Index theorem for the flat Andreev bound states at a dirty surface of a nodal superconductor
NASA Astrophysics Data System (ADS)
Ikegaya, Satoshi; Asano, Yasuhiro
2018-03-01
We discuss the stability of at-band Andreev bound states appearing at a surface of a nodal unconventional superconductor. In the clean limit, the existence of the surface bound states is topologically characterized by a momentum-dependent topological invariant: one-dimensional winding number de ned in the restricted Brillouin zone. Thus, such topological invariant is ill-defined in the presence of potential disorder which is inevitable in experiments. By paying attention to chiral symmetry of the Hamiltonian, we provide an alternative topological index N ZES that predicts the number of Andreev bound states at a dirty surface of an unconventional superconductor. Moreover, we demonstrate that the zero-bias differential conductance in a normal metal/unconventional superconductor junction is quantized at (4e 2 /h)|N ZES | in the limit of strong impurity scattering in the normal metal.
What can Andreev bound states tell us about superconductors?
Millo, Oded; Koren, Gad
2018-08-06
Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.
Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.
NASA Astrophysics Data System (ADS)
Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin
2017-03-01
Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.
Shooting quasiparticles from Andreev bound states in a superconducting constriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riwar, R.-P.; Houzet, M.; Meyer, J. S.
2014-12-15
A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetrymore » of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.« less
Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator
NASA Astrophysics Data System (ADS)
Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.
2015-03-01
Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.
Phase coherence and Andreev reflection in topological insulator devices
Finck, A. D. K.; Kurter, C.; Hor, Y. S.; ...
2014-11-04
Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to nonmagnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics that can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Pérot oscillations in a TI sandwiched between a superconducting and a normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arisingmore » from an additional phase from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results show that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.« less
Nematic superconductivity in CuxBi2Se3 : Surface Andreev bound states
NASA Astrophysics Data System (ADS)
Hao, Lei; Ting, C. S.
2017-10-01
We study theoretically the topological surface states (TSSs) and the possible surface Andreev bound states (SABSs) of CuxBi2Se3 , which is known to be a topological insulator at x =0 . The superconductivity (SC) pairing of this compound is assumed to have broken spin-rotation symmetry, similar to that of the A-phase of 3He as suggested by recent nuclear-magnetic resonance experiments. For both spheroidal and corrugated cylindrical Fermi surfaces with the hexagonal warping terms, we show that the bulk SC gap is rather anisotropic; the minimum of the gap is negligibly small as compared to the maximum of the gap. This would make the fully gapped pairing effectively nodal. For a clean system, our results indicate the bulk of this compound to be a topological superconductor with the SABSs appearing inside the bulk SC gap. The zero-energy SABSs, which are Majorana fermions, together with the TSSs not gapped by the pairing, produce a zero-energy peak in the surface density of states (SDOS). The SABSs are expected to be stable against short-range nonmagnetic impurities, and the local SDOS is calculated around a nonmagnetic impurity. The relevance of our results to experiments is discussed.
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Sau, Jay D.; Das Sarma, S.
2018-06-01
Trivial Andreev bound states arising from chemical-potential variations could lead to zero-bias tunneling conductance peaks at finite magnetic field in class-D nanowires, precisely mimicking the predicted zero-bias conductance peaks arising from the topological Majorana bound states. This finding raises a serious question on the efficacy of using zero-bias tunneling conductance peaks, by themselves, as evidence supporting the existence of topological Majorana bound states in nanowires. In the current work, we provide specific experimental protocols for tunneling spectroscopy measurements to distinguish between Andreev and Majorana bound states without invoking more demanding nonlocal measurements which have not yet been successfully performed in nanowire systems. In particular, we discuss three distinct experimental schemes involving the response of the zero-bias peak to local perturbations of the tunnel barrier, the overlap of bound states from the wire ends, and, most compellingly, introducing a sharp localized potential in the wire itself to perturb the zero-bias tunneling peaks. We provide extensive numerical simulations clarifying and supporting our theoretical predictions.
Souto, R Seoane; Martín-Rodero, A; Yeyati, A Levy
2016-12-23
We analyze the quantum quench dynamics in the formation of a phase-biased superconducting nanojunction. We find that in the absence of an external relaxation mechanism and for very general conditions the system gets trapped in a metastable state, corresponding to a nonequilibrium population of the Andreev bound states. The use of the time-dependent full counting statistics analysis allows us to extract information on the asymptotic population of even and odd many-body states, demonstrating that a universal behavior, dependent only on the Andreev state energy, is reached in the quantum point contact limit. These results shed light on recent experimental observations on quasiparticle trapping in superconducting atomic contacts.
Phase coherent transport in hybrid superconductor-topological insulator devices
NASA Astrophysics Data System (ADS)
Finck, Aaron
2015-03-01
Heterostructures of superconductors and topological insulators are predicted to host unusual zero energy bound states known as Majorana fermions, which can robustly store and process quantum information. Here, I will discuss our studies of such heterostructures through phase-coherent transport, which can act as a unique probe of Majorana fermions. We have extensively explored topological insulator Josephson junctions through SQUID and single-junction diffraction patterns, whose unusual behavior give evidence for low-energy Andreev bound states. In topological insulator devices with closely spaced normal and superconducting leads, we observe prominent Fabry-Perot oscillations, signifying gate-tunable, quasi-ballistic transport that can elegantly interact with Andreev reflection. Superconducting disks deposited on the surface of a topological insulator generate Aharonov-Bohm-like oscillations, giving evidence for unusual states lying near the interface between the superconductor and topological insulator surface. Our results point the way towards sophisticated interferometers that can detect and read out the state of Majorana fermions in topological systems. This work was done in collaboration with Cihan Kurter, Yew San Hor, and Dale Van Harlingen. We acknowledge funding from Microsoft Project Q.
Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices
NASA Astrophysics Data System (ADS)
Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong
The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.
Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions
NASA Astrophysics Data System (ADS)
Tanaka, Yukio; Tamura, Shun
2018-04-01
In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.
Distinguishing Majorana bound states and Andreev bound states with microwave spectra
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Tao
2018-04-01
Majorana fermions are a fascinating and not yet confirmed quasiparticles in condensed matter physics. Here we propose using microwave spectra to distinguish Majorana bound states (MBSs) from topological trivial Andreev bound states. By numerically calculating the transmission and Zeeman field dependence of the many-body excitation spectrum of a 1D Josephson junction, we find that the two kinds of bound states have distinct responses to variations in the related parameters. Furthermore, the singular behaviors of the MBSs spectrum could be attributed to the robust fractional Josephson coupling and nonlocality of MBSs. Our results provide a feasible method to verify the existence of MBSs and could accelerate its application to topological quantum computation.
Josephson Radiation from Gapless Andreev Bound States in HgTe-Based Topological Junctions
NASA Astrophysics Data System (ADS)
Deacon, R. S.; Wiedenmann, J.; Bocquillon, E.; Domínguez, F.; Klapwijk, T. M.; Leubner, P.; Brüne, C.; Hankiewicz, E. M.; Tarucha, S.; Ishibashi, K.; Buhmann, H.; Molenkamp, L. W.
2017-04-01
Frequency analysis of the rf emission of oscillating Josephson supercurrent is a powerful passive way of probing properties of topological Josephson junctions. In particular, measurements of the Josephson emission enable the detection of topological gapless Andreev bound states that give rise to emission at half the Josephson frequency fJ rather than conventional emission at fJ. Here, we report direct measurement of rf emission spectra on Josephson junctions made of HgTe-based gate-tunable topological weak links. The emission spectra exhibit a clear signal at half the Josephson frequency fJ/2 . The linewidths of emission lines indicate a coherence time of 0.3-4 ns for the fJ/2 line, much shorter than for the fJ line (3-4 ns). These observations strongly point towards the presence of topological gapless Andreev bound states and pave the way for a future HgTe-based platform for topological quantum computation.
Andreev bound states. Some quasiclassical reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J.
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Andreev bound states. Some quasiclassical reflections
NASA Astrophysics Data System (ADS)
Lin, Y.; Leggett, A. J.
2014-12-01
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for "normal" reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Tunnelling spectroscopy of Andreev states in graphene
NASA Astrophysics Data System (ADS)
Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
2017-08-01
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.
Josephson current through a quantum dot molecule with a Majorana zero mode and Andreev bound states
NASA Astrophysics Data System (ADS)
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2018-04-01
Based on the Green's function method, we investigate the interplay between Majorana zero mode (MZM) and Andreev bound states (ABSs) in a quantum dot molecule side coupled to a topological superconducting nanowire with a pair of MZMs forming a Josephson junction. Since the strong electron-hole asymmetry induced by the nanowire with a topologically non-trivial phase, the MZM suppress the ABSs. The suppression induced by the MZM is robust against the Coulomb repulsion. The interplay between the MZM and the ABSs in Josephson junction presents a feasible experimental means for distinguish between the presence of MZM and ABSs.
Distinguishing Majorana bound states from localized Andreev bound states by interferometry
NASA Astrophysics Data System (ADS)
Hell, Michael; Flensberg, Karsten; Leijnse, Martin
2018-04-01
Experimental evidence for Majorana bound states (MBSs) is so far mainly based on the robustness of a zero-bias conductance peak. However, similar features can also arise due to Andreev bound states (ABSs) localized at the end of an island. We show that these two scenarios can be distinguished by an interferometry experiment based on embedding a Coulomb-blockaded island into an Aharonov-Bohm ring. For two ABSs, when the ground state is nearly degenerate, cotunneling can change the state of the island, and interference is suppressed. By contrast, for two MBSs the ground state is nondegenerate, and cotunneling has to preserve the island state, which leads to h /e -periodic conductance oscillations with magnetic flux. Such interference setups can be realized with semiconducting nanowires or two-dimensional electron gases with proximity-induced superconductivity and may also be a useful spectroscopic tool for parity-flip mechanisms.
NASA Astrophysics Data System (ADS)
Zhang, Kunhua; Cheng, Qiang
2018-07-01
We investigate the crossed Andreev reflection in a ferromagnet–superconductor–ferromagnet junction on the surface of a topological insulator, where the magnetizations in the left and right leads are perpendicular to the surface. We find that the nonlocal transport process can be pure crossed Andreev reflection or pure elastic cotunneling, and the switch between the two processes can be controlled electrically. Pure crossed Andreev reflection appears for all bias voltages in the superconducting energy gap, which is independent of the configuration of the magnetizations in the two leads. The spin of the crossed Andreev reflected hole could be parallel to the spin of the incident electron, which is brought by the spin-triplet pairing correlation. The average transmission probability of crossed Andreev reflection can be larger than 90%, so a high efficiency nonlocal splitting of Cooper pairs can be generated, and turned on and off electrically.
Andreev molecules in semiconductor nanowire double quantum dots.
Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M
2017-09-19
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.
Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads
NASA Astrophysics Data System (ADS)
Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.
2014-03-01
It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.
4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions
Wiedenmann, J.; Bocquillon, E.; Deacon, R. S.; Hartinger, S.; Herrmann, O.; Klapwijk, T. M.; Maier, L.; Ames, C.; Brüne, C.; Gould, C.; Oiwa, A.; Ishibashi, K.; Tarucha, S.; Buhmann, H.; Molenkamp, L. W.
2016-01-01
The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator. PMID:26792013
Perturbation theory of a superconducting 0 - π impurity quantum phase transition.
Žonda, M; Pokorný, V; Janiš, V; Novotný, T
2015-03-06
A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-01-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011
Josephson junctions of multiple superconducting wires
NASA Astrophysics Data System (ADS)
Deb, Oindrila; Sengupta, K.; Sen, Diptiman
2018-05-01
We study the spectrum of Andreev bound states and Josephson currents across a junction of N superconducting wires which may have s - or p -wave pairing symmetries and develop a scattering matrix based formalism which allows us to address transport across such junctions. For N ≥3 , it is well known that Berry curvature terms contribute to the Josephson currents; we chart out situations where such terms can have relatively large effects. For a system of three s -wave or three p -wave superconductors, we provide analytic expressions for the Andreev bound-state energies and study the Josephson currents in response to a constant voltage applied across one of the wires; we find that the integrated transconductance at zero temperature is quantized to integer multiples of 4 e2/h , where e is the electron charge and h =2 π ℏ is Planck's constant. For a sinusoidal current with frequency ω applied across one of the wires in the junction, we find that Shapiro plateaus appear in the time-averaged voltage
NASA Astrophysics Data System (ADS)
Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro
2018-05-01
We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .
Nonadiabatic Josephson current pumping by chiral microwave irradiation
NASA Astrophysics Data System (ADS)
Venitucci, B.; Feinberg, D.; Mélin, R.; Douçot, B.
2018-05-01
Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase lapse between the microwave components acting on the two sides of the junction. General symmetry arguments and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper pair dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a "chiral" Josephson transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh nonequilibrium Green's functions. The chiral current is nonadiabatic: it is extremal and changes sign close to resonant chiral transitions between the Andreev bound states.
Superconducting Proximity Effect in Graphene Nanodevices: A Transport and Tunneling Study
NASA Astrophysics Data System (ADS)
Wang, I.-Jan
Provided that it is in good electrical contact with a superconductor, a normal metal can acquire superconducting properties when the temperature is low enough. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and, because of the richness of its physics, continues to fascinate many scientists. In this thesis, we present our study of the superconducting proximity effect in a hybrid system made by bringing graphene, a mono- layer of carbon atoms arranged in a hexagonal lattice, into contact with metallic BCS superconductors. Here graphene plays two roles: First it is a truly 2-dimensional crystal whose electron gas can be accessed on the surface easily. This property allows both transparent electrical contact with superconductors and direct observation of electronic properties made by a variety of probing schemes. Second, with its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions. Graphene's first role may facilitate endeavors to reach a deeper understanding of proximity effects. However, it is predicted that in its second role graphene may give rise to exotic phenomena in superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regard to both fabrication and characterization. Two key elements have been recognized as necessary in fabrication: a graphene device with low disorder and a large induced gap in the normal region. In addition, a deeper understanding of the microscopic mechanism of supercurrent transport in graphene or any 2-dimensional system in general, is bound to provide a basis for abundant insights or may even produce surprises. The research discussed in this thesis has been shaped by this overall approach. An introduction to the basic electronic properties of graphene is given in Chapter 1, which presents the band structure of graphene based on a tight-binding model. In addition, gate-tunability and the chiral nature of Dirac fermions in graphene, both of which are essential in our experiments, are also discussed. Chapter 2 provides a theoretical background to superconductivity, with an emphasis on its manifestation in inhomogeneous systems at the mesoscopic scale. The Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long- and short-junction limits. We will also show how the existence of impurity affects the physics presented in our experiments. Chapter 3 demonstrates the first graphene-based superconducting devices that we investigated. Fabrication and low-temperature measurement techniques of SGS junctions made of graphene and NbN, a type II superconductor with a large gap (TC ~ 12K) and a large critical field (HC2 > 9T ) are also discussed. Chapter 4 focuses on the development of h-BN-encapsulated graphene Josephson junctions. The pick-up and transfer techniques for the 2- dimensional Van der Waals materials that we used to make these heterostructures are described in details. The device we fabricated in this way exhibits ballistic transport characteristics, i.e. the signs of low disorder in graphene, in both normal and superconducting regimes. In Chapter 5, the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. In order to study the intrinsic properties of the sample, we developed a new fabrication scheme aiming at preserving the pristine nature of the 2-DEGS as well as to minimize the doping introduced by external probes. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2-dimensional limit, but also what we call the "Andreev scattering state" in the energy continuum.
NASA Astrophysics Data System (ADS)
Bocian, Kacper; Rudziński, Wojciech; Weymann, Ireneusz
2018-05-01
We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green's function formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel magnetoresistance on the gate and bias voltages applied to the system. We show that the system's transport properties are strongly affected by spin dependence of tunneling processes and quantum interference between different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms leading to these effects are thoroughly discussed.
Zhang, Degang
2009-10-30
The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.
A ballistic two-dimensional-electron-gas Andreev interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amado, M., E-mail: mario.amadomontero@sns.it; Fornieri, A.; Sorba, L.
2014-06-16
We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-localmore » entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.« less
Anomalous Damping of a Microelectromechanical Oscillator in Superfluid ^{3}He-B.
Zheng, P; Jiang, W G; Barquist, C S; Lee, Y; Chan, H B
2016-11-04
The mechanical resonance properties of a microelectromechanical oscillator with a gap of 1.25 μm was studied in superfluid ^{3}He-B at various pressures. The oscillator was driven in the linear damping regime where the damping coefficient is independent of the oscillator velocity. The quality factor of the oscillator remains low (Q≈80) down to 0.1T_{c}, 4 orders of magnitude less than the intrinsic quality factor measured in vacuum at 4 K. In addition to the Boltzmann temperature dependent contribution to the damping, a damping proportional to temperature was found to dominate at low temperatures. We propose a multiple scattering mechanism of the surface Andreev bound states to be a possible cause for the anomalous damping.
NASA Astrophysics Data System (ADS)
Dassonneville, B.; Murani, A.; Ferrier, M.; Guéron, S.; Bouchiat, H.
2018-05-01
One of the best known causes of dissipation in ac-driven quantum systems stems from photon absorption causing transitions between levels. Dissipation can also be caused by the retarded response to the time-dependent excitation, and in general gives insight into the system's relaxation times and mechanisms. Here we address the dissipation in a mesoscopic normal wire with superconducting contacts, that sustains a dissipationless supercurrent at zero frequency and that may therefore naively be expected to remain dissipationless at a frequency lower than the superconducting gap. We probe the high-frequency linear response of such a normal metal/superconductor (NS) ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from being the simple, dissipationless derivative of the supercurrent-versus-phase relation, the ring's ac susceptibility also displays a dissipative component whose phase dependence is a signature of the dynamical processes occurring within the Andreev spectrum. We show how dissipation is driven by the competition between two mechanisms. The first is the relaxation of the Andreev level distribution function, while the second corresponds to microwave-induced transitions within the spectrum. Depending on the relative strength of those contributions, dissipation can be maximal at π , a phase at which the proximity-induced minigap closes, or can be maximal near π /2 , a phase at which the dc supercurrent is maximal. We also find that the dissipative response paradoxically increases at low temperature and can even exceed the normal-state conductance. The results are successfully confronted with theoretical predictions of the Kubo linear response and time-dependent Usadel equations, derived from the Bogoliubov-de Gennes Hamiltonian describing the SNS junction. These experiments thus demonstrate the power of the ac susceptibility measurement of individual hybrid mesoscopic systems in probing in a controlled way the quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states.
Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S
2010-12-03
Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).
Superconductivity in doped Dirac semimetals
NASA Astrophysics Data System (ADS)
Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi
2016-07-01
We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.
Andreev reflection without Fermi surface alignment in high- T c van der Waals heterostructures
Zareapour, Parisa; Hayat, Alex; Zhao, Shu Yang F.; ...
2017-04-05
We address the controversy over the proximity effect between topological materials and high-T c superconductors. Junctions are produced between Bi 2Sr 2CaCu 2Omore » $${}_{8+\\delta }$$ and materials with different Fermi surfaces (Bi 2Te 3 and graphite). Both cases reveal tunneling spectra that are consistent with Andreev reflection. This is confirmed by a magnetic field that shifts features via the Doppler effect. This is modeled with a single parameter that accounts for tunneling into a screening supercurrent. Thus the tunneling involves Cooper pairs crossing the heterostructure, showing that the Fermi surface mismatch does not hinder the ability to form transparent interfaces, which is accounted for by the extended Brillouin zone and different lattice symmetries.« less
Tiwari, Rakesh P; Zülicke, U; Bruder, C
2013-05-03
We show that the interplay of cyclotron motion and Andreev reflection experienced by massless-Dirac-like charge carriers in topological-insulator surface states generates a Majorana-particle excitation. On the basis of an envelope-function description of the Dirac-Andreev edge states, we discuss the kinematic properties of the Majorana mode and find them to be tunable by changing the superconductor's chemical potential and/or the magnitude of the perpendicular magnetic field. Our proposal opens up new possibilities for studying Majorana fermions in a controllable setup.
NASA Astrophysics Data System (ADS)
Tkachov, G.
2017-01-01
Noncentrosymmetric superconductors exhibit the magnetoelectric effect, which manifests itself in the appearance of the magnetic spin polarization in response to a dissipationless electric current (supercurrent). While much attention has been dedicated to the thermodynamic version of this phenomenon (Edelstein effect), nonequilibrium transport magnetoelectric effects have not been explored yet. We propose the magnetoelectric Andreev effect (MAE), which consists in the generation of spin-polarized triplet Andreev conductance by an electric supercurrent. The MAE stems from the spin polarization of the Cooper-pair condensate due to a supercurrent-induced nonunitary triplet pairing. We propose the realization of such a nonunitary pairing and MAE in superconducting proximity structures based on two-dimensional helical metals—strongly spin-orbit-coupled electronic systems with the Dirac spectrum such as the topological surface states. Our results uncover an unexplored route towards electrically controlled superconducting spintronics and are a smoking gun for induced unconventional superconductivity in spin-orbit-coupled materials.
Observation of multiple superconducting gaps in Fe1+y Se x Te 1-x through Andreev reflection
NASA Astrophysics Data System (ADS)
de, Debtanu; Diaz-Pinto, Carlos; Wu, Zheng; Hor, Pei-Herng; Peng, Haibing
2011-03-01
Iron-based superconductors have been under intensive study because of the high transition temperature and the intriguing physical mechanisms involving the superconductivity and magnetic orders. Theoretical studies on the role of spin fluctuation suggest unconventional S wave pairing and multiple superconducting (SC) gaps due to the five disjoint Fermi surfaces. However, this multiple SC-gap scenario has yet to be confirmed in experiments. Here we report the experimental observation of five SC gaps in Fe 1+y Se x Te 1-x from Andreev reflection spectra, along with negative differential conductance dips due to the pair breaking related to the largest SC gap. The evolution of the multiple SC gaps is further investigated as a function of both temperature and magnetic field. For the largest SC gap, the Andreev reflection signal persists above bulk Tc, suggesting the existence of phase incoherent Cooper pairs.
NASA Astrophysics Data System (ADS)
Mal'shukov, A. G.
2018-02-01
It is shown that the spin-orbit and Zeeman interactions result in phase shifts of Andreev-reflected holes propagating at the surface of a topological insulator, or in Rashba spin-orbit-coupled two-dimensional normal metals, which are in contact with an s -wave superconductor. Due to interference of holes reflected through different paths of the Andreev interferometer the electric current through external contacts varies depending on the strength and direction of the Zeeman field. It also depends on mutual orientations of Zeeman fields in different shoulders of the interferometer. Such a nonlocal effect is a result of the long-range coherency caused by the superconducting proximity effect. This current has been calculated within the semiclassical theory for Green's functions in the diffusive regime, by assuming a strong disorder due to elastic scattering of electrons.
Andreev reflection in monolayer MoS2
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Rostami, Habib; Asgari, Reza
2014-01-01
Andreev reflection in a monolayer molybdenum disulfide superconducting-normal (S/N) hybrid junction is investigated. We find, by using a modified Dirac Hamiltonian and the scattering formalism, that the perfect Andreev reflection happens at normal incidence with p-doped S and N regions. The probability of the Andreev reflection and the resulting Andreev conductance, in this system, are demonstrated to be large in comparison with the corresponding gapped graphene structure. We further investigate the effect of a topological term (β ) in the Hamiltonian and show that it results in an enhancement of the Andreev conductance with p-doped S and N regions, while in the corresponding structure with an n-doped S region it is strongly reducible in comparison. This effect can be explained in terms of the dependence of the Andreev reflection probability on the sign of β and the chemical potential in the superconducting region.
Tunable hybridization of Majorana bound states at the quantum spin Hall edge
NASA Astrophysics Data System (ADS)
Keidel, Felix; Burset, Pablo; Trauzettel, Björn
2018-02-01
Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.
Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions
NASA Astrophysics Data System (ADS)
Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng
2018-04-01
We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.
Salehi, Morteza; Jafari, S A
2017-08-15
We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).
The effect of radioactive waste storage in Andreev Bay on contamination of the Barents Sea ecosystem
NASA Astrophysics Data System (ADS)
Matishov, G. G.; Ilyin, G. V.; Usyagina, I. S.; Moiseev, D. V.; Dahle, Salve; Kasatkina, N. E.; Valuyskaya, D. A.
2017-02-01
The effect of temporary radioactive waste storage on the ecological status of the sea and biota in the littoral of Andreev and Malaya Andreev bays and near the shore of Motovskii Gulf (including the mouth part of the Zapadnaya Litsa Bay) was analyzed. The littoral sediments contaminated by the 137Cs, 90Sr, 238Pu, and 239,240Pu isotopes are located in the zones of constant groundwater discharge on the shores of Andreev and Malaya Andreev bays. The littoral slopes and bottom depressions of the bays accumulate finely dispersed terrigenous material and 137Cs. The investigations have shown that the storage does not exert a significant adverse effect on the radioactive conditions and the status of the sea ecosystems beyond Andreev Bay.
From single magnetic adatoms on superconductors to coupled spin chains
NASA Astrophysics Data System (ADS)
Franke, Katharina J.
Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.
Andreev bound states probed in three-terminal quantum dots
NASA Astrophysics Data System (ADS)
Gramich, J.; Baumgartner, A.; Schönenberger, C.
2017-11-01
Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single-electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
Specular Andreev reflection in thin films of topological insulators
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Asgari, Reza
2016-05-01
We theoretically reveal the possibility of specular Andreev reflection in a thin film topological insulator normal-superconductor (N/S) junction in the presence of a gate electric field. The probability of specular Andreev reflection increases with the electric field, and electron-hole conversion with unit efficiency happens in a wide experimentally accessible range of the electric field. We show that perfect specular Andreev reflection can occur for all angles of incidence with a particular excitation energy value. In addition, we find that the thermal conductance of the structure displays exponential dependence on the temperature. Our results reveal the potential of the proposed topological insulator thin-film-based N/S structure for the realization of intraband specular Andreev reflection.
STM/STS on proximity-coupled superconducting graphene
NASA Astrophysics Data System (ADS)
Ovadia, Maoz; Ji, Yu; Lee, Gil-Ho; Fang, Wenjing; Hoffman, Jennifer; Jarillo-Herrero, Pablo; Kong, Jing; Kim, Philip
Graphene in good electrical contact with a superconductor has been observed to have an enhanced proximity effect. Application of a magnetic field is expected to generate an Abrikosov lattice of superconducting vortices, each containing Andreev bound states in its core. With our versatile, homebuilt, low temperature scanning tunneling force microscope (STM/SFM), we investigate the electronic properties of graphene on superconducting NbSe2 in a magnetic field and search for signatures of these vortex core states. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.
STM/STS on proximity-coupled superconducting graphene
NASA Astrophysics Data System (ADS)
Ovadia, Maoz; Ji, Yu; Hoffman, Jennifer; Wang, Joel I.-Jan; Jarillo-Herrero, Pablo
2015-03-01
Graphene in good electrical contact with a superconductor has been observed to have an enhanced proximity effect. Application of a magnetic field is expected to generate an Abrikosov lattice of superconducting vortices, each containing Andreev bound states in its core. With our versatile, homebuilt, low temperature scanning tunneling force microscope (STM/SFM), we investigate the electronic properties of graphene on superconducting NbSe2 in a magnetic field and search for signatures of these vortex core states. This work was supported by the STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319.
A proposed experimental diagnosing of specular Andreev reflection using the spin orbit interaction
Yang, Yanling; Zhao, Bing; Zhang, Ziyu; Bai, Chunxu; Xu, Xiaoguang; Jiang, Yong
2016-01-01
Based on the Dirac-Bogoliubov-de Gennes equation, we theoretically investigate the chirality-resolved transport properties through a superconducting heterojunction in the presence of both the Rashba spin orbit interaction (RSOI) and the Dresselhaus spin orbit interaction (DSOI). Our results show that, if only the RSOI is present, the chirality-resolved Andreev tunneling conductance can be enhanced in the superconducting gap, while it always shows a suppression effect for the case of the DSOI alone. In contrast to the similar dependence of the specular Andreev zero bias tunneling conductance on the SOI, the retro-Andreev zero bias tunneling conductance exhibit the distinct dependence on the RSOI and the DSOI. Moreover, the zero-bias tunneling conductances for the retro-Andreev reflection (RAR) and the specular Andreev reflection (SAR) also show a qualitative difference with respect to the barrier parameters. When the RSOI and the DSOI are finite, three orders of magnitude enhancement of specular Andreev tunneling conductance is revealed. Furthermore, by analyzing the balanced SOI case, we find that the RAR is in favor of a parabolic dispersion, but a linear dispersion is highly desired for the SAR. These results shed light on the diagnosing of the SAR in graphene when subjected to both kinds of SOI. PMID:27388426
Baggaley, A W; Tsepelin, V; Barenghi, C F; Fisher, S N; Pickett, G R; Sergeev, Y A; Suramlishvili, N
2015-07-03
Superfluid 3He-B in the zero-temperature limit offers a unique means of studying quantum turbulence by the Andreev reflection of quasiparticle excitations by the vortex flow fields. We validate the experimental visualization of turbulence in 3He-B by showing the relation between the vortex-line density and the Andreev reflectance of the vortex tangle in the first simulations of the Andreev reflectance by a realistic 3D vortex tangle, and comparing the results with the first experimental measurements able to probe quantum turbulence on length scales smaller than the intervortex separation.
Andreev reflections and the quantum physics of black holes
NASA Astrophysics Data System (ADS)
Manikandan, Sreenath K.; Jordan, Andrew N.
2017-12-01
We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Qi; Yi, Guang-Yu; Han, Yu; Jiang, Cui; Gong, Wei-Jiang
2018-07-01
We construct one mesoscopic circuit in which one quantum dot couples to one DIII-class topological superconductor and one s-wave superconductor, in addition to its connection with the metallic lead. And then, the Andreev reflection current in the metallic lead is evaluated. It is found that the two kinds of superconductors drive the Andreev reflection in the constructive manner. Next as finite superconducting phase difference is taken into account, the Andreev reflection oscillates in period π/2, and it can be suppressed in the low-energy region if the superconducting phase difference is (n + 1/2) π/2 (n ∈ Integer). Such a result is almost independent of the increase of the intradot Coulomb interaction. Therefore, this structure can assist to realize the manipulation of the Andreev reflection. Also, the result in this work provides useful information for understanding the property of the DIII-class topological superconductor.
Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.
2016-01-01
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line. PMID:27216477
NASA Astrophysics Data System (ADS)
Gonnelli, R. S.; Daghero, D.; Tortello, M.; Ummarino, G. A.; Bukowski, Z.; Karpinski, J.; Reuvekamp, P. G.; Kremer, R. K.; Profeta, G.; Suzuki, K.; Kuroki, K.
2016-05-01
Iron-based compounds (IBS) display a surprising variety of superconducting properties that seems to arise from the strong sensitivity of these systems to tiny details of the lattice structure. In this respect, systems that become superconducting under pressure, like CaFe2As2, are of particular interest. Here we report on the first directional point-contact Andreev-reflection spectroscopy (PCARS) measurements on CaFe2As2 crystals under quasi-hydrostatic pressure, and on the interpretation of the results using a 3D model for Andreev reflection combined with ab-initio calculations of the Fermi surface (within the density functional theory) and of the order parameter symmetry (within a random-phase-approximation approach in a ten-orbital model). The almost perfect agreement between PCARS results at different pressures and theoretical predictions highlights the intimate connection between the changes in the lattice structure, a topological transition in the holelike Fermi surface sheet, and the emergence on the same sheet of an order parameter with a horizontal node line.
Tunneling spectroscopy of a spiral Luttinger liquid in contact with superconductors
NASA Astrophysics Data System (ADS)
Liu, Dong E.; Levchenko, Alex
2014-03-01
One-dimensional wires with Rashba spin-orbit coupling, magnetic field, and strong electron-electron interactions are described by a spiral Luttinger liquid model. We develop a theory to investigate the tunneling density of states into a spiral Luttinger liquid in contact with superconductors at its two ends. This approach provides a way to disentangle the delicate interplay between superconducting correlations and strong electron interactions. If the wire-superconductor boundary is dominated by Andreev reflection, we find that in the vicinity of the interface the zero-bias tunneling anomaly reveals a power law enhancement with the unusual exponent. This zero-bias due to Andreev reflections may coexist and thus mask possible peak due to Majorana bound states. Far away from the interface strong correlations inherent to the Luttinger liquid prevail and restore conventional suppression of the tunneling density of states at the Fermi level, which acquires a Friedel-like oscillatory envelope with the period renormalized by the strength of the interaction. D.E.L. was supported by Michigan State University and in part by ARO through Contract No. W911NF-12-1-0235. A.L. acknowledges support from NSF under Grant No. PHYS-1066293, and the hospitality of the Aspen Center for Physics.
NASA Astrophysics Data System (ADS)
Fang, Jun; Duan, Wenye; Liu, Junfeng; Zhang, Chao; Ma, Zhongshui
2018-04-01
We study superconductivity states mediated by the BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairings in superconducting Weyl semimetals. It is found that a mixture of BCS and FFLO pairings results in a distinctive double-gap structure for superconducting states. With a heterojunction of a Weyl semimetal and a superconducting Weyl semimetal, we demonstrate the nonholonomic Andreev reflection and show that the intra- and internode Andreev reflections increase at the edges of the effective gap. The influence of interface potentials on the Andreev reflections is investigated. The conductance spectra arising from the mixed superconducting pairings is also analyzed.
Origin of excess low-energy states in a disordered superconductor in a Zeeman field.
Loh, Y L; Trivedi, N; Xiong, Y M; Adams, P W; Catelani, G
2011-08-05
Tunneling density of states measurements of disordered superconducting Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The disordered Larkin-Ovchinnikov superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states that lead to distinct spectral signatures at low energy.
NASA Astrophysics Data System (ADS)
Hu, Dong-Sheng; Xiong, Shi-Jie
2002-11-01
We investigate the transport properties and Andreev reflection in one-dimensional (1D) systems with randomly doped superconducting grains. The superconducting grains are described by the Bogoliubov-de Gene Hamiltonian and the conductance is calculated by using the transfer matrix method and Landauer-Büttiker formula. It is found that although the quasiparticle states are localized due to the randomness and the low dimensionality, the conductance is still kept finite in the thermodynamical limit due to the Andreev reflection. We also investigate the effect of correlation of disorder in such systems and the results show the delocalization of quasiparticle states and suppression of Andreev reflection in a wide energy window.
Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo
2018-02-22
The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.
Direct observation of ballistic Andreev reflection
NASA Astrophysics Data System (ADS)
Klapwijk, T. M.; Ryabchun, S. A.
2014-12-01
An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence of Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these "inhomogeneous systems" provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.
Andreev current for low temperature thermometry
NASA Astrophysics Data System (ADS)
Faivre, T.; Golubev, D. S.; Pekola, J. P.
2015-05-01
We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminum is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: For instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.
Direct observation of ballistic Andreev reflection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klapwijk, T. M., E-mail: t.m.klapwijk@tudelft.nl; Ryabchun, S. A.
2014-12-15
An overview is presented of experiments on ballistic electrical transport in inhomogeneous superconducting systems which are controlled by the process of Andreev reflection. The initial experiments based on the coexistence of a normal phase and a superconducting phase in the intermediate state led to the concept itself. It was followed by a focus on geometrically inhomogeneous systems like point contacts, which provided a very clear manifestation of the energy and direction dependence of the Andreev reflection process. The point contacts have recently evolved towards the atomic scale owing to the use of mechanical break-junctions, revealing a very detailed dependence ofmore » Andreev reflection on the macroscopic phase of the superconducting state. In present-day research, the superconducting in homogeneity is constructed by clean room technology and combines superconducting materials, for example, with low-dimensional materials and topological insulators. Alternatively, the superconductor is combined with nano-objects, such as graphene, carbon nanotubes, or semiconducting nanowires. Each of these “inhomogeneous systems” provides a very interesting range of properties, all rooted in some manifestation of Andreev reflection.« less
Study of Proximity Effect at D-Wave Superconductors in Quasiclassical Methods
NASA Astrophysics Data System (ADS)
Tanuma, Y.; Tanaka, Y.; Kashiwaya, S.
2005-08-01
Tunneling spectra via Andreev bound states between a normal metal (N) / d
Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures
Al-Hassanieh, K. A.; Rincón, Julián; Alvarez, G.; ...
2015-02-09
Here we used the time-dependent density-matrix renormalization group (tDMRG) to study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflectionmore » at metal- superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.« less
NASA Astrophysics Data System (ADS)
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the topologically trivial phase. Measuring such correlations is the clearest and most straightforward test of topological MZMs in SM-SC heterostructures that can be done in a currently accessible experimental setup.
Point-contact Andreev reflection spectroscopy on Bi 2 Se 3 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granstrom, C. R.; Fridman, I.; Lei, H. -C.
In order to study how Andreev reflection (AR) occurs between a superconductor and a three-dimensional topological insulator (TI), we use superconducting Nb tips to perform point-contact AR spectroscopy at 4.2 K on as-grown single crystals of Bi 2Se 3. Scanning tunneling spectroscopy and scanning tunneling microscopy are also used to characterize the superconducting tip and both the doping level and surface condition of the TI sample. Furthermore, the point-contact measurements show clear spectral signatures of AR, as well as a depression of zero-bias conductance with decreasing junction impedance. The latter observation can be attributed to interfacial Rashba spin-orbit coupling, andmore » the presence of bulk bands at the Fermi level in our samples suggests that bulk states of Bi2Se3 are involved in the observed AR.« less
Point-contact Andreev reflection spectroscopy on Bi 2 Se 3 single crystals
Granstrom, C. R.; Fridman, I.; Lei, H. -C.; ...
2016-04-27
In order to study how Andreev reflection (AR) occurs between a superconductor and a three-dimensional topological insulator (TI), we use superconducting Nb tips to perform point-contact AR spectroscopy at 4.2 K on as-grown single crystals of Bi 2Se 3. Scanning tunneling spectroscopy and scanning tunneling microscopy are also used to characterize the superconducting tip and both the doping level and surface condition of the TI sample. Furthermore, the point-contact measurements show clear spectral signatures of AR, as well as a depression of zero-bias conductance with decreasing junction impedance. The latter observation can be attributed to interfacial Rashba spin-orbit coupling, andmore » the presence of bulk bands at the Fermi level in our samples suggests that bulk states of Bi2Se3 are involved in the observed AR.« less
Anatomy of point-contact Andreev reflection spectroscopy from the experimental point of view
NASA Astrophysics Data System (ADS)
Naidyuk, Yu. G.; Gloos, K.
2018-04-01
We review applications of point-contact Andreev-reflection spectroscopy to study elemental superconductors, where theoretical conditions for the smallness of the point-contact size with respect to the characteristic lengths in the superconductor can be satisfied. We discuss existing theoretical models and identify new issues that have to be solved, especially when applying this method to investigate more complex superconductors. We will also demonstrate that some aspects of point-contact Andreev-reflection spectroscopy still need to be addressed even when investigating ordinary metals.
Enhanced Andreev reflection in gapped graphene
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Zareyan, Malek
2012-08-01
We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene that presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN can enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A; Tsepelin, Viktor
2014-03-25
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid (3)He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics.
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B
Fisher, Shaun Neil; Jackson, Martin James; Sergeev, Yuri A.; Tsepelin, Viktor
2014-01-01
Andreev reflection of quasiparticle excitations provides a sensitive and passive probe of flow in superfluid 3He-B. It is particularly useful for studying complex flows generated by vortex rings and vortex tangles (quantum turbulence). We describe the reflection process and discuss the results of numerical simulations of Andreev reflection from vortex rings and from quantum turbulence. We present measurements of vortices generated by a vibrating grid resonator at very low temperatures. The Andreev reflection is measured using an array of vibrating wire sensors. At low grid velocities, ballistic vortex rings are produced. At higher grid velocities, the rings collide and reconnect to produce quantum turbulence. We discuss spatial correlations of the fluctuating vortex signals measured by the different sensor wires. These reveal detailed information about the formation of quantum turbulence and about the underlying vortex dynamics. PMID:24704872
NASA Astrophysics Data System (ADS)
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
NASA Astrophysics Data System (ADS)
Yokoyama, Tomohiro; Reutlinger, Johannes; Belzig, Wolfgang; Nazarov, Yuli V.
