Lefebvre, F.; Jelsch, Christian; Ben Nasr, Cherif
2017-02-01
A new Cu(II) complex with the bridge bidentate ligand 4-amino-6-methoxypyrimidine, [Cu(C5H7N3O)(H2O)(NO3)2], has been prepared at room temperature and characterized by single crystal X-ray diffraction and IR spectroscopy. The compound crystallizes in the monoclinic space group C2/c with lattice parameters a = 17.783 (4), b = 11.131 (3), c = 12.594 (3) Å, β = 117.616 (3)°, V = 2209.0 (9) Å3 and Z = 8. The Cu(II) cation is hexa-coordinated, in distorted octahedral fashion, by two nitrogen atoms of two 4-amino-6-methoxypyrimidine ligands, one water oxygen atom and three oxygen atoms of two nitrate anions. In the atomic arrangement, the organic ligands and the 6-connected Cu centers are linked with each other to give a 1-D corrugated chain running along the b-axis direction. The chains are interconnected via Osbnd H⋯O, Csbnd H⋯O, Nsbnd H⋯O hydrogen bonds to form a three dimensional network. The analysis of contacts on the Hirshfeld surface shows that the crystal packing is driven mainly by the electrostatic interactions: the coordination of Cu(II) by O and N as well as strong hydrogen bonds. The vibrational absorption bands were identified by infrared spectroscopy. Magnetic properties were also studied to characterize the complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, J.; Peters, M.; Lottspeich, F.
1987-11-01
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less
State of the art in PEGylation: the great versatility achieved after forty years of research.
Pasut, Gianfranco; Veronese, Francesco M
2012-07-20
In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation. Copyright © 2011 Elsevier B.V. All rights reserved.
Modulating protein adsorption onto hydroxyapatite particles using different amino acid treatments
Lee, Wing-Hin; Loo, Ching-Yee; Van, Kim Linh; Zavgorodniy, Alexander V.; Rohanizadeh, Ramin
2012-01-01
Hydroxyapatite (HA) is a material of choice for bone grafts owing to its chemical and structural similarities to the mineral phase of hard tissues. The combination of osteogenic proteins with HA materials that carry and deliver the proteins to the bone-defective areas will accelerate bone regeneration. The study investigated the treatment of HA particles with different amino acids such as serine (Ser), asparagine (Asn), aspartic acid (Asp) and arginine (Arg) to enhance the adsorption ability of HA carrier for delivering therapeutic proteins to the body. The crystallinity of HA reduced when amino acids were added during HA preparation. Depending on the types of amino acid, the specific surface area of the amino acid-functionalized HA particles varied from 105 to 149 m2 g–1. Bovine serum albumin (BSA) and lysozyme were used as model proteins for adsorption study. The protein adsorption onto the surface of amino acid-functionalized HA depended on the polarities of HA particles, whereby, compared with lysozyme, BSA demonstrated higher affinity towards positively charged Arg-HA. Alternatively, the binding affinity of lysozyme onto the negatively charged Asp-HA was higher when compared with BSA. The BSA and lysozyme adsorptions onto the amino acid-functionalized HA fitted better into the Freundlich than Langmuir model. The amino acid-functionalized HA particles that had higher protein adsorption demonstrated a lower protein-release rate. PMID:21957116
Aubert, Yves; Bourgerie, Sylvain; Meunier, Laurent; Mayer, Roger; Roche, Annie-Claude; Monsigny, Michel; Thuong, Nguyen T.; Asseline, Ulysse
2000-01-01
A new deprotection procedure enables a medium scale preparation of phosphodiester and phosphorothioate oligonucleotides substituted with a protected thiol function at their 5′-ends and an amino group at their 3′-ends in good yield (up to 72 OD units/µmol for a 19mer phosphorothioate). Syntheses of 3′-amino-substituted oligonucleotides were carried out on a modified support. A linker containing the thioacetyl moiety was manually coupled in two steps by first adding its phosphoramidite derivative in the presence of tetrazole followed by either oxidation or sulfurization to afford the bis-derivatized oligonucleotide bound to the support. Deprotection was achieved by treating the fully protected oligonucleotide with a mixture of 2,2′-dithiodipyridine and concentrated aqueous ammonia in the presence of phenol and methanol. This procedure enables (i) cleavage of the oligonucleotide from the support, releasing the oligonucleotide with a free amino group at its 3′-end, (ii) deprotection of the phosphate groups and the amino functions of the nucleic bases, as well as (iii) transformation of the 5′-terminal S-acetyl function into a dithiopyridyl group. The bis-derivatized phosphorothioate oligomer was further substituted through a two-step procedure: first, the 3′-amino group was reacted with fluorescein isothiocyanate to yield a fluoresceinylated oligonucleotide; the 5′-dithiopyridyl group was then quantitatively reduced to give a free thiol group which was then substituted by reaction with an Nα-bromoacetyl derivative of a signal peptide containing a KDEL sequence to afford a fluoresceinylated peptide–oligonucleotide conjugate. PMID:10637335
Servais, A; Arnoux, J B; Lamy, C; Hummel, A; Vittoz, N; Katerinis, I; Bazzaoui, V; Dubois, S; Broissand, C; Husson, M C; Berleur, M P; Rabier, D; Ottolenghi, C; Valayannopoulos, V; de Lonlay, P
2013-11-01
Acute decompensation of maple syrup urine disease (MSUD) is usually treated by enteral feeding with an amino-acid mixture without leucine (Leu), valine or isoleucine. However, its administration is ineffective in cases of gastric intolerance and some adult patients refuse enteral feeding via a nasogastric tube. We developed a new parenteral amino-acid mixture for patients with MSUD. Seventeen decompensation episodes in four adult patients with MSUD treated with a parenteral amino-acid mixture (group P) were compared to 18 previous episodes in the same patients treated by enteral feeding (group E). The mean Leu concentration at presentation was similar in the groups P and E (1196.9 μmol/L and 1212.2 μmol/L, respectively). The mean decrease in the Leu concentration during the first 3 days of hospitalisation was significantly higher in group P than group E (p = 0.0026); there were no side effects. The mean duration of hospitalisation was similar (4 vs. 4.5 days, p = NS). No patient in group P deteriorated whereas one patient in group E required dialysis. This new parenteral amino-acid mixture is safe and allows efficient Leu concentration decrease during acute MSUD decompensation episodes in adults. Its use avoids the need for nasogastric tube insertion.
Supramolecular structure of 5-aminosalycilic acid/halloysite composites.
Viseras, Maria-Teresa; Aguzzi, Carola; Cerezo, Pilar; Cultrone, Giuseppe; Viseras, Cesar
2009-05-01
This paper assesses the supramolecular structure of nanocomposites prepared by including the anti-inflammatory drug 5-aminosalycilic acid in halloysite nanotubes. Halloysite tubes have sub-micron individual lengths with outer diameters ∼0.1 µm, as observed by FESEM. The mercury intrusion plots showed bimodal profiles with pore dimensions ∼10 and 0.06 µm. X-ray diffraction and thermogravimetric results revealed changes in the hydration form of the clay after the interaction. The groups associated to the interaction were studied by FTIR. The location of the drug in the composites was determined after uranium staining of its amino groups by X-EDS microanalysis coupled with HREM. The drug was located both inside and on the surface of the halloysite nanotubes. These results confirm the occurrence of two concomitant interaction mechanisms: rapid adsorption of 5-ASA at the external halloysite surface followed by slow adsorption of the drug inside the tubes.
Chitosan magnetic nanoparticles for drug delivery systems.
Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin
2017-06-01
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.
(Bio)hybrid materials based on optically active particles
NASA Astrophysics Data System (ADS)
Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg
2014-03-01
In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.
Singla, Preeti; Riyaz, Mohd; Singhal, Sonal; Goel, Neetu
2016-02-21
Understanding interactions of biomolecules with nanomaterials at the molecular level is crucial to design new materials for practical use. In the present study, adsorption of three distinct types of amino acids, namely, valine, arginine and aspartic acid, over the surface of structurally analogous but chemically different graphene and BN nanosheets has been explored within the formalism of DFT. The explicit dispersion correction incorporated in the computational methodology improves the accuracy of the results by accounting for long range van der Waals interactions and is essential for agreement with experimental values. The real biological environment has been mimicked by re-optimizing all the model structures in an aqueous medium. The study provides ample evidence in terms of adsorption energy, solvation energy, separation distance and charge analysis to conclude that both the nano-surfaces adsorb the amino acids with release of energy and there are no bonded interactions between the two. The polarity of the BN nanosheet provides it an edge over the graphene surface to have more affinity towards amino acids.
Dehshahri, Ali; Sadeghpour, Hossein
2015-08-01
In recent years, the discovery of novel nucleic acid-based drug candidates (e.g., siRNA and miRNA) and the groundbreaking studies for somatic cell reprogramming into a state of pluripotency have led to reconsideration for the use of human gene therapy as a new paradigm with great therapeutic potential. However, the success of gene therapy is dependent on overcoming intra- and extracellular barriers hampering the efficient delivery of nucleic acid therapeutics into the target cells or tissues. Despite relatively low transfection efficiency, great attention has been directed to cationic polymers and dendrimers due to their ability to condense DNA and RNA molecules into nano-sized particles which is a necessary prerequisite for efficient transfer of nucleic acids into cells. These gene carriers show remarkable adaptability and significant capacity to transfer larger sizes of nucleic acid materials. Polyamidoamine (PAMAM) dendrimer has been employed as non-viral gene carrier due to its globular shape and well-defined structure containing abundant amino surface groups which provide possibility for surface decoration of the dendrimer via the conjugation of various moieties. In this review, we have brought out the various functionalization strategies of the PAMAM surface amines using different pendant moieties such as amino acids, proteins, cyclodextrins, and hydrophobic units in order to overcome intra- and extracellular barriers. These surface-decorated dendrimers possessing favorable properties provide substantial information and insight for redesigning existing dendrimers and polymers. By understanding the role played by the conjugated moieties, more efficient and novel designs of gene vehicles may be possible. Copyright © 2015 Elsevier B.V. All rights reserved.
Enzyme-modified electrolyte-gated organic field-effect transistors
NASA Astrophysics Data System (ADS)
Buth, Felix; Donner, Andreas; Stutzmann, Martin; Garrido, Jose A.
2012-10-01
Organic solution-gated field-effect transistors (SGFETs) can be operated at low voltages in aqueous environments, paving the way to the use of organic semiconductors in bio-sensing applications. However, it has been shown that these devices exhibit only a rather weak sensitivity to standard electrolyte parameters such as pH and ionic strength. In order to increase the sensitivity and to add specificity towards a given analyte, the covalent attachment of functional groups and enzymes to the device surface would be desirable. In this contribution we demonstrate that enzyme modified organic SGFETs can be used for the in-situ detection of penicillin in the low μM regime. In a first step, silane molecules with amine terminal groups are grafted to α-sexithiophene-based thin film transistors. Surface characterization techniques like X-ray photoemission confirm the modification of the surface with these functional groups, which are stable in standard aqueous electrolytes. We show that the presence of surface-bound amphoteric groups (e.g. amino or carboxylic moieties) increases the pH-sensitivity of the organic SGFETs. In addition, these groups serve as anchoring sites for the attachment of the enzyme penicillinase. The resulting enzyme-FETs are used for the detection of penicillin, enabling the study of the influence of the buffer strength and the pH of the electrolyte on the enzyme kinetics. The functionalization of the organic FETs shown here can be extended to a large variety of enzymes, allowing the specific detection of different chemical and biochemical analytes.
Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films
NASA Astrophysics Data System (ADS)
Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi
2017-11-01
The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach provides a strategy for preparing high-performance PI-based composite materials.
Hwang, Hong-Sik; Winkler-Moser, Jill K
2017-04-15
The purpose of this study was to evaluate amino acids as natural antioxidants for frying. Twenty amino acids were added to soybean oil heated to 180°C, and the effects of amino acid structure on the antioxidant activity were investigated. Amino acids containing a thiol, a thioether, or an extra amine group such as arginine, cysteine, lysine, methionine, and tryptophan had the strongest antioxidant activities. At 5.5mM, these amino acids had stronger antioxidant activities than 0.02% (1.1mM) tert-butylhydroquinone (TBHQ). A functional group such as an amide, carboxylic acid, imidazole, or phenol appeared to negatively affect amino acid antioxidant activity. Synergism between amino acids and tocopherols was demonstrated, and we found that this synergistic interaction may be mostly responsible for the antioxidant activity that was observed. In a frying study with potato cubes, 5.5mM l-methionine had significantly stronger antioxidant activity than 0.02% TBHQ. Published by Elsevier Ltd.
Thedja, Meta Dewi; Muljono, David Handojo; Ie, Susan Irawati; Sidarta, Erick; Turyadi; Verhoef, Jan; Marzuki, Sangkot
2015-01-01
Distribution of hepatitis B virus (HBV) genotypes/subgenotypes is geographically and ethnologically specific. In the Indonesian archipelago, HBV genotype C (HBV/C) is prevalent with high genome variability, reflected by the presence of 13 of currently existing 16 subgenotypes. We investigated the association between HBV/C molecular characteristics with host ethnicity and geographical distribution by examining various subgenotypes of HBV/C isolates from the Asia and Pacific region, with further analysis on the immune epitope characteristics of the core and surface proteins. Phylogenetic tree was constructed based on complete HBV/C genome sequences from Asia and Pacific region, and genetic distance between isolates was also examined. HBV/C surface and core immune epitopes were analyzed and grouped by comparing the amino acid residue characteristics and geographical origins. Based on phylogenetic tree and geographical origins of isolates, two major groups of HBV/C isolates—East-Southeast Asia and Papua-Pacific—were identified. Analysis of core and surface immune epitopes supported these findings with several amino acid substitutions distinguishing the East-Southeast Asia isolates from the Papua-Pacific isolates. A west-to-east gradient of HBsAg subtype distribution was observed with adrq+ prominent in the East and Southeast Asia and adrq- in the Pacific, with several adrq-indeterminate subtypes observed in Papua and Papua New Guinea (PNG). This study indicates that HBV/C isolates can be classified into two types, the Asian and the Papua-Pacific, based on the virus genome diversity, immune epitope characteristics, and geographical distribution, with Papua and PNG as the molecular evolutionary admixture region in the switching from adrq+ to adrq-. PMID:26162099
Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution.
Greber, Katarzyna E
2017-01-01
I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain-palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point ( σ CMC ), effectiveness ( π CMC ), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.
Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.
2010-01-01
Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768
Amino acids precursors in lunar finds
NASA Technical Reports Server (NTRS)
Fox, S. W.; Harada, K.; Hare, P. E.; Hinsch, G.; Mueller, G.
1975-01-01
The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon.
Isoelectric focusing of dansylated amino acids in immobilized pH gradients
NASA Technical Reports Server (NTRS)
Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan
1986-01-01
The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.
An Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays
Pourjahed, Atefeh; Rabiee, Mohammad; Tahriri, Mohammadreza
2013-01-01
Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules. Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; also bound to the amino groups of biomolecules. These linkages were fixed by UV irradiation. The prepared substrates were compared to only agarose-coated and PLL-coated slides. Results: Results on atomic force microscope (AFM) demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. In addition, the signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively. Conclusion: The agarose-PLL microarrays had the highest signal (2546) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes. PMID:24570832
NASA Astrophysics Data System (ADS)
McCollom, Thomas M.
2013-03-01
Laboratory experiments were conducted to observe the effect of iron oxide and sulfide minerals on decomposition reactions of norvaline, a representative of a group of alkyl-α-amino acids observed in meteorites and prebiotic synthesis experiments. The primary products observed during heating of aqueous solutions of norvaline at temperatures of 156-186 °C in the presence of minerals included CO2, NH3, butyric acid, and valeric acid. The products indicated that norvaline predominantly decomposed by a combination of pathways that included both decarboxylation followed rapidly by oxidative deamination (norvaline → butanamide + CO2 → butyric acid + NH3) and deamination directly to valeric acid (norvaline → valeric acid + NH3). An experiment performed with alanine under similar conditions showed it decomposed by analogous reactions that produced acetic and propionic acids along with CO2 and NH3. For both amino acids, the presence of minerals accelerated decomposition rates as well as altered the final products of reaction, when compared with decomposition in the absence of mineral substrates. In addition, decomposition of norvaline was found to proceed much faster in the presence of the mineral assemblage hematite-magnetite-pyrite (HMP) than with the assemblage pyrite-pyrrhotite-magnetite (PPM), a trend that has been observed for several other organic compounds. The influence of minerals on decomposition reactions of these amino acids appears to be attributable to a combination of surface catalysis and production of dissolved sulfur compounds. Overall, the results indicate that minerals may exert a substantial influence on amino acid stability in many geologic environments, and emphasize the need to consider the impact of minerals when evaluating the lifetimes and decomposition rates of amino acids in terrestrial and planetary systems. Estimated half-lives for alkyl-α-amino acids based on the experimental results indicate that moderately hot hydrothermal environments (<˜100 °C) would have been the most favorable for accumulation of these amino acids in the early solar system, and that the predominance of alkyl-α-amino acids in some meteorites may only be compatible with temperature remaining below about 60 °C following their formation.
Ganbaatar, Narangerel; Imai, Kanae; Yano, Taka-Aki; Hara, Masahiko
2017-01-01
Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO 2 ) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO 2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO 2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO 2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.
Yin, Jie; Li, Yuying; Zhu, Xiaotong; Han, Hui; Ren, Wenkai; Chen, Shuai; Bin, Peng; Liu, Gang; Huang, Xingguo; Fang, Rejun; Wang, Bin; Wang, Kai; Sun, Liping; Li, Tiejun; Yin, Yulong
2017-10-25
This study aimed to investigate the long-term effects of protein restriction from piglets to finishing pigs for 16 weeks on meat quality, muscle amino acids, and amino acid transporters. Thirty-nine piglets were randomly divided into three groups: a control (20-18-16% crude protein, CP) and two protein restricted groups (17-15-13% CP and 14-12-10% CP). The results showed that severe protein restriction (14-12-10% CP) inhibited feed intake and body weight, while moderate protein restriction (17-15-13% CP) had little effect on growth performance in pigs. Meat quality (i.e., pH, color traits, marbling, water-holding capacity, and shearing force) were tested, and the results exhibited that 14-12-10% CP treatment markedly improved muscle marbling score and increased yellowness (b*). pH value (45 min) was significantly higher in 17-15-13% CP group than that in other groups. In addition, protein restriction reduced muscle histone, arginine, valine, and isoleucine abundances and enhanced glycine and lysine concentrations compared with the control group, while the RT-PCR results showed that protein restriction downregulated amino acids transporters. Mechanistic target of rapamycin (mTOR) signaling pathway was inactivated in the moderate protein restricted group (17-15-13% CP), while severe protein restriction with dietary 14-12-10% CP markedly enhanced mTOR phosphorylation. In conclusion, long-term protein restriction affected meat quality and muscle amino acid metabolism in pigs, which might be associated with mTOR signaling pathway.
Wu, Biyun; Gerlitz, Bruce; Grinnell, Brian W.; Meyerhoff, Mark E.
2007-01-01
Multi-functional bilayer polymeric coatings are prepared with both controlled nitric oxide (NO) release and surface-bound active thrombomodulin (TM) alone or in combination with immobilized heparin. The outer-layer is made of CarboSil, a commercially available copolymer of silicone rubber (SR) and polyurethane (PU). The CarboSil is either carboxylated or aminated via an allophanate reaction with a diisocyanate compound followed by a urea-forming reaction between the generated isocyanate group of the polymer and the amine group of an amino acid (glycine), an oligopeptide (triglycine) or a diamine. The carboxylated CarboSil can then be used to immobilize TM through the formation of an amide bond between the surface carboxylic acid groups and the lysine residues of TM. Aminated CarboSil can also be employed to initially couple heparin to the surface, and then the carboxylic acid groups on heparin can be further used to anchor TM. Both surface-bound TM and heparin’s activity are evaluated by chromogenic assays and found to be at clinically significant levels. The underlying NO release layer is made with another commercial SR-PU copolymer (PurSil) mixed with a lipophilic NO donor (N-diazeniumdiolated dibutylhexanediamine (DBHD/N2O2)). The NO release rate can be tuned by changing the thickness of top coatings, and the duration of NO release at physiologically relevant levels can be as long as 2 weeks. The combination of controlled NO release as well as immobilized active TM and heparin from/on the same polymeric surface mimics the highly thromboresistant endothelium layer. Hence, such multifunctional polymer coatings should provide more blood-compatible surfaces for biomedical devices. PMID:17597201
NASA Astrophysics Data System (ADS)
Mekala, R.; Jagdish, P.; Mathammal, R.