2017-01-01
We consider the spectrum of Andreev bound states (ABSs) in an exemplary four-terminal superconducting structure where four chaotic cavities are connected by quantum point contacts to the terminals and to each other forming a ring. We nickname the resulting device 4T-ring. Such a tunable device can be realized in a 2D electron gas-superconductor or a graphene-based hybrid structure. We concentrate on the limit of a short structure and large conductance of the point contacts where there are many ABS in the device forming a quasicontinuous spectrum. The energies of the ABS can be tuned by changing the superconducting phases of the terminals. We observe the opening and closing of gaps in the spectrum upon changing the phases. This concerns the usual proximity gap that separates the levels from zero energy as well as less usual "smile" gaps that split the levels of the quasicontinuous spectrum. We demonstrate a remarkable crossover in the overall spectrum that occurs upon changing the ratio of conductances of the inner and outer point contacts. At big values of the ratio (closed limit), the levels exhibit a generic behavior expected for the spectrum of a disordered system manifesting level repulsion and Brownian "motion" upon changing the phases. At small values of the ratio (open limit), the levels are squeezed into narrow bunches separated by wide smile gaps. Each bunch consists of almost degenerate ABS formed by Andreev reflection between two adjacent terminals. We study in detail the properties of the spectrum in the limit of a small ratio, paying special attention to the crossings of bunches. We distinguish two types of crossings: (i) with a regular phase dependence of the levels and (ii) crossings where the Brownian motion of the levels leads to an apparently irregular phase dependence. We work out a perturbation theory that explains the observations both at a detailed level of random scattering in the device and at a phenomenological level of positively defined random matrices. The unusual properties of the spectrum originate from rather unobvious topological effects. The topology of the first kind is restricted to the semiclassical limit and related to the winding of the semiclassical Green function. It is responsible for the closing of the proximity gaps. The topology of the second kind comes about the discreteness of the number of modes in the point contacts and is responsible for the smile gaps. The topology of the third kind leads to the emergence of Weyl points in the spectrum and is not discussed in the context of this article.
Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire
Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; ...
2016-02-25
Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi 1.33Sb 0.67)Se 3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. As a result, we characterize the zero-bias peaks andmore » discuss their origin.« less
Investigations of Crossed Andreev Reflection in Hybrid Superconductor-Ferromagnet Structures
ERIC Educational Resources Information Center
Colci O'Hara, Madalina
2009-01-01
Cooper pair splitting is predicted to occur in hybrid devices where a superconductor is coupled to two ferromagnetic wires placed at a distance less than the superconducting coherence length. This thesis searches for signatures of this process, called crossed Andreev reflection (CAR), in three device geometries. The first devices studied are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holt, E; Bench, G
2007-12-05
Growth rates and the ability to date an organism can greatly contribute to understanding its population biology and community dynamics. 1n 1954, Andreev proposed a method to date Cladina, a fruticose lichen, using total thallus length and number of internodes. No research, however, has demonstrated the reliability of this technique or compared its estimates to those derived by other means. In this study, we demonstrate the utility of {sup 14}C/C ratios to determine lichen age and growth rate in Cladina stygia (Fr.) Ahti collected from northwestern Alaska, USA. The average growth rate using {sup 14}C/C ratios was 6.5 mm {center_dot}more » yr{sup -1}, which was not significantly different from growth rates derived by Andreev's internode method (average = 6.2 mm {center_dot} yr{sup -1}); thus, suggesting the reliability of Andreev's simple field method for dating lichens. In addition, we found lichen growth rates appeared to differ with geographic location, yet did not seem related to ambient temperature and total precipitation.« less
NASA Astrophysics Data System (ADS)
Lu, Xin; Park, W. K.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, Suchitra E.; Greene, L. H.
2010-05-01
Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe2As2 (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other with a V2/3 background conductance universally observed, extending even up to 100 meV for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe2As2 and superconducting (Ba0.6K0.4)Fe2As2 crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba0.6K0.4Fe2As2, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of ~ 3.0-4.0 meV with 2Δ0/kBTc ~ 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe0.9Co0.1)2As2, the G(V) curves typically display a zero-bias conductance peak.
Magnetic, superconducting and electron-boson properties of GdO(F)FeAs oxypnictides
NASA Astrophysics Data System (ADS)
Kuzmicheva, Tatiana; Sadakov, Andrey; Muratov, Andrei; Kuzmichev, Svetoslav; Khlybov, Yevgeny; Kulikova, Lyudmila; Eltsev, Yuri
2018-05-01
We performed comprehensive studies of nearly optimal fluorine-substituted GdO1-xFx FeAs oxypnictide superconductors with TC = 48 - 53 K . Specific heat measurements revealed a sharp peak at T = 3.5 K that shifts to lower temperatures with magnetic field increase. This peak corresponds to an antiferromagnetic ordering in Gd3+ ion sublattice and may indicate coexistence between superconducting and magnetic orderings. Andreev transport through artificially made constriction demonstrated two channels for the carriers from the band(s) with the large superconducting gap as well as from those with the small gap. As expected, the presence of a transport channel with the bands mixing (ΔL +ΔS) was not detected. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we determined two superconducting gaps, ΔS ≈ 2.7 meV , and ΔL ≈ 11.6 meV . The reproducible fine structure in the dI(V)/dV spectra of the Andreev contacts (satellites of the main subharmonic gap structure for ΔL) was interpreted as caused by a resonant emission of bosons with the energy ε0 = 12 - 15 meV ≈ΔL +ΔS during the process of multiple Andreev reflections (MAR) for normal carriers in ΔL-band(s) transport channel.
NASA Astrophysics Data System (ADS)
Xie, Hong-Yi; Vavilov, Maxim G.; Levchenko, Alex
2018-02-01
We consider mesoscopic four-terminal Josephson junctions and study emergent topological properties of the Andreev subgap bands. We use symmetry-constrained analysis for Wigner-Dyson classes of scattering matrices to derive band dispersions. When the scattering matrix of the normal region connecting superconducting leads is energy independent, the determinant formula for Andreev spectrum can be reduced to a palindromic equation that admits a complete analytical solution. Band topology manifests with an appearance of the Weyl nodes which serve as monopoles of finite Berry curvature. The corresponding fluxes are quantified by Chern numbers that translate into a quantized nonlocal conductance that we compute explicitly for the time-reversal-symmetric scattering matrix. The topological regime can also be identified by supercurrents as Josephson current-phase relationships exhibit pronounced nonanalytic behavior and discontinuities near Weyl points that can be controllably accessed in experiments.
Li, Chuang; Hu, Lun-Hui; Zhou, Yi; Zhang, Fu-Chun
2018-05-18
Sau, Lutchyn, Tewari and Das Sarma (SLTD) proposed a heterostructure consisting of a semiconducting thin film sandwiched between an s-wave superconductor and a magnetic insulator and showed possible Majorana zero mode. Here we study spin polarization of the vortex core states and spin selective Andreev reflection at the vortex center of the SLTD model. In the topological phase, the differential conductance at the vortex center contributed from the Andreev reflection, is spin selective and has a quantized value [Formula: see text] at zero bias. In the topological trivial phase, [Formula: see text] at the lowest quasiparticle energy of the vortex core is spin selective due to the spin-orbit coupling (SOC). Unlike in the topological phase, [Formula: see text] is suppressed in the Giaever limit and vanishes exactly at zero bias due to the quantum destruction interference.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Topological phase transition of Dirac superconductors in the presence of pseudo-scalar pairings
NASA Astrophysics Data System (ADS)
Salehi, Morteza; Jafari, S. A.
2018-06-01
Motivated by recent developments in the field of topological superconductors, we show that there is a topological phase transition (TPT) for three dimensional Dirac superconductors (3DDS) in the presence of pseudo-scalar superconducting order parameter which leads to the appearance of a two dimensional Majorana sea (2DMS) on its surface. The perfect Andreev-Klein transmission, resonant peak with robust character in the differential conductance and 4π periodic Josephson current are experimental signatures of 2DMS.
Majorana-assisted nonlocal electron transport through a floating topological superconductor
NASA Astrophysics Data System (ADS)
Ulrich, Jascha; Hassler, Fabian
2015-08-01
The nonlocal nature of the fermionic mode spanned by a pair of Majorana bound states in a one-dimensional topological superconductor has inspired many proposals aiming at demonstrating this property in transport. In particular, transport through the mode from a lead attached to the left bound state to a lead attached to the right will result in current cross correlations. For ideal zero modes on a grounded superconductor, the cross correlations are however completely suppressed in favor of purely local Andreev reflection. In order to obtain a nonvanishing cross correlation, previous studies have required the presence of an additional global charging energy. Adding nonlocal terms in the form of a global charging energy to the Hamiltonian when testing the intrinsic nonlocality of the Majorana modes seems to be conceptually troublesome. Here, we show that a floating superconductor allows observing nonlocal current correlations in the absence of charging energy. We show that the noninteracting and the Coulomb-blockade regime have the same peak conductance e2/h but different shot-noise power; whereas the shot noise is sub-Poissonian in the Coulomb-blockade regime in the large-bias limit, Poissonian shot noise is generically obtained in the noninteracting case.
Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5
Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...
2017-05-12
Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less
Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska
Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
Magnetically-driven colossal supercurrent enhancement in InAs nanowire Josephson junctions
Tiira, J.; Strambini, E.; Amado, M.; Roddaro, S.; San-Jose, P.; Aguado, R.; Bergeret, F. S.; Ercolani, D.; Sorba, L.; Giazotto, F.
2017-01-01
The Josephson effect is a fundamental quantum phenomenon where a dissipationless supercurrent is introduced in a weak link between two superconducting electrodes by Andreev reflections. The physical details and topology of the junction drastically modify the properties of the supercurrent and a strong enhancement of the critical supercurrent is expected to occur when the topology of the junction allows an emergence of Majorana bound states. Here we report charge transport measurements in mesoscopic Josephson junctions formed by InAs nanowires and Ti/Al superconducting leads. Our main observation is a colossal enhancement of the critical supercurrent induced by an external magnetic field applied perpendicular to the substrate. This striking and anomalous supercurrent enhancement cannot be described by any known conventional phenomenon of Josephson junctions. We consider these results in the context of topological superconductivity, and show that the observed critical supercurrent enhancement is compatible with a magnetic field-induced topological transition. PMID:28401951
Tunable Electron-Electron Interactions in LaAlO 3 / SrTiO 3 Nanostructures
Cheng, Guanglei; Tomczyk, Michelle; Tacla, Alexandre B.; ...
2016-12-01
The interface between the two complex oxides LaAlO 3 and SrTiO 3 has remarkable properties that can be locally reconfigured between conducting and insulating states using a conductive atomic force microscope. Prior investigations of “sketched” quantum dot devices revealed a phase in which electrons form pairs, implying a strongly attractive electron-electron interaction. Here, we show that these devices with strong electron-electron interactions can exhibit a gate-tunable transition from a pair-tunneling regime to a single-electron (Andreev bound state) tunneling regime where the interactions become repulsive. The electron-electron interaction sign change is associated with a Lifshitz transition where the d xz andmore » d yz bands start to become occupied. This electronically tunable electron-electron interaction, combined with the nanoscale reconfigurability of this system, provides an interesting starting point towards solid-state quantum simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xin; Park, W.K.; Yuan, H.Q.
2010-04-23
Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parentmore » compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder–Tinkham–Klapwijk model, the data show a gap size of ~ 3.0–4.0 meV with 2Δ{sub 0}/k{sub B}T{sub c} ~ 2.0–2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xin; Park, W. K.; Yuan, H. Q.
2010-01-01
Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parentmore » compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of {approx} 3.0-4.0 meV with 2{Delta}{sub 0}/k{sub B}T{sub c} {approx} 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family (Fe-1111). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.« less
Hanbury Brown and Twiss correlations of Cooper pairs in helical liquids
NASA Astrophysics Data System (ADS)
Choi, Mahn-Soo
2014-01-01
We propose a Hanbury Brown and Twiss (HBT) experiment of Cooper pairs on the edge channels of quantum spin Hall insulators. The helical edge channels provide a well-defined beam of Cooper pairs and perfect Andreev reflections from superconductors. This allows our setup to be identical in spirit to the original HBT experiment. Interestingly, the cross correlation is always negative and provides no hint of the bosonic nature of Cooper pairs. This counterintuitive result is attributed to the perfect Andreev reflection and the true beam splitter in the setup.
Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt3
NASA Astrophysics Data System (ADS)
Goswami, Pallab; Nevidomskyy, Andriy H.
2015-12-01
The recent phase-sensitive measurements in the superconducting B phase of UPt3 provide strong evidence for the triplet, chiral kz(kx±i ky) 2 pairing symmetries, which endow the Cooper pairs with orbital angular momentum projections Lz=±2 along the c axis. In the absence of disorder such pairing can support both line and point nodes, and both types of nodal quasiparticles exhibit nontrivial topology in the momentum space. The point nodes, located at the intersections of the closed Fermi surfaces with the c axis, act as the double monopoles and the antimonopoles of the Berry curvature, and generalize the notion of Weyl quasiparticles. Consequently, the B phase should support an anomalous thermal Hall effect, the polar Kerr effect, in addition to the protected Fermi arcs on the (1 ,0 ,0 ) and the (0 ,1 ,0 ) surfaces. The line node at the Fermi surface equator acts as a vortex loop in the momentum space and gives rise to the zero-energy, dispersionless Andreev bound states on the (0 ,0 ,1 ) surface. At the transition from the B phase to the A phase, the time-reversal symmetry is restored, and only the line node survives inside the A phase. As both line and double-Weyl point nodes possess linearly vanishing density of states, we show that weak disorder acts as a marginally relevant perturbation. Consequently, an infinitesimal amount of disorder destroys the ballistic quasiparticle pole, while giving rise to a diffusive phase with a finite density of states at the zero energy. The resulting diffusive phase exhibits T -linear specific heat, and an anomalous thermal Hall effect. We predict that the low-temperature thermodynamic and transport properties display a crossover between a ballistic thermal Hall semimetal and a diffusive thermal Hall metal. By contrast, the diffusive phase obtained from a time-reversal-invariant pairing exhibits only the T -linear specific heat without any anomalous thermal Hall effect.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena
NASA Astrophysics Data System (ADS)
Cottet, Audrey; Dartiailh, Matthieu C.; Desjardins, Matthieu M.; Cubaynes, Tino; Contamin, Lauriane C.; Delbecq, Matthieu; Viennot, Jérémie J.; Bruhat, Laure E.; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Cavity QED with hybrid nanocircuits: from atomic-like physics to condensed matter phenomena.
Cottet, Audrey; Dartiailh, Matthieu C; Desjardins, Matthieu M; Cubaynes, Tino; Contamin, Lauriane C; Delbecq, Matthieu; Viennot, Jérémie J; Bruhat, Laure E; Douçot, Benoit; Kontos, Takis
2017-11-01
Circuit QED techniques have been instrumental in manipulating and probing with exquisite sensitivity the quantum state of superconducting quantum bits coupled to microwave cavities. Recently, it has become possible to fabricate new devices in which the superconducting quantum bits are replaced by hybrid mesoscopic circuits combining nanoconductors and metallic reservoirs. This mesoscopic QED provides a new experimental playground to study the light-matter interaction in electronic circuits. Here, we present the experimental state of the art of mesoscopic QED and its theoretical description. A first class of experiments focuses on the artificial atom limit, where some quasiparticles are trapped in nanocircuit bound states. In this limit, the circuit QED techniques can be used to manipulate and probe electronic degrees of freedom such as confined charges, spins, or Andreev pairs. A second class of experiments uses cavity photons to reveal the dynamics of electron tunneling between a nanoconductor and fermionic reservoirs. For instance, the Kondo effect, the charge relaxation caused by grounded metallic contacts, and the photo-emission caused by voltage-biased reservoirs have been studied. The tunnel coupling between nanoconductors and fermionic reservoirs also enable one to obtain split Cooper pairs, or Majorana bound states. Cavity photons represent a qualitatively new tool to study these exotic condensed matter states.
Current-phase relation and flux-dependent thermoelectricity in Andreev interferometers
NASA Astrophysics Data System (ADS)
Dolgirev, Pavel E.; Kalenkov, Mikhail S.; Zaikin, Andrei D.
2018-02-01
We predict a novel current-phase relation in multiterminal Andreev interferometers that emerges from an interplay between long-range quantum coherence and nonequilibrium effects. Under nonzero bias V the current-phase relation IS(ϕ ) resembles that of a ϕ0 junction differing from the latter due to a nonzero average I0(V ) =<;IS(ϕ)>;ϕ . The flux-dependent thermopower S (Φ ) of the system has a similar form to that of the current-phase relation and in certain limits it can reduce to an either odd or even function of Φ in agreement with a number of experimental observations.
Andreev reflection enhancement in semiconductor-superconductor structures
NASA Astrophysics Data System (ADS)
Bouscher, Shlomi; Winik, Roni; Hayat, Alex
2018-02-01
We develop a theoretical approach for modeling a wide range of semiconductor-superconductor structures with arbitrary potential barriers and a spatially dependent superconducting order parameter. We demonstrate asymmetry in the conductance spectrum as a result of a Schottky barrier shape. We further show that the Andreev reflection process can be significantly enhanced through resonant tunneling with appropriate barrier configuration, which can incorporate the Schottky barrier as a contributing component of the device. Moreover, we show that resonant tunneling can be achieved in superlattice structures as well. These theoretically demonstrated effects along with our modeling approach enable much more efficient Cooper pair injection into semiconductor-superconductor structures, including superconducting optoelectronic devices.
Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor
NASA Astrophysics Data System (ADS)
Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat
2018-03-01
The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.
NASA Astrophysics Data System (ADS)
Ang, Yee Sin; Ang, Lay Kee; Zhang, Chao; Ma, Zhongshui
In graphene-magnetic-insulator hybrid structure such as graphene-Europium-oxide, proximity induced exchange interaction opens up a spin-dependent bandgap and spin splitting in the Dirac band. We show that such band topology allows pure crossed Andreev reflection to be generated exclusively without the parasitic local Andreev reflection and elastic cotunnelling over a wide range of bias and Fermi levels. We model the charge transport in an EuO-graphene/superconductor/EuO-graphene three-terminal device and found that the pure non-local conductance exhibits rapid on/off switching characteristic with a minimal subthreshold swing of ~ 20 mV. Non-local conductance oscillation is observed when the Fermi levels in the superconducting lead is varied. The oscillatory behavior is directly related to the quasiparticle propagation in the superconducting lead and hence can be used as a tool to probe the subgap quasiparticle mode in superconducting graphene. The non-local current is 100% spin-polarized and is highly tunable in our proposed device. This opens up the possibility of highly tunable graphene-based spin transistor that operates purely in the non-local transport regime.
A scanning tunneling microscope for a dilution refrigerator.
Marz, M; Goll, G; Löhneysen, H v
2010-04-01
We present the main features of a home-built scanning tunneling microscope that has been attached to the mixing chamber of a dilution refrigerator. It allows scanning tunneling microscopy and spectroscopy measurements down to the base temperature of the cryostat, T approximately 30 mK, and in applied magnetic fields up to 13 T. The topography of both highly ordered pyrolytic graphite and the dichalcogenide superconductor NbSe(2) has been imaged with atomic resolution down to T approximately 50 mK as determined from a resistance thermometer adjacent to the sample. As a test for a successful operation in magnetic fields, the flux-line lattice of superconducting NbSe(2) in low magnetic fields has been studied. The lattice constant of the Abrikosov lattice shows the expected field dependence proportional to 1/square root of B and measurements in the scanning tunneling spectroscopy mode clearly show the superconductive density of states with Andreev bound states in the vortex core.
Gapless Andreev bound states in the quantum spin Hall insulator HgTe.
Bocquillon, Erwann; Deacon, Russell S; Wiedenmann, Jonas; Leubner, Philipp; Klapwijk, Teunis M; Brüne, Christoph; Ishibashi, Koji; Buhmann, Hartmut; Molenkamp, Laurens W
2017-02-01
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.
Coherent Dynamics of Open Quantum System in the Presence of Majorana Fermions
NASA Astrophysics Data System (ADS)
Assuncao, Maryzaura O.; Diniz, Ginetom S.; Vernek, Edson; Souza, Fabricio M.
In recent years the research on quantum coherent dynamics of open systems has attracted great attention due to its relevance for future implementation of quantum computers. In the present study we apply the Kadanoff-Baym formalism to simulate the population dynamics of a double-dot molecular system attached to both a superconductor and fermionic reservoirs. We solve both analytically and numerically a set of coupled differential equations that account for crossed Andreev reflection (CAR), intramolecular hopping and tunneling. We pay particular attention on how Majorana bound states can affect the population dynamics of the molecule. We investigate on how initial state configuration affects the dynamics. For instance, if one dot is occupied and the other one is empty, the dynamics is dictated by the inter dot tunneling. On the other hand, for initially empty dots, the CAR dominates. We also investigate how the source and drain currents evolve in time. This work was supporte by FAPEMIG, CNPq and CAPES.
Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states
NASA Astrophysics Data System (ADS)
Kiendl, Thomas; von Oppen, Felix; Brouwer, Piet W.
2017-10-01
We study the sensitivity of Yu-Shiba-Rusinov states, bound states that form around magnetic scatterers in superconductors, to the presence of nonmagnetic disorder in both two and three dimensional systems. We formulate a scattering approach to this problem and reduce the effects of disorder to two contributions: disorder-induced normal reflection and a random phase of the amplitude for Andreev reflection. We find that both of these are small even for moderate amounts of disorder. In the dirty limit in which the disorder-induced mean free path is smaller than the superconducting coherence length, the variance of the energy of the Yu-Shiba-Rusinov state remains small in the ratio of the Fermi wavelength and the mean free path. This effect is more pronounced in three dimensions, where only impurities within a few Fermi wavelengths of the magnetic scatterer contribute. In two dimensions the energy variance is larger by a logarithmic factor because impurities contribute up to a distance of the order of the superconducting coherence length.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Khezerlou, M.; Ebadzadeh, S. F.
2018-03-01
We study the influence of magnetic exchange field (MEF) on the chirality of Andreev resonant state (ARS) appearing at the relating monolayer MoS2 ferromagnet/superconductor interface, in which the induced pairing order parameter is chiral p-wave symmetry. Transmission of low-energy Dirac-like electron (hole) quasiparticles through a ferromagnet/superconductor (F/S) interface is considered based on Dirac-Bogoliubov-de Gennes Hamiltonian and, of course, Andreev reflection process. The magnetic exchange field of a ferromagnetic section on top of ML-MDS may affect the electron (hole) excitations for spin-up and spin-down electrons, differently. We find the chirality symmetry of ARS to be conserved in the absence of MEF, whereas it is broken in the presence of MEF. Tuning the MEF enables one to control either electrical properties (such as band gap, SOC and etc.) or spin-polarized transport. The resulting normal conductance is found to be more sensitive to the magnitude of MEF and doping regime of F region. Unconventional spin-triplet p-wave symmetry features the zero-bias conductance, which strongly depends on p-doping level of F region in the relating NFS junction. A sharp conductance switching in zero is achieved in the absence of SOC.
Subgap transport in silicene-based superconducting hybrid structures
NASA Astrophysics Data System (ADS)
Li, Hai
2016-08-01
We investigate the influences of exchange field and perpendicular electric field on the subgap transport in silicene-based ferromagnetic/superconducting (FS) and ferromagnetic/superconducting/ferromagnetic (FSF) junctions. Owing to the unique buckling structure of silicene, the Andreev reflection and subgap conductance can be effectively modulated by a perpendicular electric field. It is revealed that the subgap conductance in the FS junction can be distinctly enhanced by an exchange field. Remarkably, resorting to the tunable band gap of silicene, an exclusive crossed Andreev reflection (CAR) process in the FSF junction can be realized within a wide range of related parameters. Moreover, in the FSF junction the exclusive CAR and exclusive elastic cotunneling processes can be switched by reversing the magnetization direction in one of the ferromagnetic regions.
Valley switch in a graphene superlattice due to pseudo-Andreev reflection
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.
2018-06-01
Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.
Spontaneous supercurrent and φ0 phase shift parallel to magnetized topological insulator interfaces
NASA Astrophysics Data System (ADS)
Alidoust, Mohammad; Hamzehpour, Hossein
2017-10-01
Employing a Keldysh-Eilenberger technique, we theoretically study the generation of a spontaneous supercurrent and the appearance of the φ0 phase shift parallel to uniformly in-plane magnetized superconducting interfaces made of the surface states of a three-dimensional topological insulator. We consider two weakly coupled uniformly magnetized superconducting surfaces where a macroscopic phase difference between the s -wave superconductors can be controlled externally. We find that, depending on the magnetization strength and orientation on each side, a spontaneous supercurrent due to the φ0 states flows parallel to the interface at the nanojunction location. Our calculations demonstrate that nonsinusoidal phase relations of current components with opposite directions result in maximal spontaneous supercurrent at phase differences close to π . We also study the Andreev subgap channels at the interface and show that the spin-momentum locking phenomenon in the surface states can be uncovered through density of states studies. We finally discuss realistic experimental implications of our findings.
Phase-incoherent superconducting pairs in the normal state of Ba(Fe(1-x)Co(x))₂As₂.
Sheet, Goutam; Mehta, Manan; Dikin, D A; Lee, S; Bark, C W; Jiang, J; Weiss, J D; Hellstrom, E E; Rzchowski, M S; Eom, C B; Chandrasekhar, V
2010-10-15
The normal state properties of the recently discovered ferropnictide superconductors might hold the key to understanding their exotic superconductivity. Using point-contact spectroscopy we show that Andreev reflection between an epitaxial thin film of Ba(Fe(0.92)Co(0.08))₂As₂ and a silver tip can be seen in the normal state of the film up to temperature T∼1.3T(c), where T(c) is the critical temperature of the superconductor. Andreev reflection far above T(c) can be understood only when superconducting pairs arising from strong fluctuation of the phase of the complex superconducting order parameter exist in the normal state. Our results provide spectroscopic evidence of phase-incoherent superconducting pairs in the normal state of the ferropnictide superconductors.
NASA Astrophysics Data System (ADS)
Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.
2018-05-01
A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.
Sensing with Superconducting Point Contacts
Nurbawono, Argo; Zhang, Chun
2012-01-01
Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630
Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot.
Gramich, J; Baumgartner, A; Schönenberger, C
2015-11-20
We report the observation of two fundamental subgap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape, and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of ~145 μeV, with a gate, bias, and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replica's amplitudes and energies suggest that two different bosons couple to the tunnel process.
Proximity-induced superconductivity within the InAs/GaSb edge conducting state
NASA Astrophysics Data System (ADS)
Kononov, A.; Kostarev, V. A.; Semyagin, B. R.; Preobrazhenskii, V. V.; Putyato, M. A.; Emelyanov, E. A.; Deviatov, E. V.
2017-12-01
We experimentally investigate Andreev transport through the interface between an indium superconductor and the edge of the InAs/GaSb bilayer. To cover all possible regimes of the InAs/GaSb spectrum, we study samples with 10-nm-, 12-nm-, and 14-nm-thick InAs quantum wells. For the trivial case of a direct band insulator in 10 nm samples, differential resistance demonstrates standard Andreev reflection. For InAs/GaSb structures with band inversion (12 and 14 nm samples), we observe distinct low-energy structures, which we regard as direct evidence for the proximity-induced superconductivity within the current-carrying edge state. For 14 nm InAs well samples, we additionally observe mesoscopiclike resistance fluctuations, which are subjected to threshold suppression in low magnetic fields.
Nonlocal superconducting correlations in graphene in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Beconcini, Michael; Polini, Marco; Taddei, Fabio
2018-05-01
We study Andreev processes and nonlocal transport in a three-terminal graphene-superconductor hybrid system under a quantizing perpendicular magnetic field [G.-H. Lee et al., Nat. Phys. 13, 693 (2017), 10.1038/nphys4084]. We find that the amplitude of the crossed Andreev reflection (CAR) processes crucially depends on the orientation of the lattice. By employing Landauer-Büttiker scattering theory, we find that CAR is generally very small for a zigzag edge, while for an armchair edge it can be larger than the normal transmission, thereby resulting in a negative nonlocal resistance. In the case of an armchair edge and with a wide superconducting region (as compared to the superconducting coherence length), CAR exhibits large oscillations as a function of the magnetic field due to interference effects. This results in sign changes of the nonlocal resistance.
Damle, Kedar; Majumdar, Satya N; Tripathi, Vikram; Vivo, Pierpaolo
2011-10-21
We compute analytically the full distribution of Andreev conductance G(NS) of a metal-superconductor interface with a large number N(c) of transverse modes, using a random matrix approach. The probability distribution P(G(NS),N(c) in the limit of large N(c) displays a Gaussian behavior near the average value
Weak links in high critical temperature superconductors
NASA Astrophysics Data System (ADS)
Tafuri, Francesco; Kirtley, John R.
2005-11-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.
Andreev Reflection in an s-Type Superconductor Proximized 3D Topological Insulator.
Tikhonov, E S; Shovkun, D V; Snelder, M; Stehno, M P; Huang, Y; Golden, M S; Golubov, A A; Brinkman, A; Khrapai, V S
2016-09-30
We investigate transport and shot noise in lateral normal-metal-3D topological-insulator-superconductor contacts, where the 3D topological insulator (TI) is based on Bi. In the normal state, the devices are in the elastic diffusive transport regime, as demonstrated by a nearly universal value of the shot noise Fano factor F_{N}≈1/3 in magnetic field and in a reference normal-metal contact. In the absence of magnetic field, we identify the Andreev reflection (AR) regime, which gives rise to the effective charge doubling in shot noise measurements. Surprisingly, the Fano factor F_{AR}≈0.22±0.02 is considerably reduced in the AR regime compared to F_{N}, in contrast to previous AR experiments in normal metals and semiconductors. We suggest that this effect is related to a finite thermal conduction of the proximized, superconducting TI owing to a residual density of states at low energies.
Evidence of a multiple boson emission in Sm1-xThxOFeAs
NASA Astrophysics Data System (ADS)
Kuzmichev, S. A.; Kuzmicheva, T. E.; Zhigadlo, N. D.
2017-07-01
We studied a reproducible fine structure observed in dynamic conductance spectra of Andreev arrays in Sm1-x Th x OFeAs superconductors with various thorium concentrations {(x = 0.08\\text{--}0.3)} and critical temperatures Tc = 26\\text{--}50 \\text{K} . This structure is unambiguously caused by a multiple boson emission (of the same energy) during the process of multiple Andreev reflections. The directly determined energy of the bosonic mode reaches \\varepsilon0 = 14.8 +/- 2.2 \\text{meV} for optimal compounds. Within the studied range of T c , this energy as well as the large ΔL and the small ΔS superconducting gaps, nearly scale with critical temperature with the characteristic ratio \\varepsilon_0/k_BTc ≈ 3.2 (and 2Δ_L/k_BTc ≈ 5.3 , respectively) resembling the expected energy ΔL + ΔS of spin resonance and spectral density enhancement in s+/- and s++ states, respectively.
Rashba sandwiches with topological superconducting phases
NASA Astrophysics Data System (ADS)
Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena
2018-05-01
We introduce a versatile heterostructure harboring various topological superconducting phases characterized by the presence of helical, chiral, or unidirectional edge states. Changing parameters, such as an effective Zeeman field or chemical potential, one can tune between these three topological phases in the same setup. Our model relies only on conventional nontopological ingredients. The bilayer setup consists of an s -wave superconductor sandwiched between two two-dimensional electron gas layers with strong Rashba spin-orbit interaction. The interplay between two different pairing mechanisms, proximity induced direct and crossed Andreev superconducting pairings, gives rise to multiple topological phases. In particular, helical edge states occur if crossed Andreev superconducting pairing is dominant. In addition, an in-plane Zeeman field leads to a two-dimensional gapless topological phase with unidirectional edge states, which were previously predicted to exist only in noncentrosymmetric superconductors. If the Zeeman field is tilted out of the plane, the system is in a topological phase hosting chiral edge states.
Chiral Majorana fermion modes regulated by a scanning tunneling microscope tip
NASA Astrophysics Data System (ADS)
Zhou, Yan-Feng; Hou, Zhe; Zhang, Ying-Tao; Sun, Qing-Feng
2018-03-01
The Majorana fermion can be described by a real wave function with only two phases (zero and π ) which provide a controllable degree of freedom. We propose a strategy to regulate the phase of the chiral Majorana state by coupling with a scanning tunneling microscope tip in a system consisting of a quantum anomalous Hall insulator coupled with a superconductor. With the change in the chemical potential, the chiral Majorana state can be tuned alternately between zero and π , in which the perfect normal tunneling and perfect crossed Andreev reflection appear, respectively. The perfect crossed Andreev reflection, by which a Cooper pair can be split into two electrons going into different terminals completely, leads to a pumping current and distinct quantized resistances. These findings may provide a signature of Majorana fermions and pave a feasible avenue to regulate the phase of the Majorana state.
He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.
2014-01-01
Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649
?-BiPd: a clean noncentrosymmetric superconductor
NASA Astrophysics Data System (ADS)
Ramakrishnan, Srinivasan; Joshi, Bhanu; Thamizhavel, A.
2017-12-01
We present a comprehensive review of the normal and superconducting state properties of a high-quality single crystal of monoclinic BiPd (?-BiPd, space group ?). The superconductivity of this crystal below 3.8 K is established by measuring its properties using bulk as well as spectroscopic techniques. BiPd is one of the cleanest noncentrosymmetric superconductors that display superconductivity with multiple energy gaps. Evidence of multiple energy gaps was found in heat capacity, point contact (PC) spectroscopy, penetration depth, muon spin rotation, small angle neutron scattering and NMR/NQR measurements. Moreover, Muon spin rotation measurements also suggest strong field dependence of the penetration depth of this superconductor. Unusual superconducting properties due to possible s and p wave mixing are shown by the observation of Andreev bound state in PC measurements as well as the suppressed coherence peak in the temperature dependence of the spin-lattice relaxation in the NQR measurements. This surmise is at variance with the recent STM measurements (different crystal). The observed unusual properties and multiband superconductivity are extremely sensitive to disorder in BiPd. Finally, there is a possibility of tuning the electron correlations by selective substitution in BiPd, thus making it an important system for further investigations.
Odd-frequency pairing in superconducting heterostructures .
NASA Astrophysics Data System (ADS)
Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.
2007-03-01
We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pape, Y.
Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10 +19 n cm ₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of an unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3more » $$_2^1$$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$$_2^1$$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10 +19 n cm ₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.« less
Le Pape, Y.
2015-11-22
Limited literature (Pomaro et al., 2011, Mirhosseini et al., 2014, Salomoni et al., 2014 and Andreev and Kapliy, 2014) is available on the structural analysis of irradiated concrete biological shield (CBS), although extended operations of nuclear powers plants may lead to critical neutron exposure above 1.0 × 10 +19 n cm ₋2. To the notable exception of Andreev and Kapliy, available structural models do not account for radiation-induced volumetric expansion, although it was found to develop important linear dimensional change of the order of 1%, and, can lead to significant concrete damage (Le Pape et al., 2015). A 1D-cylindrical model of an unreinforced CBS accounting for temperature and irradiation effects is developed. Irradiated concrete properties are characterized probabilistically using the updated database collected by Oak Ridge National Laboratory (Field et al., 2015). The overstressed concrete ratio (OCR) of the CBS, i.e., the proportion of the wall thickness being subject to stresses beyond the resistance of concrete, is derived by deterministic and probabilistic analysis assuming that irradiated concrete behaves as an elastic materials. In the bi-axial compressive zone near the reactor cavity, the OCR is limited to 5.7%, i.e., 8.6 cm (3more » $$_2^1$$ in.), whereas, in the tension zone, the OCR extends to 72%, i.e., 1.08 m (42$$_2^1$$ in.). Finally, we find that these results, valid for a maximum neutron fluence on the concrete surface of 3.1 × 10 +19 n cm ₋2 (E > 0.1 MeV) and, obtained after 80 years of operation, give an indication of the potential detrimental effects of prolonged irradiation of concrete in nuclear power plants.« less
Above 400-K robust perpendicular ferromagnetic phase in a topological insulator
Tang, Chi; Chang, Cui-Zu; Zhao, Gejian; Liu, Yawen; Jiang, Zilong; Liu, Chao-Xing; McCartney, Martha R.; Smith, David J.; Chen, Tingyong; Moodera, Jagadeesh S.; Shi, Jing
2017-01-01
The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TIs) exhibits many fascinating physical properties for potential applications in nanoelectronics and spintronics. However, in transition metal–doped TIs, the only experimentally demonstrated QAHE system to date, the QAHE is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (Tc) and inherent spin disorder associated with the random magnetic dopants. We demonstrate drastically enhanced Tc by exchange coupling TIs to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy. Signatures showing that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is spin-polarized. The greatly enhanced Tc, absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures. PMID:28691097
Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2
NASA Astrophysics Data System (ADS)
Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud
2018-06-01
We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.
NASA Astrophysics Data System (ADS)
Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.
2018-02-01
We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.
Topological π Junctions from Crossed Andreev Reflection in the Quantum Hall Regime
NASA Astrophysics Data System (ADS)
Finocchiaro, F.; Guinea, F.; San-Jose, P.
2018-03-01
We consider a two-dimensional electron gas (2DEG) in the quantum Hall regime in the presence of a Zeeman field, with the Fermi level tuned to a filling factor of ν =1 . We show that, in the presence of spin-orbit coupling, contacting the 2DEG with a narrow strip of an s -wave superconductor produces a topological superconducting gap along the contact as a result of crossed Andreev reflection (CAR) processes across the strip. The sign of the topological gap, controlled by the CAR amplitude, depends periodically on the Fermi wavelength and strip width and can be externally tuned. An interface between two halves of a long strip with topological gaps of opposite sign implements a robust π junction, hosting a pair of Majorana zero modes that do not split despite their overlap. We show that such a configuration can be exploited to perform protected non-Abelian tunnel-braid operations without any fine tuning.
Andreev rectifier: A nonlocal conductance signature of topological phase transitions
NASA Astrophysics Data System (ADS)
Rosdahl, T. Ö.; Vuik, A.; Kjaergaard, M.; Akhmerov, A. R.
2018-01-01
The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition, defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap, and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show how to design a Cooper pair splitter in the open regime.
East Europe Report, Scientific Affairs, Number 749
1982-07-23
Scientific Associate A. Andreev, Corresponding Member D. Shopov , Scientific Associate B. Kunev, V. Idakiev and A. Bankova. A collective at the Economic...operational systems — manual, automatic and remote control; control system — G P oSL ?nP™ y measurement ~ automatic and in percentage figures; power
Superconductivity-induced macroscopic resonant tunneling.
Goorden, M C; Jacquod, Ph; Weiss, J
2008-02-15
We show analytically and by numerical simulations that the conductance through pi-biased chaotic Josephson junctions is enhanced by several orders of magnitude in the short-wavelength regime. We identify the mechanism behind this effect as macroscopic resonant tunneling through a macroscopic number of low-energy quasidegenerate Andreev levels.
NASA Astrophysics Data System (ADS)
Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam
2018-06-01
Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.
Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering
NASA Astrophysics Data System (ADS)
Breunig, Daniel; Burset, Pablo; Trauzettel, Björn
2018-01-01
In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction—the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.
Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic Ordering.
Breunig, Daniel; Burset, Pablo; Trauzettel, Björn
2018-01-19
In superconducting spintronics, it is essential to generate spin-triplet Cooper pairs on demand. Up to now, proposals to do so concentrate on hybrid structures in which a superconductor (SC) is combined with a magnetically ordered material (or an external magnetic field). We, instead, identify a novel way to create and isolate spin-triplet Cooper pairs in the absence of any magnetic ordering. This achievement is only possible because we drive a system with strong spin-orbit interaction-the Dirac surface states of a strong topological insulator (TI)-out of equilibrium. In particular, we consider a bipolar TI-SC-TI junction, where the electrochemical potentials in the outer leads differ in their overall sign. As a result, we find that nonlocal singlet pairing across the junction is completely suppressed for any excitation energy. Hence, this junction acts as a perfect spin-triplet filter across the SC, generating equal-spin Cooper pairs via crossed Andreev reflection.
NASA Astrophysics Data System (ADS)
Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.
2012-02-01
We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)
Coulomb Blockade and Multiple Andreev Reflection in a Superconducting Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Lorenz, Thomas; Sprenger, Susanne; Scheer, Elke
2018-06-01
In superconducting quantum point contacts, multiple Andreev reflection (MAR), which describes the coherent transport of m quasiparticles each carrying an electron charge with m≥3, sets in at voltage thresholds eV = 2Δ /m. In single-electron transistors, Coulomb blockade, however, suppresses the current at low voltage. The required voltage for charge transport increases with the square of the effective charge eV∝ ( me) ^2. Thus, studying the charge transport in all-superconducting single-electron transistors (SSETs) sets these two phenomena into competition. In this article, we present the fabrication as well as a measurement scheme and transport data for a SSET with one junction in which the transmission and thereby the MAR contributions can be continuously tuned. All regimes from weak to strong coupling are addressed. We extend the Orthodox theory by incorporating MAR processes to describe the observed data qualitatively. We detect a new transport process the nature of which is unclear at present. Furthermore, we observe a renormalization of the charging energy when approaching the strong coupling regime.
Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana
2010-01-01
Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581
Subgap in the Surface Bound States Spectrum of Superfluid (3) 3 He-B with Rough Surface
NASA Astrophysics Data System (ADS)
Nagato, Y.; Higashitani, S.; Nagai, K.
2018-03-01
The subgap structure in the surface bound states spectrum of superfluid ^3He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.
NASA Technical Reports Server (NTRS)
Keller, J. W.; Zurbuchen, T. H.; Baragiola, R. A.; Cassidy, T. A.; Chornay, D. J.; Collier, M. R.; Hartle, R. E.; Johnson, R. E.; Killen, R. M.; Koehn, P.
2005-01-01
Many of the small to medium sized objects in the solar system can be characterized as having surface bounded exospheres, or atmospheres so tenuous that scale lengths for inter-particle collisions are much larger than the dimensions of the objects. The atmospheres of these objects are the product of their surfaces, both the surface composition and the interactions that occur on them and also their interiors when gases escape from there. Thus by studying surface bounded exospheres it is possible to develop insight into the composition and processes that are taking place on the surface and interiors of these objects. The Moon and Mercury are two examples of planetary bodies with surface bounded exospheres that have been studied through spectroscopic observations of sodium, potassium, and, on the moon, mass spectrometric measurements of lunar gases such as argon and helium.
Quasiclassical Eilenberger theory of the topological proximity effect in a superconducting nanowire
NASA Astrophysics Data System (ADS)
Stanev, Valentin; Galitski, Victor
2014-05-01
We use the quasiclassical Eilenberger theory to study the topological superconducting proximity effects between a segment of a nanowire with a p-wave order parameter and a metallic segment. This model faithfully represents key qualitative features of an experimental setup, where only a part of a nanowire is in immediate contact with a bulk superconductor, inducing topological superconductivity. It is shown that the Eilenberger equations represent a viable alternative to the Bogoliubov-de Gennes theory of the topological superconducting heterostructures and provide a much simpler quantitative description of some observables. For our setup, we obtain exact analytical solutions for the quasiclassical Green's functions and the density of states as a function of position and energy. The correlations induced by the boundary involve terms associated with both p-wave and odd-frequency pairing, which are intertwined and contribute to observables on an equal footing. We recover the signatures of the standard Majorana mode near the end of the superconducting segment, but find no such localized mode induced in the metallic segment. Instead, the zero-bias feature is spread out across the entire metallic part in accordance with the previous works. In shorter wires, the Majorana mode and delocalized peak split up away from zero energy. For long metallic segments, nontopological Andreev bound states appear and eventually merge together, giving rise to a gapless superconductor.
NASA Astrophysics Data System (ADS)
Choi, Hyoungsoon
Since its emergence, the Ginzburg-Landau theory has had a tremendous success in describing thermodynamic properties of superconductivity. In the case of superfluid 3He, not all five fourth-order parameters in the theory are known. Only four combinations of the five parameters have been experimentally established and theoretical attempts to calculate the parameters have had limited success as well. We present in this thesis a method to identify the five parameters independent of one another through a close inspection of the experiments and the theoretical calculation of Sauls and Serene. In an attempt to extend our understanding of the thermodynamic properties of 3He, we have also measured the specific heat of superfluid 3He. The measurements were performed on 3He confined in a high porosity silica aerogel and they served as a probe for the effects of impurity scattering. 3He in aerogel clearly shows behavior different from that of pure 3He: including suppression of the transition temperature and the order parameter. We have also looked at 3He in silver sinter. The difference in structures between the silver sinter and the aerogel are manifested in differences in the specific heat. In both cases, however, the impurity scattering creates Andreev bound states and we present evidence for them with our measurements.
A New Method for Growth and Analysis of Next-Generation IR Detector Materials
2008-12-01
Until recently the highest concentration of nitrogen reported in GaSb1- xNx was 1.75% (Buckle, et al., 2005). Recent work at the Army Research...Andreev, B. N. Murdin, E. P. O’Reilly and C. R. Pidgeon, 2003: InSb1− xNx growth and devices, Solid- State Electronics, 47(3), 387-394. L. Buckle
Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre
2018-02-08
Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.
Electronic transport close to semi-infinite 2D systems and their interfaces
NASA Astrophysics Data System (ADS)
Xia, Fanbing; Wang, Jian; Jian Wang's research Group Team
Transport properties of 2D materials especially close to their boundary has received much attention after the successful fabrication of Graphene. While most previous work is devoted to the conventional lead-device-lead setup with a finite size center area, this project investigates real space transport properties of infinite and semi-infinite 2D systems under the framework of Non-equilibrium Green's function. The commonly used method of calculating Green's function by inverting matrices in the real space can be unstable in dealing with large systems as sometimes it gives non-converging result. By transforming from the real space to momentum space, the author managed to replace the matrix inverting process by Brillouin Zone integral which can be greatly simplified by the application of contour integral. Combining this methodology with Dyson equations, we are able to calculate transport properties of semi-infinite graphene close to its zigzag boundary and its combination with other material including s-wave superconductor. Interference pattern of transmitted and reflected electrons, Graphene lensing effects and difference between Specular Andreev reflection and normal Andreev reflection are verified. We also generalize how to apply this method to a broad range of 2D materials. The University of Hong Kong.
NASA Astrophysics Data System (ADS)
Lu, Xin; Park, W. K.; Greene, L. H.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, S. E.
2010-03-01
PCARS is applied to investigate the superconducting gap in iron pnictide single crystal superconductors of the AFe2As2 (A=Ba, Sr) family with two categories of G(V) curves observed [1]: one where Andreev reflection (AR) is present for (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other without AR but a V^2/3 shape for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in the nonsuperconducting parent compound BaFe2As2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors. A gap size ˜3.0-4.0 meV with 2δ0/kBTc˜2.0-2.6 is observed for PCARS on Ba0.6K0.4Fe2As2. For the Ba(Fe0.9Co0.1)2As2, G(V) curves typically display a zero-bias conductance peak, sometimes with a V-shape background. [1] Xin Lu et al., arXiv:0910.4230
Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...
NASA Astrophysics Data System (ADS)
Jia, Jinfeng
Majorana fermion (MF) zero modes have been predicted in a wide variety of condensed matter systems and proposed as a potential building block for fault-tolerant quantum computer. Signatures of the MFs have been reported in the form of zero-energy conductance peak in various systems. As predicted, MFs appear as zero-energy vortex core modes with distinctive spatial profile in proximity-induced superconducting surface states of topological insulators. Furthermore, MFs can induce spin selective Andreev reflection (SSAR), a unique signature of MFs. We report the observation of all the three features for the MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which proximity-induced superconducting gap on topological surface states was previously established. Especially, by using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we observed the spin dependent tunneling effect, and fully supported by theoretical analyses, which is a direct evidence for the SSAR from MFs. More importantly, all evidences are self-consistent. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their non-Abelian statistics and application in quantum computing.
The leaching of atmospherically deposited nitrogen from forested watersheds may acidify lakes and streams. he Nitrogen Bounding Study evaluates the potential range of such adverse effects. he study estimates bounds on changes in regional-scale surface water acidification that mig...
Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S
2016-04-13
We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.
Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Kumar, Ritesh; Süß, Vicky; Felser, Claudia; Shekhar, Chandra; Sheet, Goutam
2017-01-01
A Weyl semimetal is a topologically non-trivial phase of matter that hosts mass-less Weyl fermions, the particles that remained elusive for more than 80 years since their theoretical discovery. The Weyl semimetals exhibit unique transport properties and remarkably high surface spin polarization. Here we show that a mesoscopic superconducting phase with critical temperature Tc=7 K can be realized by forming metallic point contacts with silver (Ag) on single crystals of TaAs, while neither Ag nor TaAs are superconductors. Andreev reflection spectroscopy of such point contacts reveals a superconducting gap of 1.2 meV that coexists with a high transport spin polarization of 60% indicating a highly spin-polarized supercurrent flowing through the point contacts on TaAs. Therefore, apart from the discovery of a novel mesoscopic superconducting phase, our results also show that the point contacts on Weyl semimetals are potentially important for applications in spintronics. PMID:28071685
Initial Test Bed for Very High Efficiency Solar Cells
2008-05-01
efficiency, both at the solar cell and module levels. The optical system consists of a tiled nonimaging concentrating system, coupled with a spectral...Benítez, P. (2005). Nonimaging Optics . Boston: Elsevier Academic Press. [6] Luque, A.L. & Andreev, V.M. (2007). Concentrator Photovoltaics. New York: Springer. ...lateral optical concentrating system, which splits the incident solar spectrum into several bands and allows different optical and photovoltaic
Backward propagating branch of surface waves in a semi-bounded streaming plasma system
NASA Astrophysics Data System (ADS)
Lim, Young Kyung; Lee, Myoung-Jae; Seo, Ki Wan; Jung, Young-Dae
2017-06-01
The influence of wake and magnetic field on the surface ion-cyclotron wave is kinetically investigated in a semi-bounded streaming dusty magnetoplasma in the presence of the ion wake-field. The analytic expressions of the frequency and the group velocity are derived by the plasma dielectric function with the spectral reflection condition. The result shows that the ion wake-field enhances the wave frequency and the group velocity of the surface ion-cyclotron wave in a semi-bounded dusty plasma. It is found that the frequency and the group velocity of the surface electrostatic-ion-cyclotron wave increase with an increase of the strength of the magnetic field. It is interesting to find out that the group velocity without the ion flow has the backward propagation mode in a semi-bounded dusty plasma. The variations due to the frequency and the group velocity of the surface ion-cyclotron wave are also discussed.
Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.
Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.
Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.
1983-02-01
AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation
Energy efficient synthesis of boranes
Thorn, David L [Los Alamos, NM; Tumas, William [Los Alamos, NM; Schwarz, Daniel E [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM
2012-01-24
The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.
Energy efficient synthesis of boranes
Thorn, David L.; Tumas, William; Schwarz, Daniel E.; Burrell, Anthony K.
2010-11-23
The reaction of halo-boron compounds (B--X compounds, compounds having one or more boron-halogen bonds) with silanes provides boranes (B--H compounds, compounds having one or more B--H bonds) and halosilanes. Inorganic hydrides, such as surface-bound silane hydrides (Si--H) react with B--X compounds to form B--H compounds and surface-bound halosilanes. The surface bound halosilanes are converted back to surface-bound silanes electrochemically. Halo-boron compounds react with stannanes (tin compounds having a Sn--H bond) to form boranes and halostannanes (tin compounds having a Sn--X bond). The halostannanes are converted back to stannanes electrochemically or by the thermolysis of Sn-formate compounds. When the halo-boron compound is BCl.sub.3, the B--H compound is B.sub.2H.sub.6, and where the reducing potential is provided electrochemically or by the thermolysis of formate.
2014-12-17
surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes mimic the common optical surface plasmon mode traveling at...Triangle Park, NC 27709-2211 Terahertz, Biosensing, Mach Zehnder Interferometer, Multiplexer and Spoof surface Plasmon Polariton REPORT DOCUMENTATION PAGE...frequencies, the textured surfaces on a subwavelength scale can support surface bound modes named spoofed surface plasmon polariton (SSPP) modes. Such modes
Surface-Bound Casein Modulates the Adsorption and Activity of Kinesin on SiO2 Surfaces
Ozeki, Tomomitsu; Verma, Vivek; Uppalapati, Maruti; Suzuki, Yukiko; Nakamura, Mikihiko; Catchmark, Jeffrey M.; Hancock, William O.
2009-01-01
Abstract Conventional kinesin is routinely adsorbed to hydrophilic surfaces such as SiO2. Pretreatment of surfaces with casein has become the standard protocol for achieving optimal kinesin activity, but the mechanism by which casein enhances kinesin surface adsorption and function is poorly understood. We used quartz crystal microbalance measurements and microtubule gliding assays to uncover the role that casein plays in enhancing the activity of surface-adsorbed kinesin. On SiO2 surfaces, casein adsorbs as both a tightly bound monolayer and a reversibly bound second layer that has a dissociation constant of 500 nM and can be desorbed by washing with casein-free buffer. Experiments using truncated kinesins demonstrate that in the presence of soluble casein, kinesin tails bind well to the surface, whereas kinesin head binding is blocked. Removing soluble casein reverses these binding profiles. Surprisingly, reversibly bound casein plays only a moderate role during kinesin adsorption, but it significantly enhances kinesin activity when surface-adsorbed motors are interacting with microtubules. These results point to a model in which a dynamic casein bilayer prevents reversible association of the heads with the surface and enhances association of the kinesin tail with the surface. Understanding protein-surface interactions in this model system should provide a framework for engineering surfaces for functional adsorption of other motor proteins and surface-active enzymes. PMID:19383474
A New Method for Growth and Analysis of Next-generation Infrared (IR) Detector Materials
2009-03-01
N) into the group V sites of the semiconductor lattice. Until recently the highest concentration of nitrogen reported in GaSb1– xNx was 1.75% (2...Adams, A. R.; Andreev, A.; Murdin, B. N.; O’Reilly, E. P.; Pidgeon, C. R. InSb1− xNx Growth and Devices. Solid-State Electronics 47 2003, 3, 387–394
NASA Astrophysics Data System (ADS)
Paul, Ganesh C.; Saha, Arijit
2017-01-01
We theoretically investigate the phenomena of adiabatic quantum charge pumping through a normal-insulator-superconductor-insulator-normal (NISIN) setup of silicene within the scattering matrix formalism. Assuming a thin barrier limit, we consider the strength of the two barriers (χ1 and χ2) as the two pumping parameters in the adiabatic regime. Within this geometry, we obtain crossed Andreev reflection (CAR) with probability unity in the χ1-χ2 plane without concomitant transmission or elastic co-tunneling. Tunability of the band gap at the Dirac point by applying an external electric field perpendicular to the silicene sheet and variation of the chemical potential at the normal silicene region, open up the possibility of achieving either a perfect CAR or transmission process through our setup. This resonant behavior is periodic with the barrier strengths. We analyze the behavior of the pumped charge through the NISIN structure as a function of the pumping strength and angles of the incident electrons. We show that large (Q ˜2 e ) pumped charge can be obtained through our geometry when the pumping contour encloses either the CAR or transmission resonance in the pumping parameter space. We discuss possible experimental feasibility of our theoretical predictions.
Tao, Ze; Chen, F J; Zhou, L Y; Li, Bin; Tao, Y C; Wang, J
2018-06-06
The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of [Formula: see text] can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.
NASA Astrophysics Data System (ADS)
Tao, Ze; Chen, F. J.; Zhou, L. Y.; Li, Bin; Tao, Y. C.; Wang, J.
2018-06-01
The interedge coupling is the cardinal characteristic of the narrow quantum spin Hall (QSH) insulator, and thus could bring about exotic transport phenomena. Herein, we present a theoretical investigation of the spin-resolved Andreev reflection (AR) in a QSH insulator strip touching on two neighbouring ferromagnetic insulators and one s-wave superconductor. It is demonstrated that, due to the interplay of the interedge coupling and ferromagnetic configuration, there could be not only usual local ARs leading to the spin-singlet pairing with the incident electron and Andreev-reflected hole from different spin subbands, but also novel local ARs giving rise to the spin-triplet pairing from the same spin subband. However, only the latter exists in the absence of the interedge coupling, and therefore the two pairings in turn testify the helical spin texture of the edge states. By proper tuning of the band structures of the ferromagnetic layers, under the resonance bias voltage, the usual and novel local ARs of can be all exhibited, resulting in fully spin-polarized pure spin-singlet superconductivity and pure spin-triplet superconductivity, respectively, which suggests a superconductivity switch from spin-singlet to -triplet pairing by electrical control. The results can be experimentally confirmed by the tunneling conductance and the noise power.
Tunneling-thermally activated vacancy diffusion mechanism in quantum crystals
NASA Astrophysics Data System (ADS)
Natsik, V. D.; Smirnov, S. N.
2017-10-01
We consider a quasiparticle model of a vacancy in a quantum crystal, with metastable quantum states localized at the lattice sites in potential wells of the crystal field. It is assumed that the quantum dynamics of such vacancies can be described in the semi-classical approximation, where its spectrum consists of a broad band with several split-off levels. The diffusive movement of the vacancy in the crystal volume is reduced to a sequence of tunneling and thermally activated hops between the lattice cites. The temperature dependence of the vacancy diffusion coefficient shows a monotonic decrease during cooling with a sharp transition from an exponential dependence that is characteristic of a high-temperature thermally activated diffusion, to a non-thermal tunneling process in the region of extremely low temperatures. Similar trends have been recently observed in an experimental study of mass-transfer in the 4He and 3He crystals [V. A. Zhuchkov et al., Low Temp. Phys. 41, 169 (2015); Low Temp. Phys. 42, 1075 (2016)]. This mechanism of vacancy diffusion and its analysis complement the concept of a diffusional flow of a defection-quasiparticle quantum gas with a band energy spectrum proposed by Andreev and Lifshitz [JETP 29, 1107 (1969)] and Andreev [Sov. Phys. Usp. 19, 137 (1976)].
Graphene based superconducting junctions as spin sources for spintronics
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2018-02-01
We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.
Charge of a quasiparticle in a superconductor
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-01-01
Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071
NASA Astrophysics Data System (ADS)
Kuzmicheva, T. E.; Kuzmichev, S. A.; Zhigadlo, N. D.
2014-04-01
We studied SNS and S-N-S-N-...-S contacts (where S is a superconductor and N is a normal metal) formed by "break-junction" technique in polycrystalline Sm1 - x Th x OFeAs superconductor samples with critical temperatures T C = 34-45 K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm1 - x Th x OFeAs to be driven by intraband coupling, and (where V ij are the electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, N 2/ N 1, correspondingly, was roughly of an order. We estimated "solo" BCS-ratio values in a hypothetic case of zero interband coupling ( V i ≠ j = 0) for each condensate as 2ΔL, S/ k B T {C/L,S} ≤ 4.5. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.
Charge of a quasiparticle in a superconductor.
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-02-16
Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.
SFG analysis of surface bound proteins: a route towards structure determination.
Weidner, Tobias; Castner, David G
2013-08-14
The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge X-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface.
SFG analysis of surface bound proteins: A route towards structure determination
Weidner, Tobias; Castner, David G.
2013-01-01
The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge x-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface. PMID:23727992
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
A Langevin dynamics simulation study of the tribology of polymer loop brushes.
Yin, Fang; Bedrov, Dmitry; Smith, Grant D; Kilbey, S Michael
2007-08-28
The tribology of surfaces modified with doubly bound polymer chains (loops) has been investigated in good solvent conditions using Langevin dynamics simulations. The density profiles, brush interpenetration, chain inclination, normal forces, and shear forces for two flat substrates modified by doubly bound bead-necklace polymers and equivalent singly bound polymers (twice as many polymer chains of 12 the molecular weight of the loop chains) were determined and compared as a function of surface separation, grafting density, and shear velocity. The doubly bound polymer layers showed less interpenetration with decreasing separation than the equivalent singly bound layers. Surprisingly, this difference in interpenetration between doubly bound polymer and singly bound polymer did not result in decreased friction at high shear velocity possibly due to the decreased ability of the doubly bound chains to deform in response to the applied shear. However, at lower shear velocity, where deformation of the chains in the flow direction is less pronounced and the difference in interpenetration is greater between the doubly bound and singly bound chains, some reduction in friction was observed.
Emergent gauge field for a chiral bound state on curved surface
NASA Astrophysics Data System (ADS)
Shi, Zhe-Yu; Zhai, Hui
2017-09-01
Emergent physics is one of the most important concepts in modern physics, and one of the most intriguing examples is the emergent gauge field. Here we show that a gauge field emerges for a chiral bound state formed by two attractively interacting particles on a curved surface. We demonstrate explicitly that the center-of-mass wave function of such a deeply bound state is monopole harmonic instead of spherical harmonic, which means that the bound state experiences a magnetic monopole at the center of the sphere. This emergent gauge field is due to the coupling between the center-of-mass and the relative motion on a curved surface, and our results can be generalized to an arbitrary curved surface. This result establishes an intriguing connection between the space curvature and gauge field, and paves an alternative way to engineer a topological state with space curvature, and may be observed in a cold atom system.
Low capping group surface density on zinc oxide nanocrystals.
Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M
2014-09-23
The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.
Continuous control of spin polarization using a magnetic field
NASA Astrophysics Data System (ADS)
Gifford, J. A.; Zhao, G. J.; Li, B. C.; Tracy, Brian D.; Zhang, J.; Kim, D. R.; Smith, David J.; Chen, T. Y.
2016-05-01
The giant magnetoresistance (GMR) of a point contact between a Co/Cu multilayer and a superconductor tip varies for different bias voltage. Direct measurement of spin polarization by Andreev reflection spectroscopy reveals that the GMR change is due to a change in spin polarization. This work demonstrates that the GMR structure can be utilized as a spin source and that the spin polarization can be continuously controlled by using an external magnetic field.
SPM of nonlinear surface plasmon waveguides
NASA Astrophysics Data System (ADS)
Li, Yuee; Zhang, Xiaoping
2008-10-01
Pulse propagation equation of nonlinear dispersion surface plasmon waveguide is educed strictly from wave equation. The nonlinear coefficient is defined and then used to assess and compare the nonlinear characteristic of three popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. SPM (self-phase modulation) of the typical surface plasmon waveguide is predicted and discussed.
NASA Astrophysics Data System (ADS)
Ren, H. A.; Anderson, R.; Sigman, D. M.; Studer, A.; Winckler, G.; Haugh, G.; Serno, S.; Gersonde, R.
2017-12-01
Sedimentary nitrogen isotopes have been developed as a proxy to reconstruct the degree of nitrate utilization in the polar surface oceans. But its application could be compromised by 1) uncertainties on the biological production, transport, and preservation of the organic material in the sediments, and 2) potential changes in the isotopic composition of the nitrate source, that is remotely controlled by processes in other regions. In this study, we map and compare spatial patterns of three d15N recorders (bulk sedimentary nitrogen, the organic nitrogen within cleaned diatom frustules or diatom-bound N, and within planktonic foraminifera tests or foraminifera-bound N) from multicore surface sediments across the Subarctic North Pacific (SNP) and the Bering Sea between 60°N and 35°N. Diatom-bound d15N varies between 3.5 and 8.5‰. Its spatial variation is reversely correlated with changes in the surface nitrate concentration, and is consistent with the expected d15N change of the export production in a simple nitrate assimilation model. Similar to previous findings, diatom-bound d15N is generally 2 4‰ higher than the modeled d15N value of the export production, likely reflecting a biomass to frustual-bound N difference. However, the greater d15N elevation observed in the eastern open SNP may be best explained by lateral transport of residual surface nitrate enriched in 15N from the western SNP. The d15N of Neogloboquadrina pachyderma (sinistral) is similar to the diatom-bound d15N within 1‰. Bulk sedimentary d15N generally agrees with diatom-bound d15N, but is more variable. It is higher than diatom-bound d15N in the eastern and western transect close to the shelf area, likely reflecting a terrigenous source, while exceptionally low d15N values were found on the Bering Sea shelf, possibly due to contamination by mineral-associated inorganic N.
Search for Chemically Bound Water in the Surface Layer of Mars Based on HEND/Mars Odyssey Data
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.; Litvak, M. L.; Mitrofanov, I. G.; Boynton, W.; Saunders, R. S.
2003-01-01
This study is emphasized on search for signatures of chemically bound water in surface layer of Mars based on data acquired by High Energy Neutron Detector (HEND) which is part of the Mars Odyssey Gamma Ray Spectrometer (GRS). Fluxes of epithermal (probe the upper 1-2 m) and fast (the upper 20-30 cm) neutrons, considered in this work, were measured since mid February till mid June 2002. First analysis of this data set with emphasis of chemically bound water was made. Early publications of the GRS results reported low neutron flux at high latitudes, interpreted as signature of ground water ice, and in two low latitude areas: Arabia and SW of Olympus Mons (SWOM), interpreted as 'geographic variations in the amount of chemically and/or physically bound H2O and or OH...'. It is clear that surface materials of Mars do contain chemically bound water, but its amounts are poorly known and its geographic distribution was not analyzed.
Slope-aspect color shading for parametric surfaces
NASA Technical Reports Server (NTRS)
Moellering, Harold J. (Inventor); Kimerling, A. Jon (Inventor)
1991-01-01
The invention is a method for generating an image of a parametric surface, such as the compass direction toward which each surface element of terrain faces, commonly called the slope-aspect azimuth of the surface element. The method maximizes color contrast to permit easy discrimination of the magnitude, ranges, intervals or classes of a surface parameter while making it easy for the user to visualize the form of the surface, such as a landscape. The four pole colors of the opponent process color theory are utilized to represent intervals or classes at 90 degree angles. The color perceived as having maximum measured luminance is selected to portray the color having an azimuth of an assumed light source and the color showing minimum measured luminance portrays the diametrically opposite azimuth. The 90 degree intermediate azimuths are portrayed by unique colors of intermediate measured luminance, such as red and green. Colors between these four pole colors are used which are perceived as mixtures or combinations of their bounding colors and are arranged progressively between their bounding colors to have perceived proportional mixtures of the bounding colors which are proportional to the interval's angular distance from its bounding colors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.; Tao, Y.C., E-mail: yctao88@163.com; Dong, Z.C.
By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energiesmore » are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional s-wave SC are also presented, which may help with experimentally probing and identifying the antiphase s-wave pairing symmetry in the iron-based SC. -- Highlights: •An eight-component Bogoliubov–de Gennes (BDG) equation. •Twofold novel ARs and twofold usual ARs. •Conversions of conductance between the zero-bias peak and valley at zero energy. •Conversions of conductance between peaks and dips at two gap energies. •The importance of the interband coupling strength in the SC.« less
Lin, Daohui; Ji, Jing; Long, Zhifeng; Yang, Kun; Wu, Fengchang
2012-09-15
NOM is likely to coat TiO₂ nanoparticles (nano-TiO₂) discharged into the aquatic environment and influence the nanotoxicity to aquatic organisms, which however has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) as well as dissolved HA on the toxicity of nano-TiO₂ to Chlorella sp., with a specific focus on adhesion of the nanoparticles to the algae. Results showed that nano-TiO₂ and the dissolved HA could inhibit the algal growth with an IC₅₀ of 4.9 and 8.4 mg L⁻¹, respectively, while both dissolved and nanoparticle surface-bound HA could significantly alleviate the algal toxicity of nano-TiO₂. IC₅₀ of nano-TiO₂ increased to 18 mg L⁻¹ in the presence of 5 mg L⁻¹ of the dissolved HA and to 48 mg L⁻¹ as the result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that both dissolved and nanoparticle surface-bound HA prevented the adhesion of nano-TiO₂ to the algal cells due to the increased electrosteric repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the dissolved and nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Influence of carbon source on cell surface topology of Thermomonospora curvata.
Hostalka, F; Moultrie, A; Stutzenberger, F
1992-01-01
The appearance of cell surface protuberances in Thermomonospora curvata correlated with cell-bound exoenzymes which could be removed by brief sonication. Mycelia grown on cellulose or xylan had numerous protuberances and retained 20 to 25% of endoglucanase and endoxylanase at cell surfaces, while those grown on pectin or starch had few protuberances and negligible bound pectinase or amylase. Images PMID:1400256
Klueh, U; Bryers, J D; Kreutzer, D L
2003-10-01
Fibronectin (FN) is known to bind to bacteria via high affinity receptors on bacterial surfaces known as adhesins. The binding of bacteria to FN is thought to have a key role in foreign device associated infections. For example, previous studies have indicated that Staphylococcus aureus adhesins bind to the 29 kDa NH(3) terminus end of FN, and thereby promote bacteria adherence to surfaces. Recently, the peptide sequences within the S. aureus adhesin molecule that are responsible for FN binding have been identified. Based on these observations, we hypothesize that functional FN can be bound and specifically oriented on polystyrene surfaces using bacterial adhesin-related (BRP-A) peptide. We further hypothesize that monoclonal antibodies that react with specific epitopes on the FN can be used to quantify both FN binding and orientation on these surfaces. Based on this hypothesis, we initiated a systematic investigation of the binding and orientation of FN on polystyrene surfaces using BRP-A peptide. To test this hypothesis, the binding and orientation of the FN to immobilized BRP-A was quantified using (125)I-FN, and monoclonal antibodies. (125)I-FN was used to quantitate FN binding to peptide-coated polystyrene surfaces. The orientation of bound FN was demonstrated by the use of monoclonal antibodies, which are reactive with the amine (N) or carboxyl (C) termini of the FN. The results of our studies demonstrated that when the BRP-A peptide was used to bind FN to surfaces that: 1. functional FN was bound to the peptide; 2. anti-C terminus antibodies bound to the peptide FN; and 3. only limited binding of anti-N terminus antibodies to peptide-bound FN occurred. We believe that the data that indicate an enhanced binding of anti-C antibodies reactive to anti-N antibodies are a result of the FN binding in an oriented manner with the N termini of FN bound tightly to the BRP-A on the polystyrene surface. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 36-43, 2003
Pre-polishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffer, Adrienne E.
2003-05-01
Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Prepolishing on a CNC platform with bound abrasive contour tools
NASA Astrophysics Data System (ADS)
Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.
2003-05-01
Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.
Determination of molecular configuration by debye length modulation.
Vacic, Aleksandar; Criscione, Jason M; Rajan, Nitin K; Stern, Eric; Fahmy, Tarek M; Reed, Mark A
2011-09-07
Silicon nanowire field effect transistors (FETs) have emerged as ultrasensitive, label-free biodetectors that operate by sensing bound surface charge. However, the ionic strength of the environment (i.e., the Debye length of the solution) dictates the effective magnitude of the surface charge. Here, we show that control of the Debye length determines the spatial extent of sensed bound surface charge on the sensor. We apply this technique to different methods of antibody immobilization, demonstrating different effective distances of induced charge from the sensor surface.
1983-11-01
constants ket are presented for the one-electron electroreduction of various Co1]:I(NH3)5X complexes bound to mercury, platinum, and gold surfaces...electroreduction of various Co^^(NH)X complexes bound to mercury, platinum, and gold surfaces via either small inorganic or extended organic ligands X. t...platinum, gold , and copper, to enable values of ke* to be obtained for the one-electron reduction of the surface-Douna_redox center.2.3 These
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Engineering tunable bio-inspired polymeric coatings for amphiphobic fibrous materials
NASA Astrophysics Data System (ADS)
Oyola-Reynoso, Stephanie
Chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolysable moieties in the presence of physisorbed water. In the following chapters, we demonstrate that using alkyltrichlorosilanes (trivalent [3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound polymeric particles. We infer that the presence of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane, prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2-201.4 g/m2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from 70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, cardboard houses can be rendered self-cleaning or tolerant to surface running water. Each of the chapters below supports the mechanism via a series of applications, material characterization, and/or, smart engineering.
Tunable Optical Tweezers for Wavelength-dependent Measurements
2012-04-23
have been studied in an optical levitation scheme over short laser wavelength ranges20 and for dye-loaded di- electric particles.21 In the first case...M. Block, IEEE J. Sel. Top. Quantum Electron. 2, 1066 (1996). 7K. Dholakia, W. M. Lee, L. Paterson, M. P. MacDonald, I. Andreev, P. Mthunzi, C. T. A...Brown, R. F. Marchington, and A. C. Riches, IEEE J. Sel. Top. Quantum Electron. 13, 1646 (2007). 8K. Dholakia, M. P. MacDonald, P. Zemanek, and T
Doubled full shot noise in quantum coherent superconductor-semiconductor junctions.
Lefloch, F; Hoffmann, C; Sanquer, M; Quirion, D
2003-02-14
We performed low temperature shot noise measurements in superconductor (TiN) strongly disordered normal metal (heavily doped Si) weakly transparent junctions. We show that the conductance has a maximum due to coherent multiple Andreev reflections at low energy and that the shot noise is then twice the Poisson noise (S = 4eI). When the subgap conductance reaches its minimum at finite voltage the shot noise changes to the normal value (S = 2eI) due to a large quasiparticle contribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Kai; Walker, Sharon L.; Yu, Xiao-Ying
Natural organic matter (NOM) is likely to coat naturally occurring nanoparticles (NNPs) in the soil environment and poses distinct effects on the interaction between NPs and soil microorganisms, however such topic has not been well investigated. This study explored the influence of nanoparticle surface-bound humic acid (HA, as a model NOM) on the toxicity of hematite NPs (i.e., nano-Fe2O3) to Pseudomonas putida (P. putida). Results showed that nano-Fe2O3 could inhibit the bacterial growth with an IC50 of 23.58 mg L-1, while nanoparticle surface-bound HA could significantly alleviate the P. putida toxicity of nano-Fe2O3. IC50 of nano-Fe2O3 increased to 4774.23 mgmore » L-1 as a result of surface-saturation by HA. Co-precipitation experiment and transmission electron microscopy observation revealed that nanoparticle surface-bound HA prevented the adhesion of nano-Fe2O3 to the cells as well as limited cell internalization of nanoparticles due to the increased electrostatic repulsion. The generation of intracellular reactive oxygen species (ROS) was significantly limited by the nanoparticle surface-bound HA. The prevention of adhesion and inhibition of ROS generation could account for the HA-mitigated nanotoxicity. Interfacial interactions between hematite NPs and cell membrane were also evaluated on the basis of the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, and the magnitude of interaction energy barrier correlated well with the 48 h LC50 data of hematite NPs to P. putida. This result implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in microorganisms.« less
Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy.
Biró, E; Lok, C A R; Hack, C E; van der Post, J A M; Schaap, M C L; Sturk, A; Nieuwland, R
2007-01-01
Inflammation plays a major role in the vascular dysfunction seen in preeclampsia, and several studies suggest involvement of the complement system. To investigate whether complement activation on the surface of microparticles is increased in plasma of preeclamptic patients versus healthy pregnant controls. Microparticles from plasma of preeclamptic (n=10), healthy pregnant (n=10) and healthy nonpregnant (n=10) women were analyzed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C-reactive protein [CRP], serum amyloid P component [SAP], immunoglobulin [Ig]M, IgG). Fluid phase complement activation products and activator molecules were also determined. Levels of microparticles with bound complement components showed no increase in complement activation on the microparticle surface in preeclamptic women, in line with levels of fluid phase complement activation products. In healthy nonpregnant and pregnant women, bound CRP was associated with classical pathway activation on the microparticle surface, and in healthy pregnant women IgM and IgG molecules also contributed. In preeclamptic women, microparticles with bound SAP and those with IgG seemed to contribute to C1q binding without a clear association to further classical pathway activation. Furthermore, significantly increased levels of microparticles with bound CRP were present in preeclamptic compared with healthy pregnant women (median 178x10(6)/L versus 47x10(6)/L, P<0.01), but without concomitant increases in complement activation. We found no evidence of increased complement activation on the microparticle surface in preeclamptic women. Microparticles with bound CRP were significantly increased, but in contrast to healthy pregnant and nonpregnant women, this was not associated with increased classical pathway activation on the surface of the microparticles.
1979-01-01
Detailed studies of steady-state ion fluxes in murine lymphocytes were used to examine for possible ionic changes generated by surface Ig, the antigen receptor of B lymphocytes. When bound by ligands, surface Ig triggered the mobilization and release of 45Ca2+ from the cell interior by a transmembrane process requiring crosslinking of the bound receptors. This ionic event was unique for two reasons: (a) it did not occur when other common lymphocyte surface macromolecules were bound with rabbit anti-lymphocyte antibodies; and (b) it was not accompanied by a general perturbation of lymphocyte ionic properties such as a change in 42K+ fluxes nor did it depend on the presence of extracellular ions. Capping of surface Ig shares the same time sequence, dose response, requirement for crosslinking, and lack of dependence on extracellular ions. These correlations suggest that mobilization of intracellular Ca2+ may represent an early ionic signal for the contractile activation of lymphocytes that generates capping of surface Ig. PMID:315942
Continuous hierarchical slope-aspect color display for parametric surfaces
NASA Technical Reports Server (NTRS)
Moellering, Harold J. (Inventor); Kimerling, A. Jon (Inventor)
1994-01-01
A method for generating an image of a parametric surface, such as the aspect of terrain which maximizes color contrast to permit easy discrimination of the magnitude, ranges, intervals or classes of a surface parameter while making it easy for the user to visualize the form of the surface, such as a landscape. The four pole colors of the opponent process color theory are utilized to represent intervals or classes at 90 degree angles. The color perceived as having maximum measured luminance is selected to portray the color having an azimuth of an assumed light source and the color showing minimum measured luminance portrays the diametrically opposite azimuth. The 90 degree intermediate azimuths are portrayed by unique colors of intermediate measured luminance, such as red and green. Colors between these four pole colors are used which are perceived as mixtures or combinations of their bounding colors and are arranged progressively between their bounding colors to have perceived proportional mixtures of the bounding colors which are proportional to the interval's angular distance from its bounding colors.
Maternal allergy is associated with surface-bound IgE on cord blood basophils.
Matson, Adam P; Cloutier, Michelle M; Dhongade, Ashish; Puddington, Lynn; Rafti, Ektor
2013-09-01
The cell type(s) mediating the maternal influence on allergic disease in children remain unclear. We set out to define the relationship between maternal allergy and frequencies of cord blood (CB) basophils, and plasmacytoid dendritic cells (pDCs); to characterize surface-bound IgE and FcεRI expressions on these cells; and to investigate the association between maternal and CB serum IgE levels with surface-bound IgE and FcεRI expressions. One hundred and three mother/infant dyads were recruited prenatally, and maternal allergic history was recorded. Maternal blood was collected prior to delivery, and CB was collected after birth. Flow cytometry was used to identify CB basophils and pDCs and to determine surface-bound IgE and FcεRI expressions. Frequencies of CB basophils and pDCs were low and not related to maternal history of allergy. Percentages of CB basophils with surface-bound IgE were significantly higher in infants of allergic mothers compared with infants of non-allergic mothers (median, 59.60% vs. 19.70%, p = 0.01). IgE on CB basophils correlated with CB IgE levels (r = 0.72, p < 0.0001), but not with maternal IgE levels (r = 0.26, p = 0.06). IgE on CB pDCs was low and not significantly associated with maternal or CB IgE levels. Similarly, FcεRI expression by CB basophils and pDCs was not significantly associated with maternal or CB IgE levels. Frequencies of CB basophils and pDCs are not influenced by maternal allergy. CB basophils and pDCs have surface-bound IgE and express FcεRI; however, only IgE on CB basophils appears influenced by maternal allergy. © 2013 The Authors. Pediatric Allergy and Immunology published by John Wiley & Sons Ltd.
The construction, fouling and enzymatic cleaning of a textile dye surface.
Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J
2010-11-01
The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Miall, Andrew D.
1988-03-01
Three well-exposed outcrops in the Kayenta Formation (Lower Jurassic), near Dove Creek in southwestern Colorado, were studied using lateral profiles, in order to test recent regarding architectural-element analysis and the classification and interpretation of internal bounding surfaces. Examination of bounding surfaces within and between elements in the Kayenta outcrops raises problems in applying the three-fold classification of Allen (1983). Enlarging this classification to a six-fold hierarchy permits the discrimination of surfaces intermediate between Allen's second- and third-order types, corresponding to the upper bounding surfaces of macroforms, and internal erosional "reactivation" surfaces within the macroforms. Examples of the first five types of surface occur in the Kayenta outcrops at Dove Creek. The new classifications is offered as a general solution to the problem of description of complex, three-dimensional fluvial sandstone bodies. The Kayenta Formation at Dove Creek consists of a multistorey sandstone body, including the deposits of lateral- and downstream-accreted macroforms. The storeys show no internal cyclicity, neither within individual elements nor through the overall vertical thickness of the formation. Low paleocurrent variance indicates low sinuosity flow, whereas macroform geometry and orientation suggest low to moderate sinuosity. The many internal minor erosion surfaces draped with mud and followed by intraclast breccias imply frequent rapid stage fluctuation, consistent with variable (seasonal? monsonal? ephemmeral?) flow. The results suggest a fluvial architecture similar to that of the South Saskatchewan River, through with a three-dimensional geometry unlike that interpreted from surface studies of that river.
Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.
Kemp, A S; Brown, S
1980-01-01
The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477
NASA Technical Reports Server (NTRS)
Wu, Jun-ru (Inventor); Hitt, Darren (Inventor); Vachon, Nicholas M. (Inventor); Chen, Di (Inventor); Marshall, Jeffrey S. (Inventor)
2016-01-01
The invention disclosed herein provides for high particle removal rate and/or heat transfer from surfaces. The device removes particulate matter from a surface using a bounded vortex generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.