2018-07-01
Reaction of 2-amino-4, 6- dimethyl pyrimidine with carboxylic acid such as gallic acid and pimelic acid, yielded a salt and co-crystal, respectively. The new crystal forms were obtained from slow evaporation technique. The crystal structure and hydrogen bond interaction of the two crystals were determined by single X-ray diffraction analysis. Inter molecular interactions of the compounds were investigated using the 3D Hirshfeld surfaces and the associated 2D fingerprint plots. The functional groups were identified by the FTIR, FT-Raman spectral studies. The presence of carbon and hydrogen in the two samples were identified by the 1H and 13C NMR analysis. The excited energy was observed using UV-Visible spectral analysis. The fluorescence spectra revealed the emission state of the two samples. The thermal behaviour and stability of the two compounds were evaluated by the TGA-DSC analysis.
NASA Astrophysics Data System (ADS)
Feng, Tao; Russell, Thomas; Hoagland, David
2013-03-01
Interfacial assembly of acid-functionalized single-walled carbon nanotubes at the oil/water interface is achieved by the addition of low molecular weight (MW) amino-terminated polystyrene in the oil phase. The surface activity of carboxylated SWCNTs is strongly influenced by the end-group chemistry and molecular weight of the polystyrene component, the concentrations of this component and the SWCNTs, along with the degree of functionalization of the SWCNTs. The prerequisites for interfacial trapping are amino termini on chains with MW less than 5K and 6 hours or longer incubation of pristine SWCNTs to achieve their carboxylation. Plummets in interfacial tension resembling those for surfactants were observed at critical bulk concentrations of both SWCNTs and PS-NH2. In dried droplets, SWCNTs densely packed with associated PS-NH2 form a bird nest-like interfacial structure, with the SWCNTs preferentially oriented perpendicular to the original interface. Advisor
2016-01-01
The surface functionalization of TiO2-based materials with alkylsilanes is attractive in several cutting-edge applications, such as photovoltaics, sensors, and nanocarriers for the controlled release of bioactive molecules. (3-Aminopropyl)triethoxysilane (APTES) is able to self-assemble to form monolayers on TiO2 surfaces, but its adsorption geometry and solar-induced photodegradation pathways are not well understood. We here employ advanced experimental (XPS, NEXAFS, AFM, HR-TEM, and FT-IR) and theoretical (plane-wave DFT) tools to investigate the preferential interaction mode of APTES on anatase TiO2. We demonstrate that monomeric APTES chemisorption should proceed through covalent Si–O–Ti bonds. Although dimerization of the silane through Si–O–Si bonds is possible, further polymerization on the surface is scarcely probable. Terminal amino groups are expected to be partially involved in strong charge-assisted hydrogen bonds with surface hydroxyl groups of TiO2, resulting in a reduced propensity to react with other species. Solar-induced mineralization proceeds through preferential cleavage of the alkyl groups, leading to the rapid loss of the terminal NH2 moieties, whereas the Si-bearing head of APTES undergoes slower oxidation and remains bound to the surface. The suitability of employing the silane as a linker with other chemical species is discussed in the context of controlled degradation of APTES monolayers for drug release and surface patterning. PMID:28191270
Muhizi, Théoneste; Coma, Véronique; Grelier, Stéphane
2011-03-01
Structure-activity relationships are often reported in scientific studies. These may be employed in searching for new acceptable biocides to use against harmful microorganisms, because the biocides used hitherto encounter various problems, including lack of efficiency, high toxicity and persistence. Nowadays, scientists are trying to find new, environmentally acceptable biocides to replace these earlier biocides. Different compounds from renewable materials have been studied and have shown pronounced antifungal activity against wood fungi. These include aminopolysaccharide derivatives and different quaternary ammonium polymers. A biological study carried out with these products indicated a possible relationship between amino groups and differences in biological activity observed. In this study, an amino group was successively fixed to different carbon atoms of glucose, and glucosamine was also modified by both N-alkylation and quaternisation. The impact of the amino group position on antifungal activity against two wood decay fungi was investigated. The amino group at the anomeric position showed the highest antifungal activity against both Coriolus versicolor Quel. and Poria placenta (Fr.) Cooke. Furthermore, the positive impact of both N-alkylation and quaternisation on the growth of both strains was demonstrated. The anomeric position of the amino group and the N-alkylation and quaternisation of amino sugars considerably increase the antifungal activity of these compounds. Copyright © 2010 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naha, Pratap C., E-mail: pratap.naha@dit.i; NanoLab, Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8; Davoren, Maria
2010-07-15
The immunotoxicity of three generations of polyamidoamine (PAMAM) dendrimers (G-4, G-5 and G-6) was evaluated in mouse macrophage cells in vitro. Using the Alamar blue and MTT assays, a generation dependent cytotoxicity of the PAMAM dendrimers was found whereby G-6 > G-5 > G-4. The toxic response of the PAMAM dendrimers correlated well with the number of surface primary amino groups, with increasing number resulting in an increase in toxic response. An assessment of intracellular ROS generation by the PAMAM dendrimers was performed by measuring the increased fluorescence as a result of intracellular oxidation of Carboxy H{sub 2}DCFDA to DCFmore » both quantitatively using plate reader and qualitatively by confocal laser scanning microscopy. The inflammatory mediators macrophage inflammatory protein-2 (MIP-2), tumour necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6, (IL-6) were measured by the enzyme linked immunosorbant assay (ELISA) following exposure of mouse macrophage cells to PAMAM dendrimers. A generation dependent ROS and cytokine production was found, which correlated well with the cytotoxicological response and therefore number of surface amino groups. A clear time sequence of increased ROS generation (maximum at {approx} 4 h), TNF-{alpha} and IL-6 secretion (maximum at {approx} 24 h), MIP-2 levels and cell death ({approx} 72 h) was observed. The intracellular ROS generation and cytokine production induced cytotoxicity point towards the mechanistic pathway of cell death upon exposure to PAMAM dendrimers.« less
Highly potent silver-organoalkoxysilane antimicrobial porous nanomembrane
NASA Astrophysics Data System (ADS)
Umar, Sirajo; Liu, Yuanfeng; Wu, Yiguang; Li, Guangtao; Ding, Jiabo; Xiong, Runsong; Chen, Jinchun
2013-04-01
We used a simple electrospinning technique to fabricate a highly potent silver-organoalkoxysilane antimicrobial composite from AgNO3-polyvinylpyrrolidone (PVP)/3-aminopropyltrimethoxysilane (APTMS)/tetraethoxysilane (TEOS) solution. Spectroscopic and microscopic analyses of the composite showed that the fibers contain an organoalkoxysilane `skeleton,' 0.18 molecules/nm2 surface amino groups, and highly dispersed and uniformly distributed silver nanoparticles (5 nm in size). Incorporation of organoalkoxysilanes is highly beneficial to the antimicrobial mat as (1) amino groups of APTMS are adhesive and biocidal to microorganisms, (2) polycondensation of APTMS and TEOS increases the membrane's surface area by forming silicon bonds that stabilize fibers and form a composite mat with membranous structure and high porosity, and (3) the organoalkoxysilanes are also instrumental to the synthesis of the very small-sized and highly dispersed silver metal particles in the fiber mat. Antimicrobial property of the composite was evaluated by disk diffusion, minimum inhibition concentration (MIC), kinetic, and extended use assays on bacteria (Escherichia coli, Bacillus anthracis, Staphylococcus aureus, and Brucella suis), a fungus (Aspergillus niger), and the Newcastle disease virus. The membrane shows quick and sustained broad-spectrum antimicrobial activity. Only 0.3 mg of fibers is required to achieve MIC against all the test organisms. Bacteria are inhibited within 30 min of contact, and the fibers can be used repeatedly. The composite is silver efficient and environment friendly, and its membranous structure is suitable for many practical applications as in air filters, antimicrobial linen, coatings, bioadhesives, and biofilms.
Du, Ping; Li, Hongxia; Cao, Wei
2009-07-15
A novel and sensitive sandwich electrochemical biosensor based on the amplification of magnetic microbeads and Au nanoparticles (NPs) modified with bio bar code and PbS nanoparticles was constructed in the present work. In this method, the magnetic microspheres were coated with 4 layers polyelectrolytes in order to increase carboxyl groups on the surface of the magnetic microbeads, which enhanced the amount of the capture DNA. The amino-functionalized capture DNA on the surface of magnetic microbeads hybridized with one end of target DNA, the other end of which was hybridized with signal DNA probe labelled with Au NPs on the terminus. The Au NPs were modified with bio bar code and the PbS NPs were used as a marker for identifying the target oligoncleotide. The modification of magnetic microbeads could immobilize more amino-group terminal capture DNA, and the bio bar code could increase the amount of Au NPs that combined with the target DNA. The detection of lead ions performed by anodic stripping voltammetry (ASV) technology further improved the sensitivity of the biosensor. As a result, the present DNA biosensor showed good selectivity and sensitivity by the combined amplification. Under the optimum conditions, the linear relationship with the concentration of the target DNA was ranging from 2.0 x 10(-14) M to 1.0 x 10(-12)M and a detection limit as low as 5.0 x 10(-15)M was obtained.
Jia, Shuying; Yang, Zhen; Ren, Kexin; Tian, Ziqi; Dong, Chang; Ma, Ruixue; Yu, Ge; Yang, Weiben
2016-11-05
Contamination of trace antibiotics is widely found in surface water sources. This work delineates removal of trace antibiotics (norfloxacin (NOR), sulfadiazine (SDZ) or tylosin (TYL)) from synthetic surface water by flocculation, in the coexistence of inorganic suspended particles (kaolin) and natural organic matter (humic acid, HA). To avoid extra pollution caused by petrochemical products-based modification reagents, environmental-friendly amino-acid-modified-chitosan flocculants, Ctrp and Ctyr, with different functional aromatic-rings structures were employed. Jar tests at various pHs exhibited that, Ctyr, owning phenol groups as electron donors, was favored for elimination of cationic NOR (∼50% removal; optimal pH: 6; optimal dosage: 4mg/L) and TYL (∼60% removal; optimal pH: 7; optimal dosage: 7.5mg/L), due to π-π electron donator-acceptor (EDA) effect and unconventional H-bonds. Differently, Ctrp with indole groups as electron acceptor had better removal rate (∼50%) of SDZ anions (electron donator). According to correlation analysis, the coexisted kaolin and HA played positive roles in antibiotics' removal. Detailed pairwise interactions in molecular level among different components were clarified by spectral analysis and theoretical calculations (density functional theory), which are important for both the structural design of new flocculants aiming at targeted contaminants and understanding the environmental behaviors of antibiotics in water. Copyright © 2016 Elsevier B.V. All rights reserved.
Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas
2013-02-01
Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.
Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito
2010-03-01
Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J
2013-07-10
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.
Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J
2013-01-01
Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861
Isolation and biochemical characterization of underwater adhesives from diatoms.
Poulsen, Nicole; Kröger, Nils; Harrington, Matthew J; Brunner, Eike; Paasch, Silvia; Buhmann, Matthias T
2014-01-01
Many aquatic organisms are able to colonize surfaces through the secretion of underwater adhesives. Diatoms are unicellular algae that have the capability to colonize any natural and man-made submerged surfaces. There is great technological interest in both mimicking and preventing diatom adhesion, yet the biomolecules responsible have so far remained unidentified. A new method for the isolation of diatom adhesive material is described and its amino acid and carbohydrate composition determined. The adhesive materials from two model diatoms show differences in their amino acid and carbohydrate compositions, but also share characteristic features including a high content of uronic acids, the predominance of hydrophilic amino acid residues, and the presence of 3,4-dihydroxyproline, an extremely rare amino acid. Proteins containing dihydroxyphenylalanine, which mediate underwater adhesion of mussels, are absent. The data on the composition of diatom adhesives are consistent with an adhesion mechanism based on complex coacervation of polyelectrolyte-like biomolecules.
Fujita, Yasuki; Yamaguchi, Sayo; Nakamura, Kayo; Horiguchi, Yuu; Ikeda, Daisuke; Kaneko, Michiko; Tomioka, Keiko; Tokunaga, Chiharu; Iwakura, Takeo
2012-01-01
We investigated whether the perioperative amino acid infusion with glucose is effective for preventing perioperative hypothermia and postoperative infection in patients undregoing total knee arthroplasty (TKA). Forty patients undergoing TKA under general anesthesia were enrolled in this study. The patients were randomly allocated to two groups: AA group (n = 22), to which amino acid was infused, and AAGlu group (n = 18), to which amino acid and glucose were infused. The infusions were started before the anesthetic induction. Remifentanil was administered during the surgery, and the dose of remifentanil was adjusted to keep stable hemodynamics. The levels of blood glucose and body temperature were evaluated. We also recorded the frequency of additional use of nonsteroidal anti-inflammatory drugs, the days required until the wound closure, and complications in the post-operative period. The levels of blood glucose in AAGlu group were significantly higher than those of AA group (P < 0.05). However, no significant differences were found in perioperative body temperature, postoperative days required until the wound closure and the frequency of additional use of analgesics between the groups. These results suggest that in patients undergoing TKA receiveing amino acid infusion perioperatively, thermogenic effect and prevention of postoperative infection are similar whether exogenous glucose is infused or not.
Xuan, Wang; Ruiyi, Li; Zaijun, Li; Junkang, Liu
2017-11-01
Pickering emulsions have attracted considerable interest due to their potential applications in many fields, such as the food, pharmaceutical, petroleum and cosmetics industries. The study reports the synthesis of dodecylamine-functionalized graphene quantum dots (d-GQDs) and their implementation as stabilizers in an emulsion polymerization of styrene. First, d-GQDs are prepared by thermal pyrolysis of citric acid and dodecylamine in 0.1M ammonium hydroxide. The resulting d-GQDs consist of small graphene sheets with abundant amino, carboxyl, acylamino, hydroxyl and alkyl chains on the edge. The amphiphilic structure gives the d-GQDs high surface activity. The addition of d-GQDs can reduce the surface tension of water to 30.8mNm -1 and the interfacial tension of paraffin oil/water to 0.0182mNm -1 . The surface activity is much better than that of previously reported solid particle surfactants for Pickering emulsions and is close to that of sodium dodecylbenzenesulfonate, which is, a classical organic surfactants. Then, d-GQDs are employed as solid particle surfactants for stabilizing styrene-in-water emulsions. The emulsions exhibit excellent stability at pH 7. However, stability is lost when the pH is more than 9 or less than 4. The pH-switchable behaviour can be attributed to the protonation of amino groups in a weak acid medium and dissociation of carboxyl groups in a weak base medium. Finally, 2,2'-azobis(2-methylpropionitrile) is introduced into the Pickering emulsions to trigger emulsion polymerization of styrene. The as-prepared polystyrene spheres display a uniform morphology with a narrow diameter distribution. The fluorescent d-GQDs coated their surfaces. This study presents an approach for the fabrication of amphiphilic GQDs and GQDs-based functional materials, which have a wide range of potential applications in emulsion polymerization, as well as in sensors, catalysts, and energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Li; Wang, Wence; Yao, Kang; Zhou, Ting; Yin, Jie; Li, Tiejun; Yang, Lin; He, Liuqin; Yang, Xiaojian; Zhang, Hongfu; Wang, Qi; Huang, Ruilin; Yin, Yulong
2013-01-01
Deoxynivalenol (DON) is a mycotoxin that reduces feed intake and animal performance, especially in swine. Arginine and glutamine play important roles in swine nutrition. The objective of this study was to determine the effects of dietary supplementation with arginine and glutamine on both the impairment induced by DON stress and immune relevant cytokines in growing pigs. A total of forty 60-d-old healthy growing pigs with a mean body weight of 16.28±1.54 kg were randomly divided into 5 groups, and assigned to 3 amino acid treatments fed 1.0% arginine (Arg), 1.0% glutamine (Gln) and 0.5% Arg+0.5% Gln, respectively, plus a toxin control and a non-toxin control. Pigs in the 3 amino acid treatments were fed the corresponding amino acids, and those in non-toxin control and toxin control were fed commercial diet with 1.64% Alanine as isonitrogenous control for 7 days. The toxin control and amino acid treatments were then challenged by feeding DON-contaminated diet with a final DON concentration of 6 mg/kg of diet for 21 days. No significant differences were observed between toxin control and the amino acid groups with regard to the average daily gain (ADG), although the values for average daily feed intake (ADFI) in the amino acid groups were significantly higher than that in toxin control (P<0.01). The relative liver weight in toxin control was significantly greater than those in non-toxin control, arginine and Arg+Glu groups (P<0.01), but there were no significant differences in other organs. With regard to serum biochemistry, the values of BUN, ALP, ALT and AST in the amino acid groups were lower than those in toxin control. IGF1, GH and SOD in the amino acid groups were significantly higher than those in toxin control (P<0.01). The IL-2 and TNFα values in the amino acid groups were similar to those in non-toxin control, and significantly lower than those in toxin control (P<0.01). These results showed the effects of dietary supplementation with arginine and glutamine on alleviating the impairment induced by DON stress and immune relevant cytokines in growing pigs.
Realizing Serine/Threonine Ligation: Scope and Limitations and Mechanistic Implication Thereof
NASA Astrophysics Data System (ADS)
Wong, Clarence; Li, Tianlu; Lam, Hiu Yung; Zhang, Yinfeng; LI, Xuechen
2014-05-01
Serine/Threonine ligation (STL) has emerged as an alternative tool for protein chemical synthesis, bioconjugations as well as macrocyclization of peptides of various sizes. Owning to the high abundance of Ser/Thr residues in natural peptides and proteins, STL is expected to find a wide range of applications in chemical biology research. Herein, we have fully investigated the compatibility of the serine/threonine ligation strategy for X-Ser/Thr ligation sites, where X is any of the 20 naturally occurring amino acids. Our studies have shown that 17 amino acids are suitable for ligation, while Asp, Glu, and Lys are not compatible. Among the working 17 C-terminal amino acids, the retarded reaction resulted from the bulky β-branched amino acid (Thr, Val and Ile) is not seen under the current ligation condition. We have also investigated the chemoselectivity involving the amino group of the internal lysine which may compete with the N-terminal Ser/Thr for reaction with the C-terminal salicylaldehyde (SAL) ester aldehyde group. The result suggested that the free internal amino group does not adversely slow down the ligation rate.
Structure-Activity Relationship of the Antimalarial Ozonide Artefenomel (OZ439).
Dong, Yuxiang; Wang, Xiaofang; Kamaraj, Sriraghavan; Bulbule, Vivek J; Chiu, Francis C K; Chollet, Jacques; Dhanasekaran, Manickam; Hein, Christopher D; Papastogiannidis, Petros; Morizzi, Julia; Shackleford, David M; Barker, Helena; Ryan, Eileen; Scheurer, Christian; Tang, Yuanqing; Zhao, Qingjie; Zhou, Lin; White, Karen L; Urwyler, Heinrich; Charman, William N; Matile, Hugues; Wittlin, Sergio; Charman, Susan A; Vennerstrom, Jonathan L
2017-04-13
Building on insights gained from the discovery of the antimalarial ozonide arterolane (OZ277), we now describe the structure-activity relationship (SAR) of the antimalarial ozonide artefenomel (OZ439). Primary and secondary amino ozonides had higher metabolic stabilities than tertiary amino ozonides, consistent with their higher pK a and lower log D 7.4 values. For primary amino ozonides, addition of polar functional groups decreased in vivo antimalarial efficacy. For secondary amino ozonides, additional functional groups had variable effects on metabolic stability and efficacy, but the most effective members of this series also had the highest log D 7.4 values. For tertiary amino ozonides, addition of polar functional groups with H-bond donors increased metabolic stability but decreased in vivo antimalarial efficacy. Primary and tertiary amino ozonides with cycloalkyl and heterocycle substructures were superior to their acyclic counterparts. The high curative efficacy of these ozonides was most often associated with high and prolonged plasma exposure, but exposure on its own did not explain the presence or absence of either curative efficacy or in vivo toxicity.
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1993-01-01
A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.
Impact contribution of prebiotic reactants to Earth
NASA Astrophysics Data System (ADS)
Aggarwal, Hans R.
1993-03-01
A study was performed to explore the effectiveness of comets for chemical evolution. The concentration of amino acids in various terrestrial environments was mathematically explored as there is evidence that amino acids formed as a result of cometary impact. First, the initial concentration of amino acids in surface environment after cometary impact was estimated. The effect of hydrothermal vents, ultra-violet rays, and clays was taken into consideration. Next, the absorption of amino acids by clay particles before degradation by ultra-violet light was analyzed. Finally, the effectiveness of clays, ultra-violet, and hydrothermal vents as sinks for cometary amino acids was compared. A mathematical model was then developed for the production of impact deposits on Earth for the past 2 Ga, and the relative thickness distribution was computed for impact deposits produced in 2 Ga. The reported relative thickness distribution of tillites and diamicites of all ages agrees with the thickness calculated from this impact model. This suggests that many of the ancient tillites and diamicites could be of impact origin. The effectiveness of comets was explored on the chemical evolution of amino acids. The effect of sinks such as clays, submarine vents, and UV light on amino acid concentration was considered. Sites favorable to chemical evolution of amino acids were examined, and it was concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of the Earth more than 3.8 billion years ago.
Polymerization on the rocks: beta-amino acids and arginine
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
We have studied the accumulation of long oligomers of beta-amino acids on the surface of minerals using the 'polymerization on the rocks' protocol. We find that long oligopeptides of beta-glutamic acid which cannot be formed in homogeneous aqueous solution are accumulated efficiently on the surface of hydroxylapatite using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as condensing agent. The EDAC-induced oligomerization of aspartic acid on hydroxylapatite proceeds even more efficiently. Hydroxylapatite can also facilitate the ligation of the tripeptide (glu)3. The 'polymerization on the rocks' scenario is not restricted to negatively-charged amino acids. Oligoarginines are accumulated on the surface of illite using carbonyldiimidizole (CDI) as condensing agent. We find that FeS2 catalyzes the CDI-induced oligomerization of arginine, although it does not adsorb oligoarginines. These results are relevant to the formation of polypeptides on the primitive earth.
Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality
NASA Technical Reports Server (NTRS)
Hazen, R. M.; Filley, T. R.; Goodfriend, G. A.
2001-01-01
The emergence of biochemical homochirality was a key step in the origin of life, yet prebiotic mechanisms for chiral separation are not well constrained. Here we demonstrate a geochemically plausible scenario for chiral separation of amino acids by adsorption on mineral surfaces. Crystals of the common rock-forming mineral calcite (CaCO(3)), when immersed in a racemic aspartic acid solution, display significant adsorption and chiral selectivity of d- and l-enantiomers on pairs of mirror-related crystal-growth surfaces. This selective adsorption is greater on crystals with terraced surface textures, which indicates that d- and l-aspartic acid concentrate along step-like linear growth features. Thus, selective adsorption of linear arrays of d- and l-amino acids on calcite, with subsequent condensation polymerization, represents a plausible geochemical mechanism for the production of homochiral polypeptides on the prebiotic Earth.
Li, Xiaoming; Zhang, Shengli; Kulinich, Sergei A.; Liu, Yanli; Zeng, Haibo
2014-01-01
Luminescent carbon dots (L-CDs) with high quantum yield value (44.7%) and controllable emission wavelengths were prepared via a facile hydrothermal method. Importantly, the surface states of the materials could be engineered so that their photoluminescence was either excitation-dependent or distinctly independent. This was achieved by changing the density of amino-groups on the L-CD surface. The above materials were successfully used to prepare multicolor L-CDs/polymer composites, which exhibited blue, green, and even white luminescence. In addition, the excellent excitation-independent luminescence of L-CDs prepared at low temperature was tested for detecting various metal ions. As an example, the detection limit of toxic Be2+ ions, tested for the first time, was as low as 23 μM.
Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.
Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo
2009-09-28
Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.
Amino acid supplementation alters bone metabolism during simulated weightlessness
NASA Technical Reports Server (NTRS)
Zwart, S. R.; Davis-Street, J. E.; Paddon-Jones, D.; Ferrando, A. A.; Wolfe, R. R.; Smith, S. M.
2005-01-01
High-protein and acidogenic diets induce hypercalciuria. Foods or supplements with excess sulfur-containing amino acids increase endogenous sulfuric acid production and therefore have the potential to increase calcium excretion and alter bone metabolism. In this study, effects of an amino acid/carbohydrate supplement on bone resorption were examined during bed rest. Thirteen subjects were divided at random into two groups: a control group (Con, n = 6) and an amino acid-supplemented group (AA, n = 7) who consumed an extra 49.5 g essential amino acids and 90 g carbohydrate per day for 28 days. Urine was collected for n-telopeptide (NTX), deoxypyridinoline (DPD), calcium, and pH determinations. Bone mineral content was determined and potential renal acid load was calculated. Bone-specific alkaline phosphatase was measured in serum samples collected on day 1 (immediately before bed rest) and on day 28. Potential renal acid load was higher in the AA group than in the Con group during bed rest (P < 0.05). For all subjects, during bed rest urinary NTX and DPD concentrations were greater than pre-bed rest levels (P < 0.05). Urinary NTX and DPD tended to be higher in the AA group (P = 0.073 and P = 0.056, respectively). During bed rest, urinary calcium was greater than baseline levels (P < 0.05) in the AA group but not the Con group. Total bone mineral content was lower after bed rest than before bed rest in the AA group but not the Con group (P < 0.05). During bed rest, urinary pH decreased (P < 0.05), and it was lower in the AA group than the Con group. These data suggest that bone resorption increased, without changes in bone formation, in the AA group.
NASA Astrophysics Data System (ADS)
de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.
An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
A model study of factors involved in adhesion of Pseudomonas fluorescens to meat.
Piette, J P; Idziak, E S
1992-01-01
A study was undertaken to investigate the factors involved in the adhesion of Pseudomonas fluorescens to model meat surfaces (tendon slices). Adhesion was fast (less than 2.5 min) and was not suppressed by killing the cells with UV, gamma rays, or heat, indicating that physiological activity was not required. In various salt solutions (NaCl, KCl, CaCl2, MgCl2), adhesion increased with increasing ionic strength up to 10 to 100 mM, suggesting that, at low ionic strengths, electrostatic interactions were involved in the adhesion process. At higher ionic strengths (greater than 10 to 100 mM) or in the presence of Al3+ ions, adhesion was sharply reduced. Selectively blocking of carboxyl or amino groups at the cell surface by chemical means did not affect adhesion. These groups are therefore not directly involved in an adhesive bond with tendon. Given a sufficient cell concentration (10(10) CFU.ml-1) in the adhesion medium, the surface of tendon was almost entirely covered with adherent bacteria. This suggests that if the adhesion is specific, the attachment sites on the tendon surface must be located within collagen or proteoglycan molecules. Images PMID:1444387
Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo
2018-04-25
Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.
NASA Astrophysics Data System (ADS)
Huang, Qiang; Liu, Meiying; Chen, Junyu; Wan, Qing; Tian, Jianwen; Huang, Long; Jiang, Ruming; Deng, Fengjie; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen
2017-11-01
The removal of organic dyes using functionalization SiO2 composites (denoted as SiO2-PDA-CSH) were prepared via a facile method that combined with mussel inspired chemistry and Kabachnik-Fields (KF) reaction. The size and surface morphology, chemical structure, thermal stability, surface charging property, and elemental composition were evaluated by means of transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), zeta potential, and X-ray photoelectron spectroscopy (XPS), respectively. The results demonstrated that the organic functional groups can be successfully introduced onto the surface of SiO2 microspheres through the combination of mussel inspired chemistry and KF reaction. The removal of cationic dye methylene blue (MB) by the raw SiO2 and SiO2-PDA-CSH composites was examined and compared using a series of batch adsorption experiments. The results suggested that SiO2-PDA-CSH composites had a 3-fold increase in the adsorption capacity towards MB than that of pure SiO2 microspheres and the adsorption process was dependent on the solution pH. According to the adsorption kinetics, the adsorption of MB onto SiO2-PDA-CSH composites was well described by pseudo-second-order kinetic model. The equilibrium data were fitted with Langmuir and Freundlich isotherm models with R2 = 0.9981 and R2 = 0.9982, respectively. The maximum adsorption capacity from Langmuir isotherm was found to be 688.85 mg/g. The adsorption thermodynamics was also investigated in detailed. The parameters revealed that the adsorption process was spontaneous and endothermic in nature. The adsorption mechanism might be the synergistic action of physical adsorption of SiO2-PDA-CSH particles and electrostatic interaction between the MB and functional groups on the surface of SiO2-PDA-CSH composites, including sulfydryl, amino, aromatic moieties, and phosphate groups. Taken together, we developed a novel and facile strategy for the surface modification of SiO2 to achieve high adsorption towards MB based on the mussel inspired chemistry and multicomponent KF reaction. More importantly, this strategy could be easily extended for fabrication of many other high efficient adsorbents due to the universality of mussel inspired chemistry and various multicomponent reactions based on amino groups. Therefore, this work will open a new avenue and direction for the environmental applications of mussel inspired chemistry.
Comparison of amino acids interaction with gold nanoparticle.
Ramezani, Fatemeh; Amanlou, Massoud; Rafii-Tabar, Hashem
2014-04-01
The study of nanomaterial/biomolecule interface is an important emerging field in bionanoscience, and additionally in many biological processes such as hard-tissue growth and cell-surface adhesion. To have a deeper understanding of the amino acids/gold nanoparticle assemblies, the adsorption of these amino acids on the gold nanoparticles (GNPs) has been investigated via molecular dynamics simulation. In these simulations, all the constituent atoms of the nanoparticles were considered to be dynamic. The geometries of amino acids, when adsorbed on the nanoparticle, were studied and their flexibilities were compared with one another. The interaction of each of 20 amino acids was considered with 3 and 8 nm gold GNPs.
Arend, Peter
2016-01-01
The formation of a histo (blood) group) ABO phenotype and the exclusion of an autoreactive IgM or isoagglutinin activity arise apparently in identical glycosylation of complementary domains on cell surfaces and plasma proteins. The fundamental O-glycan emptiness of the circulating IgM, which during the neonatal amino acid sequencing of the variable regions is exerting germline-specific O-GalNAc glycan-reactive serine/threonine residues that in the plasma of the adult human blood group O individuals apparently remain associated with the open glycosidic sites on the ABOH convertible red cell surface, must raise suggestions on a transient expression of developmental glycans, which have been "lost" over the course of maturation. In fact, while the mammalian non-somatic, embryogenic stem cell (ESC)- germ cell (GC) transformation is characterized by a transient and genetically as-yet-undefined trans-species-functional O-GalNAc glycan expression, in the C57BL/10 mouse such expression was potentially identified in growth-dependent, blood group A-like GalNAc glycan-bearing, ovarian glycolipids complementary with the syngeneic anti-A reactive IgM, which does not appear in early ovariectomized animals. This non-somatically encoded, polyreactive, ancestral IgM molecule has not undergone clonal selection and does primarily not differentiate between self and non-self and might, due to amino acid hydroxyl groups, highly suggest substrate competition with subsequent O-glycosylations in ongoing ESC-GC transformations and affecting GC maturation. However, the membrane-bound somatic N/O-glycotransferases, which initiate, after formation of the zygote, the complex construction of the human ABO phenotypes in the trans cisternae of the Golgi apparatus, are associated and/or completed with soluble enzyme versions exerting identical specificities in plasma and likely competing vice versa by glycosylation of neonatal IgM amino acids, where they suggest to accomplish the clearance of anti-A autoreactivity at germline serine and threonine residues. Sustaining the lineage-maintaining position of the classic A allele and the discovery of the OA hybrid alleles at the normal ABO locus and in heterozygous ESC lines have, together with clinical observations, raised discussions about a silent A-allelic support within blood group O reproduction. However, the question of whether a fictional "continued blood group O inbreeding" ultimately occurs without the A-allelic or somatic function remains unanswered because the genetic relationship between non-somatic O-GalNAc-glycosylations that operate before sperm-egg recognition and somatic O-GalNAc-glycosylations that arise after the formation of the zygote remains to be elucidated. Copyright © 2015 Elsevier GmbH. All rights reserved.
Click-coated, heparinized, decellularized vascular grafts
Dimitrievska, Sashka; Cai, Chao; Weyers, Amanda; Balestrini, Jenna L.; Lin, Tylee; Sundaram, Sumati; Hatachi, Go; Spiegel, David A.; Kyriakides, Themis R.; Miao, Jianjun; Li, Guoyun; Niklason, Laura; Linhardt, Robert J.
2014-01-01
A novel method enabling the engineering of a dense and appropriately oriented heparin-containing layer on decellularized aortas has been developed. Amino groups of decellularized aortas were first modified to azido groups using 3-azidobenzoic acid. Azide-clickable dendrons were attached onto the azido groups through “alkyne-azide” click chemistry, affording a ten-fold amplification of adhesions sites. Dendron end groups were finally decorated with end-on modified heparin chains. Heparin chains were oriented like heparan sulfate groups on native endothelial cells surface. XPS, NMR, MS and FTIR were used to characterize the synthesis steps, building the final heparin layered coatings. Continuity of the heparin coating was verified using fluorescent microscopy and histological analysis. Efficacy of heparin linkage was demonstrated with factor Xa antithrombogenic assay and platelet adhesion studies. The results suggest that oriented heparin immobilization to decellularized aortas may improve the in vivo blood compatibility of decellularized aortas and vessels. PMID:25463496
Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T
2010-05-04
To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.
Electrostatic interactions of colicin E1 with the surface of Escherichia coli total lipid.
Tian, Chunhong; Tétreault, Elaine; Huang, Christopher K; Dahms, Tanya E S
2006-06-01
The surface properties of colicin E1, a 522-amino acid protein, and its interaction with monolayers of Escherichia coli (E. coli) total lipid and 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DOPC) were studied using the Langmuir-Blodgett (LB) technique. Colicin E1 is amphiphilic, forming a protein monolayer at the air/buffer interface. The protein is thought to interact with the E. coli total lipid head groups through electrostatic interactions, followed by its insertion into the lipid monolayers. Supported lipid bilayers (SLBs) of E. coli total lipid and DOPC, deposited onto mica at the cell membrane equivalence pressure for E. coli and incubated with colicin E1, were imaged by contact mode atomic force microscopy (CM-AFM). Colicin E1 formed protein aggregates on DOPC SLBs, while E. coli total lipid SLB was deformed following its incubation with colicin E1. Corresponding lateral force images, along with electrostatic surface potentials for colicin E1 P190, imply a direct interaction of colicin E1 with lipid head groups facilitating their charge neutralization.
NASA Technical Reports Server (NTRS)
Burton, Aaron, S.; Berger, Eve L.; Locke, Darren R.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.
2015-01-01
Amino acids, the building blocks of proteins, have been found to be indigenous in most of the carbonaceous chondrite groups. The abundances of amino acids, as well as their structural, enantiomeric and isotopic compositions differ significantly among meteorites of different groups and petrologic types. This suggests that there is a link between parent-body conditions, mineralogy and the synthesis and preservation of amino acids (and likely other organic molecules). However, elucidating specific causes for the observed differences in amino acid composition has proven extremely challenging because samples analyzed for amino acids are typically much larger ((is) approximately 100 mg powders) than the scale at which meteorite heterogeneity is observed (sub mm-scale differences, (is) approximately 1-mg or smaller samples). Thus, the effects of differences in mineralogy on amino acid abundances could not be easily discerned. Recent advances in the sensitivity of instrumentation have made possible the analysis of smaller samples for amino acids, enabling a new approach to investigate the link between mineralogical con-text and amino acid compositions/abundances in meteorites. Through coordinated mineral separation, mineral characterization and highly sensitive amino acid analyses, we have performed preliminary investigations into the relationship between meteorite mineralogy and amino acid composition. By linking amino acid data to mineralogy, we have started to identify amino acid-bearing mineral phases in different carbonaceous meteorites. The methodology and results of analyses performed on the Murchison meteorite are presented here.
Interactions of zinc octacarboxyphthalocyanine with selected amino acids and with albumin
NASA Astrophysics Data System (ADS)
Kliber, Marta; Broda, Małgorzata A.; Nackiewicz, Joanna
2016-02-01
Effect of selected amino acids (glycine, L-histidine, L-cysteine, L-serine, L-tryptophan) and albumin on the spectroscopic properties and photostability of zinc octacarboxyphthalocyanine (ZnPcOC) was explored in the phosphate buffer at a pH of 7.0. The photodegradation of ZnPcOC alone and in the presence of amino acids or albumin has been investigated in aqueous phase using UV-366 nm and daylight irradiation. Kinetic analysis showed that the interaction with amino acids or albumin enhances the photostability of ZnPcOC. To answer the question of how zinc phthalocyanine interacts with amino acids extensive DFT calculations were performed. Analysis of the optimized geometry features of ZnPcOC: amino acids complexes in the gas phase and in water environment as well as the BSSE corrected interaction energies indicates that the more likely is the formation of equatorial complexes in which H-bonds are formed between the COOH groups of the phthalocyanine and carboxyl or amino groups of amino acids. UV-Vis spectra calculated by employing time dependent density functional theory (TD-DFT) are also consistent with this conclusion.
Milovanova, S Yu; Milovanov, Yu S; Taranova, M V; Dobrosmyslov, I A
To evaluate the efficacy of keto/amino acids in maintaining protein balance and preventing mineral metabolic disturbances and the development of uremic hyperparathyroidism in the long-term use of a low-protein diet (LPD) in patients with Stages 3B-4 chronic kidney disease (CKD). Ninety patients with CKD caused by chronic latent glomerulonephritis in 65 patients and chronic tubulointerstitial nephritis of various etiologies (gout, drug-induced, and infection) in 25 were examined. The investigators conducted clinical, laboratory, and instrumental examinations, including bioelectrical impedance analysis (body mass index (BMI), the percentages of lean and fat mass), echocardiography and radiography of the abdominal aorta in the lateral projection (the presence of cardiac valvular and aortic calcification), and pulse wave velocity measurements using a Sphygmocor apparatus (vessel stiffness estimation). The stages of CKD were defined according to the 2012 Kidney Disease: Improving Global Outcomes (KDIGO) criteria; glomerular filtration rate was calculated using the CKD EPI equation. According to the diet used, all the patients were divided into 3 groups: 1) 30 patients who took LPD (0.6 g of protein per kg of body weight/day) in combination with the keto/amino acid ketosteril (1 tablet per 5 kg of body weight/day; Diet One); 2) 30 patients who used LPD in combination with the other keto/amino acid ketoaminol at the same dose (Diet Two); 3) 30 patients had LPD without using the keto/amino acids (Diet Three) (a control group). During a follow-up, there were no signs of malnutrition in Groups 1 and 2 patients receiving LPD (0.6 g protein per kg/day) in combination with the keto/amino acids ketosteril and ketaminol, respectively. At the same time, 11 (36.6%) patients in Group 3 (a control group) who did not take the keto/amino acids showed a BMI decrease from 24 (23; 26) kg/m2 to 18.5 (17; 19.2) kg/m2 (p < 0.05), including that of lean body mass from 37.4 (36; 38.8) to 30 (29.1; 34.7)% in the men (p<0.05) and from 29.8 (26.8; 31) to 23.9 (22; 25.7)% in the women (p<0.01). In addition, at the end of the study, there were elevated serum phosphorus levels (p<0.05) and mainly higher parathyroid hormone concentrations in Group 3 patients who received LPD without using the amino/keto acids than in Groups 1 and 2. As compared to Group 3, Groups 1 and 2 displayed no differences in the quantity of cardiac and aortic calcification and in the augmentation index (arterial stiffness). The ketosteril and ketaminol groups versus the control group had also higher s-Klotho levels (p<0.01) that were inversely correlated with glomerular filtration rate (r =-0.467; p<0.01). The keto/amino acids ketosteril or ketoaminol are an important component of LPD, which prevents malnutrition and an additional source of calcium that inhibits hyperphosphatemia and slows the development of uremic hyperparathyroidism. Incorporation of keto/amino acids into LPD leads to a less pronounced reduction in s-Klotho protein in relation to the degree of renal failure than does LPD without keto/amino acids.