Patrick, J S; Cooks, R G; Pachuta, S J
1994-11-01
Nucleic acid constituents can be bound to a metal surface in the form of self-assembled monolayers. Binding is achieved either through ionic interactions with a self-assembled 2-aminoethanethiol monolayer or by direct covalent binding of a dithiophosphate oligonucleotide to a metal surface through a sulfur-metal bond. Nucleotides, polynucleotides (both normal and a dithiophosphate analog) and double-stranded DNA have all been bound to surfaces. When the surfaces are interrogated using static secondary ion mass spectrometry (SIMS), the surface-bound nucleic acid constituents are observed in the form of the characteristic protonated nucleic acid base ions (BH2+). While a silver foil substrate was found to provide the highest absolute signal, vapor-deposited gold yields the best signal-to-noise ratio for ionically bound deoxyguanosine monophosphate. Under comparable conditions, a Cs+ projectile produces a 10-fold increase in the secondary ion signal relative to a Ga+ projectile. The experiment has been extended to a triple-quadrupole instrument where tandem mass spectrometric experiments on ionically immobilized dGMP showed the characteristic loss of ammonia from the released BH2+ ion. When a 'biomimetic' surface formed by ionically immobilizing double-stranded DNA is exposed to a solution containing ethidium bromide, ions corresponding to the non-covalent adduct are readily detectable using SIMS. This adduct and the nucleic acid constituents can be monitored at levels below 10 fmol.
Oyola-Reynoso, S.; Tevis, I. D.; Chen, J.; ...
2016-08-18
Here, chemical grafting has been widely used to modify the surface properties of materials, especially surface energy for controlled wetting, because of the resilience of such coatings/modifications. Reagents with multiple reactive sites have been used with the expectation that a monolayer will form. The step-growth polymerization mechanism, however, suggests the possibility of gel formation for hydrolyzable moieties in the presence of physisorbed water. In this report, we demonstrated that using alkyltrichlorosilanes (trivalent [i.e., 3 reactive sites]) in the surface modification of a cellulosic material (paper) does not yield a monolayer but rather gives surface-bound particles. We infer that the presencemore » of physisorbed (surface-bound) water allows for polymerization (or oligomerization) of the silane prior to its attachment on the surface. Surface energy mismatch between the hydrophobic tails of the growing polymer and any unreacted bound water leads to the assembly of the polymerizing material into spherical particles to minimize surface tension. By varying paper grammage (16.2–201.4 g m –2), we varied the accessible surface area and thus the amount of surface-adsorbed water, allowing us to control the ratio of the silane to the bound water. Using this approach, polymeric particles were formed on the surface of cellulose fibers ranging from ~70 nm to a film. The hydrophobicity of the surface, as determined by water contact angles, correlates with particle sizes (p < 0.001, Student's t-test), and, hence, the hydrophobicity can be tuned (contact angle between 94° and 149°). Using a model structure of a house, we demonstrated that as a result of this modification, paper-based houses can be rendered self-cleaning or tolerant to surface running water. In another application, we demonstrated that the felicitous choice of architectural design allows for the hydrophobic paper to be used for water harvesting.« less
Ligand-modified metal clusters for gas separation and purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron
2017-02-21
Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.
Entropic (de)stabilization of surface-bound peptides conjugated with polymers
NASA Astrophysics Data System (ADS)
Carmichael, Scott P.; Shell, M. Scott
2015-12-01
In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.
Entropic (de)stabilization of surface-bound peptides conjugated with polymers.
Carmichael, Scott P; Shell, M Scott
2015-12-28
In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.
Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.
2013-01-01
We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules. PMID:24932024
NASA Astrophysics Data System (ADS)
Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.
2010-04-01
We used surface-enhanced Raman spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between micro-fluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells ( Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules.
Protein immobilization onto various surfaces using a polymer-bound isocyanate
NASA Astrophysics Data System (ADS)
Kang, Hyun-Jin; Cha, Eun Ji; Park, Hee-Deung
2015-01-01
Silane coupling agents have been widely used for immobilizing proteins onto inorganic surfaces. However, the immobilization method using silane coupling agents requires several treatment steps, and its application is limited to only surfaces containing hydroxyl groups. The aim of this study was to develop a novel method to overcome the limitations of the silane-based immobilization method using a polymer-bound isocyanate. Initially, polymer-bound isocyanate was dissolved in organic solvent and then was used to dip-coat inorganic surfaces. Proteins were then immobilized onto the dip-coated surfaces by the formation of urea bonds between the isocyanate groups of the polymer and the amine groups of the protein. The reaction was verified by FT-IR in which NCO stretching peaks disappeared, and CO and NH stretching peaks appeared after immobilization. The immobilization efficiency of the newly developed method was insensitive to reaction temperatures (4-50 °C), but the efficiency increased with reaction time and reached a maximum after 4 h. Furthermore, the method showed comparable immobilization efficiency to the silane-based immobilization method and was applicable to surfaces that cannot form hydroxyl groups. Taken together, the newly developed method provides a simple and efficient platform for immobilizing proteins onto surfaces.
Modeling interface shear behavior of granular materials using micro-polar continuum approach
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Ali; Alsaleh, Mustafa I.
2018-01-01
Recently, the authors have focused on the shear behavior of interface between granular soil body and very rough surface of moving bounding structure. For this purpose, they have used finite element method and a micro-polar elasto-plastic continuum model. They have shown that the boundary conditions assumed along the interface have strong influences on the soil behavior. While in the previous studies, only very rough bounding interfaces have been taken into account, the present investigation focuses on the rough, medium rough and relatively smooth interfaces. In this regard, plane monotonic shearing of an infinite extended narrow granular soil layer is simulated under constant vertical pressure and free dilatancy. The soil layer is located between two parallel rigid boundaries of different surface roughness values. Particular attention is paid to the effect of surface roughness of top and bottom boundaries on the shear behavior of granular soil layer. It is shown that the interaction between roughness of bounding structure surface and the rotation resistance of bounding grains can be modeled in a reasonable manner through considered Cosserat boundary conditions. The influence of surface roughness is investigated on the soil shear strength mobilized along the interface as well as on the location and evolution of shear localization formed within the layer. The obtained numerical results have been qualitatively compared with experimental observations as well as DEM simulations, and acceptable agreement is shown.
Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces.
Song, Hyon Min; Ye, Peide D; Ivanisevic, Albena
2007-08-28
This article reports the modification of Al2O3/GaAs surfaces with multifunctional soft materials. Siloxane elastomers were covalently bound to dopamine-modified Al2O3/GaAs semiconductor surfaces using MPt (M = Fe, Ni) nanoparticles. The sizes of the monodisperse FePt and NiPt nanoparticles were less than 5 nm. The surfaces of the nanoparticles as well as the Al2O3/GaAs substrates were modified with allyl-functionalized dopamine that utilized a dihydroxy group as a strong ligand. The immobilization of the elastomers was performed via a hydrosilation reaction of the allyl-functionalized dopamines with the siloxane backbones. X-ray photoelectron spectroscopy (XPS) experiments confirmed the covalent bonding of the siloxane elastomers to the oxide layer on the semiconductor surface. Fourier transform-infrared reflection absorption spectroscopy (FT-IRRAS) measurements revealed that the allyl functional groups are bonded to the siloxane backbones. The FT-IRRAS data also showed that the density of the allyl groups on the surface was lower than that of the siloxane backbones. The mechanical properties of the surface-bound nanocomposites were tested using nanoindentation experiments. The nanoindentation data showed that the soft matrix composed of the elastomeric coating on the surfaces behaves differently from the inner, hard Al2O3/GaAs substrate.
Auger mediated positron sticking on graphene and highly oriented pyrolytic graphite
NASA Astrophysics Data System (ADS)
Chirayath, V. A.; Chrysler, M.; McDonald, A.; Lim, Z.; Shastry, K.; Gladen, R.; Fairchild, A.; Koymen, A.; Weiss, A.
Positron annihilation induced Auger electron spectroscopy (PAES) measurements on 6-8 layers graphene grown on polycrystalline copper and the measurements on a highly oriented pyrolytic graphite (HOPG) sample have indicated the presence of a bound surface state for positrons. Measurements carried out with positrons of kinetic energies lower than the electron work function for graphene or HOPG have shown emission of low energy electrons possible only through the Auger mediated positron sticking (AMPS) process. In this process the positron makes a transition from a positive energy scattering state to a bound surface state. The transition energy is coupled to a valence electron which may then have enough energy to get ejected from the sample surface. The positrons which are bound to surface state are highly localized in a direction perpendicular to surface and delocalized parallel to it which makes this process highly surface sensitive and can thus be used for characterizing graphene or graphite surfaces for open volume defects and surface impurities. The measurements have also shown an extremely large low energy tail for the C KVV Auger transition at 263eV indicative of another physical process for low energy emission. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...
2017-04-19
Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less
2013-01-01
Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177
Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.
Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J
2017-05-01
The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.
Evidence for a positron bound state on the surface of a topological insulator
NASA Astrophysics Data System (ADS)
Shastry, K.; Weiss, A. H.; Barbiellini, B.; Assaf, B. A.; Lim, Z. H.; Joglekar, P. V.; Heiman, D.
2015-06-01
We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators using the Positron Annihilation induced Auger Electron Spectrometer (PAES). A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ∼2eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi, Teand Se providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium(Ps) emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system.
Stiles, Bradley G.; Hale, Martha L.; Marvaud, Jean-Christophe; Popoff, Michel R.
2000-01-01
The binding characteristics of iota toxin, a binary enterotoxin produced by Clostridium perfringens type E, were studied by fluorescence-activated cytometry. The proteolytically activated binding component of iota toxin, iota b (Ib), bound to various cell types when incubated at 4, 25, or 37°C for 10 min. The binding of Ib was inhibited by antisera against C. perfringens type E or Clostridium spiroforme culture supernatants, but not C. perfringens types C or D. Pretreatment of Vero cells with glycosidases or lectins did not affect Ib interactions, while pronase effectively prevented Ib binding to the cell surface. The Ib protomer (Ibp) bound to the cell surface, but trypsinization of Ibp was necessary for docking of the ADP-ribosylating component, iota a (Ia). Ia attached to cell-bound Ib within 10 min at 37°C, but surface levels of Ia decreased 90% after 30 min and were undetectable by 60 min. Detectable surface levels of Ib also diminished over time, and Western blot analysis suggested internalization or embedment of Ib into the membrane. PMID:10816501
Stiles, B G; Hale, M L; Marvaud, J C; Popoff, M R
2000-06-01
The binding characteristics of iota toxin, a binary enterotoxin produced by Clostridium perfringens type E, were studied by fluorescence-activated cytometry. The proteolytically activated binding component of iota toxin, iota b (Ib), bound to various cell types when incubated at 4, 25, or 37 degrees C for 10 min. The binding of Ib was inhibited by antisera against C. perfringens type E or Clostridium spiroforme culture supernatants, but not C. perfringens types C or D. Pretreatment of Vero cells with glycosidases or lectins did not affect Ib interactions, while pronase effectively prevented Ib binding to the cell surface. The Ib protomer (Ibp) bound to the cell surface, but trypsinization of Ibp was necessary for docking of the ADP-ribosylating component, iota a (Ia). Ia attached to cell-bound Ib within 10 min at 37 degrees C, but surface levels of Ia decreased 90% after 30 min and were undetectable by 60 min. Detectable surface levels of Ib also diminished over time, and Western blot analysis suggested internalization or embedment of Ib into the membrane.
Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...
2015-10-22
Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less
Bodsgard, Brett R; Clark, Robert W; Ehrbar, Anthony W; Burstyn, Judith N
2009-04-07
A series of silica-bound Cu(ii) triazacyclononane materials was prepared to study the effect of linker length and surface hydrophobicity on the hydrolysis of phosphate esters. The general synthetic approach for these heterogeneous reagents was rhodium-catalyzed hydrosilation between an alkenyl-modified triazacyclononane and hydride-modified silica followed by metallation with a Cu(ii) salt. Elemental analysis confirmed that organic functionalization of the silica gel was successful and provided an estimate of the surface concentration of triazacyclononane. EPR spectra were consistent with square pyramidal Cu(ii), indicating that Cu(ii) ions were bound to the immobilized macrocycles. The hydrolytic efficacies of these heterogeneous reagents were tested with bis(p-nitrophenyl)phosphate (BNPP) and diethyl 4-nitrophenyl phosphate (paraoxon). The agent that performed best was an octyl-linked, propanol-blocked material. This material had the most hydrophilic surface and the most accessible active site, achieving a rate maximum on par with the other materials, but in fewer cycles and without an induction period.
Next-generation sequencing library construction on a surface.
Feng, Kuan; Costa, Justin; Edwards, Jeremy S
2018-05-30
Next-generation sequencing (NGS) has revolutionized almost all fields of biology, agriculture and medicine, and is widely utilized to analyse genetic variation. Over the past decade, the NGS pipeline has been steadily improved, and the entire process is currently relatively straightforward. However, NGS instrumentation still requires upfront library preparation, which can be a laborious process, requiring significant hands-on time. Herein, we present a simple but robust approach to streamline library preparation by utilizing surface bound transposases to construct DNA libraries directly on a flowcell surface. The surface bound transposases directly fragment genomic DNA while simultaneously attaching the library molecules to the flowcell. We sequenced and analysed a Drosophila genome library generated by this surface tagmentation approach, and we showed that our surface bound library quality was comparable to the quality of the library from a commercial kit. In addition to the time and cost savings, our approach does not require PCR amplification of the library, which eliminates potential problems associated with PCR duplicates. We described the first study to construct libraries directly on a flowcell. We believe our technique could be incorporated into the existing Illumina sequencing pipeline to simplify the workflow, reduce costs, and improve data quality.
Conformational phases of membrane bound cytoskeletal filaments
NASA Astrophysics Data System (ADS)
Quint, David A.; Grason, Gregory; Gopinathan, Ajay
2013-03-01
Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.
NASA Astrophysics Data System (ADS)
Yap, Han Hoe; Zhou, Longwen; Lee, Ching Hua; Gong, Jiangbin
2018-04-01
The past few years have witnessed increased attention to the quest for Majorana-like excitations in the condensed matter community. As a promising candidate in this race, the one-dimensional chiral Majorana edge mode (CMEM) in topological insulator-superconductor heterostructures has gathered renewed interests after an experimental breakthrough [Q. L. He et al., Science 357, 294 (2017), 10.1126/science.aag2792]. In this work, we study computationally the quantum transport of topological insulator-superconductor hybrid devices subject to time-periodic modulation. We report half-integer quantized conductance plateaus at 1/2 e/2h and 3/2 e/2h upon applying the so-called sum rule in the theory of quantum transport in Floquet topological matter. In particular, in a photoinduced topological superconductor sandwiched between two Floquet Chern insulators, it is found that for each Floquet sideband, the CMEM admits equal probability for normal transmission and local Andreev reflection over a wide range of parameter regimes, yielding half-integer quantized plateaus that resist static and time-periodic disorder. While it is well-established that periodic driving fields can simultaneously create and manipulate multiple pairs of Majorana bound states, their detection scheme remains elusive, in part due to their being neutral excitations. Therefore the 3/2 e/2h plateau indicates the possibility to verify the generation of multiple pairs of photoinduced CMEMs via transport measurements. The robust and half-quantized conductance plateaus due to CMEMs are both fascinating and subtle because they only emerge after a summation over contributions from all Floquet sidebands. Our work may add insights into the transport properties of Floquet topological systems and stimulate further studies on the optical control of topological superconductivity.
Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria.
Luo, Ting; Ye, Li; Ding, Cheng; Yan, Jinlong; Jing, Chuanyong
2017-11-15
Reduction of surface-bound arsenate [As(V)] and subsequent release into the aqueous phase contribute to elevated As in groundwater. However, this natural process is not fully understood, especially in the presence of sulfate-reducing bacteria (SRB). Gaining mechanistic insights into solid-As(V)-SRB interactions motivated our molecular level study on the fate of nano-TiO 2 bound As(V) in the presence of Desulfovibrio vulgaris DP4, a strain of SRB, using incubation and in situ ATR-FTIR experiments. The incubation results clearly revealed the reduction of As(V), either adsorbed on nano-TiO 2 or dissolved, in the presence of SRB. In contrast, this As(V) reduction was not observed in abiotic control experiments where sulfide was used as the reductant. Moreover, the reduction was faster for surface-bound As(V) than for dissolved As(V), as evidenced by the appearance of As(III) at 45h and 75h, respectively. ATR-FTIR results provided direct evidence that the surface-bound As(V) was reduced to As(III) on TiO 2 surfaces in the presence of SRB. In addition, the As(V) desorption from nano-TiO 2 was promoted by SRB relative to abiotic sulfide, due to the competition between As(V) and bacterial phosphate groups for TiO 2 surface sites. This competition was corroborated by the ATR-FTIR analysis, which showed inner-sphere surface complex formation by bacterial phosphate groups on TiO 2 surfaces. The results from this study highlight the importance of indirect bacteria-mediated As(V) reduction and release in geochemical systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Sixiao; Hsieh, You-Lo
2015-10-20
Lignin has proven to be highly effective "green" multi-functional binding, complexing and reducing agents for silver cations as well as capping agents for the synthesis of silver nanoparticles on ultra-fine cellulose fibrous membranes. Silver nanoparticles could be synthesized in 10min to be densely distributed and stably bound on the cellulose fiber surfaces at up to 2.9% in mass. Silver nanoparticle increased in sizes from 5 to 100nm and became more polydispersed in size distribution on larger fibers and with longer synthesis time. These cellulose fiber bound silver nanoparticles did not agglomerate under elevated temperatures and showed improved thermal stability. The presence of alkali lignin conferred moderate UV absorbing ability in both UV-B and UV-C regions whereas the bound silver nanoparticles exhibited excellent antibacterial activities toward Escherichia coli. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-04-15
In a recent article [Niknam et al., Phys. Plasmas 20, 122106 (2013)], Niknam et al. investigated the propagation of TM surface waves on a semi-bounded quantum magnetized collisional plasma in the Faraday configuration (in this case, the magnetic field is parallel to the both of the plasma surface and direction of propagation). Here, we present a fresh look at the problem and show that TM surface waves cannot propagate on surface of the present system. We find in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the mainmore » result of the work by Niknam et al. is incorrect.« less
Effect of Parainfluenza-3 Neuraminidase on Bovine Nasal Secretion
Morein, Bror; Bergman, Rune
1972-01-01
Three samples of bovine nasal secretion were each separated into a sol phase and a surface gel phase. In all samples, the gel phase contained an approximately four times greater amount of bound N-acetylneuraminic acid (NANA) than the sol phase. From the gel phase, bound NANA could be released by exposure to parainfluenza-3 virus neuraminidase. The surface gel appears to be a natural substrate for this enzyme. PMID:4347547
Anomalous X-Ray Reflectivity Characterization of Ion Distribution at Biomimetic Membranes
NASA Astrophysics Data System (ADS)
Vaknin, David; Krüger, Peter; Lösche, Mathias
2003-05-01
Anomalous x-ray reflectivity measurements provides detailed information on ion binding to biomembrane surfaces. Using a monochromatic beam tuned to various x-ray energies at the Argonne National Laboratory Advanced Photon Source and utilizing a newly commissioned x-ray liquid surfaces reflectometer, measurements at and away from ion absorption edges allow determination of the distribution of these ions as they accumulate near lipid membranes. As a model, the interaction of Ba2+ ions with DMPA- (1,2-dimyristoyl-sn-glycero-3-phosphatidic acid) monolayers at the aqueous surface is studied. We find an unexpectedly large concentration of barium at the interface, ≈1.5 per DMPA-, forming a Stern layer of bound ions and a cloud of less densely bound ions near the lipid headgroups. This result can be understood only if one assumes that bound cations are partially speciated, e.g., as BaOH+.
NASA Technical Reports Server (NTRS)
Marshall, Jeffrey S. (Inventor); Chen, Di (Inventor); Vachon, Nicholas Mario (Inventor); Hitt, Darren (Inventor); Wu, Junru (Inventor)
2014-01-01
The aero-acoustic duster invention disclosed herein provides for high particle removal rate from surfaces with low energy expenditure relative to competing vacuum-based devices. The device removes particulate matter from a surface using a two-step process: 1. Acoustic radiation is used to break the adhesive bonds between dust and the surface, forcing particles into a mode where they continuously bounce up and down on the surface; and, 2. A bounded vortex is generated over the surface, with suction in the vortex center and jets for blowing air along the periphery. The jets are tilted in the tangential direction to induce vortex motion within the suction region. The vortex is said to be bounded because streamlines originating in the downward jets are entrained back into the central vortex.
A generalization of Bertrand's theorem to surfaces of revolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagryadskii, Oleg A; Kudryavtseva, Elena A; Fedoseev, Denis A
We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no 'equators'. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the requiredmore » form do not exist on surfaces that do not belong to any of the classes described. Bibliography: 33 titles.« less
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
Torchio, Fabrizio; Giacosa, Simone; Vilanova, Mar; Río Segade, Susana; Gerbi, Vincenzo; Giordano, Manuela; Rolle, Luca
2016-12-01
The changes in the volatile composition of Moscato bianco grapes were evaluated during ripening. Grape berries were sampled for five weeks (16-20 °Brix) and sorted for each date in ten density classes (1.05-1.12g/cm(3)). The highest total concentration of free terpenes was found at 19.3 °Brix; however, total concentration of the bound fraction increased significantly throughout ripening. Response surface methodology was used to assess the simultaneous effect of sampling time and berry density on the volatile composition, which was satisfactorily fitted to regression models for some key terpene compounds. Total free and bound terpenes were more affected by grape density than by sampling date. The same behaviour was observed for free and bound linalool and bound nerol, whereas the stronger effect of sampling date was exhibited for bound t-rose oxide, c-rose oxide and geraniol. The results showed that the sampling strategy impacted strongly on the aroma quality of berries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imaging of Formaldehyde Adsorption and Diffusion on TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhenrong; Tang, Miru; Wang, Zhitao
2015-03-01
Surface reactions of formaldehyde with reduced TiO2(110) surfaces have been studied using variable-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). STM results show that formaldehyde preferably adsorbs on the bridging bonded oxygen (Ob) vacancy (VO) defect site. Bias-dependent STM images show that both the Ti-bound CH2O and the VO-bound CH2O are positioned between the Ob row and the Ti row. The VO-bound formaldehyde rotates at 95 K. It starts to diffuse along the Ob row as –CH2– at ~170 K and starts to diffuse along the Ti row as a molecule at ~215 K. However, the stabilities andmore » the configurations of the Ti-bound and the VO-bound formaldehyde calculated using DFT are not in line with the experimental results. The values of diffusion barriers determined experimentally and theoretically are also different. The discrepancy between the experiment and theory indicates the presence of a complex charge distribution related to the defects.« less
Pramanik, Chandrani; Sood, Parveen; Niu, Li-Na; Yuan, He; Ghoshal, Sushanta; Henderson, Walter; Liu, Yaodong; Jang, Seung Soon; Kumar, Satish; Pashley, David H; Tay, Franklin R
2016-02-01
Long-term oral and intravenous use of nitrogen-containing bisphosphonates (N-BPs) is associated with osteonecrosis of the jaw. Although N-BPs bind strongly to bone surfaces via non-covalent bonds, it is possible for extrinsic ions to dissociate bound N-BPs from mineralized bone by competitive desorption. Here, we investigate the effects and mechanism of using an ionic cocktail derived from borate bioactive glass for sequestration of heterocyclic N-BPs bound to apatite. By employing solid-state and solution-state analytical techniques, we confirmed that sequestration of N-BPs from bisphosphonate-bound apatite occurs in the presence of the borate-containing ionic cocktail. Simulations by density functional theory computations indicate that magnesium cation and borate anion are well within the extent of the risedronate or zoledronate anion to form precipitate complexes. The sequestration mechanism is due to the borate anion competing with bisphosphonates for similar electron-deficient sites on the apatite surface for binding. Thus, application of the borate-containing ionic cocktail represents a new topical lavage approach for removing apatite-bound heterocyclic N-BPs from exposed necrotic bone in bisphosphonate-related osteonecrosis of the jaw. Long-term oral consumption and injections of nitrogen-containing bisphosphonates (N-BPs) may result in death of the jaw bone when there is traumatic injury to the bone tissues. To date, there is no effective treatment for such a condition. This work reported the use of an ionic cocktail derived from water-soluble borate glass microfibers to displace the most potent type of N-BPs that are bound strongly to the mineral component on bone surfaces. The mechanism responsible for such an effect has been identified to be cation-mediated complexation of borate anions with negatively-charged N-BPs, allowing them to be released from the mineral surface. This borate-containing cocktail may be developed into a novel topical rinse for removing mineral-bound N-BPs from exposed dead bone. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niknam, A. R., E-mail: a-niknam@sbu.ac.ir; Taheri Boroujeni, S.; Khorashadizadeh, S. M., E-mail: smkhorashadi@birjand.ac.ir
2016-04-15
We reply to the Comment of Moradi [Phys. Plasmas 23, 044701 (2016)] on our paper [Phys. Plasmas 20, 122106 (2013)]. It is shown that TM surface waves can propagate on the surface of a semi-bounded quantum magnetized collisional plasma in the Faraday configuration in the electrostatic limit. In addition, in the Faraday configuration, one can neglect the coupling of TM and TE modes in the two limiting cases of weak magnetic field (low cyclotron frequency) and strong magnetic field (high cyclotron frequency).
Conductance of graphene based normal-superconductor junction with double magnetic barriers
NASA Astrophysics Data System (ADS)
Abdollahipour, B.; Mohebalipour, A.; Maleki, M. A.
2018-05-01
We study conductance of a graphene based normal metal-superconductor junction with two magnetic barriers. The magnetic barriers are induced via two applied magnetic fields with the same magnitudes and opposite directions accompanied by an applied electrostatic potential. We solve Dirac-Bogoliubov-De-Gennes (DBdG) equation to calculate conductance of the junction. We find that applying the magnetic field leads to suppression of the Andreev reflection and conductance for all energies. On the other hand, we observe a crossover from oscillatory to tunneling behavior of the conductance as a function of the applied potential by increasing the magnetic field.
Aharonov-Bohm and Aharonov-Casher effects for local and nonlocal Cooper pairs
NASA Astrophysics Data System (ADS)
Tomaszewski, Damian; Busz, Piotr; López, Rosa; Žitko, Rok; Lee, Minchul; Martinek, Jan
2018-06-01
We study combined interference effects due to the Aharonov-Bohm (AB) and Aharonov-Casher (AC) phases in a Josephson supercurrent of local and nonlocal (split) Cooper pairs. We analyze a junction between two superconductors interconnected through a normal-state nanostructure with either (i) a ring, where single-electron interference is possible, or (ii) two parallel nanowires, where the single-electron interference can be absent, but the cross Andreev reflection can occur. In the low-transmission regime in both geometries the AB and AC effects can be related to only local or nonlocal Cooper pair transport, respectively.
Determination of spin polarization using an unconventional iron superconductor
Gifford, J. A.; Chen, B. B.; Zhang, J.; ...
2016-11-21
Here, an unconventional iron superconductor, SmO 0.7F 0.3FeAs, has been utilized to determine the spin polarization and temperature dependence of a highly spin-polarized material, La 0.67Sr 0.33MnO 3, with Andreev reflection spectroscopy. The polarization value obtained is the same as that determined using a conventional superconductor Pb but the temperature dependence of the spin polarization can be measured up to 52 K, a temperature range, which is several times wider than that using a typical conventional superconductor. The result excludes spin-parallel triplet pairing in the iron superconductor.
Unitary limit in crossed Andreev transport
Sadovskyy, I. A.; Lesovik, G. B.; Vinokur, V. M.
2015-10-08
One of the most promising approaches for generating spin- and energy-entangled electron pairs is splitting a Cooper pair into the metal through spatially separated terminals. Utilizing hybrid systems with the energy-dependent barriers at the superconductor/normal metal (NS) interfaces, one can achieve a practically 100% efficiency outcome of entangled electrons. We investigate a minimalistic one-dimensional model comprising a superconductor and two metallic leads and derive an expression for an electron-to-hole transmission probability as a measure of splitting efficiency. We find the conditions for achieving 100% efficiency and present analytical results for the differential conductance and differential noise.
Free surface convection in a bounded cylindrical geometry
NASA Astrophysics Data System (ADS)
Vrentas, J. S.; Narayanan, R.; Agrawal, S. S.
1981-09-01
Surface tension-driven convection and buoyancy-driven convection in a bounded cylindrical geometry with a free surface are studied for a range of aspect ratios and Nusselt numbers. The thermal convection is in a liquid layer contained in a vertical circular cylinder with a single free boundary, the top surface, which is in contact with an inviscid gas phase. A different method is also developed for analyzing free convection problems using Green's functions, reducing the problem to the solution of an integral equation. Linear theory and some aspects of a nonlinear analysis are utilized to determine the critical Marangoni and Rayleigh numbers, the structure of the convective motion, the direction of flow, and the nature of the bifurcation branching.
Kim, Eun-Ah; Luthy, Richard G
2011-11-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg-DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kim, Eun-Ah
2011-01-01
This study investigated the role of dissolved organic matter on mercury partitioning between a hydrophobic surface (polyethylene, PE) and a reduced sulfur-rich surface (polysulfide rubber, PSR). Comparative sorption studies employed polyethylene and polyethylene coated with PSR for reactions with DOM-bound mercuric ions. These studies revealed that PSR enhanced the Hg-DOM removal from water when DOM was Suwannee River natural organic matter (NOM), fulvic acid (FA), or humic acid (HA), while the same amount of 1,3-propanedithiol-bound mercuric ion was removed by both PE and PSR-PE. The differences for Hg-DOM removal efficiencies between PE and PSR-PE varied depending on which DOM was bound to mercuric ion as suggested by the PE/water and PSR-PE/water partition coefficients for mercury. The surface concentrations of mercury on PE and PSR-PE with the same DOM measured by x-ray – photoelectron spectroscopy were similar, which indicated the comparable amounts of immobilized mercury on PE and PSR-PE being exposed to the aqueous phase. With these observations, two major pathways for the immobilization reactions between PSR-PE and Hg- DOM were examined: 1) adsorption of Hg-DOM on PE by hydrophobic interactions between DOM and PE, and 2) addition reaction of Hg-DOM onto PSR by a complexation reaction between Hg and PSR. The percent contribution of each pathway was derived from a mass balance and the ratios among aqueous mercury, PE-bound Hg-DOM, and PSR-bound Hg-DOM concentrations. The results indicate strong binding of mercuric ion with both dissolved organic matter and PSR polymer. The FT-IR examination of Hg-preloaded-PSR-PEs after the reaction with DOM corroborated a strong interaction between mercuric ion and 1,3-propanedithiol compared to Hg-HA, Hg-FA, or Hg-NOM interactions. PMID:21872900
Bounds on area and charge for marginally trapped surfaces with a cosmological constant
NASA Astrophysics Data System (ADS)
Simon, Walter
2012-03-01
We sharpen the known inequalities AΛ ⩽ 4π(1 - g) (Hayward et al 1994 Phys. Rev. D 49 5080, Woolgar 1999 Class. Quantum Grav. 16 3005) and A ⩾ 4πQ2 (Dain et al 2012 Class. Quantum Grav. 29 035013) between the area A and the electric charge Q of a stable marginally outer-trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ. In particular, instead of requiring stability we include the principal eigenvalue λ of the stability operator. For Λ* = Λ + λ > 0, we obtain a lower and an upper bound for Λ*A in terms of Λ*Q2, as well as the upper bound Q \\le 1/(2\\sqrt{\\Lambda ^{*}}) for the charge, which reduces to Q \\le 1/(2\\sqrt{\\Lambda }) in the stable case λ ⩾ 0. For Λ* < 0, there only remains a lower bound on A. In the spherically symmetric, static, stable case, one of our area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for ‘jumps’ and mergers of charged MOTS.
Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis
Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas
2015-01-01
Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628
Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip
NASA Astrophysics Data System (ADS)
Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs
2013-12-01
Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.
In vivo assessment of a novel dacron surface with covalently bound recombinant hirudin.
Wyers, M C; Phaneuf, M D; Rzucidlo, E M; Contreras, M A; LoGerfo, F W; Quist, W C
1999-01-01
Prosthetic arterial graft surfaces are relatively thrombogenic and fail to heal with a cellular neointima. The goal of this study was to characterize the in vivo antithrombin properties of a novel Dacron surface with covalently linked recombinant hirudin (rHir) implanted in a canine thoracic aorta with high flow and shear rates. rHir was bound to a knitted Dacron patch using crosslinker-modified bovine serum albumin (BSA) as a basecoat protein. BSA was first reacted with the heterobifunctional crosslinker, sulfo-SMCC. This BSA-SMCC complex was then bound to the carboxylic acid groups of hydrolyzed Dacron patches using the carbodiimide crosslinker, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. Iodinated, Traut's-modified rHir (125I-rHir-SH) was then reacted with the Dacron-BSA-SMCC surface, thereby covalently binding 125I-rHir. Graft segments were washed and sonicated to remove any nonspecifically bound 125I-rHir. Dacron-BSA-SMCC-S-125I-rHir patches (n = 5) and control Dacron-BSA patches (n = 5) were implanted in series in the thoracic aortas of canines. These patches were exposed to nonheparinized, arterial blood flow for 2 hours. Patches were explanted and assessed for 125I-rHir loss. Antithrombin activity of explanted 1-cm2 patch segments was evaluated using a chromogenic assay with 1, 5, 10, 15 units of added thrombin. Light microscopy was performed to qualitatively examine the pseudointima. Two animals were excluded from the study owing to excessive bleeding through the knitted 125I-rHir patch. Comparison of preoperative and postoperative 125I-rHir gamma counts revealed an overall decrease of 20+/-5.4% over the period studied. Explanted 125I-rHir patch segments were able to inhibit 1, 5, and 7 NIHU of thrombin, demonstrating retained antithrombin activity. Gross and microscopic examination of the control and test Dacron surfaces showed marked differences. Dacron surfaces with covalently bound 125I-rHir had no gross thrombus and a thin pseudointima of platelets and plasma proteins. In contrast, the control patches had a thick pseudointima composed of fibrin-rich thrombus. rHir, covalently bound to Dacron patches, maintains its biologic activity as well as prevents thrombus formation on the graft surface. This novel antithrombin coating, by modifying the blood/ graft interface, may improve both short- and long-term patency in small-diameter prosthetic arterial grafts and has applications with respect to other implantable or indwelling biomaterials.
Influence of free surface curvature on the Pearson instability in Marangoni convection
NASA Astrophysics Data System (ADS)
Hu, W. R.
The Peason instability in a liquid layer bounded by a plate solid boundary with higher constant temperature and a plane free surface with lower constant temperatures in the microgravity environment has by extensively studied The free surface in the microgravity environment tends to be curved in general as a spherical shape and the plane configuration of free surface is a special case In the present paper a system of liquid layer bounded by a plat solid boundary with higher constant temperature and a curved free surface with lower non-uniform temperature is studied The temperature gradient on the free surface will induce the thermocapillary convection and the onset of Marangoni convection is coupled with the thermocapillary convection The thermocapillary convection induced by the temperature gradient on the curved free surface and its influence on the Marangoni convection are studied in the present paper
Bukar, Natalia; Zhao, Sandy Shuo; Charbonneau, David M; Pelletier, Joelle N; Masson, Jean-Francois
2014-05-18
We report that a shorter Debye length and, as a consequence, decreased colloidal stability are required for the molecular interaction of folic acid-modified Au nanoparticles (Au NPs) to occur on a surface-bound receptor, human dihydrofolate reductase (hDHFR). The interaction measured using surface plasmon resonance (SPR) sensing was optimal in a phosphate buffer at pH 6 and ionic strength exceeding 300 mM. Under these conditions, the aggregation constant of the Au NPs was approximately 10(4) M(-1) s(-1) and the Debye length was below 1 nm, on the same length scale as the size of the folate anion (approximately 0.8 nm). Longer Debye lengths led to poorer SPR responses, revealing a reduced affinity of the folic acid-modified Au NPs for hDHFR. While high colloidal stability of Au NPs is desired in most applications, these conditions may hinder molecular interactions due to Debye lengths exceeding the size of the ligand and thus preventing close interactions with the surface-bound molecular receptor.
Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier
Villa, Carlos H; Pan, Daniel C; Zaitsev, Sergei; Cines, Douglas B; Siegel, Donald L; Muzykantov, Vladimir R
2015-01-01
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands. PMID:26228773
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; ...
2016-10-12
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO 2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relativelymore » small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface.« less
Self-assembly of acetate adsorbates drives atomic rearrangement on the Au(110) surface
Hiebel, Fanny; Shong, Bonggeun; Chen, Wei; Madix, Robert J.; Kaxiras, Efthimios; Friend, Cynthia M.
2016-01-01
Weak inter-adsorbate interactions are shown to play a crucial role in determining surface structure, with major implications for its catalytic reactivity. This is exemplified here in the case of acetate bound to Au(110), where the small extra energy of the van der Waals interactions among the surface-bound groups drives massive restructuring of the underlying Au. Acetate is a key intermediate in electro-oxidation of CO2 and a poison in partial oxidation reactions. Metal atom migration originates at surface defects and is likely facilitated by weakened Au–Au interactions due to bonding with the acetate. Even though the acetate is a relatively small molecule, weak intermolecular interaction provides the energy required for molecular self-assembly and reorganization of the metal surface. PMID:27731407
NASA Astrophysics Data System (ADS)
Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.
2015-08-01
Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.
Nearly extremal apparent horizons in simulations of merging black holes
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey; Scheel, Mark A.; Owen, Robert; Giesler, Matthew; Katebi, Reza; Szilágyi, Béla; Chu, Tony; Demos, Nicholas; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Afshari, Nousha
2015-03-01
The spin angular momentum S of an isolated Kerr black hole is bounded by the surface area A of its apparent horizon: 8π S≤slant A, with equality for extremal black holes. In this paper, we explore the extremality of individual and common apparent horizons for merging, rapidly spinning binary black holes. We consider simulations of merging black holes with equal masses M and initial spin angular momenta aligned with the orbital angular momentum, including new simulations with spin magnitudes up to S/{{M}2}=0.994. We measure the area and (using approximate Killing vectors) the spin on the individual and common apparent horizons, finding that the inequality 8π S\\lt A is satisfied in all cases but is very close to equality on the common apparent horizon at the instant it first appears. We also evaluate the Booth-Fairhurst extremality, whose value for a given apparent horizon depends on the scaling of the horizon’s null normal vectors. In particular, we introduce a gauge-invariant lower bound on the extremality by computing the smallest value that Booth and Fairhurst’s extremality parameter can take for any scaling. Using this lower bound, we conclude that the common horizons are at least moderately close to extremal just after they appear. Finally, following Lovelace et al (2008 Phys. Rev. D 78 084017), we construct quasiequilibrium binary-black hole initial data with ‘overspun’ marginally trapped surfaces with 8π S\\gt A. We show that the overspun surfaces are indeed superextremal: our lower bound on their Booth-Fairhurst extremality exceeds unity. However, we confirm that these superextremal surfaces are always surrounded by marginally outer trapped surfaces (i.e., by apparent horizons) with 8π S\\lt A. The extremality lower bound on the enclosing apparent horizon is always less than unity but can exceed the value for an extremal Kerr black hole.
Cremer, Signe E; Kristensen, Annemarie T; Reimann, Maria J; Eriksen, Nynne B; Petersen, Stine F; Marschner, Clara B; Tarnow, Inge; Oyama, Mark A; Olsen, Lisbeth H
2015-06-01
To investigate serum and plasma serotonin concentrations, percentage of serotonin-positive platelets, level of surface-bound platelet serotonin expression (mean fluorescence intensity [MFI]), and platelet activation (CD62 expression) in platelet-rich plasma from Cavalier King Charles Spaniels with myxomatous mitral valve disease (MMVD). Healthy dogs (n = 15) and dogs with mild MMVD (18), moderate-severe MMVD (19), or severe MMVD with congestive heart failure (CHF; 10). Blood samples were collected from each dog. Serum and plasma serotonin concentrations were measured with an ELISA, and surface-bound platelet serotonin expression and platelet activation were determined by flow cytometry. Dogs with mild MMVD had higher median serum (746 ng/mL) and plasma (33.3 ng/mL) serotonin concentrations, compared with MMVD-affected dogs with CHF (388 ng/mL and 9.9 ng/mL, respectively), but no other group differences were found. Among disease groups, no differences in surface-bound serotonin expression or platelet activation were found. Thrombocytopenic dogs had lower serum serotonin concentration (482 ng/mL) than nonthrombocytopenic dogs (731 ng/mL). In 26 dogs, a flow cytometry scatterplot subpopulation (FSSP) of platelets was identified; dogs with an FSSP had a higher percentage of serotonin-positive platelets (11.0%), higher level of surface-bound serotonin expression (MFI, 32,068), and higher platelet activation (MFI, 2,363) than did dogs without an FSSP (5.7%, 1,230, and 1,165, respectively). An FSSP was present in 93.8% of thrombocytopenic dogs and in 29.5% of nonthrombocytopenic dogs. A substantive influence of circulating serotonin on MMVD stages prior to CHF development in Cavalier King Charles Spaniels was not supported by the study findings. An FSSP of highly activated platelets with pronounced serotonin binding was strongly associated with thrombocytopenia but not MMVD.
Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.
Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C
2016-04-19
Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required to suppress phase separation decreases relative to longer polymers. Collectively, our results demonstrate that crowded, membrane-bound polymers are highly efficient suppressors of phase separation and suggest that the ability of lipid domains to resist steric pressure depends on both their lipid composition and the size and concentration of the membrane-bound polymers they incorporate.
Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve
NASA Astrophysics Data System (ADS)
Majidi, Leyla; Asgari, Reza
2014-10-01
We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.
Polymer adsorption on silica and wettability of graphene oxide surfaces, experiments and simulations
NASA Astrophysics Data System (ADS)
Mortazavian, Hamid
Among the various classifications of polymer composites, studying polymers adsorbed to a surface such as silica is important due to their numerous applications. Adsorbed polymers usually show different properties than their bulk counterparts due to their interactions with the surface. In this study, we observed tightly- and loosely-bound polymer and mobile components in poly(vinyl acetate) (PVAc) on silica both with temperature-modulated differential scanning calorimetry (TMDSC) experiments and computer simulations. The more-mobile component which correlated to the region of low density at the air interface is reported for the first time using TMDSC thermograms. Pore size distribution and pore volume development of adsorbed PMMA samples showed different behavior below and above the tightly-bound amount of the polymer. The amount of tightly-bound polymer was obtained by a linear regression analysis of the ratio of the area under the two glass transitions. The values obtained vary from 0.52 to 0.86 mg PVAc/m2 silica depending upon the molecular mass for the amounts of PVAc and the specific surface area of fumed silica. Direct comparisons of the thermal properties and intermolecular interactions were performed between PVAc and poly(methyl methacrylate) (PMMA) with similar molecular masses and adsorbed amounts on silica. A larger amount of tightly-bound polymer and a greater change in glass transition were observed for adsorbed PMMA compared to adsorbed PVAc. These observations suggested that the interactions between PMMA and silica were stronger than those between PVAc and silica. Molecular modeling of these surface polymers showed that PMMA associates more strongly with silica than does PVAc through additional hydrogen-bonding interactions. Graphene oxide (GO) material surface characteristics make it easy to functionalize, making it a water repellant surface. To test the effect of chemical makeup and size of attached groups on the surface wettability of GO, we performed experimental water contact angle measurements and molecular modeling investigations on functionalized GO surfaces. Experimental and molecular simulation water contact angle measurements showed quantitative agreement for functionalizing groups with the same chain length at a variety of surface coverages.
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
NASA Astrophysics Data System (ADS)
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
Diffuse reflection from a stochastically bounded, semi-infinite medium
NASA Technical Reports Server (NTRS)
Lumme, K.; Peltoniemi, J. I.; Irvine, W. M.
1990-01-01
In order to determine the diffuse reflection from a medium bounded by a rough surface, the problem of radiative transfer in a boundary layer characterized by a statistical distribution of heights is considered. For the case that the surface is defined by a multivariate normal probability density, the propagation probability for rays traversing the boundary layer is derived and, from that probability, a corresponding radiative transfer equation. A solution of the Eddington (two stream) type is found explicitly, and examples are given. The results should be applicable to reflection from the regoliths of solar system bodies, as well as from a rough ocean surface.
Quantum Bound to Chaos and the Semiclassical Limit
NASA Astrophysics Data System (ADS)
Kurchan, Jorge
2018-06-01
We discuss the quantum bound on chaos in the context of the free propagation of a particle in an arbitrarily curved surface at low temperatures. The semiclassical calculation of the Lyapunov exponent can be performed in much the same way as the corresponding one for the `Loschmidt echo'. The bound appears here as the impossibility to scatter a wave, by effect of the curvature, over characteristic lengths smaller than the deBroglie wavelength.
A first-principles study of methyl lactate adsorption on the chiral Cu (643) surface
NASA Astrophysics Data System (ADS)
Yuk, Simuck F.; Asthagiri, Aravind
2014-11-01
We used dispersion-corrected density function theory (DFT) to investigate the enantiospecific adsorption of R- and S-methyl lactate on the chiral Cu (643)R surface. Initial study of methyl lactate adsorbed on the Cu (111) surface revealed that the most strongly bound states are associated with interaction of the hydroxyl and alkoxide group with the surface. Using dispersion-corrected DFT-derived pre-factors and desorption energies within the Redhead analysis predicts peak temperatures that are in relatively good agreement with experimental values for molecular methyl lactate desorption from both the Cu (111) and Cu (643)R surface. The global minimum of S-methyl lactate is more firmly bound by 9.5 kJ/mol over its enantiomer on the Cu (643)R surface, with a peak temperature difference of 25 K versus an experimental value of 12 K.
Mechanical splitting of microtubules into protofilament bundles by surface-bound kinesin-1
VanDelinder, Virginia; Adams, Peter G.; Bachand, George D.
2016-12-21
The fundamental biophysics of gliding microtubule (MT) motility by surface-tethered kinesin-1 motor proteins has been widely studied, as well as applied to capture and transport analytes in bioanalytical microdevices. In these systems, phenomena such as molecular wear and fracture into shorter MTs have been reported due the mechanical forces applied on the MT during transport. In the present work, we show that MTs can be split longitudinally into protofilament bundles (PFBs) by the work performed by surface-bound kinesin motors. We examine the properties of these PFBs using several techniques (e.g., fluorescence microscopy, SEM, AFM), and show that the PFBs continuemore » to be mobile on the surface and display very high curvature compared to MT. Further, higher surface density of kinesin motors and shorter kinesin-surface tethers promote PFB formation, whereas modifying MT with GMPCPP or higher paclitaxel concentrations did not affect PFB formation.« less
Lee, Ji-Eun; Han, Ye Ri; Ham, Sujin; Jun, Chul-Ho; Kim, Dongho
2017-11-08
We have investigated the fundamental photophysical properties of surface-bound perylene bisimide (PBI) molecules in a solution-phase at the single-molecule level. By efficient immobilization of single PBIs on glass, we were able to simultaneously monitor fluorescence intensity trajectories, fluorescence lifetimes, and emission spectra of individual PBIs in organic and aqueous media using confocal microscopy. We showed that the fluorescence dynamics of single PBIs in the solution phase is highly dependent on their local and chemical environments. Furthermore, we visualized different spatial-fluctuations of surface-bound PBIs using defocused wide-field imaging. While PBIs show more steric flexibility in organic media, the flexible motion of PBI molecules in aqueous solution is relatively prohibited due to a cage effect by a hydrogen bonding network, which is previously unobserved. Our method opens up a new possibility to investigate the photophysical properties of multi-chromophoric systems in various solvents at the single-molecule level for developing optimal molecular devices such as water-proof devices.
On the computation of molecular surface correlations for protein docking using fourier techniques.
Sakk, Eric
2007-08-01
The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.
MoRe-based tunnel junctions and their characteristics
NASA Astrophysics Data System (ADS)
Shaternik, V.; Larkin, S.; Noskov, V.; Chubatyy, V.; Sizontov, V.; Miroshnikov, A.; Karmazin, A.
2008-02-01
Perspective Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide-normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (~50-100 nm) MoRe superconducting films are deposited on Al2O3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency, clear Shapiro steps in the measured I-V curves were observed and discussed.
Enhanced superconductivity at the interface of W/Sr2RuO4 point contact
NASA Astrophysics Data System (ADS)
Wei, Jian; Wang, He; Lou, Weijian; Luo, Jiawei; Liu, Ying; Ortmann, J. E.; Mao, Z. Q.
Differential resistance measurements are conducted for point contacts (PCs) between the Sr2RuO4 (SRO) single crystal and the tungsten tip. Since the tungsten tip is hard enough to penetrate through the surface layer, consistent superconducting features are observed. Firstly, with the tip pushed towards the crystal, the zero bias conductance peak (ZBCP) due to Andreev reflection at the normal-superconducting interface increases from 3% to more than 20%, much larger than previously reported, and extends to temperature higher than the bulk transition temperature. Reproducible ZBCP within 0.2 mV may also help determine the gap value of SRO, on which no consensus has been reached. Secondly, the logarithmic background can be fitted with the Altshuler-Aronov theory of electron-electron interaction for tunneling into quasi two dimensional electron system. Feasibility of such fitting confirms that spectroscopic information like density of states is probed, and electronic temperature retrieved from such fitting can be important to analyse the PC spectra. Third, at bias much higher than 0.2 mV there are conductance dips due to the critical current effect and these dips persist up to 6.2 K. For more details see. National Basic Research Program of China (973 Program) through Grant No. 2011CBA00106 and No. 2012CB927400.
The Development and Study of Surface Bound Ruthenium Organometallic Complexes
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey Reuben
The focus of this project has been on the use of mono-diimine ruthenium organometallic complexes, of the general structure [H(Ru)(CO)(L)2(L') 2][PF6] (L=PPh3, DPPENE and L'=Bpy, DcBpy, MBpyC, Phen, AminoPhen) bound to surfaces as luminescent probes. Both biological and inorganic/organic hybrid surfaces have been studied. The complexes were characterized both bound and unbound using standard analytical techniques such as NMR, IR and X-ray crystallography, as well as through several photophysical methods as well. Initially the study focused on how the photophyscial properties of the complexes were affected by incorporation into biological membranes. It was found that by conjugating the probes to a more rigid cholesterol moiety that luminescence was conserved, compared to conjugation with a far more flexible lipid moiety, where luminescence was either lost or reduced. Both the cholesterol and lipid conjugates were able to insert into a lipid membrane, and in the more rigid environment some of the lipid conjugates regained some of their luminescence, but often blue shifted and reduced, depending on the conjugation site. Silica Polyamine Composites (SPCs) were a hybrid material developed in the Rosenberg Lab as useful metal separation materials, that could be easily modified, and had several benefits over current commercially available polymers, or inorganic materials. These SPCs also provided an opportunity for the development of a heterogeneous platform for luminescent complexes as either catalysts or sensors. Upon binding of the luminescent Ru complexes to the surface no loss, or major change in luminescence was seen, however, when bound to the rigid surface a significant increase in excited state lifetime was measured. It is likely that through binding and interacting with the surface that the complexes lost non-radiative decay pathways, resulting in the increase in lifetime, however, these interactions do not seem to affect the energy level of the MLCT band in a large way. With a better understanding of the effects of surface binding on the complexes, the study turned to possible applications, as either sensors or catalysts. Recently the bound complexes have been found to be very useful as toxic metal sensors, as the free amines left on the surface could bind toxic metal ions in close proximity leading to either a quenching or enhancement of the luminescence of the complexes, depending on the metal ion. This process was determined to be a static process, requiring the toxic metal to remain bound to the surface in order to affect the luminescence of the Ru complex. The quenching is thought to be due to a metal-centered electron-transfer reaction, in which the excited-state electron is transferred from the Ru to the toxic metal, but relaxes back to the Ru center. The enhancement of luminescence is due to the external heavy-atom effect, in which heavier atoms mixes MLCT singlet state with the triplet state through spin-orbit coupling.
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert
2015-05-01
On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.
Buryak, Ilya; Vigasin, Andrey A
2015-12-21
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buryak, Ilya; Vigasin, Andrey A., E-mail: vigasin@ifaran.ru
The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data basedmore » on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.« less
Foam morphology, frustration and topological defects in a Negatively curved Hele-Shaw geometry
NASA Astrophysics Data System (ADS)
Mughal, Adil; Schroeder-Turk, Gerd; Evans, Myfanwy
2014-03-01
We present preliminary simulations of foams and single bubbles confined in a narrow gap between parallel surfaces. Unlike previous work, in which the bounding surfaces are flat (the so called Hele-Shaw geometry), we consider surfaces with non-vanishing Gaussian curvature. We demonstrate that the curvature of the bounding surfaces induce a geometric frustration in the preferred order of the foam. This frustration can be relieved by the introduction of topological defects (disclinations, dislocations and complex scar arrangements). We give a detailed analysis of these defects for foams confined in curved Hele-Shaw cells and compare our results with exotic honeycombs, built by bees on surfaces of varying Gaussian curvature. Our simulations, while encompassing surfaces of constant Gaussian curvature (such as the sphere and the cylinder), focus on surfaces with negative Gaussian curvature and in particular triply periodic minimal surfaces (such as the Schwarz P-surface and the Schoen's Gyroid surface). We use the results from a sphere-packing algorithm to generate a Voronoi partition that forms the basis of a Surface Evolver simulation, which yields a realistic foam morphology.
NASA Astrophysics Data System (ADS)
Günay, Mehmet; Hakioğlu, Tuğrul; Hüseyin Sömek, Hasan
2017-03-01
In noncentrosymmetric superconductors (NCSs), the inversion symmetry (IS) is most commonly broken by an antisymmetric spin-orbit coupling (SOC). Removing the spin degeneracy and splitting the Fermi surface (FS) into two branches. A two component condensate is then produced mixing an even singlet and an odd triplet. When the triplet and the singlet strengths are comparable, the pair potential can have rich nodes. The angular line nodes (ALNs) are associated with the point group symmetries of the anisotropic lattice structure and they are widely studied in the literature. When the anisotropy is weak, other types of nodes can be present which then affect differently the low temperature properties. Here, we focus on the weakly anisotropic NCSs and the line nodes which survive in the limit of full isotropy. We study the topology of these radial line nodes (RLNs) and show that it is characterized by the Z2 index similar to the quantum-spin-Hall Insulators. From the thermodynamic perspective, the RLNs cause, even in the topological phases, an exponentially suppressed low temperature behaviour which can be mistaken by nodeless s-wave pairing, thus, providing an explanation to a number of recent experiments with contraversial pairing symmetries. In the rare case when the RLN is on the Fermi surface, the exponential suppression is replaced by a linear temperature dependence. The RLNs are difficult to detect, and for this reason, they may have escaped experimental attention. We demonstrate that Andreev conductance measurements with clean interfaces can efficiently identify the weakly anisotropic (WA) conditions where the RLNs are expected to be found.
In silico-generated hypothetical interactions of a ring-closing metathesis-macrocylized peptide bound to the amino terminal SH3 domain of the growth factor receptor bound protein 2 (Grb2). The complex was derived from the NMR solution structure of the bound parent peptide, Ac-V-P-P-P-V-P-P-R-R-R-amide (Protein Data Bank: 3GBQ). The protein surface is shown as electrostatic
The Design, Synthesis, and Characterization of Open Sites on Metal Clusters
NASA Astrophysics Data System (ADS)
Nigra, Michael Mark
Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of undercoordinated sites led me to synthesize small gold clusters consisting of a high fraction of coordinatively unsaturated open sites. This was enabled through an approach that utilized bulky calix[4]arene ligands that are bound to a gold core. Since the size of the calix[4]arene ligand is commensurate with the size of the gold cluster core, the calix[4]arene ligand does not pack closely together on the gold cluster surface. This in turn results in areas of accessible gold atom sites between ligands. Additionally, these calix[4]arene ligands prevent cluster aggregation and electronically tune the gold core in a manner conceptually similar to enzymes affecting reactivity through organic side-chains acting as ligands. I quantified the number of open sites that result from this packing problem on the gold cluster surface, using fluorescence probe chemisorption experiments. The results of these chemisorption measurements support the mechanical model of accessibility whereby accessibility is not dependent on the identity of the functional group, whether it be calixarene phosphines or N-heterocyclic carbenes, bound to the gold surface, but rather to the relative radii of curvature of bound ligands and the gold cluster core. Additional materials characterization was completed with transmission electron microscopy in both bright-field imaging of zeolites, in MCM-22 and delaminated ITQ-2 and UCB-1 materials, and in dark field imaging of glucan coatings on oxide particles. These materials could prove to be interesting materials as to use as supports for the calixarene-bound metal clusters described above or for other metal clusters.
Wu, Ling; Tang, Hailin; Hu, Shengqiang; Xia, Yonghong; Lu, Zhixuan; Fan, Yujuan; Wang, Zixiao; Yi, Xinyao; Zhou, Feimeng; Wang, Jianxiu
2018-04-30
Murine double minute 2 (MDM2) is an oncoprotein mediating the degradation of the tumor suppressor p53 protein. The physiological levels of MDM2 protein are closely related to malignant transformation and tumor growth. In this work, the simultaneous and label-free determination of free and p53-bound MDM2 proteins from sarcoma tissue extracts was conducted using a dual-channel surface plasmon resonance (SPR) instrument. Free MDM2 protein was measured in one fluidic channel covered with the consensus double-stranded (ds)-DNA/p53 conjugate, while MDM2 bound to p53 was captured by the consensus ds-DNA immobilized onto the other channel. To achieve higher sensitivity and to confirm specificity, an MDM2-specific monoclonal antibody (2A10) was used to recognize both the free and p53-bound MDM2 proteins. The resultant method afforded a detection limit of 0.55 pM of MDM2. The amenability of the method to the analysis of free and p53-bound MDM2 proteins was demonstrated for normal and sarcoma tissue extracts from three patients. Our data reveal that both free and total MDM2 (free and bound forms combined) proteins from sarcoma tissue extracts are of much higher concentrations than those from normal tissue extracts and the p53-bound MDM2 protein only constitutes a small fraction of the total MDM2 concentration. In comparison with enzyme-linked immunosorbent assay (ELISA), the proposed method possesses higher sensitivity, is more cost-effective, and is capable of determining free and p53-bound MDM2 proteins in clinical samples.
The Surface Chemistry of Metal Chalcogenide Nanocrystals
NASA Astrophysics Data System (ADS)
Anderson, Nicholas Charles
The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu3P complex of cadmium chloride. Nuclear magnetic resonance spectroscopy supports complete cleavage of the X-type carboxylate ligands. Combined with measurements of the Se:Cd:Cl ratio using Rutherford backscattering spectrometry, these studies support a structural model of nanocrystals where chloride ligands terminate the crystal lattice by balancing the charges of excess Cd2+ ions. The adsorption of dative phosphine ligands leads to nanocrystals who's solubility is afforded by reversibly bound and readily exchanged L-type ligands, e.g. primary amines and phosphines. The other halides (Br and I) can also be used to prepare Bu 3P-bound, halide-terminated CdSe nanocrystals, however these nanocrystals are not soluble after exchange. The change in binding affinity of Bu 3P over the halide series is briefly discussed. Next, we report a series of L-type ligand exchanges using Bu3P-bound, chloride-terminated CdSe nanocrystals with several Lewis bases, including aromatic, cyclic, and non-cyclic sulfides, and ethers; primary, secondary, and tertiary amines and phosphines; tertiary phosphine chalcogenides; primary alcohols, isocyanides, and isothiocyanides. Using 31P nuclear magnetic resonance spectroscopy, we establish a relative binding affinity for these ligands that reflects electronic considerations but is dominated primarily by steric interactions, as determined by comparing binding affinity to Tolmann cone angles. We also used chloride-terminated CdSe nanocrystals to explore the reactivity of ionic salts at nanocrystal surfaces. These salts, particularly [Bu3P-H]+[Cl]-, bind nanocrystals surfaces as L-type ligands, making them soluble in polar solvents such as acetonitrile. This information should provide insight for rational ligand design for future applications involving metal chalcogenide nanocrystals. The strongest ligand, primary n-alkylamine, rapidly displace the Bu3P from halide-terminated CdSe nanocrystals, leading to amine-bound nanocrystals with higher dative ligand coverages and greatly increased photoluminescence quantum yields. The importance of ligand coverage to both the UV-visible absorption and photoluminescence spectra are discussed. (Abstract shortened by UMI.).
Zero bias conductance peak in InAs nanowire coupled to superconducting electrodes
NASA Astrophysics Data System (ADS)
Kim, Nam-Hee; Shin, Yun-Sok; Kim, Hong-Seok; Song, Jin-Dong; Doh, Yong-Joo
2018-04-01
We report the occurrence of the zero-bias conductance peak (ZBCP) in an InAs nanowire coupled to PbIn superconductors with varying temperature, bias voltage, and magnetic field. The ZBCP is suppressed with increasing temperature and bias voltage above the Thouless energy of the nanowire. Applying a magnetic field also diminishes the ZBCP when the resultant magnetic flux reaches the magnetic flux quantum h/2e. Our observations are consistent with theoretical expectations of reflectionless tunneling, in which the phase coherence between an electron and its Andreev-reflected hole induces the ZBCP as long as time-reversal symmetry is preserved.
Spin Polarization of Alternate Monatomic Epitaxial [Fe/Co]n Superlattice
NASA Astrophysics Data System (ADS)
Chu, In Chang; Doi, Masaaki; Sahashi, Masashi; Rajanikanth, Ammanabrolu; Takahashi, Yukiko; Hono, Kazuhiro
2012-09-01
The spin polarization (P) of alternate monatomic layered (AML) epitaxial [Fe/Co]n superlattices grown on MgO(001) substrates by electron beam (EB) evaporation has been measured by the point contact Andreev reflection (PCAR) method. The intrinsic transport P of 0.60 was obtained for the AML epitaxial [Fe/Co]n superlattice grown at 75 °C, which is comparable to that of half-metallic Heusler alloys measured by PCAR. The AML epitaxial [Fe/Co]n superlattices on MgO(001), which are expected to possess the B2 ordered structure, show the highest spin polarization of metallic Fe-Co alloy films.
Ackerman, G A; Wolken, K W
1981-10-01
A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.
Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.
NASA Astrophysics Data System (ADS)
Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.
2015-12-01
Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).
On the Use of CAD-Native Predicates and Geometry in Surface Meshing
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.
1999-01-01
Several paradigms for accessing CAD geometry during surface meshing for CFD are discussed. File translation, inconsistent geometry engines and non-native point construction are all identified as sources of non-robustness. The paper argues in favor of accessing CAD parts and assemblies in their native format, without translation, and for the use of CAD-native predicates and constructors in surface mesh generation. The discussion also emphasizes the importance of examining the computational requirements for exact evaluation of triangulation predicates during surface meshing. The native approach is demonstrated through an algorithm for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique specially developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space. The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. The algorithm terminates after achieving a prespecified measure of mesh quality and produces a triangulation such that no angle is less than a given angle bound, a or greater than pi - 2alpha. This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to the output triangulations for a variety of CAD parts, the discussion presents related theoretical results which assert the existence of such an angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
Hybridization-based biosensor containing hairpin probes and use thereof
Miller, Benjamin L.; Strohsahl, Christopher M.
2010-10-12
A sensor chip that includes: a fluorescence quenching surface; a nucleic acid probe that contains first and second ends with the first end bound to the fluorescence quenching surface, and is characterized by being able to self-anneal into a hairpin conformation; and a first fluorophore bound to the second end of the first nucleic acid molecule. When the first nucleic acid molecule is in the hairpin conformation, the fluorescence quenching surface substantially quenches fluorescent emissions by the first fluorophore; and when the first nucleic acid molecule is in a non-hairpin conformation, fluorescent emissions by the fluorophore are substantially free of quenching by the fluorescence quenching surface. Various nucleic acid probes, methods of making the sensor chip, biological sensor devices that contain the sensor chip, and their methods of use are also disclosed.
Chen, Ying; Bylaska, Eric J; Weare, John H
2017-03-31
Many important geochemical and biogeochemical reactions occur in the mineral/formation water interface of the highly abundant mineral, goethite [α-Fe(OOH)]. Ab initio molecular dynamics (AIMD) simulations of the goethite α-FeOOH (100) surface and the structure, water bond formation and dynamics of water molecules in the mineral/aqueous interface are presented. Several exchange correlation functionals were employed (PBE96, PBE96 + Grimme, and PBE0) in the simulations of a (3 × 2) goethite surface with 65 absorbed water molecules in a 3D-periodic supercell (a = 30 Å, FeOOH slab ~12 Å thick, solvation layer ~18 Å thick). The lowest energy goethite (100) surface termination model was determined to have an exposed surface Fe 3+ that was loosely capped by a water molecule and a shared hydroxide with a neighboring surface Fe 3+ . The water molecules capping surface Fe 3+ ions were found to be loosely bound at all DFT levels with and without Grimme corrections, indicative that each surface Fe 3+ was coordinated with only five neighbors. These long bonds were supported by bond valence theory calculations, which showed that the bond valence of the surface Fe 3+ was saturated and surface has a neutral charge. The polarization of the water layer adjacent to the surface was found to be small and affected only the nearest water. Analysis by density difference plots and localized Boys orbitals identified three types of water molecules: those loosely bound to the surface Fe 3+ , those hydrogen bonded to the surface hydroxyl, and bulk water with tetrahedral coordination. Boys orbital analysis showed that the spin down lone pair orbital of the weakly absorbed water interact more strongly with the spin up Fe 3+ ion. These weakly bound surface water molecules were found to rapidly exchange with the second water layer (~0.025 exchanges/ps) using a dissociative mechanism. Water molecules adjacent to the surface were found to only weakly interact with the surface and as a result were readily able to exchange with the bulk water. To account for the large surface Fe-OH 2 distances in the DFT calculations it was proposed that the surface Fe 3+ atoms, which already have their bond valence fully satisfied with only five neighbors, are under-coordinated with respect to the bulk coordination. Graphical abstract All first principle calculations, at all practically achievable levels, for the goethite 100 aqueous interface support a long bond and weak interaction between the exposed surface Fe 3+ and water molecules capping the surface. This result is supported by bond valence theory calculations and is indicative that each surface Fe 3+ is coordinated with only 5 neighbors.
Intrinsic two-dimensional states on the pristine surface of tellurium
NASA Astrophysics Data System (ADS)
Li, Pengke; Appelbaum, Ian
2018-05-01
Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.
Prediction of large negative shaded-side spacecraft potentials
NASA Technical Reports Server (NTRS)
Prokopenko, S. M. L.; Laframboise, J. G.
1977-01-01
A calculation by Knott, for the floating potential of a spherically symmetric synchronous-altitude satellite in eclipse, was adapted to provide simple calculations of upper bounds on negative potentials which may be achieved by electrically isolated shaded surfaces on spacecraft in sunlight. Large (approximately 60 percent) increases in predicted negative shaded-side potentials are obtained. To investigate effective potential barrier or angular momentum selection effects due to the presence of less negative sunlit-side or adjacent surface potentials, these expressions were replaced by the ion random current, which is a lower bound for convex surfaces when such effects become very severe. Further large increases in predicted negative potentials were obtained, amounting to a doubling in some cases.
En route to surface-bound electric field-driven molecular motors.
Jian, Huahua; Tour, James M
2003-06-27
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.
Surface plasmon oscillations in a semi-bounded semiconductor plasma
NASA Astrophysics Data System (ADS)
M, SHAHMANSOURI; A, P. MISRA
2018-02-01
We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.
NASA Technical Reports Server (NTRS)
Kuhlman, J. M.; Ku, T. J.
1981-01-01
A two dimensional advanced panel far-field potential flow model of the undistorted, interacting wakes of multiple lifting surfaces was developed which allows the determination of the spanwise bound circulation distribution required for minimum induced drag. This model was implemented in a FORTRAN computer program, the use of which is documented in this report. The nonplanar wakes are broken up into variable sized, flat panels, as chosen by the user. The wake vortex sheet strength is assumed to vary linearly over each of these panels, resulting in a quadratic variation of bound circulation. Panels are infinite in the streamwise direction. The theory is briefly summarized herein; sample results are given for multiple, nonplanar, lifting surfaces, and the use of the computer program is detailed in the appendixes.
Lai, Hsin-Hua; Yang, Kun; Bonesteel, N E
2013-11-22
We show the violation of the entanglement area law for bosonic systems with Bose surfaces. For bosonic systems with gapless factorized energy dispersions on an N(d) Cartesian lattice in d dimensions, e.g., the exciton Bose liquid in two dimensions, we explicitly show that a belt subsystem with width L preserving translational symmetry along d-1 Cartesian axes has leading entanglement entropy (N(d-1)/3)lnL. Using this result, the strong subadditivity inequality, and lattice symmetries, we bound the entanglement entropy of a rectangular subsystem from below and above showing a logarithmic violation of the area law. For subsystems with a single flat boundary, we also bound the entanglement entropy from below showing a logarithmic violation, and argue that the entanglement entropy of subsystems with arbitrary smooth boundaries are similarly bounded.
Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile
Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, andmore » XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.« less
A New Phenomenon in Saudi Females' Code-Switching: A Morphemic Analysis
ERIC Educational Resources Information Center
Turjoman, Mona O.
2016-01-01
This sociolinguistics study investigates a new phenomenon that has recently surfaced in the field of code-switching among Saudi females residing in the Western region of Saudi Arabia. This phenomenon basically combines bound Arabic pronouns, tense markers or definite article to English free morphemes or the combination of bound English affixes to…
A bound on holographic entanglement entropy from inverse mean curvature flow
NASA Astrophysics Data System (ADS)
Fischetti, Sebastian; Wiseman, Toby
2017-06-01
Entanglement entropies are notoriously difficult to compute. Large-N strongly-coupled holographic CFTs are an important exception, where the AdS/CFT dictionary gives the entanglement entropy of a CFT region in terms of the area of an extremal bulk surface anchored to the AdS boundary. Using this prescription, we show—for quite general states of (2 + 1)-dimensional such CFTs—that the renormalized entanglement entropy of any region of the CFT is bounded from above by a weighted local energy density. The key ingredient in this construction is the inverse mean curvature (IMC) flow, which we suitably generalize to flows of surfaces anchored to the AdS boundary. Our bound can then be thought of as a ‘subregion’ Penrose inequality in asymptotically locally AdS spacetimes, similar to the Penrose inequalities obtained from IMC flows in asymptotically flat spacetimes. Combining the result with positivity of relative entropy, we argue that our bound is valid perturbatively in 1/N, and conjecture that a restricted version of it holds in any CFT.
Counterion effects in protein nanoparticle electrostatic binding: a theoretical study.
Ghosh, Goutam
2015-04-01
Effects of counterions on the folding conformation of proteins, bound electrostatically on the surface of charge-ligand functionalized nanoparticles, have been investigated based on the protein folding energy calculation. The folding energy of a protein has been taken as a sum of the short range interaction energies, like, the van der Waals attraction and the hydrogen bond energies, and the long range coulomb interaction energy. On electrostatic binding, counterions associated with surface ligands of nanoparticles diffuse into bound proteins through the medium of dispersion. As a result, bound proteins partially unfold, as observed in circular dichroism experiments, which has been realized using the "charge-dipole" and the "charge-induced dipole" interactions of counterions with polar and non-polar residues, respectively. The effect of counterions solvation in the dispersing medium, e.g., water, which causes water molecules to polarize around the counterions, has also been considered. The folding energy of bound proteins has been seen to decrease proportionally with the increasing number of diffusion of counterions and their polarizability. Copyright © 2015 Elsevier B.V. All rights reserved.
Anema, Skelte G; de Kruif, C G Kees
2013-07-24
Casein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles. The lactoferrin/κ-casein ratio was constant for all micelle sizes, whereas the lactoferrin/αS-casein and lactoferrin/β-casein ratio decreased with increasing micelle size. This indicates that the lactoferrin was binding to the surface of the casein micelles. For lysozyme, higher levels bound to larger casein micelles. The lysozyme/αS-casein and lysozyme/β-casein ratios were nearly constant, whereas the lysozyme/κ-casein ratio increased with increasing micelle size, indicating that lysozyme bound to αS-casein and β-casein in the micelle core. Lactoferrin is a large protein that cannot enter the casein protein mesh; therefore, it binds to the micelle surface. The smaller lysozyme can enter the protein mesh and therefore binds to the more charged αS-casein and β-casein.
Membrane Bending by Protein Crowding
NASA Astrophysics Data System (ADS)
Stachowiak, Jeanne
2014-03-01
From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.
13. Photocopy of drawing (original in possession of Naval Surface ...
13. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) WIND TUNNEL BUILDING, ELEVATIONS, 1941 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Liao, B Q; Lin, H J; Langevin, S P; Gao, W J; Leppard, G G
2011-01-01
Effects of temperature (mesophilic (35 °C) vs. thermophilic (55 °C)) and dissolved oxygen (DO) concentration (under thermophilic conditions) on sludge properties and their role in bioflocculation and settling were studied using well-controlled sequencing batch reactors fed with a synthetic wastewater comprised of glucose and inorganic nutrients. Under a similar DO level, thermophilic sludge had a poorer bioflocculating ability and settleability than that of mesophilic sludge. Under a thermophilic condition, an increase in DO level led to a poorer settleability and a slightly improved bioflocculating ability. A poorer settleability was related to a higher level of filaments. Analysis of bound extracellular polymeric substances (EPS) indicates that thermophilic sludge had a higher level of total bound EPS content than that of mesophilic sludge under a similar DO level, and an increase in DO resulted in an increase in total bound EPS content in thermophilic sludge. Surface analysis of sludge by X-ray photoelectron spectroscopy (XPS) suggests that significant differences in the surface concentrations of elements N, C, O were observed between thermophilic and mesophilic sludge, implying significant differences in bound EPS composition. The results of gel permeation chromatography indicate that the weight-averaged molecular weight (M(w)) of bound EPS covered a range of 1159 Da to 13220 Da. The distribution of EPS "species" at floc surfaces was shown by transmission electron microscopy (TEM) to be uneven; different kinds of nanoscale materials were distributed in a patchy manner at the floc-water interface. The results suggest that it is the role of specific EPS molecules rather than the quantity of bound EPS that determine the difference in bioflocculation behavior between thermophilic and mesophilic sludge. The strategy of increasing the DO level could not solve the biomass separation problems associated with thermophilic sludge. Copyright © 2010 Elsevier Ltd. All rights reserved.
Johnson, David K.; Karanicolas, John
2015-01-01
Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions. PMID:25706586
Sprenger, K G; Pfaendtner, Jim
2016-06-07
Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution, results that show the expected physical behavior, i.e., peptide binding strength that decreases with increasing temperature or is independent of temperature altogether, can be recovered on the charged surface. On the basis of this analysis, an overall free energy for the entire thermodynamic cycle for peptide adsorption on charged surfaces is constructed and validated with independent simulations.
Butyrophenone on O-TiO2(110): one-dimensional motion in a weakly confined potential well.
Jensen, Stephen C; Shank, Alex; Madix, Robert J; Friend, Cynthia M
2012-04-24
We demonstrate the one-dimensional confinement of weakly bound butyrophenone molecules between strongly bound complexes formed via reaction with oxygen on TiO(2)(110). Butyrophenone weakly bound to Ti rows through the carbonyl oxygen diffuses freely in one dimension along the rows even at 55 K, persisting for many minutes before hopping out of the 1-D well. Quantitative analysis yields an estimate of the migration barrier of 0.11 eV and a frequency factor of 6.5 × 10(9) Hz. These studies demonstrate that weakly bound organic molecules can be confined on a surface by creating molecular barriers, potentially altering their assembly.
Nanopillar Optical Antenna Avalanche Detectors
2014-08-30
tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support
Surface acoustic wave oxygen pressure sensor
NASA Technical Reports Server (NTRS)
Oglesby, Donald M. (Inventor); Upchurch, Billy T. (Inventor); Leighty, Bradley D. (Inventor)
1994-01-01
A transducer for the measurement of absolute gas-state oxygen pressure from pressures of less than 100 Pa to atmospheric pressure (1.01 x 10(exp 5) Pa) is based on a standard surface acoustic wave (SAW) device. The piezoelectric material of the SAW device is coated with a compound which will selectively and reversibly bind oxygen. When oxygen is bound by the coating, the mass of the coating increases by an amount equal to the mass of the bound oxygen. Such an increase in the mass of the coating causes a corresponding decrease in the resonant frequency of the SAW device.
Heterogeneous losses of externally generated I atoms for OIL
NASA Astrophysics Data System (ADS)
Torbin, A. P.; Mikheyev, P. A.; Ufimtsev, N. I.; Voronov, A. I.; Azyazov, V. N.
2012-01-01
Usage of an external iodine atom generator can improve energy efficiency of the oxygen-iodine laser (OIL) and expand its range of operation parameters. However, a noticeable part of iodine atoms may recombine or undergo chemical bonding during transportation from the generator to the injection point. Experimental results reported in this paper showed that uncoated aluminum surfaces readily bounded iodine atoms, while nickel, stainless steel, Teflon or Plexiglas did not. Estimations based on experimental results had shown that the upper bound of probability of surface iodine atom recombination for materials Teflon, Plexiglas, nickel or stainless steel is γrec <= 10-5.
10. Photocopy of drawing (original in possession of Naval Surface ...
10. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) SUPERSONIC WIND TUNNEL BUILDING, GROUND FLOOR PLAN, 1947 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
14. Photocopy of drawing (original in possession of Naval Surface ...
14. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) WIND TUNNEL, FRAMING PLAN, TOP AND BOTTOM, 1941 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
In vitro lectin binding to the outer surface of Spirocerca lupi at different life-stages.
Aroch, I; Arogeti, I; Marcovics, A; Spiegel, Y; Lavy, E
2017-02-15
Spirocerca lupi is the esophageal nematode of dogs. Early, transient eosinophilia occurs in experimentally infected dogs, but is absent in advanced cases, suggesting that the nematode evades the dog's immune system. Lectins are proteins or glycoproteins of plant or animal origin, binding different saccharides, with varying specificities and avidities, used to characterize surface haptens in plant and animal parasitic helminths. This study investigated the in vitro binding of six lectins (Concanavalin A [ConA], wheat germ agglutinin [WGA], peanut agglutinin [PNA], soybean agglutinin [SBA], Dolichus biflorus agglutinin [DBA] and Ulex earopaeus agglutinin I [UEA]) to the surface of S. lupi nematodes at different life stages, the L2 and L3 larvae (dead and alive) and to dead adult worms, with negative controls, with and without addition of the six respective inhibitory sugar haptens. Con A moderately bound to surfaces of both live and frozen L3, to the stoma and excretory pores of adult worms, and to the outer surface nematode's eggs, within a female worm, but not to L2. PNA bound only to stoma and excretory pores surfaces in both frozen and live L3. WGA bound strongly to the outer surfaces of live and dead L2 and L3, which resulted in molting of live larvae. These results suggest that the nematode's surface content change during its development. Such changes may play roles in the nematode's interactions with the intermediate and definitive hosts' tissues, and in its ability to evade the immune response, its long survival within the host, and even induce neoplastic transformation. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Laaser, Jennifer E.; Skoff, David R.; Ho, Jia-Jung; Joo, Yongho; Serrano, Arnaldo L.; Steinkruger, Jay D.; Gopalan, Padma; Gellman, Samuel H.; Zanni, Martin T.
2014-01-01
Surface-bound polypeptides and proteins are increasingly used to functionalize inorganic interfaces such as electrodes, but their structural characterization is exceedingly difficult with standard technologies. In this paper, we report the first two-dimensional sum-frequency generation (2D SFG) spectra of a peptide monolayer, which is collected by adding a mid-IR pulse shaper to a standard femtosecond SFG spectrometer. On a gold surface, standard FTIR spectroscopy is inconclusive about the peptide structure because of solvation-induced frequency shifts, but the 2D lineshapes, anharmonic shifts, and lifetimes obtained from 2D SFG reveal that the peptide is largely α-helical and upright. Random coil residues are also observed, which do not themselves appear in SFG spectra due to their isotropic structural distribution, but which still absorb infrared light and so can be detected by cross-peaks in 2D SFG spectra. We discuss these results in the context of peptide design. Because of the similar way in which the spectra are collected, these 2D SFG spectra can be directly compared to 2D IR spectra, thereby enabling structural interpretations of surface-bound peptides and biomolecules based on the well-studied structure/2D IR spectra relationships established from soluble proteins. PMID:24372101
Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding
NASA Astrophysics Data System (ADS)
Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng
2014-06-01
Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding. Electronic supplementary information (ESI) is available: Fluorescence spectra, ITC, CD spectra and other data as described in the text. See DOI: 10.1039/c4nr01544d
NASA Astrophysics Data System (ADS)
Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S. V.; Banerjee, S.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J. A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Ewers, A.; Extermann, P.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Y.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grenier, G.; Grimm, O.; Gruenewald, M. W.; Guida, M.; van Gulik, R.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Hakobyan, R. S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Hu, Y.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberra, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A. C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R. W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D. O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B. P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rosenbleck, C.; Roux, B.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M. P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D. J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, C. C.; Ting, S. M.; Tonwar, S. C.; Toth, J.; Tully, C.; Tung, K. L.; Ulbricht, J.; Valente, E.; Van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wallraff, W.; Wang, X. L.; Wang, Z. M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yeh, S. C.; Zalite, A.; Zalite, Y.; Zhang, Z. P.; Zhao, J.; Zhu, G. Y.; Zhu, R. Y.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zoller, M.
2002-11-01
Bose-Einstein correlations in W-pair production at LEP are investigated in a data sample of 629 pb^-1 collected by the L3 detector at centre-of-mass energies of 189-209 GeV. Bose-Einstein correlations between pions within a W decay are observed and found to be in good agreement with those in light-quark Z decay. No evidence is found for Bose-Einstein correlations between hadrons coming from different W's in the same event.
Machon, P; Eschrig, M; Belzig, W
2013-01-25
We study thermal and charge transport in a three-terminal setup consisting of one superconducting and two ferromagnetic contacts. We predict that the simultaneous presence of spin filtering and of spin-dependent scattering phase shifts at each of the two interfaces will lead to very large nonlocal thermoelectric effects both in clean and in disordered systems. The symmetries of thermal and electric transport coefficients are related to fundamental thermodynamic principles by the Onsager reciprocity. Our results show that a nonlocal version of the Onsager relations for thermoelectric currents holds in a three-terminal quantum coherent ferromagnet-superconductor heterostructure including a spin-dependent crossed Andreev reflection and coherent electron transfer processes.
12. Photocopy of drawing (original in possession of Naval Surface ...
12. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) SUPERSONIC WIND TUNNEL, STEEL VACUUM SPHERE, FOUNDATION PLAN, ELEVATION AND DETAILS, 1947 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
23. Photocopy of drawing (original in possession of Naval Surface ...
23. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL, FAN HOUSING ASSEMBLY, 1952 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
19. Photocopy of drawing (original In possession of Naval Surface ...
19. Photocopy of drawing (original In possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL PLOT AND GRADING PLAN, 1952 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
21. Photocopy of drawing (original in possession of Naval Surface ...
21. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL, LABORATORY AND OFFICE BUILDING, 1950 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
12. Photocopy of drawing (original in possession of Naval Surface ...
12. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) WIND TUNNEL BUILDING, FIRST FLOOR PLAN, NOTE OPEN SHOP, 1941 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
11. Photocopy of drawing (original in possession of Naval Surface ...
11. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) SUPERSONIC WIND TUNNEL BUILDING, SECTIONS AND DETAILS, MECHANICAL, 1947 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....
15. Photocopy of drawing (original in possession of Naval Surface ...
15. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) WIND TUNNEL, ELEVATIONS E-E TO H-H AND SECTIONS, 1941 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
A gravimetric analysis of protein-oligosaccharide interactions.
Rudd, T; Gallagher, J T; Ron, D; Nichols, R J; Fernig, D G
2003-04-01
Interactions between an immobilized, heparin-derived octasaccharide and growth factors have been observed using a quartz crystal microbalance-dissipation (QCM-D). This device can measure the amount of growth factors binding to the octasaccharide surface and also the change of dissipation of the surface. Dissipation is a measure of how the adhered material 'damps' the surface vibrations. The octasaccharides were anchored through their reducing ends by the intermediary of the alkanethiol molecule, which covalently binds to the crystal surface through the thiol group. As expected, heparin sulphate binding growth factors bound to the octasaccharide, but the change in mass of growth factor bound per unit change in dissipation is different for the different growth factors. Suggesting that the structures of the various growth factor-octasaccharide complexes are different, therefore, indicates that the change in dissipation can give insights into the structure, orientation and packing of the oligosaccharide-growth factor complexes.
What interactions drive the salivary mucosal pellicle formation?
Gibbins, Hannah L.; Yakubov, Gleb E.; Proctor, Gordon B.; Wilson, Stephen; Carpenter, Guy H.
2014-01-01
The bound salivary pellicle is essential for protection of both the enamel and mucosa in the oral cavity. The enamel pellicle formation is well characterised, however the mucosal pellicle proteins have only recently been clarified and what drives their formation is still unclear. The aim of this study was to examine the salivary pellicle on particles with different surface properties (hydrophobic or hydrophilic with a positive or negative charge), to determine a suitable model to mimic the mucosal pellicle. A secondary aim was to use the model to test how transglutaminase may alter pellicle formation. Particles were incubated with resting whole mouth saliva, parotid saliva and submandibular/sublingual saliva. Following incubation and two PBS and water washes bound salivary proteins were eluted with two concentrations of SDS, which were later analysed using SDS-PAGE and Western blotting. Experiments were repeated with purified transglutaminase to determine how this epithelial-derived enzyme may alter the bound pellicle. Protein pellicles varied according to the starting salivary composition and the particle chemistry. Amylase, the single most abundant protein in saliva, did not bind to any particle indicating specific protein binding. Most proteins bound through hydrophobic interactions and a few according to their charges. The hydrophobic surface most closely matched the known salivary mucosal pellicle by containing mucins, cystatin and statherin but an absence of amylase and proline-rich proteins. This surface was further used to examine the effect of added transglutaminase. At the concentrations used only statherin showed any evidence of crosslinking with itself or another saliva protein. In conclusion, the formation of the salivary mucosal pellicle is probably mediated, at least in part, by hydrophobic interactions to the epithelial cell surface. PMID:24921197
Positive gravitational subsystem energies from CFT cone relative entropies
NASA Astrophysics Data System (ADS)
Neuenfeld, Dominik; Saraswat, Krishan; Van Raamsdonk, Mark
2018-06-01
The positivity of relative entropy for spatial subsystems in a holographic CFT implies the positivity of certain quantities in the dual gravitational theory. In this note, we consider CFT subsystems whose boundaries lie on the lightcone of a point p. We show that the positive gravitational quantity which corresponds to the relative entropy for such a subsystem A is a novel notion of energy associated with a gravitational subsystem bounded by the minimal area extremal surface à associated with A and by the AdS boundary region  corresponding to the part of the lightcone from p bounded by ∂ A. This generalizes the results of arXiv:1605.01075 for ball-shaped regions by making use of the recent results in arXiv:1703.10656 for the vacuum modular Hamiltonian of regions bounded on lightcones. As part of our analysis, we give an analytic expression for the extremal surface in pure AdS associated with any such region A. We note that its form immediately implies the Markov property of the CFT vacuum (saturation of strong subadditivity) for regions bounded on the same lightcone. This gives a holographic proof of the result proven for general CFTs in arXiv:1703.10656. A similar holographic proof shows the Markov property for regions bounded on a lightsheet for non-conformal holographic theories defined by relevant perturbations of a CFT.
Möller, Jens; Lühmann, Tessa; Chabria, Mamta; Hall, Heike; Vogel, Viola
2013-10-07
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
Möller, Jens; Lühmann, Tessa; Chabria, Mamta; Hall, Heike; Vogel, Viola
2013-01-01
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis. PMID:24097079
Lens-free imaging of magnetic particles in DNA assays.
Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen
2013-11-07
We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.
UV-Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles.
Baldock, Brandi L; Hutchison, James E
2016-12-20
DNA-functionalized gold nanoparticles have been increasingly applied as sensitive and selective analytical probes and biosensors. The DNA ligands bound to a nanoparticle dictate its reactivity, making it essential to know the type and number of DNA strands bound to the nanoparticle surface. Existing methods used to determine the number of DNA strands per gold nanoparticle (AuNP) require that the sequences be fluorophore-labeled, which may affect the DNA surface coverage and reactivity of the nanoparticle and/or require specialized equipment and other fluorophore-containing reagents. We report a UV-visible-based method to conveniently and inexpensively determine the number of DNA strands attached to AuNPs of different core sizes. When this method is used in tandem with a fluorescence dye assay, it is possible to determine the ratio of two unlabeled sequences of different lengths bound to AuNPs. Two sizes of citrate-stabilized AuNPs (5 and 12 nm) were functionalized with mixtures of short (5 base) and long (32 base) disulfide-terminated DNA sequences, and the ratios of sequences bound to the AuNPs were determined using the new method. The long DNA sequence was present as a lower proportion of the ligand shell than in the ligand exchange mixture, suggesting it had a lower propensity to bind the AuNPs than the short DNA sequence. The ratio of DNA sequences bound to the AuNPs was not the same for the large and small AuNPs, which suggests that the radius of curvature had a significant influence on the assembly of DNA strands onto the AuNPs.
NASA Astrophysics Data System (ADS)
Arribas, Maria Eugenia; Rodríguez-López, Juan Pedro; Meléndez, Nieves; Soria, Ana Rosa; de Boer, Poppe L.
2012-01-01
Aeolian dune sandstones of the Iberian erg system (Cretaceous, Spain) host giant calcite concretions that constitute heterogeneities of diagenetic origin within a potential aeolian reservoir. The giant calcite concretions developed in large-scale aeolian dune foresets, at the transition between aeolian dune toeset and damp interdune elements, and in medium-scale superimposed aeolian dune sets. The chemical composition of the giant concretions is very homogeneous. They formed during early burial by low Mg-calcite precipitation from meteoric pore waters. Carbonate components with yellow/orange luminescence form the nuclei of the poikilotopic calcite cement. These cements postdate earlier diagenetic features, characterized by early mechanical compaction, Fe-oxide cements and clay rims around windblown quartz grains resulting from the redistribution of aeolian dust over the grain surfaces. The intergranular volume (IGV) in friable aeolian sandstone ranges from 7.3 to 15.3%, whereas in cemented aeolian sandstone it is 18.6 to 25.3%. The giant-calcite concretions developed during early diagenesis under the influence of meteoric waters associated with the groundwater flow of the desert basin, although local (e.g. activity of fluid flow through extensional faults) and/or other regional controls (e.g. variations of the phreatic level associated with a variable water influx to the erg system and varying sea level) could have favoured the local development of giant-calcite concretions. The spatial distribution pattern of carbonate grains and the main bounding surfaces determined the spatial distribution of the concretions. In particular, the geometry of the giant calcite concretions is closely associated with main bounding aeolian surfaces. Thus, interdune, superimposition and reactivation surfaces exerted a control on the concretion geometries ranging from flat and tabular ones (e.g. bounded by interdunes) to wedge-shaped concretions at the dune foresets (e.g. bounded by superimposition and reactivation surfaces) determining the spatial distribution of the heterogeneities of diagenetic origin in the aeolian reservoir.
Marsh, Jon N.; Partlow, Kathryn C.; Abendschein, Dana R.; Scott, Michael J.; Lanza, Gregory M.; Wickline, Samuel A.
2007-01-01
Targeted, liquid perfluorocarbon nanoparticles are effective agents for acoustic contrast enhancement of abundant cellular epitopes (e.g. fibrin in thrombi) and for lower prevalence binding sites, such as integrins associated with tumor neovasculature. In this study we sought to delineate the quantitative relationship between the extent of contrast enhancement of targeted surfaces and the density (and concentration) of bound perfluorocarbon (PFC) nanoparticles. Two dramatically different substrates were utilized for targeting. In one set of experiments, the surfaces of smooth, flat, avidin-coated agar disks were exposed to biotinylated nanoparticles to yield a thin layer of targeted contrast. For the second set of measurements, we targeted PFC nanoparticles applied in thicker layers to cultured smooth muscle cells expressing the transmembrane glycoprotein “tissue factor” at the cell surface. An acoustic microscope was used to characterize reflectivity for all samples as a function of bound PFC (determined via gas chromatography). We utilized a formulation of low-scattering nanoparticles having oil-based cores to compete against high-scattering PFC nanoparticles for binding, to elucidate the dependence of contrast enhancement on PFC concentration. The relationship between reflectivity enhancement and bound PFC content varied in a curvilinear fashion, and exhibited an apparent asymptote (approximately 16 dB and 9 dB enhancement for agar and cell samples, respectively) at the maximum concentrations (~150 μg and ~1000 μg PFOB for agar and cell samples, respectively). Samples targeted with only oil-based nanoparticles exhibited mean backscatter values that were nearly identical to untreated samples (<1 dB difference), confirming the oil particles’ low-scattering behavior. The results of this study indicate that substantial contrast enhancement with liquid perfluorocarbon nanoparticles can be realized even in cases of partial surface coverage (as might be encountered when targeting sparsely populated epitopes), or when targeting surfaces with locally irregular topography. Furthermore, it may be possible to assess the quantity of bound cellular epitopes through acoustic means. PMID:17434667
Analysis of Fc(epsilon)RI-mediated mast cell stimulation by surface-carried antigens.
Schweitzer-Stenner, R; Tamir, I; Pecht, I
1997-01-01
Clustering of the type I receptor for IgE (Fc[epsilon]RI) on mast cells initiates a cascade of biochemical processes that result in secretion of inflammatory mediators. To determine the Fc(epsilon)RI proximity, cluster size, and mobility requirements for initiating the Fc(epsilon)RI cascade, a novel experimental protocol has been developed in which mast cells are reacted with glass surfaces carrying different densities of both antigen and bound IgE, and the cell's secretory response to these stimuli is measured. The results have been analyzed in terms of a model based on the following assumptions: 1) the glass surface antigen distribution and consequently that of the bound IgE are random; 2) Fc(epsilon)RI binding to these surface-bound IgEs immobilizes the former and saturates the latter; 3) the cell surface is formally divided into small elements, which function as a secretory stimulus unit when occupied by two or more immobilized IgE-Fc(epsilon)RI complexes; 4) alternatively, similar stimulatory units can be formed by binding of surface-carried IgE dimers to two Fc(epsilon)RI. This model yielded a satisfactory and self-consistent fitting of all of the different experimental data sets. Hence the present results establish the essential role of Fc(epsilon)RI immobilization for initiating its signaling cascade. Moreover, it provides independent support for the notion that as few as two Fc(epsilon)RIs immobilized at van der Waals contact constitute an "elementary stimulatory unit" leading to mast cell (RBL-2H3 line) secretory response. PMID:9168023
Synthetic heparin-binding growth factor analogs
Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.
2007-01-23
The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.
Nanostructures and dynamics of macromolecules bound to attractive filler surfaces
NASA Astrophysics Data System (ADS)
Koga, Tad; Barkley, Deborah; Jiang, Naisheng; Endoh, Maya; Masui, Tomomi; Kishimoto, Hiroyuki; Nagao, Michihiro; Satija, Sushil; Taniguchi, Takashi
We report in-situ nanostructures and dynamics of polybutadiene (PB) chains bound to carbon black (CB) fillers (the so-called ``bound polymer layer (BPL)'') in a good solvent. The BPL on the CB fillers were extracted by solvent leaching of a CB-filled PB compound and subsequently dispersed in deuterated toluene to label the BPL for small-angle neutron scattering and neutron spin echo techniques. Intriguingly, the results demonstrate that the BPL is composed of two regions regardless of molecular weights of PB: the inner unswollen region of ~ 0.5 nm thick and outer swollen region where the polymer chains display a parabolic profile with a diffuse tail. This two-layer formation on the filler surface is similar to that reported for polymer chains adsorbed on planar substrates from melts. In addition, the results show that the dynamics of the swollen bound chains can be explained by the so-called ``breathing mode'' and is generalized with the thickness of the swollen BPL. Furthermore, we will discuss how the breathing collective dynamics is affected by the presence of polymer chains in a matrix solution. We acknowledge the financial support from NSF Grant No. CMMI-1332499.
NASA Astrophysics Data System (ADS)
Hodgson, Murray; Wareing, Andrew
2008-01-01
A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.
Wu, Biyun; Gerlitz, Bruce; Grinnell, Brian W.; Meyerhoff, Mark E.
2007-01-01
Multi-functional bilayer polymeric coatings are prepared with both controlled nitric oxide (NO) release and surface-bound active thrombomodulin (TM) alone or in combination with immobilized heparin. The outer-layer is made of CarboSil, a commercially available copolymer of silicone rubber (SR) and polyurethane (PU). The CarboSil is either carboxylated or aminated via an allophanate reaction with a diisocyanate compound followed by a urea-forming reaction between the generated isocyanate group of the polymer and the amine group of an amino acid (glycine), an oligopeptide (triglycine) or a diamine. The carboxylated CarboSil can then be used to immobilize TM through the formation of an amide bond between the surface carboxylic acid groups and the lysine residues of TM. Aminated CarboSil can also be employed to initially couple heparin to the surface, and then the carboxylic acid groups on heparin can be further used to anchor TM. Both surface-bound TM and heparin’s activity are evaluated by chromogenic assays and found to be at clinically significant levels. The underlying NO release layer is made with another commercial SR-PU copolymer (PurSil) mixed with a lipophilic NO donor (N-diazeniumdiolated dibutylhexanediamine (DBHD/N2O2)). The NO release rate can be tuned by changing the thickness of top coatings, and the duration of NO release at physiologically relevant levels can be as long as 2 weeks. The combination of controlled NO release as well as immobilized active TM and heparin from/on the same polymeric surface mimics the highly thromboresistant endothelium layer. Hence, such multifunctional polymer coatings should provide more blood-compatible surfaces for biomedical devices. PMID:17597201
NASA Astrophysics Data System (ADS)
Liu, X.; Bassis, J. N.
2015-12-01
With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound, assuming negligible longwave radiation and albedo near the maximum observed for freshly fallen snow. Even under this scenarios preliminary estimates suggest tens of centimeters of sea level rise by 2100.
Declercq, Nico F; Leroy, Oswald
2011-08-01
Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.
Transient response in granular quasi-two-dimensional bounded heap flow.
Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B
2017-10-01
We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.
Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity
Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.
2017-01-01
Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358
Grover, Phulwinder K.; Thurgood, Lauren A.; Wang, Tingting; Ryall, Rosemary L.
2010-01-01
Objective To compare the binding to Madin-Darby canine kidney (MDCK)-II cells of: (i) inorganic calcium oxalate monohydrate (iCOM) crystals and COM crystals precipitated from urine containing different concentrations of protein; and (ii) urinary COM crystals containing intracrystalline and intracrystalline + surface-bound protein. Materials and methods Urinary COM crystals were generated in sieved (sCOM), centrifuged and filtered (cfCOM), and ultrafiltered (ufCOM) portions of a pooled human urine and their adhesion to MDCK-II cells was compared using six different ultrafiltered urine samples as the binding medium. Crystal matrix extract (CME) was prepared by demineralizing calcium oxalate crystals precipitated from human urine and used to prepare COM crystals with intracrystalline, and intracrystalline + surface-bound CME at protein concentrations of 0, 0.05, 0.1, 0.5 and 5.0 mg/L. The amount of protein associated with the crystals was qualitatively assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting, using prothrombin fragment 1 (PTF1) as a marker. Protein concentration was determined in sieved, centrifuged and filtered, and ultrafiltered fractions of 10 additional urine samples. Results The median crystal attachment in the six urine types decreased in the order iCOM > ufCOM > cfCOM = sCOM, in inverse proportion to the concentration of protein in the solution or urine from which they were precipitated. sCOM and cfCOM crystals bound ≈□ 23% less than iCOM crystals. The attachment of COM crystals generated in the presence of increasing concentrations of CME proteins was unaffected up to a concentration of 5 mg/L, but binding of crystals containing the same concentrations of intracrystalline + surface-bound proteins decreased proportionally at protein concentrations from 0 to 5.0 mg/L. Conclusion Inorganic COM crystals bind significantly more strongly to MDCK-II cells than urinary crystals precipitated from sieved, centrifuged and filtered, and ultrafiltered urine, and binding affinity is inversely related to the concentration of protein in the urine in which they are formed. While both intracrystalline and superficial CME proteins reduce the attachment of COM crystals to MDCK-II cells, those located on the crystal surface have a greater influence than those incarcerated within the mineral bulk. Future cell–crystal interaction studies should use urinary crystals and be performed in human urine. PMID:19694711
20. Photocopy of drawing (original in possession of Naval Surface ...
20. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL FIRST FLOOR PLANS AND DETAILS, 1948 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
22. Photocopy of drawing (original in possession of Naval Surface ...
22. Photocopy of drawing (original in possession of Naval Surface Warfare Center Carderock Division, Bethesda, MD) 7 X 10 FOOT SONIC WIND TUNNEL, INSTALLATION OF POWER EQUIPMENT AND ACCESSORIES, 1950 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Gupta, Prashant Kumar; Meuwly, Markus
2016-09-19
The spectroscopy and dynamics of water/methanol (MeOH) mixtures at hydroxylated silica surfaces is investigated from atomistic simulations. The particular focus is on how the structural dynamics of MeOH changes when comparing surface-bound and MeOH in the bulk. From analyzing the frequency frequency correlation functions it is found that the dynamics on the picosecond time scale differs by almost a factor of two. While the relaxation time is 2.0 ps for MeOH in the bulk solvent it is considerably slowed-down to 3.5 ps for surface-bound MeOH. Surface-adsorbed MeOH molecules reside there for several nanoseconds and their H-bonds are strongly oriented towards the surface-OH groups. These results are of particular relevance for chromatographic systems where the solvent may play a central role in their function. The present simulations suggest that surface-sensitive spectroscopic techniques should be useful in better characterizing such heterogeneous systems and provide detailed insight into solvent dynamics and structure relevant in chromatographic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Surface-confined Ullmann coupling of thiophene substituted porphyrins
NASA Astrophysics Data System (ADS)
Beggan, J. P.; Boyle, N. M.; Pryce, M. T.; Cafolla, A. A.
2015-09-01
The covalent coupling of (5,10,15,20-tetrabromothien-2-ylporphyrinato)zinc(II) (TBrThP) molecules on the Ag(111) surface has been investigated under ultra-high-vacuum conditions, using scanning tunnelling microscopy and x-ray photoelectron spectroscopy. The findings provide atomic-level insight into surface-confined Ullmann coupling of thiophene substituted porphyrins, analyzing the progression of organometallic intermediate to final coupled state. Adsorption of the TBrThP molecules on the Ag(111) surface at room temperature is found to result in the reductive dehalogenation of the bromothienyl substituents and the subsequent formation of single strand and crosslinked coordination networks. The coordinated substrate atoms bridge the proximal thienyl groups of the organometallic intermediate, while the cleaved bromine atoms are bound on the adjacent Ag(111) surface. The intermediate complex displays a thermal lability at ˜423 K that results in the dissociation of the proximal thienyl groups with the concomitant loss of the surface bound bromine. At the thermally induced dissociation of the intermediate complex the resultant thienylporphyrin derivatives covalently couple, leading to the formation of a polymeric network of thiophene linked and meso-meso fused porphyrins.
Theoretical and experimental models of the diffuse radar backscatter from Mars
NASA Technical Reports Server (NTRS)
England, A. W.
1995-01-01
The general objective for this work was to develop a theoretically and experimentally consistent explanation for the diffuse component of radar backscatter from Mars. The strength, variability, and wavelength independence of Mars' diffuse backscatter are unique among our Moon and the terrestrial planets. This diffuse backscatter is generally attributed to wavelength-scale surface roughness and to rock clasts within the Martian regolith. Through the combination of theory and experiment, the authors attempted to bound the range of surface characteristics that could produce the observed diffuse backscatter. Through these bounds they gained a limited capability for data inversion. Within this umbrella, specific objectives were: (1) To better define the statistical roughness parameters of Mars' surface so that they are consistent with observed radar backscatter data, and with the physical and chemical characteristics of Mars' surface as inferred from Mariner 9, the Viking probes, and Earth-based spectroscopy; (2) To better understand the partitioning between surface and volume scattering in the Mars regolith; (3) To develop computational models of Mars' radio emission that incorporate frequency dependent, surface and volume scattering.
Holland, Joseph G; Geiger, Franz M
2012-06-07
The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.
NASA Astrophysics Data System (ADS)
Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse
2014-02-01
A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05295h
NASA Astrophysics Data System (ADS)
Robinson, Rebecca S.; Moore, Theodore C.; Erhardt, Andrea M.; Scher, Howie D.
2015-07-01
Microfossil-bound organic matter represents an important archive of surface ocean environmental information. Sedimentary nitrogen (N) isotope reconstructions of surface nitrate consumption and nitrogen source changes are made using fossil diatom (autotrophs) and planktic foraminiferal (heterotrophs)-bound organic matter with success. However, because diatoms and planktic foraminifera are poorly preserved and sedimentary organic matter content is near zero during the late Eocene, our ability to examine nutrient dynamics across this important climate transition is limited. Here we present new data exploring the use of N isotope records from radiolarian tests. A comparison of surface ocean nitrate and core top bulk and radiolarian N isotope values (as δ15N) from the equatorial Pacific indicates that radiolarian-N records δ15N variability with fidelity but that a significant offset exists between bulk sedimentary and diatom δ15N values and those measured from radiolarians (~7.1 ± 1.1‰). A downcore profile of radiolarian δ15N values is compared to siliceous microfossil assemblage changes across the Eocene-Oligocene boundary. Average of radiolarian-bound δ15N values is 0.5 ± 2.0‰, which, when corrected using the offset derived from the modern surface samples, suggests that the mean nitrogen isotopic composition of the early Cenozoic eastern Pacific was not significantly different from today. The overall trend, of decreasing δ15N values with decreasing export productivity, is consistent with either a regional decline in pelagic denitrification or a large-scale change in nutrient sources to the eastern equatorial Pacific (EEP), both linked to the cooling climate and changing intermediate water circulation. Decreasing/low δ15N values cooccur with high radiolarian species turnover at ~35.5 and 34 Ma, suggestive of a significant ecological change in the EEP, consistent with cooling and water mass distribution changes. The preliminary results suggest that radiolarian-bound organic nitrogen represents another promising archive and underscores the fact that the different microfossil fractions must be separated to ensure robust results.
NASA Astrophysics Data System (ADS)
Syme, A. M.; McQuarrie, S. A.; Middleton, J. W.; Fallone, B. G.
2003-05-01
A simple model has been developed to investigate the dosimetry of micrometastases in the peritoneal cavity during intraperitoneal targeted liposomal radioimmunotherapy. The model is applied to free-floating tumours with radii between 0.005 cm and 0.1 cm. Tumour dose is assumed to come from two sources: free liposomes in solution in the peritoneal cavity and liposomes bound to the surface of the micrometastases. It is assumed that liposomes do not penetrate beyond the surface of the tumours and that the total amount of surface antigen does not change over the course of treatment. Integrated tumour doses are expressed as a function of biological parameters that describe the rates at which liposomes bind to and unbind from the tumour surface, the rate at which liposomes escape from the peritoneal cavity and the tumour surface antigen density. Integrated doses are translated into time-dependent tumour control probabilities (TCPs). The results of the work are illustrated in the context of a therapy in which liposomes labelled with Re-188 are targeted at ovarian cancer cells that express the surface antigen CA-125. The time required to produce a TCP of 95% is used to investigate the importance of the various parameters. The relative contributions of surface-bound radioactivity and unbound radioactivity are used to assess the conditions required for a targeted approach to provide an improvement over a non-targeted approach during intraperitoneal radiation therapy. Using Re-188 as the radionuclide, the model suggests that, for microscopic tumours, the relative importance of the surface-bound radioactivity increases with tumour size. This is evidenced by the requirement for larger antigen densities on smaller tumours to affect an improvement in the time required to produce a TCP of 95%. This is because for the smallest tumours considered, the unbound radioactivity is often capable of exerting a tumouricidal effect before the targeting agent has time to accumulate significantly on the tumour surface.
Organophosphonate biofunctionalization of diamond electrodes.
Caterino, R; Csiki, R; Wiesinger, M; Sachsenhauser, M; Stutzmann, M; Garrido, J A; Cattani-Scholz, A; Speranza, Giorgio; Janssens, S D; Haenen, K
2014-08-27
The modification of the diamond surface with organic molecules is a crucial aspect to be considered for any bioapplication of this material. There is great interest in broadening the range of linker molecules that can be covalently bound to the diamond surface. In the case of protein immobilization, the hydropathicity of the surface has a major influence on the protein conformation and, thus, on the functionality of proteins immobilized at surfaces. For electrochemical applications, particular attention has to be devoted to avoid that the charge transfer between the electrode and the redox center embedded in the protein is hindered by a thick insulating linker layer. This paper reports on the grafting of 6-phosphonohexanoic acid on OH-terminated diamond surfaces, serving as linkers to tether electroactive proteins onto diamond surfaces. X-ray photoelectron spectroscopy (XPS) confirms the formation of a stable layer on the surface. The charge transfer between electroactive molecules and the substrate is studied by electrochemical characterization of the redox activity of aminomethylferrocene and cytochrome c covalently bound to the substrate through this linker. Our work demonstrates that OH-terminated diamond functionalized with 6-phosphonohexanoic acid is a suitable platform to interface redox-proteins, which are fundamental building blocks for many bioelectronics applications.
Quintero, E. J.; Weiner, R. M.
1995-01-01
Hyphomonas strain MHS-3 (MHS-3) is a marine procaryote with a biphasic life cycle and which has prosthecate stages that adhere to submerged substrata. We found that adherent forms produced an exopolysaccharide (EPS) capsule that bound Glycine max lectin, Arachis hypogaea lectin, and Bauhinia purpurea lectin (BPA), each having affinity for N-acetyl-d-galactosamine. It also bound the dye Calcofluor. BPA and Calcofluor were tested for the ability to hinder MHS-3 adhesion to glass surfaces; they reduced attachment by >50 and >85%, respectively. Periodate treatment also reduced attachment (by >80%), but pronase treatment did not. Furthermore, an EPS(sup-) variant, Hyphomonas strain MHS-3 rad, did not attach well to surfaces. These results suggest that the MHS-3 EPS capsule is an adhesin. PMID:16535028
Inflectional instabilities in the wall region of bounded turbulent shear flows
NASA Technical Reports Server (NTRS)
Swearingen, Jerry D.; Blackwelder, Ron F.; Spalart, Philippe R.
1987-01-01
The primary thrust of this research was to identify one or more mechanisms responsible for strong turbulence production events in the wall region of bounded turbulent shear flows. Based upon previous work in a transitional boundary layer, it seemed highly probable that the production events were preceded by an inflectional velocity profile which formed on the interface between the low-speed streak and the surrounding fluid. In bounded transitional flows, this unstable profile developed velocity fluctuations in the streamwise direction and in the direction perpendicular to the sheared surface. The rapid growth of these instabilities leads to a breakdown and production of turbulence. Since bounded turbulent flows have many of the same characteristics, they may also experience a similar type of breakdown and turbulence production mechanism.
Tracking Site-specific C-C Coupling of Formaldehyde Molecules on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Ke; Xia, Yaobiao; Tang, Miru
2015-06-25
Direct imaging of site-specific reactions of individual mole-cules as a function of temperature is a long-sought goal in molecular science. Here, we report the direct visualization of molecular coupling of formaldehyde on reduced rutile TiO2(110) surfaces as we track the same set of molecules when the temperature is increased from 75 to 170 K using scanning tunneling microscope (STM). Our recent study showed that formaldehyde preferably adsorbs on bridging-bonded oxygen (Ob) vacancy (VO) defect site. Herein, images from the same area as the temperature is increased show that VO-bound formaldehyde couples with Ti-bound formaldehyde forming a diolate intermediate. Exposure ofmore » formaldehyde at room temperature leads to diolate as the majority species on the surface and no VO-bound formaldehyde is observed. The diolate species are the key reaction intermediates in the formation of ethylene reported in previous ensemble-averaged studies.« less
Adaptive Fuzzy Bounded Control for Consensus of Multiple Strict-Feedback Nonlinear Systems.
Wang, Wei; Tong, Shaocheng
2018-02-01
This paper studies the adaptive fuzzy bounded control problem for leader-follower multiagent systems, where each follower is modeled by the uncertain nonlinear strict-feedback system. Combining the fuzzy approximation with the dynamic surface control, an adaptive fuzzy control scheme is developed to guarantee the output consensus of all agents under directed communication topologies. Different from the existing results, the bounds of the control inputs are known as a priori, and they can be determined by the feedback control gains. To realize smooth and fast learning, a predictor is introduced to estimate each error surface, and the corresponding predictor error is employed to learn the optimal fuzzy parameter vector. It is proved that the developed adaptive fuzzy control scheme guarantees the uniformly ultimate boundedness of the closed-loop systems, and the tracking error converges to a small neighborhood of the origin. The simulation results and comparisons are provided to show the validity of the control strategy presented in this paper.
NASA Technical Reports Server (NTRS)
Murphy, Patrick Charles
1985-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS
One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...
Mandla A. Tshabalala; John E. Gangstad
2003-01-01
Accelerated weathering of wood surfaces coated with hexadecyltrimethoxysilane (HDTMOS) in the presence of methyltrimethoxysilane (MTMOS) by the sol-gel process was investigated. The sol-gel process allowed the deposition of a covalently bound thin layer of polysiloxane networks on the wood surface that was resistant to water sorption and water leaching. The rate of...
Numerical studies of laminar and turbulent drag reduction, part 2
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Orszag, S. A.
1983-01-01
The flow over wave shaped surfaces is studied using a Navier Stokes solver. Detailed comparisons with theoretical results are presented, including the stability of a laminar flow over wavy surfaces. Drag characteristics of nonplanar surfaces are predicted using the Navier-Stokes solver. The secondary instabilities of wall bounded and free shear flows are also discussed.
Osathanon, Thanaphum; Manokawinchoke, Jeeranan; Nowwarote, Nunthawan; Aguilar, Panuroot; Palaga, Tanapat
2013-01-01
Notch signaling plays critical roles in stem cells by regulating cell fate determination and differentiation. The aim of this study was to evaluate the participation of Notch signaling in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells (hPDLSCs) and to examine the ability to control differentiation of these cells using modified surfaces containing affinity immobilized Notch ligands. Neurogenic induction of hPDLSCs was performed via neurosphere formation. Cells were aggregated and form spheres as early 1 day in culture. In addition, the induced cells exhibited increased mRNA and protein expression of neuronal markers that is, β3-tubulin and neurofilament. During neuronal differentiation, a significant increase of Hes1 and Hey1 mRNA expression was noted. Using pharmacological inhibition (γ-secretase inhibitor) or genetic manipulation (overexpression of dominant negative mastermind-like transcription co-activators), neurosphere formation was attenuated and a marked decrease in neurogenic mRNA expression was observed. To confirm the role of Notch signaling in neuronal differentiation of hPDLSCs, the Notch ligand, Jagged-1, is bound to the surface using an affinity immobilization technique. The hPDLSC cultured on a Jagged-1-modified surface had increased expression of Notch signaling target genes, Hes-1 and Hey-1, confirming the activity and potency of surface-bound Jagged-1. Further, hPDLSC on surface-bound Jagged-1 under serum-free conditions showed multiple long and thin neurite-like extensions, and an increase in the expression of neurogenic mRNA markers was observed. Pretreatment of the cells with γ-secretase inhibitor, DAPT, before seeding on the Jagged-1-modified surface blocked development of the neurite-like morphology. Together, the results in this study suggest the involvement of Notch signaling in neurogenic commitment of hPDLSCs. PMID:23379739
Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.
2010-01-01
Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.R. Jr.
1984-04-01
Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less
Wu, Boran; Zhou, Meng; Dai, Xiaohu; Chai, Xiaoli
2018-06-05
This study visually tracked the micro-spatial water distribution in bio-flocs of waste activated sludge through in situ synchrotron X-ray computed microtomography. Primarily, the two fractions of bound water, the vicinal water adhering to the surface of organic compositions and the interstitial water mechanically trapped in the net-like structure of bio-flocs, were proposed based on the cross-section imaging results. Furthermore, the determinants on bound water occurrences were explored in terms of viscoelastic acoustic responses of extracellular polymeric substances (EPS). The joint roles of hydrophilic substance removal, EPS aggregation compaction and colloidal instability of sludge flocs in bound water reduction were confirmed by the strong correlations (Pearson correlation coefficient, R p > 0.95, p-value<0.04) among protein levels of EPS, EPS viscosity and bound water contents. Accordingly, providing adhering sites for vicinal water and forming bio-flocs with high viscosity for trapping interstitial water were proposed to be the contributions of EPS on bound water occurrences. Copyright © 2018 Elsevier Ltd. All rights reserved.
Local conditions for the generalized covariant entropy bound
NASA Astrophysics Data System (ADS)
Gao, Sijie; Lemos, José P.
2005-04-01
A set of sufficient conditions for the generalized covariant entropy bound given by Strominger and Thompson is as follows: Suppose that the entropy of matter can be described by an entropy current sa. Let ka be any null vector along L and s≡-kasa. Then the generalized bound can be derived from the following conditions: (i) s'≤2πTabkakb, where s'=ka∇as and Tab is the stress-energy tensor; (ii) on the initial 2-surface B, s(0)≤-1/4θ(0), where θ is the expansion of ka. We prove that condition (ii) alone can be used to divide a spacetime into two regions: The generalized entropy bound holds for all light sheets residing in the region where s<-1/4θ and fails for those in the region where s>-1/4θ. We check the validity of these conditions in FRW flat universe and a scalar field spacetime. Some apparent violations of the entropy bounds in the two spacetimes are discussed. These holographic bounds are important in the formulation of the holographic principle.
Decca, María B; Galassi, Vanesa V; Perduca, Massimiliano; Monaco, Hugo L; Montich, Guillermo G
2010-11-25
Avian liver bile acid-binding protein (L-BABP) binds peripherically to anionic lipid membranes. We previously showed that in the absence of added salt the binding to 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) occurs with changes in the secondary structure, the extent of which depends on the phase state of the lipid. In the present work, we used Fourier transform infrared spectroscopy to study the conformations of L-BABP bound to lipids with phosphoglycerol and phosphatidic acid polar head groups and with different transition temperatures in an aqueous medium with high ionic strength (0.1 M NaCl). When L-BABP was bound to the lipids with saturated acyl chains, DMPG, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and 1,2-dilauroyl-sn-glycero-3-phosphate (DLPA), the conformation shifted from a native-like secondary structure to an unfolded state at the temperature of lipid chain melting. The protein was in the native-like conformation when it was bound to the unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in the liquid-crystalline phase. We also measured the electrokinetic surface potential of POPG and DMPG vesicles in the gel and in the liquid-crystalline phase and the protein binding constant to these lipid membranes. We found a correlation indicating that protein unfolding in the interface was due to the increase in the electrostatic surface potential that occurs in the lipid phase transition.
Helium cluster isolation spectroscopy
NASA Astrophysics Data System (ADS)
Higgins, John Paul
Clusters of helium, each containing ~103- 104 atoms, are produced in a molecular beam and are doped with alkali metal atoms (Li, Na, and K) and large organic molecules. Electronic spectroscopy in the visible and UV regions of the spectrum is carried out on the dopant species. Since large helium clusters are liquid and attain an equilibrium internal temperature of 0.4 K, they interact weakly with atoms or molecules absorbed on their surface or resident inside the cluster. The spectra that are obtained are characterized by small frequency shifts from the positions of the gas phase transitions, narrow lines, and cold vibrational temperatures. Alkali atoms aggregate on the helium cluster surface to form dimers and trimers. The spectra of singlet alkali dimers exhibit the presence of elementary excitations in the superfluid helium cluster matrix. It is found that preparation of the alkali molecules on the surface of helium clusters leads to the preferential formation of high-spin, van der Waals bound, triplet dimers and quartet trimers. Four bound-bound and two bound-free transitions are observed in the triplet manifold of the alkali dimers. The quartet trimers serve as an ideal system for the study of a simple unimolecular reaction in the cold helium cluster environment. Analysis of the lowest quartet state provides valuable insight into three-body forces in a van der Waals trimer. The wide range of atomic and molecular systems studied in this thesis constitutes a preliminary step in the development of helium cluster isolation spectroscopy, a hybrid technique combining the advantages of high resolution spectroscopy with the synthetic, low temperature environment of matrices.
Ground-truthing the Foraminifera-bound Nitrogen Isotope Paleo-proxy in the Modern Sargasso Sea
NASA Astrophysics Data System (ADS)
Smart, S.; Ren, H. A.; Fawcett, S. E.; Conte, M. H.; Rafter, P. A.; Ellis, K. K.; Weigand, M. A.; Sigman, D. M.
2016-02-01
We present the nitrogen isotope ratios (δ15N) of planktonic foraminifera, a type of calcifying zooplankton, collected from surface ocean net tows, moored sediment traps and core-top sediments at the Bermuda Atlantic Time-series Study site in the Sargasso Sea between 2009 and 2013. Consistent with previous measurements from low-latitude core-top sediments, the annually averaged δ15N of organic matter bound within the shells of euphotic zone-dwelling foraminifera approximates that of thermocline nitrate, the dominant source of new nitrogen to Sargasso Sea surface waters. Based on net tow collections in the upper 200 m of the water column, we observe no systematic difference between the biomass δ15N and shell-bound δ15N of a given foraminifera species. For multiple species, the δ15N of net tow-collected upper ocean shells is lower than shells from sediment traps (by 0.5-2.1‰) and lower than shells from seafloor sediments (by 0.5-1.4‰). We are currently investigating whether these differences reflect actual processes affecting shell-bound δ15N or instead relate to the different time periods over which the three sample types integrate. The foraminiferal biomass δ15N time-series from the surface Sargasso Sea exhibits significant seasonal variations, with the lowest values in fall and the highest values in spring. The roles of hydrography, biogeochemistry, and ecosystem dynamics in driving these seasonal variations will be discussed. These data from the modern subtropical ocean form part of a greater effort to ground-truth the use of foram-bound δ15N to reconstruct past nutrient conditions, not only as a recorder of the isotopic composition of nitrogen supply in oligotrophic environments but also as a recorder of the degree of nitrate consumption in high-latitude regions such as the Southern Ocean.