NASA Astrophysics Data System (ADS)
Hirabayashi, Mieko; Mehta, Beejal; Vahidi, Nasim W.; Khosla, Ajit; Kassegne, Sam
2013-11-01
In this study, the investigation of surface-treatment of chemically inert graphitic carbon microelectrodes (derived from pyrolyzed photoresist polymer) for improving their attachment chemistry with DNA molecular wires and ropes as part of a bionanoelectronics platform is reported. Polymer microelectrodes were fabricated on a silicon wafer using standard negative lithography procedures with negative-tone photoresist. These microelectrode structures were then pyrolyzed and converted to a form of conductive carbon that is referred to as PP (pyrolyzed polymer) carbon throughout this paper. Functionalization of the resulting pyrolyzed structures was done using nitric, sulfuric, 4-amino benzoic acids (4-ABA), and oxygen plasma etching and the surface modifications confirmed with Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and electron dispersion x-ray spectroscopy (EDS). Post surface-treatment analysis of microelectrodes with FTIR and Raman spectroscopy showed signature peaks characteristics of carboxyl functional groups while EDS showed an increase in oxygen content in the surface-treatment procedures (except 4-ABA) indicating an increase in carboxyl functional group. These functional groups form the basis for peptide bond with aminated oligonucleotides that in turn could be used as molecular wires and interconnects in a bionanoelectronics platform. Post-pyrolysis analysis using EDS showed relatively higher oxygen concentrations at the edges and location of defects compared to other locations on these microelectrodes. In addition, electrochemical impedance measurements showed metal-like behavior of PP carbon with high conductivity (|Z| <1 KΩ) and no detectable detrimental effect of oxygen plasma surface-treatment on electrical characteristic. In general, characterization results—taken together—indicated that oxygen plasma surface-treatment produced more reliable, less damaging, and consistently repeatable generation of carboxyl functional groups than diazonium salt and strong acid treatments.
[Analysis of structural characteristics of alpha-tubulins in plants with enhanced cold tolerance].
Nyporko, A Iu; Demchuk, O N; Blium, Ia B
2003-01-01
The uniqueness of the point substitutions in the sequences of two alpha-tubulin isotypes from psychrophilic alga Chloromonas that can determine the increased cold tolerance of this alga was analyzed. The comparison of all known amino acid sequences of plant alpha-tubulins enabled to ascertain that only M268-->V replacement is unique and may have a significant influence on spatial structure of plant alpha-tubulins. Modeling of molecular surfaces of alpha-tubulins from Chloromonas, Chalmydomonas reinhardtii and goose grass Eleusine indica showed that insertion of the amino acid replacement M268-->V into the sequence of goose grace tubulin led to the likening of this protein surface to the surface of native alpha-tubulin from Chloromonas. Alteration of local hydrophobic properties of alpha-tubulin molecular surface in interdimeric contact zone as a result of the mentioned replacement was shown that may play important role in increasing the level of cold resistance of microtubules. The crucial role of amino acid residue in 268 position for forming the interdimeric contact surface of alpha-tubulin molecule was revealed. The assumption is made about the importance of replacements at this position for plant tolerance to abiotic factors of different nature (cold, herbicides).
Hsia, Ho-Pan; Yang, Yin-Hua; Szeto, Wun-Chung; Nilsson, Benjamin E; Lo, Chun-Yeung; Ng, Andy Ka-Leung; Fodor, Ervin; Shaw, Pang-Chui
2018-01-01
The influenza virus RNA genome is transcribed and replicated in the context of the viral ribonucleoprotein (vRNP) complex by the viral RNA polymerase. The nucleoprotein (NP) is the structural component of the vRNP providing a scaffold for the viral RNA. In the vRNP as well as during transcription and replication the viral polymerase interacts with NP but it is unclear which parts of the polymerase and NP mediate these interactions. Previously the C-terminal '627' domain (amino acids 538-693) of PB2 was shown to interact with NP. Here we report that a fragment encompassing amino acids 146-185 of NP is sufficient to mediate this interaction. Using NMR chemical shift perturbation assays we show that amino acid region 601 to 607 of the PB2 '627' domain interacts with this fragment of NP. Substitutions of these PB2 amino acids resulted in diminished RNP activity and surface plasmon resonance assays showed that amino acids D605 was essential for the interaction with NP and V606 may also play a partial role in the interaction. Collectively these results reveal a possible interaction surface between NP and the PB2 subunit of the RNA polymerase complex.
NASA Astrophysics Data System (ADS)
Goryacheva, O. A.; Gao, H.; Sukhorukov, G. B.
2018-04-01
Polyelectrolyte microcapsules are one of the most successful developments in the direction of target drug delivery. Nevertheless, to encapsulate low molecular weight compounds and to deliver the targeted drugs it is necessary to modify the surface of the microcapsules. Silica nanostructures obtained as result of hydrolysis of (3-Aminopropyl)- triethoxysilane (APTES) were used for the modification of the microcapsules. This material shows no toxic effect on cells and is capable of biodegradation. Amino-groups in the structure of APTES make it possible for further direct bioconjugation.
Effect of the quality of dietary amino acids composition on the urea synthesis in rats.
Tujioka, Kazuyo; Ohsumi, Miho; Hayase, Kazutoshi; Yokogoshi, Hidehiko
2011-01-01
We have shown that urinary urea excretion increased in rats given a lower quality protein. The purpose of present study was to determine whether the composition of dietary amino acids affects urea synthesis. Experiments were done on three groups of rats given diets containing a 10% gluten amino acid mix diet or 10% casein amino acid mix diet or 10% whole egg protein amino acids mix diet for 10 d. The urinary excretion of urea, the liver concentration of N-acetylglutamate, and the liver concentration of free serine, glutamic acids and alanine were greater in the group given the amino acid mix diet of lower quality. The fractional and absolute rates of protein synthesis in tissues declined with a decrease in quality of dietary amino acids. The hepatic concentration of ornithine and the activities of hepatic urea-cycle enzymes were not related to the urea excretion. These results suggest that the increased concentrations of amino acids and N-acetylglutamate seen in the liver of rats given the amino acid mix diets of lower quality are likely among the factors stimulating urea synthesis. The protein synthesis in tissues is at least partly related to hepatic concentrations of amino acids. The composition of dietary amino acids is likely to be one of the factors regulating urea synthesis when the quality of dietary protein is manipulated.
Multifunctional clickable and protein-repellent magnetic silica nanoparticles
NASA Astrophysics Data System (ADS)
Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel
2016-01-01
Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing. Electronic supplementary information (ESI) available: Detailed synthetic procedures and additional experimental light scattering and zeta-potential data. See DOI: 10.1039/c5nr08258g
Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R
2014-10-01
Plasma immersion ion implantation (PIII) treatment of polymers creates a biointerface capable of direct covalent immobilization of biomolecules. The immobilization of protein molecules is achieved by covalent bonds formed between embedded radicals on the treated surface and amino acid side chains and cells can be immobilized through cell-wall proteins. The attachment density of negatively charged entities on a PIII treated surface is inhibited by its negative surface charge at neutral pH. To reduce the negative charge of PIII treated surfaces in phosphate buffer (pH 7.4, 11mM), we develop an effective approach of grafting allylamine monomers onto the treated surface. The results reveal reactions between allylamine and radicals on the PIII treated surface. One of these triggers polymerization, increasing the number of amine groups grafted. As a consequence, the PIII treated polystyrene surface after allylamine exposure becomes more hydrophobic and less negatively charged in phosphate buffer. Using yeast cells as an example, we have shown a significant improvement (6-15 times) of cell density immobilized on the PIII treated surface after exposure to allylamine. Copyright © 2014 Elsevier B.V. All rights reserved.
Yamada, Chizumi; Kondo, Masumi; Kishimoto, Noriaki; Shibata, Takeo; Nagai, Yoko; Imanishi, Tadashi; Oroguchi, Takashige; Ishii, Naoaki; Nishizaki, Yasuhiro
2015-07-01
Elevation of the branched-chain amino acids (BCAAs), valine, leucine and isoleucine; and the aromatic amino acids, tyrosine and phenylalanine, has been observed in obesity-related insulin resistance. However, there have been few studies on Asians, who are generally less obese and less insulin-resistant than Caucasian or African-Americans. In the present study, we investigated the relationship between homeostasis model assessment of insulin resistance (HOMA-IR) and plasma amino acid concentration in non-diabetic Japanese participants. A total of 94 healthy men and women were enrolled, and plasma amino acid concentration was measured by liquid chromatography/mass spectrometry after overnight fasting. The associations between HOMA-IR and 20 amino acid concentrations, and anthropometric and clinical parameters of lifestyle-related diseases were evaluated. The mean age and body mass index were 40.1 ± 9.6 years and 22.7 ± 3.9, respectively. Significantly positive correlations were observed between HOMA-IR and valine, isoleucine, leucine, tyrosine, phenylalanine and total BCAA concentration. Compared with the HOMA-IR ≤ 1.6 group, the HOMA-IR > 1.6 group showed significantly exacerbated anthropometric and clinical parameters, and significantly elevated levels of valine, isoleucine, leucine, tyrosine, phenylalanine and BCAA. The present study shows that the insulin resistance-related change in amino acid profile is also observed in non-diabetic Japanese subjects. These amino acids include BCAAs (valine, isoleucine and leucine) and aromatic amino acids (tyrosine and phenylalanine), in agreement with previous studies carried out using different ethnic groups with different degrees of obesity and insulin resistance.
FY04 LDRD Final Report: Interaction of Viruses with Membranes and Soil Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaldach, C M
2005-02-08
The influence of ionic strength on the electrostatic interaction of viruses with environmentally relevant surfaces was determined for three viruses, MS2, Q{beta} and Norwalk. The environmental surface is modeled as charged Gouy-Chapman plane with and without a finite atomistic region (patch) of opposite charge. The virus is modeled as a particle comprised of ionizable amino acid residues in a shell surrounding a spherical RNA core of negative charge, these charges being compensated for by a Coulomb screening due to intercalated ions. Surface potential calculations for each of the viruses show excellent agreement with electrophoretic mobility and zeta potential measurements asmore » a function of pH. The results indicate that the electrostatic interaction between the virus and the planar surface, mitigated by the ionic strength of the solute, is dependent upon the spatial distribution of the amino acid residues in the different viruses. Specifically, the order of interaction energies with the patch (MS2 greatest at 5 mM; Norwalk greatest at 20 mM) is dependent upon the ionic strength of the fluid as a direct result of the viral coat amino acid distributions. We have developed an atomistic-scale method of calculation of the binding energy of viruses to surfaces including electrostatic, van der Waals, electron-overlap repulsion, surface charge polarization (images), and hydrophobic effects. The surface is treated as a Gouy-Chapman plane allowing inclusion of pH and ionic strength effects on the electrostatic potential at each amino acid charge. Van der Waals parameters are obtained from the DREIDING force field and from Hamaker constant measurements. We applied this method to the calculation of the Cowpea Mosaic Virus (CPMV), a negatively charged virus at a pH of 7.0, and find that the viral-gold surface interaction is very long range for both signs of surface potential, a result due to the electrostatic forces. For a negative (Au) surface potential of -0.05 volts, a nearly 4 eV barrier must be overcome to reach 1 nm from the surface.« less
Nano-Infrared Imaging of Amino Acids in Murchison: Sensitivity, Detection Limits, and First Results
NASA Astrophysics Data System (ADS)
Salem, M.; Dillon, E.; Dominguez, G.
2017-07-01
We apply AFM-tip assisted IR imaging of laboratory standards and Murchison meteorite to identify and map distribution of amino acids and determine sensitivity of AFM-IR to amino-acid functional groups.
Assembly of citrate gold nanoparticles on hydrophilic monolayers
NASA Astrophysics Data System (ADS)
Vikholm-Lundin, Inger; Rosqvist, Emil; Ihalainen, Petri; Munter, Tony; Honkimaa, Anni; Marjomäki, Varpu; Albers, Willem M.; Peltonen, Jouko
2016-08-01
Self-assembled monolayers (SAMs) as model surfaces were linked onto planar gold films thorough lipoic acid or disulfide groups. The molecules used were polyethylene glycol (EG-S-S), N-[tris-(hydroxymethyl)methyl]acrylamide polymers with and without lipoic acid (Lipa-pTHMMAA and pTHMMAA) and a lipoic acid triazine derivative (Lipa-MF). All the layers, but Lipa-MF with a primary amino group were hydroxyl terminated. The layers were characterized by contact angle measurements and atomic force microscopy, AFM. Citrate stabilized nanoparticles, AuNPs in water and phosphate buffer were allowed to assemble on the layers for 10 min and the binding was followed in real-time with surface plasmon resonance, SPR. The SPR resonance curves were observed to shift to higher angles and become increasingly damped, while also the peaks strongly broaden when large nanoparticles assembled on the surface. Both the angular shift and the damping of the curve was largest for nanoparticles assembling on the EG-S-S monolayer. High amounts of particles were also assembled on the pTHMMAA layer without the lipoic acid group, but the damping of the curve was considerably lower with a more even distribution of the particles. Topographical images confirmed that the highest number of particles were assembled on the polyethylene glycol monolayer. By increasing the interaction time more particles could be assembled on the surface.
Bauer, Susanne N; Nowak, Heike; Keller, Frank; Kallarackal, Jose; Hajirezaei, Mohamad-Reza; Komor, Ewald
2014-09-01
Sieve tube sap was obtained from Tanacetum by aphid stylectomy and from Ricinus after apical bud decapitation. The amino acids in sieve tube sap were analyzed and compared with those from leaves. Arginine and lysine accumulated in the sieve tube sap of Tanacetum more than 10-fold compared to the leaf extracts and they were, together with asparagine and serine, preferably selected into the sieve tube sap, whereas glycine, methionine/tryptophan and γ-amino butyric acid were partially or completely excluded. The two basic amino acids also showed a close covariation in sieve tube sap. The acidic amino acids also grouped together, but antagonistic to the other amino acids. The accumulation ratios between sieve tube sap and leaf extracts were smaller in Ricinus than in Tanacetum. Arginine, histidine, lysine and glutamine were enriched and preferentially loaded into the phloem, together with isoleucine and valine. In contrast, glycine and methionine/tryptophan were partially and γ-amino butyric acid almost completely excluded from sieve tube sap. The covariation analysis grouped arginine together with several neutral amino acids. The acidic amino acids were loaded under competition with neutral amino acids. It is concluded from comparison with the substrate specificities of already characterized plant amino acid transporters, that an AtCAT1-like transporter functions in phloem loading of basic amino acids, whereas a transporter like AtGAT1 is absent in phloem. Although Tanacetum and Ricinus have different minor vein architecture, their phloem loading specificities for amino acids are relatively similar. © 2014 Scandinavian Plant Physiology Society.
Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng
2015-04-01
This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi
2012-06-01
Adsorption geometry, nuclear vibrations, and molecular orientation of the dye with respect to the oxide surface affect significantly the performance of dye-sensitized solar cells. We compute the influence of these factors on injection and recombination conditions in organic amino-phenyl acid dyes differing by the donor group on the anatase (101) surface of titania. Nuclear motions affect significantly and differently between the dyes the driving force to injection Δ G. A temperature increase from 300 to 350 K does not have a noticeable effect on the distribution of injection rates in all studied system. Molecular dynamics simulations predict configurations in which dyes tend to lay flat on the oxide surface. The resulting proximity of the oxidation equivalent hole to the oxide is expected to promote recombination. Temporal evolution of the driving force to injection is found to be independent of dye orientation and uncorrelated to the oscillations of the Odye Ti bonds through which the dye is attached to the surface. We conclude that the dynamics of Δ G(t) is explained by uncorrelated evolution of the energies of the dye excited state and of the conduction band minimum of the oxide due to their respective vibrations. This suggests that it must be possible to control independently conditions of recombination (e.g. by preventing the dye oxidation hole from approaching TiO2 by using co-adsorbates) and of injection (e.g. by designing dyes where non-equilibrium geometries strongly destabilize dye's LUMO to increase Δ G).
NASA Astrophysics Data System (ADS)
Caldarola, Dario; Mitev, Dimitar P.; Marlin, Lucile; Nesterenko, Ekaterina P.; Paull, Brett; Onida, Barbara; Bruzzoniti, Maria Concetta; Carlo, Rosa Maria De; Sarzanini, Corrado; Nesterenko, Pavel N.
2014-01-01
A new complexing adsorbent was prepared by chemical modification of mesoporous silica Kieselgel 60 (dp = 37-63 μm, average pore size 6 nm, specific surface area 425 m2 g-1) with 3-glycidoxypropyltrimethoxysilane and 2-[(phosphonomethyl)amino]acetic acid (PMA), commonly known as glyphosate. The prepared adsorbent was fully characterised using elemental analysis, thermal gravimetric analysis (TGA), acid-base potentiometric titration, Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption isotherms at 77 K (BET), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). The concentration of bonded PMA groups calculated from the nitrogen content was 0.38 mmol per gram. The adsorption of transition metal ions on PMA functionalised silica (HEPMAS) was studied from aqueous solutions having different pH and the following selectivity was established, Zn(II) < Co(II) < Cd(II) < Mn(II) < Ni(II) < Cu(II). The calculated values of distribution coefficients D for the adsorption of ecotoxic metal ions on HEPMAS are 5.0 × 104, 4.9 × 105 and 2.6 × 104 for Zn(II), Pb(II) and Cd(II), respectively.
Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product
NASA Astrophysics Data System (ADS)
Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing
2017-02-01
We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products.
NASA Astrophysics Data System (ADS)
Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.
2010-08-01
Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.
Ramón, F; Castillón, M; De La Mata, I; Acebal, C
1998-01-01
The variation of kinetic parameters of d-amino acid oxidase from Rhodotorula gracilis with pH was used to gain information about the chemical mechanism of the oxidation of D-amino acids catalysed by this flavoenzyme. d-Alanine was the substrate used. The pH dependence of Vmax and Vmax/Km for alanine as substrate showed that a group with a pK value of 6.26-7.95 (pK1) must be unprotonated and a group with a pK of 10.8-9.90 (pK2) must be protonated for activity. The lower pK value corresponded to a group on the enzyme involved in catalysis and whose protonation state was not important for binding. The higher pK value was assumed to be the amino group of the substrate. Profiles of pKi for D-aspartate as competitive inhibitor showed that binding is prevented when a group on the enzyme with a pK value of 8.4 becomes unprotonated; this basic group was not detected in Vmax/Km profiles suggesting its involvement in binding of the beta-carboxylic group of the inhibitor. PMID:9461524
A molecular rotor based ratiometric sensor for basic amino acids
NASA Astrophysics Data System (ADS)
Pettiwala, Aafrin M.; Singh, Prabhat K.
2018-01-01
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples.
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng
2016-01-01
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319
Yu, Fei; Nguyen, Hien M.
2012-01-01
The stereoselective synthesis of saccharide thioglycosides containing 1,2-cis-2-amino glycosidic linkages is challenging. In addition to the difficulties associated with achieving high α-selectivity in the formation of 1,2-cis-2-amino glycosidic bonds, the glycosylation reaction is hampered by undesired transfer of the anomeric sulfide group from the glycosyl acceptor to the glycosyl donor. Overcoming these obstacles will pave the way for the preparation of oligosaccharides and glycoconjugates bearing the 1,2-cis-2-amino glycosidic linkages because the saccharide thioglycosides obtained can serve as donors for another coupling iteration. This approach streamlines selective deprotection and anomeric derivatization steps prior to the subsequent coupling event. We have developed an efficient approach for the synthesis of highly yielding and α-selective saccharide thioglycosides containing 1,2-cis-2-amino glycosidic bonds, via cationic nickel-catalyzed glycosylation of thioglycoside acceptors bearing the 2-trifluoromethylphenyl aglycon with N-phenyl trifluoroacetimidate donors. The 2-trifluoromethylphenyl group effectively blocks transfer of the anomeric sulfide group from the glycosyl acceptor to the C(2)-benzylidene donor and can be easily installed and activated. The current method also highlights the efficacy of the nickel catalyst selectively activating the C(2)-benzylidene imidate group in the presence of the anomeric sulfide group on the glycosyl acceptors. PMID:22838405
Intramolecular interactions of L-phenylalanine revealed by inner shell chemical shift
NASA Astrophysics Data System (ADS)
Ganesan, Aravindhan; Wang, Feng
2009-07-01
Intramolecular interactions of the functional groups, carboxylic acid, amino, and phenyl in L-phenylalanine have been revealed through inner shell chemical shift. The chemical shift and electronic structures are studied using its derivatives, 2-phenethylamine (PEA) and 3-phenylpropionic acid (PPA), through substitutions of the functional groups on the chiral carbon Cα, i.e., carboxylic acid (-COOH) and amino (-NH2) groups. Inner shell ionization spectra of L-phenylalanine are simulated using density functional theory based B3LYP/TZVP and LB94/et-pVQZ models, which achieve excellent agreement with the most recently available synchrotron sourced x-ray photoemission spectroscopy of L-phenylalanine (Elettra, Italy). The present study reveals insight into behavior of the peptide bond (CO-NH) through chemical shift of the C1-Cα-Cβ(-Cγ) chain and intramolecular interactions with phenyl. It is found that the chemical shift of the carbonyl C1(=O) site exhibits an apparently redshift (smaller energy) when interacting with the phenyl aromatic group. Removal of the amino group (-NH2) from L-phenylalanine (which forms PPA) brings this energy on C1 close to that in L-alanine (δ <0.01 eV). Chemical environment of Cα and Cβ exhibits more significant differences in L-alanine than in the aromatic species, indicating that the phenyl group indeed affects the peptide bond in the amino acid fragment. No direct evidences are found that the carbonyl acid and amino group interact with the phenyl ring through conventional hydrogen bonds.
Ślusarz, Rafał; Szulc, Monika; Madaj, Janusz
2014-05-07
Proper understanding of the mechanisms of binding to Gram-positive bacteria cell wall layers-especially to the peptidoglycan (PG) layer, seems to be crucial for proper development of new drug candidates which are effective against these bacteria. In this work we have constructed two different models of the Gram-positive bacteria PG layer: the layered and the scaffold models. PG conformational changes during geometry optimization, models relaxation, and molecular dynamics were described and discussed. We have found that the border surface of both PG layer models differs from the surface located away from the edge of models and the chains formed by disaccharide units prefer helix-like conformation. This curling of PG chains significantly affects the shape of antibiotic-accessible surface and the process is thus crucial for new drug development. Glycopeptide antibiotics effective against Gram-positive bacteria, such as vancomycin and its semisynthetic derivatives-oritavancin and telavancin, bind to d-alanyl-d-alanine stem termini on the peptidoglycan precursors of the cell wall. This binding inhibits cross-linking between the peptides and subsequently prevents cell wall synthesis. In this study some of the aspects of conformational freedom of vancomycin and restrictions from the modifications of vancomycin structure introduced into oritavancin and telavancin and five other vancomycin derivatives (with addition of 2-acetamido-2-deoxy-β-d-galactopyranosylamine, 2-acetamido-2-deoxy-β-d-glucopyranosylamine, 1-amine-1-deoxy-d-glucitol, 2-amino-2-deoxy-d-galactitol, or 2-amino-2-deoxy-d-glucitol to the C-terminal amino acid group in the vancomycin) are presented and discussed. The resulting molecular dynamics trajectories, root mean square deviation changes of aglycon and saccharide moieties as well as a comparative study of possible interactions with cyclic and chain forms of modified groups have been carried out, measured, and analyzed. Energetically advantageous conformations show close similarity to the structures known from the experimental data, but the diversity of others suggest very high conformational freedom of all modeled antibiotics and vancomycin derivatives. Alditol derivatives move closer to the peptidoglycan chain more easily but they also form intramolecular interactions more frequently than their homologous cyclic forms. One of the proposed derivatives seems to be a promising agent which is efficient in treatment of infections caused by Gram-positive bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang
2017-04-01
Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.
Turner, Mark S.; Hafner, Louise M.; Walsh, Terry; Giffard, Philip M.
2004-01-01
Examination of supernatant fractions from broth cultures of Lactobacillus fermentum BR11 revealed the presence of a number of proteins, including a 27-kDa protein termed Sep. The amino-terminal sequence of Sep was determined, and the gene encoding it was cloned and sequenced. Sep is a 205-amino-acid protein and contains a 30-amino-acid secretion signal and has overall homology (between 39 and 92% identity) with similarly sized proteins of Lactobacillus reuteri, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus agalactiae, and Lactobacillus plantarum. The carboxy-terminal 81 amino acids of Sep also have strong homology (86% identity) to the carboxy termini of the aggregation-promoting factor (APF) surface proteins of Lactobacillus gasseri and Lactobacillus johnsonii. The mature amino terminus of Sep contains a putative peptidoglycan-binding LysM domain, thereby making it distinct from APF proteins. We have identified a common motif within LysM domains that is shared with carbohydrate binding YG motifs which are found in streptococcal glucan-binding proteins and glucosyltransferases. Sep was investigated as a heterologous peptide expression vector in L. fermentum, Lactobacillus rhamnosus GG and Lactococcus lactis MG1363. Modified Sep containing an amino-terminal six-histidine epitope was found associated with the cells but was largely present in the supernatant in the L. fermentum, L. rhamnosus, and L. lactis hosts. Sep as well as the previously described surface protein BspA were used to express and secrete in L. fermentum or L. rhamnosus a fragment of human E-cadherin, which contains the receptor region for Listeria monocytogenes. This study demonstrates that Sep has potential for heterologous protein expression and export in lactic acid bacteria. PMID:15184172
Shayan, P; Jafari, S; Fattahi, R; Ebrahimzade, E; Amininia, N; Changizi, E
2016-05-01
Ovine theileriosis is an important hemoprotozoal disease of sheep and goats in tropical and subtropical regions which caused high economic loses in the livestock industry. Theileria annulata surface protein (TaSp) was used previously as a tool for serological analysis in livestock. Since the amino acid sequences of TaSp is, at least, in part very conserved in T. annulata, Theileria lestoquardi and Theileria china I and II, it is very important to determine the amino acid sequence of this protein in Theileria ovis as well, to avoid false interpretation of serological data based on this protein in small animal. In the present study, the nucleotide sequence and amino acid sequence of T. ovis surface protein (ToSp) were determined. The comparison of the nucleotide sequence of ToSp showed 96, 96, 99, and 86 % homology to the corresponding nucleotide sequence of TaSp genes by T. annulata, T. China I, T. China II and T. lestoquardi, previously registered in GenBank under accession nos. AJ316260.1, AY274329.1, DQ120058.1, and EF092924.1 respectively. The amino acid sequence analysis showed 95, 81, 98 and 70 % homology to the corresponding amino acid sequence of T. annulata, T chinaI, T china II and T. lestoquardi, registered in GenBank under accession nos. CAC87478.1, AAP36993.1, AAZ30365.1 and AAP36999.11, respectively. Interestingly, in contrast to the C terminus, a significant difference in amino acid sequence in the N teminus of the ToSp protein could be determined compared to the other known corresponding TaSp sequences, which make this region attractive for designing of a suitable tool for serological diagnosis.
Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines
NASA Astrophysics Data System (ADS)
Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.
2017-10-01
Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.
Wu, Miaomiao; Liao, Peng; Deng, Dun; Liu, Gang; Wen, Qingqi; Wang, Yongfei; Qiu, Wei; Liu, Yan; Wu, Xingli; Ren, Wenkai; Tan, Bie; Chen, Minghong; Xiao, Hao; Wu, Li; Li, Tiejun; Nyachoti, Charles M.; Adeola, Olayiwola; Yin, Yulong
2014-01-01
The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins. PMID:25405987
Wan, Liang; Qi, Dongdong; Zhang, Yuexing; Jiang, Jianzhuang
2011-01-28
Density functional theory (DFT) calculation on the molecular structures, charge distribution, molecular orbitals, electronic absorption spectra of a series of eight unsymmetrical phthalocyaninato zinc complexes with one peripheral (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent at 2 or 3 position as an electron-withdrawing group and a different number of electron-donating amino groups at the remaining peripheral positions (9, 10, 16, 17, 23, 24) of the phthalocyanine ring, namely ZnPc-β-A, ZnPc-β-A-I-NH(2), ZnPc-β-A-II-NH(2), ZnPc-β-A-III-NH(2), ZnPc-β-A-I,II-NH(2), ZnPc-β-A-I,III-NH(2), ZnPc-β-A-II,III-NH(2), and ZnPc-β-A-I,II,III-NH(2), reveals the effects of amino groups on the charge transfer properties of these phthalocyanine derivatives with a typical D-π-A electronic structure. The introduction of amino groups was revealed altering of the atomic charge distribution, lifting the frontier molecular orbital level, red-shift of the near-IR bands in the electronic absorption spectra, and finally resulting in enhanced charge transfer directionality for the phthalocyanine compounds. Along with the increase of the peripheral amino groups at the phthalocyanine ring from 0, 2, 4, to 6, the dihedral angle between the phthalocyanine ring and the average plane of the (E)-2-cyano-3-(5-vinylthiophen-2-yl) acrylic acid substituent increases from 0 to 3.3° in an irregular manner. This is in good contrast to the regular and significant change in the charge distribution, destabilization of frontier orbital energies, and red shift of near-IR bands of phthalocyanine compounds along the same order. In addition, comparative studies indicate the smaller effect of incorporating two amino groups onto the 16 and 17 than on 9 and 10 or 23 and 24 peripheral positions of the phthalocyanine ring onto the aforementioned electronic properties, suggesting the least effect on tuning the charge transfer property of the phthalocyanine compound via introducing two electron-donating amino groups onto the 16 and 17 peripheral positions. As expected, compound ZnPc-β-A-I,III-NH(2) with four amino groups at 9, 10, 23, and 24 positions of the phthalocyanine ring shows the best charge transfer directionality among the three phthalocyaninato zinc complexes with four peripheral amino groups.
Khedive, A; Norouzi, M; Ramezani, F; Karimzadeh, H; Alavian, S M; Malekzadeh, R; Montazeri, G; Nejatizadeh, A; Ziaee, M; Abedi, F; Ataei, B; Yaran, M; Sayad, B; Somi, M H; Sarizadeh, G; Sanei-Moghaddam, I; Mansour-Ghanaei, F; Rafatpanah, H; Pourhosseingholi, M A; Keyvani, H; Kalantari, E; Saberifiroozi, M; Judaki, M A; Ghamari, S; Daram, M; Mahabadi, M; Fazeli, Z; Goodarzi, Z; Poortahmasebi, V; Jazayeri, S M
2013-07-01
Mutations within the coding region of hepatitis B surface antigen (HBsAg) have been found naturally in chronic carriers. To characterize the mutations of HBsAg from Iranian chronic carriers who were vaccine and/or medication naive. The surface genes from 360 patients were amplified and directly sequenced. The distribution of amino acid substitutions was classified according to different immune epitopes of the surface protein. All isolates belonged to genotype D. 222 (61.6%) of 360 patients contained at least one amino acid substitution. 404 (74.5%) of 542 amino acid changes occurred in different immune epitopes of HBsAg, of which 112 (27.7%) in 32 residues of B-cell epitopes (62 in the 'a' determinant); 111 (27.4%) in 32 residues of T helper; and 197 (48.7%) in 32 residues inside cytotoxic T lymphocyte (CTL) epitopes. One Th (186-197) and two CTL (28-51 and 206-215) epitopes were found to be hotspot motifs for the occurrence of 213 (52.7%) substitutions. 20 stop codons were identified in different epitopes. There was a significant association between amino acid substitutions and anti-HBe seropositivity; however, the correlation between such changes with viral load and ALT levels was not significant. In chronic hepatitis B virus(HBV) carriers, positive selection in particular outside the 'a' determinant appeared to exert influence on the surface proteins. These changes could be immune escape mutations naturally occurring due to the host immune surveillance especially at the T-cell level. © 2013 John Wiley & Sons Ltd.
Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P
2003-01-01
Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.
Li, Xin; Wang, Mengmeng; Wang, Lei; Shi, Xiujuan; Xu, Yajun; Song, Bo; Chen, Hong
2013-01-29
Polymer brush layers based on block copolymers of poly(oligo(ethylene glycol) methacrylate) (POEGMA) and poly(glycidyl methacrylate) (PGMA) were formed on silicon wafers by activators generated by electron transfer atom transfer radical polymerization (AGET ATRP). Different types of biomolecule can be conjugated to these brush layers by reaction of PGMA epoxide groups with amino groups in the biomolecule, while POEGMA, which resists nonspecific protein adsorption, provides an antifouling environment. Surfaces were characterized by water contact angle, ellipsometry, and Fourier transform infrared spectroscopy (FTIR) to confirm the modification reactions. Phase segregation of the copolymer blocks in the layers was observed by AFM. The effect of surface properties on protein conjugation was investigated using radiolabeling methods. It was shown that surfaces with POEGMA layers were protein resistant, while the quantity of protein conjugated to the diblock copolymer modified surfaces increased with increasing PGMA layer thickness. The activity of lysozyme conjugated on the surface could also be controlled by varying the thickness of the copolymer layer. When biotin was conjugated to the block copolymer grafts, the surface remained resistant to nonspecific protein adsorption but showed specific binding of avidin. These properties, that is, well-controlled quantity and activity of conjugated biomolecules and specificity of interaction with target biomolecules may be exploited for the improvement of signal-to-noise ratio in sensor applications. More generally, such surfaces may be useful as biological recognition elements of high specificity for functional biomaterials.
Surface modification of protein enhances encapsulation in chitosan nanoparticles
NASA Astrophysics Data System (ADS)
Koyani, Rina D.; Andrade, Mariana; Quester, Katrin; Gaytán, Paul; Huerta-Saquero, Alejandro; Vazquez-Duhalt, Rafael
2018-04-01
Chitosan nanoparticles have a huge potential as nanocarriers for environmental and biomedical purposes. Protein encapsulation in nano-sized chitosan provides protection against inactivation, proteolysis, and other alterations due to environmental conditions, as well as the possibility to be targeted to specific tissues by ligand functionalization. In this work, we demonstrate that the chemical modification of the protein surface enhances the protein loading in chitosan nanocarriers. Encapsulation of green fluorescent protein and the cytochrome P450 was studied. The increase of electrostatic interactions between the free amino groups of chitosan and the increased number of free carboxylic groups in the protein surface enhance the protein loading, protein retention, and, thus, the enzymatic activity of chitosan nanoparticles. The chemical modification of protein surface with malonic acid moieties reduced drastically the protein isoelectric point increasing the protein interaction with the polycationic biomaterial and chitosan. The chemical modification of protein does not alter the morphology of chitosan nanoparticles that showed an average diameter of 18 nm, spheroidal in shape, and smooth surfaced. The strategy of chemical modification of protein surface, shown here, is a simple and efficient technique to enhance the protein loading in chitosan nanoparticles. This technique could be used for other nanoparticles based on polycationic or polyanionic materials. The increase of protein loading improves, doubtless, the performance of protein-loaded chitosan nanoparticles for biotechnological and biomedical applications.
The Apollo Program and Amino Acids
ERIC Educational Resources Information Center
Fox, Sidney W.
1973-01-01
Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)
Ma, Guicen; Zhang, Minglu; Zhu, Li; Chen, Hongping; Liu, Xin; Lu, Chengyin
2018-01-05
Amine-functional reduced graphene oxide (amine-rGO) with different carbon chain length amino groups were successfully synthesized. The graphene oxides (GO) reduction as well as amino grafting were achieved simultaneously in one step via a facile solvothermal synthetic strategy. The obtained materials were characterized by X-ray diffraction, Raman spectroscopy, Fourier-transform infrared spectrometry and X-ray photoelectron spectroscopy to confirm the modification of GO with different amino groups. The adsorption performance of catechins and caffeine from tea acetonitrile extracts on different amine functional rGO samples were evaluated. It was found that tributylamine-functional rGO (tri-BuA-rGO) exhibited the highest adsorption ability for catechins and caffeine compared to GO and other amino group functional rGO samples. It was worth to note that the adsorption capacity of catechins on tri-BuA-rGO was 11 times higher than that of GO (203.7mgg -1 vs 18.7mgg -1 ). Electrostatic interaction, π-π interaction and surface hydrophilic-hydrophobic properties of tri-BuA-rGO played important roles in the adsorption of catechins as well as caffeine. The gravimetric analysis confirmed that the tri-BuA-rGO achieved the highest efficient cleanup preformance compared with traditional dispersive solid phase extraction (dSPE) adsorbents like primary-secondary amine (PSA), graphitized carbon black (GCB) or C18. A multi-pesticides analysis method based on tri-BuA-rGO is validated on 33 representative pesticides in tea using gas chromatography coupled to tandem mass spectrometry or high-performance liquid chromatography coupled with tandem mass spectrometry. The analysis method gave a high coefficient of determination (r 2 >0.99) for each pesticide and satisfactory recoveries in a range of 72.1-120.5%. Our study demonstrated that amine functional rGO as a new type of QuEChERS adsorbent is expected to be widely applied for analysis of pesticides at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Distribution and Origin of Amino Acids in Lunar Regolith Samples
NASA Technical Reports Server (NTRS)
Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; McLain, H. L.; Noble, S. K.; Gibson, E. K., Jr.
2015-01-01
The existence of organic compounds on the lunar surface has been a question of interest from the Apollo era to the present. Investigations of amino acids immediately after collection of lunar samples yielded inconclusive identifications, in part due to analytical limitations including insensitivity to certain compounds, an inability to separate enantiomers, and lack of compound-specific isotopic measurements. It was not possible to determine if the detected amino acids were indigenous to the lunar samples or the result of terrestrial contamination. Recently, we presented initial data from the analysis of amino acid abundances in 12 lunar regolith samples and discussed those results in the context of four potential amino acid sources [5]. Here, we expand on our previous work, focusing on amino acid abundances and distributions in seven regolith samples and presenting the first compound-specific carbon isotopic ratios measured for amino acids in a lunar sample.
Reducing renal uptake of 111In-DOTATOC: a comparison among various basic amino acids.
Lin, Yung-Chang; Hung, Guang-Uei; Luo, Tsai-Yueh; Tsai, Shih-Chuan; Sun, Shung-Shung; Hsia, Chien-Chung; Chen, Shu-Ling; Lin, Wan-Yu
2007-01-01
Several studies have reported significant renal toxicity after the use of a high dose of 90Y-DOTATOC. Thus, renal protection is necessary in treatments with 90Y-DOTA Tyr3-octreotide (DOTATOC). The infusion of certain positively charged amino acids has been shown to effectively reduce renal uptake of DOTATOC. In this study, we compared the effectiveness of three kinds of amino acids, D-lysine (lysine), L-arginine (arginine) and histidine, on renal protection in healthy rats and tried to determine which one was the most effective. Twenty SD healthy male rats were divided into 4 groups: lysine, histidine, arginine, and control. The rats were injected with a dose of 400 mg/kg of amino acid or 2 ml of phosphate-buffered saline (PBS) (as control) intraperitoneally. All rats were sacrificed at 4 hrs after the injection of 1 MBq 111In-DOTATOC. Samples of the kidney were taken and weighed carefully. The counts of radioactivity were measured by a gamma counter and renal concentrations were calculated and expressed as percent injected dose per gram (% ID/g). The renal uptake of 111In-DOTATOC was significantly lower for all three kinds of amino acids when compared to the control group. The renal uptake of 111In-DOTATOC in the lysine group was significantly lower than those in the histidine and arginine groups. The renal uptake of 111In-DOTATOC in the histidine group was lower than that in the arginine group, but no statistical difference was noted. Among these three amino acids, lysine had the best reduction rate of renal uptake of DOTATOC. Histidine was more effective than arginine but no statistical difference was noted.
Final report on the safety assessment of amino nitrophenols as used in hair dyes.
Burnett, Christina L; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F
2009-01-01
2-Amino-3-nitrophenol, 2-amino-4-nitrophenol, 2-amino-5-nitrophenol, 4-amino-3-nitrophenol, 4-amino-2-nitrophenol, 2-amino-4-nitrophenol sulfate, 3-nitro-p-hydroxyethylaminophenol, and 4-hydroxypropylamino-3-nitrophenol are substituted aromatic compounds used as semipermanent (nonoxidative) hair colorants and as toners in permanent (oxidative) hair dye products. All ingredients in this group except 2-amino-4-nitrophenol sulfate, 2-amino-5-nitrophenol, and 4-amino-2-nitrophenol have reported uses in cosmetics at use concentrations from 2% to 9%. The available toxicity studies for these amino nitrophenol hair dyes did not suggest safety concerns except for the potential carcinogenicity and mutagenicity of 4-amino-2-nitrophenol. 2-Amino-3-nitrophenol, 2-amino-4-nitrophenol, 2-amino-4-nitrophenol sulfate, 2-amino-5-nitrophenol, 4-amino-3-nitrophenol, 3-nitro-p-hydroxyethylaminophenol, and 4-hydroxypropylamino-3-nitrophenol are safe as hair dye ingredients in the practices of use and concentration as described in this safety assessment, but the data are insufficient to make a safety determination for 4-amino-2-nitrophenol.
Hasanzadeh, Mohammad; Shadjou, Nasrin; Omidinia, Eskandar
2013-08-01
Magnetic (Fe2O3) mobile crystalline material-41 (MCM-41) was prepared and characterized using transmission electron microscopy (TEM) and nitrogen adsorption-desorption techniques. Due to the large surface area (1213 m(2)g(-1)) and remarkable electrocatalytic properties of MCM-41-Fe2O3, the MCM-41-Fe2O3 modified glassy carbon electrode (MCM-41-Fe2O3/GCE) exhibits potent electrocatalytic activity toward the electro-oxidation of amino acids. MCM-41-Fe2O3/GCE brings new capabilities for electrochemical sensing by combining the advantages of Fe2O3 magnetic nanoparticles and MCM-41 with very large surface area. Cyclic voltammetry, hydrodynamic amperometry and flow injection analysis used to determination of amino acids at higher concentration range. Fast response time, excellent catalytic activity, and ease of preparation are the advantages of the proposed amino acid sensor. Copyright © 2013 Elsevier B.V. All rights reserved.
Interaction of tachykinins with phospholipid membranes: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.
Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.
Sridev Mohapatra; Rakesh Minocha; Stephanie Long; Subhash C. Minocha
2010-01-01
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis...
Uutela, Päivi; Ketola, Raimo A; Piepponen, Petteri; Kostiainen, Risto
2009-02-09
The efficiencies of three derivatisation reagents that react with either the amine (9-fluorenylmethyl chloroformate (FMOC)) or the carboxylic acid group (butanol) of amino acid or with both types of functional groups (propyl chloroformate) were compared in the analysis of amino acids by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Separation of 20 amino acids derivatised with these three reagents was studied on reversed-phase chromatography. Linearity, repeatability and limits of detection of the LC-ESI-MS/MS method were determined by analysing FMOC-, butanol- and propyl chloroformate-derivatised lysine, beta-aminobutyric acid, threonine and glutamic acid. The limits of detection for the derivatised amino acids (7.5-75fmol) were as much as 2-60 times lower than those of the corresponding underivatised molecules. The best linearity was observed for amino acids derivatised with propyl chloroformate or butanol (r(2)=0.996-0.999, range=100-8500nmolL(-1)). Propyl chloroformate was the best suited of the reagents tested for the analysis of amino acids with LC-MS/MS and was used for the analysis of amino acids in rat brain microdialysis samples.
Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc
2018-01-30
ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.
Three Cd(II) MOFs with Different Functional Groups: Selective CO2 Capture and Metal Ions Detection.
Wang, Zhong-Jie; Han, Li-Juan; Gao, Xiang-Jing; Zheng, He-Gen
2018-05-07
Three Cd(II) iso-frameworks {[Cd(BIPA)(IPA)]·DMF} n (1), {[Cd(BIPA)(HIPA)]·DMF} n (2), and {[Cd(BIPA)(NIPA)]·2H 2 O} n (3) were synthesized from the self-assembly of the BIPA ligand (BIPA = bis(4-(1 H-imidazol-1-yl)phenyl)amine) and different carboxylic ligands (H 2 IPA = isophthalic acid, H 2 HIPA = 5-hydroxyisophthalic acid, H 2 NIPA = 5-nitroisophthalic acid) with Cd(II), which have amino groups, amino and phenolic hydroxyl groups, and amino and nitro groups, respectively. Both 1 and 2 exhibit CO 2 uptakes of more than 20 wt %, indicating that amino and phenolic hydroxyl functionalized groups are beneficial to CO 2 adsorption. Their applications and mechanisms in detecting metal ions were researched. The results exhibit that 1 and 2 are dual-responsive photoluminescent sensors for Hg 2+ and Pb 2+ ions with low detection concentration and high quenching constant. Besides, like most MOFs, 3 can detect a trace quantity of Fe 3+ and Cu 2+ .
Wu, Yi; Liu, Wenhui; Li, Qi; Li, Yafei; Yan, Yali; Huang, Fang; Wu, Xin; Zhou, Quancheng; Shu, Xugang; Ruan, Zheng
2018-08-01
Chlorogenic acid (CGA) has many biological properties, including antibacterial, antioxidant and anti-inflammatory properties, and is one of the most abundant phenolic acids available in the human diet. The aim of this study was to investigate the effects of CGA on regulation of the gut microbiota, and on the levels of free amino acids and 5-hydroxytryptamine (5-HT, serotonin). Ninety-six healthy growing pigs were randomly assigned to two treatment groups: the Ctrl group (control group, standard feed) and the CGA group [standard feed plus 0.05% 3-caffeoylquinic acid (3-CQA)] for 60 days. The diversity of the gut microbiota was increased after CGA supplementation. Changes in these microbes were significantly associated with the serum free amino acid levels and colonic 5-HT level. Compared with the Ctrl group, the levels of serum aspartic acid, threonine, alanine, arginine, and colonic 5-HT were significantly increased (p < .05). These data suggest important roles for CGA in regulating the gut microbiota and increasing the serum free amino acid levels.
An Assay of Selected Serum Amino Acids in Patients with Type 2 Diabetes Mellitus.
Drábková, Petra; Šanderová, Jana; Kovařík, Jakub; kanďár, Roman
2015-01-01
Amino acids are the building blocks of proteins. In case of insulin resistance, which is typical for type 2 diabetes mellitus (T2DM), proteolysis is increased and protein synthesis is decreased; therefore, we can observe changes in the levels of amino acids in diabetics vs. non-diabetics. The aim of this study was to find differences in the levels of selected amino acids between patients with diabetes (type 2) and a control group. Amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde in the presence of potassium cyanide to form fluorescent 1-cyanobenz(f)isoindole product. Amino acids derivatives were measured using a high-performance liquid chromatography with fluorescence detection. The serum levels of glucose were determined using an automatic biochemistry analyzer, glycated hemoglobin HbA1c was measured by cation exchange chromatography. A total of 19 serum amino acids in T2DM patients and non-diabetics were measured. There were 9 amino acids, which were significantly different in these groups (p<0.05). Significantly decreased levels of arginine, asparagine, glycine, serine, threonine and significantly increased levels of alanine, isoleucine, leucine, valine in diabetics were found. Significant difference in metabolism of amino acids between diabetics and non-diabetics were observed. The altered levels of amino acids in diabetic patients could be a suitable predictor of diabetes.
Sudoku Puzzles for First-Year Organic Chemistry Students
ERIC Educational Resources Information Center
Perez, Alice L.; Lamoureux, G.
2007-01-01
Sudoku puzzle was designed to teach about amino acids and functional groups to the students of undergraduate organic chemistry students. The puzzles focus on helping the student learn the name, 3-letter code and 1-letter code of common amino acids and functional groups.
Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus
2016-01-01
We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.
NASA Technical Reports Server (NTRS)
Bai, J. P.; Hu, M.; Subramanian, P.; Mosberg, H. I.; Amidon, G. L.
1992-01-01
The feasibility of targeting prolidase as a peptide prodrug-converting enzyme has been examined. The enzymatic hydrolysis by prolidase of substrates for the peptide transporter L-alpha-methyldopa-pro and several dipeptide analogues without an N-terminal alpha-amino group (phenylpropionylproline, phenylacetylproline, N-benzoylproline, and N-acetylproline) was investigated. The Michaelis-Menten parameters Km and Vmax for L-alpha-methyldopa-pro are 0.09 +/- 0.02 mM and 3.98 +/- 0.25 mumol/min/mg protein, respectively. However, no hydrolysis of the dipeptide analogues without an N-terminal alpha-amino group is observed, suggesting that an N-terminal alpha-amino group is required for prolidase activity. These results demonstrate that prolidase may serve as a prodrug-converting enzyme for the dipeptide-type prodrugs, utilizing the peptide carrier for transport of prodrugs into the mucosal cells and prolidase, a cytosolic enzyme, to release the drug. However, a free alpha-amino group appears to be necessary for prolidase hydrolysis.
D-amino acids inhibit initial bacterial adhesion: thermodynamic evidence.
Xing, Su-Fang; Sun, Xue-Fei; Taylor, Alicia A; Walker, Sharon L; Wang, Yi-Fu; Wang, Shu-Guang
2015-04-01
Bacterial biofilms are structured communities of cells enclosed in a self-produced hydrated polymeric matrix that can adhere to inert or living surfaces. D-Amino acids were previously identified as self-produced compounds that mediate biofilm disassembly by causing the release of the protein component of the polymeric matrix. However, whether exogenous D-amino acids could inhibit initial bacterial adhesion is still unknown. Here, the effect of the exogenous amino acid D-tyrosine on initial bacterial adhesion was determined by combined use of chemical analysis, force spectroscopic measurement, and theoretical predictions. The surface thermodynamic theory demonstrated that the total interaction energy increased with more D-tyrosine, and the contribution of Lewis acid-base interactions relative to the change in the total interaction energy was much greater than the overall nonspecific interactions. Finally, atomic force microscopy analysis implied that the hydrogen bond numbers and adhesion forces decreased with the increase in D-tyrosine concentrations. D-Tyrosine contributed to the repulsive nature of the cell and ultimately led to the inhibition of bacterial adhesion. This study provides a new way to regulate biofilm formation by manipulating the contents of D-amino acids in natural or engineered systems. © 2014 Wiley Periodicals, Inc.
Hydrogen bonding between phosphate and amino acid side chains
NASA Astrophysics Data System (ADS)
Carmona, P.; Rodriguez, M. L.
1986-03-01
Hydrogen bonds between polar groups of amino acid side chains (histidine, lysine, glutamic acid) and phosphate ions have been studied by infrared spectroscopy. Proton transfer from amino acid groups to phosphate occur mainly in case that tribasic and dibasic phosphate ions take part in hydrogen bonds. Conformational changes and continuum are strongly related to the degree of proton transfer and hydration. It is pointed out that the aforementioned properties should be of great significance for nucleation and growth of prostatic and renal stones.
Amino Acids Regulate mTORC1 by an Obligate Two-step Mechanism*
Dyachok, Julia; Earnest, Svetlana; Iturraran, Erica N.; Cobb, Melanie H.
2016-01-01
The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cell growth with its nutritional, hormonal, energy, and stress status. Amino acids are critical regulators of mTORC1 that permit other inputs to mTORC1 activity. However, the roles of individual amino acids and their interactions in mTORC1 activation are not well understood. Here we demonstrate that activation of mTORC1 by amino acids includes two discrete and separable steps: priming and activation. Sensitizing mTORC1 activation by priming amino acids is a prerequisite for subsequent stimulation of mTORC1 by activating amino acids. Priming is achieved by a group of amino acids that includes l-asparagine, l-glutamine, l-threonine, l-arginine, l-glycine, l-proline, l-serine, l-alanine, and l-glutamic acid. The group of activating amino acids is dominated by l-leucine but also includes l-methionine, l-isoleucine, and l-valine. l-Cysteine predominantly inhibits priming but not the activating step. Priming and activating steps differ in their requirements for amino acid concentration and duration of treatment. Priming and activating amino acids use mechanisms that are distinct both from each other and from growth factor signaling. Neither step requires intact tuberous sclerosis complex of proteins to activate mTORC1. Concerted action of priming and activating amino acids is required to localize mTORC1 to lysosomes and achieve its activation. PMID:27587390
NASA Astrophysics Data System (ADS)
Thanigaimani, Kaliyaperumal; Khalib, Nuridayanti Che; Temel, Ersin; Arshad, Suhana; Razak, Ibrahim Abdul
2015-11-01
2-amino-5-chloropyridine: 3-methylbenzoic acid [(2A5CP) (3MBA)] (I) cocrystal was synthesized and its single crystal was grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction technique. The cocrystal belongs to the monoclinic crystallographic system with space group P21/c, Z = 4, and a = 13.3155 (5) Å, b = 5.5980 (2) Å, c = 18.3787 (7) Å, β = 110.045 (2)°. The crystal structure is stabilized by Npyridine-H•••Odbnd C, Cdbnd O-H•••Npyridine and C-H⋯O type hydrogen bonding interactions. The presence of unionized -COOH functional group in the cocrystal was identified both by spectral methods and X-ray structural analysis. The experimental studies obtained by using the methods of single crystal X-ray analysis, powder X-ray diffraction (PXRD) analysis, FTIR, 1H NMR and 13C NMR spectroscopies confirmed the predicted cocrystal. The supramolecular assembly of the cocrystal was analyzed and discussed. The molecular geometry, vibrational frequencies of the compound in the ground state were calculated by using the density functional theory (DFT) method with 6-311++G (d,p) basis set and were compared with the experimental data. Additionally, HOMO-LUMO energy gap, natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of the compound were performed at B3LYP/6-311++G (d,p) level. Hirshfeld surfaces were used to confirm the existence of inter-molecular interactions in the compound.
Site-Specific Attachment of gold Nanoparticles to DNA Templates
2001-01-01
1 -ethyl- 3 -( 3 - dimethylaminopropyl ) carbodiimide hydrochloride (Pierce) and -2.0rmg N...functionalized gold nanoparticles. The gold particles were covalently bound to the amino groups on the DNA using standard 1 -ethyl- 3 - ( 3 - dimethylaminopropyl ...nm). The reaction between the amino group on the DNA and the carboxyl group on the gold particle was facilitated by 1 -ethyl- 3 -( 3 - dimethylaminopropyl
Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface.
Alkan, Arda; Steinmetz, Christian; Landfester, Katharina; Wurm, Frederik R
2015-12-02
Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.
NASA Astrophysics Data System (ADS)
Sun, Jun; Bi, Hong
2012-03-01
A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.
Jayabalan, R; Sathishkumar, M; Jeong, E S; Mun, S P; Yun, S E
2012-11-01
A high porosity carbon cloth with immobilized FAD was employed as working electrode in electrochemical NADH-regeneration procedure. Carbon cloth was oxidized with hot acids to create surface carboxyl group and then coupled by adenine amino group of FAD with carbodiimide in the presence of N-hydroxysulfosuccinimide. The bioelectrocatalytic NADH-regeneration was coupled to the conversion of achiral substrate pyruvate into chiral product l-lactate by l-lactate dehydrogenase (l-LDH) within the same reactor. The conversion was completed at 96h in bioreactor with FAD-modified carbon cloth, resulting in about 6mM of l-lactate from 10mM of pyruvate. While with bare carbon cloth, the yield at 120h was around 5mM. Immobilized FAD on the surface of carbon cloth electrode facilitated it to carry electrons from electrode to electron transfer enzymes; thereby NADH-regeneration was accelerated to drive the enzymatic reaction efficiently. Copyright © 2012 Elsevier Ltd. All rights reserved.
Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Qichi; Laskin, Julia
2014-02-06
The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32more » terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.« less
Chauhan, Dinesh Pratapsinh; Varma, Sreejith J; Gudem, Mahesh; Panigrahi, Nihar; Singh, Khushboo; Hazra, Anirban; Talukdar, Pinaki
2017-06-07
Copper-catalyzed reaction of enynamines with sulfonylazides provides acyclic and cyclic amidines. Nucleophilic addition of the tethered amino group on the in situ generated ketenimine forms a six-membered cyclic zwitterionic intermediate which facilitates migration of the tethered amino group to the C 5 -center giving the acyclic amidine. On the other hand, migration of a substituent on the amino group to C 2 - and C 4 -centers results in the formation of cyclic amidines. Computational studies were carried out to validate the mechanism which indicates that the product distribution of the process depends on the substitutions on the enynamine backbone.
Venkatesan, Perumal; Thamotharan, Subbiah; Ilangovan, Andivelu; Liang, Hongze; Sundius, Tom
2016-01-15
Nonlinear optical (NLO) activity of the compound (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino] prop-2-enoic acid is investigated experimentally and theoretically using X-ray crystallography and quantum chemical calculations. The NLO activity is confirmed by both powder Second Harmonic Generation (SHG) experiment and first hyper polarizability calculation. The title compound displays 8 fold excess of SHG activity when compared with the standard compound KDP. The gas phase geometry optimization and vibrational frequencies calculations are performed using density functional theory (DFT) incorporated in B3LYP with 6-311G++(d,p) basis set. The title compound crystallizes in non-centrosymmetric space group P21. Moreover, the crystal structure is primarily stabilized through intramolecular N-H···O and O-H···O hydrogen bonds and intermolecular C-H···O and C-H···π interactions. These intermolecular interactions are analyzed and quantified using Hirshfeld surface analysis and PIXEL method. The detailed vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szegedi, A., E-mail: szegedi@chemres.h; Popova, M.; Goshev, I.
2011-05-15
MCM-41 and SBA-15 silica materials with spherical morphology and different particle sizes were synthesized and modified by post-synthesis method with 3-aminopropyltriethoxysilane (APTES). A comparative study of the adsorption and release of a model drug, ibuprofen, were carried out. The modified and drug loaded mesoporous materials were characterized by XRD, TEM, N{sub 2} physisorption, thermal analysis, elemental analysis and FT-IR spectroscopy. Surface modification with amino groups resulted in high degree of ibuprofen loading and slow rate of release for MCM-41, whereas it was the opposite for SBA-15. The adsorbed drug content and the delivery rate can be predetermined by the choicemore » of mesoporous material with the appropriate structural characteristics and surface functionality. -- Graphical Abstract: Ibuprofen delivery from the parent and amino-modified spherical MCM-41 materials with 100 nm (small) and 500 nm (large) particle sizes. Display Omitted Highlights: {yields} Spherical type MCM-41 and SBA-15 with different particle sizes were modified by APTES. {yields} Adsorption and release rate of ibuprofen were compared. {yields} High degree of ibuprofen loading, slow release rate for MCM-41, the opposite for SBA-15. {yields} MCM-41 with 100 nm particles was more stable and showed slower release rate« less
NASA Astrophysics Data System (ADS)
Horák, Daniel; Hlidková, Helena; Klyuchivska, Olga; Grytsyna, Iryna; Stoika, Rostyslav
2017-12-01
The first objective of this work was to prepare biocompatible magnetic polymer microspheres with reactive functional groups that could withstand nonspecific protein adsorption from biological media. Carboxyl group-containing magnetic poly(2-hydroxyethyl methacrylate) (mgt.PHEMA) microspheres ∼4 μm in size were prepared by multistage swelling polymerization, precipitation of iron oxide inside their pores, and coating with an α-methoxy-ω-amino poly(ethylene glycol) (CH3O-PEG750-NH2 or CH3O-PEG5,000-NH2)/α-amino-ω-t-Boc-amino poly(ethylene glycol) (H2N-PEG5,000-NH-t-Boc) mixture. The mgt.PHEMA@PEG microspheres contained ∼10 μmol COOH per g. Biocompatibility of the particles was evaluated by their treatment with human embryonic kidney cells of the HEK293 line. The microspheres did not interfere with the growth of these cells, suggesting that the particles can be considered non-toxic. A second goal of this study was to address on the interaction of the developed microspheres with macrophages that commonly eliminate foreign microbodies appearing in organisms. Murine J774.2 macrophages (J774.2) were cultured in the presence of the neat and PEGylated microspheres for 2 h. Mgt.PHEMA@PEG5,000 microspheres significantly adhered to the surface of J774.2 macrophages but were minimally engulfed. Due to these properties, the mgt.PHEMA@PEG microspheres might be useful for application in drug delivery systems and monitoring of the efficiency of phagocytosis.
Schmidlin, Patrick R; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Sculean, Anton; Lussi, Adrian; Miron, Richard J
2017-06-01
The aim of this study is to examine morphological changes of dentin surfaces following air polishing or amino acid buffered hypochlorite solution application and to assess their influence on periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs in vitro. Bovine dentin discs were treated with either (i) Classic, (ii) Plus, or (iii) Perio powder (EMS). Furthermore, Perisolv® a hypochlorite solution buffered with various amino acids was investigated. Untreated dentin discs served as controls. Morphological changes to dentin discs were assessed using scanning electron microscopy (SEM). Human PDL cells were seeded onto the respectively treated discs, and samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, adhesion assay, and SEM imaging, respectively. Both control and Perisolv®-rinsed dentin discs demonstrated smooth surfaces at low and high magnifications. The Classic powders demonstrated the thickest coating followed by the Powder Plus. The Perio powder demonstrated marked alterations of dentin discs by revealing the potential to open dentinal tubules even before rinsing. Seeding of PDL cells demonstrated an almost 100 % survival rate on all samples demonstrating very high biocompatibility for all materials. Significantly higher PDL cell numbers were observed on samples treated with the Perio powder and the Perisolv® solution (approximately 40 % more cells; p < 0.05). SEM imaging revealed the potential for PDL cells to attach and spread on all surfaces. The results from the present study demonstrate that cell survival and spreading of PDL cells on root surfaces is possible following either air polishing or application with Perisolv®. Future in vitro and animal testing is necessary to further characterize the beneficial effects of either system in a clinical setting. The use of air polishing or application with Perisolv amino acid buffered hypochlorite solution was effective in treating root surfaces and allowed for near 100 % PDL cell survival, attachment, and spreading onto all root surfaces.
Synthesis of an N-aminopyrazinonium analogue of cytidine.
Lee, T C; Chello, P L; Chou, T C; Templeton, M A; Parham, J C
1983-02-01
An N-aminated pyrazine analogue of cytidine, in which the pyrimidine N(3) ring nitrogen and C(4) amino group were replaced by a C-amino and an N-amino function, respectively, was prepared as a potential deaminase-resistant cytidine antimetabolite. The nucleoside 1,2-diamino-4-beta-D-ribofuranosylpyrazin-2-onium chloride (6) was a mild cytostatic agent but was neither a substrate for nor an inhibitor of mouse kidney cytidine deaminase. It ionized with a lower pKa than expected. The anion did not undergo the dimerization usually observed with N-imino heterocyclic ylides but unerwent hydrolysis of the 2-amino group to yield a 1-aminopyrazine-2,3-dione nucleoside.
Comet impacts and chemical evolution on the bombarded earth
NASA Technical Reports Server (NTRS)
Oberbeck, Verne R.; Aggarwal, Hans
1992-01-01
Amino acids yields for previously published shock tube experiments are used with minimum Cretaceous-Tertiary (K/T) impactor mass and comet composition to predict AIB amino acid K/T boundary sediment column density. The inferred initial concentration of all amino acids in the K/T sea and in similar primordial seas just after 10 km comet impacts would have been at least 10 exp -7 M. However, sinks for amino acids must also be considered in calculating amino acid concentrations after comet impacts and in assessing the contribution of comets to the origin of life. The changing concentration of cometary amino acids due to ultraviolet light is compared with the equilibrium concentration of amino acids produced in the sea from corona discharge in the atmosphere, deposition in water, and degradation by ultraviolet light. Comets could have been more important than endogenous agents for initial evolution of amino acids. Sites favorable for chemical evolution of amino acids are examined, and it is concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of earth before 3.8 billion years ago.
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1992-01-01
It is proposed that the AIB amino acids at the K/T boundary were synthesized during entry of a comet. However, whether they were synthesized or supplied directly from space, the concentration of amino acids in the shallow K/T sea would have been about 10(exp -7) M. It is probable that clays were the dominant sinks for the amino acids in the K/T sea and in the primordial ocean. Because clay removed amino from the sea so quickly, we must study the amino acid contribution from individual comets in order to evaluate the effectiveness of comets for chemical evolution. Such an evaluation shows that comets would have produced amino acid concentrations higher than equilibrium concentrations of amino acids from corona discharge at all times preceding the age of the oldest fossils. The preferred sites for chemical evolution of cometary amino acids are in cloud drops and tide pools where the concentration of amino acids would have been the highest. Life could have originated at the surface even during periods of intense bombardment of the earth before 3.8 billion years ago.
Impact contribution of prebiotic reactants to Earth
NASA Technical Reports Server (NTRS)
Aggarwal, Hans R.
1992-01-01
It is proposed that the AIB amino acid at the K/T boundary were synthesized during entry of a comet. However, whether they were synthesized or supplied directly from space, the concentration of amino acids in the shallow K/T sea would have been about 10(exp -7) M. It is probable that clays were the dominant sinks for the amino acids in the K/T sea and in the primordial ocean. Because clay removed amino acids from sea water quickly, the amino acid contribution must be studied from individual comets in order to evaluate the effectiveness of comets for chemical evolution. Such an evaluation shows that comets would have produced amino acid concentration higher than equilibrium concentrations of amino acid from corona discharge at all times preceding the age of the oldest fossils. The perferred sites for chemical evolution of cometary amino acids are in cloud drops and tide pools where the concentration of amino acids would have been the highest. Life could have originated at the surface even during periods of intense bombardment of the earth before 3.8 billion years ago.
Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong
2017-09-13
We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.
NASA Astrophysics Data System (ADS)
Vaishlya, O. B.; Osipov, N. N.; Guseva, N. V.
2015-09-01
We conducted pre-sowing seed treatment of spring wheat carbon nanotubes modified with thionyl chloride, ethylene diamine, azobenzole, and dodecylamine. CNTs did not disrupt the structure of the crop, but the activity of extracellular enzymes in the rhizosphere of plants in the flowering stage changed: laccase works more poorly in the variant of the CNTs with the amino groups exochitinase and phosphatase activity increased in the case of chlorinated CNTs, OH and COOH groups on the surface of the nanotubes twice accelerate work β-glucosidase. The changes observed in the biogeochemical cycles in the rhizosphere are a possible cause of the effect of nanotubes on the development of epidemic diseases of wheat.
Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.
Gujrati, Maneesh; Vaidya, Amita; Lu, Zheng-Rong
2016-01-20
RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.
NASA Astrophysics Data System (ADS)
Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah
2016-09-01
The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.
Self-Assembly of Prebiotic Organic Materials from Impact Events of Amino Acid Solutions
NASA Astrophysics Data System (ADS)
Goldman, Nir
2017-06-01
Proteinogenic amino acids can be produced on or delivered to a planet via abiotic sources and were consequently likely present before the emergence of life on early Earth. However, the role that these materials played in the in the emergence of life remains an open question, in part because little is known about the survivability and reactivity of astrophysical prebiotic compounds upon impact with a planetary surface. To this end, we have used a force matched semi-empirical quantum simulation method in development in our group to study oblique impacts of aqueous glycine solutions at conditions of up to 40 GPa and 3000 K. We find that these elevated conditions induce the formation of glycine-oligomeric structures with a number of different chemical moieties such as hydroxyl and amine groups diffusing on and off the C-N backbones. The C-N backbones of these structures generally remain stable during cooling and expansion, yielding relatively large three-dimensional molecules that contain a number of different functional groups and embedded bonded regions akin to oligo-peptides. Our results help determine the role of comets and other celestial bodies in both the delivery and synthesis of polypeptides and homochirality to early Earth. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Lou, Chenguang; Samuelsen, Simone V; Christensen, Niels Johan; Vester, Birte; Wengel, Jesper
2017-04-19
Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.
SPPS of protected peptidyl aminoalkyl amides.
Karavoltsos, Manolis; Mourtas, Spyros; Gatos, Dimitrios; Barlos, Kleomenis
2002-11-01
Monophthaloyl diamines derived from naturally occurring amino acids were attached through their free amino functions to resins of the trityl type. The phthaloyl groups were removed by hydrazinolysis, and peptide chains were assembled using Fmoc/tBu-amino acids on the liberated amino functions. The peptidyl aminoalkyl amides obtained were cleaved from the resins by mild acidolysis, with the tBu-side chain protection remaining intact.
Madhusudhan, Alle; Reddy, Gangapuram Bhagavanth; Venkatesham, Maragoni; Veerabhadram, Guttena; Kumar, Dudde Anil; Natarajan, Sumathi; Yang, Ming-Yeh; Hu, Anren; Singh, Surya S.
2014-01-01
Doxorubicin (DOX) was immobilized on gold nanoparticles (AuNPs) capped with carboxymethyl chitosan (CMC) for effective delivery to cancer cells. The carboxylic group of carboxymethyl chitosan interacts with the amino group of the doxorubicin (DOX) forming stable, non-covalent interactions on the surface of AuNPs. The carboxylic group ionizes at acidic pH, thereby releasing the drug effectively at acidic pH suitable to target cancer cells. The DOX loaded gold nanoparticles were effectively absorbed by cervical cancer cells compared to free DOX and their uptake was further increased at acidic conditions induced by nigericin, an ionophore that causes intracellular acidification. These results suggest that DOX loaded AuNPs with pH-triggered drug releasing properties is a novel nanotheraputic approach to overcome drug resistance in cancer. PMID:24821542
Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng
2016-11-15
Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.
A molecular rotor based ratiometric sensor for basic amino acids.
Pettiwala, Aafrin M; Singh, Prabhat K
2018-01-05
The inevitable importance of basic amino acids, arginine and lysine, in human health and metabolism demands construction of efficient sensor systems for them. However, there are only limited reports on the 'ratiometric' detection of basic amino acids which is further restricted by the use of chemically complex sensor molecules, which impedes their prospect for practical applications. Herein, we report a ratiometric sensor system build on simple mechanism of disassociation of novel emissive Thioflavin-T H-aggregates from heparin surface, when subjected to interaction with basic amino acids. The strong and selective electrostatic and hydrogen bonding interaction of basic amino acids with heparin leads to large alteration in photophysical attributes of heparin bound Thioflavin-T, which forms a highly sensitive sensor platform for detection of basic amino acids in aqueous solution. These selective interactions between basic amino acids and heparin allow our sensor system to discriminate arginine and lysine from other amino acids. This unique mechanism of dissociation of Thioflavin-T aggregates from heparin surface provides ratiometric response on both fluorimetric and colorimetric outputs for detection of arginine and lysine, and thus it holds a significant advantage over other developed sensor systems which are restricted to single wavelength detection. Apart from the sensitivity and selectivity, our system also provides the advantage of simplicity, dual mode of sensing, and more importantly, it employs an inexpensive commercially available probe molecule, which is a significant advantage over other developed sensor systems that uses tedious synthesis protocol for the employed probe in the detection scheme, an impediment for practical applications. Additionally, our sensor system also shows response in complex biological media of serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Bernsmann, Falk; Frisch, Benoît; Ringwald, Christian; Ball, Vincent
2010-04-01
We recently showed the possibility to build dopamine-melanin films of controlled thickness by successive immersions of a substrate in alkaline solutions of dopamine [F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerlé, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, V. Ball, J. Phys. Chem. C 113 (2009) 8234-8242]. In this work the structure and properties of such films are further explored. The zeta-potential of dopamine-melanin films is measured as a function of the total immersion time to build the film. It appears that the film bears a constant zeta-potential of (-39+/-3) mV after 12 immersion steps. These data are used to calculate the surface density of charged groups of the dopamine-melanin films at pH 8.5 that are mostly catechol or quinone imine chemical groups. Furthermore the zeta-potential is used to explain the adsorption of three model proteins (lysozyme, myoglobin, alpha-lactalbumin), which is monitored by quartz crystal microbalance. We come to the conclusion that protein adsorption on dopamine-melanin is not only determined by possible covalent binding between amino groups of the proteins and catechol groups of dopamine-melanin but that electrostatic interactions contribute to protein binding. Part of the adsorbed proteins can be desorbed by sodium dodecylsulfate solutions at the critical micellar concentration. The fraction of weakly bound proteins decreases with their isoelectric point. Additionally the number of available sites for covalent binding of amino groups on melanin grains is quantified. Copyright 2009 Elsevier Inc. All rights reserved.
Analysis of amino acid and codon usage in Paramecium bursaria.
Dohra, Hideo; Fujishima, Masahiro; Suzuki, Haruo
2015-10-07
The ciliate Paramecium bursaria harbors the green-alga Chlorella symbionts. We reassembled the P. bursaria transcriptome to minimize falsely fused transcripts, and investigated amino acid and codon usage using the transcriptome data. Surface proteins preferentially use smaller amino acid residues like cysteine. Unusual synonymous codon and amino acid usage in highly expressed genes can reflect a balance between translational selection and other factors. A correlation of gene expression level with synonymous codon or amino acid usage is emphasized in genes down-regulated in symbiont-bearing cells compared to symbiont-free cells. Our results imply that the selection is associated with P. bursaria-Chlorella symbiosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Effect of amino acids on the eutectic behavior of NaCl solutions studied by DSC.
Chen, N J; Morikawa, J; Hashimoto, T
2005-06-01
The effect of a series of amino acids on the eutectic behavior of NaCl solutions at isotonic concentration has been studied by differential scanning calorimetry. The inclusion of different amino acids had different effects on eutectic formation. The amino acids were grouped into four categories based on their effect on eutectic formation: category C were amino acids that had no effect on eutectic formation; category D amino acids inhibited eutectic formation; category T amino acids shifted the melting of the eutectic to a lower temperature; category E amino acids caused the formation of a new eutectic with a melting temperature approximately -5 degrees C. The mechanism of these different effects on eutectic behavior is discussed, based on the chemical structure of the amino acids.
Schmidt, J A; Rinaldi, S; Scalbert, A; Ferrari, P; Achaintre, D; Gunter, M J; Appleby, P N; Key, T J; Travis, R C
2016-03-01
We aimed to investigate the differences in plasma concentrations and in intakes of amino acids between male meat-eaters, fish-eaters, vegetarians and vegans in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. This cross-sectional analysis included 392 men, aged 30-49 years. Plasma amino acid concentrations were measured with a targeted metabolomic approach using mass spectrometry, and dietary intake was assessed using a food frequency questionnaire. Differences between diet groups in mean plasma concentrations and intakes of amino acids were examined using analysis of variance, controlling for potential confounding factors and multiple testing. In plasma, concentrations of 6 out of 21 amino acids varied significantly by diet group, with differences of -13% to +16% between meat-eaters and vegans. Concentrations of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed by meat-eaters, and lowest in vegans. A broadly similar pattern was seen for lysine, whereas alanine concentration was highest in fish-eaters and lowest in meat-eaters. For glycine, vegans had the highest concentration and meat-eaters the lowest. Intakes of all 18 dietary amino acids differed by diet group; for the majority of these, intake was highest in meat-eaters followed by fish-eaters, then vegetarians and lowest in vegans (up to 47% lower than in meat-eaters). Men belonging to different habitual diet groups have significantly different plasma concentrations of lysine, methionine, tryptophan, alanine, glycine and tyrosine. However, the differences in plasma concentrations were less marked than and did not necessarily mirror those seen for amino acid intakes.
Schmidt, J A; Rinaldi, S; Scalbert, A; Ferrari, P; Achaintre, D; Gunter, M J; Appleby, P N; Key, T J; Travis, R C
2016-01-01
Background/Objectives: We aimed to investigate the differences in plasma concentrations and in intakes of amino acids between male meat-eaters, fish-eaters, vegetarians and vegans in the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Subjects/Methods: This cross-sectional analysis included 392 men, aged 30–49 years. Plasma amino acid concentrations were measured with a targeted metabolomic approach using mass spectrometry, and dietary intake was assessed using a food frequency questionnaire. Differences between diet groups in mean plasma concentrations and intakes of amino acids were examined using analysis of variance, controlling for potential confounding factors and multiple testing. Results: In plasma, concentrations of 6 out of 21 amino acids varied significantly by diet group, with differences of −13% to +16% between meat-eaters and vegans. Concentrations of methionine, tryptophan and tyrosine were highest in fish-eaters and vegetarians, followed by meat-eaters, and lowest in vegans. A broadly similar pattern was seen for lysine, whereas alanine concentration was highest in fish-eaters and lowest in meat-eaters. For glycine, vegans had the highest concentration and meat-eaters the lowest. Intakes of all 18 dietary amino acids differed by diet group; for the majority of these, intake was highest in meat-eaters followed by fish-eaters, then vegetarians and lowest in vegans (up to 47% lower than in meat-eaters). Conclusions: Men belonging to different habitual diet groups have significantly different plasma concentrations of lysine, methionine, tryptophan, alanine, glycine and tyrosine. However, the differences in plasma concentrations were less marked than and did not necessarily mirror those seen for amino acid intakes. PMID:26395436
McElroy, Kerensa; Mouton, Laurence; Du Pasquier, Louis; Qi, Weihong; Ebert, Dieter
2011-09-01
Collagen-like proteins containing glycine-X-Y repeats have been identified in several pathogenic bacteria potentially involved in virulence. Recently, a collagen-like surface protein, Pcl1a, was identified in Pasteuria ramosa, a spore-forming parasite of Daphnia. Here we characterise 37 novel putative P. ramosa collagen-like protein genes (PCLs). PCR amplification and sequencing across 10 P. ramosa strains showed they were polymorphic, distinguishing genotypes matching known differences in Daphnia/P. ramosa interaction specificity. Thirty PCLs could be divided into four groups based on sequence similarity, conserved N- and C-terminal regions and G-X-Y repeat structure. Group 1, Group 2 and Group 3 PCLs formed triplets within the genome, with one member from each group represented in each triplet. Maximum-likelihood trees suggested that these groups arose through multiple instances of triplet duplication. For Group 1, 2, 3 and 4 PCLs, X was typically proline and Y typically threonine, consistent with other bacterial collagen-like proteins. The amino acid composition of Pcl2 closely resembled Pcl1a, with X typically being glutamic acid or aspartic acid and Y typically being lysine or glutamine. Pcl2 also showed sequence similarity to Pcl1a and contained a predicted signal peptide, cleavage site and transmembrane domain, suggesting that it is a surface protein. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Qiu, Hong-yu; Liu, Fang; Zhao, Li-jun; Huang, Song-min; Zuo, Chuan; Zhong, Hui; Chen, Feng
2012-05-01
To investigate if a-keto/amino acid supplemented low protein diet can slow down the progression of diabetic nephrophathy in comparison with non-supplemented diabetes diet. A prospective, randomized, controlled clinical study was conducted. Twenty three cases of type 2 diabetic nephropathy in IV stage were randomly divided into alpha-keto/amino acid supplemented diet group (trial group) and conventional diabetes diet group (control group), The treatment duration was 52 weeks. 24 h urine protein was measured at 0, 12, 20, 36 and 52 weeks. Before and after the 52 weeks treatment, all the patients received the measurement of glomerular filtration rate (GFR), blood glucose, blood lipids, inflammatory markers, as well as nutritional status. After the treatment for 20, 36, 52 weeks, mean 24 h urine protein decreased significantly in trial groups (P < 0.05), and 24 h urine protein in trial group were significantly decreased (P < 0.05) compared with control group in 20 weeks after treatment. Either in trial group or in control group, GFR remained relatively stable during the observation period. Nutrition status, inflammatory markers, and serum calcium, phosphorus levels between the two groups were no significantly difference. The adverse events experienced by the patients in trial group were similar and consistent with the patients underlying renal diseases. Alpha-keto/amino acid can reduce proteinuria more effectively, while improve renal function and nutritional status in diabetic nephropathy patients with well-toleration.
VASP-E: Specificity Annotation with a Volumetric Analysis of Electrostatic Isopotentials
Chen, Brian Y.
2014-01-01
Algorithms for comparing protein structure are frequently used for function annotation. By searching for subtle similarities among very different proteins, these algorithms can identify remote homologs with similar biological functions. In contrast, few comparison algorithms focus on specificity annotation, where the identification of subtle differences among very similar proteins can assist in finding small structural variations that create differences in binding specificity. Few specificity annotation methods consider electrostatic fields, which play a critical role in molecular recognition. To fill this gap, this paper describes VASP-E (Volumetric Analysis of Surface Properties with Electrostatics), a novel volumetric comparison tool based on the electrostatic comparison of protein-ligand and protein-protein binding sites. VASP-E exploits the central observation that three dimensional solids can be used to fully represent and compare both electrostatic isopotentials and molecular surfaces. With this integrated representation, VASP-E is able to dissect the electrostatic environments of protein-ligand and protein-protein binding interfaces, identifying individual amino acids that have an electrostatic influence on binding specificity. VASP-E was used to examine a nonredundant subset of the serine and cysteine proteases as well as the barnase-barstar and Rap1a-raf complexes. Based on amino acids established by various experimental studies to have an electrostatic influence on binding specificity, VASP-E identified electrostatically influential amino acids with 100% precision and 83.3% recall. We also show that VASP-E can accurately classify closely related ligand binding cavities into groups with different binding preferences. These results suggest that VASP-E should prove a useful tool for the characterization of specific binding and the engineering of binding preferences in proteins. PMID:25166865
Ferguson, A D; Breed, J; Diederichs, K; Welte, W; Coulton, J W
1998-07-01
FhuA (Mr 78,992, 714 amino acids), siderophore receptor for ferrichrome-iron in the outer membrane of Escherichia coli, was affinity tagged, rapidly purified, and crystallized. To obtain FhuA in quantities sufficient for crystallization, a hexahistidine tag was genetically inserted into the fhuA gene after amino acid 405, which resides in a known surface-exposed loop. Recombinant FhuA405.H6 was overexpressed in an E. coli strain that is devoid of several major porins and using metal-chelate chromatography was purified in large amounts to homogeneity. FhuA crystals were grown using the hanging drop vapor diffusion technique and were suitable for X-ray diffraction analysis. On a rotating anode X-ray source, diffraction was observed to 3.0 A resolution. The crystals belong to space group P6(1) or P6(5) with unit cell dimensions of a=b=174 A, c=88 A (alpha=beta=90 degrees, gamma=120 degrees).
Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie
2018-03-01
A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.
Romberg, Birgit; Oussoren, Christien; Snel, Cor J.; Hennink, Wim E.
2007-01-01
Long-circulating liposomes, such as PEG-liposomes, are frequently studied for drug delivery and diagnostic purposes. In our group, poly(amino acid) (PAA)-based coatings for long-circulating liposomes have been developed. These coatings provide liposomes with similar circulation times as compared to PEG-liposomes, but have the advantage of being enzymatically degradable. For PEG-liposomes it has been reported that circulation times are relatively independent of their physicochemical characteristics. In this study, the influence of factors such as PAA grafting density, cholesterol inclusion, surface charge, particle size, and lipid dose on the circulation kinetics of PAA-liposomes was evaluated after intravenous administration in rats. Prolonged circulation kinetics of PAA-liposomes can be maintained upon variation of liposome characteristics and the lipid dose given. However, the use of relatively high amounts of strongly charge-inducing lipids and a too large mean size is to be avoided. In conclusion, PAA-liposomes represent a versatile drug carrier system for a wide variety of applications. PMID:17674159
Voskresenska, Valentyna; Wilson, R. Marshall; Panov, Maxim; Tarnovsky, Alexander N.; Krause, Jeanette A.; Vyas, Shubham; Winter, Arthur H.; Hadad, Christopher M.
2009-01-01
Phenyl azides with powerful electron-donating substituents are known to deviate from the usual photochemical behavior of other phenyl azides. They do not undergo ring expansion, but form basic nitrenes that protonate to form nitrenium ions. The photochemistry of the widely used photoaffinity labeling system 4-amino-3-nitrophenyl azide, 5, has been studied by transient absorption spectroscopy from femtosecond to microsecond time domains and from a theoretical perspective. The nitrene generation from azide 5 occurs on the S2 surface, in violation of Kasha's rule. The resulting nitrene is a powerful base and abstracts protons extremely rapidly from a variety of sources to form a nitrenium ion. In methanol, this protonation occurs in about 5 ps, which is the fastest intermolecular protonation observed to date. Suitable proton sources include alcohols, amine salts, and even acidic C-H bonds such as acetonitrile. The resulting nitrenium ion is stabilized by the electron-donating 4-amino group to afford a diiminoquinone-like species that collapses relatively slowly to form the ultimate cross-linked product. In some cases in which the anion is a good hydride donor, cross-linking is replaced by reduction of the nitrenium ion to the corresponding amine. PMID:19624129
Annibal, Andrea; Riemer, Thomas; Jovanovic, Olga; Westphal, Dennis; Griesser, Eva; Pohl, Elena E.; Schiller, Jürgen; Hoffmann, Ralf; Fedorova, Maria
2018-01-01
Glycation and glycoxidation of proteins and peptides have been intensively studied and are considered as reliable diagnostic biomarkers of hyperglycemia and early stages of type II diabetes. However, glucose can also react with primary amino groups present in other cellular components, such as aminophospholipids (aminoPLs). Although it is proposed that glycated aminoPLs can induce many cellular responses and contribute to the development and progression of diabetes, the routes of their formation and their biological roles are only partially revealed. The same is true for the influence of glucose-derived modifications on the biophysical properties of PLs. Here we studied structural, signaling, and biophysical properties of glycated and glycoxidized phosphatidylethanolamines (PEs). By combining high resolution mass spectrometry and nuclear magnetic resonance spectroscopy it was possible to deduce the structures of several intermediates indicating an oxidative cleavage of the Amadori product yielding glycoxidized PEs including advanced glycation end products, such as carboxyethyl- and carboxymethyl-ethanolamines. The pro-oxidative role of glycated PEs was demonstrated and further associated with several cellular responses including activation of NFκB signaling pathways. Label free proteomics indicated significant alterations in proteins regulating cellular metabolisms. Finally, the biophysical properties of PL membranes changed significantly upon PE glycation, such as melting temperature (Tm), membrane surface charge, and ion transport across the phospholipid bilayer. PMID:27012418
NASA Astrophysics Data System (ADS)
Daszkiewicz, Marek; Marchewka, Mariusz K.
2012-06-01
X-ray structure of new hybrid organic-inorganic compound, bis(4-amino-1,2,4-triazolium) hexachloridostannate(IV), [1t(4at)]2SnCl6 (P1¯ space group) was determined. Crystal structure of 4-amino-1,2,4-triazole (Pbca space group) was reinvestigated. Non-planar orientation of NH2 group was found. The geometry of the amino group does not significantly change upon protonation. The route of protonation of 4-aminotriazole and tautomer equilibrium constants for the cationic forms were theoretically studied by means of B3LYP/6-31G* method. The most stable monoprotonated species is 1H-trans-4-amino-1,2,4-triazole, 1t(4at)+, whereas the final product of the protonation route is 12(4at)2+. Potential Energy Distribution (PED) analysis was carried out for two conformers, 1c(4at)+ and 1t(4at)+. Very good agreement between theoretical and experimental frequencies was achieved due to very weak interactions existing in [1t(4at)]2SnCl6. Infrared and Raman bands were assigned on the basis of PED analysis. Comparison of vibrational spectra of [1t(4at)]2SnCl6 and [1t(4at)]Cl indicates significantly weaker intermolecular interactions in the former compound.
NASA Astrophysics Data System (ADS)
Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping
2011-07-01
A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed by the hydrogen bond (positively to activity) of the center amino acid. The N-terminal amino acid should be a high hydrophobic and low electronic amino acid (such as Ala, Gly, Val, and Leu); the center amino acid would be an amino acid that possesses high hydrogen bond property (such as base amino acid Arg, Lys, and His). The structural characteristics of antioxidative peptide be found in this paper may contribute to the further research of antioxidative mechanism.
An experimental point of view on hydration/solvation in halophilic proteins
Talon, Romain; Coquelle, Nicolas; Madern, Dominique; Girard, Eric
2014-01-01
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution PMID:24600446
An experimental point of view on hydration/solvation in halophilic proteins.
Talon, Romain; Coquelle, Nicolas; Madern, Dominique; Girard, Eric
2014-01-01
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution.
Fang, Hansun; Gao, Yanpeng; Wang, Honghong; Yin, Hongliang; Li, Guiying; An, Taicheng
2017-05-15
Residue from the polycyclic musks (PCMs) in household and personal care products may harm human beings through skin exposure. To understand the health effects of PCMs when exposed to sunlight at molecular level, both experimental and computational methods were employed to investigate the photosensitized oxidation performance of 19 natural amino acids, the most basic unit of life. Results showed that a typical PCM, tonalide, acts as a photosensitizer to significantly increase photo-induced oxidative damage to amino acids. Both common and exceptional transformation pathways occurred during the photosensitization damage of amino acids. Experimental tests further identified the different mechanisms involved. The common transformation pathway occurred through the electron transfer from α amino-group of amino acids, accompanying with the formation of O 2 •- . This pathway was controlled by the electronic density of N atom in α amino-group. The exceptional transformation pathway was identified only for five amino acids, mainly due to the reactions with reactive oxygen species, e.g. 1 O 2 and excited triplet state molecules. Additionally, tonalide photo-induced transformation products could further accelerate the photosensitization of all amino acids with the common pathway. This study may support the protection of human health, and suggests the possible need to further restrict polycyclic musks use. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cao, Bing; Wang, Dongfang; Brietzke, Elisa; McIntyre, Roger S; Pan, Zihang; Cha, Danielle; Rosenblat, Joshua D; Zuckerman, Hannah; Liu, Yaqiong; Xie, Qing; Wang, Jingyu
2018-05-23
Amino acids and derivatives participate in the biosynthesis and downstream effects of numerous neurotransmitters. Variations in specific amino acids have been implicated in the pathophysiology of schizophrenia. Herein, we sought to compare levels of amino acids and derivatives between subjects with schizophrenia and healthy controls (HC). Two hundred and eight subjects with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria (DSM-IV)-defined schizophrenia and 175 age- and sex-matched HC were enrolled. The levels of twenty-five amino acids and seven related derivatives were measured in plasma samples using hydrophilic interaction liquid chromatography (HILIC) liquid chromatography-tandem mass spectrometry (LC-MS). After controlling for age, sex and body mass index (BMI), four amino acids and derivatives (i.e., cysteine, GABA, glutamine and sarcosine) were observed to be higher in the schizophrenia group when compared with HC; seven amino acids and derivatives were lower in the schizophrenia group (i.e., arginine, L-ornithine, threonine, taurine, tryptophan, methylcysteine, and kynurenine). Statistically significant differences in plasma amino-acid profiles between subjects with first-episode vs. recurrent schizophrenia for aspartate and glutamine were also demonstrated using generalized linear models controlling for age, sex, and BMI. The differences in amino acids and derivatives among individuals with schizophrenia when compared to HC may represent underlying pathophysiology, including but not limited to dysfunctional proteinogenic processes, alterations in excitatory and inhibitory neurotransmission, changes in ammonia metabolism and the urea cycle. Taken together, amino-acid profiling may provide a novel stratification approach among individuals with schizophrenia.
Andersen, Svend Olav; Roepstorff, Peter
2007-03-01
The number of reactive amino groups in cuticular proteins decreases during the early period of insect cuticular sclerotization, presumably due to reaction with oxidation products of N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD). We have quantitated the decrease in cuticular N-terminal amino groups and lysine epsilon-amino groups during the first 24h of sclerotization in adult locusts, Schistocerca gregaria, and in larval and adult beetles, Tenebrio molitor, as well as the increase in beta-alanine amino groups in Tenebrio cuticle. The results indicate that nearly all glycine N-terminal groups and a significant part of the epsilon-amino groups from lysine residues are involved in the sclerotization process in both locusts and Tenebrio. A pronounced increase in the amount of free beta-alanine amino groups was observed in cuticle from adult Tenebrio and to a lesser extent also in Tenebrio larval cuticle, but from locust cuticle no beta-alanine was obtained. Hydrolysis of sclerotized cuticles from locusts and Tenebrio by dilute hydrochloric acid released a large number of compounds containing amino acids linked to catecholic moieties. Products have been identified which contain histidine residues linked via their imidazole group to the beta-position of various catechols, such as dopamine, 3,4-dihydroxyphenyl-ethanol (DOPET), and 3,4-dihydroxyphenyl-acetaldehyde (DOPALD), and a ketocatecholic compound has also been identified composed of lysine linked via its epsilon-amino group to the alpha-carbon atom of 3,4-dihydroxyacetophenone. Some of the hydrolysis products have previously been obtained from sclerotized pupal cuticle of Manduca sexta [Xu, R., Huang, X., Hopkins, T.L., Kramer, K.J., 1997. Catecholamine and histidyl protein cross-linked structures in sclerotized insect cuticle. Insect Biochemistry and Molecular Biology 27, 101-108; Kerwin, J.L., Turecek, F., Xu, R., Kramer, K.J., Hopkins, T.L., Gatlin, C.L., Yates, J.R., 1999. Mass spectrometric analysis of catechol-histidine adducts from insect cuticle. Analytical Biochemistry 268, 229-237; Kramer, K.J., Kanost, M.R., Hopkins, T.L., Jiang, H., Zhu, Y.C., Xu, R., Kerwin, J.L., Turecek, F., 2001. Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57, 385-392], but the lysine-dihydroxyacetophenone compound and the histidine-DOPALD adduct have not been reported before. It is suggested that the compounds are derived from NADA and NBAD residues which were incorporated into the cuticle during sclerotization, and that the lysine-dihydroxyacetophenone as well as the DOPET and DOPALD containing adducts are degradation products derived from cross-links between the cuticular proteins, whereas the dopamine-containing adducts are derived from a non-crosslinking reaction product.
Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui
2016-02-19
The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH₃-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r² = 0.763, p < 0.001), as was the DI of sediment cores (r² = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon.
Zhao, Yu; Shan, Baoqing; Tang, Wenzhong; Zhang, Hong; Rong, Nan; Ding, Yuekui
2016-01-01
The Haihe River Basin, which is one of the most water-scarce and polluted river basins in China, has abnormally high nitrogen levels. In this study, total hydrolyzable amino acids (THAAs) were measured in surface sediment and sediment core samples in the Haihe River Basin to determine if amino acids were potential sources of ammonium, organic nitrogen, and organic carbon. The rivers were found to be in a state of hypoxia and contain abnormally high levels of ammonium and organic nitrogen. Additionally, NH3-N was the predominant form of inorganic nitrogen in the surface sediments, while organic nitrogen accounted for 92.53% of sedimentary nitrogen. THAAs-C accounted for 14.92% of the total organic carbon, while THAAs-N accounted for more than 49.59% of organic nitrogen and 45.68% of total nitrogen. The major fraction of THAAs were protein amino acids. Three sediment cores of the most heavily polluted rivers also showed high levels of THAAs. Evaluation of the degradation index (DI) of sedimentary organic matter in sediments evaluated based on the THAAs revealed that most positive DI values were found in the downstream portion of the Ziya River Watershed. Additionally, the DI of surface sediment was correlated with THAAs (r2 = 0.763, p < 0.001), as was the DI of sediment cores (r2 = 0.773, p < 0.001). Overall, amino acids in sediments were found to be an important potential source of ammonium, organic nitrogen, and organic carbon. PMID:26907310
Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia
2017-01-01
Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2007-10-01
Effective electrophoretic mobility data of 20 amino acids reported in the literature are analyzed and interpreted through simple physicochemical models, which are able to provide estimates of coupled quantities like hydrodynamic shape factor, equivalent hydrodynamic radius (size), net charge, actual pK values of ionizing groups, partial charges of ionizing groups, hydration number, and pH near molecule (microenvironment-pH of the BGE). It is concluded that the modeling of the electrophoretic mobility of these analytes requires a careful consideration of hydrodynamic shape coupled to hydration. In the low range of pH studied here, distinctive hydrodynamic behaviors of amino acids are found. For instance, amino acids with basic polar and ionizing side chain remain with prolate shape for pH values varying from 1.99 to 3.2. It is evident that as the pH increases from low values, amino acids get higher hydrations as a consequence each analyte total charge also increases. This result is consistent with the monotonic increase of the hydrodynamic radius, which accounts for both the analyte and the quite immobilized water molecules defining the electrophoretic kinematical unit. It is also found that the actual or effective pK value of the alpha-carboxylic ionizing group of amino acids increases when the pH is changed from 1.99 to 3.2. Several limitations concerning the simple modeling of the electrophoretic mobility of amino acids are presented for further research.
NASA Technical Reports Server (NTRS)
Bada, J. L.; McDonald, G. D.; Miller, S. L. (Principal Investigator)
1995-01-01
Using kinetic data, we have estimated the racemization half-lives and times for total racemization of amino acids under conditions relevant to the surface of Mars. Amino acids from an extinct martian biota maintained in a dry, cold (<250 K) environment would not have racemized significantly over the lifetime of the planet. Racemization would have taken place in environments where liquid water was present even for time periods of only a few million years following biotic extinction. The best preservation of both amino acid homochirality and nucleic acid genetic information associated with extinct martian life would be in the polar regions.
Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger
2016-11-01
All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and gas influx due to gas oversaturation in the aqueous medium.
NASA Astrophysics Data System (ADS)
Hassan, Mohammad M.; Leighs, Samuel J.
2017-10-01
The surface of wool fabrics is frequently modified to make them shrink-resistant, water repellent and also to improve their handle properties. In this work, we investigated the effect of common surface modification treatments on fabric stain-resistance, hydrophilicity and UV absorption performance. The surface of wool fabrics was modified by chlorination and also by reacting the chlorinated wool fabrics with a polyamide, a fibre-reactive amino-functional siloxane and a fluorocarbon polymer. The surface of the various treated fabrics was characterised by ATR-FTIR, contact angle measurement and scanning electron microscopy. The effect of surface modification on the tensile strength, surface hydrophilicity, stain-resistance, and UV absorption capacity of the fabric was investigated. It was found that all the treatments except the treatment with the amino-functional siloxane polymer slightly improved the tensile strength of the fabric. The chlorination treatment and the treatment with the polyamide resin made the fabric hydrophilic, and fluorocarbon and silicone resin treatment made the fabric hydrophobic.
Schneider, Mandy; Meder, Fabian; Haiß, Annette; Treccani, Laura; Rezwan, Kurosch; Kümmerer, Klaus
2014-03-01
Engineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent. We have investigated the biodegradability of organically surface functionalized silica (SiO2) particles bearing technically relevant groups such as amino-, carboxyl-, benzyl-, sulfonate-, chloro-, and phosphatoethyl-derivatized alkyls. Essential physicochemical properties including zeta potential, isoelectric point, morphology, surface area, porosity, surface density, and elemental composition of the particles were investigated, followed by biodegradability testing using the Closed Bottle Test (OECD 301D). None of the particles met the biodegradability threshold value of 60%. Only a slight biodegradation was revealed for SiO2-Benzyl (13.7±6.7%) and for SiO2-3-Chlorpropane (10.8±1.5%). For the other particles biodegradability was below the normal background fluctuation of 5%. The results were different of those obtained from structurally similar chemicals not being functionalized on the particle surface and from general rules of structure-biodegradation prediction of organic molecules. Therefore, our results suggest that the attachment of the organic groups heavily reduces their biodegradability, increases their residence time and possibility for adverse effects to environmental species. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Ik Jae; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho
2011-01-01
Purpose The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Materials and Methods Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Results Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Conclusion Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration. PMID:21509160
Lee, Ik Jae; Seong, Jinsil; Bae, Jung Im; You, Sei Hwan; Rhee, Yumie; Lee, Jong Ho
2011-03-01
The present study evaluated whether oral supplementation with a branched-chain amino acid (BCAA) improves the biochemical and amino acid profiles of liver tumor patients undergoing radiotherapy. Patients were randomly assigned to one of 2 groups: a group given oral supplementation with BCAA granules (LIVACT granules; Samil Pharm Co., Korea, each granule containing L-isoleucine 952 mg, L-leucine 1,904 mg, and L-valine 1,144 mg) during radiotherapy, or a placebo group. Physical and biochemical examinations and measurements, including subjective symptoms, Child-Pugh class, body mass index, plasma albumin concentration, and plasma amino acid profiles were monitored. Fifty were enrolled between November 2005 and November 2006. We also analyzed data from 37 hepatocellular carcinoma (HCC) patients in order to evaluate a more homogenous group. The two groups of patients were comparable in terms of age, gender, Child-Pugh score, and underlying hepatitis virus type. Serum albumin, total protein, liver enzymes, and cholesterol showed a tendency to increase in the BCAA group. In this group, the percentage of cases that reverted to normal serum albumin levels between 3 and 10 weeks after administration of BCAA was significantly higher (41.18%) than in the placebo group (p=0.043). Oral supplementation with a BCAA preparation seems to help HCC patients undergoing radiotherapy by increasing the BCAA concentration.