Stynes, Gil D; Gengenbach, Thomas R; Kiroff, George K; Morrison, Wayne A; Kirkland, Mark A
2017-07-01
Thiol groups can undergo a large variety of chemical reactions and are used in solution phase to conjugate many bioactive molecules. Previous research on solid substrates with continuous phase glow discharge polymerization of thiol-containing monomers may have been compromised by oxidation. Thiol surface functionalization via glow discharge polymerization has been reported as requiring pulsing. Herein, continuous phase glow discharge polymerization of allyl mercaptan (2-propene-1-thiol) was used to generate significant densities of thiol groups on a mixed macrodiol polyurethane and tantalum. Three general classes of chemistry are used to conjugate proteins to thiol groups, with maleimide linkers being used most commonly. Here the pH specificity of maleimide reactions was used effectively to conjugate surface-bound thiol groups to amine groups in collagen. XPS demonstrated surface-bound thiol groups without evidence of oxidation, along with the subsequent presence of maleimide and collagen. Glow discharge reactor parameters were optimized by testing the resistance of bound collagen to degradation by 8 M urea. The nature of the chemical bonding of collagen to surface thiol groups was effectively assessed by colorimetric assay (ELISA) of residual collagen after incubation in 8 M urea over 8 days and after incubation with keratinocytes over 15 days. The facile creation of useable solid-supported thiol groups via continuous phase glow discharge polymerization of allyl mercaptan opens a route for attaching a vast array of bioactive molecules. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1940-1948, 2017. © 2017 Wiley Periodicals, Inc.
Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications.
Pohanka, Miroslav
2018-03-19
Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.
Probing equilibrium of molecular and deprotonated water on TiO 2 (110)
Wang, Zhi-Tao; Wang, Yang-Gang; Mu, Rentao; ...
2017-02-06
Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociation barrier.more » Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. The techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
The signaling phospholipid PIP 3 creates a new interaction surface on the nuclear receptor SF-1
Blind, Raymond D.; Sablin, Elena P.; Kuchenbecker, Kristopher M.; ...
2014-10-06
We previously reported that lipids PI(4,5)P 2 (PIP 2) and PI(3,4,5)P 3 (PIP 3) bind NR5A nuclear receptors to regulate their activity. Here, the crystal structures of PIP 2 and PIP 3 bound to NR5A1 (SF-1) define a new interaction surface that is organized by the solvent-exposed PIPn headgroups. We find that stabilization by the PIP 3 ligand propagates a signal that increases coactivator recruitment to SF-1, consistent with our earlier work showing that PIP 3 increases SF-1 activity. This newly created surface harbors a cluster of human mutations that lead to endocrine disorders, thus explaining how these puzzling mutationsmore » cripple SF-1 activity. Finally, we propose that this new surface acts as a PIP 3-regulated interface between SF-1 and coregulatory proteins, analogous to the function of membrane-bound phosphoinositides.« less
Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.
Arduini, Maria; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto
2007-07-31
Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
Probing equilibrium of molecular and deprotonated water on TiO 2(110)
Wang, Zhi -Tao; Wang, Yang -Gang; Mu, Rentao; ...
2017-02-06
Understanding water structure and its deprotonation dynamics on oxide surfaces is key to understanding many physical and chemical processes. In this study, we directly measure the energy barriers associated with the protonation equilibrium of water on the prototypical oxide surface, rutile-TiO 2(110) by a combination of a supersonic molecular beam, scanning tunneling microscopy, and ab initio molecular dynamics simulations. We show that long-range electrostatic fields emanating from the oxide lead to steering and reorientation of the molecules approaching the surface, activating the O-H bonds and inducing deprotonation. The incident energy dependent studies allow for a direct determination of the dissociationmore » barrier. Temperature dependent imaging yields the reverse barrier and the equilibrium constant. Molecularly bound water is preferred by 0.035 eV over the surface-bound hydroxyls. In conclusion, the techniques developed in this work are readily extended to other systems where the understanding of bond-activation processes is critical.« less
Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO
NASA Astrophysics Data System (ADS)
Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.
2001-05-01
The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.
Supramolecular Structures with Blood Plasma Proteins, Sugars and Nanosilica
NASA Astrophysics Data System (ADS)
Turov, V. V.; Gun'ko, V. M.; Galagan, N. P.; Rugal, A. A.; Barvinchenko, V. M.; Gorbyk, P. P.
Supramolecular structures with blood plasma proteins (albumin, immunoglobulin and fibrinogen (HPF)), protein/water/silica and protein/water/ silica/sugar (glucose, fructose and saccharose) were studied by NMR, adsorption, IR and UV spectroscopy methods. Hydration parameters, amounts of weakly and strongly bound waters and interfacial energy (γ S) were determined over a wide range of component concentrations. The γ S(C protein,C silica) graphs were used to estimate the energy of protein-protein, protein-surface and particle-particle interactions. It was shown that interfacial energy of self-association (γ as) of protein molecules depends on a type of proteins. A large fraction of water bound to proteins can be displaced by sugars, and the effect of disaccharide (saccharose) was greater than that of monosugars. Changes in the structural parameters of cavities in HPF molecules and complexes with HPF/silica nanoparticles filled by bound water were analysed using NMR-cryoporometry showing that interaction of proteins with silica leads to a significant decrease in the amounts of water bound to both protein and silica surfaces. Bionanocomposites with BSA/nanosilica/sugar can be used to influence states of living cells and tissues after cryopreservation or other treatments. It was shown that interaction of proteins with silica leads to strong decrease in the volume of all types of internal cavities filled by water.
Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.
Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U
2015-01-01
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.
Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films
Emmez, Emre; Anibal Boscoboinik, J.; Tenney, Samuel; ...
2015-06-30
Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated O 2 pressures (10 -5–10 mbar) and temperatures (450–923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. O 2 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. Also, the silicate layer does howevermore » strongly passivate the Ru surface towards RuO 2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. Lastly, the results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings.« less
Harnessing surface-bound enzymatic reactions to organize microcapsules in solution
Shklyaev, Oleg E.; Shum, Henry; Sen, Ayusman; Balazs, Anna C.
2016-01-01
By developing new computational models, we examine how enzymatic reactions on an underlying surface can be harnessed to direct the motion and organization of reagent-laden microcapsules in a fluid-filled microchannel. In the presence of appropriate reagents, surface-bound enzymes can act as pumps, which drive large-scale fluid flows. When the reagents diffuse through the capsules’ porous shells, they can react with enzymatic sites on the bottom surface. The ensuing reaction generates fluid density variations, which result in fluid flows. These flows carry the suspended microcapsules and drive them to aggregate into “colonies” on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and the convection stops. We show that the shape of the assembled colonies can be tailored by patterning the distribution of enzymes on the surface. This fundamental physicochemical mechanism could have played a role in the self-organization of early biological cells (protocells) and can be used to regulate the autonomous motion and targeted delivery of microcarriers in microfluidic devices. PMID:27034990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafrir, S.N.; Lambropoulos, J.C.; Jacobs, S.D.
2007-03-23
Surface features of tungsten carbide composites processed by bound abrasive deterministic microgrinding and magnetorheological finishing (MRF) were studied for five WC-Ni composites, including one binderless material. All the materials studied were nonmagnetic with different microstructures and mechanical properties. White-light interferometry, scanning electron microscopy, and atomic force microscopy were used to characterize the surfaces after various grinding steps, surface etching, and MRF spot-taking.
Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.
2012-01-01
Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220
Bounding Extreme Spacecraft Charging in the Lunar Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Parker, Linda N.
2008-01-01
Robotic and manned spacecraft from the Apollo era demonstrated that the lunar surface in daylight will charge to positive potentials of a few tens of volts because the photoelectron current dominates the charging process. In contrast, potentials of the lunar surface in darkness which were predicted to be on the order of a hundred volts negative in the Apollo era have been shown more recently to reach values of a few hundred volts negative with extremes on the order of a few kilovolts. The recent measurements of night time lunar surface potentials are based on electron beams in the Lunar Prospector Electron Reflectometer data sets interpreted as evidence for secondary electrons generated on the lunar surface accelerated through a plasma sheath from a negatively charged lunar surface. The spacecraft potential was not evaluated in these observations and therefore represents a lower limit to the magnitude of the lunar negative surface potential. This paper will describe a method for obtaining bounds on the magnitude of lunar surface potentials from spacecraft measurements in low lunar orbit based on estimates of the spacecraft potential. We first use Nascap-2k surface charging analyses to evaluate potentials of spacecraft in low lunar orbit and then include the potential drops between the ambient space environment and the spacecraft to the potential drop between the lunar surface and the ambient space environment to estimate the lunar surface potential from the satellite measurements.
The influence of surface integrin binding patterns on specific biomaterial-cell interactions
NASA Astrophysics Data System (ADS)
Beranek, Maggi Marie
As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.
A film-based wall shear stress sensor for wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Amili, Omid; Soria, Julio
2011-07-01
In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.
Xu, Jing; Marsac, Rémi; Costa, Dominique; Cheng, Wei; Wu, Feng; Boily, Jean-François; Hanna, Khalil
2017-08-01
The emergence of antibiotic and anti-inflammatory agents in aquatic and terrestrial systems is becoming a serious threat to human and animal health worldwide. Because pharmaceutical compounds rarely exist individually in nature, interactions between various compounds can have unforeseen effects on their binding to mineral surfaces. This work demonstrates this important possibility for the case of two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary study, which makes use of batch sorption experiments, vibration spectroscopy and periodic density functional theory calculations, reveals enhanced binding of the otherwise weakly bound NFA caused by unforeseen intermolecular interactions with mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer whose energetically favored formation (-0.5 eV compared to free molecules) is predominantly driven by van der Waals interactions. A parallel set of efforts also showed that no cobinding occurred with sulfamethoxazole (SMX) because of the lack of molecular interactions with coexisting contaminants. As such, this article raises the importance of recognizing drug cobinding, and lack of cobinding, for predicting and developing policies on the fate of complex mixtures of antibiotics and anti-inflammatory agents in nature.
USDA-ARS?s Scientific Manuscript database
Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...
Method of producing adherent metal oxide coatings on metallic surfaces
Lane, Michael H.; Varrin, Jr., Robert D.
2001-01-01
Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.
The earthworm gastrointestinal effect on the release of organic bound residues in soils
NASA Astrophysics Data System (ADS)
Du, J. H.
2018-03-01
Earthworm activities promote the release of bound residues and the digestive activities of earthworms contribute to the process. Earthworm digestive effects on bound residues can be divided into physical and chemical effects. Physical effects include gastrointestinal abrasion and mixing. The abrasion of soil and litter residues in earthworm gizzards and intestine can grind the food into fine particles, which increase the contact surface with microbial and promote the desorption of bound residues. Chemical effects are attributed to the secreted surfactant substances and digestive enzymes. The surfactants, especially at levels that lead to micellization, can enhance the desorption process of the organic contaminants that sored in the soil. The enzymes in earthworm digestive tracts can decompose the humus in soil, which may promote the release of organic residues that bind with humus.
Gould, J; Northcote, D H
1986-01-01
The adsorption of radioactive mucilage by pathogenic fungi was shown to be dependent upon time, the composition of mucilage, the type of fungal surface (conidia, hyphae, hyphal apices), fungal species, pH and bivalent cations. All fungal adhesins were inactivated by either proteinase or polysaccharase treatments. Adsorption was not inhibited by the numberous mono-, di- and oligo-saccharides that were tested individually, but it was inhibited absolutely by several polysaccharides. This suggested that adsorption of mucilage by pathogens involved conformational and ionic interactions between plant and fungal polymers but not fungal lectins bound to sugar residues of mucilage. Several fractionation schemes showed that pathogens bound only the most acidic of the variety of polymers that comprise mucilage. There was not any absolute distinction between ability to bind radioactive mucilage and type of pathogen or non-pathogen. However, there were notable differences in characteristics of adsorption between two types of pathogen. Differences were revealed by comparison of the adsorption capacities of conidia and germinant conidia and chromatography of radioactive mucilage on germinant conidia. An ectotrophic root-infecting fungus (a highly specialized pathogen) bound a greater proportion of mucilage than did a vascular-wilt fungus (of catholic host and tissue range) with more than one class of site for adsorption. In contrast with the vascular-wilt fungus, sites for adsorption on the specialized pathogen were present solely on surfaces formed by germination. PMID:3954742
Gode, David; Volmer, Dietrich A
2013-05-15
Magnetic beads are often used for serum profiling of peptide and protein biomarkers. In these assays, the bead-bound analytes are eluted from the beads prior to mass spectrometric analysis. This study describes a novel matrix-assisted laser desorption/ionization (MALDI) technique for direct application and focusing of magnetic beads to MALDI plates by means of dedicated micro-magnets as sample spots. Custom-made MALDI plates with magnetic focusing spots were made using small nickel-coated neodymium micro-magnets integrated into a stainless steel plate in a 16 × 24 (384) pattern. For demonstrating the proof-of-concept, commercial C-18 magnetic beads were used for the extraction of a test compound (reserpine) from aqueous solution. Experiments were conducted to study focusing abilities, the required laser energies, the influence of a matrix compound, dispensing techniques, solvent choice and the amount of magnetic beads. Dispensing the magnetic beads onto the micro-magnet sample spots resulted in immediate and strong binding to the magnetic surface. Light microscope images illustrated the homogeneous distribution of beads across the surfaces of the magnets, when the entire sample volume containing the beads was pipetted onto the surface. Subsequent MALDI analysis of the bead-bound analyte demonstrated excellent and reproducible ionization yields. The surface-assisted laser desorption/ionization (SALDI) properties of the strongly light-absorbing γ-Fe2O3-based beads resulted in similar ionization efficiencies to those obtained from experiments with an additional MALDI matrix compound. This feasibility study successfully demonstrated the magnetic focusing abilities for magnetic bead-bound analytes on a novel MALDI plate containing small micro-magnets as sample spots. One of the key advantages of this integrated approach is that no elution steps from magnetic beads were required during analyses compared with conventional bead experiments. Copyright © 2013 John Wiley & Sons, Ltd.
Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio
2007-04-01
This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response time of no more than ca. 10 min. Figure A single-step multi-sandwich immunoassay step increases SPR sensor signal by ca. 12 times affording a low detection limit for benzaldehyde of 5 ppt.
Investigation of the antibiofilm capacity of peptide-modified stainless steel
Cao, Pan; Li, Wen-Wu; Morris, Andrew R.; Horrocks, Paul D.; Yuan, Cheng-Qing
2018-01-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research. PMID:29657809
Investigation of the antibiofilm capacity of peptide-modified stainless steel.
Cao, Pan; Li, Wen-Wu; Morris, Andrew R; Horrocks, Paul D; Yuan, Cheng-Qing; Yang, Ying
2018-03-01
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml -1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.
Center for Quantum Algorithms and Complexity
2014-05-12
precisely, it asserts that for any subset L of particles, the entanglement entropy between L and L̄ is bounded by the surface area of L (the area is...ground states of gapped local Hamiltonians. Roughly, it says that the entanglement in such states is very local, and the entanglement entropy scales...the theorem states that the entanglement entropy is bounded by exp(X), where X = log(d/?). Hastingss result implies that ground states of gapped 1D
Microwave Dielectric Constant Dependence on Soil Tension.
1983-10-01
water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil
NASA Astrophysics Data System (ADS)
Wu, Tao
We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the substrate after completion of polymerization, we show the grafting density of the polymers grafted to flexible substrates can be tuned as a function of Deltax.
9. Photocopy of photograph (original photograph in the collection of ...
9. Photocopy of photograph (original photograph in the collection of Naval Surface Warfare Center Carderock Division, Bethesda, MD) VIEW SOUTH, SUPERSONIC WIND TUNNEL TEST SECTION, ca 1950 - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
10. Photocopy of photograph (original photograph in the collection of ...
10. Photocopy of photograph (original photograph in the collection of Naval Surface Warfare Center Carderock Division, Bethesda, MD) VIEW SOUTHWEST, SUBSONIC WIND TUNNEL BUILDING, 1943 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
11. Photocopy of photograph (original photograph In the collection of ...
11. Photocopy of photograph (original photograph In the collection of Naval Surface Warfare Center Carderock Division, Bethesda, MD) VIEW NORTHEAST, INTERIOR, SUBSONIC WIND TUNNEL FAN ASSEMBLY, 1943 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Estimating the Volumes of Solid Figures with Curved Surfaces.
ERIC Educational Resources Information Center
Cohen, Donald
1991-01-01
Several examples of solid figures that calculus students can use to exercise their skills at estimating volume are presented. Although these figures are bounded by surfaces that are portions of regular cylinders, it is interesting to note that their volumes can be expressed as rational numbers. (JJK)
Surface binding properties of aged and fresh (recently excreted) Toxoplasma gondii oocysts
USDA-ARS?s Scientific Manuscript database
The surface properties of aged (stored for 10 years) and fresh (recently excreted) oocysts of Toxoplasma gondii were investigated using monoclonal antibody (mAb) and lectin-binding assays. Fresh oocysts bound a wall-specific mAb labeled with fluorescein isothiocyanate while aged oocysts did not. In ...
NASA Astrophysics Data System (ADS)
Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.
2012-12-01
Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.
Marginally trapped surfaces and AdS/CFT
NASA Astrophysics Data System (ADS)
Grado-White, Brianna; Marolf, Donald
2018-02-01
It has been proposed that the areas of marginally trapped or anti-trapped surfaces (also known as leaves of holographic screens) may encode some notion of entropy. To connect this to AdS/CFT, we study the case of marginally trapped surfaces anchored to an AdS boundary. We establish that such boundary-anchored leaves lie between the causal and extremal surfaces defined by the anchor and that they have area bounded below by that of the minimal extremal surface. This suggests that the area of any leaf represents a coarse-grained von Neumann entropy for the associated region of the dual CFT. We further demonstrate that the leading area-divergence of a boundary-anchored marginally trapped surface agrees with that for the associated extremal surface, though subleading divergences generally differ. Finally, we generalize an argument of Bousso and Engelhardt to show that holographic screens with all leaves anchored to the same boundary set have leaf-areas that increase monotonically along the screen, and we describe a construction through which this monotonicity can take the more standard form of requiring entropy to increase with boundary time. This construction is related to what one might call future causal holographic information, which in such cases also provides an upper bound on the area of the associated leaves.
Penrose-like inequality with angular momentum for minimal surfaces
NASA Astrophysics Data System (ADS)
Anglada, Pablo
2018-02-01
In axially symmetric spacetimes the Penrose inequality can be strengthened to include angular momentum. We prove a version of this inequality for minimal surfaces, more precisely, a lower bound for the ADM mass in terms of the area of a minimal surface, the angular momentum and a particular measure of the surface size. We consider axially symmetric and asymptotically flat initial data, and use the monotonicity of the Geroch quasi-local energy on 2-surfaces along the inverse mean curvature flow.
NASA Astrophysics Data System (ADS)
Buhler, Peter Benjamin; Ingersoll, Andrew P.
2017-10-01
Sputnik Planitia, Pluto contains cellular landforms with areas on the order of a few 102-103 km2 that are likely the surface manifestation of convective overturn in a vast basin of nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map over 12,000 pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 and 5.9 ± 0.8 × 10-3 m per meter away from the cell center, depending on the cell. Due to finite data resolution, this is a lower bound on the size increase. Conservatively accounting for resolution effects yields upper bounds on the size vs. distance distribution of 4.2 ± 0.2 to 23.4 ± 1.5 × 10-3 m m-1. In order to convert the pit size vs. distance distribution into a pit age vs. distance distribution, we use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6 [+2.1,-0.6] × 10-4 m yr-1. Combined with the mapped distribution of pit radii, this yields surface velocities between 1.5 [+1.0,-0.2] and 6.2 [+3.4,-1.4] cm yr-1 for the slowest cell and surface velocities between 8.1 [+5.5,-1.0] and 17.9 [+8.9,-5.1] cm yr-1 for the fastest cell; the lower bound estimate for each cell accounts for resolution effects, while the upper bound estimate does not. These convection rates imply that the surface ages at the edge of cells reach approximately 4.2 to 8.9 × 105 yr, depending on the cell. The rates we find are comparable to rates of ~6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia [McKinnon, W.B. et al., 2016, Nature, 534(7605), 82-85]. Finally, we find that the minimum viscosity at the surface of the convection cells is of order 1016 to 1017 Pa s; we find that pits would relax away before sublimating to their observed radii of several hundred meters if the viscosity were lower than this value.
Long-term TNT sorption and bound residue formation in soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hundal, L.S.; Shea, P.J.; Comfort, S.D.
1997-05-01
Soils surrounding former munitions production facilities are highly contaminated with 2,4,6-trinitrotoluene (TNT). Long-term availability and fate of TNT and its transformation products must be understood to predict environmental impact and develop appropriate remediation strategies. Sorption and transport in surface soil containing solid-phase TNT are particularly critical, since nonlinear sorption isotherms indicate greater TNT availability for transport at high concentrations. Our objectives were to determine long-term sorption and bound residue formation in surface and subsurface Sharpsburg soil (Typic Argiudoll). Prolonged equilibration of {sup 14}C-TNT with the soil revealed a gradual increase in amount sorbed and formation of unextractable (bound) {sup 14}Cmore » residues. The presence of solid-phase TNT did not initially affect the amount of {sup 14}C sorbed during a 168-d equilibration. After 168d, 93% of the added {sup 14}C was sorbed by uncontaminated soil, while 79% was sorbed by soil containing solid-phase TNT. In the absence of solid phase, pools of readily available (extractable with 3 mM CaCl{sub 2}) and potentially available (CH{sub 3}CN-extractable) sorbed TNT decreased rapidly with time and coincided with increased {sup 14}C in soil organic matter. More {sup 14}C was found in fulvic acid than in the humic acid fraction when no solid-phase TNT was present. After sequential extractions, including strong alkali and acid, 32 to 40% of the sorbed {sup 14}C was irreversibly bound (unextractable) in Sharpsburg surface and subsurface soil. Results provide strong evidence for humification of TNT in soil. This process may represent a significant route for detoxification in the soil-water environment. 58 refs., 6 figs., 3 tabs.« less
Polevoda, Bogdan; McDougall, William M.; Tun, Bradley N.; Cheung, Michael; Salter, Jason D.; Friedman, Alan E.; Smith, Harold C.
2015-01-01
APOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA. In this report, near equilibrium binding and gel shift analyses showed that A3G assembly and disassembly on ssDNA was an ordered process involving A3G dimers and multimers thereof. Although, fluorescence anisotropy showed that A3G had similar nanomolar affinity for RNA and ssDNA, RNA stochastically dissociated A3G dimers and higher-order oligomers from ssDNA, suggesting a different modality for RNA binding. Mass spectrometry mapping of A3G peptides cross-linked to nucleic acid suggested ssDNA only bound to three peptides, amino acids (aa) 181–194 in the N-terminus and aa 314–320 and 345–374 in the C-terminus that were part of a continuous exposed surface. RNA bound to these peptides and uniquely associated with three additional peptides in the N- terminus, aa 15–29, 41–52 and 83–99, that formed a continuous surface area adjacent to the ssDNA binding surface. The data predict a mechanistic model of RNA inhibition of ssDNA binding to A3G in which competitive and allosteric interactions determine RNA-bound versus ssDNA-bound conformational states. PMID:26424853
Automatic Generation of CFD-Ready Surface Triangulations from CAD Geometry
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Delanaye, M.; Haimes, R.; Nixon, David (Technical Monitor)
1998-01-01
This paper presents an approach for the generation of closed manifold surface triangulations from CAD geometry. CAD parts and assemblies are used in their native format, without translation, and a part's native geometry engine is accessed through a modeler-independent application programming interface (API). In seeking a robust and fully automated procedure, the algorithm is based on a new physical space manifold triangulation technique which was developed to avoid robustness issues associated with poorly conditioned mappings. In addition, this approach avoids the usual ambiguities associated with floating-point predicate evaluation on constructed coordinate geometry in a mapped space, The technique is incremental, so that each new site improves the triangulation by some well defined quality measure. Sites are inserted using a variety of priority queues to ensure that new insertions will address the worst triangles first, As a result of this strategy, the algorithm will return its 'best' mesh for a given (prespecified) number of sites. Alternatively, the algorithm may be allowed to terminate naturally after achieving a prespecified measure of mesh quality. The resulting triangulations are 'CFD-ready' in that: (1) Edges match the underlying part model to within a specified tolerance. (2) Triangles on disjoint surfaces in close proximity have matching length-scales. (3) The algorithm produces a triangulation such that no angle is less than a given angle bound, alpha, or greater than Pi - 2alpha This result also sets bounds on the maximum vertex degree, triangle aspect-ratio and maximum stretching rate for the triangulation. In addition to tile output triangulations for a variety of CAD parts, tile discussion presents related theoretical results which assert the existence of such all angle bound, and demonstrate that maximum bounds of between 25 deg and 30 deg may be achieved in practice.
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
NASA Technical Reports Server (NTRS)
Dantchev, Daniel; Rudnick, Joseph; Barmatz, M.
2007-01-01
We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of 3He and 4He films in the vicinity of their respective liquid-vapor critical points.
Hirschfeld, Tomas B.; Wang, Francis T.
1989-01-01
An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage betwen the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radzihovsky, Leo
Motivated by a realization of imbalanced Feshbach-resonant atomic Fermi gases, we formulate a low-energy theory of the Fulde-Ferrell and the Larkin-Ovchinnikov (LO) states and use it to analyze fluctuations, stability, and phase transitions in these enigmatic finite momentum-paired superfluids. Focusing on the unidirectional LO pair-density-wave state, which spontaneously breaks the continuous rotational and translational symmetries, we show that it is characterized by two Goldstone modes, corresponding to a superfluid phase and a smectic phonon. Because of the liquid-crystalline ''softness'' of the latter, at finite temperature the three-dimensional state is characterized by a vanishing LO order parameter, quasi-Bragg peaks in themore » structure and momentum distribution functions, and a ''charge''-4, paired-Cooper-pairs, off-diagonal long-range order, with a superfluid-stiffness anisotropy that diverges near a transition into a nonsuperfluid state. In addition to conventional integer vortices and dislocations, the LO superfluid smectic exhibits composite half-integer vortex-dislocation defects. A proliferation of defects leads to a rich variety of descendant states, such as the charge-4 superfluid and Fermi-liquid nematics and topologically ordered nonsuperfluid states, that generically intervene between the LO state and the conventional superfluid and the polarized Fermi liquid at low and high imbalance, respectively. The fermionic sector of the LO gapless superconductor is also quite unique, exhibiting a Fermi surface of Bogoliubov quasiparticles associated with the Andreev band of states, localized on the array of the LO domain walls.« less
High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu
CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, A.; Keith, B.D.; Thompson, T.A.
Mapping of sedimentary surfaces in the Middle Mississippian Salem Limestone exposed on sawed quarry walls in south-central Indiana has revealed a hierarchy of depositional units representative of the extremely dynamic hydrographic regime of the upper shoreface zone. The depositional units on the scale of microform and mesoform are represented by the microfacies and the facies respectively. Based on their hierarchy, genetically related depositional units and associated bounding surfaces were grouped together to construct four architectural packages (APs) of the scale of mesoforms. AP-I is dominantly an echinoderm- and bryozoan-rich grainstone and consists of bedforms ranging from small ripples bounded bymore » first-order surfaces to two- and three- dimensional megaripples bounded by the second-order surfaces. It formed as part of a giant ramp (asymmetric wavefield) within the intrashoal channel setting. AP-II, also a skeletal grainstone, is a complex of giant sandwaves that moved into the area under the infulence of a storm and partly filled the basal channel form of AP-I. Large avalanche foresets with tangential toesets prevail. AP-III is a dark-gray spatially discontinuous skeletal grainstone to packstone that laterally grades into a skeletal packstone to wackestone. It locally developed overhangs, rips-ups, and hardground on its upper surface. AP-IV is a skeletal and oolitic grainstone formed of tabular two-dimensional megaripples (planar cross-beds) and three-dimensional oscillatory megaripples (trough cross-beds). These architectural packages based on the bedform architecture and micro-and mesoscale compositional changes can be used to characterize micro-, meso, and macroscale heterogeneities. Models of facies architecture from this and similar outcrop studies can be applied to the subsurface Salem reservoirs in the Illinois Basin using cores.« less
Chandran, Parwathy; Riviere, Jim E; Monteiro-Riviere, Nancy A
2017-05-01
This study investigated the role of nanoparticle size and surface chemistry on biocorona composition and its effect on uptake, toxicity and cellular responses in human umbilical vein endothelial cells (HUVEC), employing 40 and 80 nm gold nanoparticles (AuNP) with branched polyethyleneimine (BPEI), lipoic acid (LA) and polyethylene glycol (PEG) coatings. Proteomic analysis identified 59 hard corona proteins among the various AuNP, revealing largely surface chemistry-dependent signature adsorbomes exhibiting human serum albumin (HSA) abundance. Size distribution analysis revealed the relative instability and aggregation inducing potential of bare and corona-bound BPEI-AuNP, over LA- and PEG-AuNP. Circular dichroism analysis showed surface chemistry-dependent conformational changes of proteins binding to AuNP. Time-dependent uptake of bare, plasma corona (PC) and HSA corona-bound AuNP (HSA-AuNP) showed significant reduction in uptake with PC formation. Cell viability studies demonstrated dose-dependent toxicity of BPEI-AuNP. Transcriptional profiling studies revealed 126 genes, from 13 biological pathways, to be differentially regulated by 40 nm bare and PC-bound BPEI-AuNP (PC-BPEI-AuNP). Furthermore, PC formation relieved the toxicity of cationic BPEI-AuNP by modulating expression of genes involved in DNA damage and repair, heat shock response, mitochondrial energy metabolism, oxidative stress and antioxidant response, and ER stress and unfolded protein response cascades, which were aberrantly expressed in bare BPEI-AuNP-treated cells. NP surface chemistry is shown to play the dominant role over size in determining the biocorona composition, which in turn modulates cell uptake, and biological responses, consequently defining the potential safety and efficacy of nanoformulations.
Bozeman, Trevor C; Nanjunda, Rupesh; Tang, Chenhong; Liu, Yang; Segerman, Zachary J; Zaleski, Paul A; Wilson, W David; Hecht, Sidney M
2012-10-31
Recent studies involving DNAs bound strongly by bleomycins have documented that such DNAs are degraded by the antitumor antibiotic with characteristics different from those observed when studying the cleavage of randomly chosen DNAs in the presence of excess Fe·BLM. In the present study, surface plasmon resonance has been used to characterize the dynamics of BLM B(2) binding to a strongly bound hairpin DNA, to define the effects of Fe(3+), salt, and temperature on BLM-DNA interaction. One strong primary DNA binding site, and at least one much weaker site, were documented. In contrast, more than one strong cleavage site was found, an observation also made for two other hairpin DNAs. Evidence is presented for BLM equilibration between the stronger and weaker binding sites in a way that renders BLM unavailable to other, less strongly bound DNAs. Thus, enhanced binding to a given site does not necessarily result in increased DNA degradation at that site; i.e., for strongly bound DNAs, the facility of DNA cleavage must involve other parameters in addition to the intrinsic rate of C-4' H atom abstraction from DNA sugars.
Optical transitions in two-dimensional topological insulators with point defects
NASA Astrophysics Data System (ADS)
Sablikov, Vladimir A.; Sukhanov, Aleksei A.
2016-12-01
Nontrivial properties of electronic states in topological insulators are inherent not only to the surface and boundary states, but to bound states localized at structure defects as well. We clarify how the unusual properties of the defect-induced bound states are manifested in optical absorption spectra in two-dimensional topological insulators. The calculations are carried out for defects with short-range potential. We find that the defects give rise to the appearance of specific features in the absorption spectrum, which are an inherent property of topological insulators. They have the form of two or three absorption peaks that are due to intracenter transitions between electron-like and hole-like bound states.
Quantum mechanics on the h-deformed quantum plane
NASA Astrophysics Data System (ADS)
Cho, Sunggoo
1999-03-01
We find the covariant deformed Heisenberg algebra and the Laplace-Beltrami operator on the extended h-deformed quantum plane and solve the Schrödinger equations explicitly for some physical systems on the quantum plane. In the commutative limit the behaviour of a quantum particle on the quantum plane becomes that of the quantum particle on the Poincaré half-plane, a surface of constant negative Gaussian curvature. We show that the bound state energy spectra for particles under specific potentials depend explicitly on the deformation parameter h. Moreover, it is shown that bound states can survive on the quantum plane in a limiting case where bound states on the Poincaré half-plane disappear.
NASA Astrophysics Data System (ADS)
Sukharev, Maxim; Charron, Eric
2017-03-01
We extend the model of exciton-plasmon materials to include a rovibrational structure of molecules using wave-packet propagations on electronic potential energy surfaces. Our model replaces conventional two-level emitters with more complex molecules, allowing us to examine the influence of alignment and vibrational dynamics on strong coupling with surface plasmon-polaritons. We apply the model to a hybrid system comprising a thin layer of molecules placed on top of a periodic array of slits. Rigorous simulations are performed for two types of molecular systems described by vibrational bound-bound and bound-continuum electronic transitions. Calculations reveal new features in transmission, reflection, and absorption spectra, including the observation of significantly higher values of the Rabi splitting and vibrational patterns clearly seen in the corresponding spectra. We also examine the influence of anisotropic initial conditions on optical properties of hybrid materials, demonstrating that the optical response of the system is significantly affected by an initial prealignment of the molecules. Our work demonstrates that prealigned molecules could serve as an efficient probe for the subdiffraction characterization of the near-field near metal interfaces.
NASA Astrophysics Data System (ADS)
Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin
2016-08-01
This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.
Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko
2009-01-01
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449
Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko
2008-12-01
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.
Pressure atomizer having multiple orifices and turbulent generation feature
VanBrocklin, Paul G.; Geiger, Gail E.; Moran, Donald James; Fournier, Stephane
2002-01-01
A pressure atomizer includes a silicon plate having a top surface and a bottom surface. A portion of the top surface defines a turbulent chamber. The turbulent chamber is peripherally bounded by the top surface of the plate. The turbulent chamber is recessed a predetermined depth relative to the top surface. The silicon plate further defines at least one flow orifice. Each flow orifice extends from the bottom surface of the silicon plate to intersect with and open into the turbulent chamber. Each flow orifice is in fluid communication with the turbulent chamber.
Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori
Suzuki, Rintaro; Fujimoto, Zui; Shiotsuki, Takahiro; Tsuchiya, Wataru; Momma, Mitsuru; Tase, Akira; Miyazawa, Mitsuhiro; Yamazaki, Toshimasa
2011-01-01
Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling. PMID:22355650
Detection of Second Order Melting Transitions in the HTSC's by Specific Heat Measurements?
NASA Astrophysics Data System (ADS)
Pierson, Stephen W.; Valls, Oriol T.
1997-03-01
The finite magnetic field phase transition in the high-temperature superconductors from the solid vortex lattice to the liquid has been under intense study recently. Detection of this melting is difficult but has been seen in magnetization and resistivity measurements. It has also been reported recently in specific heat measurements. In particular, in one case, evidence for a second order melting phase transition has been presented based on specific heat measurements.(M. Roulin, A. Junod, and E. Walker. Science 273), 1210 (1996). However, we present evidence that the feature in the specific heat data can be explained using a theory derived using the lowest-Landau-level approximation(Z. Tes)anović and A. V. Andreev, Phys. Rev. B 49, 4064 (1994) that does not invoke flux lattice melting arguments.
NASA Astrophysics Data System (ADS)
Fleckenstein, C.; Ziani, N. Traverso; Trauzettel, B.
2018-04-01
Topological superconductors give rise to unconventional superconductivity, which is mainly characterized by the symmetry of the superconducting pairing amplitude. However, since the symmetry of the superconducting pairing amplitude is not directly observable, its experimental identification is rather difficult. In our work, we propose a system, composed of a quantum point contact and proximity-induced s -wave superconductivity at the helical edge of a two-dimensional topological insulator, for which we demonstrate the presence of odd-frequency pairing and its intimate connection to unambiguous transport signatures. Notably, our proposal requires no time-reversal symmetry breaking terms. We discover the domination of crossed Andreev reflection over electron cotunneling in a wide range of parameter space, which is a quite unusual transport regime.
NASA Astrophysics Data System (ADS)
Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang
2017-08-01
We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.
NASA Astrophysics Data System (ADS)
Gloos, Kurt; Huupponen, Jouko
2010-01-01
We have investigated spear-anvil type point-contacts between ferromagnetic nickel as well as the heavy-fermion antiferromagnet CeAl2 and various simple metals (Cu, Ta, Nb). Contacts with small resistance usually showed electron-phonon scattering, Andreev reflection in case of superconducting counter-electrodes, as well as anomalies due to magnetic ordering. With increasing contact resistance (decreasing contact size) a zero-bias anomaly appeared in both Ni and CeAl2 contacts. It is conventionally attributed to resonant scattering at two-level systems or at magnetic impurities (Kondo effect). At contacts of ~ 1 nm diameter it suppressed completely all other spectral features. We discuss whether those mechanisms are relevant here and what alternatives there might be.
NASA Technical Reports Server (NTRS)
Murphy, P. C.
1986-01-01
An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. With the fitted surface, sensitivity information can be updated at each iteration with less computational effort than that required by either a finite-difference method or integration of the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, and thus provides flexibility to use model equations in any convenient format. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. The degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels and to predict the degree of agreement between CR bounds and search estimates.
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less
Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy
NASA Astrophysics Data System (ADS)
Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.
2017-10-01
We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.
Hori, Koichiro; Yamada, Norifumi L; Fujii, Yoshihisa; Masui, Tomomi; Kishimoto, Hiroyuki; Seto, Hideki
2017-09-12
The structure and mechanical properties of polybutadiene (PB) films on bare and surface-modified carbon films were examined. There was an interfacial layer of PB near the carbon layer whose density was higher (lower) than that of the bulk material on the hydrophobic (hydrophilic) carbon surface. To glean information about the structure and mechanical properties of PB at the carbon interface, a residual layer (RL) adhering to the carbon surface, which was considered to be a model of "bound rubber layer", was obtained by rinsing the PB film with toluene. The density and thickness of the RLs were identical to those of the interfacial layer of the PB film. In accordance with the change in the density, normal stress of the RLs evaluated by atomic force microscopy was also dependent on the surface free energy: the RLs on the hydrophobic carbon were hard like glass, whereas those on the hydrophilic carbon were soft like rubber. Similarly, the wear test revealed that the RLs on the hydrophilic carbon could be peeled off by scratching under a certain stress, whereas the RLs on the hydrophobic carbons were resistant to scratching.
Reversible on-surface wiring of resistive circuits.
Inkpen, Michael S; Leroux, Yann R; Hapiot, Philippe; Campos, Luis M; Venkataraman, Latha
2017-06-01
Whilst most studies in single-molecule electronics involve components first synthesized ex situ , there is also great potential in exploiting chemical transformations to prepare devices in situ . Here, as a first step towards this goal, we conduct reversible reactions on monolayers to make and break covalent bonds between alkanes of different lengths, then measure the conductance of these molecules connected between electrodes using the scanning tunneling microscopy-based break junction (STM-BJ) method. In doing so, we develop the critical methodology required for assembling and disassembling surface-bound single-molecule circuits. We identify effective reaction conditions for surface-bound reagents, and importantly demonstrate that the electronic characteristics of wires created in situ agree with those created ex situ . Finally, we show that the STM-BJ technique is unique in its ability to definitively probe surface reaction yields both on a local (∼50 nm 2 ) and pseudo-global (≥10 mm 2 ) level. This investigation thus highlights a route to the construction and integration of more complex, and ultimately functional, surface-based single-molecule circuitry, as well as advancing a methodology that facilitates studies beyond the reach of traditional ex situ synthetic approaches.
Wood, Mary H; Browning, Kathryn L; Barker, Robert D; Clarke, Stuart M
2016-06-23
Neutron reflectometry has been successfully used to study adsorption on a stainless steel surface by means of depositing a thin steel film on silicon. The film was characterized using XPS (X-ray photoelectron spectroscopy), TOF-SIMS (time-of-flight secondary ion mass spectrometry), and GIXRD (grazing incidence X-ray diffraction), demonstrating the retention both of the austenitic phase and of the required composition for 316L stainless steel. The adsorption of fibrinogen from a physiologically-relevant solution onto the steel surface was studied using neutron reflectometry and QCM (quartz crystal microbalance) and compared to that on a deposited chromium oxide surface. It was found that the protein forms an irreversibly bound layer at low concentrations, with maximum protein concentration a distance of around 20 Å from the surface. Evidence for a further diffuse reversibly-bound layer forming at higher concentrations was also observed. Both the structure of the layer revealed by the neutron reflectometry data and the high water retention predicted by the QCM data suggest that there is a significant extent of protein unfolding upon adsorption. A lower extent of adsorption was seen on the chromium surfaces, although the adsorbed layer structures were similar, suggesting comparable adsorption mechanisms.
Fabre, Bruno; Pujari, Sidharam P; Scheres, Luc; Zuilhof, Han
2014-06-24
The effect of the size of patterns of micropatterned ferrocene (Fc)-functionalized, oxide-free n-type Si(111) surfaces was systematically investigated by electrochemical methods. Microcontact printing with amine-functionalized Fc derivatives was performed on a homogeneous acid fluoride-terminated alkenyl monolayer covalently bound to n-type H-terminated Si surfaces to give Fc patterns of different sizes (5 × 5, 10 × 10, and 20 × 20 μm(2)), followed by backfilling with n-butylamine. These Fc-micropatterned surfaces were characterized by static water contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). The charge-transfer process between the Fc-micropatterned and underlying Si interface was subsequently studied by cyclic voltammetry and capacitance. By electrochemical studies, it is evident that the smallest electroactive ferrocenyl patterns (i.e., 5 × 5 μm(2) squares) show ideal surface electrochemistry, which is characterized by narrow, perfectly symmetric, and intense cyclic voltammetry and capacitance peaks. In this respect, strategies are briefly discussed to further improve the development of photoswitchable charge storage microcells using the produced redox-active monolayers.
Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H
2014-07-11
The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.
Gao, X.; Metge, D.W.; Ray, C.; Harvey, R.W.; Chorover, J.
2009-01-01
The interaction of viable Cryptosporidium parvum öocysts at the hematite (α-Fe2O3)−water interface was examined over a wide range in solution chemistry using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Spectra for hematite-sorbed öocysts showed distinct changes in carboxylate group vibrations relative to spectra obtained in the absence of hematite, indicative of direct chemical bonding between carboxylate groups and Fe metal centers of the hematite surface. The data also indicate that complexation modes vary with solution chemistry. In NaCl solution, öocysts are bound to hematite via monodentate and binuclear bidentate complexes. The former predominates at low pH, whereas the latter becomes increasingly prevalent with increasing pH. In a CaCl2 solution, only binuclear bidentate complexes are observed. When solution pH is above the point of zero net proton charge (PZNPC) of hematite, öocyst surface carboxylate groups are bound to the mineral surface via outer-sphere complexes in both electrolyte solutions.
Vasenko, A S; Golubov, A A; Silkin, V M; Chulkov, E V
2017-07-26
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulator (TI) surface. In this case three ingredients ensure the possibility of the odd-frequency pairing: (1) the topological surface states, (2) the induced pair potential, and (3) the magnetic moment of a nearby ferromagnetic insulator. We take into account the strong anisotropy of the Dirac point in topological insulators when the chemical potential lies well above the Dirac cone and its constant energy contour has a snowflake shape. Within this model, we propose that the S/FI boundary should be properly aligned with respect to the snowflake constant energy contour to have an odd-frequency symmetry of the corresponding pairing component and to insure the Majorana bound state at the S/FI boundary. For arbitrary orientation of the boundary, the Majorana bound state is absent. This provides a selection rule to the realization of Majorana modes in S/FI hybrid structures, formed on the topological insulator surface.
Guo, Kun; Chen, Xin; Freguia, Stefano; Donose, Bogdan C
2013-09-15
This study introduces a novel and simple method to covalently graft neutral red (NR) onto carbon surfaces based on spontaneous reduction of in situ generated NR diazonium salts. Immobilization of neutral red on carbon surface was achieved by immersing carbon electrodes in NR-NaNO2-HCl solution. The functionalized electrodes were characterized by cyclic voltammetry (CV), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Results demonstrated that NR attached in this way retains high electrochemical activity and proved that NR was covalently bound to the carbon surface via the pathway of reduction of aryl diazonium salts. The NR-modified electrodes showed a good stability when stored in PBS solution in the dark. The current output of an acetate-oxidising microbial bioanode made of NR-modified graphite felts were 3.63±0.36 times higher than the unmodified electrodes, which indicates that covalently bound NR can act as electron transfer mediator to facilitate electron transfer from bacteria to electrodes. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhou, Manshui; Wu, Chunping; Akhmetov, Artem; Edirisinghe, Praneeth D.; Drummond, James L.; Hanley, Luke
2007-01-01
Bisphenol A diglycidyl methacrylate (Bis-GMA) was adsorbed onto or covalently bound to a porous silicon oxide surface. Laser desorption 10.5 eV postionization mass spectrometry (LDPI-MS) was previously demonstrated for surface analysis of adsorbed and surface bound Bis-GMA, but signal to noise levels were low and ion fragmentation was extensive. 7.87 eV postionization using the fluorine laser was demonstrated here for Bis-GMA. However, signal levels remained low for LDPI-MS of Bis-GMA as its ionization potential was only ∼7.8 eV, near threshold for single photon ionization by the 7.87 eV fluorine laser. It is known that aromatic tagging of molecular analytes can lower the overall IP of the tagged molecular complex, allowing 7.87 eV single photon ionization. Therefore, Bis-GMA was also derivatized with several tags whose IPs were either below or above 7.87 eV: the tag with an IP below 7.87 eV enhanced single photon ionization while the tags with higher IPs did not. However, signal intensities were enhanced by resonant laser desorption for two of the derivatized Bis-GMAs. Intact ions of Bis-GMA and its derivatives were generally observed by 7.87 eV LDPI-MS, consistent with the formation of ions with relatively little internal energy upon threshold single photon ionization. PMID:17449273
NASA Astrophysics Data System (ADS)
Benan, C. A. A.; Deynoux, M.
The Neoproterozoic and Palaeozoic Taoudeni basin forms the flat-lying and unmetamorphosed sedimentary cover of the West African Craton. In the western part of this basin, the Char Group and the lower part of the Atar Group make up a 400-m-thick Neoproterozoic siliciclastic succession which rests on the Palaeoproterozoic metamorphic and granitic basement. Five erosional bounding surfaces of regional extent have been identified in this succession. These surfaces separate five stratigraphic units with lithofacies associations ranging from fluvial to coastal and fluvial-, tide-, or wave-dominated shallow marine deposits. Owing to their regional extent and their position within the succession, the erosive bounding surfaces correspond to relative sea-level falls, and accordingly the five stratigraphic units they bound represent allocyclic transgressive-regressive depositional sequences (S1-S5). Changes in the nature of the deposits forming the transgressive-regressive cycles reflect landward or seaward shifts of the stacked sequences. These successive relative sea-level changes are related to the reactivation of basement faults and tilting during rifting of the Pan-Afro-Brasiliano supercontinent 1000 m.y. ago. The stromatolite bearing carbonate-shale sequences which form the rest of the Atar Group mark the onset of a quiet period of homogeneous subsidence contemporaneous with the Pan-African I oceanization 800-700 m.y. ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindeler, Aaron; Little, David G.; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney
2005-12-16
Bisphosphonates are potent inhibitors of osteoclast-mediated bone resorption. Recent interest has centered on the effects of bisphosphonates on osteoblasts. Chronic dosing of osteoblasts with solubilized bisphosphonates has been reported to enhance osteogenesis and mineralization in vitro. However, this methodology poorly reflects the in vivo situation, where free bisphosphonate becomes rapidly bound to mineralized bone surfaces. To establish a more clinically relevant cell culture model, we cultured bone cells on calcium phosphate coated quartz discs pre-treated with the potent nitrogen-containing bisphosphonate, zoledronic acid (ZA). Binding studies utilizing [{sup 14}C]-labeled ZA confirmed that the bisphosphonate bound in a concentration-dependent manner over themore » 1-50 {mu}M dose range. When grown on ZA-treated discs, the viability of bone-marrow derived osteoclasts was greatly reduced, while the viability and mineralization of the osteoblastic MC3T3-E1 cell line were largely unaffected. This suggests that only bone resorbing cells are affected by bound bisphosphonate. However, this system does not account for transient exposure to unbound bisphosphonate in the hours following a clinical dosing. To model this event, we transiently treated osteoblasts with ZA in the absence of a calcified surface. Osteoblasts proved highly resistant to all transitory treatment regimes, even when utilizing ZA concentrations that prevented mineralization and/or induced cell death when dosed chronically. This study represents a pharmacologically more relevant approach to modeling bisphosphonate treatment on cultured bone cells and implies that bisphosphonate therapies may not directly affect osteoblasts at bone surfaces.« less
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry
Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.
2012-01-01
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377
Atomization of Wall-Bounded Two-Phase Flows (Preprint)
2006-11-07
are given in Fig. 2. In the Rayleigh mode hydrodynamic instabilities produced by surface tension cause the jet surface to undulate [16]. Eventually...18], hydrodynamic instabilities [16] or the interaction of vortices in the gas phase [19]. Various mechanisms, discussed in the Atomization...width of the leading edge of the sheet. This regime is analogous to the Rayleigh mode in jets— hydrodynamic instabilities cause the surface of the
NASA Astrophysics Data System (ADS)
Cardenas, B. T.; Kocurek, G.; Mohrig, D. C.; Swanson, T.
2017-12-01
The stratigraphic architecture of aeolian sandstones is thought to encode signals originating from both autogenic dune behavior and allogenic boundary conditions within which the dune field evolves. Mapping of outcrop-scale bounding surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, AZ, USA, demonstrates that dune autogenic behavior manifested in variable dune scour depth, whereas the dominant boundary conditions were antecedent topography and water-table elevation. At the study area, the Page Sandstone is 60 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity, which shows meters of relief. Filling J-2 depressions are thin, climbing sets of cross-strata. In contrast, the overlying Page consists of packages of one to a few, meter-scale sets of cross-strata between the outcrop-scale bounding surfaces. These surfaces, marked by polygonal fractures and local overlying sabkha deposits, are regional in scale and correlated to high stands of the adjacent Carmel sea. Over the km-scale outcrop, the surfaces show erosional relief and packages of cross-strata are locally truncated. Notably absent within these cross-strata packages are early dune-field accumulations, interdune deposits, and apparent dune-climbing. These strata are interpreted to represent a scour-fill architecture created by migrating large dunes within a mature dry aeolian sand sea, in which early phases of dune-field construction have been cannibalized and dune fill of the deepest scours is recorded. At low angles of climb, set thickness is dominated by the component of scour-depth variation over the component resulting from the angle of climb. After filling of J-2 depressions, the Page consists of scour-fill accumulations formed during low stands. Carmel transgressions limited sediment availability, causing deflation to the water table and development of the regional bounding surfaces. Each subsequent fall of the water table with Carmel regressions renewed sediment availability, including local breaching of the resistant surfaces and cannibalization of Page accumulations. The Page record exists because of preservation associated with Carmel transgressions and subsidence, without which the Page would be represented by an erosional surface.
Surface desensitization of polarimetric waveguide interferometers
NASA Astrophysics Data System (ADS)
Worth, Colin
Non-specific binding of small molecules to the surface of waveguide biosensors presents a major obstacle to surface-sensing techniques that attempt to detect very low concentrations (<1 g/mm2) of large (500 nm to 3 mum) biological objects. Interferometric waveguide biosensors use the interaction of an evanescent light field outside of the guiding layer with a biological sample to detect a particular type of cell or bacteria at some distance from the sensor surface. In such experiments, binding of small proteins close to the surface can be a significant source of noise. It is possible to significantly improve the signal-to-noise ratio by varying the properties of the biosensor, in order to reduce or eliminate the biosensor's response to a thin protein layer at the waveguide surface, without significantly reducing the response to larger target particles. In many biosensing applications, specifically bound particles, such as bacteria, are much larger than non-specifically bound particles such as proteins. In addition, due to laminar flow conditions at the sensor surface, the latter smaller particles tend to accumulate on the sensor surface. By varying the waveguide parameters, it is possible to vary the sensitivity of the detector response as a function of sample distance from the detector, by changing the properties of the TE0 and TM0 guided modes. This results in a signal reduction of more than 85%, for thin (30 nm or less) layers adjacent to the waveguide surface.
Chiral permselectivity in surface-modified nanoporous opal films.
Cichelli, Julie; Zharov, Ilya
2006-06-28
Nanoporous 7 mum thin opal films comprising 35 layers of 200 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with chiral selector moieties on the silica surface. Diffusion of chiral redox species through the opals was studied by cyclic voltammetry. The chiral opal films demonstrate high selectivity for transport of one enantiomer over the other. This chiral permselectivity is attributed to the surface-facilitated transport utilizing noncovalent interactions between the chiral permeant molecules and surface-bound chiral selectors.
Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori
2014-05-09
We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.
Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradforth, S.E.
1992-11-01
The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus
NASA Astrophysics Data System (ADS)
Kamarun, Dzaraini; Abdul Azem, Nor Hazirah Kamel; Sarijo, Siti Halimah; Mohd, Ahmad Faiza; Abdullah @ Mohd Noor, Mashita
2012-07-01
A technique for the enhancement of Surface Plasmon Resonance (SPR) signal for sensing biomolecular interactions is described. Polyaniline (PANI) of particle size in the range of 1 to 15 nm was synthesized and used as the template for the immobilization of protein molecules. Biomolecular interactions of unbound and PANI-bound proteins with antibody molecules were SPR-monitored using a model system comprising of Bovine Serum Albumin (BSA) and anti BSA. A 7-fold increased in the signal was recorded from interactions of the PANI-bound BSA with anti BSA compared to the interactions of its unbound counterpart. This preliminary observation provides new avenue in immunosensor technology for improving the detection sensitivity of SPR biosensor; and thereby increasing the lower detection limit of biomolecules.
NASA Astrophysics Data System (ADS)
Røising, Henrik Schou; Simon, Steven H.
2018-03-01
Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.
NASA Astrophysics Data System (ADS)
Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua
2016-05-01
We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.
Hirschfeld, T.B.; Wang, F.T.
1989-02-07
An apparatus is provided for remotely monitoring pH. A support material is provided on which organic dye molecules are covalently attached at a surface density falling within a predetermined range. The pH dependent fluorescence response of the bound organic dye molecules depends critically on surface density of the organic dye molecules bound to the support material and the nature of the covalent linkage between the organic dye molecules and the support material. The invention is operated by contacting the support material on which the organic dye is attached with the fluid whose pH is to be determined. When in contact, the organic dye on the support material is illuminated so that it is caused to fluoresce. The intensity of organic dye fluorescence is then related to pH. 4 figs.
Majewski, P; Krysiński, P
2008-01-01
We report on the spontaneous covalent growth of monomolecular adlayers on mixed nickel-zinc nanoferrite colloidal suspensions (ferrofluids). Synthesized nanoparticles were subjected to surface modification by means of acid chloride chemistry, leading to the formation of covalent bonds between the hydroxy groups at the nanoparticle surface and the acid chloride molecules. This procedure can be easily tailored to allow for the formation of adlayers containing both hydrophobic and hydrophilic regions stacked at predetermined distances from the magnetic core, and also providing the nanoferrites with functional carboxy groups capable of further modifications with, for example, drug molecules. Here, fluorophore aminopyrene molecules were bound to such modified nanoferrites through amide bonds. We also used the same chemistry to modify the surface with covalently bound long-chain palmitoyl moieties, and for comparison we also modified the nanoferrite surface by simple adsorption of oleic acid. Both procedures made the surface highly hydrophobic. These hydrophobic colloids were subsequently spread on an aqueous surface to form Langmuir monolayers with different characteristics. Moreover, since uniformity of size is crucial in a number of applications, we propose an efficient way of sorting the magnetic nanoparticles by size in their colloidal suspension. The suspension is centrifuged at increasing rotational speed and the fractions are collected after each run. The mean size of nanoferrite in each fraction was measured by the powder X-ray diffraction (PXRD) technique.
Surface-polariton propagation for scanning near-field optical microscopy application.
Keilmann, F
1999-01-01
Surface plasmon-, phonon- and exciton-polaritons exist on specific materials in specific spectral regions. We assess the properties of such travelling surface-bound electromagnetic waves relevant for scanning near-field optical microscopy applications, i.e. the tightness of surface binding, the attenuation, the phase velocity and the coupling with free-space electromagnetic waves. These quantities can be directly determined by photographic imaging of surface plasmon- and surface phonon-polaritons, in both the visible and mid-infared regions. Focusing of mid-infrared surface plasmons is demonstrated. Surface waveguides to transport and focus photons to the tip of a scanning near-field probe are outlined.
Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon
2016-01-01
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
Sea level: measuring the bounding surfaces of the ocean
Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.
2014-01-01
The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egner, Timothy K.; Naik, Pranjali; Nelson, Nicholas C.
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found thatmore » the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. Here we believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.« less
Egner, Timothy K.; Naik, Pranjali; Nelson, Nicholas C.; ...
2017-06-22
Engineering nanoparticle (NP) functions at the molecular level requires a detailed understanding of the dynamic processes occurring at the NP surface. Herein we show that a combination of dark-state exchange saturation transfer (DEST) and relaxation dispersion (RD) NMR experiments on gel-stabilized NP samples enables the accurate determination of the kinetics and thermodynamics of adsorption. We used the former approach to describe the interaction of cholic acid (CA) and phenol (PhOH) with ceria NPs with a diameter of approximately 200 nm. Whereas CA formed weak interactions with the NPs, PhOH was tightly bound to the NP surface. Interestingly, we found thatmore » the adsorption of PhOH proceeds via an intermediate, weakly bound state in which the small molecule has residual degrees of rotational diffusion. Here we believe the use of aqueous gels for stabilizing NP samples will increase the applicability of solution NMR methods to the characterization of nanomaterials.« less
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P.; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta; Sailor, Michael; Ruoslahti, Erkki
2009-01-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles. PMID:19394687
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki
2009-08-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.
NASA Astrophysics Data System (ADS)
Denisova, Irina Vlad.
2015-03-01
The paper deals with the motion of two immiscible viscous fluids in a container, one of the fluids being compressible while another one being incompressible. The interface between the fluids is an unknown closed surface where surface tension is neglected. We assume the compressible fluid to be barotropic, the pressure being given by an arbitrary smooth increasing function. This problem is considered in anisotropic Sobolev-Slobodetskiǐ spaces. We show that the L 2-norms of the velocity and deviation of compressible fluid density from the mean value decay exponentially with respect to time. The proof is based on a local existence theorem (Denisova, Interfaces Free Bound 2:283-312, 2000) and on the idea of constructing a function of generalized energy, proposed by Padula (J Math Fluid Mech 1:62-77, 1999). In addition, we eliminate the restrictions for the viscosities which appeared in Denisova (Interfaces Free Bound 2:283-312, 2000).
Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M
2014-03-01
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Choi, Tae Su; Ko, Jae Yoon; Heo, Sung Woo; Ko, Young Ho; Kim, Kimoon; Kim, Hugh I.
2012-10-01
Noncovalent interactions of cucurbit[6]uril (CB[6]) with haloacetate and halide anions are investigated in the gas phase using electrospray ionization ion mobility mass spectrometry. Strong noncovalent interactions of monoiodoacetate, monobromoacetate, monochloroacetate, dichloroacetate, and trichloroacetate on the exterior surface of CB[6] are observed in the negative mode electrospray ionization mass spectra. The strong binding energy of the complex allows intramolecular SN2 reaction of haloacetate, which yields externally bound CB[6]-halide complex, by collisional activation. Utilizing ion mobility technique, structures of exteriorly bound CB[6] complexes of haloacetate and halide anions are confirmed. Theoretically determined low energy structures using density functional theory (DFT) further support results from ion mobility studies. The DFT calculation reveals that the binding energy and conformation of haloacetate on the CB[6] surface affect the efficiency of the intramolecular SN2 reaction of haloacetate, which correlate well with the experimental observation.
Low-frequency surface waves on semi-bounded magnetized quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-08-15
The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.
8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 Naval ...
8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Sinmaz, Nese; Tea, Fiona; Pilli, Deepti; Zou, Alicia; Amatoury, Mazen; Nguyen, Tina; Merheb, Vera; Ramanathan, Sudarshini; Cooper, Sandra T; Dale, Russell C; Brilot, Fabienne
2016-12-01
Anti-Dopamine-2 receptor (D2R) antibodies have been recently identified in a subgroup of children with autoimmune movement and psychiatric disorders, however the epitope(s) and mechanism of pathogenicity remain unknown. Here we report a major biological role for D2R extracellular N-terminus as a regulator of receptor surface availability, and as a major epitope targeted and impaired in brain autoimmunity. In transfected human cells, purified anti-D2R antibody from patients specifically and significantly reduced human D2R surface levels. Next, human D2R mutants modified in their extracellular domains were subcloned, and we analyzed the region bound by 35 anti-D2R antibody-positive patient sera using quantitative flow cytometry on live transfected cells. We found that N-glycosylation at amino acids N5 and/or N17 was critical for high surface expression in interaction with the last 15 residues of extracellular D2R N-terminus. No anti-D2R antibody-positive patient sera bound to the three extracellular loops, but all patient sera (35/35) targeted the extracellular N-terminus. Overall, patient antibody binding was dependent on two main regions encompassing amino acids 20 to 29, and 23 to 37. Residues 20 to 29 contributed to the majority of binding (77%, 27/35), among which 26% (7/27) sera bound to amino acids R20, P21, and F22, 37% (10/27) patients were dependent on residues at positions 26 and 29, that are different between humans and mice, and 30% (8/27) sera required R20, P21, F22, N23, D26, and A29. Seven patient sera bound to the region 23 to 37 independently of D26 and A29, but most sera exhibited N-glycosylation-independent epitope recognition at N23. Interestingly, no evident segregation of binding pattern according to patient clinical phenotype was observed. D2R N-terminus is a central epitope in autoimmune movement and psychiatric disorders and this knowledge could help the design of novel specific immune therapies tailored to improve patient outcome.
Kaladhar, K; Renz, H; Sharma, C P
2015-04-01
Exploring drug molecules for material design, to harness concepts of nano-anisotropy and ligand-receptor interactions, are rather elusive. The aim of this study is to demonstrate the bottom-up design of a single-step and bio-interactive polymeric surface coating, based on drug based pendant polymer. This can be applied on to polystyrene (PS) substrates, to suppress macrophage adhesion and spreading. The drug molecule is used in this coating for two purposes. The first one is drug as a "pendant" group, to produce nano-anisotropic properties that can enable adhesion of the coatings to the substrate. The second purpose is to use the drug as a "ligand", to produce ligand-receptor interaction, between the bound ligand and receptors of albumin, to develop a self-albumin coat over the surface, by the preferential binding of albumin in biological environment, to reduce macrophage adhesion. Our in silico studies show that, diclofenac (DIC) is an ideal drug based "ligand" for albumin. This can also act as a "pendant" group with planar aryl groups. The combination of these two factors can help to harness, both nano-anisotropic properties and biological functions to the polymeric coating. Further, the drug, diclofenac (DIC) is immobilized to the polyvinyl alcohol (PVA), to develop the pendant polymer (PVA-DIC). The interaction of bound DIC with the albumin is a ligand-receptor based interaction, as per the studies by circular dichroism, differential scanning calorimetry, and SDS-PAGE. The non-polar π-π* interactions are regulating; the interactions between PVA bound DIC-DIC interactions, leading to "nano-anisotropic condensation" to form distinct "nano-anisotropic segments" inside the polymeric coating. This is evident from, the thermo-responsiveness and uniform size of nanoparticles, as well as regular roughness in the surface coating, with similar properties as that of nanoparticles. In addition, the hydrophobic DIC-polystyrene (PS) interactions, between the PVA-DIC coating and PS-substrate produce improved coating stability. Subsequently, the PVA-DIC coated substrate has the maximum capacity to suppress the macrophage (RAW 264.7 cell line) adhesion and spreading, which is partly due to wavy-surface topography of hydrophilic PVA and preferential albumin binding capacity of PVA bound DIC. Our result shows that, such surfaces suppress the macrophages, even under stimulation with lipopolysaccharide (LPS). The modified tissue culture plates can be used as an in vitro tool, to study the macrophage response under low spatial cues. Copyright © 2015 Elsevier B.V. All rights reserved.
Wave Tank Studies of Phase Velocities of Short Wind Waves
NASA Astrophysics Data System (ADS)
Ermakov, S.; Sergievskaya, I.; Shchegolkov, Yu.
Wave tank studies of phase velocities of short wind waves have been carried out using Ka-band radar and an Optical Spectrum Analyser. The phase velocities were retrieved from measured radar and optical Doppler shifts, taking into account measurements of surface drift velocities. The dispersion relationship was studied in centimetre (cm)- and millimetre(mm)-scale wavelength ranges at different fetches and wind speeds, both for a clean water surface and for water covered with surfactant films. It is ob- tained that the phase velocities do not follow the dispersion relation of linear capillary- gravity waves, increasing with fetch and, therefore, depending on phase velocities of dominant decimetre (dm)-centimetre-scale wind waves. One thus can conclude that nonlinear cm-mm-scale harmonics bound to the dominant wind waves and propagat- ing with the phase velocities of the decimetric waves are present in the wind wave spectrum. The resulting phase velocities of short wind waves are determined by re- lation between free and bound waves. The relative intensity of the bound waves in the spectrum of short wind waves is estimated. It is shown that this relation depends strongly on the surfactant concentration, because the damping effect due to films is different for free and bound waves; this results to changes of phase velocities of wind waves in the presence of surfactant films. This work was supported by MOD, UK via DERA Winfrith (Project ISTC 1774P) and by RFBR (Project 02-05-65102).
[Reduction of nitrobenzene by iron oxides bound Fe(II) system at different pH values].
Luan, Fu-Bo; Xie, Li; Li, Jun; Zhou, Qi
2009-07-15
Batch tests were conducted to investigate the reductive transformation of nitrobenzene by goethite, hematite, magnetite and steel converter slag bound Fe(II) system. And the reduction mechanism was explored at different pH values. Experimental results showed that hematite, magnetite and steel converter slag could adsorb Fe(II) on surfaces and form iron oxides bound Fe(II) system at pH from 6.5 to 7.0. The systems had strong reductive capacity and could reduce nitrobenzene to aniline. The reduction efficiency of nitrobenzene in surface bound Fe(II) system followed the sequence of magnetite, hematite and steel converter slag from high to low. The reduction efficiency of hematite and magnetite system increased with pH increasing. While it was almost pH independent in steel converter slag system. Although goethite adsorbed most of Fe(II) in solution, the adsorbed Fe(II) had no reductive activity for nitrobenzene. At pH 6.0, small amount of Fe(II) was adsorbed on magnetite and hematite and the systems did not show reductive activity for nitrobenzene. However, steel converter slag could adsorb Fe(II) at pH 6.0 and reduction efficiency almost equaled to the value at pH 7.0. When pH was above 7.5, dissolved Fe(II) could be converted to Fe(OH)2 and the newly formed Fe(OH)2 became the main redactor in the system. Under alkali condition, the presence of iron oxides inhibited the reduction capacity of system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.
We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, asmore » well as applications for electrons bound to a 2D surface.« less
Static and kinetic studies of calmodulin and melittin complex.
Itakura, M; Iio, T
1992-08-01
Ca2+ binding to calmodulin triggers conformational change of the protein which induces exposure of hydrophobic surfaces. Melittin has been believed to bind to Ca(2+)-bound calmodulin through the exposed hydrophobic surfaces. However, tryptophan fluorescence measurements and gel chromatography experiments with the melittin-calmodulin system revealed that melittin bound to calmodulin at zero salt concentration even in the absence of Ca2+; addition of salt removed melittin from Ca(2+)-free calmodulin. This means not only the hydrophobic interaction but also the electrostatic interaction contributes to the melittin-calmodulin binding. The fluorescence stopped-flow studies of the dissociation reaction of melittin-calmodulin complex revealed that Ca2+ removal from the complex induced a conformational change of calmodulin, resulting in reduction of the hydrophobic interaction between melittin and calmodulin, but the electrostatic interaction kept melittin still bound to calmodulin for a subsecond lag period, after which melittin dissociated from calmodulin. The fluorescence stopped-flow experiments on the dissociation reaction of complex of melittin and tryptic fragment(s) of calmodulin revealed that the lag period of the melittin dissociation reaction was attributable to the interaction between the C-terminal half of calmodulin and the C-terminal region of melittin.
Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S
2016-01-01
Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.
Wen, Quan
2014-01-01
Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633
All the nonadiabatic (J=0) bound states of NO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzgeber, R.F.; Mandelshtam, V.A.; Schlier, C.
1999-02-01
We calculated all 3170 A{sub 1} and B{sub 2} (J=0) vibronic bound states of the coupled electronic ground ({tilde X}&hthinsp;{sup 2}A{sub 1}) and the first excited ({tilde A}&hthinsp;{sup 2}B{sub 2}) surfaces of NO{sub 2}, using a modification of the {ital ab initio} potentials of Leonardi {ital et al.} [J. Chem. Phys. {bold 105}, 9051 (1996)]. The calculation was performed by harmonic inversion of the Chebyshev correlation function generated from a DVR Hamiltonian in Radau coordinates. The rms error of the eigenenergies is about 2.5 cm{sup {minus}1}, corresponding to a relative error of 10{sup {minus}4} near the dissociation energy. The resultsmore » are compared with the adiabatic and diabatic levels calculated from the same surfaces, with experimental data, and with some approximations for the number of states function N(E). The experimental levels are reproduced fairly well up to an energy of 12&hthinsp;000 cm{sup {minus}1} above the potential minimum while the total number of bound levels agrees to within 2{percent} with that calculated from the phase space volume. {copyright} {ital 1999 American Institute of Physics.}« less
Building Towards a Conceptual Model for Phosphorus Transport in Lowland Catchments
NASA Astrophysics Data System (ADS)
van der Grift, B.; Griffioen, J.; Oste, L.
2016-12-01
The release of P to surface water following P leaching from heavily fertilized agricultural fields to groundwater and the extent of P retention at the redox interphase are of major importance for surface water quality. We studied the role of biogeochemical and hydrological processes during exfiltration of groundwater and their impact on phosphorus transport in lowland catchments in the Netherlands. Our study showed that the mobility and ecological impact of P in surface waters in lowland catchments or polders like in the Netherlands is strongly controlled by the exfiltration of anoxic groundwater containing ferrous iron. Chemical precipitates derived from groundwater-associated Fe(II) seeping into the overlying surface water contribute to immobilization of dissolved phosphate and, therefore, reduces its bioavailability. Aeration experiments with Fe(II) and phosphate-containing synthetic solutions and natural groundwater showed that Fe(II) oxidation in presence of phosphate leads initially to formation of Fe(III) hydroxyphosphates precipitates until phosphate is near-depleted from solution. A field campaign on P specation in surface waters draining agricultural land showed, additionally, that the total-P concentration is strongly dominated by iron-bound. Between 75 and 95% of the total-P concentration in the water samples was iron-bound particulate P. After the turnover of dissolved P to iron-bound particulate P, the P transport in catchments or polders is controlled by sedimentation and erosion of suspended sediments in the water body. Shear flow-induced surface erosion of sediment beds upon natural discharge events or generated by pumping stations is thus an important mechanism for P transport in catchments or polders. The flow velocities in headwaters like drainage ditches are generally low and not high enough to cause a bed shear stress that exceed the critical shear stress. Transport of particulate P that originates from groundwater and (agricultural) drains discharge is strongly retained but particulate P can be remobilized due to biogeochemical processes in the sediment layer at other moments. This makes it difficult to link agricultural practice to P concentrations in the surface water and this should be accounted for when judging measures to reduce P loads from agriculture.
12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 ...
12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION ...
2. VIEW SOUTH OF WIND TUNNEL 157, NORTH ELEVATION - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Hexahedral mesh generation via the dual arrangement of surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatiblemore » hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.« less
Gregoire, S.; Xiao, J.; Silva, B. B.; Gonzalez, I.; Agidi, P. S.; Klein, M. I.; Ambatipudi, K. S.; Rosalen, P. L.; Bauserman, R.; Waugh, R. E.; Koo, H.
2011-01-01
Candida albicans and mutans streptococci are frequently detected in dental plaque biofilms from toddlers afflicted with early childhood caries. Glucosyltransferases (Gtfs) secreted by Streptococcus mutans bind to saliva-coated apatite (sHA) and to bacterial surfaces, synthesizing exopolymers in situ, which promote cell clustering and adherence to tooth enamel. We investigated the potential role Gtfs may play in mediating the interactions between C. albicans SC5314 and S. mutans UA159, both with each other and with the sHA surface. GtfB adhered effectively to the C. albicans yeast cell surface in an enzymatically active form, as determined by scintillation spectroscopy and fluorescence imaging. The glucans formed on the yeast cell surface were more susceptible to dextranase than those synthesized in solution or on sHA and bacterial cell surfaces (P < 0.05), indicating an elevated α-1,6-linked glucose content. Fluorescence imaging revealed that larger numbers of S. mutans cells bound to C. albicans cells with glucans present on their surface than to yeast cells without surface glucans (uncoated). The glucans formed in situ also enhanced C. albicans interactions with sHA, as determined by a novel single-cell micromechanical method. Furthermore, the presence of glucan-coated yeast cells significantly increased the accumulation of S. mutans on the sHA surface (versus S. mutans incubated alone or mixed with uncoated C. albicans; P < 0.05). These data reveal a novel cross-kingdom interaction that is mediated by bacterial GtfB, which readily attaches to the yeast cell surface. Surface-bound GtfB promotes the formation of a glucan-rich matrix in situ and may enhance the accumulation of S. mutans on the tooth enamel surface, thereby modulating the development of virulent biofilms. PMID:21803906
NASA Astrophysics Data System (ADS)
Meng, Qingyong; Meyer, Hans-Dieter
2015-10-01
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de
2015-10-28
Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less
NASA Astrophysics Data System (ADS)
Wiedenmann, Jonas; Liebhaber, Eva; Kübert, Johannes; Bocquillon, Erwann; Burset, Pablo; Ames, Christopher; Buhmann, Hartmut; Klapwijk, Teun M.; Molenkamp, Laurens W.
2017-10-01
The proximity-induced superconducting state in the three-dimensional topological insulator HgTe has been studied using electronic transport of a normal metal-superconducting point contact as a spectroscopic tool (Andreev point-contact spectroscopy). By analyzing the conductance as a function of voltage for various temperatures, magnetic fields, and gate voltages, we find evidence, in equilibrium, for an induced order parameter in HgTe of 70 µeV and a niobium order parameter of 1.1 meV. To understand the full conductance curve as a function of applied voltage we suggest a non-equilibrium-driven transformation of the quantum transport process where the relevant scattering region and equilibrium reservoirs change with voltage. This change implies that the spectroscopy probes the superconducting correlations at different positions in the sample, depending on the bias voltage.
Tunable-φ Josephson junction with a quantum anomalous Hall insulator
NASA Astrophysics Data System (ADS)
Sakurai, Keimei; Ikegaya, Satoshi; Asano, Yasuhiro
2017-12-01
We theoretically study the Josephson current in a superconductor/quantum anomalous Hall insulator/superconductor junction by using the lattice Green function technique. When an in-plane external Zeeman field is applied to the quantum anomalous Hall insulator, the Josephson current J flows without a phase difference across the junction θ . The phase shift φ appearing in the current-phase relationship J ∝sin(θ -φ ) is proportional to the amplitude of Zeeman fields and depends on the direction of Zeeman fields. A phenomenological analysis of the Andreev reflection processes explains the physical origin of φ . In a quantum anomalous Hall insulator, time-reversal symmetry and mirror-reflection symmetry are broken simultaneously. However, magnetic mirror-reflection symmetry is preserved. Such characteristic symmetry properties enable us to have a tunable φ junction with a quantum Hall insulator.
Diphytanyl glycerol ether distributions in sediments of the Orca Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, T.K.; VanVleet, E.S.; Barre, J.S.
1992-09-01
Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 [mu]g/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-boundmore » DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in-situ production by methanogenic or extremely halophilic archaebacteria.« less
Quantum mechanics of a constrained particle
NASA Astrophysics Data System (ADS)
da Costa, R. C. T.
1981-04-01
The motion of a particle rigidly bounded to a surface is discussed, considering the Schrödinger equation of a free particle constrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials and wave functions. It can then be shown that the wave function splits into two parts: the normal part, which contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state which appears along the edge of a folded (but not stretched) plane. The fact that this surface potential is not a bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the usual quantization procedures. Similar calculations are also presented for the case of a particle bounded to a curve. The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some detail, and, as expected, the resulting Schrödinger equation contains a "linear potential" which is a function of the curvature.
Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan
2013-07-01
To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Covalently Bound Monomolecular Layers on Si Single Crystals
NASA Astrophysics Data System (ADS)
Chidsey, Christopher E. D.
1996-03-01
Methods and reagents borrowed from the molecular synthetic chemistry of silicon compounds have been used to form covalently bound monomolecular layers on silicon single crystals. Organic monolayers bound covalently to silicon could form the basis for silicon/organic interfaces useful in sensor structures. In a representative reaction, alkyl monolayers with densities approaching that of crystalline polyethylene have been prepared by the radical-initiated insertion of 1-alkenes into the Si-H bonds of hydrogen-terminated Si(111) surfaces footnote M. R. Linford, P. Fenter, P. M. Eisenberger and C. E. D Chidsey, J. Am. Chem. Soc. 117, 3145-3155 (1995). It has recently been found that this insertion reaction can also be initiated by illumination with UV light having sufficient energy to break the Si-H bond. Synchrotron-based high-resolution photoelectron spectroscopy and diffraction have demonstrated the expected Si-C bond in such monolayers footnote J. H. Terry, R. Cao, P. A. Pianetta, M. R. Linford and C. E. D. Chidsey, unpublished results. An alternate approach to similar monolayers has been found to be the chlorination of hydrogen-terminated Si(111) with Cl_2, followed by the nucleophilic displacement of chlorine with alkyl lithium reagents. The well-behaved chemical transformations of the hydrogen-terminated silicon surfaces appear to result from the essentially bulk termination of the silicon lattice with closed-shell silicon hydride "functional groups" on the surface. In addition to the formation of novel organic layers, a full understanding of the reactivity of the hydrogen-terminated silicon surfaces should lead to better control of key technological silicon interfaces such as Si/SiO_2, Si/epi-Si, and Si/metal.
Critical surface roughness for wall bounded flow of viscous fluids in an electric submersible pump
NASA Astrophysics Data System (ADS)
Deshmukh, Dhairyasheel; Siddique, Md Hamid; Kenyery, Frank; Samad, Abdus
2017-11-01
Surface roughness plays a vital role in the performance of an electric submersible pump (ESP). A 3-D numerical analysis has been carried out to find the roughness effect on ESP. The performance of pump for steady wall bounded turbulent flows is evaluated at different roughness values and compared with smooth surface considering a non-dimensional roughness factor K. The k- ω SST turbulence model with fine mesh at near wall region captures the rough wall effects accurately. Computational results are validated with experimental results of water (1 cP), at a design speed (3000 RPM). Maximum head is observed for a hydraulically smooth surface (K=0). When roughness factor is increased, the head decreases till critical roughness factor (K=0.1) due to frictional loss. Further increase in roughness factor (K>0.1) increases the head due to near wall turbulence. The performance of ESP is analyzed for turbulent kinetic energy and eddy viscosity at different roughness values. The wall disturbance over the rough surface affects the pressure distribution and velocity field. The roughness effect is predominant for high viscosity oil (43cP) as compared to water. Moreover, the study at off-design conditions showed that Reynolds number influences the overall roughness effect.
7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
7. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC ...
2. VIEW SOUTH OF TRANSONIC WIND TUNNEL BUILDING AND SUPERSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
5. VIEW NORTHWEST OF SUBSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC ...
1. VIEW SOUTHWEST OF SUBSONIC WIND TUNNEL BUILDING AND TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.
ERIC Educational Resources Information Center
Grasselli, Robert K.
1986-01-01
Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)
3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC ...
3. VIEW SOUTHEAST OF TRANSONIC WIND TUNNEL BUILDING TO SUBSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC ...
4. VIEW NORTHWEST OF SUPERSONIC WIND TUNNEL BUILDING TO TRANSONIC WIND TUNNEL BUILDING - Naval Surface Warfare Center, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD
13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...
13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD