Gram, Anna M.; Oosenbrug, Timo; Lindenbergh, Marthe F. S.; Büll, Christian; Comvalius, Anouskha; Dickson, Kathryn J. I.; Wiegant, Joop; Vrolijk, Hans; Lebbink, Robert Jan; Wolterbeek, Ron; Adema, Gosse J.; Griffioen, Marieke; Heemskerk, Mirjam H. M.; Tscharke, David C.; Hutt-Fletcher, Lindsey M.; Ressing, Maaike E.
2016-01-01
Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. PMID:27077376
Structural Relationships Between Minor and Major Proteins of Hepatitis B Surface Antigen
Stibbe, Werner; Gerlich, Wolfram H.
1983-01-01
The minor glycoproteins from hepatitis B surface antigen, GP33 and GP36, contain at their carboxy-terminal part the sequence of the major protein P24. They have 55 additional amino acids at the amino-terminal part which are coded by the pre-S region of the viral DNA. Images PMID:6842680
2014-01-01
Background The trimeric envelope glycoproteins (Env) on the surface of HIV-1 virions are the targets for neutralizing antibodies (NAbs). No candidate HIV-1 immunogen has yet induced potent, broadly active NAbs (bNAbs). Part of the explanation may be that previously tested Env proteins inadequately mimic the functional, native Env complex. Trimerization and the proteolytic processing of Env precursors into gp120 and gp41 profoundly alter antigenicity, but soluble cleaved trimers are too unstable to serve as immunogens. By introducing stabilizing mutations (SOSIP), we constructed soluble, cleaved Env trimers derived from the HIV-1 subtype A isolate BG505 that resemble native Env spikes on virions both structurally and antigenically. Results We used surface plasmon resonance (SPR) to quantify antibody binding to different forms of BG505 Env: the proteolytically cleaved SOSIP.664 trimers, cleaved gp120-gp41ECTO protomers, and gp120 monomers. Non-NAbs to the CD4-binding site bound only marginally to the trimers but equally well to gp120-gp41ECTO protomers and gp120 monomers, whereas the bNAb VRC01, directed to the CD4bs, bound to all three forms. In contrast, bNAbs to V1V2 glycan-dependent epitopes bound preferentially (PG9 and PG16) or exclusively (PGT145) to trimers. We also explored the antigenic consequences of three different features of SOSIP.664 gp140 trimers: the engineered inter-subunit disulfide bond, the trimer-stabilizing I559P change in gp41ECTO, and proteolytic cleavage at the gp120-gp41ECTO junction. Each of these three features incrementally promoted native-like trimer antigenicity. We compared Fab and IgG versions of bNAbs and validated a bivalent model of IgG binding. The NAbs showed widely divergent binding kinetics and degrees of binding to native-like BG505 SOSIP.664. High off-rate constants and low stoichiometric estimates of NAb binding were associated with large amounts of residual infectivity after NAb neutralization of the corresponding BG505.T332N pseudovirus. Conclusions The antigenicity and structural integrity of cleaved BG505 SOSIP.664 trimers render these proteins good mimics of functional Env spikes on virions. In contrast, uncleaved gp140s antigenically resemble individual gp120-gp41ECTO protomers and gp120 monomers, but not native trimers. Although NAb binding to functional trimers may thus be both necessary and sufficient for neutralization, the kinetics and stoichiometry of the interaction influence the neutralizing efficacy of individual NAbs. PMID:24884783
Zhao, Bingchun; Zhang, Xiao; Krummenacher, Claude; Song, Shuo; Gao, Ling; Zhang, Haojiong; Xu, Miao; Feng, Lin; Feng, Qisheng; Zeng, Musheng; Xu, Yuting; Zeng, Yixin
2018-01-01
Epstein–Barr virus (EBV) was the first human virus proved to be closely associated with tumor development, such as lymphoma, nasopharyngeal carcinoma, and EBV-associated gastric carcinoma. Despite many efforts to develop prophylactic vaccines against EBV infection and diseases, no candidates have succeeded in effectively blocking EBV infection in clinical trials. Previous investigations showed that EBV gp350 plays a pivotal role in the infection of B-lymphocytes. Nevertheless, using monomeric gp350 proteins as antigens has not been effective in preventing infection. Multimeric forms of the antigen are more potently immunogenic than monomers; however, the multimerization elements used in previous constructs are not approved for human clinical trials. To prepare a much-needed EBV prophylactic vaccine that is potent, safe, and applicable, we constructed an Fc-based form of gp350 to serve as a dimeric antigen. Here, we show that the Fc-based gp350 antigen exhibits dramatically enhanced immunogenicity compared with wild-type gp350 protein. The complete or partial gp350 ectodomain was fused with the mouse IgG2a Fc domain. Fusion with the Fc domain did not impair gp350 folding, binding to a conformation-dependent neutralizing antibody (nAb) and binding to its receptor by enzyme-linked immunosorbent assay and surface plasmon resonance. Specific antibody titers against gp350 were notably enhanced by immunization with gp350-Fc dimers compared with gp350 monomers. Furthermore, immunization with gp350-Fc fusion proteins elicited potent nAbs against EBV. Our data strongly suggest that an EBV gp350 vaccine based on Fc fusion proteins may be an efficient candidate to prevent EBV infection in clinical applications. PMID:29765376
Morales, G; Carrillo, G; Requena, J M; Guzman, F; Gomez, L C; Patarroyo, M E; Alonso, C
1997-06-01
The gp63 gene encoding the major surface antigen of Leishmania infantum has been cloned and sequenced. In spite of the overall sequence homology with the gp63 genes from other Leishmania species, particularly with the constitutively expressed Leishmania chagasi Gp63 gene, the carboxy-terminal ends of these genes are clearly divergent (62% homology). To study the prevalence of anti-gp63 antibodies in the sera from dogs with visceral leishmaniasis, a recombinant L. infantum gp63 protein was expressed in Escherichia coli. It was found that 100% of the sera from these dogs recognized the recombinant gp63 protein, suggesting that it must function as a potent B cell immunogen during natural canine visceral leishmaniasis. However, heterogeneity in the level of response was observed. Fine mapping of the antigenic determinants was performed by means of 6 overlapping subfragments of the gp63 protein and by the use of a library of synthetic peptides. The data showed that there is some degree of immunological restriction in the recognition of the protein since reactivity was observed preferentially against the most divergent region. The epitope mapping of this region showed 2 immunodominant peptides the response to which seems to be preferentially of the IgG2 type.
Baculovirus display of functional antibody Fab fragments.
Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki
2015-08-01
The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.
Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine
NASA Astrophysics Data System (ADS)
Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.
1992-05-01
We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.
Ploss, Martin; Kuhn, Andreas
2011-09-26
Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.
Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage
2011-01-01
Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi
2008-11-07
The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less
Castro, Rafaela A.; Kubitschek-Barreira, Paula H.; Teixeira, Pedro A. C.; Sanches, Glenda F.; Teixeira, Marcus M.; Quintella, Leonardo P.; Almeida, Sandro R.; Costa, Rosane O.; Camargo, Zoilo P.; Felipe, Maria S. S.; de Souza, Wanderley; Lopes-Bezerra, Leila M.
2013-01-01
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes. PMID:24116065
2018-01-01
ABSTRACT Current evidence supports a protective role for virus-neutralizing antibodies in immunity against hepatitis C virus (HCV) infection. Many cross-neutralizing monoclonal antibodies have been identified. These antibodies have been shown to provide protection or to clear infection in animal models. Previous clinical trials have shown that a gpE1/gpE2 vaccine can induce antibodies that neutralize the in vitro infectivity of all the major cell culture-derived HCV (HCVcc) genotypes around the world. However, cross-neutralization appeared to favor certain genotypes, with significant but lower neutralization against others. HCV may employ epitope masking to avoid antibody-mediated neutralization. Hypervariable region 1 (HVR1) at the amino terminus of glycoprotein E2 has been shown to restrict access to many neutralizing antibodies. Consistent with this, other groups have reported that recombinant viruses lacking HVR1 are hypersensitive to neutralization. It has been proposed that gpE1/gpE2 lacking this domain could be a better vaccine antigen to induce broadly neutralizing antibodies. In this study, we examined the immunogenicity of recombinant gpE1/gpE2 lacking HVR1 (ΔHVR1). Our results indicate that wild-type (WT) and ΔHVR1 gpE1/gpE2 antigens induced antibodies targeting many well-characterized cross-genotype-neutralizing epitopes. However, while the WT gpE1/gpE2 vaccine can induce cross-genotype protection against various genotypes of HCVcc and/or HCV-pseudotyped virus (HCVpp), antisera from ΔHVR1 gpE1/gpE2-immunized animals exhibited either reduced homologous neutralization activity compared to that of the WT or heterologous neutralization activity similar to that of the WT. These data suggest that ΔHVR1 gpE1/gpE2 is not a superior vaccine antigen. Based on previously reported chimpanzee protection data using WT gpE1/gpE2 and our current findings, we are preparing a combination vaccine including wild-type recombinant gpE1/gpE2 for clinical testing in the future. IMPORTANCE An HCV vaccine is an unmet medical need. Current evidence suggests that neutralizing antibodies play an important role in virus clearance, along with cellular immune responses. Previous clinical data showed that gpE1/gpE2 can effectively induce cross-neutralizing antibodies, although they favor certain genotypes. HCV employs HVR1 within gpE2 to evade host immune control. It has been hypothesized that the removal of this domain would improve the production of cross-neutralizing antibodies. In this study, we compared the immunogenicities of WT and ΔHVR1 gpE1/gpE2 antigens as vaccine candidates. Our results indicate that the ΔHVR1 gpE1/gpE2 antigen confers no advantages in the neutralization of HCV compared with the WT antigen. Previously, we showed that this WT antigen remains the only vaccine candidate to protect chimpanzees from chronic infection, contains multiple cross-neutralizing epitopes, and is well tolerated and immunogenic in humans. The current data support the further clinical development of this vaccine antigen component. PMID:29540595
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
Morris, Charles D; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J; Tang, Jeffrey; Sok, Devin; Burton, Dennis R; Law, Mansun; Ward, Andrew B; He, Linling; Zhu, Jiang
2017-02-28
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies. Copyright © 2017 Morris et al.
Arias, Mauricio A.; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin
2011-01-01
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. PMID:21145913
Arias, Mauricio A; Loxley, Andrew; Eatmon, Christy; Van Roey, Griet; Fairhurst, David; Mitchnick, Mark; Dash, Philip; Cole, Tom; Wegmann, Frank; Sattentau, Quentin; Shattock, Robin
2011-02-01
Induction of humoral responses to HIV at mucosal compartments without inflammation is important for vaccine design. We developed charged wax nanoparticles that efficiently adsorb protein antigens and are internalized by DC in the absence of inflammation. HIV-gp140-adsorbed nanoparticles induced stronger in vitro T-cell proliferation responses than antigen alone. Such responses were greatly enhanced when antigen was co-adsorbed with TLR ligands. Immunogenicity studies in mice showed that intradermal vaccination with HIV-gp140 antigen-adsorbed nanoparticles induced high levels of specific IgG. Importantly, intranasal immunization with HIV-gp140-adsorbed nanoparticles greatly enhanced serum and vaginal IgG and IgA responses. Our results show that HIV-gp140-carrying wax nanoparticles can induce strong cellular/humoral immune responses without inflammation and may be of potential use as effective mucosal adjuvants for HIV vaccine candidates. Copyright © 2010 Elsevier Ltd. All rights reserved.
Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Opriessnig, Tanja; Tian, Debin; Heffron, C Lynn; Meng, Xiang-Jin
2016-02-02
We previously demonstrated that the C-terminus of the capsid gene of porcine circovirus type 2 (PCV2) is an immune reactive epitope displayed on the surface of virions. Insertion of foreign epitope tags in the C-terminus produced infectious virions that elicited humoral immune responses against both PCV2 capsid and the inserted epitope tags, whereas mutation in the N terminus impaired viral replication. Since the non-pathogenic porcine circovirus type 1 (PCV1) shares similar genomic organization and significant sequence identity with pathogenic PCV2, in this study we evaluated whether PCV1 can serve as a vaccine delivery virus vector. Four different antigenic determinants of porcine reproductive and respiratory syndrome virus (PRRSV) were inserted in the C-terminus of the PCV1 capsid gene, the infectivity and immunogenicity of the resulting viruses are determined. We showed that an insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not affect PCV1 replication. We successfully rescued and characterized four chimeric PCV1 viruses expressing PRRSV linear antigenic determinants (GP2 epitope II: aa 40-51, ASPSHVGWWSFA; GP3 epitope I: aa 61-72, QAAAEAYEPGRS; GP5 epitope I: aa 35-46, SSSNLQLIYNLT; and GP5 epitope IV: aa 187-200, TPVTRVSAEQWGRP). We demonstrated that all chimeric viruses were stable and infectious in vitro and three chimeric viruses were infectious in vivo. An immunogenicity study in pigs revealed that PCV1-VR2385EPI chimeric viruses elicited neutralizing antibodies against PRRSV-VR2385. The results have important implications for further evaluating PCV1 as a potential vaccine delivery vector. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Xiaoli; Xia, Chang-Qing, E-mail: cqx65@yahoo.com; Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610
It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleenmore » cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.« less
Yamamoto, N; Schneider, J; Hinuma, Y; Hunsmann, G
1982-01-01
A glycoprotein of an apparent molecular mass of 46,000, gp 46, was enriched by affinity chromatography from the virus- and cell-free culture medium of adult T-cell leukemia virus (ATLV) infected cells. gp 46 was specifically precipitated with sera from patients with adult T-cell leukemia associated antigen (ATLA). Thus, gp 46 is a novel component of the ATLA antigen complex.
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doores, Katie J.; Fulton, Zara; Hong, Vu
2011-08-24
Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12,more » their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.« less
Recombinant gp19 as a potential antigen for detecting anti-Ehrlichia canis antibodies in dog sera.
Oliveira, Rômulo Silva de; Cunha, Rodrigo Casquero; Moraes-Filho, Jonas; Gonçales, Relber Aguiar; Lara, Ana Paula de Souza Stori de; Avila, Luciana Farias da Costa de; Labruna, Marcelo Bahia; Leite, Fábio Pereira Leivas
2015-01-01
The canine monocytic ehrlichiosis, caused by Ehrlichia canis, is endemic in several regions of Brazil. Some serological diagnostic techniques using immunodominant proteins of E. canis as antigens are available, but their specificities and sensitivities are questionable. Based on this, the objective of this study was to test the antigenic potential of the recombinant gp19 protein (rGP19) for subsequent use in diagnostic tests. The rGP19 expressed in the Escherichia coli strain BL21 (DE3) C41 was recognized in the sera from experimentally infected dogs using ELISA and Western blotting. Thus, it was possible to obtain a promising antigen with the ability to differentiate between E. canis-positive and -negative animals, even 1 week after infection.
Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.
2013-01-01
An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357
Genta, Ida; Colonna, Claudia; Conti, Bice; Caliceti, Paolo; Salmaso, Stefano; Speziale, Pietro; Pietrocola, Giampiero; Chiesa, Enrica; Modena, Tiziana; Dorati, Rossella
2016-12-01
The aim of this work was the assessment of the "in vivo" immune response of a poly(lactide-co-glycolide)-based nanoparticulate adjuvant for a sub-unit vaccine, namely, a purified recombinant collagen-binding bacterial adhesion fragment (CNA19), against Staphylococcus aureus-mediated infections. "In vivo" immunogenicity studies were performed on mice: immunisation protocols encompassed subcutaneous and intranasal administration of CNA19 formulated as nanoparticles (NPs) and furthermore, CNA19-loaded NPs formulated in a set-up thermosetting chitosan-β-glycerolphosphate (chitosan-β-GP) solution for intranasal route in order to extend antigen exposure to nasal mucosa. CNA19 loaded NPs (mean size of about 195 nm, 9.04 ± 0.37μg/mg as CNA19 loading capacity) confirmed as suitable vaccine for subcutaneous administration with a more pronounced adjuvant effect (about 3-fold higher) with respect to aluminium, recognised as "reference" adjuvant. CNA19 loaded NPs formulated in an optimised thermogelling chitosan-β-GP solution showed promising results for eliciting an effective humoral response and a good chance as intranasal boosting dose.
AFM force measurements of the gp120-sCD4 and gp120 or CD4 antigen-antibody interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong, E-mail: dr_yongchen@hotmail.com; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612; Zeng, Gucheng
2011-04-08
Highlights: {yields} The unbinding force of sCD4-gp120 interaction was 25.45 {+-} 20.46 pN. {yields} The unbinding force of CD4 antigen-antibody interaction was 51.22 {+-} 34.64 pN. {yields} The unbinding force of gp120 antigen-antibody interaction was 89.87 {+-} 44.63 pN. {yields} The interaction forces between various HIV inhibitors and the target molecules are significantly different. {yields} Functionalizing on AFM tip or substrate of an interaction pair caused different results. -- Abstract: Soluble CD4 (sCD4), anti-CD4 antibody, and anti-gp120 antibody have long been regarded as entry inhibitors in human immunodeficiency virus (HIV) therapy. However, the interactions between these HIV entry inhibitors andmore » corresponding target molecules are still poorly understood. In this study, atomic force microscopy (AFM) was utilized to investigate the interaction forces among them. We found that the unbinding forces of sCD4-gp120 interaction, CD4 antigen-antibody interaction, and gp120 antigen-antibody interaction were 25.45 {+-} 20.46, 51.22 {+-} 34.64, and 89.87 {+-} 44.63 pN, respectively, which may provide important mechanical information for understanding the effects of viral entry inhibitors on HIV infection. Moreover, we found that the functionalization of an interaction pair on AFM tip or substrate significantly influenced the results, implying that we must perform AFM force measurement and analyze the data with more caution.« less
Georgiev, Ivelin S; Joyce, M Gordon; Yang, Yongping; Sastry, Mallika; Zhang, Baoshan; Baxa, Ulrich; Chen, Rita E; Druz, Aliaksandr; Lees, Christopher R; Narpala, Sandeep; Schön, Arne; Van Galen, Joseph; Chuang, Gwo-Yu; Gorman, Jason; Harned, Adam; Pancera, Marie; Stewart-Jones, Guillaume B E; Cheng, Cheng; Freire, Ernesto; McDermott, Adrian B; Mascola, John R; Kwong, Peter D
2015-05-01
Similar to other type I fusion machines, the HIV-1 envelope glycoprotein (Env) requires proteolytic activation; specifically, cleavage of a gp160 precursor into gp120 and gp41 subunits creates an N-terminal gp41 fusion peptide and permits folding from an immature uncleaved state to a mature closed state. While the atomic-level consequences of cleavage for HIV-1 Env are still being determined, the uncleaved state is antigenically distinct from the mature closed state, and cleavage has been reported to be essential for mimicry of the mature viral spike by soluble versions of Env. Here we report the redesign of a current state-of-the-art soluble Env mimic, BG505.SOSIP, to make it cleavage independent. Specifically, we replaced the furin cleavage site between gp120 and gp41 with Gly-Ser linkers of various lengths. The resultant linked gp120-gp41 constructs, termed single-chain gp140 (sc-gp140), exhibited different levels of structural and antigenic mimicry of the parent cleaved BG505.SOSIP. When constructs were subjected to negative selection to remove subspecies recognized by poorly neutralizing antibodies, trimers of high antigenic mimicry of BG505.SOSIP could be obtained; negative-stain electron microscopy indicated these to resemble the mature closed state. Higher proportions of BG505.SOSIP-trimer mimicry were observed in sc-gp140s with linkers of 6 or more residues, with a linker length of 15 residues exhibiting especially promising traits. Overall, flexible linkages between gp120 and gp41 in BG505.SOSIP can thus substitute for cleavage, and sc-gp140s that closely mimicked the vaccine-preferred mature closed state of Env could be obtained. The trimeric HIV-1 envelope glycoprotein (Env) is the sole target of virus-directed neutralizing antibody responses and a primary focus of vaccine design. Soluble mimics of Env have proven challenging to obtain and have been thought to require proteolytic cleavage into two-component subunits, gp120 and gp41, to achieve structural and antigenic mimicry of mature Env spikes on virions. Here we show that replacement of the cleavage site between gp120 and gp41 in a lead soluble gp140 construct, BG505.SOSIP, with flexible linkers can result in molecules that do not require cleavage to fold efficiently into the mature closed state. Our results provide insights into the impact of cleavage on HIV-1 Env folding. In some contexts such as genetic immunization, optimized cleavage-independent soluble gp140 constructs may have utility over the parental BG505.SOSIP, as they would not require furin cleavage to achieve mimicry of mature Env spikes on virions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Kunoee, Asja; Nielsen, Jens; Cowan, Susan
2016-01-01
In Denmark, universal screening of pregnant women for hepatitis B has been in place since November 2005, with the first two years as a trial period with enhanced surveillance. It is unknown what the change to universal screening without enhanced surveillance has meant for vaccination coverage among children born to hepatitis B surface antigen (HBsAg)-positive mothers and what risk factors exist for incomplete vaccination. This retrospective cohort study included 699 children of mothers positive for HBsAg. Information on vaccination and risk factors was collected from central registers. In total, 93% (651/699) of the children were vaccinated within 48 hours of birth, with considerable variation between birthplaces. Only 64% (306/475) of the children had received all four vaccinations through their general practitioner (GP) at the age of two years, and 10% (47/475) of the children had received no hepatitis B vaccinations at all. Enhanced surveillance was correlated positively with coverage of birth vaccination but not with coverage at the GP. No or few prenatal examinations were a risk factor for incomplete vaccination at the GP. Maternity wards and GPs are encouraged to revise their vaccination procedures and routines for pregnant women, mothers with chronic HBV infection and their children.
Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.
Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A
2018-01-24
Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy. Copyright © 2018 the authors 0270-6474/18/381000-15$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saphire, E.O.; Montero, M.; Menendez, A.
2007-07-13
The human antibody b12 recognizes a discontinuous epitope on gp120 and is one of the rare monoclonal antibodies that neutralize a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates. We previously reported the isolation of B2.1, a dimeric peptide that binds with high specificity to b12 and competes with gp120 for b12 antibody binding. Here, we show that the affinity of B2.1 was improved 60-fold over its synthetic-peptide counterpart by fusing it to the N terminus of a soluble protein. This affinity, which is within an order of magnitude of that of gp120, probably more closely reflectsmore » the affinity of the phage-borne peptide. The crystal structure of a complex between Fab of b12 and B2.1 was determined at 1.8 Angstrom resolution. The structural data allowed the differentiation of residues that form critical contacts with b12 from those required for maintenance of the antigenic structure of the peptide, and revealed that three contiguous residues mediate B2.1's critical contacts with b12. This single region of critical contact between the B2.1 peptide and the b12 paratope is unlikely to mimic the discontinuous key binding residues involved in the full b12 epitope for gp120, as previously identified by alanine scanning substitutions on the gp120 surface. These structural observations are supported by experiments that demonstrate that B2.1 is an ineffective immunogenic mimic of the b12 epitope on gp120. Indeed, an extensive series of immunizations with B2.1 in various forms failed to produce gp120 cross-reactive sera. The functional and structural data presented here, however, suggest that the mechanism by which b12 recognizes the two antigens is very different. Here, we present the first crystal structure of peptide bound to an antibody that was originally raised against a discontinuous protein epitope. Our results highlight the challenge of producing immunogens that mimic discontinuous protein epitopes, and the necessity of combining complementary experimental approaches in analyzing the antigenic and immunogenic properties of putative molecular mimics.« less
Studies on the structures of the Tm, Sj, M1, Can, Sext and Hu blood group antigens.
Dahr, W; Knuppertz, G; Beyreuther, K; Moulds, J J; Moulds, M; Wilkinson, S; Capon, C; Fournet, B; Issitt, P D
1991-08-01
The Glycophorins (GPs = sialoglycoproteins) in erythrocyte membranes from various Black individuals, some of which exhibit the M1, Can, Sj, Tm, Sext and/or Hu antigens, and several Caucasian donors, including pooled fetal red cells, were studied. Using agglutination inhibition assays with GP fractions, GP fragments and chemically modified GPs as well as trypsin treatment of intact red cells, the antigens defined by anti-M1, anti-M+M1, anti-Can and anti-Tm sera were found to be located on the N-terminal tryptic peptide (T2, residues 1-31) of the major GP (GP A = MN sialoglycoprotein). Evidence was obtained that the N-terminal amino-acid residue, NeuNAc and/or (a) different sugar residue(s) are involved in the antigens. Amino-acid sequence and composition analyses excluded an amino-acid exchange within the N-terminal region (residues 1-31) of GP A. Carbohydrate analyses revealed the attachment of GlcNAc residues (up to about five, dependent on the strength of the above-mentioned antigens) to O-glycosidically linked oligosaccharides within the N-terminal portion (residues 1-31) of GP A. As judged from the carbohydrate compositions of peptides, the alteration of the O-glycosidic oligosaccharides is associated with a slight increase of the Gal and Fuc contents and a slight decrease of the NeuNAc level. Analyses of small, secondary cyanogen bromide and V8 proteinase peptides from the N-terminal region of GP A from Blacks, Caucasians and Caucasian fetal cells suggest that the variable attachment of small quantities of GlcNAc (about 0.03 to about 0.2 residues per peptide molecule) accounts, at least in part, for the polymorphisms detected by anti-Can and the original anti-Tm (serum Sheerin). Remarkably, the GlcNAc-containing O-glycosidic oligosaccharides occur only in small quantities, or not all at, within the positions 32-61 of GP A and the glycosylated domains of GP B and GP C.(ABSTRACT TRUNCATED AT 400 WORDS)
Antigenic Properties of the HIV Envelope on Virions in Solution
Mengistu, Meron; Lewis, George K.; Lakowicz, Joseph R.
2014-01-01
The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro. PMID:24284318
Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.
2008-01-01
The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410
Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andy; Fernandez, Soledad; Tsukahara, Tomonori; Ratner, Lee; Lairmore, Michael D.
2005-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell lymphoma/leukemia (ATL). The HTLV-1 envelope gene exhibits limited variability when examined from infected individuals, but has not been tested using infectious clones of the virus in animal models. In vitro assays indicate that HTLV-1 envelope (Env) Ser75Ile, Asn95Asp, and Asn195Asp surface unit (SU) mutants are able to replicate in and immortalize lymphocytes. Herein, we examined the effects of these Env mutants in rabbits inoculated with HTLV-1 immortalized ACH.75, ACH.95, or ACH.195 cell lines (expressing full-length molecular clones with the SU mutations) or the ACH.1 cell line (expressing wild-type SU). All rabbits became infected, and the fidelity of the mutations was maintained throughout the 8-week study. However, SU point mutations resulted in decreased antibody responses to viral group-associated antigen (Gag) and Env antigens. ACH.195 rabbits had a selective decreased antibody response to SU, and one ACH.195 rabbit had an antibody response to both HTLV-1 and HTLV-2 SUs. Some mutant inoculation groups had altered proviral loads. However, peripheral-blood mononuclear cell (PBMC) proviral loads did not correlate with antibody responses. Our data are the first to demonstrate that mutations in critical determinants of HTLV-1 Env SU altered antibody responses and proviral loads, but do not prevent viral replication in vivo. PMID:16046523
Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike
Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia; ...
2017-04-10
Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less
Antigenicity-defined conformations of an extremely neutralization-resistant HIV-1 envelope spike
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yongfei; Karaca-Griffin, Selen; Chen, Jia
Here, the extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160) 3, cleaved to (gp120/gp41) 3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies.more » The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160) 3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.« less
Yang, C-A; Lin, J-A; Chang, C-W; Wu, K-H; Yeh, S-P; Ho, C-M; Chang, J-G
2016-10-01
To evaluate the clinical significance of GP. Mur antigen-negative blood selection for transfusion in patients with anti-'Mi a ' records. The GP. Mur RBC phenotype is prevalent (7·3%) in Taiwan. Antibodies against GP. Mur (anti-'Mi a ') are identified in 1·24% of our population, and anti-'Mi a ' screening using GP. Mur RBC has been routine for Taiwan's blood banks. However, due to the lack of commercial antibodies, only cross-matching was used to prevent transfusion of GP. Mur-positive blood to patients with anti-'Mi a ' in most hospitals. There is still a risk of GP. Mur-positive RBC exposure and subsequent anti-'Mi a '-related transfusion reactions. Since February 2014, GP. Mur antigen-negative RBCs identified by reaction with anti-'Mi a '-positive serum were selected for blood recipients with anti-'Mi a ' records. The transfusion reactions between January 2013 and January 2014 were compared with those that occurred between February 2014 and July 2015. The transfusion reaction rate was significantly higher in anti-'Mi a '-positive blood recipients compared to total subjects receiving an RBC transfusion before GP. Mur-negative donor RBC selection. After antigen-negative RBC selection, the transfusion reaction frequency in subjects with anti-'Mi a ' became similar to total blood recipients. IgG form anti-'Mi a ' antibodies were present in all cases of probable anti-'Mi a '-related transfusion reactions. The time required for anti-'Mi a ' boosting after transfusion was around 4-21 days. Selection of GP. Mur-negative RBC for transfusion to patients with anti-'Mi a ' records could decrease the rate of transfusion reaction and antibody boosting. This procedure should be incorporated into blood bank routines in areas where anti-'Mi a ' is prevalent. © 2016 British Blood Transfusion Society.
Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo
2005-10-28
Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.
Park, Chung; Arthos, James; Cicala, Claudia; Kehrl, John H
2015-01-01
The HIV-1 envelope protein gp120 is both the target of neutralizing antibodies and a major focus of vaccine efforts; however how it is delivered to B cells to elicit an antibody response is unknown. Here, we show that following local gp120 injection lymph node (LN) SIGN-R1+ sinus macrophages located in interfollicular pockets and underlying SIGN-R1+ macrophages form a cellular network that rapidly captures gp120 from the afferent lymph. In contrast, two other antigens, phycoerythrin and hen egg lysozyme, were not captured by these cells. Intravital imaging of mouse LNs revealed persistent, but transient interactions between gp120 bearing interfollicular network cells and both trafficking and LN follicle resident gp120 specific B cells. The gp120 specific, but not the control B cells repetitively extracted gp120 from the network cells. Our findings reveal a specialized LN antigen delivery system poised to deliver gp120 and likely other pathogen derived glycoproteins to B cells. DOI: http://dx.doi.org/10.7554/eLife.06467.001 PMID:26258881
Chen, Xi; Munshaw, Supriya; Zhang, Ruijun; Marshall, Dawn J.; Vandergrift, Nathan; Whitesides, John F.; Lu, Xiaozhi; Yu, Jae-Sung; Hwang, Kwan-Ki; Gao, Feng; Markowitz, Martin; Heath, Sonya L.; Bar, Katharine J.; Goepfert, Paul A.; Montefiori, David C.; Shaw, George C.; Alam, S. Munir; Margolis, David M.; Denny, Thomas N.; Boyd, Scott D.; Marshal, Eleanor; Egholm, Michael; Simen, Birgitte B.; Hanczaruk, Bozena; Fire, Andrew Z.; Voss, Gerald; Kelsoe, Garnett; Tomaras, Georgia D.; Moody, M. Anthony; Kepler, Thomas B.
2011-01-01
The initial antibody response to HIV-1 is targeted to envelope (Env) gp41, and is nonneutralizing and ineffective in controlling viremia. To understand the origins and characteristics of gp41-binding antibodies produced shortly after HIV-1 transmission, we isolated and studied gp41-reactive plasma cells from subjects acutely infected with HIV-1. The frequencies of somatic mutations were relatively high in these gp41-reactive antibodies. Reverted unmutated ancestors of gp41-reactive antibodies derived from subjects acutely infected with HIV-1 frequently did not react with autologous HIV-1 Env; however, these antibodies were polyreactive and frequently bound to host or bacterial antigens. In one large clonal lineage of gp41-reactive antibodies, reactivity to HIV-1 Env was acquired only after somatic mutations. Polyreactive gp41-binding antibodies were also isolated from uninfected individuals. These data suggest that the majority of gp41-binding antibodies produced after acute HIV-1 infection are cross-reactive responses generated by stimulating memory B cells that have previously been activated by non–HIV-1 antigens. PMID:21987658
Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma.
Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia
2015-09-01
In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL)-mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 L(d). Increase of H-2 L(d) expression by cDNA transfection (Sp6/B7/L(d)) raised tumour immune protection and shifted most CTL responses towards H-2 L(d)-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 L(d)-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/L(d) cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.
Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma
Mazzocco, Marta; Martini, Matteo; Rosato, Antonio; Stefani, Elisabetta; Matucci, Andrea; Dalla Santa, Silvia; De Sanctis, Francesco; Ugel, Stefano; Sandri, Sara; Ferrarini, Giovanna; Cestari, Tiziana; Ferrari, Sergio; Zanovello, Paola; Bronte, Vincenzo; Sartoris, Silvia
2015-01-01
In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL) -mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 Ld. Increase of H-2 Ld expression by cDNA transfection (Sp6/B7/Ld) raised tumour immune protection and shifted most CTL responses towards H-2 Ld-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 Ld-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/Ld cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost. PMID:25959091
Morris, Charles D.; Azadnia, Parisa; de Val, Natalia; Vora, Nemil; Honda, Andrew; Giang, Erick; Saye-Francisco, Karen; Cheng, Yushao; Lin, Xiaohe; Mann, Colin J.; Tang, Jeffrey; Sok, Devin; Burton, Dennis R.; Law, Mansun; Ward, Andrew B.
2017-01-01
ABSTRACT Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches. PMID:28246356
Pejawar-Gaddy, Sharmila; Kovacs, James M; Barouch, Dan H; Chen, Bing; Irvine, Darrell J
2014-08-20
Immunization strategies that elicit antibodies capable of neutralizing diverse virus strains will likely be an important part of a successful vaccine against HIV. However, strategies to promote robust humoral responses against the native intact HIV envelope trimer structure are lacking. We recently developed chemically cross-linked lipid nanocapsules as carriers of molecular adjuvants and encapsulated or surface-displayed antigens, which promoted follicular helper T-cell responses and elicited high-avidity, durable antibody responses to a candidate malaria antigen. To apply this system to the delivery of HIV antigens, Env gp140 trimers with terminal his-tags (gp140T-his) were anchored to the surface of lipid nanocapsules via Ni-NTA-functionalized lipids. Initial experiments revealed that the large (409 kDa), heavily glycosylated trimers were capable of extracting fluid phase lipids from the membranes of nanocapsules. Thus, liquid-ordered and/or gel-phase lipid compositions were required to stably anchor trimers to the particle membranes. Trimer-loaded nanocapsules combined with the clinically relevant adjuvant monophosphoryl lipid A primed high-titer antibody responses in mice at antigen doses ranging from 5 μg to as low as 100 ng, whereas titers dropped more than 50-fold over the same dose range when soluble trimer was mixed with a strong oil-in-water adjuvant comparator. Nanocapsule immunization also broadened the number of distinct epitopes on the HIV trimer recognized by the antibody response. These results suggest that nanocapsules displaying HIV trimers in an oriented, multivalent presentation can promote key aspects of the humoral response against Env immunogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esser, Lothar; Shukla, Suneet; Zhou, Fei
P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays tomore » 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.« less
Guttman, Miklós; Váradi, Csaba; Lee, Kelly K.; Guttman, András
2015-01-01
The Human Immunodeficiency Virus (HIV) envelope glycoprotein (Env) is the primary antigenic feature on the surface of the virus and is of key importance in HIV vaccinology. Vaccine trials with the gp120 subunit of Env are ongoing with the recent RV144 trial showing moderate efficacy. gp120 is densely covered with N-linked glycans that are thought to help evade the host's humoral immune response. To assess how the global glycosylation patterns vary between gp120 constructs, the glycan profiles of several gp120s were examined by capillary electrophoresis with laser induced fluorescence detection and MALDI-MS. The glycosylation profiles were found to be similar for chronic vs. transmitter/founder isolates and only varied moderately between gp120s from different clades. This study revealed that the addition of specific tags, such as the gD tag used in the RV144 trial, had significant effects on the overall glycosylation patterns. Such effects are likely to influence the immunogenicity of various Env immunogens and should be considered for future vaccine strategies, emphasizing the importance of the glycosylation analysis approach described in this paper. PMID:25809283
Wang, Zihao; Lorin, Clarisse; Koutsoukos, Marguerite; Franco, David; Bayat, Babak; Zhang, Ying; Carfi, Andrea; Barnett, Susan W.; Porter, Frederick
2016-01-01
Two HIV-1 subtype C gp120 protein candidates were the selected antigens for several experimental vaccine regimens now under evaluation in HVTN 100 Phase I/II clinical trial aiming to support the start of the HVTN 702 Phase IIb/III trial in southern Africa, which is designed to confirm and extend the partial protection seen against HIV-1 infection in the RV144 Thai trial. Here, we report the comprehensive physicochemical characterization of the gp120 reference materials that are representative of the clinical trial materials. Gp120 proteins were stably expressed in Chinese Hamster Ovary (CHO) cells and subsequently purified and formulated. A panel of analytical techniques was used to characterize the physicochemical properties of the two protein molecules. When formulated in the AS01 Adjuvant System, the bivalent subtype C gp120 antigens elicited 1086.C- and TV1.C-specific binding antibody and CD4+ T cell responses in mice. All the characteristics were highly representative of the Clinical Trial Materials (CTM). Data from this report demonstrate the immunogenicity of the gp120 antigens, provide comprehensive characterization of the molecules, set the benchmark for assessment of current and future CTM lots, and lay the physicochemical groundwork for interpretation of future clinical trial data. PMID:27187483
Du, Luping; Yu, Zhengyu; Pang, Fengjiao; Xu, Xiangwei; Mao, Aihua; Yuan, Wanzhe; He, Kongwang; Li, Bin
2018-01-01
Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system. PMID:29423381
Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.
2013-01-01
We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated. PMID:24145402
Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.
2008-01-01
Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627
López-Karpovitch, Xavier; Graue, Gerardo; Crespo-Solís, Erick; Piedras, Josefa
2008-07-01
High P-glycoprotein-mediated multidrug resistance-1 (P-gp/MDR1) activity in lymphocytes from idiopathic thrombocytopenic purpura (ITP) patients may affect disease outcome. ITP treatment includes glucocorticoids that are substrates of P-gp; hence, P-gp functional activity and antigenic expression were assessed by flow cytometry in T and natural killer (NK) cells from ITP patients before and after prednisone therapy. Herein, patients' T and NK cells did not show increased MDR1 functional activity, whereas P-gp antigenic expression was significantly enhanced in both therapy-free and prednisone-treated patients. Prednisone treatment did not significantly modify the function and expression of MDR1 in T and NK cells of ITP patients.
Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J
2011-07-01
To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at <470 parasites/μl and <4900 parasites/μl for HRP2 and aldolase, respectively. Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.
Trama, Ashley M.; Moody, M. Anthony; Alam, S. Munir; Jaeger, Frederick H.; Lockwood, Bradley; Parks, Robert; Lloyd, Krissey E.; Stolarchuk, Christina; Scearce, Richard; Foulger, Andrew; Marshall, Dawn J.; Whitesides, John F.; Jeffries, Thomas L.; Wiehe, Kevin; Morris, Lynn; Lambson, Bronwen; Soderberg, Kelly; Hwang, Kwan-Ki; Tomaras, Georgia D.; Vandergrift, Nathan; Jackson, Katherine J.L.; Roskin, Krishna M.; Boyd, Scott D.; Kepler, Thomas B.; Liao, Hua-Xin; Haynes, Barton F.
2014-01-01
SUMMARY Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env. PMID:25121750
dos Santos, Priscila Oliveira; Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; da Silva, Silvia Helena Marques; Burger, Eva; de Camargo, Zoilo Pires
2015-01-01
Background Paracoccidioidomycosis (PCM) is a life-threatening systemic disease and is a neglected public health problem in many endemic regions of Latin America. Though several diagnostic methods are available, almost all of them present with some limitations. Method/Principle Findings A latex immunoassay using sensitized latex particles (SLPs) with gp43 antigen, the immunodominant antigen of Paracoccidioides brasiliensis, or the monoclonal antibody mAb17c (anti-gp43) was evaluated for antibody or antigen detection in sera, cerebrospinal fluid (CSF), and bronchoalveolar lavage (BAL) from patients with PCM due to P. brasiliensis. The gp43-SLPs performed optimally to detect specific antibodies with high levels of sensitivity (98.46%, 95% CI 91.7–100.0), specificity (93.94%, 95% CI 87.3–97.7), and positive (91.4%) and negative (98.9%) predictive values. In addition, we propose the use of mAb17c-SLPs to detect circulating gp43, which would be particularly important in patients with immune deficiencies who fail to produce normal levels of immunoglobulins, achieving good levels of sensitivity (96.92%, 95% CI 89.3–99.6), specificity (88.89%, 95% CI 81.0–94.3), and positive (85.1%) and negative (97.8%) predictive values. Very good agreement between latex tests and double immune diffusion was observed for gp43-SLPs (k = 0.924) and mAb17c-SLPs (k = 0.850), which reinforces the usefulness of our tests for the rapid diagnosis of PCM in less than 10 minutes. Minor cross-reactivity occurred with sera from patients with other fungal infections. We successfully detected antigens and antibodies from CSF and BAL samples. In addition, the latex test was useful for monitoring PCM patients receiving therapy. Conclusions/Significance The high diagnostic accuracy, low cost, reduced assay time, and simplicity of this new latex test offer the potential to be commercialized and makes it an attractive diagnostic assay for use not only in clinics and medical mycology laboratories, but mainly in remote locations with limited laboratory infrastructure and/or minimally trained community health workers. PMID:25679976
Karnasuta, Chitraporn; Vasan, Sandhya; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Madnote, Sirinan; Savadsuk, Hathairat; Rittiroongrad, Surawach; Puangkaew, Jiraporn; Phogat, Sanjay; Tartaglia, James; Sinangil, Faruk; de Souza, Mark S.; Excler, Jean-Louis; Kim, Jerome H.; Robb, Merlin L.; Michael, Nelson L.; Ngauy, Viseth; O'Connell, Robert J.; Karasavvas, Nicos
2018-01-01
Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11–17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition. PMID:29702672
Dealler, S
1994-02-01
AGIs are produced by plants and microorgansims in the environment. They are absorbed from the gut, distributed throughout the body and are concentrated inside cells. AGIs alter the glycan chains of cellular glycoproteins (CGP) during their formation so that the same CGP produced by different clones of cells (and hence with different glycan chains) becomes structurally the same. Prion protein (PrP), a CGP, is rendered indestructable to cellular mechanisms (as PrPi) by the TSE infective process; it is suggested that AGIs could both cause and prevent this by altering the primary structure of PrP. HIV envelope protein, gp120, carries glycan chains that are decided by the clone of the cells by which it is produced. Each cellular clone would be expected to add a specific group of glycan chains, making the gp120 antigenically separate. As HIV infection progresses, infected clone numbers rise, the antigenic diversity of gp120 may rise as would antibody production, trying to keep pace. Antigenically stimulated CD4+ cells carrying HIV genes, increase HIV production with gp120 antigenically different from its stimulant. AGIs prevent the glycan diversity and may prevent the extension of HIV infection.
Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M
1986-03-15
Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.
Recognition of similar epitopes on varicella-zoster virus gpI and gpIV by monoclonal antibodies.
Vafai, A; Wroblewska, Z; Mahalingam, R; Cabirac, G; Wellish, M; Cisco, M; Gilden, D
1988-01-01
Two monoclonal antibodies, MAb43.2 and MAb79.0, prepared against varicella-zoster virus (VZV) proteins were selected to analyze VZV gpIV and gpI, respectively. MAb43.2 reacted only with cytoplasmic antigens, whereas MAb79.0 recognized both cytoplasmic and membrane antigens in VZV-infected cells. Immunoprecipitation of in vitro translation products with MAb43.2 revealed only proteins encoded by the gpIV gene, whereas MAb79.0 precipitated proteins encoded by the gpIV and gpI genes. Pulse-chase analysis followed by immunoprecipitation of VZV-infected cells indicated reactivity of MAb43.2 with three phosphorylated precursor species of gpIV and reactivity of MAb79.0 with the precursor and mature forms of gpI and gpIV. These results indicated that (i) MAb43.2 and MAb79.0 recognize different epitopes on VZV gpIV, (ii) glycosylation of gpIV ablates recognition by MAb43.2, and (iii) gpIV is phosphorylated. To map the binding site of MAb79.0 on gpI, the pGEM transcription vector, containing the coding region of the gpI gene, was linearized, and three truncated gpI DNA fragments were generated. RNA was transcribed from each truncated fragment by using SP6 RNA polymerase, translated in vitro in a rabbit reticulocyte lysate, and immunoprecipitated with MAb79.0 and human sera. The results revealed the existence of an antibody-binding site within 14 amino acid residues located between residues 109 to 123 on the predicted amino acid sequences of gpI. From the predicted amino acid sequences, 14 residues on gpI (residues 107 to 121) displayed a degree of similarity (36%) to two regions (residues 55 to 69 and 245 to 259) of gp IV. Such similarities may account for the binding of MAb79.0 to both VZV gpI and gpIV. Images PMID:2455814
Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R
2014-06-30
The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Secreted HSP Vaccine for Malaria Prophylaxis
2017-10-01
thereby stimulating an avid, antigen specific, cytotoxic CD8 T cell response. Here we developed malaria vaccine that relies on secreted gp96-Ig...vaccine is expected to provide prophylactic immunity for malaria by removing infected liver cells before sporozoites can replicate and spread to the...vaccine to the immunogenicity of NMRC-M3V-D/Ad-PfCA vaccine. We found that gp96-Ig vaccination provided stronger antigen specific CD8 T cell
Phogat, S; K, Svehla; M, Tang; A, Spadaccini; J, Muller; J, Mascola; Berkower; R, Wyatt
2009-01-01
Vaccine immunogens derived from the envelope glycoproteins of the human immunodeficiency virus type 1 (HIV-1) that elicit broad neutralizing antibodies remains an elusive goal. The highly conserved 30 amino acid membrane proximal external region (MPER) of HIV gp41 contains the hydrophobic epitopes for two rare HIV-1 broad cross-reactive neutralizing antibodies, 2F5 and 4E10. Both these antibodies possess relatively hydrophobic HCDR3 loops and demonstrate enhanced binding to their epitopes in the context of the native gp160 precursor envelope glycoprotein by the intimate juxtaposition of a lipid membrane. The Hepatitis B surface antigen (HBsAg) S1 protein forms nanoparticles that can be utilized both as an immunogenic array of the MPER and to provide the lipid environment needed for enhanced 2F5 and 4E10 binding. We show that recombinant HBsAg particles with MPER (HBsAg-MPER) appended at the C-terminus of the S1 protein are recognized by 2F5 and 4E10 with high affinity compared to positioning the MPER at the N-terminus or the extracellular loop (ECL) of S1. Addition of C-terminal hydrophobic residues derived from the HIV-1 Env transmembrane region further enhances recognition of the MPER by both 2F5 and 4E10. Delipidation of the HBsAg-MPER particles decreases 2F5 and 4E10 binding and subsequent reconstitution with synthetic lipids restores optimal binding. Inoculation of the particles into small animals raised cross-reactive antibodies that recognize both the MPER and HIV-1 gp160 envelope glycoproteins expressed on the cell surface; however, no neutralizing activity could be detected. Prime:boost immunization of the HBsAg-MPER particles in sequence with HIV envelope glycoprotein proteoliposomes (Env-PLs) did not raise neutralizing antibodies that could be mapped to the MPER region. However, the Env-PLs did raise anti-Env antibodies that had the ability to neutralize selected HIV-1 isolates. The first generation HBsAg-MPER particles represent a unique means to present HIV-1 envelope glycoprotein neutralizing determinants to the immune system. PMID:18155743
Kwong, Peter D.; Wyatt, Richard; Robinson, James; Sweet, Raymond W.; Sodroski, Joseph; Hendrickson, Wayne A.
2017-01-01
The entry of human immunodeficiency virus (HIV) into cells requires the sequential interaction of the viral exterior envelope glycoprotein, gp120, with the CD4 glycoprotein and a chemokine receptor on the cell surface. These interactions initiate a fusion of the viral and cellular membranes. Although gpl20 can elicit virus-neutralizing antibodies, HIV eludes the immune system. We have solved the X-ray crystal structure at 2.5 Å resolution of an HIV-1 gp120 core complexed with a two-domain fragment of human CD4 and an antigen-binding fragment of a neutralizing antibody that blocks chemokine-receptor binding. The structure reveals a cavity-laden CD4-gp120 interface, a conserved binding site for the chemokine receptor, evidence for a conformational change upon CD4 binding, the nature of a CD4-induced antibody epitope, and specific mechanisms for immune evasion. Our results provide a framework for understanding the complex biology of HIV entry into cells and should guide efforts to intervene. PMID:9641677
Nkolola, Joseph P; Peng, Hanqin; Settembre, Ethan C; Freeman, Michael; Grandpre, Lauren E; Devoy, Colleen; Lynch, Diana M; La Porte, Annalena; Simmons, Nathaniel L; Bradley, Ritu; Montefiori, David C; Seaman, Michael S; Chen, Bing; Barouch, Dan H
2010-04-01
The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.
Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry
2017-04-03
interface, rather than as expected to the more exposed surface of the 134 GP1,2 trimer [16]. Importantly, KZ52 protected guinea pigs (Cavia porcellus...from death after 135 inoculation with guinea pig -adapted EBOV [64], but failed to have a beneficial effect on EBOV-136 exposed rhesus monkeys... guinea pigs infected with 145 rodent-adapted EBOV or its antigenically distant relative, Sudan virus (SUDV) [68]. 146 Identification of ebolavirus
Candidate Medical Countermeasures Targeting Ebola Virus Cell Entry
2017-03-31
interface, rather than as expected to the more exposed surface of the 134 GP1,2 trimer [16]. Importantly, KZ52 protected guinea pigs (Cavia porcellus...from death after 135 inoculation with guinea pig -adapted EBOV [64], but failed to have a beneficial effect on EBOV-136 exposed rhesus monkeys... guinea pigs infected with 145 rodent-adapted EBOV or its antigenically distant relative, Sudan virus (SUDV) [68]. 146 Identification of ebolavirus
Lee, Chrono K.; Huang, Haibin; Hester, Maureen M.; Liu, Jianhua; Luckie, Bridget A.; Torres Santana, Melanie A.; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T.; Lodge, Jennifer K.; Akalin, Ali; Homan, Jane; Ostroff, Gary R.
2017-01-01
ABSTRACT Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. PMID:29184017
Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas
2016-02-19
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Cryptic species of Paracoccidioides brasiliensis: impact on paracoccidioidomycosis immunodiagnosis
Machado, Gabriel Capella; Moris, Daniela Vanessa; Arantes, Thales Domingos; Silva, Luciane Regina Franciscone; Theodoro, Raquel Cordeiro; Mendes, Rinaldo Pôncio; Vicentini, Adriana Pardini; Bagagli, Eduardo
2013-01-01
We aimed to evaluate whether the occurrence of cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii, has implications in the immunodiagnosis of paracoccidioidomycosis (PCM). Small quantities of the antigen gp43 were found in culture filtrates of P. lutzii strains and this molecule appeared to be more variable within P. lutzii because the synonymous-nonsynonymous mutation rate was lower, indicating an evolutionary process different from that of the remaining genotypes. The production of gp43 also varied between isolates belonging to the same species, indicating that speciation events are important, but not sufficient to fully explain the diversity in the production of this antigen. The culture filtrate antigen AgEpm83, which was obtained from a PS3 isolate, showed large quantities of gp43 and reactivity by immunodiffusion assays, similar to the standard antigen (AgB-339) from an S1 isolate. Furthermore, AgEpm83 was capable of serologically differentiating five serum samples from patients from the Botucatu and Jundiaí regions. These patients had confirmed PCM but, were non-reactive to the standard antigen, thus demonstrating an alternative for serological diagnosis in regions in which S1 and PS2 occur. We also emphasise that it is not advisable to use a single antigen preparation to diagnose PCM, a disease that is caused by highly diverse pathogens. PMID:23903981
Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4
Lai, Chih-Yun; Strange, Daniel P.; Wong, Teri Ann S.; Lehrer, Axel T.; Verma, Saguna
2017-01-01
Ebola virus (EBOV), a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD) is currently available, Ebola virus glycoprotein (GP) is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs). Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4 pathway and are able to modulate the innate-adaptive interface. These mechanistic insights into the adjuvant-like property of EBOV GP may help to develop a better understanding of how optimal prophylactic efficacy of EBOV vaccines can be achieved as well as further explore the potential post-exposure use of vaccines to prevent filoviral disease. PMID:28861075
Donnelly, Louise; Curran, Rhonda M.; Tregoning, John S.; McKay, Paul F.; Cole, Tom; Morrow, Ryan J.; Kett, Vicky L.; Andrews, Gavin P.; Woolfson, A. David; Malcolm, R. Karl; Shattock, Robin J.
2011-01-01
Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract. PMID:21514349
Polonoff, E; Machida, C A; Kabat, D
1982-12-10
Addition of asparagine-linked oligosaccharides to nascent murine leukemia virus (MuLV)-encoded membrane glycoproteins was inhibited either completely by tunicamycin or specifically at Asn-X-Thr glycosylation sites by incorporation of the threonine analogue beta-hydroxynorvaline. In conditions of partial analogue substitution, a series of subglycosylated components is formed which are related by a constant apparent Mr difference when assayed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The total number of asparagine-linked oligosaccharides is then estimated by dividing the measured apparent Mr of one oligosaccharide into the total apparent Mr difference between the complete glycoprotein and the polypeptide chain that is synthesized in cells incubated with tunicamycin. Correct results were obtained using glycoproteins with known numbers of oligosaccharides. Our analyses indicate that the gp70 membrane envelope glycoproteins of certain ecotropic MuLVs contain seven oligosaccharides, whereas the GIX+ antigen-containing variant gp70 contains one fewer Asn-X-Thr-linked oligosaccharide. The membrane glycoprotein encoded by the gag gene of Friend MuLV contains only one asparagine-linked oligosaccharide. Similarly, the gp55 membrane glycoprotein encoded by Friend erythroleukemia virus contains four asparagine-linked oligosaccharides. Pulse-chase and cell surface iodination analyses indicate that MuLV membrane envelope glycoprotein processing by partial proteolysis and transport to the cell surface can be efficiently blocked by structural perturbations caused by incorporation of different amino acid analogues or by loss of oligosaccharides. Our data also suggest that loss of oligosaccharides may expose new antigenic sites in viral membrane glycoproteins and increase their susceptibility to intracellular proteolysis.
Structure and immune recognition of trimeric pre-fusion HIV-1 Env
Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr; ...
2014-10-08
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less
Structure and immune recognition of trimeric pre-fusion HIV-1 Env
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pancera, Marie; Zhou, Tongqing; Druz, Aliaksandr
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 Å resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed formore » fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. In conclusion, N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.« less
Bour, S; Geleziunas, R; Wainberg, M A
1995-01-01
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established. PMID:7708013
Stricker, R B; Lewis, B H; Corash, L; Shuman, M A
1987-05-01
Although alloantibody against the PLA1 platelet antigen is usually found in patients with posttransfusion purpura (PTP), the mechanism of destruction of the patient's own PLA1-negative platelets is unexplained. We used a sensitive immunoblot technique to detect antiplatelet antibodies in a patient with classic PTP. The patient's acute-phase serum contained antibodies against three proteins present in control (PLA1-positive) platelets: an antibody that bound to a previously unrecognized platelet protein of mol wt 120,000 [glycoprotein (GP) 120], antibodies that bound to PLA1 (mol wt 90,000), and an epitope of GP IIb (mol wt 140,000). The antibodies against PLA1 and GP IIb did not react with the patient's own PLA1-negative platelets, control PLA1-negative platelets, or thrombasthenic platelets. In contrast, the antibody against GP 120 recognized this protein in all three platelet preparations, but not in Bernard-Soulier or Leka (Baka)-negative platelets. Antibody against GP 120 was not detected in the patient's recovery serum, although the antibodies against PLA1 and GP IIb persisted. F(ab)2 prepared from the patient's acute-phase serum also bound to GP 120. These results suggest that in PTP, transient autoantibody production may be responsible for autologous (PLA1-negative) platelet destruction. In addition, alloantibodies against more than one platelet alloantigen may be found in this disease. The nature of the GP 120 autoantigen and the GP IIb-related alloantigen defined by our patient's serum remains to be determined.
A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pejchal, Robert; Doores, Katie J.; Walker, Laura M.
The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man{sub 9} at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short {beta}-strand segment ofmore » the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.« less
Potent neutralizing monoclonal antibodies against Ebola virus infection
Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F.; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi
2016-01-01
Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection. PMID:27181584
Potent neutralizing monoclonal antibodies against Ebola virus infection.
Zhang, Qi; Gui, Miao; Niu, Xuefeng; He, Shihua; Wang, Ruoke; Feng, Yupeng; Kroeker, Andrea; Zuo, Yanan; Wang, Hua; Wang, Ying; Li, Jiade; Li, Chufang; Shi, Yi; Shi, Xuanling; Gao, George F; Xiang, Ye; Qiu, Xiangguo; Chen, Ling; Zhang, Linqi
2016-05-16
Ebola virus infections cause a deadly hemorrhagic disease for which no vaccines or therapeutics has received regulatory approval. Here we show isolation of three (Q206, Q314 and Q411) neutralizing monoclonal antibodies (mAbs) against the surface glycoprotein (GP) of Ebola virus identified in West Africa in 2014 through sequential immunization of Chinese rhesus macaques and antigen-specific single B cell sorting. These mAbs demonstrated potent neutralizing activities against both pseudo and live Ebola virus independent of complement. Biochemical, single particle EM, and mutagenesis analysis suggested Q206 and Q411 recognized novel epitopes in the head while Q314 targeted the glycan cap in the GP1 subunit. Q206 and Q411 appeared to influence GP binding to its receptor NPC1. Treatment with these mAbs provided partial but significant protection against disease in a mouse model of Ebola virus infection. These novel mAbs could serve as promising candidates for prophylactic and therapeutic interventions against Ebola virus infection.
Goodpasture's autoimmune disease - A collagen IV disorder.
Pedchenko, Vadim; Richard Kitching, A; Hudson, Billy G
2018-05-12
Goodpasture's (GP) disease is an autoimmune disorder characterized by the deposition of pathogenic autoantibodies in basement membranes of kidney and lung eliciting rapidly progressive glomerulonephritis and pulmonary hemorrhage. The principal autoantigen is the α345 network of collagen IV, which expression is restricted to target tissues. Recent discoveries include a key role of chloride and bromide for network assembly, a novel posttranslational modification of the antigen, a sulfilimine bond that crosslinks the antigen, and the mechanistic role of HLA in genetic susceptibility and resistance to GP disease. These advances provide further insights into molecular mechanisms of initiation and progression of GP disease and serve as a basis for developing of novel diagnostic tools and therapies for treatment of Goodpasture's disease. Copyright © 2017. Published by Elsevier B.V.
Zhang, Yan; Niu, Yuzhen; Tian, Jiaqi; Liu, Xuewei; Yao, Xiaojun; Liu, Huanxiang
2017-12-01
N-linked glycans such as 234 and 276 gp 120 glycans are vital components of HIV evasion from humoral immunity and important for HIV-1 neutralization of many broadly neutralizing antibodies (bNAbs). However, it is unknown the action mechanism of two glycans. To investigate the roles of the glycans on the interactions of gp120 with CD4 and antibody, molecular dynamic simulations based on gp120-CD4-8ANC195 complex with 234 and 276 gp 120 glycans, 234 gp 120 glycan, 276 gp 120 glycan, and without glycan were performed. Our results reveal that 276 gp 120 glycan can enhance gp120-CD4 and gp120-antibody interactions through the formation of hydrogen bonds of the glycan with CD4 and antibody and make the binding interface of gp120, CD4 and antibody stable; 234 gp 120 glycan primarily reinforces gp120-antibody interactions and weakly affects gp120-CD4 interactions as it mainly lies between gp120 and antibody. The co-operating of two glycans can enhance gp120-CD4 and gp120-antibody associations. Through the structural analysis, it can be seen that 234 gp 120 glycan leads to moving upward of two glycans and the variable region of heavy chain, which is favorable for the interactions of gp120 with CD4 and antibody. The information obtained in this study can provide the guidance for design vaccines and small molecule inhibitors. © 2017 John Wiley & Sons A/S.
2006-11-22
multiple muta- tions were not studied, (iii) a vaccinia virus (VACV)- T7 system was used for transient expression, (iv) pseudotyped retrovi- ruses were used...those studies produced little to no detectable GP1 or GP2 in the transient VACV- T7 expression assays, whereas in our studies with the DNA con- structs...type GP2 was detected in pseudotyped retroviruses, a result seemingly in conflict with these authors’ findings with the VACV- T7 expression. Although
Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.
2014-01-01
ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure. PMID:24920818
Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver
2010-02-01
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.
2008-04-01
Andrews GP, Welkos SL, Friedlander AM, et al. Protection of mice from fatal bubonic and pneu- monic plague by passive immunization with monoclonal...SL, Andrews GP, Adamovicz J, et al. Protection against experimental bubonic and pneumonic plague by a recombinant capsular F1-V antigen fusion...fusion protein as vaccine antigen against bubonic and pneumonic plague . Biotechnol Prog 2005; 21:1490e510.[21] Simpson WJ, Thomas RE, Schwan TG
Nakamura, Masashi; Yagami, Akiko; Hara, Kazuhiro; Sano-Nagai, Akiyo; Kobayashi, Tsukane; Matsunaga, Kayoko
2016-06-01
In Japan, over 2000 users of a facial soap containing Glupearl 19S (GP19S), a hydrolysed wheat protein (HWP), developed immediate-type systemic wheat allergy (HWP-IWA), and ∼70% of them developed associated contact urticaria. We investigated whether HWP-IWA patients cross-react with other HWPs, and analysed HWP antigenic characteristics. We used 10 types of HWP that are commercially available as cosmetic ingredients, and 16 subjects with HWP-IWA. We performed an enzyme-linked immunosorbent assay (ELISA) to evaluate the reactivity to each HWP, and western blotting to evaluate the characteristics of the antigens by using HWP-IWA patients' serum IgE antibodies. We also performed prick tests with the HWPs. The patients reacted to four other HWPs in addition to GP19S, according to ELISA, and this was confirmed by strong reactions in the prick tests to the same four types of HWP. Smears of antigens with molecular weights ranging from the high range to the low range were seen on western blotting with the four HWPs that showed strong reactions in the ELISA and prick tests. HWP-IWA patients cross-react with other HWPs. The antigens that they cross-reacted to had a molecular weight distribution similar to that of GP19S present in the HWPs. © 2016 The Authors. Contact Dermatitis published by John Wiley & Sons Ltd.
Nakamura, Masashi; Yagami, Akiko; Hara, Kazuhiro; Sano‐Nagai, Akiyo; Kobayashi, Tsukane
2016-01-01
Summary Background In Japan, over 2000 users of a facial soap containing Glupearl 19S (GP19S), a hydrolysed wheat protein (HWP), developed immediate‐type systemic wheat allergy (HWP‐IWA), and ∼70% of them developed associated contact urticaria. Objectives We investigated whether HWP‐IWA patients cross‐react with other HWPs, and analysed HWP antigenic characteristics. Methods We used 10 types of HWP that are commercially available as cosmetic ingredients, and 16 subjects with HWP‐IWA. We performed an enzyme‐linked immunosorbent assay (ELISA) to evaluate the reactivity to each HWP, and western blotting to evaluate the characteristics of the antigens by using HWP‐IWA patients' serum IgE antibodies. We also performed prick tests with the HWPs. Results The patients reacted to four other HWPs in addition to GP19S, according to ELISA, and this was confirmed by strong reactions in the prick tests to the same four types of HWP. Smears of antigens with molecular weights ranging from the high range to the low range were seen on western blotting with the four HWPs that showed strong reactions in the ELISA and prick tests. Conclusions HWP‐IWA patients cross‐react with other HWPs. The antigens that they cross‐reacted to had a molecular weight distribution similar to that of GP19S present in the HWPs. PMID:27027256
Mount, David T.; Bigazzi, Pierluigi E.; Barron, Almen L.
1973-01-01
Male guinea pigs were inoculated intraurethrally with the agent of guinea pig inclusion conjunctivitis (Gp-ic). Cytoplasmic inclusions were found in superficial epithelial cells of the urethra in smears and stained sections. Gp-ic antigen(s) was detected by immunofluorescent staining of sections. There was no marked urethral exudate, but many animals developed bullous lesions on the glans and the body of the penis and a severe inflammatory lesion of the hind leg. All males demonstrated an antibody response and most of them showed a positive skin test reaction. Venereal transmission to females of Gp-ic infection was shown to occur as determined by detection of inclusions in vaginal smears, antibody response, and positive skin tests. Images PMID:4594119
Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K
2015-01-01
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657
NASA Astrophysics Data System (ADS)
Zhang, Wenshuai; Zeng, Xiaoyan; Zhang, Li; Peng, Haiyan; Jiao, Yongjun; Zeng, Jun; Treutlein, Herbert R.
2013-06-01
In this work, we have developed a new approach to predict the epitopes of antigens that are recognized by a specific antibody. Our method is based on the "multiple copy simultaneous search" (MCSS) approach which identifies optimal locations of small chemical functional groups on the surfaces of the antibody, and identifying sequence patterns of peptides that can bind to the surface of the antibody. The identified sequence patterns are then used to search the amino-acid sequence of the antigen protein. The approach was validated by reproducing the binding epitope of HIV gp120 envelop glycoprotein for the human neutralizing antibody as revealed in the available crystal structure. Our method was then applied to predict the epitopes of two glycoproteins of a newly discovered bunyavirus recognized by an antibody named MAb 4-5. These predicted epitopes can be verified by experimental methods. We also discuss the involvement of different amino acids in the antigen-antibody recognition based on the distributions of MCSS minima of different functional groups.
Clark, Anthony J; Gindin, Tatyana; Zhang, Baoshan; Wang, Lingle; Abel, Robert; Murret, Colleen S; Xu, Fang; Bao, Amy; Lu, Nina J; Zhou, Tongqing; Kwong, Peter D; Shapiro, Lawrence; Honig, Barry; Friesner, Richard A
2017-04-07
Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal. However, despite substantial efforts, no generally applicable computational method has been described. Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class. The protocol has been adapted from successful studies of small molecules to address the challenges associated with modeling protein-protein interactions. Specifically, we built homology models of the three antibody-gp120 complexes, extended the sampling times for large bulky residues, incorporated the modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large set (55 total cases) of FEP tests as compared to these experiments, 0.68kcal/mol, is near experimental accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The correlation coefficient for the combined data set including residues with glycan contacts, R 2 =0.49, should be sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard to the possibility of using an FEP approach to calculate the magnitude of protein-protein binding affinities. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Huang, Xing; Xu, Jing; Wang, Yu; Guo, Cheng; Chen, Lin; Gu, Xiaobin; Lai, Weimin; Peng, Xuerong; Yang, Guangyou
2016-12-01
Coenurosis is caused by coenurus, the metacestode of Taenia multiceps, which mainly parasitizes the brain and spinal cord of cattle, sheep and goats. To date, no widely-approved methods are available to identify early coenurus infection. In this study, we identified a full-length cDNA that encodes GP50 (TmGP50) from the transcriptome of T. multiceps, and then cloned and expressed in E. coli. The native proteins in adult stage and coenurus were located via immunofluorescence assays, while the potential of recombinant TmGP50 protein (rTmGP50) for indirect ELISA-based serodiagnostics was assessed using native goat sera. In addition, we orally infected 20 goats with mature T. multiceps eggs. Praziquantel (10%) was given to 10 of the goats 45 days post-infection (p.i.). Blood samples were collected for 17 weeks p.i. from the 20 goats and anti-rTmGP50 antibodies were evaluated using the indirect ELISA established here. The TmGP50 contains an 897 bp open reading frame, in which signal sequence resides in 1 ~ 48 sites and mature polypeptide consists of 282 amino acid residues. Immunofluorescence staining showed that native TmGP50 was localized to the microthrix and parenchymatous zone of the adult parasite and coenurus, and the coenurus cystic wall. The indirect ELISA based on rTmGP50 exhibited a sensitivity of 95.0% and a specificity of 92.6% when detecting GP50 antibodies in sera of naturally infected goats and sheep. In goats experimentally infected with T. multiceps, anti-TmGP50 antibody was detectable from 2 to 17 weeks p.i. in the control group, while the antibody fell below the cut-off value about 3 weeks after praziquantel treatment. Our results indicate that recombinant TmGP50 is a suitable early diagnostic antigen for coenurus infection in goats.
Toyoda, Mao; Hama, Susumu; Ikeda, Yutaka; Nagasaki, Yukio; Kogure, Kentaro
2015-04-10
Transdermal vaccination with cancer antigens is expected to become a useful anti-cancer therapy. However, it is difficult to accumulate enough antigen in the epidermis for effective exposure to Langerhans cells because of diffusion into the skin and muscle. Carriers, such as liposomes and nanoparticles, may be useful for the prevention of antigen diffusion. Iontophoresis, via application of a small electric current, is a noninvasive and efficient technology for transdermal drug delivery. Previously, we succeeded in the iontophoretic transdermal delivery of liposomes encapsulating insulin, and accumulation of polymer-based nanoparticle nanogels in the stratum corneum of the skin. Therefore, in the present study, we examined the use of iontophoresis with cancer antigen gp-100 peptide KVPRNQDWL-loaded nanogels for anti-cancer vaccination. Iontophoresis resulted in the accumulation of gp-100 peptide and nanogels in the epidermis, and subsequent increase in the number of Langerhans cells in the epidermis. Moreover, tumor growth was significantly suppressed by iontophoresis of the antigen peptide-loaded nanogels. Thus, iontophoresis of the antigen peptide-loaded nanogels may serve as an effective transdermal delivery system for anti-cancer vaccination. Copyright © 2015 Elsevier B.V. All rights reserved.
Kim, Yun Hwa; Hwang, Ji Young; Lee, Kyung Min; Choi, Jin Hee; Lee, Tae Yoon; Choi, Jong Soo
2011-01-01
Background Herpes zoster (HZ) occurs mainly in the elderly and Korea is rapidly becoming an aging society. Therefore, it is important to know the immune status against varicella-zoster virus (VZV) in Korean adults to prevent the disease. Objective The aim of this study was to survey the immune status of Korean adults over 40 years of age against VZV. Methods Antibody titer was measured using a VaccZyme™ VZV glycoprotein enzyme immunoassay (gpEIA) (Binding Site, UK). Fluorescent antibody to membrane antigen (FAMA) test was performed to measure the seropositive rate. Results HZ incidence in the 214 adults enrolled in this study was 10.3%. The gpEIA geometric mean titer (GMT) was 490 mIU/ml and 90.2% of the subjects had a protective level of gpEIA antibody titer against varicella. The average gpEIA GMT of adults who previously had HZ was 1,122 mIU/ml, which was higher than the average gpEIA GMT of 457 mIU/ml in adults who had not had HZ. The FAMA positive rate was 98.6%. Conclusion Most (90.2%) Korean adults ≥40-years-of-age have a protective level of gpEIA antibody against varicella and 98.6% were FAMA seropositive. The GMT of gpEIA antibody was significantly increased with age, and was higher in adults with a history of HZ. PMID:21738361
Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela
2016-01-01
Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.
Alba-Fierro, Carlos A.; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo
2016-01-01
Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Hester, Maureen M; Liu, Jianhua; Luckie, Bridget A; Torres Santana, Melanie A; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T; Lodge, Jennifer K; Akalin, Ali; Homan, Jane; Ostroff, Gary R; Levitz, Stuart M
2017-11-28
Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus -derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli , purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis. Copyright © 2017 Specht et al.
Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins
de Val, Natalia; Montefiori, David; Tomaras, Georgia D.; Shen, Xiaoying; Kalyuzhniy, Oleksandr; Sanders, Rogier W.; McCoy, Laura E.; Moore, John P.; Ward, Andrew B.
2018-01-01
Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine. PMID:29746590
Williams, Wilton B.; Saunders, Kevin O.; Seaton, Kelly E.; Wiehe, Kevin J.; Vandergrift, Nathan; Von Holle, Tarra A.; Trama, Ashley M.; Parks, Robert J.; Luo, Kan; Gurley, Thaddeus C.; Kepler, Thomas B.; Marshall, Dawn J.; Montefiori, David C.; Sutherland, Laura L.; Alam, Munir S.; Whitesides, John F.; Bowman, Cindy M.; Permar, Sallie R.; Graham, Barney S.; Mascola, John R.; Seed, Patrick C.; Van Rompay, Koen K. A.; Tomaras, Georgia D.; Moody, M. Anthony
2017-01-01
ABSTRACT Dominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization. We found that the DNA/rAd5 vaccine elicited a higher frequency of gp41-reactive memory B cells than gp120-memory B cells in adult and neonatal RMs. Analysis of the vaccine-induced Env-reactive B cell repertoire revealed that the majority of HIV-1 Env-reactive antibodies in both adult and neonatal RMs were targeted to gp41. Interestingly, a subset of gp41-reactive antibodies isolated from RMs cross-reacted with host antigens, including autologous intestinal microbiota. Thus, gp41-containing DNA/rAd5 vaccine induced dominant gp41-microbiota cross-reactive antibodies derived from blood memory B cells in RMs as observed in the HVTN 505 vaccine efficacy trial. These data demonstrated that RMs can be used to investigate gp41 immunodominance in candidate HIV-1 vaccines. Moreover, colonization of neonatal RMs occurred within the first week of life, and immunization of neonatal RMs during this time also induced a dominant gp41-reactive antibody response. IMPORTANCE Our results are critical to current work in the HIV-1 vaccine field evaluating the phenomenon of gp41 immunodominance induced by HIV-1 Env gp140 in RMs and humans. Our data demonstrate that RMs are an appropriate animal model to study this phenomenon and to determine the immunogenicity in new HIV-1 Env trimer vaccine designs. The demonstration of gp41 immunodominance in memory B cells of both adult and neonatal RMs indicated that early vaccination could not overcome gp41 dominant responses. PMID:28794027
Kim, Mikyung; Song, Likai; Moon, James; Sun, Zhen-Yu J.; Bershteyn, Anna; Hanson, Melissa; Cain, Derek; Goka, Selasie; Kelsoe, Garnett; Wagner, Gerhard; Irvine, Darrell; Reinherz, Ellis L.
2013-01-01
Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses. PMID:24047898
García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan; Seaman, Michael; Montefiori, David C.; Labranche, Celia; Yates, Nicole L.; Shen, Xiaoying; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; McDermott, Adrian; Kao, Shing-Fen; Roederer, Mario; Hawkins, Natalie; Self, Steve; Yao, Jiansheng; Farrell, Patrick; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony; Weiss, Deborah; Lee, Carter; Kibler, Karen; Jacobs, Bert; Asbach, Benedikt; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe
2015-01-01
ABSTRACT We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4+ T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8+ T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials. PMID:26041302
Salina, Margarete Aparecida; Shikanai-Yasuda, Maria Aparecida; Mendes, Rinaldo Poncio; Barraviera, Benedito; Mendes Giannini, Maria José Soares
1998-01-01
For the diagnosis and follow-up of paracoccidioidomycosis patients undergoing therapy, we evaluated two methods (immunoblotting and competition enzyme immunoassay) for the detection of circulating antigen in urine samples. A complex pattern of reactivity was observed in the immunoblot test. Bands of 70 and 43 kDa were detected more often in urine samples from patients before treatment. The immunoblot method detected gp43 and gp70 separately or concurrently in 11 (91.7%) of 12 patients, whereas the competition enzyme immunoassay detected antigenuria in 9 (75%) of 12 patients. Both tests appeared to be highly specific (100%), considering that neither fraction detectable by immunoblotting was present in urine samples from the control group. gp43 remained present in the urine samples collected during the treatment period, with a significant decrease in reactivity in samples collected during clinical recovery and increased reactivity in samples collected during relapses. Reactivity of some bands was also detected in urine specimens from patients with “apparent cure.” The detection of Paracoccidioides brasiliensis antigens in urine appears to be a promising method for diagnosing infection, for evaluating the efficacy of treatment, and for detecting relapse. PMID:9620407
Synthetic Fab Fragments that Bind the HIV-1 gp41 Heptad Repeat Regions
Liu, Yanyun; Regula, Lauren K.; Stewart, Alex; Lai, Jonathan R.
2011-01-01
Recent work has demonstrated that antibody phage display libraries containing restricted diversity in the complementarity determining regions (CDRs) can be used to target a wide variety of antigens with high affinity and specificity. In the most extreme case, antibodies whose combining sites are comprised of only two residues – tyrosine and serine – have been identified against several protein antigens. [F. A. Fellouse, B. Li, D. M. Compaan, A. A. Peden, S. G. Hymowitz, and S. S. Sidhu, J. Mol. Biol., 348 (2005) 1153–1162.] Here, we report the isolation and characterization of antigen-binding fragments (Fabs) from such “minimalist” diversity synthetic antibody libraries that bind the heptad repeat regions of human immunodeficiency virus type 1 (HIV-1) gp41. We show that these Fabs are highly specific for the HIV-1 epitope and comparable in affinity to a single chain variable fragment (scFv) derived from a natural antibody repertoire that targets the same region. Since the heptad repeat regions of HIV-1 gp41 are required for viral entry, these Fabs have potential for use in therapeutic, research, or diagnostic applications. PMID:21925149
Delcayre, A X; Fiandino, A; Barel, M; Frade, R
1987-12-01
gp140, the EB/C3d receptor (EBV/C3dR; CR2), is a membrane site involved in human B cell regulation. Cross-linking of this receptor on the cell surface by its specific ligands led to the enhancement of B cell proliferation in synergy with T cell factors. In vitro activation of human peripheral B lymphocytes by cross-linking membrane immunoglobulins with anti-mu antibody induced EBV/C3dR phosphorylation. These studies were pursued by analyzing cell-free phosphorylation of EBV/C3dR isolated from Raji cell fractions, and immobilized on OKB7, a monoclonal anti-EBV/C3dR antibody. Three EBV/C3dR-related antigens which could be cell-free phosphorylated were detected: gp140, the EBV/C3dR, p130 and p120. gp140, the mature form of EBV/C3dR, was isolated from plasma membrane and from purified nuclei. p130 was identified as an intracellular intermediate of EBV/C3dR glycosylation, localized in low-density microsomes. Phosphoamino acid analysis of EBV/C3dR allowed the detection of phosphotyrosine and phosphoserine residues. These data suggest that EBV/C3dR could carry an autophosphorylation activity and could be associated to serine kinases. Using polyclonal anti-p120 antibody and anti-120 kDa nuclear ribonucleoprotein monoclonal antibody (mAb), p120 was identified as a nuclear ribonucleoprotein antigenically not related to EBV/C3dR. Detection of p120 on EBV/C3dR, immobilized on OKB7, was due to interactions between both antigens, instead of anti-EBV/C3dR mAb cross-reactivity with p120. Cell-free phosphorylation of p120 was under the control of EBV/C3dR. However, it is not yet established whether other nuclear or membrane components were involved in the control of p120 cell-free phosphorylation by EBV/C3dR. From the data presented herein, we propose that phosphorylation of a 120-kDa nuclear ribonucleoprotein by EBV/C3dR-associated kinases could represent a crucial step in in vivo regulation of human B cell activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Cynthia L., E-mail: c-rowe@northwestern.edu; Matsuura, Hisae, E-mail: hisaem@stanford.edu; Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL 60208
The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLAmore » class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.« less
Wang, Denong; Tang, Jin; Liu, Shaoyi
2015-01-01
Using carbohydrate microarrays, we explored potential natural ligands of antitumor monoclonal antibody HAE3. This antibody was raised against a murine mammary tumor antigen but was found to cross-react with a number of human epithelial tumors in tissues. Our carbohydrate microarray analysis reveals that HAE3 is specific for an O-glycan cryptic epitope that is normally hidden in the cores of blood group substances. Using HAE3 to screen tumor cell surface markers by flow cytometry, we found that the HAE3 glycoepitope, gpHAE3, was highly expressed by a number of human breast cancer cell lines, including some triple-negative cancers that lack the estrogen, progesterone, and Her2/neu receptors. Taken together, we demonstrate that HAE3 recognizes a conserved cryptic glycoepitope of blood group precursors, which is nevertheless selectively expressed and surface-exposed in certain breast tumor cells. The potential of this class of O-glycan cryptic antigens in breast cancer subtyping and targeted immunotherapy warrants further investigation. PMID:26539555
Mechanism of human antibody-mediated neutralization of Marburg virus.
Flyak, Andrew I; Ilinykh, Philipp A; Murin, Charles D; Garron, Tania; Shen, Xiaoli; Fusco, Marnie L; Hashiguchi, Takao; Bornholdt, Zachary A; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Ward, Andrew B; Saphire, Erica Ollmann; Bukreyev, Alexander; Crowe, James E
2015-02-26
The mechanisms by which neutralizing antibodies inhibit Marburg virus (MARV) are not known. We isolated a panel of neutralizing antibodies from a human MARV survivor that bind to MARV glycoprotein (GP) and compete for binding to a single major antigenic site. Remarkably, several of the antibodies also bind to Ebola virus (EBOV) GP. Single-particle EM structures of antibody-GP complexes reveal that all of the neutralizing antibodies bind to MARV GP at or near the predicted region of the receptor-binding site. The presence of the glycan cap or mucin-like domain blocks binding of neutralizing antibodies to EBOV GP, but not to MARV GP. The data suggest that MARV-neutralizing antibodies inhibit virus by binding to infectious virions at the exposed MARV receptor-binding site, revealing a mechanism of filovirus inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai
2018-06-08
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh
2013-01-01
Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046
Tong, Xinxin; Chen, Shengjie; Zheng, Huanqin; Huang, Shiguang; Lu, Fangli
2018-05-19
Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase + /IL-27 + MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.
Gallerano, Daniela; Ndlovu, Portia; Makupe, Ian; Focke-Tejkl, Margarete; Fauland, Kerstin; Wollmann, Eva; Puchhammer-Stöckl, Elisabeth; Keller, Walter; Sibanda, Elopy; Valenta, Rudolf
2015-01-01
A comprehensive set of recombinant proteins and peptides of the proteome of HIV-1 clade C was prepared and purified and used to measure IgG, IgG-subclass, IgA and IgM responses in HIV-infected patients from Sub-Saharan Africa, where clade C is predominant. As a comparison group, HIV-infected patients from Europe were tested. African and European patients showed an almost identical antibody reactivity profile in terms of epitope specificity and involvement of IgG, IgG subclass, IgA and IgM responses. A V3-peptide of gp120 was identified as major epitope recognized by IgG1>IgG2 = IgG4>IgG3, IgA>IgM antibodies and a C-terminal peptide represented another major peptide epitope for the four IgG subclasses. By contrast, gp41-derived-peptides were mainly recognized by IgG1 but not by the other IgG subclasses, IgA or IgM. Among the non-surface proteins, protease, reverse transcriptase+RNAseH, integrase, as well as the capsid and matrix proteins were the most frequently and strongly recognized antigens which showed broad IgG subclass and IgA reactivity. Specificities and magnitudes of antibody responses in African patients were stable during disease and antiretroviral treatment, and persisted despite severe T cell loss. Using a comprehensive panel of gp120, gp41 peptides and recombinant non-surface proteins of HIV-1 clade C we found an almost identical antibody recognition profile in African and European patients regarding epitopes and involved IgG-sublass, IgA- and IgM-responses. Immune recognition of gp120 peptides and non-surface proteins involved all four IgG subclasses and was indicative of a mixed Th1/Th2 immune response. The HIV-1 clade C proteome-based test allowed diagnosis and monitoring of antibody responses in the course of HIV-infections and assessment of isotype and subclass responses. PMID:25658330
Mendoza, Leonel; Belone, Andréa F. F.; Vilela, Raquel; Rehtanz, Manuela; Bossart, Gregory D.; Reif, John S.; Fair, Patricia A.; Durden, Wendy N.; St. Leger, Judy; Travassos, Luiz R.; Rosa, Patricia S.
2008-01-01
Antibodies in the sera of patients with lacaziosis recognized an ∼193-kDa antigen and other Lacazia loboi antigens. Paracoccidioides brasiliensis gp43 antigen was detected by all evaluated sera, but they failed to detect a protein with the same molecular mass in L. loboi extracts. This study is the first to examine the humoral response to L. loboi antigens by using multiple host sera. PMID:17959822
Immunological activation following transcutaneous delivery of HR-gp100 protein
Frankenburg, Shoshana; Grinberg, Igor; Bazak, Ziva; Fingerut, Lena; Pitcovski, Jacob; Gorodetsky, Raphael; Peretz, Tamar; Spira, Ram M.; Skornik, Yehuda; Goldstein, Ronald S.
2009-01-01
Transcutaneous immunization aims at taking advantage of the skin’s immune system for the purpose of immunoprotection. In the present study we evaluated the potential of topical delivery of a recombinant melanoma protein, HR-gp100, derived from a shorter sequence of the native gp100 gene. The protein was applied on the skin, with and without the addition of two forms of heat labile enterotoxin (nLT and LTB). HR-gp100 fused to Haptide, a cell penetrating 20mer peptide (HR-gp100H) was also tested. Topical HR-gp100 and HR-gp100H application on the ears of mice elicited the production of specific antibodies, and transcutaneous delivery to intact human skin induced dose-dependent LC activation. nLT and LTB also activated LC, but did not further increase the activation induced by HR-gp100. These results show that HR-gp100, an antigenic tumor-derived protein, activates the immune system following transcutaneous delivery, as shown by both Langerhans cell activation and induction of antibody production. PMID:17493711
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Totrov; X Jiang; X Kong
2011-12-31
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boostingmore » with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.« less
Jiang, Xiaohong; Dalebout, Tim J; Bredenbeek, Peter J; Carrion, Ricardo; Brasky, Kathleen; Patterson, Jean; Goicochea, Marco; Bryant, Joseph; Salvato, Maria S; Lukashevich, Igor S
2011-02-01
Yellow Fever (YF) and Lassa Fever (LF) are two prevalent hemorrhagic fevers co-circulating in West Africa and responsible for thousands of deaths annually. The YF vaccine 17D has been used as a vector for the Lassa virus glycoprotein precursor (LASV-GPC) or their subunits, GP1 (attachment glycoprotein) and GP2 (fusion glycoprotein). Cloning shorter inserts, LASV-GP1 and -GP2, between YF17D E and NS1 genes enhanced genetic stability of recombinant viruses, YF17D/LASV-GP1 and -GP2, in comparison with YF17D/LASV-GPC recombinant. The recombinant viruses were replication competent and properly processed YF proteins and LASV GP antigens in infected cells. YF17D/LASV-GP1 and -GP2 induced specific CD8+ T cell responses in mice and protected strain 13 guinea pigs against fatal LF. Unlike immunization with live attenuated reassortant vaccine ML29, immunization with YF17D/LASV-GP1 and -GP2 did not provide sterilizing immunity. This study demonstrates the feasibility of YF17D-based vaccine to control LF in West Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grujic, Ognjen; Grigg, Michael E.; Boulanger, Martin J., E-mail: mboulang@uvic.ca
2008-05-01
Preliminary X-ray diffraction studies of the bradyzoite-specific surface antigen BSR4 from T. gondii are described. Toxoplasma gondii is an important global pathogen that infects nearly one third of the world’s adult population. A family of developmentally expressed structurally related surface-glycoprotein adhesins (SRSs) mediate attachment to and are utilized for entry into host cells. The latent bradyzoite form of T. gondii persists for the life of the host and expresses a distinct family of SRS proteins, of which the bradyzoite-specific antigen BSR4 is a prototypical member. Structural studies of BSR4 were initiated by first recombinantly expressing BSR4 in insect cells, whichmore » was followed by crystallization and preliminary X-ray data collection to 1.95 Å resolution. Data processing showed that BSR4 crystallized with one molecule in the asymmetric unit of the P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2 space group, with a solvent content of 60% and a corresponding Matthews coefficient of 2.98 Å{sup 3} Da{sup −1}.« less
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M. Javad
2014-01-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. PMID:25230936
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M Javad; Ulrich, Robert G
2014-12-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects
2010-01-01
Background Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1,2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90% fatality rates [3-5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. Results It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP by western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals Conclusions During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo. PMID:21062490
Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects.
Branco, Luis M; Grove, Jessica N; Moses, Lina M; Goba, Augustine; Fullah, Mohammed; Momoh, Mambu; Schoepp, Randal J; Bausch, Daniel G; Garry, Robert F
2010-11-09
Lassa hemorrhagic fever (LHF) is a neglected tropical disease with significant impact on the health care system, society, and economy of Western and Central African nations where it is endemic. With a high rate of infection that may lead to morbidity and mortality, understanding how the virus interacts with the host's immune system is of great importance for generating vaccines and therapeutics. Previous work by our group identified a soluble isoform of the Lassa virus (LASV) GP1 (sGP1) in vitro resulting from the expression of the glycoprotein complex (GPC) gene [1, 2]. Though no work has directly been done to demonstrate the function of this soluble isoform in arenaviral infections, evidence points to immunomodulatory effects against the host's immune system mediated by a secreted glycoprotein component in filoviruses, another class of hemorrhagic fever-causing viruses. A significant fraction of shed glycoprotein isoforms during viral infection and biogenesis may attenuate the host's inflammatory response, thereby enhancing viral replication and tissue damage. Such shed glycoprotein mediated effects were previously reported for Ebola virus (EBOV), a filovirus that also causes hemorrhagic fever with nearly 90 percent fatality rates [3 - 5]. The identification of an analogous phenomenon in vivo could establish a new correlate of LHF infection leading to the development of sensitive diagnostics targeting the earliest molecular events of the disease. Additionally, the reversal of potentially untoward immunomodulatory functions mediated by sGP1 could potentiate the development of novel therapeutic intervention. To this end, we investigated the presence of sGP1 in the serum of suspected LASV patients admitted to the Kenema Government Hospital (KGH) Lassa Fever Ward (LFW), in Kenema, Sierra Leone that tested positive for viral antigen or displayed classical signs of Lassa fever. It is reasonable to expect that a narrow window exists for detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia), different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP in western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals. During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo.
Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming
2017-06-01
We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.
Muro, Claudio; Gomez-Puerta, Luis A; Flecker, Robert H; Gamboa, Ricardo; Barreto, Percy Vilchez; Dorny, Pierre; Tsang, Victor C W; Gilman, Robert H; Gonzalez, Armando E; Garcia, Hector H; O'Neal, Seth E; For The Cysticercosis Working Group In Peru
2017-12-01
The lentil lectin glycoprotein enzyme-linked immunoelectrotransfer blot (LLGP EITB, reported sensitivity 99% and specificity 100%) is used as a serologic marker of exposure to Taenia solium in pigs. However, only a limited number of parasites have been evaluated for cross reactivity. Pigs may host other related cestode infections, including Taenia hydatigena, which have not been formally evaluated for cross-reactions. We investigated a corral in Tumbes, Peru, a region where a cysticercosis elimination demonstration project was completed in 2012. In this corral, 14/19 (73.7%) 6-8-week-old piglets were reactive to GP50 on LLGP EITB, and all had circulating Taenia sp. antigens. From eight necropsied piglets; four were infected with T. hydatigena metacestodes whereas none had evidence of T. solium infection. Two resident dogs were subsequently confirmed to have T. hydatigena taeniasis. These results suggest GP50 cross-reactivity in T. hydatigena- infected pigs, although controlled experimental infection is needed to confirm this hypothesis.
Diversion of HIV-1 Vaccine-induced Immunity by gp41-Microbiota Cross-reactive Antibodies
Williams, Wilton B; Liao, Hua-Xin; Moody, M. Anthony; Kepler, Thomas B.; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M.; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E.; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C.; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, Julie; Mascola, John R.; Koup, Richard A; Corey, Lawrence; Nabel, Gary J.; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S.; Baden, Lindsey R.; Tomaras, Georgia D.; Haynes, Barton F.
2015-01-01
A HIV-1 DNA prime-recombinant Adenovirus Type 5 (rAd5) boost vaccine failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells was to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies (mAbs) were non-neutralizing, and frequently polyreactive with host and environmental antigens including intestinal microbiota (IM). Next generation sequencing of an IGHV repertoire prior to vaccination revealed an Env-IM cross-reactive Ab that was clonally-related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. PMID:26229114
Chia, Min-Yuan; Hsiao, Shih-Hsuan; Chan, Hui-Ting; Do, Yi-Yin; Huang, Pung-Ling; Chang, Hui-Wen; Tsai, Yi-Chieh; Lin, Chun-Ming; Pang, Victor Fei; Jeng, Chian-Ren
2011-04-15
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant. Copyright © 2011 Elsevier B.V. All rights reserved.
Peifang, S.; Pira, G. L.; Fenoglio, D.; Harris, S.; Costa, M. G.; Venturino, V.; Dessì, V.; Layton, G.; Laman, J.; Huisman, J. G.; Manca, F.
1994-01-01
Recombinant virus-like particles (VLP), formed by the yeast Ty p1 protein, carrying the HIV gp120 V3 loop on their surface (V3-VLP) have been tested in vitro for immunogenicity and antigenicity by using VLP p1-specific human CD4+ T cell lines and clones. VLP-specific human T cell lines and clones were generated from normal individuals, indicating that VLP-specific precursor cells present in the peripheral lymphocyte pool can be induced to expand clonally upon antigen challenge in vitro, in the absence of previous immunization. It was also shown that V3-specific polyclonal antibodies enhance V3-VLP-induced activation of VLP-specific T cell clones. Antibody-dependent potentiation has been shown previously in other antigen systems, and it depends on enhanced uptake of complexed antigen by Fc receptor-positive antigen-presenting cells. Since in this case antigen is internalized by presenting cells as a complex, it can be inferred that a similar event of antibody-mediated antigen uptake can take place with V3-specific B cells, resulting in presentation by the B cells of T helper epitopes derived from processing of the VLP p1 moiety. This suggests that T helper cells specific for the carrier VLP p1 protein can be activated to provide help to V3-specific B cells in the presence of the appropriate antigen construct. PMID:7915974
[Mechanisms of lymphopenia in HIV infection].
Roger, P M; Pradier, C; Dellamonica, P
1994-01-22
Blood counts of CD4 cells remain the best prognostic factor in patients infected with human immunodeficiency virus (HIV). However, the small number of infected cells contrasts with the importance of lymphocyte depletion. Several mechanisms might explain this depletion including: antibody-dependent cytotoxicity. Twenty to 50% of the antibodies produced in vitro by B lymphocytes are directed against HIV antigens, especially the gp120 and gp41 viral envelope antigen. If this cytotoxicity effect occurs in vivo, it could reduce of lymphocytes carrying the viral genome and partially explain the major lymphopenia in HIV-infected patients. It is not yet known whether the long-term effect of these antibodies is immunoprotective or deleterious, but they may play a protective role at least in the initial stages of the disease. autoimmunity. Sequence homology between the HLA II molecules and the glycoproteins of the viral envelope has been clinically and biologically documented in many manifestations of HIV infection. It has been suggested that alloreactivity, similar to the graft-versus-host reaction could be involved. In addition, programmed cell-death of the CD4 lymphocytes appears to be overactivated in HIV-positive subjects, possibly because the gp120 viral antigen perturbs the CD4-dependent signal for cell death. deleterious effects of cytokines. Tumour necrosis factor, for example, is known to play a role in the regulation of viral replication; it may favour the destruction of contaminated cells but also the initiation of provirus replication and integration into the cell genome. supra-antigens and/or infectious factors. Supra-antigenes, which can link with HLA molecules, are capable of oligoclonal activation without being "processed" in the cell presenting the antigen. This activation might affect cell death. Certain germ toxins could also play a role as cofactors. Cohort studies of asymptomatic HIV patients are needed to improve our understanding of these mechanisms. A therapeutic approach tailored to the stage reached by HIV-infected subjects will then be possible.
Evaluation of TLR Agonists as Potential Mucosal Adjuvants for HIV gp140 and Tetanus Toxoid in Mice
Buffa, Viviana; Klein, Katja; Fischetti, Lucia; Shattock, Robin J.
2012-01-01
In the present study we investigate the impact of a range of TLR ligands and chitosan as potential adjuvants for different routes of mucosal immunisation (sublingual (SL), intranasal (IN), intravaginal (IVag) and a parenteral route (subcutaneous (SC)) in the murine model. We assess their ability to enhance antibody responses to HIV-1 CN54gp140 (gp140) and Tetanus toxoid (TT) in systemic and vaginal compartments. A number of trends were observed by route of administration. For non-adjuvanted antigen, SC>SL>IN immunisation with respect to systemic IgG responses, where endpoint titres were greater for TT than for gp140. In general, co-administration with adjuvants increased specific IgG responses where IN = SC>SL, while in the vaginal compartment IN>SL>SC for specific IgA. In contrast, for systemic and mucosal IgA responses to antigen alone SL>IN = SC. A number of adjuvants increased specific systemic IgA responses where in general IN>SL>SC immunisation, while for mucosal responses IN = SL>SC. In contrast, direct intravaginal immunisation failed to induce any detectable systemic or mucosal responses to gp140 even in the presence of adjuvant. However, significant systemic IgG responses to TT were induced by intravaginal immunisation with or without adjuvant, and detectable mucosal responses IgG and IgA were observed when TT was administered with FSL-1 or Poly I∶C. Interestingly some TLRs displayed differential activity dependent upon the route of administration. MPLA (TLR4) suppressed systemic responses to SL immunisation while enhancing responses to IN or SC immunisation. CpG B enhanced SL and IN responses, while having little or no impact on SC immunisation. These data demonstrate important route, antigen and adjuvant effects that need to be considered in the design of mucosal vaccine strategies. PMID:23272062
Zeng, Yi; Zhang, Le; Hu, Zhiping; Yang, Qidong; Ma, Mingming; Liu, Baoqiong; Xia, Jian; Xu, Hongwei; Liu, Yunhai; Du, Xiaoping
2016-08-01
Platelet glycoprotein (GP) mediated the role of platelet in coagulation. Platelet GP Ia 807C/T is the only GP polymorphism associated with the expression levels of GP Ia/IIa (the platelet collagen receptor). Recently, the GP Ia 807C/T polymorphism has been reported to have no association with cerebral hemorrhage (CH) in two studies pertained to Caucasian populations. The purpose of this study is to evaluate the association between platelet GP Ia 807C/T polymorphism and CH in a Han Chinese population. We performed genotype analysis for platelet GP Ia 807C/T polymorphism in a case-control study involving 195 patients with CH and 116 age- and sex-matched controls. In contrast to previous reports, we found that the frequencies of GP Ia 807C/T T allele, CT and TT genotype were much higher in CH patients than in controls (33.9% vs. 22.8%, p = 0.004; 45.5% and 11.1% vs. 40.4% and 2.6%, p = 0.022). Logistic regression analysis revealed that the presence of GP Ia 807C/T C allele and CC genotype were both associated with a decreased risk of CH compared with T allele, CT and TT genotypes, respectively (adjusted odds ratio [OR] = 0.565, 95% CI: 0.384-0.887, p = 0.005; adjusted OR = 0.172, 95% CI: 0.043-0.639, p = 0.009; adjusted OR = 0.254, 95% CI: 0.085-0.961, p = 0.041, respectively). These findings indicated that platelet GP Ia 807C/T polymorphism could be a protective factor of CH in the Chinese population.
Development and evaluation of porcine cysticercosis QuickELISA in Triturus EIA analyzer.
Handali, Sukwan; Pattabhi, Sowmya; Lee, Yeuk-Mui; Silva-Ibanez, Maria; Kovalenko, Victor A; Levin, Andrew E; Gonzalez, Armando E; Roberts, Jacquelin M; Garcia, Hector H; Gilman, Robert H; Hancock, Kathy; Tsang, Victor C W
2010-01-01
We evaluated three diagnostic antigens (recombinant GP50, recombinant T24H, and synthetic Ts18var1) for cysticercosis and found that all three performed well in detecting cysticercosis in humans and pigs in several assay formats. These antigens were adapted to a new antibody detection format (QuickELISA). With one single incubation step which involves all reactants except the enzyme substrate, the QuickELISA is particularly suited for automation. We formatted the QuickELISA for the Triturus EIA analyzer for testing large numbers of samples. We found that in QuickELISA formats rGP50 and rT24H have better sensitivity and specificity than sTs18var1 for detecting porcine cysticercosis.
A New Group of Hepadnaviruses Naturally Infecting Orangutans (Pongo pygmaeus)
Warren, Kristin S.; Heeney, Jonathan L.; Swan, Ralph A.; Heriyanto; Verschoor, Ernst J.
1999-01-01
A high prevalence (42.6%) of hepatitis B virus (HBV) infection was suspected in 195 formerly captive orangutans due to a large number of serum samples which cross-reacted with human HBV antigens. It was assumed that such viral infections were contracted from humans during captivity. However, two wild orangutans were identified which were HBV surface antigen positive, indicating that HBV or related viruses may be occurring naturally in the orangutan populations. Sequence analyses of seven isolates revealed that orangutans were infected with hepadnaviruses but that these were clearly divergent from the six known human HBV genotypes and those of other nonhuman hepadnaviruses reported. Phylogenetic analyses revealed geographic clustering with Southeast Asian genotype C viruses and gibbon ape HBV. This implies a common origin of infection within this geographic region, with cross-species transmission of hepadnaviruses among hominoids. PMID:10438880
Structure, Assembly, and DNA Packaging of the Bacteriophage T4 Head
Black, Lindsay W.; Rao, Venigalla B.
2014-01-01
The bacteriophage T4 head is an elongated icosahedron packed with 172 kb of linear double-stranded DNA and numerous proteins. The capsid is built from three essential proteins: gp23*, which forms the hexagonal capsid lattice; gp24*, which forms pentamers at 11 of the 12 vertices; and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. Intensive work over more than half a century has led to a deep understanding of the phage T4 head. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as numerous other icosahedral bacteriophages. However, phage T4 displays an unusual membrane and portal initiated assembly of a shape determining self-sufficient scaffolding core. Folding of gp23 requires the assistance of two chaperones, the Escherichia coli chaperone GroEL acting with the phage-coded gp23-specific cochaperone, gp31. The capsid also contains two nonessential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. Through binding to adjacent gp23 subunits, Soc reinforces the capsid structure. Hoc and Soc have been used extensively in bipartite peptide display libraries and to display pathogen antigens, including those from human immunodeficiency virus (HIV), Neisseria meningitides, Bacillus anthracis, and foot and mouth disease virus. The structure of Ip1*, one of a number of multiple (>100) copy proteins packed and injected with DNA from the full head, shows it to be an inhibitor of one specific restriction endonuclease specifically targeting glycosylated hydroxymethyl cytosine DNA. Extensive mutagenesis, combined with atomic structures of the DNA packaging/terminase proteins gp16 and gp17, elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. The cryoelectron microscopy structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages DNA at the highest rate known and can package multiple segments. Förster resonance energy transfer–fluorescence correlation spectroscopy studies indicate that DNA gets compressed in the stalled motor and that the terminase-to-portal distance changes during translocation. Current evidence suggests a linear two-component (large terminase plus portal) translocation motor in which electrostatic forces generated by ATP hydrolysis drive DNA translocation by alternating the motor between tensed and relaxed states. PMID:22420853
HIV-1 Envelope Resistance to Proteasomal Cleavage: Implications for Vaccine Induced Immune Responses
Steers, Nicholas J.; Ratto-Kim, Silvia; de Souza, Mark S.; Currier, Jeffrey R.; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Rao, Mangala
2012-01-01
Background Antigen processing involves many proteolytic enzymes such as proteasomes and cathepsins. The processed antigen is then presented on the cell surface bound to either MHC class I or class II molecules and induces/interacts with antigen-specific CD8+ and CD4+ T-cells, respectively. Preliminary immunological data from the RV144 phase III trial indicated that the immune responses were biased towards the Env antigen with a dominant CD4+ T-cell response. Methods In this study, we examined the susceptibility of HIV-1 Env-A244 gp120 protein, one of the protein boost subunits of the RV144 Phase III vaccine trial, to proteasomes and cathepsins and identified the generated peptide epitope repertoire by mass spectrometry. The peptide fragments were tested for cytokine production in CD4+ T-cell lines derived from RV144 volunteers. Results Env-A244 was resistant to proteasomes, thus diminishing the possibility of the generation of class I epitopes by the classical MHC class I pathway. However, Env-A244 was efficiently cleaved by cathepsins generating peptide arrays identified by mass spectrometry that contained both MHC class I and class II epitopes as reported in the Los Alamos database. Each of the cathepsins generated distinct degradation patterns containing regions of light and dense epitope clusters. The sequence DKKQKVHALF that is part of the V2 loop of gp120 produced by cathepsins induced a polyfunctional cytokine response including the generation of IFN-γ from CD4+ T-cell lines-derived from RV144 vaccinees. This sequence is significant since antibodies to the V1/V2-loop region correlated inversely with HIV-1 infection in the RV144 trial. Conclusions Based on our results, the susceptibility of Env-A244 to cathepsins and not to proteasomes suggests a possible mechanism for the generation of Env-specific CD4+T cell and antibody responses in the RV144 vaccinees. PMID:22880042
A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen
Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano
2015-01-01
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses. PMID:26208356
Jing, Weifang; Zhou, Jinrun; Wang, Chunyang; Qiu, Jianhua; Guo, Huijun; Li, Hongmei
2018-04-26
This study focuses on preparing the secretory recombinant J subgroup of avian leukosis virus (ALV-J) gp85 protein using Pichia pastoris and evaluating its immunoprotection as vaccine antigen combining with CpG-ODN adjuvant. The secretory recombinant plasmid pPIC9-gp85 containing ALV-J gp85 gene was designed and was transfected into the genome of P. pastoris (GS115) cells. The recombinant plasmid was expressed under the induction of methanol. The expressed products in the medium of the cells were purified and identified with endoglycosidase digestion assay and western blot mediated with monoclonal antibody (MAb) JE9. The purified product combining with CpG-ODN adjuvant was inoculated intramuscularly into 7-day-old chickens and three booster inoculations were performed on 21 days post first inoculation (dpfi), 42, and 56 dpfi. The antibody responses and cellular immune responses were detected, and the protective effects were analyzed after challenge with ALV-J. The results showed that the secretory pPIC9-gp85 plasmid was successfully constructed and could be stably expressed in GS115 cells. The expressed products were N-acetylglucosylated and could specifically combine with MAb (JE9). The secreted gp85 protein combining with CpG-ODN adjuvant could induce higher antibody response and spleen lymphocyte proliferation response and IFN-γ-inducing response, and could protect all the inoculated chickens against the viremia and the immunosuppressive lesions caused by ALV-J challenge. The results of neutralizing test in vitro suggested that the antisera with some ALV-J antibody titers could neutralize ALV-J strain and inhibit the growth of virus in vitro. The result of IFA showed that IgG antibody in the antisera could specifically combine with ALV-J strain in cells. It can be concluded that the secretory recombinant gp85 protein, as a new acetylglucosylated gp85 protein, was successfully prepared and combining with CpG-ODN adjuvant could protect the inoculated chickens against ALV-J infection. This study first reported the methods on preparing the secretory recombinant ALV-J gp85 protein using P. pastoris and evaluated its immunoprotection.
Bastos, Reginaldo G; Dellagostin, Odir A; Barletta, Raúl G; Doster, Allan R; Nelson, Eric; Osorio, Fernando A
2002-11-22
Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice.
Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E
2015-10-01
The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod
2004-04-01
Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.
NASA Astrophysics Data System (ADS)
Himmah, Karimatul; Dluha, Nurul; Anyndita, Nadya V. M.; Rifa'i, Muhaimin; Widodo
2017-05-01
The Epstein - Barr virus (EBV) causes severe infections that may lead to cancers such as nasopharyngeal carcinoma. Development of effective EBV vaccines is necessary to prevent the virus spreading throughout the community. TheEBV has a surface protein gp 350/220, which serves as an antigen to help interact with host cells. Epitopes of the protein can potentially serve as bases for a vaccine. In a previous study, we have found a conserved epitope of gp 350/220 from all strains EBV through an in silico approach. The aim of this study is to design and overproduce a recombinant peptide of epitope gp 350/220 in E. coli. DNA encoding the conserved epitope was synthesized and cloned into plasmid pET-22b(+); the recombinant plasmid was transformed into E. coli strains DH5α and BL21. The transformed plasmid DNA was isolated and confirmed by restriction using XbaI and PstI enzymes followed by DNA sequencing. Protein expression was induced by isopropyl-D-thiogalactopyranoside (IPTG) with final concentrations of 0.1, 0.2, 1, and 2 mM in consecutive times. An osmotic shock method was used to isolate protein from periplasmic fraction of E. coli DH5α and BL21. The SDS-PAGE analysis was carried out to detect peptide target (3.4 kDa). Based on this result, the induction process did not work properly, and thus needs further investigation.
2012-01-01
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497
Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J
2012-03-02
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.
Khattar, Sunil K; Samal, Sweety; Devico, Anthony L; Collins, Peter L; Samal, Siba K
2011-10-01
Human immunodeficiency virus type 1 (HIV-1) is transmitted mainly through mucosal sites. Optimum strategies to elicit both systemic and mucosal immunity are critical for the development of vaccines against HIV-1. We therefore sought to evaluate the induction of systemic and mucosal immune responses by the use of Newcastle disease virus (NDV) as a vaccine vector. We generated a recombinant NDV, designated rLaSota/gp160, expressing the gp160 envelope (Env) protein of HIV-1 from an added gene. The gp160 protein expressed by rLaSota/gp160 virus was detected on an infected cell surface and was incorporated into the NDV virion. Biochemical studies showed that gp160 present in infected cells and in the virion formed a higher-order oligomer that retained recognition by conformationally sensitive monoclonal antibodies. Expression of gp160 did not increase the virulence of recombinant NDV (rNDV) strain LaSota. Guinea pigs were administered rLaSota/gp160 via the intranasal (i.n.) or intramuscular (i.m.) route in different prime-boost combinations. Systemic and mucosal antibody responses specific to the HIV-1 envelope protein were assessed in serum and vaginal washes, respectively. Two or three immunizations via the i.n. or i.m. route induced a more potent systemic and mucosal immune response than a single immunization by either route. Priming by the i.n. route was more immunogenic than by the i.m. route, and the same was true for the boosts. Furthermore, immunization with rLaSota/gp160 by any route or combination of routes induced a Th1-type response, as reflected by the induction of stronger antigen-specific IgG2a than IgG1 antibody responses. Additionally, i.n. immunization elicited a stronger neutralizing serum antibody response to laboratory-adapted HIV-1 strain MN.3. These data illustrate that it is feasible to use NDV as a vaccine vector to elicit potent humoral and mucosal responses to the HIV-1 envelope protein.
Williams, Wilton B; Liao, Hua-Xin; Moody, M Anthony; Kepler, Thomas B; Alam, S Munir; Gao, Feng; Wiehe, Kevin; Trama, Ashley M; Jones, Kathryn; Zhang, Ruijun; Song, Hongshuo; Marshall, Dawn J; Whitesides, John F; Sawatzki, Kaitlin; Hua, Axin; Liu, Pinghuang; Tay, Matthew Z; Seaton, Kelly E; Shen, Xiaoying; Foulger, Andrew; Lloyd, Krissey E; Parks, Robert; Pollara, Justin; Ferrari, Guido; Yu, Jae-Sung; Vandergrift, Nathan; Montefiori, David C; Sobieszczyk, Magdalena E; Hammer, Scott; Karuna, Shelly; Gilbert, Peter; Grove, Doug; Grunenberg, Nicole; McElrath, M Juliana; Mascola, John R; Koup, Richard A; Corey, Lawrence; Nabel, Gary J; Morgan, Cecilia; Churchyard, Gavin; Maenza, Janine; Keefer, Michael; Graham, Barney S; Baden, Lindsey R; Tomaras, Georgia D; Haynes, Barton F
2015-08-14
An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy. Copyright © 2015, American Association for the Advancement of Science.
Dual host specificity of phage SP6 is facilitated by tailspike rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Jiagang
Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspikemore » orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection. - Highlights: •Cryo-electron tomography reveals the structural basis for dual host specificity. •Sub-tomogram classification reveals distinct orientations of the tailspikes during infection of different hosts. •Tailspike-adaptor modules rotate as they bind different O antigens. •In the absence of any O antigen, tailspikes bind weakly and without specificity to LPS. •Interaction of the phage tail with LPS is essential for infection.« less
Haggerty, Timothy J.; Dunn, Ian S.; Rose, Lenora B.; Newton, Estelle E.; Pandolfi, Franco; Kurnick, James T.
2014-01-01
In an effort to enhance antigen-specific T cell recognition of cancer cells, we have examined numerous modulators of antigen-expression. In this report we demonstrate that twelve different Hsp90 inhibitors (iHsp90) share the ability to increase the expression of differentiation antigens and MHC Class I antigens. These iHsp90 are active in several molecular and cellular assays on a series of tumor cell lines, including eleven human melanomas, a murine B16 melanoma, and two human glioma-derived cell lines. Intra-cytoplasmic antibody staining showed that all of the tested iHsp90 increased expression of the melanocyte differentiation antigens Melan-A/MART-1, gp100, and TRP-2, as well as MHC Class I. The gliomas showed enhanced gp100 and MHC staining. Quantitative analysis of mRNA levels showed a parallel increase in message transcription, and a reporter assay shows induction of promoter activity for Melan-A/MART-1 gene. In addition, iHsp90 increased recognition of tumor cells by T cells specific for Melan-A/MART-1. In contrast to direct Hsp90 client proteins, the increased levels of full-length differentiation antigens that result from iHsp90 treatment are most likely the result of transcriptional activation of their encoding genes. In combination, these results suggest that iHsp90 improve recognition of tumor cells by T cells specific for a melanoma-associated antigen as a result of increasing the expressed intracellular antigen pool available for processing and presentation by MHC Class I, along with increased levels of MHC Class I itself. As these Hsp90 inhibitors do not interfere with T cell function, they could have potential for use in immunotherapy of cancer. PMID:25503774
Hassapis, Kyriakos A.; Stylianou, Dora C.; Kostrikis, Leondios G.
2014-01-01
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1. PMID:25525909
Hassapis, Kyriakos A; Stylianou, Dora C; Kostrikis, Leondios G
2014-12-17
Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
1992-01-01
During human immunodeficiency virus (HIV) infection there is a profound and selective decrease in the CD4+ population of T lymphocytes. The mechanism of this depletion is not understood, as only a small fraction of all CD4+ cells appear to be productively infected with HIV-1 in seropositive individuals. In the present study, crosslinking of bound gp120 on human CD4+ T cells followed by signaling through the T cell receptor for antigen was found to result in activation-dependent cell death by a form of cell suicide termed apoptosis, or programmed cell death. The data indicate that even picomolar concentrations of gp120 prime T cells for activation-induced cell death, suggesting a mechanism for CD4+ T cell depletion in acquired immune deficiency syndrome (AIDS), particularly in the face of concurrent infection and antigenic challenge with other organisms. These results also provide an explanation for the enhancement of infection by certain antibodies against HIV, and for the paradox that HIV appears to cause AIDS after the onset of antiviral immunity. PMID:1402655
Secreted HSP Vaccine for Malaria Prophylaxis
2014-10-01
AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Eckhard R. Podack...model. 15. SUBJECT TERMS Malaria , Plasmodium Falciparum, circumsporozoite protein, apical membrane antigen-1, vaccine , heat shock proteins, gp96...approach to stimulate cytotoxic T cells against malaria antigens and investigate the optimal vaccination route to target these T cells to the liver. To
Porcelijn, Leendert; Huiskes, Elly; Comijs-van Osselen, Ilona; Chhatta, Aniska; Rathore, Vipul; Meyers, Matthew; de Haas, Masja
2014-06-01
The performance of a newly developed Luminex bead-based platelet (PLT) antibody detection method (PAKLx) was compared with the monoclonal antibody immobilization of PLT antigens (MAIPA) assay and the LifeScreen Deluxe Luminex bead-based HLA Class I antibody detection method (LMX). Six sera containing anti-human PLT antigen (HPA)-1a (n=2), HPA-1b, HPA-2b, HPA-3a, or HPA-5b were tested in titration. A total of 194 sera, including HPA-1a, -1b, -2a, -2b, -3a, -5a, and -5b antibodies with or without HLA antibodies (n=63); glycoprotein (GP) IV antibodies (n=1); PLT autoantibodies (n=3); HLA antibodies (n=45); and samples with no PLT-reactive antibodies (n=82), were tested in both assays. Comparable levels of sensitivity were obtained for the MAIPA and PAKLx. The PAKLx showed four (6%) false-negative results in 67 sera with HPA or GP-reactive antibodies: anti-HPA-3a (n=1) or anti-HPA-5b (n=3). The PAKLx showed in 10 of the total 194 samples (5%) the presence of antibodies not detected by the MAIPA. This concerned broadly GP-reactive antibodies (n=7), anti-GPIIb/IIIa combined with anti-HPA-3a (n=1), anti-HPA-1a (borderline, n=1), and anti-GPIV (n=1). Testing 175 sera for anti-HLA Class I antibodies in the PAKLx and LMX showed four discrepant results: PAKLx negative and LMX positive, n=3 and n=1, respectively. For the vast majority of the specimens tested (93%) the results of the PAKLx were in concordance with the MAIPA. The PAKLx is a fast, easy to perform, and sensitive PLT antibody screening method. © 2013 AABB.
Tian, Jianhui; Lopez, Cesar Augusto; Derdeyn, Cynthia A.; ...
2016-10-07
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchangemore » molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. Furthermore, these studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jianhui; Lopez, Cesar Augusto; Derdeyn, Cynthia A.
Heavy glycosylation of the envelope (Env) surface subunit, gp120, is a key adaptation of HIV-1; however, the precise effects of glycosylation on the folding, conformation and dynamics of this protein are poorly understood. Here we explore the patterns of HIV-1 Env gp120 glycosylation, and particularly the enrichment in glycosylation sites proximal to the disulfide linkages at the base of the surface-exposed variable domains. To dissect the influence of glycans on the conformation these regions, we focused on an antigenic peptide fragment from a disulfide bridge-bounded region spanning the V1 and V2 hyper-variable domains of HIV-1 gp120. We used replica exchangemore » molecular dynamics (MD) simulations to investigate how glycosylation influences its conformation and stability. Simulations were performed with and without N-linked glycosylation at two sites that are highly conserved across HIV-1 isolates (N156 and N160); both are contacts for recognition by V1V2-targeted broadly neutralizing antibodies against HIV-1. Glycosylation stabilized the pre-existing conformations of this peptide construct, reduced its propensity to adopt other secondary structures, and provided resistance against thermal unfolding. Simulations performed in the context of the Env trimer also indicated that glycosylation reduces flexibility of the V1V2 region, and provided insight into glycan-glycan interactions in this region. These stabilizing effects were influenced by a combination of factors, including the presence of a disulfide bond between the Cysteines at 131 and 157, which increased the formation of beta-strands. Together, these results provide a mechanism for conservation of disulfide linkage proximal glycosylation adjacent to the variable domains of gp120 and begin to explain how this could be exploited to enhance the immunogenicity of those regions. Furthermore, these studies suggest that glycopeptide immunogens can be designed to stabilize the most relevant Env conformations to focus the immune response on key neutralizing epitopes.« less
Bagley, Kenneth; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael; Schwartz, Jennifer; Fouts, Timothy
2015-01-01
DNA encoded adjuvants are well known for increasing the magnitude of cellular and/or humoral immune responses directed against vaccine antigens. DNA adjuvants can also tune immune responses directed against vaccine antigens to better protect against infection of the target organism. Two potent DNA adjuvants that have unique abilities to tune immune responses are the catalytic A1 domains of Cholera Toxin (CTA1) and Heat-Labile Enterotoxin (LTA1). Here, we have characterized the adjuvant activities of CTA1 and LTA1 using HIV and SIV genes as model antigens. Both of these adjuvants enhanced the magnitude of antigen-specific cellular immune responses on par with those induced by the well-characterized cytokine adjuvants IL-12 and GM-CSF. CTA1 and LTA1 preferentially enhanced cellular responses to the intracellular antigen SIVmac239-gag over those for the secreted HIVBaL-gp120 antigen. IL-12, GM-CSF and electroporation did the opposite suggesting differences in the mechanisms of actions of these diverse adjuvants. Combinations of CTA1 or LTA1 with IL-12 or GM-CSF generated additive and better balanced cellular responses to both of these antigens. Consistent with observations made with the holotoxin and the CTA1-DD adjuvant, CTA1 and LTA1 evoked mixed Th1/Th17 cellular immune responses. Together, these results show that CTA1 and LTA1 are potent DNA vaccine adjuvants that favor the intracellular antigen gag over the secreted antigen gp120 and evoke mixed Th1/Th17 responses against both of these antigens. The results also indicate that achieving a balanced immune response to multiple intracellular and extracellular antigens delivered via DNA vaccination may require combining adjuvants that have different and complementary mechanisms of action. PMID:26042527
Nishida, K; Yoshida, Y; Itoh, M; Fukada, T; Ohtani, T; Shirogane, T; Atsumi, T; Takahashi-Tezuka, M; Ishihara, K; Hibi, M; Hirano, T
1999-03-15
We previously found that the adapter protein Gab1 (110 kD) is tyrosine-phosphorylated and forms a complex with SHP-2 and PI-3 kinase upon stimulation through either the interleukin-3 receptor (IL-3R) or gp130, the common receptor subunit of IL-6-family cytokines. In this report, we identified another adapter molecule (100 kD) interacting with SHP-2 and PI-3 kinase in response to various stimuli. The molecule displays striking homology to Gab1 at the amino acid level; thus, we named it Gab2. It contains a PH domain, proline-rich sequences, and tyrosine residues that bind to SH2 domains when they are phosphorylated. Gab1 is phosphorylated on tyrosine upon stimulation through the thrombopoietin receptor (TPOR), stem cell factor receptor (SCFR), and T-cell and B-cell antigen receptors (TCR and BCR, respectively), in addition to IL-3R and gp130. Tyrosine phosphorylation of Gab2 was induced by stimulation through gp130, IL-2R, IL-3R, TPOR, SCFR, and TCR. Gab1 and Gab2 were shown to be substrates for SHP-2 in vitro. Overexpression of Gab2 enhanced the gp130 or Src-related kinases-mediated ERK2 activation as that of Gab1 did. These data indicate that Gab-family molecules act as adapters for transmitting various signals.
Computational analysis of antibody dynamics identifies recent HIV-1 infection.
Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W; Rountree, Wes; Bainbridge, John; Grebe, Eduard; Anderson, David A; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L; Denny, Thomas N; Liao, Hua-Xin; Haynes, Barton F; Robb, Merlin L; Parkin, Neil; Santos, Breno R; Garrett, Nigel; Price, Matthew A; Naniche, Denise; Duerr, Ann C; Keating, Sheila; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D; Cohen, Myron S; Tomaras, Georgia D
2017-12-21
Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.
Computational analysis of antibody dynamics identifies recent HIV-1 infection
Seaton, Kelly E.; Vandergrift, Nathan A.; Deal, Aaron W.; Rountree, Wes; Anderson, David A.; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L.; Denny, Thomas N.; Haynes, Barton F.; Robb, Merlin L.; Parkin, Neil; Santos, Breno R.; Price, Matthew A.; Naniche, Denise; Duerr, Ann C.; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D.; Cohen, Myron S.
2017-01-01
Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1–infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation. PMID:29263306
Expression and characterization of human group C rotavirus virus-like particles in insect cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kristina B.; Lin, S.-C.; Humphrey, Charles
2009-05-10
Group C rotavirus (GpC RV) is a causative agent of acute gastroenteritis in children and adults. We expressed the three major capsid proteins VP2, VP6 and VP7 of human GpC RV in baculovirus and demonstrated the self-assembly of VP2/6/7 or VP6/7 virus-like particles (VLPs) in insect cells. We examined a number of parameters, including the kinetics of protein synthesis in different cell lines and media, to optimize the most favorable conditions for the synthesis of recombinant viral proteins and the production of VLPs in Sf9 cells. Hyperimmune serum to VP2/6/7 and VP6/7 VLPs recognized individual recombinant proteins of human GpCmore » RV by Western blot analysis. This serum also showed specific reactivities with the corresponding GpC VLPs but not GpA RV by using immune electron microscopy (IEM) and enzyme immunoassay (EIA). The ability to produce an unlimited amount of GpC RV antigen and the availability of high quality antibody will allow us to develop sensitive and specific diagnostic assays to better determine the epidemiology and disease burden of GpC RV in humans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornig, Julia; Choi, K. Yeon; McGregor, Alistair,
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codonsmore » 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.« less
Hornig, Julia; Choi, K. Yeon; McGregor, Alistair
2017-01-01
Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection. PMID:28189970
Haznedaroglu, Eda; Mentes, Ali R; Tanboga, Iknur
2012-03-01
The aim of this in vitrostudy was to evaluate the microleakage of a glass-ionomer surface-protector cement (GC Fuji Triage) placed onto the fissure surfaces of extracted human molars prepared using six different treatment procedures. Ninety-six extracted non-carious human molar teeth were divided into five enamel treatment groups: (Gp1) air-abraded (Micadent II, Medidenta); (Gp2) air-abraded and conditioned with 10% polyacrylic acid (GC dentin conditioner); (Gp3) prepared by a bur designed for enameloplasty (#8833 Komet); (Gp4) prepared with a bur and conditioned; (Gp5) conditioned; and (Gp6) no treatment (control). The teeth were then sealed with GC Fuji Triage. The teeth were thermocycled and left in distilled water or artificial saliva for one week, coated twice with nail varnish, and stained in a dye. They were sectioned and scored for microleakage. All groups showed microleakage. Samples that were kept in saliva had better results than those that were kept in distilled water (P<0.05). Samples conditioned before the treatment were also better than non-conditioned groups (P<0.05). In distilled water and artificial saliva, the range of the groups was, from the best, Gp2
Functional Heterogeneity in the CD4+ T Cell Response to Murine γ-Herpesvirus 68
Hu, Zhuting; Blackman, Marcia A.; Kaye, Kenneth M.; Usherwood, Edward J.
2015-01-01
CD4+ T cells are critical for the control of virus infections, T cell memory and immune surveillance. Here we studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4+ T cells using gp150-specific TCR transgenic mice. This allowed a more detailed study of the characteristics of the CD4+ T cell response than previously available approaches for this virus. Most gp150-specific CD4+ T cells expressed T-bet and produced IFN-γ, indicating MHV-68 infection triggered differentiation of CD4+ T cells largely into the Th1 subset, whereas some became TFH and Foxp3+ regulatory T cells. These CD4+ T cells were protective against MHV-68 infection, in the absence of CD8+ T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4+ T cells, based on Ly6C expression. Ly6C expression positively correlated with IFN-γ, TNF-α and granzyme B production, T-bet and KLRG1 expression, proliferation and CD4+ T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression and secondary expansion potential. Ly6C+ and Ly6C− gp150-specific CD4+ T cells were able to interconvert in a bidirectional manner upon secondary antigen exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4+ T cells, but inversely correlated with memory potential. Interconversion between Ly6C+ and Ly6C− cells may maintain a balance between the two antigen-specific CD4+ T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4+ T cells during persistent virus infection. PMID:25662997
NASA Astrophysics Data System (ADS)
Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.
2015-05-01
Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.
Sänger, Christian; Mühlberger, Elke; Ryabchikova, Elena; Kolesnikova, Larissa; Klenk, Hans-Dieter; Becker, Stephan
2001-01-01
Marburg virus, a filovirus, causes severe hemorrhagic fever with hitherto poorly understood molecular pathogenesis. We have investigated here the vectorial transport of the surface protein GP of Marburg virus in polarized epithelial cells. To this end, we established an MDCKII cell line that was able to express GP permanently (MDCK-GP). The functional integrity of GP expressed in these cells was analyzed using vesicular stomatitis virus pseudotypes. Further experiments revealed that GP is transported in MDCK-GP cells mainly to the apical membrane and is released exclusively into the culture medium facing the apical membrane. When MDCKII cells were infected with Marburg virus, the majority of GP was also transported to the apical membrane, suggesting that the protein contains an autonomous apical transport signal. Release of infectious progeny virions, however, took place exclusively at the basolateral membrane of the cells. Thus, vectorial budding of Marburg virus is presumably determined by factors other than the surface protein. PMID:11152500
Robila, Valentina; Ostankovitch, Marina; Altrich-VanLith, Michelle L.; Theos, Alexander C.; Drover, Sheila; Marks, Michael S.; Restifo, Nicholas; Engelhard, Victor H.
2009-01-01
Many human solid tumors express MHC II molecules, and proteins normally localized to melanosomes give rise to MHC II restricted epitopes in melanoma. However, the pathways by which this occurs have not been defined. We analyzed the processing of one such epitope, gp10044-59, derived from gp100/Pmel17. In melanomas that have down-regulated components of the melanosomal pathway, but constitutively express HLA-DR*0401, the majority of gp100 is sorted to LAMP-1hi/MHC II+ late endosomes. Using mutant gp100 molecules with altered intracellular trafficking, we demonstrate that endosomal localization is necessary for gp10044-59 presentation. By depletion of the AP2 adaptor protein using siRNA, we demonstrate that gp100 protein internalized from the plasma membrane to such endosomes is a major source for gp10044-59 epitope production. Gp100 trapped in early endosomes gives rise to epitopes that are indistinguishable from those produced in late endosomes but their production is less sensitive to inhibition of lysosomal proteases. In melanomas containing melanosomes, gp100 is underrepresented in late endosomes, and accumulates in stage II melanosomes devoid of MHC II molecules. Gp10044-59 presentation is dramatically reduced, and processing occurs entirely in early endosomes / stage I melanosomes. This suggests that melanosomes are inefficient antigen processing compartments. Thus, melanoma de-differentiation may be accompanied by increased presentation of MHC II restricted epitopes from gp100 and other melanosome-localized proteins, leading to enhanced immune recognition. PMID:19017974
Liver Rapid Reference Set Application: Gary Norman-INOVA (2012) — EDRN Public Portal
We have developed a new and novel assay for the detection of Golgi protein 73 (GP73), also known as Golgi membrane protein 1 (Golm1) or Golgi phosphoprotein 2 (Golph2), in serum/plasma. The clinical question is to determine the clinical utility of gp73 antigen detection by the new assay for early hepatocullular carcinoma (HCC) diagnosis, for risk-assessment of patients at high risk for progression of their liver disease, and for prognosis.
Gu, Linlin; Krendelchtchikova, Valentina; Krendelchtchikov, Alexandre; Farrow, Anitra L; Derdeyn, Cynthia A; Matthews, Qiana L
2016-01-01
Adenoviral (Ad) vectors in combination with the "Antigen Capsid-Incorporation" strategy have been applied in developing HIV-1 vaccines, due to the vectors׳ abilities in incorporating and inducing immunity of capsid-incorporated antigens. Variable loop 2 (V2)-specific antibodies were suggested in the RV144 trial to correlate with reduced HIV-1 acquisition, which highlights the importance of developing novel HIV-1 vaccines by targeting the V2 loop. Therefore, the V2 loop of HIV-1 has been incorporated into the Ad capsid protein. We generated adenovirus serotype 5 (Ad5) vectors displaying variable loop 2 (V2) of HIV-1 gp120, with the "Antigen Capsid-Incorporation" strategy. To assess the incorporation capabilities on hexon hypervariable region1 (HVR1) and protein IX (pIX), 20aa or full length (43aa) of V2 and V1V2 (67aa) were incorporated, respectively. Immunizations with the recombinant vectors significantly generated antibodies against both linear and discontinuous V2 epitopes. The immunizations generated durable humoral immunity against V2. This study will lead to more stringent development of various serotypes of adenovirus-vectored V2 vaccine candidates, based on breakthroughs regarding the immunogenicity of V2. Copyright © 2015. Published by Elsevier Inc.
Natesan, Mohan; Jensen, Stig M; Keasey, Sarah L; Kamata, Teddy; Kuehne, Ana I; Stonier, Spencer W; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M; Ulrich, Robert G
2016-08-01
A detailed understanding of serological immune responses to Ebola and Marburg virus infections will facilitate the development of effective diagnostic methods, therapeutics, and vaccines. We examined antibodies from Ebola or Marburg survivors 1 to 14 years after recovery from disease, by using a microarray that displayed recombinant nucleoprotein (NP), viral protein 40 (VP40), envelope glycoprotein (GP), and inactivated whole virions from six species of filoviruses. All three outbreak cohorts exhibited significant antibody responses to antigens from the original infecting species and a pattern of additional filoviruses that varied by outbreak. NP was the most cross-reactive antigen, while GP was the most specific. Antibodies from survivors of infections by Marburg marburgvirus (MARV) species were least cross-reactive, while those from survivors of infections by Sudan virus (SUDV) species exhibited the highest cross-reactivity. Based on results revealed by the protein microarray, persistent levels of antibodies to GP, NP, and VP40 were maintained for up to 14 years after infection, and survival of infection caused by one species imparted cross-reactive antibody responses to other filoviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Dotsey, Emmanuel Y.; Gorlani, Andrea; Ingale, Sampat; Achenbach, Chad J.; Forthal, Donald N.; Felgner, Philip L.; Gach, Johannes S.
2015-01-01
In recent years, high throughput discovery of human recombinant monoclonal antibodies (mAbs) has been applied to greatly advance our understanding of the specificity, and functional activity of antibodies against HIV. Thousands of antibodies have been generated and screened in functional neutralization assays, and antibodies associated with cross-strain neutralization and passive protection in primates, have been identified. To facilitate this type of discovery, a high throughput-screening tool is needed to accurately classify mAbs, and their antigen targets. In this study, we analyzed and evaluated a prototype microarray chip comprised of the HIV-1 recombinant proteins gp140, gp120, gp41, and several membrane proximal external region peptides. The protein microarray analysis of 11 HIV-1 envelope-specific mAbs revealed diverse binding affinities and specificities across clades. Half maximal effective concentrations, generated by our chip analysis, correlated significantly (P<0.0001) with concentrations from ELISA binding measurements. Polyclonal immune responses in plasma samples from HIV-1 infected subjects exhibited different binding patterns, and reactivity against printed proteins. Examining the totality of the specificity of the humoral response in this way reveals the exquisite diversity, and specificity of the humoral response to HIV. PMID:25938510
Rezvan, H; Rees, R; Ali, SA
2011-01-01
Background Leishmaniasis is a worldwide disease prevalent in tropical and sub tropical countries. Many attempts have been made and different strategies have been approached to develop a potent vaccine against Leishmania. DNA immunisation is a method, which is shown to be effective in Leishmania vaccination. Leishmania Soluble Antigen (SLA) has also recently been used Leishmania vaccination. Methods The immunity generated by SLA and L. mexicana gp63 cDNA was compared in groups of 6 mice, which were statistically analysed by student t- test with the P-value of 0.05. SLA was administered by two different methods; intramuscular injection and injection of dendritic cells (DCs) loaded with SLA. L. mexicana gp63 cDNA was administered by the gene gun. Results Immunisation of BALB/c mice with L. mexicana gp63 resulted in high levels of Th1-type immune response and cytotoxic T lymphocytes (CTL) activity, which were accompanied with protection induced by the immunisation against L. mexicana infection. In contrast, administration of SLA, produced a mixed Th1/Th2-type immune responses as well as a high level of CTL activity but did not protect mice from the infection. Conclusion The results indicate higher protection by DNA immunisation using L. mexicana gp63 cDNA compared to SLA, which is accompanied by a high level of Th1 immune response. However, the CTL activity does not necessarily correlate with the protection induced by the vaccine. Also, gene gun immunisation is a potential approach in Leishmania vaccination. These findings would be helpful in opening new windows in Leishmania vaccine research. PMID:22347315
Krell, Tino; Greco, Frédéric; Engel, Olivier; Dubayle, Jean; Dubayle, Joseline; Kennel, Audrey; Charloteaux, Benoit; Brasseur, Robert; Chevalier, Michel; Sodoyer, Regis; El Habib, Raphaëlle
2004-04-01
HIV gp41(24-157) unfolds cooperatively over the pH range of 1.0-4.0 with T(m) values of > 100 degrees C. At pH 2.8, protein unfolding was 80% reversible and the DeltaH(vH)/DeltaH(cal) ratio of 3.7 is indicative of gp41 being trimeric. No evidence for a monomer-trimer equilibrium in the concentration range of 0.3-36 micro m was obtained by DSC and tryptophan fluorescence. Glycosylation of gp41 was found to have only a marginal impact on the thermal stability. Reduction of the disulfide bond or mutation of both cysteine residues had only a marginal impact on protein stability. There was no cooperative unfolding event in the DSC thermogram of gp160 in NaCl/P(i), pH 7.4, over a temperature range of 8-129 degrees C. When the pH was lowered to 5.5-3.4, a single unfolding event at around 120 degrees C was noted, and three unfolding events at 93.3, 106.4 and 111.8 degrees C were observed at pH 2.8. Differences between gp41 and gp160, and hyperthermostable proteins from thermophile organisms are discussed. A series of gp41 mutants containing single, double, triple or quadruple point mutations were analysed by DSC and CD. The impact of mutations on the protein structure, in the context of generating a gp41 based vaccine antigen that resembles a fusion intermediate state, is discussed. A gp41 mutant, in which three hydrophobic amino acids in the gp41 loop were replaced with charged residues, showed an increased solubility at neutral pH.
Coleman, Stewart; Choi, K Yeon; Root, Matthew; McGregor, Alistair
2016-07-01
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107-179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model.
McGregor, Alistair
2016-01-01
In human cytomegalovirus (HCMV), tropism to epithelial and endothelial cells is dependent upon a pentameric complex (PC). Given the structure of the placenta, the PC is potentially an important neutralizing antibody target antigen against congenital infection. The guinea pig is the only small animal model for congenital CMV. Guinea pig cytomegalovirus (GPCMV) potentially encodes a UL128-131 HCMV PC homolog locus (GP128-GP133). In transient expression studies, GPCMV gH and gL glycoproteins interacted with UL128, UL130 and UL131 homolog proteins (designated GP129 and GP131 and GP133 respectively) to form PC or subcomplexes which were determined by immunoprecipitation reactions directed to gH or gL. A natural GP129 C-terminal deletion mutant (aa 107–179) and a chimeric HCMV UL128 C-terminal domain swap GP129 mutant failed to form PC with other components. GPCMV infection of a newly established guinea pig epithelial cell line required a complete PC and a GP129 mutant virus lacked epithelial tropism and was attenuated in the guinea pig for pathogenicity and had a low congenital transmission rate. Individual knockout of GP131 or 133 genes resulted in loss of viral epithelial tropism. A GP128 mutant virus retained epithelial tropism and GP128 was determined not to be a PC component. A series of GPCMV mutants demonstrated that gO was not strictly essential for epithelial infection whereas gB and the PC were essential. Ectopic expression of a GP129 cDNA in a GP129 mutant virus restored epithelial tropism, pathogenicity and congenital infection. Overall, GPCMV forms a PC similar to HCMV which enables evaluation of PC based vaccine strategies in the guinea pig model. PMID:27387220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belanger, Julie M.; Raviv, Yossef; Viard, Mathias
2011-08-15
Previously we reported that hydrophobic aryl azides partition into hydrophobic regions of the viral membrane of enveloped viruses and inactivate the virus upon UVA irradiation for 2 min. Prolonged irradiation (15 min) resulted in viral protein aggregation as visualized via Western blot analysis, due to reactive oxygen species (ROS) formation, with preservation of the surface antigenic epitopes. Herein, we demonstrate that these aggregates show detergent resistance and that this property may be useful towards the creation of a novel orthogonal virus inactivation strategy for use in preparing experimental vaccines. When ROS-modified HIV virus preparations were treated with 1% Triton X-100,more » there was an increase in the percent of viral proteins (gp41, p24) in the viral pellet after ultracentrifugation through sucrose. Transmission electron microscopy (TEM) of these detergent-resistant pellets shows some recognizable virus fragments, and immunoprecipitation studies of the gp41 aggregates suggest the aggregation is covalent in nature, involving short-range interactions.« less
MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a.
Wang, Ning; Wei, Heng; Yin, Duo; Lu, Yanming; Zhang, Yao; Zhang, Qiao; Ma, Xiaoxin; Zhang, Shulan
2016-04-01
Cervical cancer is one of the most frequent gynecological malignancies in women worldwide. MicroRNA-195 (miR-195) was recently found highly expressed in cervical cancer. However, the role of miR-195 in the pathology of cervical cancer remains poorly understood. In this study, we first confirmed the downregulation of miR-195 in primary cervical cancer tissues. For the functional study, we introduced the sequences of miR-195 or miR-195 inhibitor into Hela and SiHa cervical cancer cell lines. Overexpression of miR-195 inhibited the proliferation of both Hela and SiHa cells. In contrast, reducing the endogenous miR-195 level by miR-195 inhibitor promoted the proliferation of cervical cancer cells. Flow cytometric assay showed that overexpression of miR-195 induced G1 phase arrest, whereas miR-195 inhibitor shortened G1 phase of cervical cancer cells. In addition, the suppressive role of miR-195 in cell cycle was also demonstrated by the western blot results of various cell cycle indicators, such as phosphorylated retinoblastoma (p-Rb) and proliferating cell nuclear antigen (PCNA), in the gain and loss of function experiments. Furthermore, Dual-Luciferase Reporter Assay revealed that miR-195 targeted the 3'-untranslated region of cyclin D1a transcript, such as to regulate cyclin D1 expression. In summary, our results suggest that miR-195 acts as a suppressor in the proliferation and cell cycle of cervical cancer cells by directly targeting cyclin D1a mRNA.
Kim, Yun Hwa; Hwang, Ji Young; Shim, Hye Min; Lee, Eunsil; Park, Songyong
2014-01-01
Purpose To evaluate a recently marketed commercial glycoprotein enzyme-linked immunosorbent assay (gpEIA) kit, the VaccZyme™ VZV gpEIA, for measuring the immunity of varicella-vaccinated children. Materials and Methods We investigated the accuracy and reproducibility of the VaccZyme™ VZV gpEIA kit for the detection of antibodies to VZV. We also examined the sensitivity, specificity, and correlation between antibody titers calculated with gpEIA versus fluorescent antibody to membrane antigen (FAMA) by using sera of 349 children, ranging from 1 to 6 years old. Results VaccZyme™ VZV gpEIA gave precise and reproducible intra- and inter-assay results. FAMA and gpEIA titers showed a linear correlation (Pearson correlation coefficient=0.987). The sensitivity and specificity of the VaccZyme™ gpEIA was 31.4% and 100%, respectively, when the guidelines of the gpEIA (<100 mIU/mL) and FAMA 1:4 were adopted as cutoff values. However, the maximum sensitivity and specificity were 88.9% and 95.1%, respectively, with the highest correlation (κ=0.840), if the cutoff values were set with gpEIA at 49.7 mIU/mL and FAMA 1:16. Conclusion These results demonstrate that the VaccZyme™ VZV gpEIA kit gave precise and reproducible data for measuring antibody titer after varicella vaccination. The results also showed that the antibody titer calculated with the VaccZyme™ gpEIA kit strongly correlated with the FAMA titer. However, cutoff values should be re-optimized for the evaluation of vaccine immunity. PMID:24532518
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen
2017-06-01
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, L.O.; Pyle, S.W.; Nara, P.L.
1987-12-01
The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/more » cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.« less
Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria
2010-01-01
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151
GP3 is a structural component of the PRRSV type II (US) virion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, M. de; Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niteroi, RJ; Ansari, I.H.
2009-07-20
Glycoprotein 3 (GP3) is a highly glycosylated PRRSV envelope protein which has been reported as being present in the virions of PRRSV type I, while missing in the type II PRRSV (US) virions. We herein present evidence that GP3 is indeed incorporated in the virus particles of a North American strain of PRRSV (FL12), at a density that is consistent with the minor structural role assigned to GP3 in members of the Arterivirus genus. Two 15aa peptides corresponding to two different immunodominant linear epitopes of GP3 derived from the North American strain of PRRSV (FL12) were used as antigen tomore » generate a rabbit monospecific antiserum to this protein. The specificity of this anti-GP3 antiserum was confirmed by radioimmunoprecipitation (RIP) assay using BHK-21 cells transfected with GP3 expressing plasmid, MARC-145 cells infected with FL12 PRRSV, as well as by confocal microscopy on PRRSV-infected MARC-145 cells. To test if GP3 is a structural component of the virion, {sup 35}S-labelled PRRSV virions were pelleted through a 30% sucrose cushion, followed by a second round of purification on a sucrose gradient (20-60%). Virions were detected in specific gradient fractions by radioactive counts and further confirmed by viral infectivity assay in MARC 145 cells. The GP3 was detected in gradient fractions containing purified virions by RIP using anti-GP3 antiserum. Predictably, the GP3 was less abundant in purified virions than other major structural envelope proteins such as GP5 and M. Further evidence of the presence of GP3 at the level of PRRSV FL12 envelope was obtained by immunogold staining of purified virions from the supernatant of infected cells with anti-GP3 antiserum. Taken together, these results indicate that GP3 is a minor structural component of the PRRSV type II (FL12 strain) virion, as had been previously described for PRRSV type I.« less
Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.
2014-01-01
The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058
Molecular cloning and characterization of the spaB gene of Streptococcus sobrinus.
Holt, R G; Perry, S E
1990-07-01
A gene of Streptococcus sobrinus 6715 (serotype g) designated spaB and encoding a surface protein antigen was isolated from a cosmid gene bank. A 5.4 kb HindIII/AvaI DNA fragment containing the gene was inserted into plasmid pBR322 to yield plasmid pXI404. Analysis of plasmid-encoded gene products showed that the 5.4 kb fragment of pXI404 encoded a 195 kDa protein. Southern blot experiments revealed that the 5.4 kb chromosomal insert DNA had sequence similarity with genomic DNA of S. sobrinus 6715, S. sobrinus B13 (serotype d) and Streptococcus cricetus HS6 (serotype a). The recombinant SpaB protein (rSpaB) was purified and monospecific antiserum was prepared. With immunological techniques and the anti-rSpaB serum, we have shown: (1) that the rSpaB protein has physico-chemical and antigenic identity with the S. sobrinus SpaB protein, (2) the presence of cross-reactive proteins in the extracellular protein of serotypes a and d of the mutans group of streptococci and (3) that the SpaB protein is expressed on the surface of mutans streptococcal serotypes a, d and g.
Dons, Eefje M.; Montoya, Claudia; Long, Cassandra E.; Hara, Hidetaka; Echeverri, Gabriel J.; Ekser, Burcin; Ezzelarab, Corin; Medellin, Dasha Roa; van der Windt, Dirk J.; Murase, Noriko; Rigatti, Lora H.; Wagner, Robert; Wolf, Roman F.; Ezzelarab, Mohamed; West, Lori J.; Ijzermans, Jan N. M.; Cooper, David K. C.
2013-01-01
Background We set out to determine whether B-cell tolerance to A/B-incompatible alloantigens and pig xenoantigens could be achieved in infant baboons. Methods Artery patch grafts were implanted in the abdominal aorta in 3-month-old baboons using A/B-incompatible (AB-I) allografts or wild-type pig xenografts (pig). Group 1 (Gp1) (controls, n = 6) received no immunosuppressive therapy (IS) and no graft. Gp2 (n = 2) received an AB-I or pig graft but no IS. Gp3 received AB-I grafts + IS (Gp3A: n = 2) or pig grafts + IS (Gp3B: n = 2). IS consisted of ATG, anti-CD154mAb, and mycophenolate mofetil until age 8 to 12 months. Gp4 (n = 2) received IS only but no graft. Results In Gp1, anti-A/B and cytotoxic anti-pig immunoglobulin-M increased steadily during the first year. Gp2 became sensitized to donor-specific AB-I or pig antigens within 2 weeks. Gp3 and Gp4 infants that received anti-CD154mAb made no or minimal anti-A/B and anti-pig antibodies while receiving IS. Discussion The production of natural anti-A/B and anti-pig antibodies was inhibited by IS with anti-CD154mAb, even in the absence of an allograft or xenograft, suggesting that natural antibodies may not be entirely T-cell independent. These data are in contrast to clinical experience with AB-I allotransplantation in infants, who cease producing only donor-specific antibodies. PMID:22441321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, Austin N.; Sorem, Jessica; Longnecker, Richard
Epstein-Barr virus requires glycoproteins gH/gL, gB, and gp42 to fuse its lipid envelope with B cells. Gp42 is a type II membrane protein consisting of a flexible N-terminal region, which binds gH/gL, and a C-terminal lectin-like domain that binds to the B-cell entry receptor human leukocyte antigen (HLA) class II. Gp42 triggers membrane fusion after HLA binding, a process that requires simultaneous binding to gH/gL and a functional hydrophobic pocket in the lectin domain adjacent to the HLA binding site. Here we present the structure of gp42 in its unbound form. Comparisons to the previously determined structure of a gp42:HLAmore » complex reveals additional N-terminal residues forming part of the gH/gL binding site and structural changes in the receptor binding domain. Although the core of the lectin domain remains similar, significant shifts in two loops and an {alpha} helix bordering the essential hydrophobic pocket suggest a structural mechanism for triggering fusion.« less
Baker, R I; Eikelboom, J; Lofthouse, E; Staples, N; Afshar-Kharghan, V; López, J A; Shen, Y; Berndt, M C; Hankey, G
2001-07-01
Platelets are pivotal to the process of arterial thrombosis resulting in ischemic stroke. Occlusive thrombosis is initiated by the interaction of von Willebrand factor (vWf) and platelet glycoprotein (GP) Ibalpha. Three polymorphisms have been described in GP Ibalpha (Kozak T/C polymorphism, variable number of tandem repeats [VNTR], and the human platelet antigen 2a [HPA-2a] [Thr] or HPA-2b [Met] at position 145), each of which may enhance the vWf and GP Ibalpha interaction. This study investigated whether these polymorphisms are candidate genes for first-ever ischemic stroke. A hospital-based case-control study was conducted of 219 cases of first-ever ischemic stroke and 205 community controls randomly selected from the electoral roll and stratified by age, sex, and postal code. The subtypes of stroke were classified, the prevalence of conventional risk factors was recorded, and blood was collected to perform genotyping analysis for Kozak C or T alleles, VNTR, and HPA-2a/b. It was found that the Kozak T/C genotype was over-represented in the stroke group (32.2%) compared with controls (22.8%) (odds ratio [OR], 1.6; 95% confidence interval [CI], 1.03-2.54; P <.03), and the association was still present even after adjusting for conventional risk factors. There was a trend in the increased prevalence of HPA-2a/b in stroke patients (15%) compared with controls (9.9%) (adjusted OR, 1.8; 95% CI, 0.94-3.4; P =.07). No associations were seen with the VNTR polymorphism or with any of the polymorphisms with stroke subtype. It was concluded that the Kozak T/C polymorphism, which is associated with an increase in platelet GP Ibalpha surface expression, is an independent risk factor for first-ever ischemic stroke.
Should adolescents with glomerulopathies be treated as children or adults?
Requião-Moura, Lúcio R; Veras de S Freitas, Tainá; Franco, Marcello F; Pereira, Aparecido B; Mastroianni-Kirsztajn, Gianna
2008-01-01
Glomerular diseases are an important cause of end-stage renal disease, especially among young adults. However, clinical and epidemiological surveys involving adolescent populations are scarce. To determine the pattern of glomerulopathies (GP) in adolescents submitted to renal biopsy. A retrospective study of patients' records of the Glomerulopathy Section, UNIFESP (Brazil), was performed Among 72 adolescents (12-18 years) with GP, 15.6 +/- 1.5 years, 58.3% females, the most frequent clinical manifestation was nephrotic syndrome (NS, 71%) and focal segmental glomerulosclerosis (FSGS) was the main histological pattern (24%), followed by minimal change disease (MCD, 19.5%). After comparing the main causes of NS in adolescents with those of adults, we found no statistically significant differences in clinical presentation or outcome. Renal failure-free survival of 1 and 5 years for all GP corresponded to 87.9 and 73.6%, respectively (88.5 and 76.3% for NS). NS was the main manifestation; FSGS and MCD were the most common histological diagnoses. Our data suggest the GP and particularly the NS pattern in adolescents is similar to that of adults, pointing to the need for an adaptation in diagnostic and treatment protocols for this age group, a pattern which corresponds more closely to that of adults. Copyright 2008 S. Karger AG, Basel.
Wang, Liwen; Qin, Yali; Ilchenko, Serguei; Bohon, Jen; Shi, Wuxian; Cho, Michael W.; Takamoto, Keiji; Chance, Mark R.
2010-01-01
Structural characterization of the HIV envelope protein gp120 is very important to provide an understanding of the protein's immunogenicity and it's binding to cell receptors. So far, crystallographic structure determination of gp120 with an intact V3 loop (in the absence of CD4 co-receptor or antibody) has not been achieved. The third variable region (V3) of the gp120 is immunodominant and contains glycosylation signatures that are essential for co-receptor binding and viral entry to T-cells. In this study, we characterized the structure of the outer domain of gp120 with an intact V3 loop (gp120-OD8) purified from Drosophila S2 cells utilizing mass spectrometry-based approaches. We mapped the glycosylation sites and calculated glycosylation occupancy of gp120-OD8; eleven sites from fifteen glycosylation motifs were determined as having high mannose or hybrid glycosylation structures. The specific glycan moieties of nine glycosylation sites from eight unique glycopeptides were determined by a combination of ECD and CID MS approaches. Hydroxyl radical-mediated protein footprinting coupled with mass spectrometry analysis was employed to provide detailed information on protein structure of gp120-OD8 by directly identifying accessible and hydroxyl radical-reactive side chain residues. Comparison of gp120-OD8 experimental footprinting data with a homology model derived from the ligated CD4/ gp120-OD8 crystal structure revealed a flexible V3 loop structure where the V3 tip may provide contacts with the rest of the protein while residues in the V3 base remain solvent accessible. In addition, the data illustrate interactions between specific sugar moieties and amino acid side chains potentially important to the gp120-OD8 structure. PMID:20825246
Epstein-Barr virus latent membrane protein expression in Hodgkin and Reed-Sternberg cells.
Herbst, H; Dallenbach, F; Hummel, M; Niedobitek, G; Pileri, S; Müller-Lantzsch, N; Stein, H
1991-01-01
Cryostat sections from lymph nodes of 47 Hodgkin disease patients were examined by immunohistology for the Epstein-Barr virus (EBV)-encoded latent membrane protein (LMP), nuclear antigen 2, and late viral glycoprotein gp350/250. A distinct LMP-specific membrane and cytoplasmic staining was detected exclusively in Hodgkin and Reed-Sternberg cells in 18 patients (38%); EBV nuclear antigen 2 and gp350/250 immunoreactivity was absent in all instances. Thirty-two of 47 (68%) cases contained EBV-specific DNA sequences as detected by PCR, all LMP-positive cases being in this category. Our results confirm previous studies establishing the presence of EBV genomes in Hodgkin and Reed-Sternberg cells by demonstrating expression of an EBV-encoded protein in the tumor-cell population. The finding of LMP expression in the absence of EBV nuclear antigen 2 suggests a pattern of EBV gene expression different from that of B-lymphoblastoid cell lines and Burkitt lymphoma, whereas this finding shows similarities with that seen in undifferentiated nasopharyngeal carcinoma. Because the LMP gene has transforming potential, our findings support the concept of a pathoetiological role of EBV in many cases of Hodgkin disease. Images PMID:1647016
Surface Molecules Released by Trypanosoma cruzi Metacyclic Forms Downregulate Host Cell Invasion
Clemente, Tatiana Mordente; Cortez, Cristian; Novaes, Antônio da Silva; Yoshida, Nobuko
2016-01-01
Background The question whether metacylic trypomastigote (MT) forms of different T. cruzi strains differentially release surface molecules, and how they affect host cell invasion, remains to be fully clarified. We addressed that question using T. cruzi strains that differ widely in the ability to invade cells. Methodology/Principal Findings Metacyclic forms were incubated at 37°C for 1 h in complete D10 medium or in nutrient-deprived PBS containing Ca2+ and Mg2+ (PBS++). The conditioned medium (CM), collected after parasite centrifugation, was used for cell invasion assays and Western blot analysis, using monoclonal antibodies directed to gp82 and gp90, the MT surface molecules that promote and negatively regulate invasion, respectively. CM of poorly invasive G strain (G-CM) contained high amounts of gp90 and gp82, either in vesicles or as soluble molecules. CM of highly invasive CL strain (CL-CM) contained gp90 and gp82 at very low levels. HeLa cells were incubated for 1 h with CL strain MT in D10, in absence or in the presence of G-CM or CL-CM. Parasite invasion was significantly inhibited by G-CM, but not by CL-CM. As G strain MT invasion rate in D10 is very low, assays with this strain were performed in PBS++, which induces invasion-promoting lysosome-spreading. G-CM, but not CL-CM, significantly inhibited G strain internalization, effect that was counteracted by preincubating G-CM with an anti-gp90 monoclonal antibody or anti-gp82 polyclonal antibody that do not recognize live MT. G strain CM generated in PBS++ contained much lower amounts of gp90 and gp82 as compared to CM produced in D10, and exhibited lower inhibitory effect on host cell invasion. Conclusion/Significance Our data suggest that the surface molecules spontaneously released by MT impair parasite-host cell interaction, gp82 presumably competing with the molecule expressed on MT surface for the host cell receptor, and gp90 further contributing to down modulate invasion. PMID:27483135
RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.
Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E
2015-10-01
Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research
The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4
2014-01-01
Background Canine vector borne diseases (CVBDs) comprise illnesses caused by a spectrum of pathogens that are transmitted by arthropod vectors. Some dogs have persistent infections without apparent clinical, hematological or biochemical abnormalities, whereas other dogs develop acute illnesses, persistent subclinical infections, or chronic debilitating diseases. The primary objective of this study was to screen healthy dogs for serological and molecular evidence of regionally important CVBDs. Methods Clinically healthy dogs (n = 118), comprising three different groups: Gp I blood donor candidates (n = 47), Gp II healthy dog volunteers (n = 50), and Gp III stray dogs (n = 21) were included in the study. Serum and ethylenediamine tetraacetic acid (EDTA) anti-coagulated blood specimens collected from each dog were tested for CVBD pathogens. Results Of the 118 dogs tested, 97 (82%) dogs had been exposed to or were infected with one or more CVBD pathogens. By IFA testing, 9% of Gp I, 42% of Gp II and 19% of Gp III dogs were seroreactive to one or more CVBD pathogens. Using the SNAP 4DX® assay, Gp I dogs were seronegative for Anaplasma spp., Ehrlichia spp., and B. burgdorferi (Lyme disease) antibodies and D. immitis antigen. In Gp II, 8 dogs were Ehrlichia spp. seroreactive, 2 were infected with D. immitis and 1 was B. burgdorferi (Lyme disease) seroreactive. In Gp III, 6 dogs were infected with D. immitis and 4 were Ehrlichia spp. seroreactive. Using the BAPGM diagnostic platform, Bartonella DNA was PCR amplified and sequenced from 19% of Gp I, 20% of Gp II and 10% of Gp III dogs. Using PCR and DNA sequencing, 6% of Gps I and II and 19% of Gp III dogs were infected with other CVBD pathogens. Conclusion The development and validation of specific diagnostic testing modalities has facilitated more accurate detection of CVBDs. Once identified, exposure to vectors should be limited and flea and tick prevention enforced. PMID:24655461
Balakrishnan, Nandhakumar; Musulin, Sarah; Varanat, Mrudula; Bradley, Julie M; Breitschwerdt, Edward B
2014-03-24
Canine vector borne diseases (CVBDs) comprise illnesses caused by a spectrum of pathogens that are transmitted by arthropod vectors. Some dogs have persistent infections without apparent clinical, hematological or biochemical abnormalities, whereas other dogs develop acute illnesses, persistent subclinical infections, or chronic debilitating diseases. The primary objective of this study was to screen healthy dogs for serological and molecular evidence of regionally important CVBDs. Clinically healthy dogs (n = 118), comprising three different groups: Gp I blood donor candidates (n = 47), Gp II healthy dog volunteers (n = 50), and Gp III stray dogs (n = 21) were included in the study. Serum and ethylenediamine tetraacetic acid (EDTA) anti-coagulated blood specimens collected from each dog were tested for CVBD pathogens. Of the 118 dogs tested, 97 (82%) dogs had been exposed to or were infected with one or more CVBD pathogens. By IFA testing, 9% of Gp I, 42% of Gp II and 19% of Gp III dogs were seroreactive to one or more CVBD pathogens. Using the SNAP 4DX assay, Gp I dogs were seronegative for Anaplasma spp., Ehrlichia spp., and B. burgdorferi (Lyme disease) antibodies and D. immitis antigen. In Gp II, 8 dogs were Ehrlichia spp. seroreactive, 2 were infected with D. immitis and 1 was B. burgdorferi (Lyme disease) seroreactive. In Gp III, 6 dogs were infected with D. immitis and 4 were Ehrlichia spp. seroreactive. Using the BAPGM diagnostic platform, Bartonella DNA was PCR amplified and sequenced from 19% of Gp I, 20% of Gp II and 10% of Gp III dogs. Using PCR and DNA sequencing, 6% of Gps I and II and 19% of Gp III dogs were infected with other CVBD pathogens. The development and validation of specific diagnostic testing modalities has facilitated more accurate detection of CVBDs. Once identified, exposure to vectors should be limited and flea and tick prevention enforced.
Voss, James E.; Macauley, Matthew S.; Rogers, Kenneth A.; Villinger, Francois; Duan, Lijie; Shang, Liang; Fink, Elizabeth A.; Andrabi, Raiees; Colantonio, Arnaud D.; Robinson, James E.; Johnson, R. Paul; Burton, Dennis R.; Haase, Ashley T.
2016-01-01
Vaccination with SIVmac239Δnef provides robust protection against subsequent challenge with wild type SIV, but safety issues have precluded designing an HIV-1 vaccine based on a live attenuated virus concept. Safe immunogens and adjuvants that could reproduce identified immune correlates of SIVmac239Δnef protection therefore offer an alternative path for development of an HIV vaccine. Here we describe SIV envelope trimeric gp41 (gp41t) immunogens based on a protective correlate of antibodies to gp41t concentrated on the path of virus entry by the neonatal Fc receptor (FcRn) in cervical vaginal epithelium. We developed a gp41t immunogen-MPLA adjuvant liposomal nanoparticle for intra-muscular immunization and a gp41t-Fc immunogen for intranasal immunization for pilot studies in mice, rabbits, and rhesus macaques. Repeated immunizations to mimic persistent antigen exposure in infection elicited gp41t antibodies in rhesus macaques that were detectable in FcRn+ cervical vaginal epithelium, thus recapitulating one key feature of SIVmac239Δnef vaccinated and protected animals. While this strategy did not reproduce the system of local production of antibody in SIVmac239Δnef-vaccinated animals, passive immunization experiments supported the concept that sufficiently high levels of antibody can be concentrated by the FcRn at mucosal frontlines, thus setting the stage for assessing protection against vaginal challenge by gp41t immunization. PMID:27428745
Wang, Shixia; Chou, Te-hui; Hackett, Anthony; Efros, Veronica; Wang, Yan; Han, Dong; Wallace, Aaron; Chen, Yuxin; Hu, Guangnan; Liu, Shuying; Clapham, Paul; Arthos, James; Montefiori, David; Lu, Shan
2017-01-01
ABSTRACT Our previous preclinical studies and a Phase I clinical trial DP6-001 have indicated that a polyvalent Env formulation was able to elicit broadly reactive antibody responses including low titer neutralizing antibody responses against viral isolates of subtypes A, B, C and AE. In the current report, a panel of 62 gp120 immunogens were screened in a rabbit model to identify gp120 immunogens that can elicit improved binding and neutralizing antibody responses and some of them can be included in the next polyvalent formulation. Only about 19% of gp120 immunogens in this panel were able to elicit neutralizing antibodies against greater than 50% of the viruses included in a high throughput PhenoSense neutralization assay when these immuongens were tested as a DNA prime followed by a fixed 5-valent gp120 protein vaccine boost. The new polyvalent formulation, using five gp120 immunogens selected from this subgroup, elicited improved quality of antibody responses in rabbits than the previous DP6-001 formulation. More significantly, this new polyvalent formulation elicited higher antibody responses against a panel of gp70V1/V2 antigens expressing V1/V2 sequences from diverse subtypes. Bioinformatics analysis supports the design of a 4-valent or 5-valent formulation using gp120 immunogens from this screening study to achieve a broad coverage against 16 HIV-1 subtypes. PMID:28933684
Prieto, J; Beatty, P G; Clark, E A; Patarroyo, M
1988-01-01
Leucocytes interact with vascular endothelial cells (EC), and adhesion between these two cell types in vitro is modulated by phorbol ester. Monocytes were found to display the highest basal adhesion to EC, followed by Epstein-Barr virus-immortalized normal B cells (EBV-B), T cells and granulocytes. Phorbol ester treatment increased the adhesion of all types of leucocytes, except monocytes. In the presence of this compound, monoclonal antibody 60.3 to GP90 (CD18, a leucocyte-adhesion protein which is non-covalently associated to either GP160, GP155, or GP130) was found to inhibit the adhesion of the four types of leucocytes to a considerable extent, while anti-lymphocyte function-associated antigen-1 (LFA-1) antibody to GP160 (CD11a) inhibited the adhesion of T and B cells only. Antibody 60.1 to GP155 (CD11b) had a major inhibitory activity exclusively on granulocytes, while antibody LB-2, which recognizes a distinct adhesion molecule (GP84) and, in contrast to the previous antibodies, reacts with EC, mainly inhibited adhesion of EBV-B and did not increase the inhibition obtained with antibody 60.3 alone. Fab fragments of antibody 60.3 inhibited leucocyte adhesion more efficiently, in either the absence or presence of phorbol ester, than the intact antibody molecule. It is concluded the GP90, either alone or associated to the larger glycoproteins, mediates the adhesion in all types of leucocytes, while GP84 mediates the adhesion of the activated B cells. Images Figure 2 PMID:3259203
Molinos-Albert, Luis M; Bilbao, Eneritz; Agulló, Luis; Marfil, Silvia; García, Elisabet; Rodríguez de la Concepción, Maria Luisa; Izquierdo-Useros, Nuria; Vilaplana, Cristina; Nieto-Garai, Jon A; Contreras, F-Xabier; Floor, Martin; Cardona, Pere J; Martinez-Picado, Javier; Clotet, Bonaventura; Villà-Freixa, Jordi; Lorizate, Maier; Carrillo, Jorge; Blanco, Julià
2017-01-13
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants.
NASA Astrophysics Data System (ADS)
Kamath, Aditya; Vargas-Hernández, Rodrigo A.; Krems, Roman V.; Carrington, Tucker; Manzhos, Sergei
2018-06-01
For molecules with more than three atoms, it is difficult to fit or interpolate a potential energy surface (PES) from a small number of (usually ab initio) energies at points. Many methods have been proposed in recent decades, each claiming a set of advantages. Unfortunately, there are few comparative studies. In this paper, we compare neural networks (NNs) with Gaussian process (GP) regression. We re-fit an accurate PES of formaldehyde and compare PES errors on the entire point set used to solve the vibrational Schrödinger equation, i.e., the only error that matters in quantum dynamics calculations. We also compare the vibrational spectra computed on the underlying reference PES and the NN and GP potential surfaces. The NN and GP surfaces are constructed with exactly the same points, and the corresponding spectra are computed with the same points and the same basis. The GP fitting error is lower, and the GP spectrum is more accurate. The best NN fits to 625/1250/2500 symmetry unique potential energy points have global PES root mean square errors (RMSEs) of 6.53/2.54/0.86 cm-1, whereas the best GP surfaces have RMSE values of 3.87/1.13/0.62 cm-1, respectively. When fitting 625 symmetry unique points, the error in the first 100 vibrational levels is only 0.06 cm-1 with the best GP fit, whereas the spectrum on the best NN PES has an error of 0.22 cm-1, with respect to the spectrum computed on the reference PES. This error is reduced to about 0.01 cm-1 when fitting 2500 points with either the NN or GP. We also find that the GP surface produces a relatively accurate spectrum when obtained based on as few as 313 points.
Frei, Julia C; Nyakatura, Elisabeth K; Zak, Samantha E; Bakken, Russell R; Chandran, Kartik; Dye, John M; Lai, Jonathan R
2016-01-13
Filoviruses (Ebola and Marburg) cause severe hemorrhagic fever. There are five species of ebolavirus; among these, the Ebola (Zaire) and Sudan viruses (EBOV and SUDV, respectively) are highly pathogenic and have both caused recurring, large outbreaks. However, the EBOV and SUDV glycoprotein (GP) sequences are 45% divergent and thus antigenically distinct. Few antibodies with cross-neutralizing properties have been described to date. We used antibody engineering to develop novel bispecific antibodies (Bis-mAbs) that are cross-reactive toward base epitopes on GP from EBOV and SUDV. These Bis-mAbs exhibit potent neutralization against EBOV and SUDV GP pseudotyped viruses as well as authentic pathogens, and confer a high degree (in one case 100%) post-exposure protection of mice from both viruses. Our studies show that a single agent that targets the GP base epitopes is sufficient for protection in mice; such agents could be included in panfilovirus therapeutic antibody cocktails.
Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability
NASA Astrophysics Data System (ADS)
Kong, Leopold; He, Linling; de Val, Natalia; Vora, Nemil; Morris, Charles D.; Azadnia, Parisa; Sok, Devin; Zhou, Bin; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.; Zhu, Jiang
2016-06-01
The trimeric HIV-1 envelope glycoprotein (Env) is critical for host immune recognition and neutralization. Despite advances in trimer design, the roots of Env trimer metastability remain elusive. Here we investigate the contribution of two Env regions to metastability. First, we computationally redesign a largely disordered bend in heptad region 1 (HR1) of SOSIP trimers that connects the long, central HR1 helix to the fusion peptide, substantially improving the yield of soluble, well-folded trimers. Structural and antigenic analyses of two distinct HR1 redesigns confirm that redesigned Env closely mimics the native, prefusion trimer with a more stable gp41. Next, we replace the cleavage site between gp120 and gp41 with various linkers in the context of an HR1 redesign. Electron microscopy reveals a potential fusion intermediate state for uncleaved trimers containing short but not long linkers. Together, these results outline a general approach for stabilization of Env trimers from diverse HIV-1 strains.
Analysis of canine herpesvirus gB, gC and gD expressed by a recombinant vaccinia virus.
Xuan, X; Kojima, A; Murata, T; Mikami, T; Otsuka, H
1997-01-01
The genes encoding the canine herpesvirus (CHV) glycoprotein B (gB), gC and gD homologues have been reported already. However, products of these genes have not been identified yet. Previously, we have identified three CHV glycoproteins, gp 145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gB, gC or gD, the putative genes of gB, gC, and gD of CHV were inserted into the thymidine kinase gene of vaccinia virus LC16mO strain under the control of the early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. We demonstrated here that gp145/112, gp80 and gp47 were the translation products of the CHV gB, gC and gD genes, respectively. The antigenic authenticity of recombinant gB, gC and gD were confirmed by a panel of MAbs specific for each glycoprotein produced in CHV-infected cells. Immunization of mice with these recombinants produced high titers of neutralizing antibodies against CHV. These results suggest that recombinant vaccinia viruses expressing CHV gB, gC and gD may be useful to develop a vaccine to control CHV infection.
Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S.; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine
2016-01-01
ABSTRACT The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. PMID:27795350
Ayouba, Ahidjo; Touré, Abdoulaye; Butel, Christelle; Keita, Alpha Kabinet; Binetruy, Florian; Sow, Mamadou S; Foulongne, Vincent; Delaporte, Eric; Peeters, Martine
2017-01-01
The recent Zaire Ebola virus (EBOV) outbreak in West Africa illustrates clearly the need for additional studies with humans and animals to elucidate the ecology of Ebola viruses (EBVs). In this study, we developed a serological assay based on the Luminex technology. Nine recombinant proteins representing different viral regions (nucleoprotein [NP], 40-kDa viral protein [VP40], and glycoprotein [GP]) from four of the five EBV lineages were used. Samples from 94 survivors of the EBOV outbreak in Guinea and negative samples from 108 patients in France were used to calculate test performance for EBOV detection and cross-reaction with other Ebola virus lineages. For EBOV antibody detection, sensitivities of 95.7%, 96.8%, and 92.5% and specificities of 94.4%, 95.4%, and 96.3% for NP, GP, and VP40, respectively, were observed. All EBOV-negative samples that presented a reaction, except for one, interacted with a single antigen, whereas almost all samples from EBOV survivors were simultaneously reactive with NP and GP (90/94) or with NP, GP, and VP40 (87/94). Considering as positive for past EBOV infection only samples that reacted with EBOV NP and GP, sensitivity was 95.7% and specificity increased to 99.1%. Comparing results with commercial EBOV NP and GP enzyme-linked immunosorbent assays (ELISAs; Alpha Diagnostic, San Antonio, TX), lower sensitivity (92.5%) and high specificity (100%) were observed with the same positivity criteria. Samples from EBOV survivors cross-reacted with GP from Sudan Ebola virus (GP-SUDV) (81.9%), GP from Bundibugyo Ebola virus (GP-BDBV) (51.1%), GP from Reston Ebola virus (GP-RESTV) (9.6%), VP40-SUDV (76.6%), and VP40-BDBV (38.3%). Overall, we developed a sensitive and specific high-throughput serological assay, and defined an algorithm, for epidemiological surveys with humans. Copyright © 2016 American Society for Microbiology.
Moshgabadi, Noushin; Galli, Rick A; Daly, Amelia C; Ko, Sze Mun Shirley; Westgard, Tayla E; Bulpitt, Ashley F; Shackleton, Christopher R
2015-10-01
Anti-HIV-1 IgM antibody is an important immunoassay target for early HIV antibody detection. The objective of this study is to determine if the early HIV antibody sensitivity of the 60s INSTI test is due to detection of anti-HIV-1 IgM in addition to IgG. To demonstrate HIV gp41 IgM antibody capture by the INSTI HIV-1 gp41 recombinant antigen, an HIV-IgM ELISA was conducted with commercial HIV-1 seroconversion samples. To demonstrate that the INSTI dye-labelled Protein A-based colour developer (CD) has affinity to human IgM, commercial preparations of purified human immunoglobulins (IgM, IgD, IgA, IgE, and IgG) were blotted onto nitrocellulose (NC) and probed with the CD to observe spot development. To determine that INSTI is able to detect anti-HIV-1 IgM antibody, early seroconversion samples, were tested for reduced INSTI test spot intensity following IgM removal. The gp41-based HIV-IgM ELISA results for 6 early seroconversion samples that were INSTI positive determined that the assay signal was due to anti-HIV-1 IgM antibody capture by the immobilised gp41 antigen. The dye-labelled Protein-A used in the INSTI CD produced distinct spots for purified IgM, IgA, and IgG blotted on the NC membrane. Following IgM removal from 21HIV-1 positive seroconversion samples with known or undetermined anti-HIV-1 IgM levels that were western blot negative or indeterminate, all samples had significantly reduced INSTI test spot intensity. The INSTI HIV-1/HIV-2 Antibody Test is shown to detect anti-HIV-1 IgM antibodies in early HIV infection which enhances its utility in early HIV diagnosis. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Antigenic and 3D structural characterization of soluble X4 and hybrid X4-R5 HIV-1 Env trimers
2014-01-01
Background HIV-1 is decorated with trimeric glycoprotein spikes that enable infection by engaging CD4 and a chemokine coreceptor, either CCR5 or CXCR4. The variable loop 3 (V3) of the HIV-1 envelope protein (Env) is the main determinant for coreceptor usage. The predominant CCR5 using (R5) HIV-1 Env has been intensively studied in function and structure, whereas the trimeric architecture of the less frequent, but more cytopathic CXCR4 using (X4) HIV-1 Env is largely unknown, as are the consequences of sequence changes in and near V3 on antigenicity and trimeric Env structure. Results Soluble trimeric gp140 Env constructs were used as immunogenic mimics of the native spikes to analyze their antigenic properties in the context of their overall 3D structure. We generated soluble, uncleaved, gp140 trimers from a prototypic T-cell line-adapted (TCLA) X4 HIV-1 strain (NL4-3) and a hybrid (NL4-3/ADA), in which the V3 spanning region was substituted with that from the primary R5 isolate ADA. Compared to an ADA (R5) gp140, the NL4-3 (X4) construct revealed an overall higher antibody accessibility, which was most pronounced for the CD4 binding site (CD4bs), but also observed for mAbs against CD4 induced (CD4i) epitopes and gp41 mAbs. V3 mAbs showed significant binding differences to the three constructs, which were refined by SPR analysis. Of interest, the NL4-3/ADA construct with the hybrid NL4-3/ADA CD4bs showed impaired CD4 and CD4bs mAb reactivity despite the presence of the essential elements of the CD4bs epitope. We obtained 3D reconstructions of the NL4-3 and the NL4-3/ADA gp140 trimers via electron microscopy and single particle analysis, which indicates that both constructs inherit a propeller-like architecture. The first 3D reconstruction of an Env construct from an X4 TCLA HIV-1 strain reveals an open conformation, in contrast to recently published more closed structures from R5 Env. Exchanging the X4 V3 spanning region for that of R5 ADA did not alter the open Env architecture as deduced from its very similar 3D reconstruction. Conclusions 3D EM analysis showed an apparent open trimer configuration of X4 NL4-3 gp140 that is not modified by exchanging the V3 spanning region for R5 ADA. PMID:24884925
Zuckermann, F A; Zsak, L; Mettenleiter, T C; Ben-Porat, T
1990-01-01
Pseudorabies virus (PrV) is the etiological agent of Aujeszky's disease, a disease that causes heavy economic losses in the swine industry. A rational approach to the generation of an effective vaccine against this virus requires an understanding of the immune response induced by it and of the role of the various viral antigens in inducing such a response. We have constructed mutants of PrV [strain PrV (Ka)] that differ from each other only in expression of the viral nonessential glycoproteins gI, gp63, gX, and gIII (i.e., are otherwise isogenic). These mutants were used to ascertain the importance of each of the nonessential glycoproteins in eliciting a PrV-specific cytotoxic T-lymphocyte (CTL) response in mice and pigs. Immunization of DBA/2 mice and pigs with a thymidine kinase-deficient (TK-) mutant of PrV elicits the formation of cytotoxic cells that specifically lyse syngeneic infected target cells. These PrV-specific cytolytic cells have the phenotype of major histocompatibility complex class I antigen-restricted CTLs. The relative number of CTLs specific for glycoproteins gI, gp63, gX, and gIII induced in mice vaccinated with a TK- mutant of PrV was ascertained by comparing their levels of cytotoxicity against syngeneic cells infected with either wild-type virus or gI-/gp63-, gX-, or gIII- virus deletion mutants. The PrV-specific CLTs were significantly less effective in lysing gIII(-)-infected targets than in lysing gI-/gp63-, gX-, or wild-type-infected targets. The in vitro secondary CTL response of lymphocytes obtained from either mice or pigs 6 or more weeks after immunization with a TK- mutant of PrV was also tested. Lymphocytes obtained from these animals were cultured with different glycoprotein-deficient mutants of PrV, and their cytolytic activities against wild-type-infected targets were ascertained. The importance of each of the nonessential viral glycoproteins in eliciting CTLs was assessed from the effectiveness of each of the virus mutants to stimulate the secondary anti-PrV CTL response. Cultures of both murine or swine lymphocytes that had been stimulated with gIII- virus contained only approximately half as many lytic units as did those stimulated with either wild-type virus, a gX- virus mutant, or a gI-/gp63- virus mutant. Thus, a large proportion of the PrV-specific CTLs that are induced by immunization with PrV of both mice and pigs are directed against gIII. Furthermore, glycoproteins gI, gp63, and gX play at most a minor role in the CTL response of these animals to PrV. PMID:2153244
Tipu, Hamid Nawaz
2016-02-01
To determine the Crimean Congo Hemorrhagic Fever (CCHF) virus M segement glycoprotein's immunoinformatic parameters, and identify Human Leukocyte Antigen (HLA) class I binders as candidates for synthetic peptide vaccines. Cross-sectional study. Combined Military Hospital, Khuzdar Cantt, in May 2015. Data acquisition, antigenicity prediction, secondary and tertiary structure prediction, residue analysis were done using immunoinformatics tools. HLAclass I binders in glycoprotein's sequence were identified at nanomer length using NetMHC 3.4 and mapped onto tertiary structure. Docking was done for strongest binder against its corresponding allele with CABS-dock. HLAA*0101, 0201, 0301, 2402, 2601 and B*0702, 0801, 2705, 3901, 4001, 5801, 1501 were analyzed against two glycoprotein components of the virus. Atotal of 35 nanomers from GP1, and 3 from GP2 were identified. HLAB*0702 bound maximum number of peptides (6), while HLAB*4001 showed strongest binding affinity. HLAspecific glycoproteins epitope prediction can help identify synthetic peptide vaccine candidates.
Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Heffron, C Lynn; Matzinger, Shannon R; Opriessnig, Tanja; Meng, Xiang-Jin
2015-12-02
Co-infection of pigs in the field with porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) is common and poses a major concern in effective control of PCV2 and PRRSV. We previously demonstrated that insertion of foreign epitope tags in the C-terminus of PCV2 ORF2 produced infectious virions that elicited humoral immune responses against both PCV2 capsid and inserted epitope tags. In this study, we aimed to determine whether the non-pathogenic chimeric virus PCV1-2a, which is the basis for the licensed PCV2 vaccine Fostera PCV, can express PRRSV antigenic epitopes, thus generating dual immunity as a potential bivalent vaccine against both PCV2 and PPRSV. Four different linear B-cell antigenic epitopes of PRRSV were inserted into the C-terminus of the capsid gene of the PCV1-2a vaccine virus. We showed that insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not impair the replication of the resulting PCV1-2a-PRRSVEPI chimeric viruses in vitro. The four chimeric PCV1-2a viruses expressing PRRSV B-cell linear epitopes were successfully rescued and characterized. An immunogenicity study in pigs revealed that two of the four chimeric viruses, PCV1-2a-PRRSVEPIGP3IG and PCV1-2a-PRRSVEPIEPIGP5IV, elicited neutralizing antibodies against PRRSV VR2385 as well as PCV2 (strains PCV2a, PCV2b, and mPCV2b). The results have important implications for exploring the potential use of PCV1-2a vaccine virus as a live virus vector to develop bivalent MLVs against both PCV2 and PRRSV. Copyright © 2015 Elsevier B.V. All rights reserved.
2011-01-01
Background Baculovirus, which has a width of 40 nm and a length of 250-300 nm, can display functional peptides, receptors and antigens on its surface by their fusion with a baculovirus envelop protein, GP64. In addition, some transmembrane proteins can be displayed without GP64 fusion, using the native transmembrane domains of the baculovirus. We used this functionality to display human prorenin receptor fused with GFPuv (GFPuv-hPRR) on the surface of silkworm Bombyx mori nucleopolyhedrovirus (BmNPV) and then tested whether these baculovirus particles could be used to detect protein-protein interactions. Results BmNPV displaying GFPuv-hPRR (BmNPV-GFPuv-hPRR) was purified from hemolymph by using Sephacryl S-1000 column chromatography in the presence of 0.01% Triton X-100. Its recovery was 86% and the final baculovirus particles number was 4.98 × 108 pfu. Based on the results of enzyme-linked immunosorbent assay (ELISA), 3.1% of the total proteins in BmNPV-GFPuv-hPRR were GFPuv-hPRR. This value was similar to that calculated from the result of western blot by a densitometry (2.7%). To determine whether BmNPV-GFPuv-hPRR particles were bound to human prorenin, ELISA results were compared with those from ELISAs using protease negative BmNPV displaying β1,3-N-acetylglucosaminyltransferase 2 fused with the gene encoding GFPuv (GGT2) (BmNPV-CP--GGT2) particles, which do not display hPRR on their surfaces. Conclusion The display of on the surface of the BmNPV particles will be useful for the detection of protein-protein interactions and the screening of inhibitors and drugs in their roles as nanobioparticles. PMID:21635720
Lim, HooiCheng; Yu, Chun-Ying; Jou, Tzuu-Shuh
2017-11-01
Establishment of apical-basal polarity, through correct targeting of polarity determinants to distinct domains of the plasma membrane, is a fundamental process for the development of functioning epithelial tubules. Here we report that galectin (Gal)-8 regulates apical-basal polarity of Madin-Darby canine kidney (MDCK) cells via apical targeting of 135-kDa glycoprotein (Gp135). Gal-8 interacts with newly synthesized Gp135 in a glycan-dependent manner. Gal-8 knockdown induces aberrant lumens at the lateral domain and mistargeting of Gp135 to this structure, thus disrupting the kidney epithelial polarity of MDCK cells, which organize lumens at the apical surface. The O -glycosylation deletion mutant of Gp135 phenocopies the effect of Gal-8 knockdown, which suggests that Gal-8 is the decoding machinery for the apical sorting signals of Gp135 residing at its O -glycosylation-rich region. Collectively, our results reveal a new role of Gal-8 in the development of luminal organs by regulating targeting of apical polarity protein Gp135.-Lim, H., Yu, C.-Y., Jou, T.-S. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. © FASEB.
Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.
2016-01-01
Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119
Kalariya, Mayurkumar; Amiji, Mansoor M
2013-09-10
The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity. Copyright © 2013 Elsevier B.V. All rights reserved.
Kimura, S; Yamakami-Kimura, M; Obata, Y; Hase, K; Kitamura, H; Ohno, H; Iwanaga, T
2015-05-01
The microfold (M) cell residing in the follicle-associated epithelium is a specialized epithelial cell that initiates mucosal immune responses by sampling luminal antigens. The differentiation process of M cells remains unclear due to limitations of analytical methods. Here we found that M cells were classified into two functionally different subtypes based on the expression of Glycoprotein 2 (GP2) by newly developed image cytometric analysis. GP2-high M cells actively took up luminal microbeads, whereas GP2-negative or low cells scarcely ingested them, even though both subsets equally expressed the other M-cell signature genes, suggesting that GP2-high M cells represent functionally mature M cells. Further, the GP2-high mature M cells were abundant in Peyer's patch but sparse in the cecal patch: this was most likely due to a decrease in the nuclear translocation of RelB, a downstream transcription factor for the receptor activator of nuclear factor-κB signaling. Given that murine cecum contains a protrusion of beneficial commensals, the restriction of M-cell activity might contribute to preventing the onset of any excessive immune response to the commensals through decelerating the M-cell-dependent uptake of microorganisms.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-04-10
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
Bagley, Kenneth C.; Lewis, George K.; Fouts, Timothy R.
2011-01-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques. PMID:21508173
Bagley, Kenneth C; Lewis, George K; Fouts, Timothy R
2011-06-01
Most DNA-encoded adjuvants enhance immune responses to DNA vaccines in small animals but are less effective in primates. Here, we characterize the adjuvant activity of the catalytic A1 domain of cholera toxin (CTA1) for human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) antigens in mice and macaques delivered by GeneGun. The inclusion of CTA1 with SIVmac239 Gag dramatically enhanced anti-Gag antibody responses in mice. The adjuvant effects of CTA1 for the secreted antigen HIV gp120 were much less pronounced than those for Gag, as the responses to gp120 were high in the absence of an adjuvant. CTA1 was a stronger adjuvant for Gag than was granulocyte-macrophage colony-stimulating factor (GM-CSF), and it also displayed a wider dose range than GM-CSF in mice. In macaques, CTA1 modestly enhanced the antibody responses to SIV Gag but potently primed for a recombinant Gag protein boost. The results of this study show that CTA1 is a potent adjuvant for SIV Gag when delivered by GeneGun in mice and that CTA1 provides a potent GeneGun-mediated DNA prime for a heterologous protein boost in macaques.
Al Tabaa, Yassine; Tuaillon, Edouard; Jeziorski, Eric; Ouedraogo, David Eric; Bolloré, Karine; Rubbo, Pierre-Alain; Foulongne, Vincent; Rodière, Michel; Vendrell, Jean-Pierre
2011-09-01
Acute infectious mononucleosis (AIM) is generally associated with a large EBV B cell reservoir cells and an intense B-cell polyclonal activation whereas the number of quiescent EBV-infected memory B cells in chronically EBV-infected healthy controls is very low. To evaluate the extent and functionality of ex vivo B-cell polyclonal activation, quantify the EBV DNA integrated in B cells, enumerate the functional EBV DNA reservoir in B cells and circulating B cells spontaneously secreting EBV antigens in AIM. Circulating B cells and B cells differentiating into plamablasts and plasma cells, early (BZLF1)- and late viral antigen (gp350)-secreting-cells (SCs) were enumerated in six AIM patients and seven healthy EBV carriers. In vitro B-cell polyclonal activation induced 8000-24,000 BZLF1- and 1000-3000gp350-SCs/10(6) B cells, respectively. These data suggest that only 11.1-19.5% of cells expressing BZLF1 synthesized gp350 and so completed the EBV-lytic cycle. Furthermore, circulating spontaneous BZLF1- and gp350-SCs that reflect ongoing viral replication were rare (20-120 and 10-30/10(6) B cells, respectively), and their low numbers contrasted with the high levels of circulating plasma cells (1.1-10.2% of CD19(+) B cells). The in vivo terminal-B-cell differentiation into plasma cells could unmask EBV B-cell reservoir to specific cytotoxic T-cell response and combined with a predominant abortive functional-EBV-reservoir, strongly contribute to rapid decay of cellular EBV reservoir in AIM. Copyright © 2011 Elsevier B.V. All rights reserved.
Broadly neutralizing antibody specificities detected in the genital tract of HIV-1 infected women.
Mkhize, Nonhlanhla N; Durgiah, Raveshni; Ashley, Vicki; Archary, Derseree; Garrett, Nigel J; Karim, Quarraisha Abdool; Karim, Salim S Abdool; Moore, Penny L; Yates, Nicole; Passmore, Jo-Ann S; Tomaras, Georgia D; Morris, Lynn
2016-04-24
Broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the HIV envelope glycoprotein have been identified in blood from HIV-1 infected women. We investigated whether antibodies in the genital tract from these women share similar epitope specificities and functional profiles as those in blood. Immunoglobulin (Ig)G and IgA antibodies were isolated from cervicovaginal lavages or Softcups from 13 HIV-infected women in the CAPRISA cohort using Protein G and Peptide M, respectively. Binding antibodies to envelope antigens were quantified by ELISA and binding antibody multiplex assay. Neutralizing antibody titers and epitope targets were measured using the TZM-bl assay with Env-pseudotyped wild-type and mutated viruses. HIV-specific IgG, but not IgA, was detected in genital secretions and the ratio of total IgG to HIV-specific IgG was similar to plasma. HIV-specific IgG reacted with multiple envelope antigens, including V1V2, gp120, gp140 and gp41. Two women had high plasma titers of HIV-specific IgG3 which was also detected in their genital tract samples. IgG from the genital tract had neutralizing activity against both Tier 1 and Tier 2 primary HIV-isolates. Antibodies targeting well known glycan epitopes and the membrane proximal region of gp41 were detected in genital secretions, and matched specificities in plasma. Women with plasma bNAbs have overlapping specificities in their genital secretions, indicating that these predominantly IgG isotype antibodies may transudate from blood to the genital tract. These data provide evidence that induction of systemic HIV-specific bNAbs can lead to antiviral immunity at the portal of entry.
Ontogeny of anti-human immunodeficiency virus (HIV) antibody production in HIV-1-infected infants.
Pollack, H; Zhan, M X; Ilmet-Moore, T; Ajuang-Simbiri, K; Krasinski, K; Borkowsky, W
1993-01-01
The early serologic response of infants to infection with human immunodeficiency virus type 1 (HIV-1) is normally obscured by the presence of transplacentally acquired maternal HIV antibody. By measuring HIV antibody produced in vitro by lymphocytes isolated from peripheral blood of infants and children of HIV-1-infected mothers, we have been able to study the natural acquisition of humoral immunity to perinatal HIV-1 infection. One hundred ninety-seven infants of HIV-1-infected women were studied prospectively and longitudinally from birth. In the neonatal period, infected infants produced only small amounts of HIV-specific IgG antibodies to a restricted number of antigens. The amount of immunoglobulin to HIV-1 and the number of HIV-1 antigens recognized increased with age. After 6 months of life 85% of infected infants made detectable antibody to two or more viral proteins. Antibody to gp160 appeared first and was the most frequently found at all ages, followed by antibody to the envelope proteins gp120 and gp41. The amount of HIV antibody produced correlated positively with the percentage of CD4+ T lymphocytes in peripheral blood. This assay provides a method of studying the immunogenicity of vaccines against HIV-1 in HIV-1-infected infants and of assessing the effect of early therapeutic interventions on the humoral response to HIV-1. PMID:8460144
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiyama, Yasuhiro; Planque, Stephanie; Mitsuda, Yukie
2009-11-23
We describe murine monoclonal antibodies (mAbs) raised by immunization with an electrophilic gp120 analog (E-gp120) expressing the rare ability to neutralize genetically heterologous human immunodeficiency virus (HIV) strains. Unlike gp120, E-gp120 formed covalent oligomers. The reactivity of gp120 and E-gp120 with mAbs to reference neutralizing epitopes was markedly different, indicating their divergent structures. Epitope mapping with synthetic peptides and electrophilic peptide analogs indicated binary recognition of two distinct gp120 regions by anti-E-gp120 mAbs, the 421-433 and 288-306 peptide regions. Univalent Fab and single chain Fv fragments expressed the ability to recognize both peptides. X-ray crystallography of an anti-E-gp120 Fab fragmentmore » revealed two neighboring cavities, the typical antigen-binding cavity formed by the complementarity determining regions (CDRs) and another cavity dominated by antibody heavy chain variable (VH) domain framework (FR) residues. Substitution of the FR cavity VH Lys-19 residue by an Ala residue resulted in attenuated binding of the 421-433 region peptide probe. The CDRs and VH FR replacement/silent mutation ratios exceeded the ratio for a random mutation process, suggesting adaptive development of both putative binding sites. All mAbs studied were derived from VH1 family genes, suggesting biased recruitment of the V gene germ line repertoire by E-gp120. The conserved 421-433 region of gp120 is essential for HIV binding to host CD4 receptors. This region is recognized weakly by the FR of antibodies produced without exposure to HIV, but it usually fails to induce adaptive synthesis of neutralizing antibodies. We present models accounting for improved CD4-binding site recognition and broad HIV neutralizing activity of the mAbs, long sought goals in HIV vaccine development.« less
Slaney, Clare Y; von Scheidt, Bianca; Davenport, Alexander J; Beavis, Paul A; Westwood, Jennifer A; Mardiana, Sherly; Tscharke, David C; Ellis, Sarah; Prince, H Miles; Trapani, Joseph A; Johnstone, Ricky W; Smyth, Mark J; Teng, Michele W; Ali, Aesha; Yu, Zhiya; Rosenberg, Steven A; Restifo, Nicholas P; Neeson, Paul; Darcy, Phillip K; Kershaw, Michael H
2017-05-15
Purpose: While adoptive transfer of T cells bearing a chimeric antigen receptor (CAR) can eliminate substantial burdens of some leukemias, the ultimate challenge remains the eradication of large solid tumors for most cancers. We aimed to develop an immunotherapy approach effective against large tumors in an immunocompetent, self-antigen preclinical mouse model. Experimental Design: In this study, we generated dual-specific T cells expressing both a CAR specific for Her2 and a TCR specific for the melanocyte protein (gp100). We used a regimen of adoptive cell transfer incorporating vaccination (ACTIV), with recombinant vaccinia virus expressing gp100, to treat a range of tumors including orthotopic breast tumors and large liver tumors. Results: ACTIV therapy induced durable complete remission of a variety of Her2 + tumors, some in excess of 150 mm 2 , in immunocompetent mice expressing Her2 in normal tissues, including the breast and brain. Vaccinia virus induced extensive proliferation of T cells, leading to massive infiltration of T cells into tumors. Durable tumor responses required the chemokine receptor CXCR3 and exogenous IL2, but were independent of IFNγ. Mice were resistant to tumor rechallenge, indicating immune memory involving epitope spreading. Evidence of limited neurologic toxicity was observed, associated with infiltration of cerebellum by T cells, but was only transient. Conclusions: This study supports a view that it is possible to design a highly effective combination immunotherapy for solid cancers, with acceptable transient toxicity, even when the target antigen is also expressed in vital tissues. Clin Cancer Res; 23(10); 2478-90. ©2016 AACR . ©2016 American Association for Cancer Research.
Molinos-Albert, Luis M.; Bilbao, Eneritz; Agulló, Luis; Marfil, Silvia; García, Elisabet; Concepción, Maria Luisa Rodríguez de la; Izquierdo-Useros, Nuria; Vilaplana, Cristina; Nieto-Garai, Jon A.; Contreras, F.-Xabier; Floor, Martin; Cardona, Pere J.; Martinez-Picado, Javier; Clotet, Bonaventura; Villà-Freixa, Jordi; Lorizate, Maier; Carrillo, Jorge; Blanco, Julià
2017-01-01
The HIV-1 gp41 Membrane Proximal External Region (MPER) is recognized by broadly neutralizing antibodies and represents a promising vaccine target. However, MPER immunogenicity and antibody activity are influenced by membrane lipids. To evaluate lipid modulation of MPER immunogenicity, we generated a 1-Palmitoyl-2-oleoylphosphatidylcholine (POPC)-based proteoliposome collection containing combinations of phosphatidylserine (PS), GM3 ganglioside, cholesterol (CHOL), sphingomyelin (SM) and the TLR4 agonist monophosphoryl lipid A (MPLA). A recombinant gp41-derived miniprotein (gp41-MinTT) exposing the MPER and a tetanus toxoid (TT) peptide that favors MHC-II presentation, was successfully incorporated into lipid mixtures (>85%). Immunization of mice with soluble gp41-MinTT exclusively induced responses against the TT peptide, while POPC proteoliposomes generated potent anti-gp41 IgG responses using lower protein doses. The combined addition of PS and GM3 or CHOL/SM to POPC liposomes greatly increased gp41 immunogenicity, which was further enhanced by the addition of MPLA. Responses generated by all proteoliposomes targeted the N-terminal moiety of MPER overlapping the 2F5 neutralizing epitope. Our data show that lipids impact both, the epitope targeted and the magnitude of the response to membrane-dependent antigens, helping to improve MPER-based lipid carriers. Moreover, the identification of immunodominant epitopes allows for the redesign of immunogens targeting MPER neutralizing determinants. PMID:28084464
Becker, S; Klenk, H D; Mühlberger, E
1996-11-01
The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.
Gustin, Jean K; Bai, Ying; Moses, Ashlee V; Douglas, Janet L
2015-10-01
BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli
2011-04-01
Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.
Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui
2015-09-15
Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.
Patel, Dishant; Bashetty, Kusum; Srirekha, A; Archana, S; Savitha, B; Vijay, R
2016-01-01
The aim of this study was to evaluate the influence of manual versus mechanical glide path (GP) on the surface changes of two different nickel-titanium rotary instruments used during root canal therapy in a moderately curved root canal. Sixty systemically healthy controls were selected for the study. Controls were divided randomly into four groups: Group 1: Manual GP followed by RaCe rotary instruments, Group 2: Manual GP followed by HyFlex rotary instruments, Group 3: Mechanical GP followed by RaCe rotary instruments, Group 4: Mechanical GP followed by HyFlex rotary instruments. After access opening, GP was prepared and rotary instruments were used according to manufacturer's instructions. All instruments were evaluated for defects under standard error mean before their use and after a single use. The scorings for the files were given at apical and middle third. Chi-squared test was used. The results showed that there is no statistical difference between any of the groups. Irrespective of the GP and rotary files used, more defects were present in the apical third when compared to middle third of the rotary instrument. Within the limitations of this study, it can be concluded that there was no effect of manual or mechanical GP on surface defects of subsequent rotary file system used.
Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-03-21
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.
2001-05-01
isolates could retain gp120 in an oligomer. A large scale purification scheme was developed using lentil lectin affinity and size exclusion...34 e. Western blot analysis……………………………………………… 35 f. Large scale protein expression and purification…………………... 35 g. Metabolic labeling, size...isolate HIV-1 Env………... 60 c. Large scale antigen preparation and analysis……………………… 67 d. Cleaved, soluble crosslinked primary isolate Env binds
Evaluation of "credit card" libraries for inhibition of HIV-1 gp41 fusogenic core formation.
Xu, Yang; Lu, Hong; Kennedy, Jack P; Yan, Xuxia; McAllister, Laura A; Yamamoto, Noboru; Moss, Jason A; Boldt, Grant E; Jiang, Shibo; Janda, Kim D
2006-01-01
Protein-protein interactions are of critical importance in biological systems, and small molecule modulators of such protein recognition and intervention processes are of particular interest. To investigate this area of research, we have synthesized small-molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motif, appended with a variety of chemical functions, which we have termed "credit-card" structures. From two of our "credit-card" libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation, and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors.
Blocking of HIV-1 Infectivity by a Soluble, Secreted Form of the CD4 Antigen
NASA Astrophysics Data System (ADS)
Smith, Douglas H.; Byrn, Randal A.; Marsters, Scot A.; Gregory, Timothy; Groopman, Jerome E.; Capon, Daniel J.
1987-12-01
The initial event in the infection of human T lymphocytes, macrophages, and other cells by human immunodeficiency virus (HIV-1) is the attachment of the HIV-1 envelope glycoprotein gp120 to its cellular receptor, CD4. As a step toward designing antagonists of this binding event, soluble, secreted forms of CD4 were produced by transfection of mammalian cells with vectors encoding versions of CD4 lacking its transmembrane and cytoplasmic domains. The soluble CD4 so produced binds gp120 with an affinity and specificity comparable to intact CD4 and is capable of neutralizing the infectivity of HIV-1. These studies reveal that the high-affinity CD4-gp120 interaction does not require other cell or viral components and may establish a novel basis for therapeutic intervention in the acquired immune deficiency syndrome (AIDS).
Rabanus, J. P.; Greenspan, D.; Petersen, V.; Leser, U.; Wolf, H.; Greenspan, J. S.
1991-01-01
The authors investigated the life cycle of Epstein-Barr virus (EBV) in keratinocytes of oral hairy leukoplakia by combining immunohistochemistry. DNA in situ hybridization, and lectin histochemistry with electron microscopy. Diffuse-staining components of the EBV early antigen complex (EA-D), EBV 150-kd capsid antigen (VCA), EBV membrane antigen (gp350/220), and double-stranded DNA were labeled with monoclonal antibodies. An EBV-DNA probe was used to locate EBV DNA. Wheat-germ agglutinin (WGA) was employed to distinguish Golgi-associated compartments. The authors found EBV proteins and EBV DNA only in keratinocytes with apparent viral assembly. In situ hybridization showed EBV DNA in free corelike material and in electron-dense cores of mature nucleocapsids. Monoclonal antibodies to nonspecific double-stranded DNA attached to the same structures and to marginated chromatin. Components of EA-D were dispersed throughout the nuclei but accumulated near condensed chromatin and in 'punched-out' regions of the chromatin. Epstein-Barr virus 150-kd capsid antigen was found only in the nuclei, where it appeared preferentially on mature nucleocapsids. As yet unexplained arrays of intranuclear particles that remained unlabeled with all EBV-specific probes reacted intensely with an antiserum against common papillomavirus antigen. Gp350/220 was detectable in various cellular membrane compartments and was highly concentrated on EBV envelopes in peripheral Golgi-associated secretory vesicles. It was less abundant on the extracellular EBV, indicating that viral membrane antigen partly dissociates from the mature virus. Combined lectin-binding histochemistry and electron microscopy demonstrated for the first time that EBV is processed in the Golgi apparatus, which eventually releases the virus by fusion with the plasma membrane. These results provide insight into the biologic events that occur during complete EBV replication in vivo. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:1649554
Biosynthesis and processing of the Autographa californica nuclear polyhedrosis virus gp64 protein.
Jarvis, D L; Garcia, A
1994-11-15
gp64 is a major virion envelope glycoprotein of the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV). gp64 plays an important role in AcMNPV infection, probably mediating penetration of one form of the virus into host cells through the endocytic pathway. gp64 also represents an excellent probe for studying the membrane glycoprotein processing capabilities of baculovirus-infected insect cells, which are used widely as a eucaryotic expression system. The goals of this study were to characterize gp64 biosynthesis and processing and determine how N-glycosylation and N-linked oligosaccharide processing influence the fate and function of gp64 in AcMNPV-infected insect cells. We found that gp64 was synthesized in a biphasic fashion, with peaks at 8 and 24 hr postinfection in both the intracellular and extracellular fractions. Interestingly, the first peak preceded detectable budded virus (BV) production, suggesting that gp64 is shed from infected cells early in infection. Transcriptional regulation accounted for the biphasic mode of gp64 protein synthesis, as transcription initiated at a consensus early motif during early times of infection, at a late motif during late times of infection, and there was a lag between the peak of early and the onset of late transcription. In vitro transcription-translation assays showed that the second ATG in the AcMNPV gp64 long open reading frame is used as the translational initiation codon and that downstream sequences encode a functional signal peptide. Pulse-chase analyses, endoglycosidases, and various inhibitors were used to show that some N-linked oligosaccharides on gp64 are processed by glucosidases and alpha-mannosidases in AcMNPV-infected insect cells. These experiments also revealed that at least two differentially processed gp64 glycoforms are produced in these cells and that both can reach the cell surface and assemble into progeny BV. However, N-linked oligosaccharide processing was not required for gp64 cell surface expression, its assembly into infectious BV, or its fusogenic activity. This suggested that any gp64 glycoform produced during infection, regardless of its N-linked carbohydrate structure, can have essentially normal biological properties. By contrast, transport of gp64 to the cell surface, production of infectious BV, and fusogenic activity were reduced in the absence of N-glycosylation, indicating that this modification is necessary for optimal gp64 function.
Reynard, Olivier; Jacquot, Frédéric; Evanno, Gwénaëlle; Mai, Hoa Le; Martinet, Bernard; Duvaux, Odile; Bach, Jean-Marie; Conchon, Sophie; Judor, Jean-Paul; Perota, Andrea; Lagutina, Irina; Duchi, Roberto; Lazzari, Giovanna; Le Berre, Ludmilla; Perreault, Hélène; Lheriteau, Elsa; Raoul, Hervé; Volchkov, Viktor; Galli, Cesare; Soulillou, Jean-Paul
2016-01-01
Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection. PMID:27280712
Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger
2016-01-01
Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870
Postler, Thomas S.; Bixby, Jacqueline G.; Desrosiers, Ronald C.; Yuste, Eloísa
2014-01-01
Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs. PMID:25479017
Montero, Marinieve; Klaric, Kristina-Ana; Donald, Jason E.; Lepik, Christa; Wu, Sampson; Tsai, Sue; Julien, Jean-Philippe; Hessell, Ann J.; Wang, Shixia; Lu, Shan; Burton, Dennis R.; Pai, Emil F.; DeGrado, William F.
2012-01-01
Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure. PMID:22238313
Karasavvas, Nicos; Karnasuta, Chitraporn; Savadsuk, Hathairat; Madnote, Sirinan; Inthawong, Dutsadee; Chantakulkij, Somsak; Rittiroongrad, Surawach; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Thongcharoen, Prasert; Siriyanon, Vinai; Andrews, Charla A; Barnett, Susan W; Tartaglia, James; Sinangil, Faruk; Francis, Donald P; Robb, Merlin L; Michael, Nelson L; Ngauy, Viseth; de Souza, Mark S; Paris, Robert M; Excler, Jean-Louis; Kim, Jerome H; O'Connell, Robert J
2015-11-01
RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at 3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1 and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2 CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX(®)B/E boost but both trials showed similar rates of antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.
Design and Characterization of a Peptide Mimotope of the HIV-1 gp120 Bridging Sheet
Schiavone, Marco; Fiume, Giuseppe; Caivano, Antonella; de Laurentiis, Annamaria; Falcone, Cristina; Masci, Francesca Fasanella; Iaccino, Enrico; Mimmi, Selena; Palmieri, Camillo; Pisano, Antonio; Pontoriero, Marilena; Rossi, Annalisa; Scialdone, Annarita; Vecchio, Eleonora; Andreozzi, Concetta; Trovato, Maria; Rafay, Jan; Ferko, Boris; Montefiori, David; Lombardi, Angela; Morsica, Giulia; Poli, Guido; Quinto, Ileana; Pavone, Vincenzo; de Berardinis, Piergiuseppe; Scala, Giuseppe
2012-01-01
The Bridging Sheet domain of HIV-1 gp120 is highly conserved among the HIV-1 strains and allows HIV-1 binding to host cells via the HIV-1 coreceptors. Further, the bridging sheet domain is a major target to neutralize HIV-1 infection. We rationally designed four linear peptide epitopes that mimic the three-dimensional structure of bridging sheet by using molecular modeling. Chemically synthesized peptides BS3 and BS4 showed a fair degree of antigenicity when tested in ELISA with IgG purified from HIV+ broadly neutralizing sera while the production of synthetic peptides BS1 and BS2 failed due to their high degree of hydrophobicity. To overcome this limitation, we linked all four BS peptides to the COOH-terminus of GST protein to test both their antigenicity and immunogenicity. Only the BS1 peptide showed good antigenicity; however, no envelope specific antibodies were elicited upon mice immunization. Therefore we performed further analyses by linking BS1 peptide to the NH2-terminus of the E2 scaffold from the Geobacillus Stearothermophylus PDH complex. The E2-BS1 fusion peptide showed good antigenic results, however only one immunized rabbit elicited good antibody titers towards both the monomeric and oligomeric viral envelope glycoprotein (Env). In addition, moderate neutralizing antibodies response was elicited against two HIV-1 clade B and one clade C primary isolates. These preliminary data validate the peptide mimotope approach as a promising tool to obtain an effective HIV-1 vaccine. PMID:22754323
2011-01-01
Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies. PMID:21693048
Encinas, Paloma; Gomez-Sebastian, Silvia; Nunez, Maria Carmen; Gomez-Casado, Eduardo; Escribano, Jose M; Estepa, Amparo; Coll, Julio
2011-06-21
There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies.
Kawahara, Masahiro; Ueda, Hiroshi; Tsumoto, Kouhei; Kumagai, Izumi; Nagamune, Teruyuki
2007-04-01
We have previously designed antibody-cytokine receptor chimeras that could respond to a cognate antigen. While these chimeric receptors were functional, it has not been investigated exactly how they mimic signal transduction through corresponding wild-type receptors. In this study, we compared the growth properties and the phosphorylation status of intracellular signal transducers between the erythropoietin receptor (EpoR)- or gp130-based chimeric receptors and wild-type EpoR or EpoR-gp130 chimera, respectively. Expression plasmids, encoding V(H) or V(L) region of anti-hen egg lysozyme (HEL) antibody HyHEL-10 tethered to a pair of extracellular D2 domain of EpoR and transmembrane/cytoplasmic domains of either EpoR or gp130, were constructed, and pairs of chimeric receptor combinations (V(H)-EpoR and V(L)-EpoR, V(H)-gp130 and V(L)-gp130, V(H)-EpoR and V(L)-gp130, V(H)-gp130 and V(L)-EpoR) were expressed in an IL-3-dependent myeloid cell line, 32D. Growth assay revealed that the transfectants all grew in a HEL-dependent manner. As for phosphorylation of Stat3, Stat5, ERK and Akt, the chimeric receptors showed similar activation pattern of signalling molecules with wild-type receptors, although the chimeric receptors showed ligand-independency and a little lower maximal phosphorylation than the corresponding wild-type receptors. The results demonstrate that antibody-receptor chimeras could substantially mimic wild-type receptors.
Patel, Dishant; Bashetty, Kusum; Srirekha, A.; Archana, S.; Savitha, B.; Vijay, R.
2016-01-01
Aim: The aim of this study was to evaluate the influence of manual versus mechanical glide path (GP) on the surface changes of two different nickel-titanium rotary instruments used during root canal therapy in a moderately curved root canal. Materials and Methods: Sixty systemically healthy controls were selected for the study. Controls were divided randomly into four groups: Group 1: Manual GP followed by RaCe rotary instruments, Group 2: Manual GP followed by HyFlex rotary instruments, Group 3: Mechanical GP followed by RaCe rotary instruments, Group 4: Mechanical GP followed by HyFlex rotary instruments. After access opening, GP was prepared and rotary instruments were used according to manufacturer's instructions. All instruments were evaluated for defects under standard error mean before their use and after a single use. The scorings for the files were given at apical and middle third. Statistical Analysis Used: Chi-squared test was used. Results: The results showed that there is no statistical difference between any of the groups. Irrespective of the GP and rotary files used, more defects were present in the apical third when compared to middle third of the rotary instrument. Conclusion: Within the limitations of this study, it can be concluded that there was no effect of manual or mechanical GP on surface defects of subsequent rotary file system used. PMID:27994317
Diabatic Definition of Geometric Phase Effects.
Izmaylov, Artur F; Li, Jiaru; Joubert-Doriol, Loïc
2016-11-08
Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.
Wu, Youbin; Wu, Shipo; Hou, Lihua; Wei, Wei; Zhou, Meng; Su, Zhiguo; Wu, Jie; Chen, Wei; Ma, Guanghui
2012-08-01
A novel thermal sensitive hydrogel was formulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC) and α, β-glycerophosphate (α, β-GP). A serial of hydrogels containing different amount of GP and HTCC with diverse quarternize degree (QD, 41%, 59%, 79.5%, and 99%) were prepared and characterized by rheological method. The hydrogel was subsequently evaluated for intranasal vaccine delivery with adenovirus based Zaire Ebola virus glycoprotein antigen (Ad-GPZ). Results showed that moderate quarternized HTCC (60% and 79.5%) hydrogel/antigen formulations induced highest IgG, IgG1, and IgG2a antibody titers in serum, as well as mucosal IgA responses in lung wash, which may attributed to the prolonged antigen residence time due to the thermal-sensitivity of this hydrogel. Furthermore, CD8(+) splenocytes for IFN-γ positive cell assay and the release profile of Th1/Th2 type cytokines (IFN-γ, IL-2, IL-10, and IL-4) showed that hydrogel/Ad-GPZ generated an overwhelmingly enhanced Th1 biased cellular immune response. In addition, this hydrogel displayed low toxicity to nasal tissue and epithelial cells even by frequently intranasal dosing of hydrogel. All these results strongly supported this hydrogel as a safe and effective delivery system for nasal immunization. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Cai, Zhen-bing; Zhao, Lei; Zhang, Xu; Yue, Wen; Zhu, Min-hao
2016-01-01
A ball-on-plate wear test was employed to investigate the effectiveness of graphene (GP) nanoparticles dispersed in a synthetic-oil-based lubricant in reducing wear. The effect by area ratio of elliptically shaped dimple textures and elevated temperatures were also explored. Pure PAO4 based oil and a mixture of this oil with 0.01 wt% GP were compared as lubricants. At pit area ratio of 5%, GP-base oil effectively reduced friction and wear, especially at 60 and 100°C. Under pure PAO4 oil lubrication, the untextured surfaces gained low friction coefficients (COFs) and wear rates under 60 and 100°C. With increasing laser—texture area ratio, the COF and wear rate decreased at 25 and 150°C but increased at 60 and 100°C. Under the GP-based oil lubrication, the textured surface with 5% area ratio achieved the lowest COF among those of the area ratios tested at all test temperatures. Meanwhile, the textured surface with 20% area ratio obtained the highest COF among those of the area ratios. With the joint action of GP and texture, the textured surface with 10% area ratio exhibited the best anti-wear performance among all of the textured surfaces at all test temperatures. PMID:27054762
Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina
2000-01-01
The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-01-01
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088
Bale, Shridhar; Liu, Tong; Li, Sheng; Wang, Yuhao; Abelson, Dafna; Fusco, Marnie; Woods, Virgil L; Saphire, Erica Ollmann
2011-11-01
Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2)) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2) is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2) trimeric, viral surface spike. After entry into host endosomes, GP(1,2) is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown. We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2) is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2). Further, ELISA binding data of primed GP(1,2) to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion. The results reveal that the ebolavirus GP(1,2) ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2) and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.
Moore, Paul A; Shah, Kalpana; Yang, Yinhua; Alderson, Ralph; Roberts, Penny; Long, Vatana; Liu, Daorong; Li, Jonathan C; Burke, Steve; Ciccarone, Valentina; Li, Hua; Fieger, Claudia B; Hooley, Jeff; Easton, Ann; Licea, Monica; Gorlatov, Sergey; King, Kathleen L; Young, Peter; Adami, Arash; Loo, Deryk; Chichili, Gurunadh R; Liu, Liqin; Smith, Douglas H; Brown, Jennifer G; Chen, Francine Z; Koenig, Scott; Mather, Jennie; Bonvini, Ezio; Johnson, Syd
2018-06-04
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART® protein designed to redirect T-cells to target gpA33 expressing colon cancer. The gpA33 target was selected based on an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic CRC specimens, including putative cancer stem cell populations. MGD007 displays the anticipated bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T-cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33 expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD 1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Copyright ©2018, American Association for Cancer Research.
Tanner, Jerome E; Coinçon, Mathieu; Leblond, Valérie; Hu, Jing; Fang, Janey M; Sygusch, Jurgen; Alfieri, Caroline
2015-05-01
Epstein-Barr virus (EBV) is the etiologic agent of infectious mononucleosis and the root cause of B-cell lymphoproliferative disease in individuals with a weakened immune system, as well as a principal cofactor in nasopharyngeal carcinoma, various lymphomas, and other cancers. The EBV major virion surface glycoprotein gp350 is viewed as the best vaccine candidate to prevent infectious mononucleosis in healthy EBV-naive persons and EBV-related cancers in at-risk individuals. Previous epitope mapping of gp350 revealed only one dominant neutralizing epitope, which has been shown to be the target of the monoclonal antibody 72A1. Computer modeling of the 72A1 antibody interaction with the gp350 amino terminus was used to identify gp350 amino acids that could form strong ionic, electrostatic, or hydrogen bonds with the 72A1 antibody. Peptide DDRTTLQLAQNPVYIPETYPYIKWDN (designated peptide 2) and peptide GSAKPGNGSYFASVKTEMLGNEID (designated peptide 3) were designed to spatially represent the gp350 amino acids predicted to interact with the 72A1 antibody paratope. Peptide 2 bound to the 72A1 antibody and blocked 72A1 antibody recognition of the native gp350 molecule. Peptide 2 and peptide 3 were recognized by human IgG and shown to elicit murine antibodies that could target gp350 and block its recognition by the 72A1 antibody. This work provides a structural mapping of the interaction between the EBV-neutralizing antibody 72A1 and the major virion surface protein gp350. gp350 mimetic peptides that spatially depict the EBV-neutralizing epitope would be useful as a vaccine to focus the immune system exclusively to this important virus epitope. The production of virus-neutralizing antibodies targeting the Epstein-Barr virus (EBV) major surface glycoprotein gp350 is important for the prevention of infectious mononucleosis and EBV-related cancers. The data presented here provide the first in silico map of the gp350 interaction with a virus-blocking monoclonal antibody. Immunization with gp350 peptides identified by in silico mapping generated antibodies that cross-react with the EBV gp350 molecule and block recognition of the gp350 molecule by a virus-neutralizing antibody. Through its ability to focus the immune system exclusively on the gp350 sequence important for viral entry, these peptides may form the basis of an EBV vaccine candidate. This strategy would sidestep the production of other irrelevant gp350 antibodies that divert the immune system from generating a protective antiviral response or that impede access to the virus-blocking epitope by protective antibodies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Wu, Quanxin; Huang, Hongfei; Sun, Xiaowen; Pan, Meimin; He, Yun; Tan, Shun; Zeng, Yi; Li, Li; Deng, Guohong; Yan, Zehui; He, Dengming; Li, Junnan; Wang, Yuming
2015-06-01
Hepatitis B virus (HBV) infection is a leading cause of liver diseases. We investigated the efficacy and safety of telbivudine in preventing transmission of HBV from hepatitis B e antigen-positive pregnant women with high viral loads to their infants in an open-label study. We performed a prospective study of 450 hepatitis B e antigen-positive pregnant women with HBV DNA levels greater than 10(6) IU/mL; 279 women received telbivudine (600 mg/d) during weeks 24 to 32 of gestation, and 171 women who were unwilling to take antiviral drugs participated as controls. All newborns were vaccinated with a recombinant HBV vaccine and hepatitis B immune globulin, according to a standard immunoprophylaxis procedure. Mother-to-child transmission of HBV was determined by detection of hepatitis B surface antigen and HBV DNA in the infant 6 months after birth. None of the infants whose mothers were given telbivudine tested positive for of hepatitis B surface antigen at 6 months, compared with 14.7% of infants in the control group (P = 5.317 × 10(-8)). Levels of HBV DNA also decreased among women given telbivudine; 40 of 172 (23.2%) women given telbivudine had undetectable HBV DNA levels before delivery, compared with none of the controls. A significantly higher proportion of women given telbivudine had undetectable levels of HBV DNA in cord blood (99.1%) than controls (61.5%; P = 1.195 × 10(-22)). No severe adverse events or complications were observed in women or infants. Telbivudine significantly reduces vertical transmission of HBV from pregnant women to their infants; it is safe and well tolerated by women and infants. Antiretroviral Pregnancy Registry Health Care Providers ID: 26592; Government number: Natural Science Foundation of China (NSFC) 30830090, 30972598; and Third Military Medical University Key Project for Clinical Research: 2012XLC05). Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
Holt, P G; Robinson, B W; Reid, M; Kees, U R; Warton, A; Dawson, V H; Rose, A; Schon-Hegrad, M; Papadimitriou, J M
1986-01-01
The inflammatory and immune cell populations of the human lung parenchyma have not been characterized in detail. This report describes a novel and efficient procedure for their extraction. Histologically normal human lung tissue samples from pneumonectomy specimens were sliced to 0.5 mm, and digested in collagenase/DNAse. Viable mononuclear cell yields ranged from 15-48 X 10(6)/g, and were markedly in excess of reported methods employing mechanical tissue disruption, which normally yield populations containing almost exclusively macrophages. The lung digest population was examined by flow cytometry using monoclonal antibodies against cell surface receptors, and found to comprise up to 40% T lymphocytes, 10% B lymphocytes and 30% macrophages, contaminated by less than 1% peripheral blood cells. Based upon these figures, the recoverable lung parenchymal lymphoid cell pool appears considerably larger than previously recognized, being of the same order as the peripheral blood pool. Initial functional studies suggest that such cellular activities as antigen-specific T cell proliferation, antigen-presentation, interleukin 1 production and natural killer cell activity survive the extraction process, and controlled enzymatic digestion experiments with peripheral blood cells indicate that the degree of enzyme-mediated damage to these functions and to cell-surface structures, was minimal. The extraction method thus appears suitable for studying the types and functions of human parenchymal lung cells in health and disease. Images Fig. 2 p195-a PMID:3026698
1991-01-01
A recently introduced extension of video-enhanced light microscopy, called Nanovid microscopy, documents the dynamic reorganization of individual cell surface components on living cells. 40-microns colloidal gold probes coupled to different types of poly-L-lysine label negative cell surface components of PTK2 cells. Evidence is provided that they bind to negative sialic acid residues of glycoproteins, probably through nonspecific electrostatic interactions. The gold probes, coupled to short poly-L-lysine molecules (4 kD) displayed Brownian motion, with a diffusion coefficient in the range 0.1-0.2 micron2/s. A diffusion coefficient in the 0.1 micron2/s range was also observed with 40-nm gold probes coupled to an antibody against the lipid-linked Thy-1 antigen on 3T3 fibroblasts. Diffusion of these probes is largely confined to apparent microdomains of 1-2 microns in size. On the other hand, the gold probes, coupled to long poly-L-lysine molecules (240 kD) molecules and bound to the leading lamella, were driven rearward, toward the boundary between lamelloplasm and perinuclear cytoplasm at a velocity of 0.5-1 micron/min by a directed ATP-dependent mechanism. This uniform motion was inhibited by cytochalasin, suggesting actin microfilament involvement. A similar behavior on MO cells was observed when the antibody-labeled gold served as a marker for the PGP-1 (GP-80) antigen. These results show that Nanovid microscopy, offering the possibility to observe the motion of individual specific cell surface components, provides a new and powerful tool to study the dynamic reorganization of the cell membrane during locomotion and in other biological contexts as well. PMID:1670778
Cortez, Cristian; Yoshida, Nobuko; Bahia, Diana; Sobreira, Tiago J.P.
2012-01-01
Host cell invasion and dissemination within the host are hallmarks of virulence for many pathogenic microorganisms. As concerns Trypanosoma cruzi, which causes Chagas disease, the insect vector-derived metacyclic trypomastigotes (MT) initiate infection by invading host cells, and later blood trypomastigotes disseminate to diverse organs and tissues. Studies with MT generated in vitro and tissue culture-derived trypomastigotes (TCT), as counterparts of insect-borne and bloodstream parasites, have implicated members of the gp85/trans-sialidase superfamily, MT gp82 and TCT Tc85-11, in cell invasion and interaction with host factors. Here we analyzed the gp82 structure/function characteristics and compared them with those previously reported for Tc85-11. One of the gp82 sequences identified as a cell binding site consisted of an α-helix, which connects the N-terminal β-propeller domain to the C-terminal β-sandwich domain where the second binding site is nested. In the gp82 structure model, both sites were exposed at the surface. Unlike gp82, the Tc85-11 cell adhesion sites are located in the N-terminal β-propeller region. The gp82 sequence corresponding to the epitope for a monoclonal antibody that inhibits MT entry into target cells was exposed on the surface, upstream and contiguous to the α-helix. Located downstream and close to the α-helix was the gp82 gastric mucin binding site, which plays a central role in oral T. cruzi infection. The sequences equivalent to Tc85-11 laminin-binding sites, which have been associated with the parasite ability to overcome extracellular matrices and basal laminae, was poorly conserved in gp82, compatible with its reduced capacity to bind laminin. Our study indicates that gp82 is structurally suited for MT to initiate infection by the oral route, whereas Tc85-11, with its affinity for laminin, would facilitate the parasite dissemination through diverse organs and tissues. PMID:22860068
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu
2011-04-01
Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses,more » i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.« less
Tempestilli, Massimo; Gentilotti, Elisa; Tommasi, Chiara; Nicastri, Emanuele; Martini, Federico; De Nardo, Pasquale; Narciso, Pasquale; Pucillo, Leopoldo P
2013-08-01
It has been shown that P-glycoprotein (P-gp) can greatly affect the cell uptake of antiretroviral drugs, thus hampering their access to HIV-1 replication sites. Lymphocytes are important sites of replication of HIV and target of other drugs, modification on these cells of P-gp could have an effect on pharmacokinetic of antiretrovirals and drug substrates. Blood samples from 16 healthy volunteers were used to determine the expression of P-gp on total, T and T helper lymphocytes after exposure to darunavir, a second generation protease inhibitor, and raltegravir, the first approved integrase inhibitor. Moreover, the effect of the drugs on P-gp functional activity was also studied by the rhodamine-123 efflux test. Darunavir, but not raltegravir, exposure caused a moderate, dose-dependent increment in P-gp expression in total, T and T helper lymphocytes, as demonstrated by the relative frequency of P-gp+ cells and by the amount of P-gp molecules present on cell surface. Functionally, incubation with darunavir led to a marked inhibition of P-gp activity measured by the efflux of rhodamine-123 similar to that observed by verapamil, a specific P-gp inhibitor. Raltegravir was not able to modify the efflux of rhodamine-123 level. Data show that darunavir, unlike raltegravir, may modify the expression and functionality of P-gp on human lymphocytes, thus leading to potential changes in intracellular concentrations of darunavir in patients treated with other drugs substrate of P-gp and vice versa. Our study highlights the need for studies on drug interactions via the P-gp modulation mechanism, especially with the current multi-drug regimens. Copyright © 2013 Elsevier B.V. All rights reserved.
Structures of Ebola virus GP and sGP in complex with therapeutic antibodies.
Pallesen, Jesper; Murin, Charles D; de Val, Natalia; Cottrell, Christopher A; Hastie, Kathryn M; Turner, Hannah L; Fusco, Marnie L; Flyak, Andrew I; Zeitlin, Larry; Crowe, James E; Andersen, Kristian G; Saphire, Erica Ollmann; Ward, Andrew B
2016-08-08
The Ebola virus (EBOV) GP gene encodes two glycoproteins. The major product is a soluble, dimeric glycoprotein (sGP) that is secreted abundantly. Despite the abundance of sGP during infection, little is known regarding its structure or functional role. A minor product, resulting from transcriptional editing, is the transmembrane-anchored, trimeric viral surface glycoprotein (GP). GP mediates attachment to and entry into host cells, and is the intended target of antibody therapeutics. Because large portions of sequence are shared between GP and sGP, it has been hypothesized that sGP may potentially subvert the immune response or may contribute to pathogenicity. In this study, we present cryo-electron microscopy structures of GP and sGP in complex with GP-specific and GP/sGP cross-reactive antibodies undergoing human clinical trials. The structure of the sGP dimer presented here, in complex with both an sGP-specific antibody and a GP/sGP cross-reactive antibody, permits us to unambiguously assign the oligomeric arrangement of sGP and compare its structure and epitope presentation to those of GP. We also provide biophysical evaluation of naturally occurring GP/sGP mutations that fall within the footprints identified by our high-resolution structures. Taken together, our data provide a detailed and more complete picture of the accessible Ebolavirus glycoprotein landscape and a structural basis to evaluate patient and vaccine antibody responses towards differently structured products of the GP gene.
A Role for Small Antibody Fragments to Bind and Neutralize HIV | Center for Cancer Research
The surface of the Human Immunodeficiency Virus (HIV) is studded with numerous copies of the glycoprotein Env. Each Env spike is composed of three copies of the proteins gp41, which sits in the viral membrane, and gp120, which rests on top of each gp41 molecule. Env is essential for HIV-mediated infection because the binding of gp120 to the T cell surface receptor CD4 initiates a conformational change in Env exposing the fusion peptide, which inserts into the T cell membrane and helps fuse the T cell and virus together. This makes Env an attractive target for designing therapeutic inhibitory antibodies. However, the complexities of the HIV surface proteins and the tight association of the virus and T cell during infection have hampered the identification of full-length antibodies with effective HIV neutralizing activity.
Wood, Matthew P; Cole, Amy L; Eade, Colleen R; Chen, Li-Mei; Chai, Karl X; Cole, Alexander M
2014-01-01
Several aspects of HIV-1 virulence and pathogenesis are mediated by the envelope protein gp41. Additionally, peptides derived from the gp41 ectodomain have been shown to induce chemotaxis in monocytes and neutrophils. Whereas this chemotactic activity has been reported, it is not known how these peptides could be produced under biological conditions. The heptad repeat 1 (HR1) region of gp41 is exposed to the extracellular environment and could therefore be susceptible to proteolytic processing into smaller peptides. Matriptase is a serine protease expressed at the surface of most epithelia, including the prostate and mucosal surfaces. Here, we present evidence that matriptase efficiently cleaves the HR1 portion of gp41 into a 22-residue chemotactic peptide MAT-1, the sequence of which is highly conserved across HIV-1 clades. We found that MAT-1 induced migration of primary neutrophils and monocytes, the latter of which act as a cellular reservoir of HIV during early stage infection. We then used formyl peptide receptor 1 (FPR1) and FPR2 inhibitors, along with HEK 293 cells, to demonstrate that MAT-1 can induce chemotaxis specifically using FPR2, a receptor found on the surface of monocytes, macrophages and neutrophils. These findings are the first to identify a proteolytic cleavage product of gp41 with chemotactic activity and highlight a potential role for matriptase in HIV-1 transmission and infection at epithelial surfaces and within tissue reservoirs of HIV-1. PMID:24617769
Perez, Elizabeth M.; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon
2017-01-01
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that EBV glycoprotein(s)-based VLPs have excellent immunogenicity, and represent a potentially safe vaccine that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year. PMID:27926486
Jia, Xiongfei; Gan, Chengjun; Xiao, Ke; He, Weifeng; Zhang, Tao; Huang, Cibing; Wu, Xiongfei; Luo, Gaoxing; Wang, Xiaojuan; Hu, Jie; Tan, Jiangling; Zhang, Xiaorong; Larsen, Peter Mose; Wu, Jun
2009-06-01
Acute allograft rejection has been recognized as a major impediment to improved success in renal transplantation. Timely detection and control of rejection are very important for the improvement in long-term renal allograft survival. Thus, biomarkers for early diagnosis of acute rejection are required urgently to clinical medication. This study seeks to search for such biomarker candidates by comparing patients' pre-treatment urinary protein profiling with their post-treatment urinary protein profiling. A total of 15 significantly and consistently down-regulated protein candidates were identified. Among them, alpha-1-antichymotrypsin precursor (AACT), tumor rejection antigen gp96 (GP96) and Zn-Alpha-2-Glycoprotein (ZAG) were selected for further analysis. The results indicated that Western Blot assay of AACT, GP96 and ZAG had advanced the diagnosis time of acute renal rejection by 3 days, compared with current standard clinical observation and laboratory examination. Furthermore, the double-blind detection revealed that the accuracy, sensitivity and specificity of the diagnosis of acute renal rejection of AACT, GP96 and ZAG were 66.67%/100%/60%, 83.33%/100%/80% and 66.67%/100%/60%, respectively, and 100%/100%/100% in combination. In conclusion, urinary protein AACT, GP96 and ZAG could be a set of potential biomarkers for early non-invasive diagnosis of the acute rejection after renal transplantation. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mok, Hoyin; Cheng, Xing; Xu, Qi; Zengel, James R; Parhy, Bandita; Zhao, Jackie; Wang, C. Kathy; Jin, Hong
2012-01-01
Live attenuated recombinant measles vaccine virus (MV) Edmonston-Zagreb (EZ) strain was evaluated as a viral vector to express the ectodomains of fusion protein of respiratory syncytial virus (RSV F) or glycoprotein 350 of Epstein-Barr virus (EBV gp350) as candidate vaccines for prophylaxis of RSV and EBV. The glycoprotein gene was inserted at the 1st or the 3rd position of the measles virus genome and the recombinant viruses were generated. Insertion of the foreign gene at the 3rd position had a minimal impact on viral replication in vitro. RSV F or EBV gp350 protein was secreted from infected cells. In cotton rats, EZ-RSV F and EZ-EBV gp350 induced MV- and insert-specific antibody responses. In addition, both vaccines also induced insert specific interferon gamma (IFN-γ) secreting T cell response. EZ-RSV F protected cotton rats from pulmonary replication of RSV A2 challenge infection. In rhesus macaques, although both EZ-RSV F and EZ-EBV gp350 induced MV specific neutralizing antibody responses, only RSV F specific antibody response was detected. Thus, the immunogenicity of the foreign antigens delivered by measles vaccine virus is dependent on the nature of the insert and the animal models used for vaccine evaluation. PMID:22383906
Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L
2015-03-01
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.
Young, Grace J; Harrison, Sean; Turner, Emma L; Walsh, Eleanor I; Oliver, Steven E; Ben-Shlomo, Yoav; Evans, Simon; Lane, J Athene; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Martin, Richard M; Metcalfe, Chris
2017-01-01
Objectives Cross-sectional studies suggest that around 6% of men undergo prostate-specific antigen (PSA) testing each year in UK general practice (GP). This longitudinal study aims to determine the cumulative testing pattern of men over a 10-year period and whether this testing can be considered equivalent to screening for prostate cancer (PCa). Setting, participants and outcome measures Patient-level data on PSA tests, biopsies and PCa diagnoses were obtained from the UK Clinical Practice Research Datalink (CPRD) for the years 2002 to 2011. The cumulative risks of PSA testing and of being diagnosed with PCa were estimated for the 10-year study period. Associations of a man’s age, region and index of multiple deprivation with the cumulative risk of PSA testing and PCa diagnosis were investigated. Rates of biopsy and diagnosis, following a high test result, were compared with those from the programme of PSA testing in the Prostate Testing for Cancer and Treatment (ProtecT) study. Results The 10-year risk of exposure to at least one PSA test in men aged 45 to 69 years in UK GP was 39.2% (95% CI 39.0 to 39.4%). The age-specific risks ranged from 25.2% for men aged 45–49 years to 53.0% for men aged 65–69 years (p for trend <0.001). For those with a PSA level ≥3, a test in UK GP was less likely to result in a biopsy (6%) and/or diagnosis of PCa (15%) compared with ProtecT study participants (85% and 34%, respectively). Conclusion A high proportion of men aged 45–69 years undergo PSA tests in UK GP: 39% over a 10-year period. A high proportion of these tests appear to be for the investigation of lower urinary tract symptoms and not screening for PCa. Trial registration number ISRCTN20141297, NCT02044172. PMID:29084797
Evaluation of “Credit Card” Libraries for Inhibition of HIV-1 gp41 Fusogenic Core Formation
Xu, Yang; Lu, Hong; Kennedy, Jack P.; Yan, Xuxia; McAllister, Laura; Yamamoto, Noboru; Moss, Jason A.; Boldt, Grant E.; Jiang, Shibo; Janda, Kim D.
2008-01-01
Protein-protein interactions are of critical importance in biological systems and small molecule modulators of such protein recognition and intervention processes are of particular interests. To investigate this area of research, we have synthesized small molecule libraries that can disrupt a number of biologically relevant protein-protein interactions. These library members are designed upon planar motifs, appended with a variety of chemical functions, which we have termed as “credit-card” structures. From two of our “credit-card” libraries, a series of molecules were uncovered which act as inhibitors against the HIV-1 gp41 fusogenic 6-helix bundle core formation, viral antigen p24 formation and cell-cell fusion at low micromolar concentrations. From the high-throughput screening assays we utilized, a selective index (SI) value of 4.2 was uncovered for compound 2261, which bodes well for future structure activity investigations and the design of more potent gp41 inhibitors. PMID:16827565
Structural constraints determine the glycosylation of HIV-1 envelope trimers
Pritchard, Laura K.; Vasiljevic, Snezana; Ozorowski, Gabriel; Seabright, Gemma E.; Cupo, Albert; Ringe, Rajesh; Kim, Helen J.; Sanders, Rogier W.; Doores, Katie J.; Burton, Dennis R.; Wilson, Ian A.; Ward, Andrew B.; Moore, John P.; Crispin, Max
2015-01-01
A highly glycosylated, trimeric envelope glycoprotein (Env) mediates HIV-1 cell entry. The high density and heterogeneity of the glycans shield Env from recognition by the immune system but, paradoxically, many potent broadly neutralizing antibodies (bNAbs) recognize epitopes involving this glycan shield. To better understand Env glycosylation and its role in bNAb recognition, we characterized a soluble, cleaved recombinant trimer (BG505 SOSIP.664) that is a close structural and antigenic mimic of native Env. Large, unprocessed oligomannose-type structures (Man8-9GlcNAc2) are notably prevalent on the gp120 components of the trimer, irrespective of the mammalian cell expression system or the bNAb used for affinity-purification. In contrast, gp41 subunits carry more highly processed glycans. The glycans on uncleaved, non-native oligomeric gp140 proteins are also highly processed. A homogeneous, oligomannose-dominated glycan profile is therefore a hallmark of a native Env conformation and a potential Achilles’ heel that can be exploited for bNAb recognition and vaccine design. PMID:26051934
Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.
2011-01-01
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594
Wieczorek, Lindsay; Krebs, Shelly J; Kalyanaraman, Vaniambadi; Whitney, Stephen; Tovanabutra, Sodsai; Moscoso, Carlos G; Sanders-Buell, Eric; Williams, Constance; Slike, Bonnie; Molnar, Sebastian; Dussupt, Vincent; Alam, S Munir; Chenine, Agnes-Laurence; Tong, Tina; Hill, Edgar L; Liao, Hua-Xin; Hoelscher, Michael; Maboko, Leonard; Zolla-Pazner, Susan; Haynes, Barton F; Pensiero, Michael; McCutchan, Francine; Malek-Salehi, Shawyon; Cheng, R Holland; Robb, Merlin L; VanCott, Thomas; Michael, Nelson L; Marovich, Mary A; Alving, Carl R; Matyas, Gary R; Rao, Mangala; Polonis, Victoria R
2015-08-01
Eliciting broadly reactive functional antibodies remains a challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development that is complicated by variations in envelope (Env) subtype and structure. The majority of new global HIV-1 infections are subtype C, and novel antigenic properties have been described for subtype C Env proteins. Thus, an HIV-1 subtype C Env protein (CO6980v0c22) from an infected person in the acute phase (Fiebig stage I/II) was developed as a research reagent and candidate immunogen. The gp145 envelope is a novel immunogen with a fully intact membrane-proximal external region (MPER), extended by a polylysine tail. Soluble gp145 was enriched for trimers that yielded the expected "fan blade" motifs when visualized by cryoelectron microscopy. CO6980v0c22 gp145 reacts with the 4E10, PG9, PG16, and VRC01 HIV-1 neutralizing monoclonal antibodies (MAbs), as well as the V1/V2-specific PGT121, 697, 2158, and 2297 MAbs. Different gp145 oligomers were tested for immunogenicity in rabbits, and purified dimers, trimers, and larger multimers elicited similar levels of cross-subtype binding and neutralizing antibodies to tier 1 and some tier 2 viruses. Immunized rabbit sera did not neutralize the highly resistant CO6980v0c22 pseudovirus but did inhibit the homologous infectious molecular clone in a peripheral blood mononuclear cell (PBMC) assay. This Env is currently in good manufacturing practice (GMP) production to be made available for use as a clinical research tool and further evaluation as a candidate vaccine. At present, the product pipeline for HIV vaccines is insufficient and is limited by inadequate capacity to produce large quantities of vaccine to standards required for human clinical trials. Such products are required to evaluate critical questions of vaccine formulation, route, dosing, and schedule, as well as to establish vaccine efficacy. The gp145 Env protein presented in this study forms physical trimers, binds to many of the well-characterized broad neutralizing MAbs that target conserved Env epitopes, and induce cross-subtype neutralizing antibodies as measured in both cell line and primary cell assays. This subtype C Env gp145 protein is currently undergoing good manufacturing practice production for use as a reagent for preclinical studies and for human clinical research. This product will serve as a reagent for comparative studies and may represent a next-generation candidate HIV immunogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, K.B.
1985-04-15
The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis.
Mittal, Rahul; Prasadarao, Nemani V
2011-11-22
Despite the fundamental function of neutrophils (polymorphonuclear leukocytes (PMNs)) in innate immunity, their role in Escherichia coli K1 (EC-K1) -induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1 infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by downregulating rac1, rac2 and gp91(phox) transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface-expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis
Mittal, Rahul; Prasadarao, Nemani V.
2012-01-01
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis. PMID:22109526
Structure of the Ebola Virus Glycoprotein Bound to An Antibody From a Human Survivor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.E.; Fusco, M.L.; Hessell, A.J.
2009-05-20
Ebola virus (EBOV) entry requires the surface glycoprotein (GP) to initiate attachment and fusion of viral and host membranes. Here we report the crystal structure of EBOV GP in its trimeric, pre-fusion conformation (GP1+GP2) bound to a neutralizing antibody, KZ52, derived from a human survivor of the 1995 Kikwit outbreak. Three GP1 viral attachment subunits assemble to form a chalice, cradled by the GP2 fusion subunits, while a novel glycan cap and projected mucin-like domain restrict access to the conserved receptor-binding site sequestered in the chalice bowl. The glycocalyx surrounding GP is likely central to immune evasion and may explainmore » why survivors have insignificant neutralizing antibody titres. KZ52 recognizes a protein epitope at the chalice base where it clamps several regions of the pre-fusion GP2 to the amino terminus of GP1. This structure provides a template for unraveling the mechanism of EBOV GP-mediated fusion and for future immunotherapeutic development.« less
Mizumachi, K; Kurisaki, J; Kaminogawa, S
1999-05-01
The antigenic determinants of bovine beta-casein (beta-CN) were localized by using twenty overlapping peptides encompassing the entire sequence of beta-CN and anti-beta-CN antisera from outbred mouse, rabbit and goat. The profile of the reactions was characteristic to the species, the dominant antigenic regions being 80-95, 143-158 and 195-209 in mouse, 1-16 in rabbit and 100-115 in goat. Regions 1-16, 100-115, 121-136 and 143-158 were antigenic in all three species. The number of antigenic regions recognized by goat was much fewer than that by mouse and rabbit, possibly because of the homology between bovine and goat beta-CN. A mixture of the twenty peptides could absorb about 50-60% of beta-CN specific antibodies from each species. Furthermore, the mouse and rabbit anti-beta-CN antibodies were also specific to the phosphorylated regions. We therefore conclude that the major antigenic determinants on beta-CN would be largely sequential and include the phosphorylated sites.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
Computational elucidation of potential antigenic CTL epitopes in Ebola virus.
Dikhit, Manas R; Kumar, Santosh; Vijaymahantesh; Sahoo, Bikash R; Mansuri, Rani; Amit, Ajay; Yousuf Ansari, Md; Sahoo, Ganesh C; Bimal, Sanjiva; Das, Pradeep
2015-12-01
Cell-mediated immunity is important for the control of Ebola virus infection. We hypothesized that those HLA A0201 and HLA B40 restricted epitopes derived from Ebola virus proteins, would mount a good antigenic response. Here we employed an immunoinformatics approach to identify specific 9mer amino acid which may be capable of inducing a robust cell-mediated immune response in humans. We identified a set of 28 epitopes that had no homologs in humans. Specifically, the epitopes derived from NP, RdRp, GP and VP40 share population coverage of 93.40%, 84.15%, 74.94% and 77.12%, respectively. Based on the other HLA binding specificity and population coverage, seven novel promiscuous epitopes were identified. These 7 promiscuous epitopes from NP, RdRp and GP were found to have world-wide population coverage of more than 95% indicating their potential significance as useful candidates for vaccine design. Epitope conservancy analysis also suggested that most of the peptides are highly conserved (100%) in other virulent Ebola strain (Mayinga-76, Kikwit-95 and Makona-G3816- 2014) and can therefore be further investigated for their immunological relevance and usefulness as vaccine candidates. Copyright © 2015 Elsevier B.V. All rights reserved.
Martinez, Osvaldo; Tantral, Lee; Mulherkar, Nirupama; Chandran, Kartik; Basler, Christopher F
2011-11-01
Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.
Xue, Gondga; von Schubert, Conrad; Hermann, Pascal; Peyer, Martina; Maushagen, Regina; Schmuckli-Maurer, Jacqueline; Bütikofer, Peter; Langsley, Gordon; Dobbelaere, Dirk A.E.
2010-01-01
Using bioinformatics tools, we searched the predicted Theileria annulata and T. parva proteomes for putative schizont surface proteins. This led to the identification of gp34, a GPI-anchored protein that is stage-specifically expressed by schizonts of both Theileria species and is downregulated upon induction of merogony. Transfection experiments in HeLa cells showed that the gp34 signal peptide and GPI anchor signal are also functional in higher eukaryotes. Epitope-tagged Tp-gp34, but not Ta-gp34, expressed in the cytosol of COS-7 cells was found to localise to the central spindle and midbody. Overexpression of Tp-gp34 and Ta-gp34 induced cytokinetic defects and resulted in accumulation of binucleated cells. These findings suggest that gp34 could contribute to important parasite–host interactions during host cell division. PMID:20381541
Structural basis for antibody-mediated neutralization of Lassa virus.
Hastie, Kathryn M; Zandonatti, Michelle A; Kleinfelter, Lara M; Heinrich, Megan L; Rowland, Megan M; Chandran, Kartik; Branco, Luis M; Robinson, James E; Garry, Robert F; Saphire, Erica Ollmann
2017-06-02
The arenavirus Lassa causes severe hemorrhagic fever and a significant disease burden in West Africa every year. The glycoprotein, GPC, is the sole antigen expressed on the viral surface and the critical target for antibody-mediated neutralization. Here we present the crystal structure of the trimeric, prefusion ectodomain of Lassa GP bound to a neutralizing antibody from a human survivor at 3.2-angstrom resolution. The antibody extensively anchors two monomers together at the base of the trimer, and biochemical analysis suggests that it neutralizes by inhibiting conformational changes required for entry. This work illuminates pH-driven conformational changes in both receptor-binding and fusion subunits of Lassa virus, illustrates the unique assembly of the arenavirus glycoprotein spike, and provides a much-needed template for vaccine design against these threats to global health. Copyright © 2017, American Association for the Advancement of Science.
Visualizing High-Efficiency HIV Transfer | Center for Cancer Research
The Human Immunodeficiency Virus (HIV), the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infects and eventually kills CD4 receptor-expressing T cells, which are critical for proper immune system function. The gp120 protein on the surface of HIV particles is known to bind CD4 and a co-receptor, either CCR5 or CXCR4, leading to fusion of the virus and T cell membranes and infection of the cell. The most efficient means of viral infection occurs when an uninfected T cell interacts with a dendritic cell (DC) that has previously come in contact with HIV. Antigen presenting cells, such as DCs, normally circulate throughout the body binding or engulfing foreign material and presenting it to T cells to initiate an immune response. HIV takes advantage of this close cell-cell association to propagate, so knowing the cells’ spatial arrangement during viral transmission could elucidate novel modes of treatment.
Rego, Sara; Heal, Timothy J.; Pidwill, Grace R.; Till, Marisa; Robson, Alice; Lamont, Richard J.; Sessions, Richard B.; Jenkinson, Howard F.; Race, Paul R.; Nobbs, Angela H.
2016-01-01
Streptococcus agalactiae (group B Streptococcus, GBS) is the predominant cause of early-onset infectious disease in neonates and is responsible for life-threatening infections in elderly and immunocompromised individuals. Clinical manifestations of GBS infection include sepsis, pneumonia, and meningitis. Here, we describe BspA, a deviant antigen I/II family polypeptide that confers adhesive properties linked to pathogenesis in GBS. Heterologous expression of BspA on the surface of the non-adherent bacterium Lactococcus lactis confers adherence to scavenger receptor gp340, human vaginal epithelium, and to the fungus Candida albicans. Complementary crystallographic and biophysical characterization of BspA reveal a novel β-sandwich adhesion domain and unique asparagine-dependent super-helical stalk. Collectively, these findings establish a new bacterial adhesin structure that has in effect been hijacked by a pathogenic Streptococcus species to provide competitive advantage in human mucosal infections. PMID:27311712
Kong, Leopold; Huang, Chih-chin; Coales, Stephen J.; Molnar, Kathleen S.; Skinner, Jeff; Hamuro, Yoshitomo; Kwong, Peter D.
2010-01-01
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies, however, provide only hints as to the flexibility of each state. Here we use amide hydrogen/deuterium exchange coupled to mass spectrometry to provide quantifications of local conformational stability for HIV-1 gp120 in unliganded and CD4-bound states. On average, unliganded core gp120 displayed >10,000-fold slower exchange of backbone-amide hydrogens than a theoretically unstructured protein of the same composition, with binding by CD4 reducing the rate of gp120 amide exchange a further 10-fold. For the structurally constant CD4, alterations in exchange correlated well with alterations in binding surface (P value = 0.0004). For the structurally variable gp120, however, reductions in flexibility extended outside the binding surface, and regions of expected high structural diversity (inner domain/bridging sheet) displayed roughly 20-fold more rapid exchange in the unliganded state than regions of low diversity (outer domain). Thus, despite an extraordinary reduction in entropy, neither unliganded gp120 nor free CD4 was substantially unstructured, suggesting that most of the diverse conformations that make up the gp120 unliganded state are reasonably ordered. The results provide a framework for understanding how local conformational stability influences entropic change, conformational diversity, and structural rearrangements in the gp120-CD4 binding reaction. PMID:20660185
Kesavardhana, Sannula; Das, Raksha; Citron, Michael; Datta, Rohini; Ecto, Linda; Srilatha, Nonavinakere Seetharam; DiStefano, Daniel; Swoyer, Ryan; Joyce, Joseph G.; Dutta, Somnath; LaBranche, Celia C.; Montefiori, David C.; Flynn, Jessica A.; Varadarajan, Raghavan
2017-01-01
A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses. PMID:27879316
Vesicular stomatitis virus-based Ebola vaccines with improved cross-protective efficacy.
Marzi, Andrea; Ebihara, Hideki; Callison, Julie; Groseth, Allison; Williams, Kinola J; Geisbert, Thomas W; Feldmann, Heinz
2011-11-01
For Ebola virus (EBOV), 4 different species are known: Zaire, Sudan, Côte d'Ivoire, and Reston ebolavirus. The newly discovered Bundibugyo ebolavirus has been proposed as a 5th species. So far, no cross-neutralization among EBOV species has been described, aggravating progress toward cross-species protective vaccines. With the use of recombinant vesicular stomatitis virus (rVSV)-based vaccines, guinea pigs could be protected against Zaire ebolavirus (ZEBOV) infection only when immunized with a vector expressing the homologous, but not a heterologous, EBOV glycoprotein (GP). However, infection of guinea pigs with nonadapted wild-type strains of the different species resulted in full protection of all animals against subsequent challenge with guinea pig-adapted ZEBOV, showing that cross-species protection is possible. New vectors were generated that contain EBOV viral protein 40 (VP40) or EBOV nucleoprotein (NP) as a second antigen expressed by the same rVSV vector that encodes the heterologous GP. After applying a 2-dose immunization approach, we observed an improved cross-protection rate, with 5 of 6 guinea pigs surviving the lethal ZEBOV challenge if vaccinated with rVSV-expressing SEBOV-GP and -VP40. Our data demonstrate that cross-protection between the EBOV species can be achieved, although EBOV-GP alone cannot induce the required immune response.
Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L
1983-03-01
The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest that immunoreactive NILE GP is distributed widely and selectively on neural cell surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier
Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystalmore » structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.« less
NASA Astrophysics Data System (ADS)
Liu, Jia-Wei; Yang, Ting; Ma, Lin-Yu; Chen, Xu-Wei; Wang, Jian-Hua
2013-12-01
Nickel nanoparticle decorated graphene (GP-Ni) is prepared by one-pot hydrothermal reduction of graphene oxide and nickel cations by hydrazine hydrate in the presence of poly(sodium-p-styrenesulfonate) (PSS). The GP-Ni hybrid is characterized by XRD, TEM, SEM, XPS, Raman and FT-IR spectra, demonstrating the formation of poly-dispersed nickel nanoparticles with an average size of 83 nm attached on the surface of graphene sheets. The GP-Ni hybrid exhibits ferromagnetic behavior with a magnetization saturation of 31.1 emu g-1 at 10 000 Oersted (Oe). The GP-Ni also possesses favorable stability in aqueous medium and rapid magnetic response to an external magnetic field. These make it a novel magnetic adsorbent for the separation/isolation of His6-tagged recombinant proteins from a complex sample matrix (cell lysate). The targeted protein species is captured onto the surface of the GP-Ni hybrid via specific metal affinity force between polyhistidine groups and nickel nanoparticles. The SDS-PAGE assay indicates highly selective separation of His6-tagged Smt A from cell lysate. The GP-Ni hybrid displays favorable performance on the separation/isolation of His6-tagged recombinant proteins with respect to the commercial NTA-Ni2+ column.
Anti-Idiotypic Antibodies in Patients with Different Clinical Forms of Paracoccidioidomycosis
Souza, A. R.; Gesztesi, J.-L.; del Negro, G. M. B.; Benard, G.; Sato, J.; Santos, M. V. B.; Abrahão, T. B.; Lopes, J. D.
2000-01-01
Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America. Patients with PCM show a wide spectrum of clinical and pathological manifestations depending on both host and pathogen factors. Two clinical forms of the disease are recognized: the acute or juvenile form and the chronic or adult form. The major antigenic component of the parasite is a glycoprotein of 43 kDa (gp43). All patient sera present antibodies against gp43 (anti-gp43) and, as demonstrated before by our group, spontaneous anti-idiotypic (anti-Id) antibodies (Ab2) can be detected in patient sera with high titers of anti-gp43. Since it has been postulated that anti-Id antibodies may have a modulating function, we decided to purify and characterize anti-Id antibodies in this system. The possible correlation of Ab2 titers with different clinical forms of disease was also verified. Results showed that purified human anti-Id antibodies (human Ab2) recognized specifically the idiotype of some murine monoclonal anti-gp43 (17c and 3e) but not others (40.d7, 27a, and 8a). Spontaneous anti-Id antibodies were found in all clinical forms of disease. The majority of patients (88%, n = 8) with the acute form of PCM had high titers of Ab2. However, among patients with the multifocal chronic form of the disease, only 29% (n = 14) had high titers of Ab2; 70% (n = 10) of patients with the unifocal chronic form had low titers of Ab2. A correlation between Ab2 titers and anti-gp43 titers was observed before and during antimycotic treatment. Our results suggest that titers of anti-Id antibodies correlate with the severity of PCM in humans. PMID:10702489
NASA Astrophysics Data System (ADS)
Do, Tram T. N.; Van Phi, Toan; Nguy, Tin Phan; Wagner, Patrick; Eersels, Kasper; Vestergaard, Mun'delanji C.; Truong, Lien T. N.
2017-06-01
An impedimetric aptasensor has been used to study the effect of charge transfer on the binding of prostate-specific antigen (PSA) to its aptamer. Full understanding of this mechanism will be beneficial to further improve its sensitivity for PSA detection in human semen at physiologically relevant concentrations. Bare gold electrodes (SPAuEs) and gold nanoparticles (AuNPs)-coated screen-printed carbon ink electrodes (AuNPs/SPCEs) were coated with aptamer solution at various concentrations and the sensor response to increasing PSA concentration in buffer solution examined. AuNPs were deposited onto carbon electrodes in 10 cycles. AuNPs/SPCEs were then coated with a self-assembled monolayer (SAM) of 16-mercaptohexadecanoic acid prior to aptamer immobilization at dose of 5 μg mL-1. The results indicate that anisotropic AuNPs/SPCEs outperform bare gold electrodes in terms of decreased amount of aptamer bunches as well as the number of intermediate PSA-aptamer complexes formed on the electrode surface. The key finding is that the fabricated aptasensor is sensitive enough [limit of detection (LoD) 1.95 ng mL-1] for early diagnosis of prostate cancer and displays linear response in the physiologically relevant concentration range (0 ng mL-1 to 10 ng mL-1), as shown by the calibration curve of the relative change in electron transfer resistance (Δ R CT) versus PSA concentration when aptamer/SAM/AuNPs/SPCEs were exposed to buffer containing PSA at different concentrations.
Interfacial metal and antibody recognition.
Zhou, Tongqing; Hamer, Dean H; Hendrickson, Wayne A; Sattentau, Quentin J; Kwong, Peter D
2005-10-11
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca(2+), Ba(2+), or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with approximately 1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition.
Interfacial metal and antibody recognition
Zhou, Tongqing; Hamer, Dean H.; Hendrickson, Wayne A.; Sattentau, Quentin J.; Kwong, Peter D.
2005-01-01
The unique ligation properties of metal ions are widely exploited by proteins, with approximately one-third of all proteins estimated to be metalloproteins. Although antibodies use various mechanisms for recognition, to our knowledge, none has ever been characterized that uses an interfacial metal. We previously described a family of CD4-reactive antibodies, the archetype being Q425. CD4:Q425 engagement does not interfere with CD4:HIV-1 gp120 envelope glycoprotein binding, but it blocks subsequent steps required for viral entry. Here, we use surface-plasmon resonance to show that Q425 requires calcium for recognition of CD4. Specifically, Q425 binding of calcium resulted in a 55,000-fold enhancement in affinity for CD4. X-ray crystallographic analyses of Q425 in the presence of Ca2+, Ba2+, or EDTA revealed an exposed metal-binding site, partially coordinated by five atoms contributed from four antibody complementarity-determining regions. The results suggest that Q425 recognition of CD4 involves direct ligation of antigen by the Q425-held calcium, with calcium binding each ligating atom of CD4 with ≈1.5 kcal/mol of binding energy. This energetic contribution, which is greater than that from a typical protein atom, demonstrates how interfacial metal ligation can play a unique role in antigen recognition. PMID:16195378
Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hisatsune, Akinori, E-mail: hisatsun@kumamoto-u.ac.jp; Nakayama, Hideki; Kawasaki, Mitsuru
2011-02-18
Research highlights: {yields} We identified changes in the expression and function of EGFR by anti-MUC1 antibody. {yields} An anti-MUC1 antibody GP1.4 decreased EGFR from cell surface by internalization. {yields} GP1.4 specifically inhibited ERK signaling triggered EGF-EGFR signaling pathway. {yields} Internalization of EGFR was dependent on the presence of MUC1 on cell surface. {yields} GP1.4 significantly inhibited EGF-dependent cancer cell proliferation and migration. -- Abstract: MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalizedmore » by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bukreyev, Alexander; Marzi, Andrea; Feldmann, Friederike
2009-01-20
We generated a new live-attenuated vaccine against Ebola virus (EBOV) based on a chimeric virus HPIV3/{delta}F-HN/EboGP that contains the EBOV glycoprotein (GP) as the sole transmembrane envelope protein combined with the internal proteins of human parainfluenza virus type 3 (HPIV3). Electron microscopy analysis of the virus particles showed that they have an envelope and surface spikes resembling those of EBOV and a particle size and shape resembling those of HPIV3. When HPIV3/{delta}F-HN/EboGP was inoculated via apical surface of an in vitro model of human ciliated airway epithelium, the virus was released from the apical surface; when applied to basolateral surface,more » the virus infected basolateral cells but did not spread through the tissue. Following intranasal (IN) inoculation of guinea pigs, scattered infected cells were detected in the lungs by immunohistochemistry, but infectious HPIV3/{delta}F-HN/EboGP could not be recovered from the lungs, blood, or other tissues. Despite the attenuation, the virus was highly immunogenic, and a single IN dose completely protected the animals against a highly lethal intraperitoneal challenge of guinea pig-adapted EBOV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrera, Carolina; Klasse, Per Johan; Kibler, Christopher W.
2006-07-20
The human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein forms trimers that mediate interactions with the CD4 receptor and a co-receptor on the target cell surface, thereby triggering viral fusion with the cell membrane. Cleavage of Env into its surface, gp120, and transmembrane, gp41, moieties is necessary for activation of its fusogenicity. Here, we produced pseudoviruses with phenotypically mixed wild-type (Wt) and mutant, cleavage-incompetent Env in order to quantify the effects of incorporating uncleaved Env on virion infectivity, antigenicity and neutralization sensitivity. We modeled the relative infectivity of three such phenotypically mixed viral strains, JR-FL, HXBc2 and a derivativemore » of the latter, 3.2P, as a function of the relative amount of Wt Env. The data were fit very closely (R {sup 2} > 0.99) by models which assumed that only Wt homotrimers were functional, with different approximate thresholds of critical numbers of functional trimers per virion for the three strains. We also produced 3.2P pseudoviruses containing both a cleavage-competent Env that is defective for binding the neutralizing monoclonal antibody (NAb) 2G12, and a cleavage-incompetent Env that binds 2G12. The 2G12 NAb was not able to reduce the infectivity of these pseudoviruses detectably. Their neutralization by the CD4-binding site-directed agents CD4-IgG2 and NAb b12 was also unaffected by 2G12 binding to uncleaved Env. These results further strengthen the conclusion that only homotrimers consisting of cleaved Env are functional. They also imply that the function of a trimer is unaffected sterically by the binding of an antibody to an adjacent trimer.« less
46 CFR 108.195 - Location of accommodation spaces.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a vertical...
46 CFR 108.195 - Location of accommodation spaces.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a vertical...
46 CFR 108.195 - Location of accommodation spaces.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a vertical...
46 CFR 108.195 - Location of accommodation spaces.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a vertical...
46 CFR 108.195 - Location of accommodation spaces.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Location of accommodation spaces. 108.195 Section 108... DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.195 Location of accommodation spaces. (a) On surface type units, accommodation spaces must not be located forward of a vertical...
[A new human leukocyte antigen class I allele, HLA- B*52:11].
Li, Xiao-feng; Zhang, Xu; Zhang, Kun-lian; Chen, Yang; Liu, Xian-zhi; Li, Jian-ping
2011-12-01
To identify and confirm a novel HLA allele. A new human leukocyte antigen class I allele was found during routine HLA genotyping by polymerase chain reaction-sequence specific oligonucleotide probes (PCR-SSOP) and sequencing-based typing (SBT). The novel HLA-B*52 allele was identical to B*52:01:01 with an exception of one base substitution at position 583 of exon 3 where a C was changed to T resulting in codon 195 changed from CAC(H) to TAC(Y). A new HLA class I allele, B*52:11, is identified, and is named officially by the WHO Nomenclature Committee.
Human Antibodies that Recognize Novel Immunodominant Quaternary Epitopes on the HIV-1 Env Protein
Hicar, Mark D.; Chen, Xuemin; Sulli, Chidananda; Barnes, Trevor; Goodman, Jason; Sojar, Hakimuddin; Briney, Bryan; Willis, Jordan; Chukwuma, Valentine U.; Kalams, Spyros A.; Doranz, Benjamin J.; Spearman, Paul; Crowe, James E.
2016-01-01
Numerous broadly neutralizing antibodies (Abs) target epitopes that are formed or enhanced during mature HIV envelope formation (i.e. quaternary epitopes). Generally, it is thought that Env epitopes that induce broadly neutralizing Abs are difficult to access and poorly immunogenic because of the characteristic oligomerization, conformational flexibility, sequence diversity and extensive glycosylation of Env protein. To enhance for isolation of quaternary epitope-targeting Abs (QtAbs), we previously used HIV virus-like particles (VLPs) to bind B cells from long-term non-progressor subjects to identify a panel of monoclonal Abs. When expressed as recombinant full-length Abs, a subset of these novel Abs exhibited the binding profiles of QtAbs, as they either failed to bind to monomeric Env protein or showed much higher affinity for Env trimers and VLPs. These QtAbs represented a significant proportion of the B-cell response identified with VLPs. The Ab genes of these clones were highly mutated, but they did not neutralize common HIV strains. We sought to further define the epitopes targeted by these QtAbs. Competition-binding and mapping studies revealed these Abs targeted four separate epitopes; they also failed to compete for binding by Abs to known major neutralizing epitopes. Detailed epitope mapping studies revealed that two of the four epitopes were located in the gp41 subunit of Env. These QtAbs bound pre-fusion forms of antigen and showed differential binding kinetics depending on whether oligomers were produced as recombinant gp140 trimers or as full-length Env incorporated into VLPs. Antigenic regions within gp41 present unexpectedly diverse structural epitopes, including these QtAb epitopes, which may be targeted by the naturally occurring Ab response to HIV infection. PMID:27411063
2013-01-01
Background The role of antibiotics in treating mild or moderate exacerbations in patients with acute chronic obstructive pulmonary disease (COPD) is unclear. The aims were to: (i) describe patient characteristics associated with acute exacerbations amongst a representative COPD population, (ii) explore the relationship between COPD severity and outcomes amongst patients with exacerbations, and (iii) quantify variability by general practice in prescribing of antibiotics for COPD exacerbations. Method A cohort of 62,747 patients with COPD was identified from primary care general practices (GP) in England, and linked to hospital admission and death certificate data. Exacerbation cases were matched to three controls and characteristics compared using conditional logistic regression. Outcomes were compared using incidence rates and Cox regression, stratified by disease severity. Variability of prescribing at the GP level was evaluated graphically and by using multilevel models. Results COPD severity was found to be associated with exacerbation and subsequent mortality (very severe vs. mild, odds ratio for exacerbation 2.12 [95%CI 19.5–2.32]), hazard ratio for mortality 2.14 [95%CI 1.59–2.88]). Whilst 61% of exacerbation cases were prescribed antibiotics, this proportion varied considerably between GP practices (interquartile range, 48–73%). This variation is greater than can be explained by patient characteristics alone. Conclusions There is significant variability between GP practices in the prescribing of antibiotics to COPD patients experiencing exacerbations. Combined with a lack of evidence on the effects of treatment, this supports the need and opportunity for a large scale pragmatic randomised trial of the prescribing of antibiotics for COPD patients with exacerbations, in order to clarify their effectiveness and long term outcomes whilst ensuring the representativeness of subjects. PMID:23724907
Identification of HLA-DRB1*1501-restricted T-cell epitopes from human prostatic acid phosphatase.
Klyushnenkova, Elena N; Kouiavskaia, Diana V; Kodak, James A; Vandenbark, Arthur A; Alexander, Richard B
2007-07-01
The crucial role of CD4 T-cells in anti-tumor immune response is widely recognized, yet the identification of HLA class II-restricted epitopes derived from tumor antigens has lagged behind compared to class I epitopes. This is particularly true for prostate cancer. Based on the hypothesis that successful cancer immunotherapy will likely resemble autoimmunity, we searched for the CD4 T-cell epitopes derived from prostatic proteins that are restricted by human leukocyte antigen (HLA)-DRB1*1501, an allele associated with granulomatous prostatitis (GP), a disease that may have an autoimmune etiology. One of the antigens implicated in the development of autoimmunity in the prostate is prostatic acid phosphatase (PAP), which is also considered a promising target for prostate cancer immunotherapy. We immunized transgenic (tg) mice engineered to express HLA-DRB1*1501 with human PAP. A library of overlapping 20-mer peptides spanning the entire human PAP sequence was screened in vitro for T-cell recognition by proliferative and interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. We identified two 20-mer peptides, PAP (133-152), and PAP (173-192), that were immunogenic and naturally processed from whole PAP in HLA-DRB1*1501 tg mice. These peptides were also capable of stimulating CD4 T lymphocytes from HLA-DRB1*1501-positive patients with GP and normal donors. These peptides can be used for the design of a new generation of peptide-based vaccines against prostate cancer. The study can also be helpful in understanding the role of autoimmunity in the development of some forms of chronic prostatitis.
The role of virus dose in experimental bovine leukemia virus infection in sheep.
Stirtzinger, T; Valli, V E; Miller, J M
1988-04-01
Twenty-four, six month old lambs were assembled into four groups of five animals each and one group of four animals. All groups were inoculated with lymphocytes from a single donor lamb infected with bovine leukemia virus. The inoculum varied from 250 to 250,000 lymphocytes, in tenfold increments. Animals were exposed by intradermal injection in the neck region immediately anterior to the left shoulder joint. All groups were monitored at 0, 3, 7 and 12 weeks after inoculation using the following procedures: a. Syncytia induction assay for detection of bovine leukemia virus in peripheral blood lymphocytes. b. Agar gel immunodiffusion against the gp51 antigen of bovine leukemia virus for the detection of antibovine leukemia virus gp51 antibody. c. Lymphocyte stimulation test for the assessment of cell-mediated immunity using mitogen, nonfractionated bovine leukemia virus antigen, and partially purified bovine lymphoma tumor-associated antigen for the in vitro activation of lymphocytes from bovine leukemia virus-inoculated and sham-inoculated, control animals. d. Routine hematological techniques for the assessment of total leukocyte and lymphocyte counts. The median infectious dose for lymphocytes from the single bovine leukemia virus-infected donor used in this study was determined to be 2000 cells. The syncytia induction assay detected more infected individuals (13/23) at an earlier time than did the agar gel immunodiffusion assay (10/23). Using either serological or virus isolation techniques, infected animals were first detected at three weeks postinoculation in the group receiving the high-dose inoculum and at seven weeks postinoculation in groups receiving low- or medium-dose inocula.(ABSTRACT TRUNCATED AT 250 WORDS)
Jackson, William; Hamstra, Daniel A; Johnson, Skyler; Zhou, Jessica; Foster, Benjamin; Foster, Corey; Li, Darren; Song, Yeohan; Palapattu, Ganesh S; Kunju, Lakshmi P; Mehra, Rohit; Feng, Felix Y
2013-09-15
The presence of Gleason pattern 5 (GP5) at radical prostatectomy (RP) has been associated with worse clinical outcome; however, this pathologic variable has not been assessed in patients receiving salvage radiation therapy (SRT) after a rising prostate-specific antigen level. A total of 575 patients who underwent primary RP for localized prostate cancer and subsequently received SRT at a tertiary medical institution were reviewed retrospectively. Primary outcomes of interest were biochemical failure (BF), distant metastasis (DM), and prostate cancer-specific mortality (PCSM), which were assessed via univariate analysis and Fine and Grays competing risks multivariate models. On pathologic evaluation, 563 (98%) patients had a documented Gleason score (GS). The median follow-up post-SRT was 56.7 months. A total of 60 (10.7%) patients had primary, secondary, or tertiary GP5. On univariate analysis, the presence of GP5 was prognostic for BF (hazard ratio [HR] 3.3; P < .0001), DM (HR:11.1, P < .0001), and PCSM (HR:8.8, P < .0001). Restratification of the Gleason score to include GP5 as a distinct entity resulted in improved prognostic capability. Patients with GP5 had clinically worse outcomes than patients with GS8(4+4). On multivariate analysis, the presence of GP5 was the most adverse pathologic predictor of BF (HR 2.9; P < .0001), DM (HR 14.8; P < .0001), and PCSM (HR 5.7; P < .0001). In the setting of SRT for prostate cancer, the presence of GP5 is a critical pathologic predictor of BF, DM, and PCSM. Traditional GS risk stratification fails to fully utilize the prognostic capabilities of individual Gleason patterns among men receiving SRT post-RP. © 2013 American Cancer Society.
Mazumder, Saumyabrata; Maji, Mithun; Ali, Nahid
2011-01-01
Background Vaccines that activate strong specific Th1-predominant immune responses are critically needed for many intracellular pathogens, including Leishmania. The requirement for sustained and efficient vaccination against leishmaniasis is to formulate the best combination of immunopotentiating adjuvant with the stable antigen (Ag) delivery system. The aim of the present study is to evaluate the effectiveness of an immunomodulator on liposomal Ag through subcutaneous (s.c.) route of immunization, and its usefulness during prime/boost against visceral leishmaniasis (VL) in BALB/c mice. Methodology/Principal Findings Towards this goal, we formulated recombinant GP63 (rGP63)-based vaccines either with monophosphoryl lipid A-trehalose dicorynomycolate (MPL-TDM) or entrapped within cationic liposomes or both. Combinatorial administration of liposomes with MPL-TDM during prime confers activation of dendritic cells, and induces an early robust T cell response. To investigate whether the combined formulation is required for optimum immune response during boost as well, we chose to evaluate the vaccine efficacy in mice primed with combined adjuvant system followed by boosting with either rGP63 alone, in association with MPL-TDM, liposomes or both. We provide evidences that the presence of either liposomal rGP63 or combined formulations during boost is necessary for effective Th1 immune responses (IFN-γ, IL-12, NO) before challenge infection. However, boosting with MPL-TDM in conjugation with liposomal rGP63 resulted in a greater number of IFN-γ producing effector T cells, significantly higher levels of splenocyte proliferation, and Th1 responses compared to mice boosted with liposomal rGP63, after virulent Leishmania donovani (L. donovani) challenge. Moreover, combined formulations offered superior protection against intracellular amastigote replication in macrophages in vitro, and hepatic and splenic parasite load in vivo. Conclusion Our results define the immunopotentiating effect of MPL-TDM on protein Ag encapsulated in a controlled release system against experimental VL. PMID:22206029
Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41
Lu, Lu; Yu, Fei; Cai, Lifeng; Debnath, Asim K.; Jiang, Shibo
2015-01-01
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development. PMID:26324044
Kesavardhana, Sannula
2014-01-01
ABSTRACT The HIV-1 envelope glycoprotein (Env) is a trimer of gp120-gp41 heterodimers and is essential for viral entry. The gp41 subunit in native, prefusion trimeric Env exists in a metastable conformation and attains a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers, that drives the fusion of viral and cellular membranes. We attempted to stabilize native Env trimers by incorporation of mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The mutations V570D and I573D stabilize native Env of the HIV-1 JRFL strain and occlude nonneutralizing epitopes to a greater extent than the previously identified I559P mutation that is at the interface of the NHR trimers in the 6-HB. The mutations prevent soluble-CD4 (sCD4)-induced gp120 shedding and 6-HB formation. In the context of cell surface-expressed JRFL Env, introduction of a previously reported additional disulfide between residues A501 and T605 perturbs the native conformation, though this effect is partially alleviated by furin coexpression. The data suggest that positions 570 and 573 are surface proximal in native Env and that the NHR homotrimeric coiled coil in native Env terminates before or close to residue 573. Aspartic acid substitutions at these positions stabilize native trimers through destabilization of the postfusion 6-HB conformation. These mutations can be used to stabilize Env in a DNA vaccine format. IMPORTANCE The major protein on the surface of HIV-1 is the envelope (Env) glycoprotein. Env is a trimer of gp120-gp41 heterodimers. gp120 is involved in receptor/coreceptor binding and gp41 in the fusion of viral and cellular membranes. Like many other viral fusion proteins, the gp41 subunit in native trimeric Env exists in a metastable conformation. gp41 readily forms a stable six-helix bundle (6-HB) conformation comprised of a trimer of N-heptad repeat (NHR) and C-heptad repeat (CHR) heterodimers that drives fusion of viral and cellular membranes. While it is expected that native Env is a good immunogen, its metastability results in exposure of immunodominant nonneutralizing epitopes. In the present study, we stabilize native Env trimers by incorporation of a number of different mutations at the NHR-CHR interface that disrupt the postfusion 6-HB of gp41. The stabilized constructs described here can be incorporated into DNA vaccine candidates. PMID:24920800
The incidences of and consultation rate for lower extremity complaints in general practice
van der Waal, J M; Bot, S D M; Terwee, C B; van der Windt, D A W M; Schellevis, F G; Bouter, L M; Dekker, J
2006-01-01
Objective To estimate the incidence and consultation rate of lower extremity complaints in general practice. Methods Data were obtained from the Second Dutch National Survey of General Practice, in which 195 general practitioners (GPs) in 104 practices recorded all contacts with patients during 12 consecutive months in computerised patient records. GPs classified the symptoms and diagnosis for each patient at each consultation according to the International Classification of Primary Care (ICPC). Incidence densities and consultation rates for different complaints were calculated. Results During the registration period 63.2 GP consultations per 1000 person‐years were attributable to a new complaint of the lower extremities. Highest incidence densities were seen for knee complaints: 21.4 per 1000 person‐years for women and 22.8 per 1000 person‐years for men. The incidence of most lower extremity complaints was higher for women than for men and higher in older age. Conclusions Both incidences of and consultation rates for lower extremity complaints are substantial in general practice. This implies a considerable impact on the workload of the GP. PMID:16269430
Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization.
Zeltina, Antra; Krumm, Stefanie A; Sahin, Mehmet; Struwe, Weston B; Harlos, Karl; Nunberg, Jack H; Crispin, Max; Pinschewer, Daniel D; Doores, Katie J; Bowden, Thomas A
2017-07-03
Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.
The Human Immunodeficiency Virus (HIV) infects and eventually kills CD4-expressing T cells, which are essential for the immune system to function appropriately. Loss of significant numbers of T cells leads to Acquired Immunodeficiency Syndrome (AIDS), a disease that kills over two million people around the world every year. HIV infection depends on two proteins expressed on the virus surface: gp41, which sits in the virus membrane, and gp120, which sits on top of gp41. Three copies, or trimers, of each gp41/gp120 pair make up the envelope glycoprotein, Env. Env coats the virus surface and interacts with its receptor, CD4, and a co-receptor, either CCR5 or CXCR4, on the T cell. Binding to the receptors is thought to cause a structural reorganization of Env, which exposes a fusion peptide that inserts into the T cell membrane and actually forces the virus and host membranes together, initiating an infection. However, the structural details of this process are lacking.
Erratum - the Lowest Surface Brightness Disc Galaxy Known
NASA Astrophysics Data System (ADS)
Davies, J. I.; Phillipps, S.; Disney, M. J.
1988-11-01
The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.
Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu
2016-07-11
The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.
Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization
Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.
2014-01-01
ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624
Young, Grace J; Harrison, Sean; Turner, Emma L; Walsh, Eleanor I; Oliver, Steven E; Ben-Shlomo, Yoav; Evans, Simon; Lane, J Athene; Neal, David E; Hamdy, Freddie C; Donovan, Jenny L; Martin, Richard M; Metcalfe, Chris
2017-10-30
Cross-sectional studies suggest that around 6% of men undergo prostate-specific antigen (PSA) testing each year in UK general practice (GP). This longitudinal study aims to determine the cumulative testing pattern of men over a 10-year period and whether this testing can be considered equivalent to screening for prostate cancer (PCa). Patient-level data on PSA tests, biopsies and PCa diagnoses were obtained from the UK Clinical Practice Research Datalink (CPRD) for the years 2002 to 2011. The cumulative risks of PSA testing and of being diagnosed with PCa were estimated for the 10-year study period. Associations of a man's age, region and index of multiple deprivation with the cumulative risk of PSA testing and PCa diagnosis were investigated. Rates of biopsy and diagnosis, following a high test result, were compared with those from the programme of PSA testing in the Prostate Testing for Cancer and Treatment (ProtecT) study. The 10-year risk of exposure to at least one PSA test in men aged 45 to 69 years in UK GP was 39.2% (95% CI 39.0 to 39.4%). The age-specific risks ranged from 25.2% for men aged 45-49 years to 53.0% for men aged 65-69 years (p for trend <0.001). For those with a PSA level ≥3, a test in UK GP was less likely to result in a biopsy (6%) and/or diagnosis of PCa (15%) compared with ProtecT study participants (85% and 34%, respectively). A high proportion of men aged 45-69 years undergo PSA tests in UK GP: 39% over a 10-year period. A high proportion of these tests appear to be for the investigation of lower urinary tract symptoms and not screening for PCa. ISRCTN20141297,NCT02044172. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Liu, Hui; Jia, Zhenghu; Yang, Chengmao; Song, Mei; Jing, Zhe; Zhao, Yapu; Wu, Zhenzhou; Zhao, Liqing; Wei, Dongsheng; Yin, Zhinan; Hong, Zhangyong
2018-06-01
Aluminum salt (Alum) is one of the most important immune adjuvants approved for use in humans, however it is not suitable for vaccination against various chronic infectious diseases and cancers for not being able to induce cell-mediated (Th1) immunity. Here, we encapsulated an Alum colloid inside β-glucan particles (GPs), which are a type of natural particles derived from the yeast glucan shells, to prepare hybrid GP-Alum (GP-Al) adjuvant particles with a very uniform size of 2-4 μm. These hybrid particles can be used to load antigen proteins through a simple mixing procedure, and can be highly specifically targeted to antigen-presenting cells (APCs) and strongly activate dendritic cells (DCs) maturation and cytokine secretion. In an animal model, they elicit a strong Th1-biased immune response and extremely high antibody titer, and cause marked prophylactic and therapeutic effects against tumors. As Alum has been proven to be a safe adjuvant to induce strong humoral responses and β-glucans are safe for human use, this very uniform hybrid Alum particulate system could have important application as a vaccine carrier to stimulate humoral and cellular immune responses at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kulkarni, Smita S; Lapedes, Alan; Tang, Haili; Gnanakaran, S; Daniels, Marcus G; Zhang, Ming; Bhattacharya, Tanmoy; Li, Ming; Polonis, Victoria R; McCutchan, Francine E; Morris, Lynn; Ellenberger, Dennis; Butera, Salvatore T; Bollinger, Robert C; Korber, Bette T; Paranjape, Ramesh S; Montefiori, David C
2009-03-15
Little is known about the neutralization properties of HIV-1 in India to optimally design and test vaccines. For this reason, a functional Env clone was obtained from each of ten newly acquired, heterosexually transmitted HIV-1 infections in Pune, Maharashtra. These clones formed a phylogenetically distinct genetic lineage within subtype C. As Env-pseudotyped viruses the clones were mostly resistant to IgG1b12, 2G12 and 2F5 but all were sensitive to 4E10. When compared to a large multi-subtype panel of Env-pseudotyped viruses (subtypes B, C and CRF02_AG) in neutralization assays with a multi-subtype panel of HIV-1-positive plasma samples, the Indian Envs were remarkably complex. With the exception of the Indian Envs, results of a hierarchical clustering analysis showed a strong subtype association with the patterns of neutralization susceptibility. From these patterns we were able to identify 19 neutralization cluster-associated amino acid signatures in gp120 and 14 signatures in the ectodomain and cytoplasmic tail of gp41. We conclude that newly transmitted Indian Envs are antigenically complex in spite of close genetic similarity. Delineation of neutralization-associated amino acid signatures provides a deeper understanding of the antigenic structure of HIV-1 Env.
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E.; Schief, William R.; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D.
2009-01-01
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded β-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate—and structurally plastic—layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated β-sandwich and providing for conformational diversity used in immune evasion. A “layered” gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a β-sandwich clamp maintains gp120–gp41 interaction and regulates gp41 transitions. PMID:20080564
Pancera, Marie; Majeed, Shahzad; Ban, Yih-En Andrew; Chen, Lei; Huang, Chih-chin; Kong, Leopold; Kwon, Young Do; Stuckey, Jonathan; Zhou, Tongqing; Robinson, James E; Schief, William R; Sodroski, Joseph; Wyatt, Richard; Kwong, Peter D
2010-01-19
The viral spike of HIV-1 is composed of three gp120 envelope glycoproteins attached noncovalently to three gp41 transmembrane molecules. Viral entry is initiated by binding to the CD4 receptor on the cell surface, which induces large conformational changes in gp120. These changes not only provide a model for receptor-triggered entry, but affect spike sensitivity to drug- and antibody-mediated neutralization. Although some of the details of the CD4-induced conformational change have been visualized by crystal structures and cryoelectron tomograms, the critical gp41-interactive region of gp120 was missing from previous atomic-level characterizations. Here we determine the crystal structure of an HIV-1 gp120 core with intact gp41-interactive region in its CD4-bound state, compare this structure to unliganded and antibody-bound forms to identify structurally invariant and plastic components, and use ligand-oriented cryoelectron tomograms to define component mobility in the viral spike context. Newly defined gp120 elements proximal to the gp41 interface complete a 7-stranded beta-sandwich, which appeared invariant in conformation. Loop excursions emanating from the sandwich form three topologically separate--and structurally plastic--layers, topped off by the highly glycosylated gp120 outer domain. Crystal structures, cryoelectron tomograms, and interlayer chemistry were consistent with a mechanism in which the layers act as a shape-changing spacer, facilitating movement between outer domain and gp41-associated beta-sandwich and providing for conformational diversity used in immune evasion. A "layered" gp120 architecture thus allows movement among alternative glycoprotein conformations required for virus entry and immune evasion, whereas a beta-sandwich clamp maintains gp120-gp41 interaction and regulates gp41 transitions.
2013-01-01
Background Continuous long-term treatment is recommended to reduce the hepatitis B virus (HBV) viral load. However, as a consequence, resistance mutations can emerge and be transmitted to other individuals. The polymerase (POL) gene overlaps the surface (S) gene. Thus, during treatment, mutations in the POL gene may lead to changes in hepatitis B surface antigen (HBsAg). The purpose of this study was to evaluate the frequency of lamivudine and vaccine escape mutations in HBsAg-positive blood donors from the city of Santos and in untreated HBV mono-infected patients from the city of São Paulo, Brazil. Methods HBV DNA was extracted from 80 serum samples, of which 61 were from volunteer blood donors and 19 were from untreated HBV patients. A fragment of the POL/S genes containing 593 base pairs was amplified using nested PCR. Thirty four were PCR-positive and sequencing was performed using an ABI Prism 3130 Genetic Analyzer. Alignments and mutation mapping were performed using BioEdit software. Results HBV DNA from 21 blood donors and 13 untreated patient samples were characterized using nucleotide sequencing PCR products from the POL/S genes. We were able to detect one sample with the resistance mutation to lamivudine rtM204V + rtL180M (2.94%), which was found in a volunteer blood donor that has never used antiviral drugs. The other samples showed only compensatory mutations, such as rtL80F (5.88%), rtL80V (2.94%), rtL82V + rtV207L (2.94%), rtT128P (5.88%), rtT128N/S (2.94%) and rtS219A (5.88%). We found modifications in the S gene in 14 of the 34 samples (41.16%). The mutations detected were as follows: sM133L + sI195T (2.94%), sI195M (2.94%), sP120T (2.94%), sY100S/F (2.94%), sY100C (17.64%), sI/T126P + sQ129P (2.94%), sM198I + sF183C (2.94%) and sS210R (5.88%). Conclusions Our results suggest the transmission of lamivudine-resistant forms. Thus, the evaluation of HBV-infected subjects for lamivudine resistance would improve treatment regime. Moreover, the mutations in the S gene may impair HBsAg antigenicity and contribute to HBsAg failure detection and vaccine escape. PMID:24165277
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
21 CFR 660.1 - Antibody to Hepatitis B Surface Antigen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Antibody to Hepatitis B Surface Antigen. 660.1... Hepatitis B Surface Antigen § 660.1 Antibody to Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product shall be Antibody to Hepatitis B Surface Antigen. The product is...
Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.
Francica, Joseph R; Matukonis, Meghan K; Bates, Paul
2009-01-20
Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.
Patki, Rucha; Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen.
Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
Objective The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Method Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Results Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Conclusion Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen. PMID:29081804
gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization
NASA Astrophysics Data System (ADS)
Nguyen, Thang Viet; Patra, Jagdish Chandra; Emmanuel, Sabu
2006-12-01
A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.
Deppert, W; Hanke, K; Henning, R
1980-01-01
Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture. Images PMID:6255189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabayov, B.; Akabayov, S; Lee , S
Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one inmore » the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.« less
Larsen, Alejandra; Gonzalez, Ester Teresa; Serena, María Soledad; Echeverría, María Gabriela; Mortola, Eduardo
2013-06-01
Bovine leukemia is a common retroviral infection of cattle. The disease is characterized by a strong immunological response to several viral proteins, but the antibodies against p24 and gp51 are predominant. In this study, a recombinant baculovirus containing the gag gene p24 was constructed and the protein, used as antigen, analyzed by western blot and an indirect in-house rp24-ELISA test. This allowed detecting the presence of antibodies for bovine leukemia virus in a panel of cattle sera. The authentication of the protein expands its potential use for different medical applications, from improved diagnosis of the disease to source of antigens to be included in a subunit vaccine.
Meyer, Austin G; Wilke, Claus O
2015-10-06
Protein structure acts as a general constraint on the evolution of viral proteins. One widely recognized structural constraint explaining evolutionary variation among sites is the relative solvent accessibility (RSA) of residues in the folded protein. In influenza virus, the distance from functional sites has been found to explain an additional portion of the evolutionary variation in the external antigenic proteins. However, to what extent RSA and distance from a reference site in the protein can be used more generally to explain protein adaptation in other viruses and in the different proteins of any given virus remains an open question. To address this question, we have carried out an analysis of the distribution and structural predictors of site-wise dN/dS in HIV-1. Our results indicate that the distribution of dN/dS in HIV follows a smooth gamma distribution, with no special enrichment or depletion of sites with dN/dS at or above one. The variation in dN/dS can be partially explained by RSA and distance from a reference site in the protein, but these structural constraints do not act uniformly among the different HIV-1 proteins. Structural constraints are highly predictive in just one of the three enzymes and one of three structural proteins in HIV-1. For these two proteins, the protease enzyme and the gp120 structural protein, structure explains between 30 and 40% of the variation in dN/dS. Finally, for the gp120 protein of the receptor-binding complex, we also find that glycosylation sites explain just 2% of the variation in dN/dS and do not explain gp120 evolution independently of either RSA or distance from the apical surface. © 2015 The Author(s).
Yang, R; Elankumaran, Y; Hijjawi, N; Ryan, U
2015-06-01
A cell-free culture system for Cryptosporidium parvum was analysed using scanning electron microscopy (SEM) to characterise life cycle stages and compare gene expression in cell-free culture and cell culture using HCT-8 cells. Cryptosporidium parvum samples were harvested at 2 h, 8 h, 14 h, 26 h, 50 h, 74 h, 98 h, 122 h and 170 h, chemically fixed and specimens were observed using a Zeiss 1555 scanning electron microscope. The presence of sporozoites, trophozoites and type I merozoites were identified by SEM. Gene expression in cell culture and cell-free culture was studied using reverse transcriptase quantitative PCR (RT-qPCR) of the sporozoite surface antigen protein (cp15), the glycoprotein 900 (gp900), the Cryptosporidium oocyst wall protein (COWP) and 18S ribosomal RNA (rRNA) genes in both cell free and conventional cell culture. In cell culture, cp15 expression peaked at 74 h, gp900 expression peaked at 74 h and 98 h and COWP expression peaked at 50 h. In cell-free culture, CP15 expression peaked at 98 h, gp900 expression peaked at 74 h and COWP expression peaked at 122 h. The present study is the first to compare gene expression of C. parvum in cell culture and cell-free culture and to characterise life cycle stages of C. parvum in cell-free culture using SEM. Findings from this study showed that gene expression patterns in cell culture and cell-free culture were similar but in cell-free culture, gene expression was delayed for CP15 and COWP in cell free culture compared with the cell culture system and was lower. Although three life cycle stageswere conclusively identified, improvements in SEM methodology should lead to the detection of more life cycle stages. Copyright © 2015 Elsevier Inc. All rights reserved.
Irie, Takao; Yamaguchi, Yohei; Doanh, Pham Ngoc; Guo, Zhi Hong; Habe, Shigehisa; Horii, Yoichiro; Nonaka, Nariaki
2017-08-18
Infection of boar-hunting dogs with Paragonimus westermani was investigated in Western Japan. Blood and rectal feces were collected from 441 dogs in the three districts (205 in Kinki, 131 in Chugoku and 105 in Shikoku District). In a screening ELISA for serum antibody against P. westermani antigen, 195 dogs (44.2%) showed positive reaction. In the 195 dogs, 8 dogs were found excreting P. westermani eggs after molecular analysis of fecal eggs, and additional 7 were identified serologically for the parasite infection because of their stronger reactivity against P. westermani antigen than against antigens of other species of Paragonimus. A spatial analysis showed that all of the P. westermani infections were found in Kinki and Chugoku Districts. In this area, dogs' experience of being fed with raw boar meat showed high odds ratio (3.35) to the sero-positivity in the screening ELISA, and the frequency of such experiences was significantly higher in sero-positive dogs. While clear relationship was not obtained between predation of boars by dogs during hunting and their sero-positivity. Therefore, it is suggested that human activity of feeding with wild boar meat is the risk factor for P. westermani infection in boar-hunting dogs. Considering that hunting dogs could play as a major definitive host and maintain the present distribution of P. westermani in Western Japan, control measures for the infection in hunting dogs, such as prohibition of raw meat feeding and regular deworming, should be undertaken.
HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses
Soghoian, Damien Z.; Lindqvist, Madelene; Ghebremichael, Musie; Donaghey, Faith; Carrington, Mary; Seaman, Michael S.; Kaufmann, Daniel E.; Walker, Bruce D.
2015-01-01
ABSTRACT Antigen-specific CD4+ T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+ T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+ T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+ T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+ T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+ T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+ T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+ T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+ T cells and, to a lesser extent, gp41-specific CD4+ T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies. IMPORTANCE One of the earliest discoveries related to CD4+ T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+ T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+ T cells on the generation of antibodies that can neutralize multiple different strains of HIV. Here, we addressed this question by analyzing HIV-specific CD4+ T cell responses in untreated HIV-infected persons with and without neutralizing antibodies. Our results indicate that HIV-infected persons with neutralizing antibodies have significantly more robust CD4+ T cell responses targeting Gag and gp41 proteins than individuals who lack neutralizing antibodies. These associations suggest that Gag- and gp41-specific CD4+ T cell responses may provide robust help to B cells for the generation or maintenance of neutralizing antibodies in natural HIV-infection. PMID:26656715
Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II recepter HLA-DR1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullen, M.; Haan, K.M.; Longnecker, R.
Epstein-Barr virus (EBV) causes infectious mononucleosis, establishes long-term latent infections, and is associated with a variety of human tumors. The EBV gp42 glycoprotein binds MHC class II molecules, playing a critical role in infection of B lymphocytes. EBV gp42 belongs to the C-type lectin superfamily, with homology to NK receptors of the immune system. We report the crystal structure of gp42 bound to the human MHC class II molecule HLA-DR1. The gp42 binds HLA-DR1 using a surface site that is distinct from the canonical lectin and NK receptor ligand binding sites. At the canonical ligand binding site, gp42 forms amore » large hydrophobic groove, which could interact with other ligands necessary for EBV entry, providing a mechanism for coupling MHC recognition and membrane fusion.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or... corrosion will— (1) Only be a light surface oxide; or (2) Not affect the safe operation of the pipeline... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations...
Code of Federal Regulations, 2011 CFR
2011-10-01
... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or... corrosion will— (1) Only be a light surface oxide; or (2) Not affect the safe operation of the pipeline... corrosion and what coating material may I use? 195.581 Section 195.581 Transportation Other Regulations...
Brouillette, Rachel B.; Phillips, Elisabeth K.; Ayithan, Natarajan
2017-01-01
ABSTRACT The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. PMID:28100617
Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy
2017-04-01
The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV. IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National Institute of Allergy and Infectious Disease-assigned category A priority pathogens. In this study, we sought to better understand how closely related arenaviruses elude cross-species neutralization by investigating the structural bases of antibody binding and avoidance. In our studies, we found that neutralizing antibodies against two New World arenaviruses, Machupo virus (MACV) and Junín virus (JUNV), bound to the envelope glycoprotein 1 (GP1) with JUNV monoclonal antibodies targeting the receptor binding site (RBS). We further show that altered structures surrounding the RBS pocket in MACV GP1 impede access of JUNV-elicited antibodies. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Chuan, Lee Te; Rathi, Muhammad Fareez Mohamad; Abidin, Muhamad Yusuf Zainal; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana
2015-07-01
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm-2) at room temperature. Surface oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.
Bueno, Ednéia C.; Snege, Miriam; Vaz, Adelaide J.; Leser, Paulo G.
2001-01-01
Neurocysticercosis (NC), caused by the presence of Taenia solium metacestodes in tissues, is a severe parasitic infection of the central nervous system with universal distribution. To determine the efficiency of enzyme-linked immunosorbent assay (ELISA) and immunoblot with antigens of T. crassiceps vesicular fluid (Tcra) compared to standard techniques (indirect immunofluorescence test [IFT] and complement fixation test [CFT]) using T. solium cysticerci (Tso) for the serodiagnosis of NC, we studied serum samples from 24 patients with NC, 30 supposedly healthy individuals, 76 blood bank donors, 45 individuals with other non-NC parasitoses, and 97 samples from individuals screened for cysticercosis serology (SC). The sensitivity observed was 100% for ELISA-Tso and ELISA-Tcra, 91.7% for the IFT, and 87.5% for the CFT. The specificity was 90% for ELISA-Tso, 96.7% for ELISA-Tcra, 50% for IFT, and 63.3% for CFT. The efficiency was highest for ELISA-Tcra, followed by ELISA-Tso, IFT, and CFT. Of the 23 samples from SC group, which were reactive to ELISA-Tso and/or ELISA-Tcra, only 3 were positive to immunblot-Tcra (specific peptides of 14- and 18-kDa) and to glycoprotein peptides purified from Tcra antigen (gp-Tcra), showing the low predictive value of ELISA for screening. None of the samples from the remaining groups showed specific reactivity in immunoblot-Tcra. These results demonstrate that ELISA-Tcra can be used as a screening method for the serodiagnosis of NC and support the need for specific tests for confirmation of the results. The immunoblot can be used as a confirmatory test both with Tcra and gp-Tcra, with the latter having an advantage in terms of visualization of the results. PMID:11687454
Schlemmer, S R; Sirotnak, F M
1994-12-09
Active [3H]vinblastine (VBL) transport (efflux) was documented for inside-out plasma membrane vesicles from murine erythroleukemia cells (MEL/VCR-6) resistant to vinca alkaloids and overexpressing MDR 3 P-glycoprotein (P-gp) 80-fold. Uptake of [3H]VBL at 37 degrees C by these inside-out vesicles, but not rightside-out vesicles or inside-out vesicles from wild-type cells, was obtained in the form of a rapid, initial phase (0-1 min) and a slower, later phase (> 1 min). The rapidity of each phase correlated with relative P-gp content among different MEL/VCR cell lines. The initial MDR-specific phase was temperature- and pH-dependent (optimum at pH 7), osmotically insensitive, and did not require ATP. The second MDR-specific phase was temperature-dependent, osmotically sensitive, and strictly dependent upon the presence of ATP (Km = 0.37 +/- 0.04 mM). Although other triphosphate nucleotides were partially effective in replacing ATP, the nonhydrolyzable analogue ATP gamma S (adenosine 5'-O-(thiotriphosphate)) was ineffective. This time course appears to represent tandem binding of [3H]VBL by P-gp and its mediated transport, with the latter process representing the rate-limiting step. In support of this conclusion, both binding and transport were inhibited by verapamil, quinidine, and reserpine, all known to be inhibitors of photoaffinity labeling of P-gp, but only transport was inhibited by C219 anti-P-gp antibody or orthovanadate. Although the rate of transport of [3H]VBL was 7-7.5-fold lower than the rate of binding (Vmax = 104 +/- 15 pmol/min/mg protein, Kon = 1.5 - 2 x 10(5) mol-1 s-1) to P-gp, each phase exhibited saturation kinetics and values for apparent Km and KD for each process were approximately the same (215 +/- 35 and 195 +/- 30 nM). Intravesicular accumulation of [3H]VBL was almost completely eliminated by high concentrations of nonradioactive VBL, suggesting that simple diffusion does not contribute appreciably to total accumulation of [3H]VBL in this vesicle system. This could be at least partially explained by the fact that these inside-out vesicles under the conditions employed did not maintain a P-gp mediated pH gradient. However, ATP-dependent, intravesicular accumulation of osmotically sensitive [3H]VBL occurred against a substantial permeant concentration gradient in both a time- and concentration-dependent manner consistent with an active, saturable process.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.
Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.
Morphological and glycan features of the camel oviduct epithelium.
Accogli, Gianluca; Monaco, Davide; El Bahrawy, Khalid Ahmed; El-Sayed, Ashraf Abd El-Halim; Ciannarella, Francesca; Beneult, Benedicte; Lacalandra, Giovanni Michele; Desantis, Salvatore
2014-07-01
This study describes regional differences in the oviduct of the one-humped camel (Camelus dromedarius) during the growth phase (GP) and the mature phase (MP) of the follicular wave by means of morphometry, scanning electron microscopy (SEM) and glycohistochemistry investigations. Epithelium height significantly increased in the ampulla and decreased in the isthmus passing from the GP to the MP. Under SEM, non-ciliated cells displayed apical blebs (secretory) or short microvilli. Cilia glycocalyx expressed glycans terminating with sialic acid linked α2,6 to Gal/GalNAc (SNA affinity) throughout the oviducts of GP and MP and sialic acid linked α2,3 to Galβ1,3GalNAc (MAL II and KOH-sialidase (K-s)-PNA staining) throughout the MP oviducts. Non-ciliated cells displayed lectin-binding sites from the supra-nuclear cytoplasm to the luminal surface. Ampulla non-ciliated cells showed O-linked (mucin-type) sialoglycans (MAL II and K-s-PNA) during GP and MP and N-linked sialoglycans (SNA) during the MP. Isthmus non-ciliated cells expressed SNA reactivity in GP and MP, also K-s-PNA binders in MP, and MAL II and PNA affinity (Galβ1,3GalNAc) during GP. Galβ1,3GalNAc was sialilated in the non-ciliated cells of GP UTJ. Luminal surface lacked of Galβ1,3GalNAc in GP and MP, whereas it expressed α2,6- and α2,3-linked sialic acids. In GP intraluminal substance reacted with SNA, MAL II, K-s-PNA in ampulla and only with MAL II in the isthmus and UTJ. These results demonstrate that the morphology and the glycan pattern of the camel oviductal epithelium vary during the follicular wave and that could relate to the region-specific functions. Copyright © 2014 Elsevier GmbH. All rights reserved.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger
Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950
Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy.
Garg, Himanshu; Viard, Mathias; Jacobs, Amy; Blumenthal, Robert
2011-12-01
HIV gp41 is a metastable protein whose native conformation is maintained in the form of a heterodimer with gp120. The non-covalently associated gp41/gp120 complex forms a trimer on the virus surface. As gp120 engages with HIV's receptor, CD4, and coreceptor, CXCR4 or CCR5, gp41 undergoes several conformational changes resulting in fusion between the viral and cellular membranes. Several lipophilic and amphiphilic domains have been shown to be critical in that process. While the obvious function of gp41 in viral entry is well-established its role in cellular membrane fusion and the link with pathogenesis are only now beginning to appear. Recent targeting of gp41 via fusion inhibitors has revealed an important role of this protein not only in viral entry but also in bystander apoptosis and HIV pathogenesis. Studies by our group and others have shown that the phenomenon of gp41-mediated hemifusion initiates apoptosis in bystander cells and correlates with virus pathogenesis. More interestingly, recent clinical evidence suggests that gp41 mutants arising after Enfuvirtide therapy are associated with CD4 cell increase and immunological benefits. This has in turn been correlated to a decrease in bystander apoptosis in our in vitro as well as in vivo assays. Although a great deal of work has been done to unravel HIV-1 gp41-mediated fusion mechanisms, the factors that regulate gp41-mediated fusion versus hemifusion and the mechanism by which hemifusion initiates bystander apoptosis are not fully understood. Further insight into these issues will open new avenues for drug development making gp41 a critical anti-HIV target both for neutralization and virus attenuation.
Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea
2018-01-16
Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.
Wu, Chunxiao; Wang, Shu
2012-01-01
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
Ackerman, Margaret; Saunders, Kevin O.; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Michael, Nelson L.; O’Connell, Robert J.; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Phogat, Sanjay; Alam, S. Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S.; Montefiori, David C.; Harrison, Stephen C.; Haynes, Barton F.
2017-01-01
The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6–8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. Trial Registration: ClinicalTrials.gov NCT01435135 PMID:28235027
Easterhoff, David; Moody, M Anthony; Fera, Daniela; Cheng, Hao; Ackerman, Margaret; Wiehe, Kevin; Saunders, Kevin O; Pollara, Justin; Vandergrift, Nathan; Parks, Rob; Kim, Jerome; Michael, Nelson L; O'Connell, Robert J; Excler, Jean-Louis; Robb, Merlin L; Vasan, Sandhya; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Sinangil, Faruk; Tartaglia, James; Phogat, Sanjay; Kepler, Thomas B; Alam, S Munir; Liao, Hua-Xin; Ferrari, Guido; Seaman, Michael S; Montefiori, David C; Tomaras, Georgia D; Harrison, Stephen C; Haynes, Barton F
2017-02-01
The canary pox vector and gp120 vaccine (ALVAC-HIV and AIDSVAX B/E gp120) in the RV144 HIV-1 vaccine trial conferred an estimated 31% vaccine efficacy. Although the vaccine Env AE.A244 gp120 is antigenic for the unmutated common ancestor of V1V2 broadly neutralizing antibody (bnAbs), no plasma bnAb activity was induced. The RV305 (NCT01435135) HIV-1 clinical trial was a placebo-controlled randomized double-blinded study that assessed the safety and efficacy of vaccine boosting on B cell repertoires. HIV-1-uninfected RV144 vaccine recipients were reimmunized 6-8 years later with AIDSVAX B/E gp120 alone, ALVAC-HIV alone, or a combination of ALVAC-HIV and AIDSVAX B/E gp120 in the RV305 trial. Env-specific post-RV144 and RV305 boost memory B cell VH mutation frequencies increased from 2.9% post-RV144 to 6.7% post-RV305. The vaccine was well tolerated with no adverse events reports. While post-boost plasma did not have bnAb activity, the vaccine boosts expanded a pool of envelope CD4 binding site (bs)-reactive memory B cells with long third heavy chain complementarity determining regions (HCDR3) whose germline precursors and affinity matured B cell clonal lineage members neutralized the HIV-1 CRF01 AE tier 2 (difficult to neutralize) primary isolate, CNE8. Electron microscopy of two of these antibodies bound with near-native gp140 trimers showed that they recognized an open conformation of the Env trimer. Although late boosting of RV144 vaccinees expanded a novel pool of neutralizing B cell clonal lineages, we hypothesize that boosts with stably closed trimers would be necessary to elicit antibodies with greater breadth of tier 2 HIV-1 strains. ClinicalTrials.gov NCT01435135.
The prevalence of GP Mur and anti-"Mia" in a tertiary hospital in Peninsula Malaysia.
Prathiba, Ramesh; Lopez, C G; Usin, F Mary
2002-12-01
The Mi III phenotype of the Miltenberger subsystem (or GP Mur) is relatively common in Southeast Asia especially along the south-east coast lines of China and Taiwan. The term anti-"Mia" describes antibodies that react with the Mi III phenotype. Since the Peninsula Malaysian population is a multiethnic one with a significant proportion of Chinese, a study was conducted into the prevalence of anti-"Mia" in patients from its 3 major ethnic groups--Chinese, Malays and Indians, as well as the GP Mur phenotype in blood donors (healthy individuals). Blood samples from 33,716 patients (general and antenatal) were screened for anti-"Mia" from January 1999 to December 2000. The investigation for the GP Mur phenotype representing the corresponding sensitizing antigen complex was carried out in 655 blood donors. Serum anti-"Mia" antibody was found to be the third most commonly occurring antibody detected in our patients and was found in all the ethnic groups. The antibody was detected in 0.2% of 33,716 antenatal and general patients with a prevalence in Chinese of 0.3%, Malay 0.2% and Indian 0.2%. The detection of these antibodies in the ethnic groups other than the Chinese is a noteworthy finding as such information is not well documented. The GP Mur red cell phenotype was detected in 15/306 (4.9%) of Chinese blood donors, a lower prevalence than in Chinese populations in other countries in the region. More significant was its detection in the Malays (2.8%) and the Indians (3.0%). Because of the many reports of clinical problems associated with the "Mia" antibody including the causation of fetal hydrops and haemolytic transfusion reactions, it is warranted that the GP Mur red cells be included in screening panels for group and screen procedures in countries with a significant Asian population.
Thymic Dendritic Cells Are Primary Targets for the Oncogenic Virus SL3-3
Uittenbogaart, Christel H.; Law, Wendy; Leenen, Pieter J. M.; Bristol, Gregory; van Ewijk, Willem; Hays, Esther F.
1998-01-01
The murine retrovirus SL3-3 causes malignant transformation of thymocytes and thymic lymphoma in mice of the AKR and NFS strains when they are inoculated neonatally. The objective of the present study was to identify the primary target cells for the virus in the thymuses of these mice. Immunohistochemical studies of the thymus after neonatal inoculation of the SL3-3 virus showed that cells expressing the viral envelope glycoprotein (gp70+ cells) were first seen at 2 weeks of age. These virus-expressing cells were found in the cortex and at the corticomedullary junction in both mouse strains. The gp70+ cells had the morphology and immunophenotype of dendritic cells. They lacked macrophage-specific antigens. Cell separation studies showed that bright gp70+ cells were detected in a fraction enriched for dendritic cells. At 3 weeks of age, macrophages also expressed gp70. At that time, both gp70+ dendritic cells and macrophages were found at the corticomedullary junction and in foci in the thymic cortex. At no time during this 3-week period was the virus expressed in cortical and medullary epithelial cells or in thymic lymphoid cells. Infectious cell center assays indicated that cells expressing infectious virus were present in small numbers at 2 weeks after inoculation but increased at 5 weeks of age by several orders of magnitude, indicating virus spread to the thymic lymphoid cells. Thus, at 2 weeks after neonatal inoculation of SL3-3, thymic dendritic cells are the first cells to express the virus. At 3 weeks of age, macrophages also express the virus. In subsequent weeks, the virus spreads to the thymocytes. This pathway of virus expression in the thymus allows the inevitable provirus integration in a thymocyte that results in a clonal lymphoma. PMID:9811752
Interactions between HIV-1 Neutralizing Antibodies and Model Lipid Membranes imaged with AFM
NASA Astrophysics Data System (ADS)
Zauscher, Stefan; Hardy, Gregory; Alam, Munir; Shapter, Joseph
2012-02-01
Lipid membrane interactions with rare, broadly neutralizing antibodies (NAbs), 2F5 and 4E10, play a critical role in HIV-1 neutralization. Our research is motivated by recent immunization studies that have shown that induction of antibodies that avidly bind the gp41-MPER antigen is not sufficient for neutralization. Rather, it is required that antigen designs induce polyreactive antibodies that recognize MPER antigens as well as the viral lipid membrane. However, the mechanistic details of how membrane properties influence NAb-lipid and NAb-antigen interactions remain unknown. Furthermore, it is well established that the native viral membrane is heterogeneous, representing a mosaic of lipid rafts and protein clustering. However, the size, physical properties, and dynamics of these regions are poorly characterized and their potential roles in HIV-1 neutralization are also unknown. To understand how membrane properties contribute to 2F5/4E10 membrane interactions, we have engineered biomimetic supported lipid bilayers (SLBs) and use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions at sub-nanometer z-resolution. Our results show that localized binding of HIV-1 antigens and NAbs occur preferentially with the most fluid membrane domain. This supports the theory that NAbs may interact with regions of low lateral lipid forces that allow antibody insertion into the bilayer.
Grondin, G; St-Jean, P; Beaudoin, A R
1992-04-01
The secretory product of the exocrine pancreas contains sedimentable and non-sedimentable materials. Electron microscopy of the pellet obtained after ultracentrifugation reveals two major components: microvesicles (pancreasomes) and a fibrillar network of small mesh size. Negative staining of an unfixed pellet demonstrated that these structures are not fixation artifacts. Cytochemical analysis showed that pancreasomes are reactive to osmication and uranyl acetate staining, whereas the fibrillar network was unreactive thereby indicating that the latter does not contain lipids; however, lead citrate staining reveals the network. Alcian blue, known to bind sulfate groups of mucosubstances, reacted strongly with the fibrillar network. The pellet was also characterized by immunocytochemistry with specific antibodies to amylase and glycoprotein 2 (GP2). Both antibodies were located only on the fibrillar network. Washing of the pellet with 100 mM KCl-250 mM NaBr had little effect on GP2 content, but reduced considerably alpha-amylase associated with the reticular matrix. It appeared that GP2 was the major component of the scaffolding that gives rise to the fibrillar network and that other proteins such as alpha-amylase could reversibly bind to it. When double-labeling immunocytochemistry was carried out on the unwashed pellet, labeling of the first antigen reduced the labeling of the second. Removal of amylase by washing the pellet increased the GP2 signal. These results indicate that amylase is bound on the GP2 network. Although the function of the GP2 network is still not clearly defined several possibilities could be envisaged at the level of the pancreatic duct system: 1) The network could drain off any aggregates or precipitates forming in small ducts. 2) The small mesh of the network would present a physical barrier to infecting bacteria that could enter into the duct system from the intestine, especially in conditions of low flow rates. 3) The network may exert a mechanical pressure on the membranes bordering the acinar lumen and small ducts thereby preventing their collapse in basal conditions.
Gong, Qingli; Li, Xue; Gong, Qixing; Zhu, Wenyuan; Song, Guoxin; Lu, Yan
2016-05-01
Autoimmune thyroid diseases (AITDs) are often accompanied by vitiligo, and the sera of patients with vitiligo often demonstrate increased frequencies of thyroid autoantibodies. In this study, we investigated the expression of melanocyte-associated antigens in tissues from patients with Hashimoto's thyroiditis (HT) without vitiligo using immunohistochemistry. Tissues of HT without vitiligo, as well as normal thyroid tissues, were both negative for the expression of NKI/beteb, gp100, tyrosinase-related protein 1 (TRP1), HMB-45 and S100, whereas they were positive for the expression of tyrosinase-related protein 2 (TRP2), lysosome-associated membrane protein 1 (LAMP1) and CD69. Tyrosinase (TYR) was only detected in tissues of HT, and levels of LAMP1 and CD69 were higher in tissues of HT than in normal thyroid tissues (p < 0.005). These results suggest the possibility of antigen crossover and oxidative stress between vitiligo and HT that might represent an immunological basis for secondary HT associated with vitiligo.
1992-01-01
T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930
Farrow, Blake; Hsueh, Connie L.; Deyle, Kaycie M.; Kim, Jocelyn T.; Lai, Bert T.; Heath, James R.
2013-01-01
We report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60oC. PMID:24116098
Secreted HSP Vaccine for Malaria Prophylaxis
2016-10-26
AWARD NUMBER: W81XWH-13-2-0098 TITLE: Secreted HSP Vaccine for Malaria Prophylaxis PRINCIPAL INVESTIGATOR: Dr. Natasa Strbo CONTRACTING ORGANIZATION...Secreted HSP Vaccine for Malaria Prophylaxis 4. TITLE AND SUBTITLE NATASA STRBO, M.D., D.SC NAME(S) AND E-M tzA UNIVERS]TY OF MTAMI 1600 NW 1OTH AVENUE ROOM...Here we developed malaria vaccine that relies on secreted gp96-lg chaperon-ing Plasmodium falciparum antigenic sporozoite proteins CSP and AMA1. The
Cornaglia, C; Robinet, J; Partouche, H
2009-06-01
The distribution of the Rapid Antigen Detection Test (RADT) and the National Health Insurance's information campaign should efficiently reduce the unjustified use antibiotic. However, a preliminary survey among GP trainers at the Paris Descartes University indicated that the RADT was seldom used. This study had for aim to describe the RADT use trend among trainers since 2005 and the main obstacles to its widespread use, and to assess the Mac Isaac score use and antibiotic prescriptions. Between February and May 2007, a survey was carried out among 66 GPs who were required to report their first ten patients over three years of age presenting with pharyngitis. RADT use and antibiotic prescriptions were compared with those of the 2005 survey. RADT use had decreased (52.5% [48.2-56.8] versus 57.5% [52.1-68.8], p<0.05). GPs did not use the RADT because they considered it "useless in decision making". Clinical findings were sufficient in most cases. The Mac Isaac score was not widely used by GPs (28.3%) and antibiotic prescription had increased except for macrolides which had decreased (10% vs 15%). Among patients with a negative RADT, 11.9% (vs 10.5% en 2005, p<0.001) were prescribed antibiotics. The RADT use decreased in two years among GP trainers. GPs still prescribe treatment according to clinical findings, most without using diagnostic tools.
Rotavirus Diversity and Evolution in the Post-Vaccine World
Patton, John T.
2013-01-01
Rotaviruses (RVs) are a large genetically diverse population of segmented double-stranded (ds) RNA viruses that are important causes of gastroenteritis in many animal species. The human RVs are responsible for the deaths of nearly 450,000 infants and young children each year, most occurring in developing countries. Recent large-scale sequencing efforts have revealed that the genomes of human RVs typically consist of phylogenetically linked constellations of eleven dsRNA segments. The presence of such preferred constellations indicate that the human RV genes have co-evolved to produce protein sets that work optimally together to support virus replication. Two of the viral genes encode virion outer capsid proteins (VP7 and VP4) whose antigenic properties define the G/P type of the virus. From year-to-year and place-to-place, the G/P type of human RVs associated with disease can fluctuate dramatically, phenomena that can be associated with the presence and behavior of genetically distinct RV clades. The recent introduction of two live attenuated RV vaccines (RotaReq™ and Rotarix™) into the childhood vaccination programs of various countries has been highly effective in reducing the incidence of RV diarrheal disease. Whether the widespread use of these vaccines will introduce selective pressures on human RVs, triggering genetic and antigenic changes that undermine the effectiveness of vaccinations programs, is uncertain and will require continued surveillance of human RVs. PMID:22284787
Erkes, Dan A; Xu, Guangwu; Daskalakis, Constantine; Zurbach, Katherine A; Wilski, Nicole A; Moghbeli, Toktam; Hill, Ann B; Snyder, Christopher M
2016-01-01
Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8+ T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8+ T-cells, but provided minimal benefit for subcutaneous lesions. In contrast, intratumoral infection of established tumor nodules greatly inhibited tumor growth and improved overall survival in a CD8+ T-cell-dependent manner, even in mice previously infected with murine cytomegalovirus. Although murine cytomegalovirus could infect and kill B16F0s in vitro, infection was restricted to tumor-associated macrophages in vivo. Surprisingly, the presence of a tumor antigen in the virus only slightly increased the efficacy of intratumoral infection and tumor-specific CD8+ T-cells in the tumor remained dysfunctional. Importantly, combining intratumoral murine cytomegalovirus infection with anti-PD-L1 therapy was synergistic, resulting in tumor clearance from over half of the mice and subsequent protection against tumor challenge. Thus, while a murine cytomegalovirus-based vaccine was poorly effective against established subcutaneous tumors, direct infection of tumor nodules unexpectedly delayed tumor growth and synergized with immune checkpoint blockade to promote tumor clearance and long-term protection. PMID:27434584
The Unusual Genetics and Biochemistry of Bovine Immunoglobulins.
Stanfield, Robyn L; Haakenson, Jeremy; Deiss, Thaddeus C; Criscitiello, Michael F; Wilson, Ian A; Smider, Vaughn V
2018-01-01
Antibodies are the key circulating molecules that have evolved to fight infection by the adaptive immune system of vertebrates. Typical antibodies of most species contain six complementarity-determining regions (CDRs), where the third CDR of the heavy chain (CDR H3) has the greatest diversity and often makes the most significant contact with antigen. Generally, the process of V(D)J recombination produces a vast repertoire of antibodies; multiple V, D, and J gene segments recombine with additional junctional diversity at the V-D and D-J joints, and additional combinatorial possibilities occur through heavy- and light-chain pairing. Despite these processes, the overall structure of the resulting antibody is largely conserved, and binding to antigen occurs predominantly through the CDR loops of the immunoglobulin V domains. Bovines have deviated from this general paradigm by having few VH regions and thus little germline combinatorial diversity, but their antibodies contain long CDR H3 regions, with substantial diversity generated through somatic hypermutation. A subset of the repertoire comprises antibodies with ultralong CDR H3s, which can reach over 70 amino acids in length. Structurally, these unusual antibodies form a β-ribbon "stalk" and disulfide-bonded "knob" that protrude far from the antibody surface. These long CDR H3s allow cows to mount a particularly robust immune response when immunized with viral antigens, particularly to broadly neutralizing epitopes on a stabilized HIV gp140 trimer, which has been a challenge for other species. The unusual genetics and structural biology of cows provide for a unique paradigm for creation of immune diversity and could enable generation of antibodies against especially challenging targets and epitopes. © 2018 Elsevier Inc. All rights reserved.
Blattner, Claudia; Lee, Jeong Hyun; Sliepen, Kwinten; Derking, Ronald; Falkowska, Emilia; de la Peña, Alba Torrents; Cupo, Albert; Julien, Jean-Philippe; van Gils, Marit; Lee, Peter S; Peng, Wenjie; Paulson, James C; Poignard, Pascal; Burton, Dennis R; Moore, John P; Sanders, Rogier W; Wilson, Ian A; Ward, Andrew B
2014-05-15
All previously characterized broadly neutralizing antibodies to the HIV-1 envelope glycoprotein (Env) target one of four major sites of vulnerability. Here, we define and structurally characterize a unique epitope on Env that is recognized by a recently discovered family of human monoclonal antibodies (PGT151-PGT158). The PGT151 epitope is comprised of residues and glycans at the interface of gp41 and gp120 within a single protomer and glycans from both subunits of a second protomer and represents a neutralizing epitope that is dependent on both gp120 and gp41. Because PGT151 binds only to properly formed, cleaved trimers, this distinctive property, and its ability to stabilize Env trimers, has enabled the successful purification of mature, cleaved Env trimers from the cell surface as a complex with PGT151. Here we compare the structural and functional properties of membrane-extracted Env trimers from several clades with those of the soluble, cleaved SOSIP gp140 trimer. Copyright © 2014 Elsevier Inc. All rights reserved.
Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike
Lee, Jeong Hyun; Leaman, Daniel P.; Kim, Arthur S.; Torrents de la Peña, Alba; Sliepen, Kwinten; Yasmeen, Anila; Derking, Ronald; Ramos, Alejandra; de Taeye, Steven W.; Ozorowski, Gabriel; Klein, Florian; Burton, Dennis R.; Nussenzweig, Michel C.; Poignard, Pascal; Moore, John P.; Klasse, Per Johan; Sanders, Rogier W.; Zwick, Michael B.; Wilson, Ian A.; Ward, Andrew B.
2015-01-01
The recent identification of three broadly neutralizing antibodies (bnAbs) against gp120–gp41 interface epitopes has expanded the targetable surface on the HIV-1 envelope glycoprotein (Env) trimer. By using biochemical, biophysical and computational methods, we map the previously unknown trimer epitopes of two related antibodies, 3BC315 and 3BC176. A cryo-EM reconstruction of a soluble Env trimer bound to 3BC315 Fab at 9.3 Å resolution reveals that the antibody binds between two gp41 protomers, and neutralizes the virus by accelerating trimer decay. In contrast, bnAb 35O22 binding to a partially overlapping quaternary epitope at the gp120–gp41 interface does not induce decay. A conserved gp41-proximal glycan at N88 was also shown to play a role in the binding kinetics of 3BC176 and 3BC315. Finally, our data suggest that the dynamic structure of the Env trimer influences exposure of bnAb epitopes. PMID:26404402
Serology of Paracoccidioidomycosis Due to Paracoccidioides lutzii
Gegembauer, Gregory; Araujo, Leticia Mendes; Pereira, Edy Firmina; Rodrigues, Anderson Messias; Paniago, Anamaria Mello Miranda; Hahn, Rosane Christine; de Camargo, Zoilo Pires
2014-01-01
Paracoccidioides lutzii is a new agent of paracoccidioidomycosis (PCM) and has its epicenter localized to the Central-West region of Brazil. Serological diagnosis of PCM caused by P. lutzii has not been established. This study aimed to develop new antigenic preparations from P. lutzii and to apply them in serological techniques to improve the diagnosis of PCM due to P. lutzii. Paracoccidioides lutzii exoantigens, cell free antigen (CFA), and a TCA-precipitated antigen were evaluated in immunodiffusion (ID) tests using a total of 89 patient sera from the Central-West region of Brazil. Seventy-two sera were defined as reactive for P. brasiliensis using traditional antigens (AgPbB339 and gp43). Non-reactive sera for traditional antigens (n = 17) were tested with different P. lutzii preparations and P. lutzii CFA showed 100% reactivity. ELISA was found to be a very useful test to titer anti-P. lutzii antibodies using P. lutzii-CFA preparations. Sera from patients with PCM due to P. lutzii presented with higher antibody titers than PCM due to P. brasiliensis and heterologous sera. In western blot, sera from patients with PCM due to P. lutzii were able to recognize antigenic molecules from the P. lutzii-CFA antigen, but sera from patients with PCM due to P. brasiliensis could not recognize any P. lutzii molecules. Due to the facility of preparing P. lutzii CFA antigens we recommend its use in immunodiffusion tests for the diagnosis of PCM due to P. lutzii. ELISA and western blot can be used as complementary tests. PMID:25032829
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
21 CFR 660.40 - Hepatitis B Surface Antigen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Hepatitis B Surface Antigen. 660.40 Section 660.40...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Hepatitis B Surface Antigen § 660.40 Hepatitis B Surface Antigen. (a) Proper name and definition. The proper name of this product...
NASA Technical Reports Server (NTRS)
Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik
1989-01-01
The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.
Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi
2016-01-01
We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.
The Silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function
Theos, Alexander C.; Truschel, Steven T.; Raposo, Graça; Marks, Michael S.
2009-01-01
Summary Mouse coat color mutants have led to the identification of more than 120 genes that encode proteins involved in all aspects of pigmentation, from the regulation of melanocyte development and differentiation to the transcriptional activation of pigment genes, from the enzymatic formation of pigment to the control of melanosome biogenesis and movement [Bennett and Lamoreux (2003) Pigment Cell Res. 16, 333]. One of the more perplexing of the identified mouse pigment genes is encoded at the Silver locus, first identified by Dunn and Thigpen [(1930) J. Heredity 21, 495] as responsible for a recessive coat color dilution that worsened with age on black backgrounds. The product of the Silver gene has since been discovered numerous times in different contexts, including the initial search for the tyrosinase gene, the characterization of major melanosome constituents in various species, and the identification of tumor-associated antigens from melanoma patients. Each discoverer provided a distinct name: Pmel17, gp100, gp95, gp85, ME20, RPE1, SILV and MMP115 among others. Although all its functions are unlikely to have yet been fully described, the protein clearly plays a central role in the biogenesis of the early stages of the pigment organelle, the melanosome, in birds, and mammals. As such, we will refer to the protein in this review simply as pre-melanosomal protein (Pmel). This review will summarize the structural and functional aspects of Pmel and its role in melanosome biogenesis. PMID:16162173
Weiss, Eric R.; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L.; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa
2016-01-01
ABSTRACT The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro. The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. PMID:27733645
Weiss, Eric R; Alter, Galit; Ogembo, Javier Gordon; Henderson, Jennifer L; Tabak, Barbara; Bakiş, Yasin; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Luzuriaga, Katherine
2017-01-01
The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development. Copyright © 2016 American Society for Microbiology.
A simple and robust approach to immobilization of antibody fragments.
Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J
2016-08-01
Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.
Hoffmann, Michele M.; Molina-Mendiola, Carlos; Nelson, Alfreda D.; Parks, Christopher A.; Reyes, Edwin E.; Hansen, Michael J.; Rajagopalan, Govindarajan; Pease, Larry R.; Schrum, Adam G.; Gil, Diana
2015-01-01
Adaptive immunity is mediated by antigen receptors that can induce weak or strong immune responses depending on the nature of the antigen that is bound. In T lymphocytes, antigen recognition triggers signal transduction by clustering T cell receptor (TCR)/CD3 multiprotein complexes. In addition, it hypothesized that biophysical changes induced in TCR/CD3 that accompany receptor engagement may contribute to signal intensity. Nonclustering monovalent TCR/CD3 engagement is functionally inert despite the fact that it may induce changes in conformational arrangement or in the flexibility of receptor subunits. We report that the intrinsically inert monovalent engagement of TCR/CD3 can specifically enhance physiologic T cell responses to weak antigens in vitro and in vivo without stimulating antigen-unengaged T cells and without interrupting T cell responses to strong antigens, an effect that we term as “co-potentiation.” We identified Mono-7D6-Fab, which biophysically altered TCR/CD3 when bound and functionally enhanced immune reactivity to several weak antigens in vitro, including a gp100-derived peptide associated with melanoma. In vivo, Mono-7D6-Fab induced T cell antigen–dependent therapeutic responses against melanoma lung metastases, an effect that synergized with other anti-melanoma immunotherapies to significantly improve outcome and survival. We conclude that Mono-7D6-Fab directly co-potentiated TCR/CD3 engagement by weak antigens and that such concept can be translated into an immunotherapeutic design. The co-potentiation principle may be applicable to other receptors that could be regulated by otherwise inert compounds whose latent potency is only invoked in concert with specific physiologic ligands. PMID:26601285
Yokoyama, Masaru; Nomaguchi, Masako; Doi, Naoya; Kanda, Tadahito; Adachi, Akio; Sato, Hironori
2016-01-01
Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness. PMID:26903989
DeSantis, Michael C.; Kim, Jin H.; Song, Hanna; Klasse, Per Johan
2016-01-01
The envelope glycoprotein (Env) gp120/gp41 is required for HIV-1 infection of host cells. Although in general it has been perceived that more Env gives rise to higher infectivity, the precise quantitative dependence of HIV-1 virion infectivity on Env density has remained unknown. Here we have developed a method to examine this dependence. This method involves 1) production of a set of single-cycle HIV-1 virions with varied density of Env on their surface, 2) site-specific labeling of Env-specific antibody Fab with a fluorophore at high efficiency, and 3) optical trapping virometry to measure the number of gp120 molecules on individual HIV-1 virions. The resulting gp120 density per virion is then correlated with the infectivity of the virions measured in cell culture. In the presence of DEAE-dextran, the polycation known to enhance HIV-1 infectivity in cell culture, virion infectivity follows gp120 density as a sigmoidal dependence and reaches an apparent plateau. This quantitative dependence can be described by a Hill equation, with a Hill coefficient of 2.4 ± 0.6. In contrast, in the absence of DEAE-dextran, virion infectivity increases monotonically with gp120 density and no saturation is observed under the experimental conditions. These results provide the first quantitative evidence that Env trimers cooperate on the virion surface to mediate productive infection by HIV-1. Moreover, as a result of the low number of Env trimers on individual virions, the number of additional Env trimers per virion that is required for the optimal infectivity will depend on the inclusion of facilitating agents during infection. PMID:27129237
2008-10-08
of reactant to ferrocene and xylene, a liquid carbon source, results in longer nanostructures in larger amount as shown in Fig. 2(g). These samples...with 6.5 mol% ferrocene and 100 mol% xylene. The flow rate was (e) 0.195 ml/hr, (f) 0.98 ml/hr, and (g) 1.95 ml/hr. (d) and (h) are HR-TEM images of...and ferrocene . The flow rate was (a) 0.195 ml/hr and (b) 1.95 ml/hr........................ 19 Fig. A-5. STEM EDS analysis of the CF specimen after
Molecular Chaperone BiP Interacts with Borna Disease Virus Glycoprotein at the Cell Surface▿ †
Honda, Tomoyuki; Horie, Masayuki; Daito, Takuji; Ikuta, Kazuyoshi; Tomonaga, Keizo
2009-01-01
Borna disease virus (BDV) is characterized by highly neurotropic infection. BDV enters its target cells using virus surface glycoprotein (G), but the cellular molecules mediating this process remain to be elucidated. We demonstrate here that the N-terminal product of G, GP1, interacts with the 78-kDa chaperone protein BiP. BiP was found at the surface of BDV-permissive cells, and anti-BiP antibody reduced BDV infection as well as GP1 binding to the cell surface. We also reveal that BiP localizes at the synapse of neurons. These results indicate that BiP may participate in the cell surface association of BDV. PMID:19776128
Immunity to Intracellular Salmonella Depends on Surface-associated Antigens
Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk
2012-01-01
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937
NASA Astrophysics Data System (ADS)
Rana, Sachin; Ertekin, Turgay; King, Gregory R.
2018-05-01
Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.
Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.
Bebawy, M; Combes, V; Lee, E; Jaiswal, R; Gong, J; Bonhoure, A; Grau, G E R
2009-09-01
Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.
Thomas, K S; Keogh-Brown, M R; Chalmers, J R; Fordham, R J; Holland, R C; Armstrong, S J; Bachmann, M O; Howe, A H; Rodgers, S; Avery, A J; Harvey, I; Williams, H C
2006-08-01
To estimate the costs of commonly used treatments for cutaneous warts, as well as their health benefits and risk. To create an economic decision model to evaluate the cost-effectiveness of these treatments, and, as a result, assess whether a randomised controlled trial (RCT) would be feasible and cost-effective. Focus groups, structured interviews and observation of practice. Postal survey sent to 723 patients. A recently updated Cochrane systematic review and published cost and prescribing data. Primary and secondary data collection methods were used to inform the development of an economic decision model. Data from the postal survey provided estimates of the effectiveness of wart treatments in a primary care setting. These estimates were compared with outcomes reported in the Cochrane review of wart treatment, which were largely obtained from RCTs conducted in secondary care. A decision model was developed including a variety of over-the-counter (OTC) and GP-prescribed treatments. The model simulated 10,000 patients and adopted a societal perspective. OTC treatments were used by a substantial number of patients (57%) before attending the GP surgery. By far the most commonly used OTC preparation was salicylic acid (SA). The results of the economic model suggested that of the treatments prescribed by a GP, the most cost-effective treatment was SA, with an incremental cost-effectiveness ratio (ICER) of 2.20 pound/% cured. The ICERs for cryotherapy varied widely (from 1.95 to 7.06 pound/% cured) depending on the frequency of applications and the mode of delivery. The most cost-effective mode of delivery was through nurse-led cryotherapy clinics (ICER = 1.95 pound/% cured) and this could be a cost-effective alternative to GP-prescribed SA. Overall, the OTC therapies were the most cost-effective treatment options. ICERs ranged from 0.22 pound/% cured for OTC duct tape and 0.76 pound/% cured for OTC cryotherapy to 1.12 pound/% cured for OTC SA. However, evidence in support of OTC duct tape and OTC cryotherapy is very limited. Side-effects were commonly reported for both SA and cryotherapy, particularly a burning sensation, pain and blistering. Cryotherapy delivered by a doctor is an expensive option for the treatment of warts in primary care. Alternative options such as GP-prescribed SA and nurse-led cryotherapy clinics provide more cost-effective alternatives, but are still expensive compared with self-treatment. Given the minor nature of most cutaneous warts, coupled with the fact that the majority spontaneously resolve in time, it may be concluded that a shift towards self-treatment is warranted. Although both duct tape and OTC cryotherapy appear promising new self-treatment options from both a cost and an effectiveness perspective, more research is required to confirm the efficacy of these two methods of wart treatment. If these treatments are shown to be as cost-effective as or more cost-effective than conventional treatments, then a shift in service delivery away from primary care towards more OTC treatment is likely. A public awareness campaign would be useful to educate patients about the self-limiting nature of warts and the possible alternative OTC treatment options available. Two future RCTs are recommended for consideration: a trial of SA compared with nurse-led cryotherapy in primary care, and a trial of home treatments. Greater understanding of the efficacy of these home treatments will give doctors a wider choice of treatment options, and may help to reduce the overall demand for cryotherapy in primary care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Rathi, Muhammad Fareez Mohamad, E-mail: cd110238@siswa.uthm.edu.my; Abidin, Muhamad Yusuf Zainal, E-mail: cd110221@siswa.uthm.edu.my
Anodic oxidation is a surface modification method which combines electric field driven metal and oxygen ion diffusion for formation of oxide layer on the anode surface. This method has been widely used to modify the surface morphology of biomaterial especially titanium. This study aimed to investigate the effect of applied voltage on titanium. Specifically, the titanium foil was anodised in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA) with different applied voltage (50-350 V), electrolyte concentration (0.04 M β-GP + 0.4 M CA), anodising time (10minutes) and current density (50 and 70 mA.cm{sup −2}) at room temperature. Surfacemore » oxide properties of anodised titanium were characterised by digital single-lens reflex camera (DSLR camera), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM). At lower applied voltage (≤150 V), surface of titanium foils were relatively smooth. With increasing applied voltage (≥250 V), the oxide layer became more porous and donut-shaped pores were formed on the surface of titanium foils. The AFM results indicated that the surface roughness of anodised titanium increases with increasing of applied voltage. The porous and rough surface is able to promote the osseointegration and reduce the suffering time of patient.« less
GP96 is a GARP chaperone and controls regulatory T cell functions.
Zhang, Yongliang; Wu, Bill X; Metelli, Alessandra; Thaxton, Jessica E; Hong, Feng; Rachidi, Saleh; Ansa-Addo, Ephraim; Sun, Shaoli; Vasu, Chenthamarakshan; Yang, Yi; Liu, Bei; Li, Zihai
2015-02-01
Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ-producing and IL-17-producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane-associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.
Selection of Human Antibody Fragments Which Bind Novel Breast Tumor Antigens
1998-09-01
chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 85: 5879-83. 11. Adams, G.P., McCartney, J.E., Tai, M.-S., Oppermann, H...antidigoxin single-chain Fv analogue produced in E coil. Proc NailAcadSci Bernard Foundation, the Frank Strick Foundation and the USA 85:5879-5883 CaPCURE...recovery of infectious phage was increased by preincubation of cells with chloroquine . Measurement of phage recovery from within the cytosol as a
Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.
Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S
2017-11-07
The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less
Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak.
Bornholdt, Zachary A; Turner, Hannah L; Murin, Charles D; Li, Wen; Sok, Devin; Souders, Colby A; Piper, Ashley E; Goff, Arthur; Shamblin, Joshua D; Wollen, Suzanne E; Sprague, Thomas R; Fusco, Marnie L; Pommert, Kathleen B J; Cavacini, Lisa A; Smith, Heidi L; Klempner, Mark; Reimann, Keith A; Krauland, Eric; Gerngross, Tillman U; Wittrup, Karl D; Saphire, Erica Ollmann; Burton, Dennis R; Glass, Pamela J; Ward, Andrew B; Walker, Laura M
2016-03-04
Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies. Copyright © 2016, American Association for the Advancement of Science.
Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann
2016-02-23
The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.
Jaime-Sánchez, Paula; Catalán, Elena; Uranga-Murillo, Iratxe; Aguiló, Nacho; Santiago, Llipsy; M Lanuza, Pilar; de Miguel, Diego; A Arias, Maykel; Pardo, Julián
2018-05-09
Cytotoxic CD8 + T (Tc) cells are the main executors of transformed and cancer cells during cancer immunotherapy. The latest clinical results evidence a high efficacy of novel immunotherapy agents that modulate Tc cell activity against bad prognosis cancers. However, it has not been determined yet whether the efficacy of these treatments can be affected by selection of tumoural cells with mutations in the cell death machinery, known to promote drug resistance and cancer recurrence. Here, using a model of prophylactic tumour vaccination based on the LCMV-gp33 antigen and the mouse EL4 T lymphoma, we analysed the molecular mechanism employed by Tc cells to eliminate cancer cells in vivo and the impact of mutations in the apoptotic machinery on tumour development. First of all, we found that Tc cells, and perf and gzmB are required to efficiently eliminate EL4.gp33 cells after LCMV immunisation during short-term assays (1-4 h), and to prevent tumour development in the long term. Furthermore, we show that antigen-pulsed chemoresistant EL4 cells overexpressing Bcl-X L or a dominant negative form of caspase-3 are specifically eliminated from the peritoneum of infected animals, as fast as parental EL4 cells. Notably, antigen-specific Tc cells control the tumour growth of the mutated cells, as efficiently as in the case of parental cells. Altogether, expression of the anti-apoptotic mutations does not confer any advantage for tumour cells neither in the short-term survival nor in long-term tumour formation. Although the mechanism involved in the elimination of the apoptosis-resistant tumour cells is not completely elucidated, neither necroptosis nor pyroptosis seem to be involved. Our results provide the first experimental proof that chemoresistant cancer cells with mutations in the main cell death pathways are efficiently eliminated by Ag-specific Tc cells in vivo during immunotherapy and, thus, provide the molecular basis to treat chemoresistant cancer cells with CD8 Tc-based immunotherapy.
Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M
2015-12-22
A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Sathiyamoorthy, Karthik; Hu, Yao Xiong; Möhl, Britta S.; ...
2016-12-08
Herpesvirus entry into host cells is mediated by multiple virally encoded receptor binding and membrane fusion glycoproteins. Despite their importance in host cell tropism and associated disease pathology, the underlying and essential interactions between these viral glycoproteins remain poorly understood. For Epstein–Barr virus (EBV), gHgL/gp42 complexes bind HLA class II to activate membrane fusion with B cells, but gp42 inhibits fusion and entry into epithelial cells. To clarify the mechanism by which gp42 controls the cell specificity of EBV infection, in this paper we determined the structure of gHgL/gp42 complex bound to an anti-gHgL antibody (E1D1). The critical regulator ofmore » EBV tropism is the gp42 N-terminal domain, which tethers the HLA-binding domain to gHgL by wrapping around the exterior of three gH domains. Both the gp42 N-terminal domain and E1D1 selectively inhibit epithelial-cell fusion; however, they engage distinct surfaces of gHgL. Finally, these observations clarify key determinants of EBV host cell tropism.« less
Effects of the glycerophosphate-polylactic copolymer formation on electrospun fibers
NASA Astrophysics Data System (ADS)
Shen, Wen; Zhang, Guanghua; Li, YaLi; Fan, Guodong
2018-06-01
Poly-lactic (PLA) porous fibers are widely used in tissue engineering scaffolds and many other fields. Non-solvent induced phase separation is one of the best way for preparation of porous fiber. It is difficult to obtain the PLA electrospun porous fibers by phase separation. In this paper, glycerophosphate-polylactic copolymer (GP-PLA) are synthesized with sodium glyceryl phosphate and L-lactide to produce porous fibers. Furthermore, the Gel permeation chromatography (GPC), FT-IR and 1H-NMR are applied for characterizing the obtained copolymers. Thermogravimetric (TG) measurements indicate that the thermal stability of GP-PLA is lower than that of linear PLA. Under 30% humidity, porous GP-PLA fibers are obtained by electrospinning method, the scanning electron microscopy (SEM) refers that through the modification of the molecular structure, GP-PLA fibers are more porous under the same condition. The water contact angle is increased coming with the increase of GP contents. Hydrophilic porous GP-PLA fibers are obtained via solvent phase separation. The relationship between hydrophilicity and surface morphology of materials is further explained by Atomic Force Microscope (AFM). GP-PLA has a potential application in the field of scaffold for tissue engineering.
The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis.
Feldmann, H; Volchkov, V E; Volchkova, V A; Klenk, H D
1999-01-01
Filoviruses cause systemic infections that can lead to severe hemorrhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.
Characterization of the receptors for mycobacterial cord factor in Guinea pig.
Toyonaga, Kenji; Miyake, Yasunobu; Yamasaki, Sho
2014-01-01
Guinea pig is a widely used animal for research and development of tuberculosis vaccines, since its pathological disease process is similar to that present in humans. We have previously reported that two C-type lectin receptors, Mincle (macrophage inducible C-type lectin, also called Clec4e) and MCL (macrophage C-type lectin, also called Clec4d), recognize the mycobacterial cord factor, trehalose-6,6'-dimycolate (TDM). Here, we characterized the function of the guinea pig homologue of Mincle (gpMincle) and MCL (gpMCL). gpMincle directly bound to TDM and transduced an activating signal through ITAM-bearing adaptor molecule, FcRγ. Whereas, gpMCL lacked C-terminus and failed to bind to TDM. mRNA expression of gpMincle was detected in the spleen, lymph nodes and peritoneal macrophages and it was strongly up-regulated upon stimulation of zymosan and TDM. The surface expression of gpMincle was detected on activated macrophages by a newly established monoclonal antibody that also possesses a blocking activity. This antibody potently suppressed TNF production in BCG-infected macrophages. Collectively, gpMincle is the TDM receptor in the guinea pig and TDM-Mincle axis is involved in host immune responses against mycobacteria.
Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano
2014-09-25
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
Choi, K. Yeon; Root, Matthew
2016-01-01
ABSTRACT Congenital cytomegalovirus (CMV) infection is a leading cause of mental retardation and deafness in newborns. The guinea pig is the only small animal model for congenital CMV infection. A novel CMV vaccine was investigated as an intervention strategy against congenital guinea pig cytomegalovirus (GPCMV) infection. In this disabled infectious single-cycle (DISC) vaccine strategy, a GPCMV mutant virus was used that lacked the ability to express an essential capsid gene (the UL85 homolog GP85) except when grown on a complementing cell line. In vaccinated animals, the GP85 mutant virus (GP85 DISC) induced an antibody response to important glycoprotein complexes considered neutralizing target antigens (gB, gH/gL/gO, and gM/gN). The vaccine also generated a T cell response to the pp65 homolog (GP83), determined via a newly established guinea pig gamma interferon enzyme-linked immunosorbent spot assay. In a congenital infection protection study, GP85 DISC-vaccinated animals and a nonvaccinated control group were challenged during pregnancy with wild-type GPCMV (105 PFU). The pregnant animals carried the pups to term, and viral loads in target organs of pups were analyzed. Based on live pup births in the vaccinated and control groups (94.1% versus 63.6%), the vaccine was successful in reducing mortality (P = 0.0002). Additionally, pups from the vaccinated group had reduced CMV transmission, with 23.5% infected target organs versus 75.9% in the control group. Overall, these preliminary studies indicate that a DISC CMV vaccine strategy has the ability to induce an immune response similar to that of natural virus infection but has the increased safety of a non-replication-competent virus, which makes this approach attractive as a CMV vaccine strategy. IMPORTANCE Congenital CMV infection is a leading cause of mental retardation and deafness in newborns. An effective vaccine against CMV remains an elusive goal despite over 50 years of CMV research. The guinea pig, with a placenta structure similar to that in humans, is the only small animal model for congenital CMV infection and recapitulates disease symptoms (e.g., deafness) in newborn pups. In this report, a novel vaccine strategy against congenital guinea pig cytomegalovirus (GPCMV) infection was developed, characterized, and tested for efficacy. This disabled infectious single-cycle (DISC) vaccine strategy induced a neutralizing antibody or a T cell response to important target antigens. In a congenital infection protection study, animals were protected against CMV in comparison to the nonvaccinated group (52% reduction of transmission). This novel vaccine was more effective than previously tested gB-based vaccines and most other strategies involving live virus vaccines. Overall, the DISC vaccine is a safe and promising approach against congenital CMV infection. PMID:27334585
Conservation of myeloid surface antigens on primate granulocytes.
Letvin, N L; Todd, R F; Palley, L S; Schlossman, S F; Griffin, J D
1983-02-01
Monoclonal antibodies reactive with myeloid cell surface antigens were used to study evolutionary changes in granulocyte surface antigens from primate species. Certain of these granulocyte membrane antigens are conserved in phylogenetically distant species, indicating the potential functional importance of these structures. The degree of conservation of these antigens reflects the phylogenetic relationship between primate species. Furthermore, species of the same genus show similar patterns of binding to this panel of anti-human myeloid antibodies. This finding of conserved granulocyte surface antigens suggests that non-human primates may provide a model system for exploring uses of monoclonal antibodies in the treatment of human myeloid disorders.
NASA Astrophysics Data System (ADS)
Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin
2012-12-01
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano
2011-01-01
Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243
Kato, Tatsuya; Sugioka, Saki; Itagaki, Kohei; Park, Enoch Y
2016-08-26
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jiansen; Xue, Hailing; Ma, Jing
HIV CRF07 B′/C is a strain circulating mainly in northwest region of China. The gp41 region of CRF07 is derived from a clade C virus. In order to compare the difference of CRF07 gp41 with that of typical clade B virus, we solved the crystal structure of the core region of CRF07 gp41. Compared with clade B gp41, CRF07 gp41 evolved more basic and hydrophilic residues on its helix bundle surface. Based on sequence alignment, a hyper-mutant cluster located in the middle of HR2 heptads repeat was identified. The mutational study of these residues revealed that this site is importantmore » in HIV mediated cell–cell fusion and plays critical roles in conformational changes during viral invasion. - Highlights: • We solved the crystal structure of HIV CRF07 gp41 core region. • A hyper-mutant cluster in the middle of HR2 heptads repeat was identified. • The hyper-mutant site is important in HIV-cell fusion. • The model will help to understand the HIV fusion process.« less
Chinnasamy, Dhanalakshmi; Tran, Eric; Yu, Zhiya; Morgan, Richard A; Restifo, Nicholas P; Rosenberg, Steven A
2013-06-01
Most systemic cancer therapies target tumor cells directly, although there is increasing interest in targeting the tumor stroma that can comprise a substantial portion of the tumor mass. We report here a synergy between two T-cell therapies, one directed against the stromal tumor vasculature and the other directed against antigens expressed on the tumor cell. Simultaneous transfer of genetically engineered syngeneic T cells expressing a chimeric antigen receptor targeting the VEGF receptor-2 (VEGFR2; KDR) that is overexpressed on tumor vasculature and T-cells specific for the tumor antigens gp100 (PMEL), TRP-1 (TYRP1), or TRP-2 (DCT) synergistically eradicated established B16 melanoma tumors in mice and dramatically increased the tumor-free survival of mice compared with treatment with either cell type alone or T cells coexpressing these two targeting molecules. Host lymphodepletion before cell transfer was required to mediate the antitumor effect. The synergistic antitumor response was accompanied by a significant increase in the infiltration and expansion and/or persistence of the adoptively transferred tumor antigen-specific T cells in the tumor microenvironment and thus enhanced their antitumor potency. The data presented here emphasize the possible beneficial effects of combining antiangiogenic with tumor-specific immunotherapeutic approaches for the treatment of patients with cancer. ©2013 AACR.
Development of Prototype Filovirus Recombinant Antigen Immunoassays
Boisen, Matt L.; Oottamasathien, Darin; Jones, Abigail B.; Millett, Molly M.; Nelson, Diana S.; Bornholdt, Zachary A.; Fusco, Marnie L.; Abelson, Dafna M.; Oda, Shun-ichiro; Hartnett, Jessica N.; Rowland, Megan M.; Heinrich, Megan L.; Akdag, Marjan; Goba, Augustine; Momoh, Mambu; Fullah, Mohammed; Baimba, Francis; Gbakie, Michael; Safa, Sadiki; Fonnie, Richard; Kanneh, Lansana; Cross, Robert W.; Geisbert, Joan B.; Geisbert, Thomas W.; Kulakosky, Peter C.; Grant, Donald S.; Shaffer, Jeffery G.; Schieffelin, John S.; Wilson, Russell B.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.; Khan, S. Humarr; Pitts, Kelly R.
2015-01-01
Background. Throughout the 2014–2015 Ebola outbreak in West Africa, major gaps were exposed in the availability of validated rapid diagnostic platforms, protective vaccines, and effective therapeutic agents. These gaps potentiated the development of prototype rapid lateral flow immunodiagnostic (LFI) assays that are true point-of-contact platforms, for the detection of active Ebola infections in small blood samples. Methods. Recombinant Ebola and Marburg virus matrix VP40 and glycoprotein (GP) antigens were used to derive a panel of monoclonal and polyclonal antibodies. Antibodies were tested using a multivariate approach to identify antibody-antigen combinations suitable for enzyme-linked immunosorbent assay (ELISA) and LFI assay development. Results. Polyclonal antibodies generated in goats were superior reagents for capture and detection of recombinant VP40 in test sample matrices. These antibodies were optimized for use in antigen-capture ELISA and LFI assay platforms. Prototype immunoglobulin M (IgM)/immunoglobulin G (IgG) ELISAs were similarly developed that specifically detect Ebola virus–specific antibodies in the serum of experimentally infected nonhuman primates and in blood samples obtained from patients with Ebola from Sierra Leone. Conclusions. The prototype recombinant Ebola LFI assays developed in these studies have sensitivities that are useful for clinical diagnosis of acute ebolavirus infections. The antigen-capture and IgM/IgG ELISAs provide additional confirmatory assay platforms for detecting VP40 and other ebolavirus-specific immunoglobulins. PMID:26232440
Modeling Corneal Oxygen with Scleral Gas Permeable Lens Wear.
Compañ, Vicente; Aguilella-Arzo, Marcel; Edrington, Timothy B; Weissman, Barry A
2016-11-01
The main goal of this current work is to use an updated calculation paradigm, and updated boundary conditions, to provide theoretical guidelines to assist the clinician whose goal is to improve his or her scleral gas permeable (GP) contact lens wearing patients' anterior corneal oxygen supply. Our model uses a variable value of corneal oxygen consumption developed through Monod equations that disallows negative oxygen tensions within the stroma to predict oxygen tension at the anterior corneal surface of scleral GP contact lens wearing eyes, and to describe oxygen tension and flux profiles, for various boundary conditions, through the lens, tears, and cornea. We use several updated tissue and boundary parameters in our model. Tear exchange with GP scleral lenses is considered nonexistent in this model. The majority of current scleral GP contact lenses should produce some levels of corneal hypoxia under open eye conditions. Only lenses producing the thinnest of tear vaults should result in anterior corneal surface oxygen tensions greater than a presumed critical oxygen tension of 100 mmHg. We also find that corneal oxygen tension and flux are each more sensitive to modification in tear vault than to changes in lens oxygen permeability, within the ranges of current clinical manipulation. Our study suggests that clinicians would be prudent to prescribe scleral GP lenses manufactured from higher oxygen permeability materials and especially to fit without excessive corneal clearance.
Xuan, X; Maeda, K; Mikami, T; Otsuka, H
1996-12-01
The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.
CTLA-4 blockade plus adoptive T cell transfer promotes optimal melanoma immunity in mice
Mahvi, David A.; Meyers, Justin V.; Tatar, Andrew J.; Contreras, Amanda; Suresh, M.; Leverson, Glen E.; Sen, Siddhartha; Cho, Clifford S.
2014-01-01
Immunotherapeutic approaches to the treatment of advanced melanoma have relied on strategies that augment the responsiveness of endogenous tumor-specific T cell populations (e.g., CTLA-4 blockade-mediated checkpoint inhibition) or introduce exogenously-prepared tumor-specific T cell populations (e.g., adoptive cell transfer). Although both approaches have shown considerable promise, response rates to these therapies remain suboptimal. We hypothesized that a combinatorial approach to immunotherapy using both CTLA-4 blockade and non-lymphodepletional adoptive cell transfer could offer additive therapeutic benefit. C57BL/6 mice were inoculated with syngeneic B16F10 melanoma tumors transfected to express low levels of the lymphocytic choriomeningitis virus peptide GP33 (B16GP33), and treated with no immunotherapy, CTLA-4 blockade, adoptive cell transfer, or combination immunotherapy of CTLA-4 blockade with adoptive cell transfer. Combination immunotherapy resulted in optimal control of B16GP33 melanoma tumors. Combination immunotherapy promoted a stronger local immune response reflected by enhanced tumor-infiltrating lymphocyte populations, as well as a stronger systemic immune responses reflected by more potent tumor antigen-specific T cell activity in splenocytes. In addition, whereas both CTLA-4 blockade and combination immunotherapy were able to promote long-term immunity against B16GP33 tumors, only combination immunotherapy was capable of promoting immunity against parental B16F10 tumors as well. Our findings suggest that a combinatorial approach using CTLA-4 blockade with non-lymphodepletional adoptive cell transfer may promote additive endogenous and exogenous T cell activities that enable greater therapeutic efficacy in the treatment of melanoma. PMID:25658614
Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials.
Zurek, Alec D; Alfaro, Maria F; Wee, Alvin G; Yuan, Judy Chia-Chun; Barao, Valentim A; Mathew, Mathew T; Sukotjo, Cortino
2018-03-06
In the field of prosthodontics, patients often require complex and extensive restorative care. This can involve the use of dental restorations to restore teeth on both the maxillary and mandibular arch. Current literature has evaluated the wear properties of different dental ceramics against enamel, but studies regarding dental ceramics opposing one another are limited. The purpose of this study was to assess the wear potential and wear behavior of CAD/CAM zirconia (ZR) and lithium disilicate (LD) materials against a similar ceramic material, and how the surface finish of these dental ceramics might affect patterns of wear. Using a sphere-on-plate tribometer system, different surface finishes (glazed-G and glazed then polished-GP) of ZR and LD were evaluated following wear simulation. Artificial saliva of physiologic pH was used as a lubricant during wear simulation at 37°C. The coefficient of friction (COF) was calculated during the wear simulation. After wear simulation was complete, volume loss, surface roughness, and surface characterization of the specimens were analyzed using white-light interferometry and scanning electron microscopy (SEM). Statistical significance between materials and surface finish was established with two-way ANOVA and Bonferroni post hoc test (α = 0.05). Based on the 2-way ANOVA, material (p = 0.002) significantly affected the COF. LD showed a higher COF (p = 0.002) than ZR. Material (p < 0.001) and surface finish (p = 0.004) significantly affected the surface roughness inside the scar. ZR had significantly lower surface roughness compared to LD (p < 0.001). For outside scar, surface finish (p < 0.001) significantly affected the surface roughness. Polished specimens showed significantly higher roughness compared to glazed specimens for both inside (p = 0.004) and outside scar (p < 0.001). For volume loss, material (p < 0.001) and the interaction between material and surface finish (p < 0.001) were statistically significant. LD had higher volume loss than ZR (p < 0.001). For both glazed and polished finished, LD-G and LD-GP had significantly higher volume loss than ZR-G (p = 0.028), and ZR-GP (p < 0.001), respectively. SEM analysis indicated particle build-up and a grooving mechanism of wear for the LD-GP specimens. This suggested a three-body wear phenomenon occurring for LD-GP specimens, which was not visible in SEM imaging for other specimen types. This study demonstrated the resistance to wear and low abrasiveness of ZR when compared to LD in a simulated masticatory environment. This can be best explained by the increased strength of ZR, and the introduction of three-body wear to LD specimens from the accumulation of embedded wear debris onto its surface. Wear data and comparison of SEM images following wear simulation confirmed this interpretation. © 2018 by the American College of Prosthodontists.
Mapping epitopes and antigenicity by site-directed masking
NASA Astrophysics Data System (ADS)
Paus, Didrik; Winter, Greg
2006-06-01
Here we describe a method for mapping the binding of antibodies to the surface of a folded antigen. We first created a panel of mutant antigens (-lactamase) in which single surface-exposed residues were mutated to cysteine. We then chemically tethered the cysteine residues to a solid phase, thereby masking a surface patch centered on each cysteine residue and blocking the binding of antibodies to this region of the surface. By these means we mapped the epitopes of several mAbs directed to -lactamase. Furthermore, by depleting samples of polyclonal antisera to the masked antigens and measuring the binding of each depleted sample of antisera to unmasked antigen, we mapped the antigenicity of 23 different epitopes. After immunization of mice and rabbits with -lactamase in Freund's adjuvant, we found that the antisera reacted with both native and denatured antigen and that the antibody response was mainly directed to an exposed and flexible loop region of the native antigen. By contrast, after immunization in PBS, we found that the antisera reacted only weakly with denatured antigen and that the antibody response was more evenly distributed over the antigenic surface. We suggest that denatured antigen (created during emulsification in Freund's adjuvant) elicits antibodies that bind mainly to the flexible regions of the native protein and that this explains the correlation between antigenicity and backbone flexibility. Denaturation of antigen during vaccination or natural infections would therefore be expected to focus the antibody response to the flexible loops. backbone flexibility | Freund's adjuvant | conformational epitope | antisera
Rhoden, John J.; Dyas, Gregory L.
2016-01-01
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. PMID:27022022
Gp63-like molecules in Phytomonas serpens: possible role in the insect interaction.
d'Avila-Levy, Claudia M; Santos, Lívia O; Marinho, Fernanda A; Dias, Felipe A; Lopes, Angela H; Santos, André L S; Branquinha, Marta H
2006-06-01
In this study, we demonstrated that metallopeptidase inhibitors (EDTA, EGTA, and 1,10-phenanthroline) were able to arrest Phytomonas serpens growth in distinct patterns. This parasite released exclusively metallopeptidases to the extracellular environment, whereas in cellular extracts only cysteine peptidases were detected. In addition, an extracellular polypeptide of 60 kDa reacted in Western blotting probed with polyclonal antibody raised against gp63 of Leishmania amazonensis. In the cellular parasite extract, this antibody recognized bands migrating at 63 and 52 kDa, which partitioned on both aqueous and membrane-rich fractions. Flow cytometry and fluorescence microscopy analyses showed that the gp63-like molecules have a surface location. Moreover, phospholipase C (PLC)-treated parasites reduced the number of gp63-positive cells. The anti-cross-reacting determinant (CRD) and anti-gp63 antibodies recognized the 60-kDa band in the supernatant from PLC-treated cells, suggesting that this protein is glycosylphosphatidylinositol-anchored to the plasma membrane. This is the first report on the presence of gp63-like molecules in members of the Phytomonas genus. The pretreatment of the parasites with anti-gp63 antibody significantly diminished their adhesion index to explanted salivary glands of the phytophagous insect Oncopeltus fasciatus, suggesting a potential involvement of the gp63-like molecules in the adhesive process of this plant trypanosomatid.
HIV-1 infection: functional competition between gp41 and interleukin-2.
Sanhadji, Kamel; Tardy, Jean-Claude; Touraine, Jean-Louis
2010-08-01
To determine whether the gp41 of HIV-1 could adhere to the interleukin (IL)-2 receptor at the surface of target cells in vitro, we analysed in vitro the possible functional competition between various forms of the HIV-1 gp41 molecule (i.e. peptides, trimeric or primary structures) and IL-2. This competition has been analysed in a test involving the proliferation of an IL-2-dependent cell line (CTLL2). The putative interaction between the IL-2 molecule and HIV-1 has also been assayed on MT4 cells (CD4(+) T lymphocytes) in culture. The gp41 trimeric molecule and an HIV-1 gp41 peptide (578-590 aminoacid sequence) dramatically inhibited CTLL2 cell proliferation, despite the presence of IL-2. The addition of serum, containing anti-gp41 antibodies, from HIV-1 patients resulted in a significant abolition of this inhibition. The concomitant incubation of IL-2 and HIV-1 with MT4 cells resulted in a strong decrease (70%) in HIV-1 p24 release. These data suggest that the gp41 of HIV-1 can use the IL-2 receptor during the process of HIV-1 infection and that there is some functional mimesis between gp41 and IL-2. Copyright 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Grunenberg, Nicole A.; Sanchez, Brittany J.; Seaton, Kelly E.; Ferrari, Guido; Moody, M. Anthony; Frahm, Nicole; Montefiori, David C.; Hay, Christine M.; Goepfert, Paul A.; Baden, Lindsey R.; Robinson, Harriet L.; Yu, Xuesong; Gilbert, Peter B.; McElrath, M. Juliana; Huang, Yunda; Tomaras, Georgia D.
2017-01-01
Background A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Methods Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. Results All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. Conclusion This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. Trial registration ClinicalTrials.gov NCT01571960 PMID:28727817
Buchbinder, Susan P; Grunenberg, Nicole A; Sanchez, Brittany J; Seaton, Kelly E; Ferrari, Guido; Moody, M Anthony; Frahm, Nicole; Montefiori, David C; Hay, Christine M; Goepfert, Paul A; Baden, Lindsey R; Robinson, Harriet L; Yu, Xuesong; Gilbert, Peter B; McElrath, M Juliana; Huang, Yunda; Tomaras, Georgia D
2017-01-01
A phase 1 trial of a clade B HIV vaccine in HIV-uninfected adults evaluated the safety and immunogenicity of a DNA prime co-expressing GM-CSF (Dg) followed by different numbers and intervals of modified vaccinia Ankara Boosts (M). Both vaccines produce virus-like particles presenting membrane-bound Env. Four US sites randomized 48 participants to receiving 1/10th the DNA dose as DgDgMMM given at 0, 2, 4, 6 and 8 months, or full dose DgDgM_M or DgDgMM_M regimens, given at 0, 2, 4, and 8 months, and 0, 2, 4, 6, and 10 months, respectively. Peak immunogenicity was measured 2 weeks post-last vaccination. All regimens were well tolerated and safe. Full dose DgDgM_M and DgDgMM_M regimens generated Env-specific IgG to HIV-1 Env in >90%, IgG3 in >80%, and IgA in <20% of participants. Responses to gp140 and gp41 targets were more common and of higher magnitude than to gp120 and V1V2. The gp41 antibody included reactivity to the conserved immunodominant region with specificities known to mediate virus capture and phagocytosis and did not cross-react with a panel of intestinal flora antigens. The 3rd dose of MVA increased the avidity of elicited antibody (7.5% to 39%), the ADCC response to Bal gp120 (14% to 64%), and the one-year durability of the IgG3 responses to gp41 by 4-fold (13% vs. 3.5% retention of peak response). The co-expressed GM-CSF did not enhance responses over those in trials testing this vaccine without GM-CSF. This DNA/MVA prime-boost regimen induced durable, functional humoral responses that included ADCC, high antibody avidity, and Env IgG1 and IgG3 binding responses to the immunodominant region of gp41. The third, spaced MVA boost improved the overall quality of the antibody response. These products without co-expressed GM-CSF but combined with protein boosts will be considered for efficacy evaluation. ClinicalTrials.gov NCT01571960.
[Research progress on ebola virus glycoprotein].
Ding, Guo-Yong; Wang, Zhi-Yu; Gao, Lu; Jiang, Bao-Fa
2013-03-01
Ebola virus (EBOV) causes outbreaks of a highly lethal hemorrhagic fever in humans and there are no effective therapeutic or prophylactic treatments available. The glycoprotein (GP) of EBOV is a transmembrane envelope protein known to play multiple functions including virus attachment and entry, cell rounding and cytotoxicity, down-regulation of host surface proteins, and enhancement of virus assembly and budding. GP is the primary target of protective immunity and the key target for developing neutralizing antibodies. In this paper, the research progress on genetic structure, pathogenesis and immunogenicity of EBOV GP in the last 5 years is reviewed.
Dey, Antu K.; Khati, Makobetsa; Tang, Min; Wyatt, Richard; Lea, Susan M.; James, William
2005-01-01
We recently described the isolation and structural characterization of 2′-fluoropyrimidine-substituted RNA aptamers that bind to gp120 of R5 strains of human immunodeficiency virus type 1 and thereby potently neutralize the infectivity of phylogenetically diverse R5 strains. Here we investigate the physical basis of their antiviral action. We show that both N-linked oligosaccharides and the variable loops V1/V2 and V3 are not required for binding of one aptamer, B40, to gp120. Using surface plasmon resonance binding analyses, we show that the aptamer binds to the CCR5-binding site on gp120 in a relatively CD4-independent manner, providing a mechanistic explanation for its neutralizing potency. PMID:16227301
Theoretical study of porous surfaces derived from graphene and boron nitride
NASA Astrophysics Data System (ADS)
Fabris, G. S. L.; Marana, N. L.; Longo, E.; Sambrano, J. R.
2018-02-01
Porous graphene (PG), graphenylene (GP), inorganic graphenylene (IGP-BN), and porous boron nitride (PBN) single-layer have been studied via periodic density functional theory with a modified B3LYP functional and an all-electron Gaussian basis set. The structural, elastic, electronic, vibrational, and topological properties of the surfaces were investigated. The analysis showed that all porous structures had a nonzero band gap, and only PG exhibited a non-planar shape. All porous structures seem to be more susceptible to longitudinal deformation than their pristine counterparts, and GP exhibits a higher strength than graphene in the transversal direction. In addition, the electron densities of GP and IGP-BN are localized closer to the atoms, in contrast with PG and PBN, whose charge density is shifted towards the pore center; this property could find application in various fields, such as gas adsorption.
García Durán, Marga; Costa, Sofia; Sarraseca, Javier; de la Roja, Nuria; García, Julia; García, Isabel; Rodríguez, Maria José
2016-10-01
The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong
2014-01-06
The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.
Shikonin enhances efficacy of a gene-based cancer vaccine via induction of RANTES
2012-01-01
Background Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation. Method The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model. Results Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells. Conclusion Together, our findings suggest that shikonin can effectively enhance anti-tumor potency of a gene-based cancer vaccine via the induction of RANTES expression at the skin immunization site. PMID:22494696
Scardino, A; Paroli, M; De Petrillo, G; Michel, M L; Barnaba, V
1994-01-01
Receptor-mediated uptake increases by several orders of magnitude the efficiency of APC to internalize Ag, and is stringently required for the Ag-presenting function of T lymphocytes due to their inability to take up Ag non-specifically. We have previously reported that hepatitis B envelope antigen (HBenvAg) can be internalized by T cells via transferrin receptor (TfR). To evaluate if Ag targeting to receptors expressed on APC could be an effective tool for promoting Ag uptake and presentation, we tested the capacity of activated T cells not expressing TfR to induce HBenvAg-specific T-cell responses when pulsed with a hybrid particle containing HBenvAg coupled to gp120 of human immunodeficiency virus (HIV), exploiting the ability of gp120 to bind to CD4 receptor. We found that CD4+/TfR- T cells pulsed either with the hybrid particle or peptide (S193-207) but not with S, L Ag, a recombinant form of HBenvAg, induced a specific proliferative response of a T-cell clone recognizing peptide (S193-207) of HBenvAg. The finding that the addition of anti-CD4 monoclonal antibody (mAb) before the pulsing of CD4+/TfR- T cells with the hybrid particle drastically blocked the specific T-cell response, together with the finding that CD8+/TfR- T cells were unable to serve as APC even if pulsed with this molecule, demonstrated that CD4 receptor was crucial for the HBenvAg internalization. On the other hand, HBenvAg presentation by CD4+/TfR+ T cells pulsed with the hybrid particle was inhibited only when both anti-CD4 and anti-TfR were added before the pulsing. These results suggest that Ag targeting to APC receptors may be usefully exploited to improve Ag-presentation efficiency in potential immunotherapeutic approaches. PMID:7907575
Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe
2011-01-01
P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772
Ganczak, Maria; Dmytrzyk-Daniłów, Gabriela; Korzeń, Marcin; Szych, Zbigniew
2015-10-16
Hepatitis B is a significant health burden in Poland with nosocomial transmission being the main source of infection. Therefore, HBV vaccination is widely recommended for those not covered by the national immunisation program. To assess the coverage and influencing determinants of HBV vaccination among adult patients attending GP clinics as well as to establish serological status in terms of HBV infection. Patients who were seen consecutively in March 2013 at four randomly selected GP practices located in Zgorzelec county, in south-western part of Poland, were invited to participate and complete questionnaires on socio-demographic data and other factors related to vaccination. A pilot study was done in one urban GP practice in the city of Gryfino (Gryfino county), the results have been included in the study. Patients' immunisation status was assessed basing on vaccination cards and anti-HBs titer with the use of third-generation testing methods. In addition, serum samples were assayed for anti-HBc total. Response rate: 99.3 %. Of 410 participants (66.1 % females, median age 56 years), 55.4 % (95%CI:50.5-60.1 %) were previously vaccinated; in those 11.5 % took 2 doses, 66.1 % - 3 doses,18.1 % - 4 doses. Elective surgery was the main reason (57.7 %) for HBV immunization, 4.8 % - were vaccinated due to recommendations by GPs. The multivariable logistic regression model revealed that living in a city (OR 2.11), and having a surgery in the past (OR 2.73) were each associated with greater odds of being vaccinated. Anti-HBc total prevalence among those unvaccinated was 13.6 % (95%CI:9.3 %-19,5 %), and 7.2 % (95%CI:4.4-11.8 %) among those vaccinated. Low HBV immunization coverage among adult patients from GP clinics and the presence of serological markers of HBV infection among both - those unvaccinated and vaccinated call for comprehensive preventative measures against infection, including greater involvement of family doctors. Although interventions should cover the whole population, inhabitants living in the rural areas should be a group of special interest. Preoperative immunization for HBV seems to be an efficient public health tool to increase the vaccination uptake.
Raymond, Frédéric; Boisvert, Sébastien; Roy, Gaétan; Ritt, Jean-François; Légaré, Danielle; Isnard, Amandine; Stanke, Mario; Olivier, Martin; Tremblay, Michel J.; Papadopoulou, Barbara; Ouellette, Marc; Corbeil, Jacques
2012-01-01
The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage. PMID:21998295
Acharya, Priyamvada; Luongo, Timothy; Louder, Mark K.; McKee, Krisha; Yang, Yongping; Kwon, Young Do; Mascola, John R.; Kessler, Pascal; Martin, Loïc; Kwong, Peter D.
2014-01-01
The interface between HIV-1 gp120 envelope glycoprotein and CD4 receptor contains an unusual interfacial cavity, the “Phe43 cavity”, which miniprotein mimetics of CD4 with non-natural extensions can potentially utilize to enhance their neutralization of HIV-1. Here we report co-crystal structures of HIV-1 gp120 with miniproteins M48U1 and M48U7, which insert cyclohexylmethoxy and 5-hydroxypentylmethoxy extensions, respectively, into the Phe43 cavity. Both inserts displayed flexibility and hydrophobic interactions, but the M48U1 insert showed better shape complementarity with the Phe43 cavity than the M48U7 insert. Subtle alteration in gp120 conformation played a substantial role in optimizing fit. With M48U1, these translated into a YU2-gp120 affinity of 0.015 nM and neutralization of all 180-circulating HIV-1 strains tested, except clade-A/E isolates with non-canonical Phe43 cavities. Ligand chemistry, shape complementary, surface burial, and gp120 conformation act in concert to modulate binding of ligands to the gp120-Phe43 cavity and, when optimized, can effect near pan-neutralization of HIV-1. PMID:23707685
Stoops, Emily H.; Hull, Michael; Olesen, Christina; Mistry, Kavita; Harder, Jennifer L.; Rivera-Molina, Felix; Toomre, Derek
2015-01-01
In polarized epithelial cells, newly synthesized cell surface proteins travel in carrier vesicles from the trans Golgi network to the apical or basolateral plasma membrane. Despite extensive research on polarized trafficking, the sites of protein delivery are not fully characterized. Here we use the SNAP tag system to examine the site of delivery of the apical glycoprotein gp135. We show that a cohort of gp135 is delivered to a ring surrounding the base of the primary cilium, followed by microtubule-dependent radial movement away from the cilium. Delivery to the periciliary ring was specific to newly synthesized and not recycling protein. A subset of this newly delivered protein traverses the basolateral membrane en route to the apical membrane. Crumbs3a, another apical protein, was not delivered to the periciliary region, instead making its initial apical appearance in a pattern that resembled its steady-state distribution. Our results demonstrate a surprising “hot spot” for gp135 protein delivery at the base of the primary cilium and suggest the existence of a novel microtubule-based directed movement of a subset of apical surface proteins. PMID:26504168
Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Liu, Wei-Fang; Kang, Chuan-Zhen; Kong, Ming; Li, Yang; Su, Jing; Yi, An; Cheng, Xiao-Jie; Chen, Xi-Guang
2012-09-01
Chitosan/α, β-glycerophosphate (CS/α, β-GP) thermo-sensitive hydrogels presented flowable solution state at low temperature and semisolid hydrogel when the ambient temperature increased. In this research, different concentrations of metronidazole encapsulated, CS and α, β-GP, as well as different acid solvents, were chosen to evaluate their influences on the drug release behaviors from CS/α, β-GP hydrogels. It was found that there was a sustaining release during the first 3 h followed by a plateau. SEM images showed that drugs were located both on the surface and in the interior of hydrogels. The optimal preparation conditions of this hydrogel for drug release were as follows: 1.8% (w/v) CS in HAc solvent, 5.6% (w/v) α, β-GP and 5 g/L metronidazole encapsulation. Cytotoxicity evaluation found no toxic effect. In order to control the release rate, 2.5 g/L chitosan microspheres with spherical shape and smooth surface were incorporated, and it was found that the initial release process was alleviated, while drug concentration had no obvious effect on the release rate. It could be concluded that the metronidzole release behaviors could be optimized according to practical applications.
Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.
Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping
2010-07-26
Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.
Pooled Protein Immunization for Identification of Cell Surface Antigens in Streptococcus sanguinis
Ge, Xiuchun; Kitten, Todd; Munro, Cindy L.; Conrad, Daniel H.; Xu, Ping
2010-01-01
Background Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. Methods and Findings We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. Conclusions The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases. PMID:20668678
Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120
Kong, Leopold; Lee, Jeong Hyun; Doores, Katie J.; Murin, Charles D.; Julien, Jean-Philippe; McBride, Ryan; Liu, Yan; Marozsan, Andre; Cupo, Albert; Klasse, Per-Johan; Hoffenberg, Simon; Caulfield, Michael; King, C. Richter; Hua, Yuanzi; Le, Khoa M.; Khayat, Reza; Deller, Marc C.; Clayton, Thomas; Tien, Henry; Feizi, Ten; Sanders, Rogier W.; Paulson, James C.; Moore, John P.; Stanfield, Robyn L.; Burton, Dennis R.; Ward, Andrew B.; Wilson, Ian A.
2013-01-01
A substantial fraction of broadly neutralizing antibodies (bnAbs) in certain HIV-infected donors recognizes glycan-dependent epitopes on HIV-1 gp120. Here, we elucidate how bnAb PGT 135 recognizes its Asn332 glycan-dependent epitope from its crystal structure with gp120, CD4 and Fab 17b at 3.1 Å resolution. PGT 135 interacts with glycans at Asn332, Asn392 and Asn386, using long CDR loops H1 and H3 to penetrate the glycan shield to access the gp120 protein surface. Electron microscopy reveals PGT 135 can accommodate the conformational and chemical diversity of gp120 glycans by altering its angle of engagement. The combined structural studies of PGT 135, PGT 128 and 2G12 show this Asn332-dependent epitope is highly accessible and much more extensive than initially appreciated, allowing for multiple binding modes and varied angles of approach, thereby representing a supersite of vulnerability for antibody neutralization. PMID:23708606
Robinson, James E.; Hastie, Kathryn M.; Cross, Robert W.; Yenni, Rachael E.; Elliott, Deborah H.; Rouelle, Julie A.; Kannadka, Chandrika B.; Smira, Ashley A.; Garry, Courtney E.; Bradley, Benjamin T.; Yu, Haini; Shaffer, Jeffrey G.; Boisen, Matt L.; Hartnett, Jessica N.; Zandonatti, Michelle A.; Rowland, Megan M.; Heinrich, Megan L.; Martínez-Sobrido, Luis; Cheng, Benson; de la Torre, Juan C.; Andersen, Kristian G.; Goba, Augustine; Momoh, Mambu; Fullah, Mohamed; Gbakie, Michael; Kanneh, Lansana; Koroma, Veronica J.; Fonnie, Richard; Jalloh, Simbirie C.; Kargbo, Brima; Vandi, Mohamed A.; Gbetuwa, Momoh; Ikponmwosa, Odia; Asogun, Danny A.; Okokhere, Peter O.; Follarin, Onikepe A.; Schieffelin, John S.; Pitts, Kelly R.; Geisbert, Joan B.; Kulakoski, Peter C.; Wilson, Russell B.; Happi, Christian T.; Sabeti, Pardis C.; Gevao, Sahr M.; Khan, S. Humarr; Grant, Donald S.; Geisbert, Thomas W.; Saphire, Erica Ollmann; Branco, Luis M.; Garry, Robert F.
2016-01-01
Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa. One-half bind the GP2 fusion subunit, one-fourth recognize the GP1 receptor-binding subunit and the remaining fourth are specific for the assembled glycoprotein complex, requiring both GP1 and GP2 subunits for recognition. Notably, of the 16 mAbs that neutralize LASV, 13 require the assembled glycoprotein complex for binding, while the remaining 3 require GP1 only. Compared with non-neutralizing mAbs, neutralizing mAbs have higher binding affinities and greater divergence from germline progenitors. Some mAbs potently neutralize all four LASV lineages. These insights from LASV human mAb characterization will guide strategies for immunotherapeutic development and vaccine design. PMID:27161536
Mayer, Kenneth H.; Elizaga, Marnie L.; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C.; Sato, Alicia; Gu, Niya; Tomaras, Georgia D.; Tucker, Timothy; Barnett, Susan W.; Mkhize, Nonhlanhla N.; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise
2016-01-01
A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 109 PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4+ T-cell and CD8+ T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4+ T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4+ T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.) PMID:27098021
Hoffenberg, Simon; Powell, Rebecca; Carpov, Alexei; Wagner, Denise; Wilson, Aaron; Kosakovsky Pond, Sergei; Lindsay, Ross; Arendt, Heather; DeStefano, Joanne; Phogat, Sanjay; Poignard, Pascal; Fling, Steven P.; Simek, Melissa; LaBranche, Celia; Montefiori, David; Wrin, Terri; Phung, Pham; Burton, Dennis; Koff, Wayne; King, C. Richter; Parks, Christopher L.
2013-01-01
Broadly neutralizing antibodies (bNAbs) PG9 and PG16 were isolated from an International AIDS Vaccine Initiative (IAVI) Protocol G subject infected with human immunodeficiency virus type 1 (HIV-1) clade A. Both antibodies are highly potent and neutralize greater than 70% of viruses tested. We sought to begin immunogen design based on viral sequences from this patient; however, pseudoviruses prepared with 19 envelope sequences from this subject were resistant to neutralization by PG9 and PG16. Therefore, we used a bioinformatics approach to identify closely related viruses that were potentially sensitive to PG9 and PG16. A most-recent common ancestor (MRCA) sequence for the viral envelope (Env) was determined and aligned with 99 subtype A gp160 sequences from the Los Alamos HIV database. Virus BG505.W6M.ENV.C2 (BG505) was found to have the highest degree of homology (73%) to the MRCA sequence. Pseudoviruses prepared with this Env were sensitive to neutralization with a broad panel of bNAbs, including PG9 and PG16. When expressed by 293T cells as soluble gp120, the BG505 monomer bound well to both PG9 and PG16. We further showed that a point mutation (L111A) enabled more efficient production of a stable gp120 monomer that preserves the major neutralization epitopes. Finally, we showed that an adjuvanted formulation of this gp120 protein elicited neutralizing antibodies in rabbits (following a gp120 DNA vaccine prime) and that the antisera competed with bNAbs from 3 classes of nonoverlapping epitopes. Thus, the BG505 Env protein warrants further investigation as an HIV vaccine candidate, as a stand-alone protein, or as a component of a vaccine vector. PMID:23468492
Whitaker, Paul; Meng, Xiaoli; Lavergne, Sidonie N.; El-Ghaiesh, Sabah; Monshi, Manal; Earnshaw, Caroline; Peckham, Daniel; Gooi, Jimmy; Conway, Steve; Pirmohamed, Munir; Jenkins, Rosalind E.; Naisbitt, Dean J.; Park, B. Kevin
2011-01-01
A mechanistic understanding of the relationship between the chemistry of drug antigen formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating antigens derived from piperacillin in patients undergoing therapy and the nature of the drug derived-epitopes on protein which can function as an antigen to stimulate T-cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptens, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time- and concentration-dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations up to 13/59 lysine residues were modified, four of which (Lys190, 195, 432 and 541) were detected in patients’ plasma. Piperacillin-specific T-lymphocyte responses (proliferation, cytokines and granzyme-B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T-cells with characterized synthetic conjugates. Analysis of minimally-modified T-cell stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, 432 and 541 as principal functional epitopes for T-cells. This study has characterized the multiple haptenic structures on albumin in patients, and showed that they constitute functional antigenic determinants for T-cells. PMID:21606251
Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.
Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav
2015-01-01
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.
Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes
Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S.; Taube, Ran
2015-01-01
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential. PMID:26629902
Tsujimura, Shizuyo; Tanaka, Yoshiya
2012-02-01
Although corticosteroids, immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) are widely used in the treatment of various systemic autoimmune diseases such as systemic lupus erythematosus (SLE), we often experience patients with systemic autoimmune diseases who are resistant to these treatments. P-glycoprotein (P-gp) of membrane transporters, a product of the multiple drug resistance (MDR)-1 gene, is known to play a pivotal role in the acquisition of drug resistance to chemotherapy in malignancy. However, the relevance of MDR-1 and P-gp to resting and activated lymphocytes, which are the major target in the treatment of systemic autoimmune diseases, remains unclear. Studies from our laboratories found surface expression of P-gp on peripheral lymphocytes in patients with SLE and a significant correlation between the expression level and disease activity. Such expression is induced not only by genotoxic stresses but also by various stimuli including cytokines, resulting in active efflux of drugs from the cytoplasm of lymphocytes, resulting in drug-resistance and high disease activity. However, the use of both P-gp antagonists (e.g., cyclosporine) and inhibition of P-gp synthesis with intensive immunosuppressive therapy successfully reduces the efflux of corticosteroids from lymphocytes in vitro, suggesting that P-gp antagonists and P-gp synthesis inhibitors could be used to overcome drug-resistance in vivo and improve outcome. In conclusion, lymphocytes activated by various stimuli in patients with highly active disease apparently acquire MDR-1-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. The expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable target to combat drug resistance in patients with active systemic autoimmune diseases.
Bower, Joseph F; Green, Thomas D; Ross, Ted M
2004-10-25
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.
Rhoden, John J; Dyas, Gregory L; Wroblewski, Victor J
2016-05-20
Despite the increasing number of multivalent antibodies, bispecific antibodies, fusion proteins, and targeted nanoparticles that have been generated and studied, the mechanism of multivalent binding to cell surface targets is not well understood. Here, we describe a conceptual and mathematical model of multivalent antibody binding to cell surface antigens. Our model predicts that properties beyond 1:1 antibody:antigen affinity to target antigens have a strong influence on multivalent binding. Predicted crucial properties include the structure and flexibility of the antibody construct, the target antigen(s) and binding epitope(s), and the density of antigens on the cell surface. For bispecific antibodies, the ratio of the expression levels of the two target antigens is predicted to be critical to target binding, particularly for the lower expressed of the antigens. Using bispecific antibodies of different valencies to cell surface antigens including MET and EGF receptor, we have experimentally validated our modeling approach and its predictions and observed several nonintuitive effects of avidity related to antigen density, target ratio, and antibody affinity. In some biological circumstances, the effect we have predicted and measured varied from the monovalent binding interaction by several orders of magnitude. Moreover, our mathematical framework affords us a mechanistic interpretation of our observations and suggests strategies to achieve the desired antibody-antigen binding goals. These mechanistic insights have implications in antibody engineering and structure/activity relationship determination in a variety of biological contexts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama
2016-06-30
Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T
2008-10-03
The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.
Gu, Juan; Sun, An-Yuan; Wang, Xue-Dong; Shao, Chao-Peng; Li, Zheng; Huang, Li-Hua; Pan, Zhao-Lin; Wang, Qing-Ping; Sun, Guang-Ming
2014-04-01
The characteristics of the D antigen are important as they influence the immunogenicity of D variant cells. Several studies on antigenic sites have been reported in normal D positive, weak D and partial D cases, including a comprehensive analysis of DEL types in Caucasians. The aim of this study was to assess D antigen density and epitopes on the erythrocyte surface of Asian type DEL phenotypic individuals carrying the RHD1227A allele in the Chinese population. A total of 154 DEL phenotypic individuals carrying the RHD1227A allele were identified through adsorption and elution tests and polymerase chain reaction analysis with sequence-specific primers in the Chinese population. D antigen density on the erythrocyte surface of these individuals was detected using a flow cytometric method. An erythrocyte sample with known D antigen density was used as a standard. Blood samples from D-negative and D-positive individuals were used as controls. In addition, D antigen epitopes on the erythrocyte surface of DEL individuals carrying the RHD1227A allele were investigated with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. The means of the median fluorescence intensity of D antigen on the erythrocyte membrane surface of D-negative, D-positive and DEL individuals were 2.14±0.25, 193.61±11.43 and 2.45±0.82, respectively. The DEL samples were estimated to have approximately 22 D antigens per cell. The samples from all 154 DEL individuals reacted positively with 18 monoclonal anti-D antibodies specific for different D antigen epitopes. In this study, D antigen density on the erythrocyte surface of DEL individuals carrying the RHD1227A allele was extremely low, there being only very few antigenic molecules per cell, but the D antigen epitopes were grossly complete.
Engineering antigens for in situ erythrocyte binding induces T-cell deletion.
Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A
2013-01-02
Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.
Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A.; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J.; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P.; Laclette, Juan P.
2017-01-01
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst’s proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the ‘optimal’ tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants. PMID:28945737
Navarrete-Perea, José; Isasa, Marta; Paulo, Joao A; Corral-Corral, Ricardo; Flores-Bautista, Jeanette; Hernández-Téllez, Beatriz; Bobes, Raúl J; Fragoso, Gladis; Sciutto, Edda; Soberón, Xavier; Gygi, Steven P; Laclette, Juan P
2017-09-01
In human and porcine cysticercosis caused by the tapeworm Taenia solium, the larval stage (cysts) can infest several tissues including the central nervous system (CNS) and the skeletal muscles (SM). The cyst's proteomics changes associated with the tissue localization in the host tissues have been poorly studied. Quantitative multiplexed proteomics has the power to evaluate global proteome changes in response to different conditions. Here, using a TMT-multiplexed strategy we identified and quantified over 4,200 proteins in cysts obtained from the SM and CNS of pigs, of which 891 were host proteins. To our knowledge, this is the most extensive intermixing of host and parasite proteins reported for tapeworm infections.Several antigens in cysticercosis, i.e., GP50, paramyosin and a calcium-binding protein were enriched in skeletal muscle cysts. Our results suggested the occurrence of tissue-enriched antigen that could be useful in the improvement of the immunodiagnosis for cysticercosis. Using several algorithms for epitope detection, we selected 42 highly antigenic proteins enriched for each tissue localization of the cysts. Taking into account the fold changes and the antigen/epitope contents, we selected 10 proteins and produced synthetic peptides from the best epitopes. Nine peptides were recognized by serum antibodies of cysticercotic pigs, suggesting that those peptides are antigens. Mixtures of peptides derived from SM and CNS cysts yielded better results than mixtures of peptides derived from a single tissue location, however the identification of the 'optimal' tissue-enriched antigens remains to be discovered. Through machine learning technologies, we determined that a reliable immunodiagnostic test for porcine cysticercosis required at least five different antigenic determinants.
Ignat'eva, G A; Maksiutov, A Z; L'vov, V L; Kolobov, A A; Ignat'ev, T I
2011-01-01
The short multiepitopic synthetic peptides from the sequences of hypervariable area of V3-loope of gp120 of HIV don't induce anti-peptides antibodies production in mice themselves. We prepared the potent immunogen by noncovalent conjugations of the multitude peptides with pure peptidoglycans from cell wall of Salmonella typhi. The sera from immunized mice have the anti-peptides antibody titers (3-5) x 10(5) in ELISA, as high as Freund's adjuvant is of use.
1988-09-09
Biochemlcals,.Gsnrbridge, UK), we synthesized all 404 possible over- lapping hexapeptideS of 17D YF NSI as well as a 98 amino acid segment of DEN 2 NS1, shown... acids from the NS1 amino terminus. In contrast, rabbit serum that we prepared to authentic YF NS1 was cytolytic and competed with the protective lytic Mab...precipitated. The method was modified y exposing NS1-containing acrylamide gel slices to CnBr vapors (10) in an effort to minimize formic acid -induced
Choy, Bonnie; Pearce, Shane M; Anderson, Blake B; Shalhav, Arieh L; Zagaja, Gregory; Eggener, Scott E; Paner, Gladell P
2016-10-01
The International Society of Urological Pathology (ISUP) 2014 consensus meeting recommended a novel grade grouping for prostate cancer that included dividing Gleason score (GS) 7 into grade groups 2 (GS 3+4) and 3 (GS 4+3). This division of GS 7, essentially determined by the percent of Gleason pattern (GP) 4 (< or >50%), raises the question of whether a more exact quantification of the percent GP 4 within GS 7 will yield additional prognostic information. Modifications were also made by ISUP regarding the definition of GP 4, now including 4 main architectural types: cribriform, glomeruloid, poorly formed, and fused glands. This study was conducted to analyze the prognostic significance of the percent GP 4 and main architectural types of GP 4 according to the 2014 ISUP grading criteria in radical prostatectomies (RPs). The cohort included 585 RP cases of GS 6 (40.2%), 3+4 (49.0%), and 4+3 (10.8%) prostate cancers. Significantly different 5-year biochemical recurrence (BCR)-free survival rates were observed among GS 6 (99%, 95% confidence interval [CI]: 97%-100%), 3+4 (81%, 95% CI: 76%-86%), and 4+3 (60%, 95% CI: 45%-71%) cancers (P<0.01). Dividing the GP 4 percent into quartiles showed a 5-year BCR-free survival of 84% (95% CI: 78%-89%) for 1% to 20%, 74% (95% CI: 62%-83%) for 21% to 50%, 66% (95% CI: 50%-78%) for 51% to 70%, and 32% (95% CI: 9%-59%) for >70% (P<0.001). Among the GP 4 architectures, cribriform was the most prevalent (43.7%), and combination of architectures with cribriform present was more frequently observed in GS 4+3 (60.3%). Glomeruloid was mostly (67.1%) seen combined with other GP 4 architectures. Unlike the other GP 4 architectures, glomeruloid as the sole GP 4 was observed only as a secondary pattern (ie, 3+4). Among patients with GS 7 cancer, the presence of cribriform architecture was associated with decreased 5-year BCR-free survival when compared with GS 7 cancers without this architecture (68% vs. 85%, P<0.01), whereas the presence of glomeruloid architecture was associated with improved 5-year BCR-free survival when compared with GS 7 cancers without this architecture (87% vs. 75%, P=0.01). However, GS 7 disease having only the glomeruloid architecture had significantly lower 5-year BCR-free survival than GS 6 cancers (86% vs. 99%, P<0.01). Multivariable Cox proportional hazards regression model for factors associated with BCR among GS 7 cancers identified age (hazard ratio [HR] 0.95, P<0.01), preoperative prostate-specific antigen (HR 1.07, P<0.01), positive surgical margin (HR 2.70, P<0.01), percent of GP 4 (21% to 50% [HR 2.21], 51% to 70% [HR 2.59], >70% [HR 6.57], all P<0.01), presence of cribriform glands (HR 1.78, P=0.02), and presence of glomeruloid glands (HR 0.43, P=0.03) as independent predictors. In conclusion, our study shows that increments in percent of GP 4 correlate with increased risk for BCR supporting the ISUP recommendation of recording the percent of GP 4 in GS 7 prostate cancers at RP. However, additional larger studies are needed to establish the optimal interval for reporting percent GP 4 in GS 7 cancers. Among the GP 4 architectures, cribriform independently predicts BCR, whereas glomeruloid reduces the risk of BCR. Distinction should be made between cribriform and glomeruloid architectures, despite glomeruloid being considered as an early stage of cribriform, as cribriform confers a higher risk for poorer outcome.
Acciani, Marissa; Alston, Jacob T; Zhao, Guohui; Reynolds, Hayley; Ali, Afroze M; Xu, Brian; Brindley, Melinda A
2017-09-15
Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions. IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals. Copyright © 2017 American Society for Microbiology.
Quinlan, Devin S.; Raman, Rahul; Tharakaraman, Kannan; Subramanian, Vidya; del Hierro, Gabriella; Sasisekharan, Ram
2017-01-01
Recently, progress has been made in the development of vaccines and monoclonal antibody cocktails that target the Ebola coat glycoprotein (GP). Based on the mutation rates for Ebola virus given its natural sequence evolution, these treatment strategies are likely to impose additional selection pressure to drive acquisition of mutations in GP that escape neutralization. Given the high degree of sequence conservation among GP of Ebola viruses, it would be challenging to determine the propensity of acquiring mutations in response to vaccine or treatment with one or a cocktail of monoclonal antibodies. In this study, we analyzed the mutability of each residue using an approach that captures the structural constraints on mutability based on the extent of its inter-residue interaction network within the three-dimensional structure of the trimeric GP. This analysis showed two distinct clusters of highly networked residues along the GP1-GP2 interface, part of which overlapped with epitope surfaces of known neutralizing antibodies. This network approach also permitted us to identify additional residues in the network of the known hotspot residues of different anti-Ebola antibodies that would impact antibody-epitope interactions. PMID:28397835
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
46 CFR 195.17-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... MISCELLANEOUS SYSTEMS AND EQUIPMENT Radar § 195.17-1 When required. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for plotting radar readings must be provided on the bridge. [CGD 75-074, 42 FR 5965...
Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction
Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried
2010-01-01
HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Ling; Lin Jianguo; Sun Yuliang
2006-08-01
Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less
Tong, Chao; Lin, Yaqiu; Zhang, Cunfang; Shi, Jianquan; Qi, Hongfang; Zhao, Kai
2015-10-01
Toll-like receptors (TLR) are key components of innate immunity that play significant roles in immune defense against pathogens invasion. Recent frequent outbreaks of the "white spot disease" caused by parasitic infection in farmed Tibetan fishes had resulted in great economic losses. However, to our knowledge, the roles of TLRs in mediating immune response to parasitic infection in Tibetan fishes remain to be determined. Here, we performed data-mining on a widely-farmed Tibetan fish (Gymnocypris przewalskii or Gp) transcriptome to determine the genetic variation and expression pattern of TLRs. We totally obtained 14 GpTLRs and identified 5 with a complete coding sequence. Phylogenetic analysis verified their identities and supported the classification of TLRs into six families as in other vertebrates. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in GpTLR1-5. Selective pressure test demonstrated that all known GpTLRs are under purifying selection, except GpTLR4 underwent positive selection. Further, site model analysis suggested that 11 positively selected sites are found in LRR domain of GpTLR4. Three positively selected sites are located on outside surface of TLR4 3D structure, indicating that function of GpTLR4 may be affected. Tissue specific expression analysis showed all GpTLRs are present in gill, head-kidney and spleen but the relative abundance varied among tissues. In response to parasite Ichthyophthirius multifiliis infection, 5 GpTLR (GpTLR1, -2, -4, -9 and -20) expressions were induced. Intriguingly, GpTLR4 was significantly up-regulated in gills, while GpTLR19 and GpTLR21 unexpectedly showed no any change. In summary, these results revealed the first genomic resources of TLR family and several parasitic infection responsive TLRs in Tibetan fish. These findings provide key information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in Tibetan fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.
B-cell acquisition of antigen: Sensing the surface.
Knight, Andrew M
2015-06-01
B-cell antigen receptor (BCR) recognition and acquisition of antigen by B cells is the essential first step in the generation of effective antibody responses. As B-cell-mediated antigen presentation is also believed to play a significant role in the activation of CD4(+) Th-cell responses, considerable effort has focused on clarifying the nature of antigen/BCR interactions. Following earlier descriptions of interactions of soluble antigens with the BCR, it is now clear that B cells also recognize, physically extract and present antigens that are tethered to, or integral components of, the surfaces or extracellular matrix of other cells. In this issue of the European Journal of Immunology, Zeng et al. [Eur. J. Immunol. 2015. 45: XXXX-XXXX] examine how the physical property or "stiffness" of the surface displaying antigens to B cells influences the B-cell response. This commentary reports that antigen tethered on "less stiff" surfaces induces increased B-cell activation and antibody responses. I then infer how "sensing the surface" by B cells may represent a new component of the immune system's ability to detect "damage," and how this understanding may influence approaches to clinical therapies where immune activity is either unwanted or desired. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2012 CFR
2012-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2011 CFR
2011-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center for... used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen. [40 FR...
Code of Federal Regulations, 2014 CFR
2014-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
Code of Federal Regulations, 2010 CFR
2010-04-01
... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.4 Potency test. To be satisfactory for release, each filling of Antibody to Hepatitis B Surface Antigen shall be tested against the Reference Hepatitis B Surface Antigen Panel and shall be sufficiently potent...
21 CFR 660.3 - Reference panel.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Antibody to Hepatitis B Surface Antigen § 660.3 Reference panel. A Reference Hepatitis B Surface Antigen Panel shall be obtained from the Center... shall be used for determining the potency and specificity of Antibody to Hepatitis B Surface Antigen...
2016-09-01
Thermophysical properties, including vapor pressure, density, viscosity, surface tension, and flash point, are reported for 2,2-dimethylcyclopentyl...methylphosphonofluoridate (GP; Chemical Abstracts Service [CAS] no. 453574-97-5). Density data above the melting point, and vapor pressure of the liquid and solid...experimental vapor pressure data and were used to calculate the temperature-dependent enthalpy of vaporization , volatility, and entropy of
GP140/CDCPI in the Development of Prostate Cancer Metastasis
2013-09-01
author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation...extracellular proteolysis. Unfortunately, experiments designed to determine whether or not phosphorylation of Gp140 significantly changes linear...surface-negative population gave rise to the fibroblas- tic and elongated ( spindle ) subline S-DU145 and to the small, epithelioid, and refractile (round
NASA Astrophysics Data System (ADS)
Bush, Derek B.
Antibody microarrays constitute a next-generation sensing platform that has the potential to revolutionize the way that molecular detection is conducted in many scientific fields. Unfortunately, current technologies have not found mainstream use because of reliability problems that undermine trust in their results. Although several factors are involved, it is believed that undesirable protein interactions with the array surface are a fundamental source of problems where little detail about the molecular-level biophysics are known. A better understanding of antibody stability and antibody-antigen binding on the array surface is needed to improve microarray technology. Despite the availability of many laboratory methods for studying protein stability and binding, these methods either do not work when the protein is attached to a surface or they do not provide the atomistic structural information that is needed to better understand protein behavior on the surface. As a result, molecular simulation has emerged as the primary method for studying proteins on surfaces because it can provide metrics and views of atomistic structures and molecular motion. Using an advanced, coarse-grain, protein-surface model this study investigated how antibodies react to and function on different types of surfaces. Three topics were addressed: (1) the stability of individual antibodies on surfaces, (2) antibody binding to small antigens while on a surface, and (3) antibody binding to large antigens while on a surface. The results indicate that immobilizing antibodies or antibody fragments in an upright orientation on a hydrophilic surface can provide the molecules with thermal stability similar to their native aqueous stability, enhance antigen binding strength, and minimize the entropic cost of binding. Furthermore, the results indicate that it is more difficult for large antigens to approach the surface than small antigens, that multiple binding sites can aid antigen binding, and that antigen flexiblity simultaneously helps and hinders the binding process as it approaches the surface. The results provide hope that next-generation microarrays and other devices decorated with proteins can be improved through rational design.
Surface labeling of Pneumocystis carinii from in vitro culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radding, J.A.; Armstrong, M.Y.; Bogucki, M.S.
1989-01-01
Pneumocystis carinii is an opportunistic pathogen of man, carried as a commensal in healthy subjects. It frequently causes a fatal pneumonia in the immunosuppressed host. It is a major complication of HIV-1 infection in man (AIDS). Using surface radioiodination of rat-derived P. carinii trophozoites obtained from in vitro culture, a major surface glycoprotein (gp120) has been identified. The glycoprotein exhibits adherent behavior similar to that of the intact organism. Purification of gp120 by conventional methods was unsuccessful as the glycoprotein irreversibly bound to numerous column matrices. A combination of gel chromatography and hydroxyapatite chromatography in sodium dodecylsulfate was utilized tomore » purify the glycoprotein. Some preliminary characterization of the glycoprotein is presented.« less
Nanbo, Asuka; Maruyama, Junki; Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro
2018-01-01
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner.
Imai, Masaki; Ujie, Michiko; Fujioka, Yoichiro; Nishide, Shinya; Takada, Ayato; Ohba, Yusuke; Kawaoka, Yoshihiro
2018-01-01
Cell surface receptors for phosphatidylserine contribute to the entry of Ebola virus (EBOV) particles, indicating that the presence of phosphatidylserine in the envelope of EBOV is important for the internalization of EBOV particles. Phosphatidylserine is typically distributed in the inner layer of the plasma membrane in normal cells. Progeny virions bud from the plasma membrane of infected cells, suggesting that phosphatidylserine is likely flipped to the outer leaflet of the plasma membrane in infected cells for EBOV virions to acquire it. Currently, the intracellular dynamics of phosphatidylserine during EBOV infection are poorly understood. Here, we explored the role of XK-related protein (Xkr) 8, which is a scramblase responsible for exposure of phosphatidylserine in the plasma membrane of apoptotic cells, to understand its significance in phosphatidylserine-dependent entry of EBOV. We found that Xkr8 and transiently expressed EBOV glycoprotein GP often co-localized in intracellular vesicles and the plasma membrane. We also found that co-expression of GP and viral major matrix protein VP40 promoted incorporation of Xkr8 into ebolavirus-like particles (VLPs) and exposure of phosphatidylserine on their surface, although only a limited amount of phosphatidylserine was exposed on the surface of the cells expressing GP and/or VP40. Downregulating Xkr8 or blocking caspase-mediated Xkr8 activation did not affect VLP production, but they reduced the amount of phosphatidylserine on the VLPs and their uptake in recipient cells. Taken together, our findings indicate that Xkr8 is trafficked to budding sites via GP-containing vesicles, is incorporated into VLPs, and then promote the entry of the released EBOV to cells in a phosphatidylserine-dependent manner. PMID:29338048
Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie
2015-01-01
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078
Immune memory to Sudan virus: comparison between two separate disease outbreaks.
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie
2015-01-06
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.
Induction of human immunodeficiency virus neutralizing antibodies using fusion complexes.
Zipeto, Donato; Matucci, Andrea; Ripamonti, Chiara; Scarlatti, Gabriella; Rossolillo, Paola; Turci, Marco; Sartoris, Silvia; Tridente, Giuseppe; Bertazzoni, Umberto
2006-05-01
Human immunodeficiency virus-1 (HIV-1) infects cells by membrane fusion that is mediated by the envelope proteins gp120/gp41 and the cellular receptors CD4 and CCR5. During this process, some conserved viral epitopes are temporarily exposed and may induce a neutralizing antibody response when fixed in the fusogenic conformation. These transient structures are conserved and may be effective antigens for use in an anti-HIV-1 vaccine. In this study we tested different conditions of preparation of fusion complexes inducing neutralizing antibodies against both R5 and X4 tropic HIV-1 strains. Cell lines expressing HIV-1 gp120/gp41 and CD4-CCR5 were prepared and conditions for producing fusion complexes were tested. Complexes produced at different temperature and fixative combinations were used to immunize mice. Results indicated that (a) fusion complexes prepared at either 21 degrees C, 30 degrees C or 37 degrees C were immunogenic and induced neutralizing antibodies against both R5 and X4 HIV-1 heterologous isolates; (b) after extensive purification of antibodies there was no cytotoxic effect; (c) complexes prepared at 37 degrees C were more immunogenic and induced higher titers of neutralizing antibodies than complexes prepared at either 21 degrees C or 30 degrees C; (d) the fixative used did not affect the titer of neutralizing antibodies except for glutaraldehyde which was ineffective; (e) the neutralizing activity was retained after CD4-CCR5 antibody removal. The production of higher titers of neutralizing antibody with fusion complexes prepared at 37 degrees C, as compared to lower temperatures, may be related to the induction of antibodies against many different conformation intermediates that subsequently act synergistically at different steps in the fusion process.
Davelois, Kelly; Escalante, Hermes; Jara, César
2016-01-01
. To determine the diagnostic yield using western blotting to simultaneously detect antibodies in patients with human cysticercosis, hydatidosis, and human fascioliasis. Materials and methods . Cross-sectional study of diagnostic yield assessment. Excretory/secretory antigens were obtained from Taenia solium larvae, Echinococcus granulosus cysts, and the adult flukes of Fasciola hepática, which were then separated using the polyacrylamide gel electrophoresis technique, transferred, and attached to a nitrocellulose membrane to be probed with sera from the patient infected with the three parasites. The sensitivity of the technique was assessed using 300 individual serum samples, 60 pools of two parasites, and 20 pools of three parasites with 75 sera from patients with other parasites, 10 from patients with other diseases, and 15 from patients without parasites. Results . The technique revealed 13 glycoproteins (GP): GP 35, 31, 24, 23, 18, 17, 14, and 13 kDa for cysticercosis; GP 8, 16, and 21 kDa for hydatidosis; and GP 17 and 23 kDa for fascioliasis. The test detected the presence of antibodies with a sensitivity of 96% (95% confidence interval [CI] = 94.62-98.54%) in the detection of one or the thirteen bands, a specificity of 100% (95% CI = 99.50-100.00%); individually, there was a sensitivity for cysticercosis of 97% (95% CI = 93.16-100.00%), for hydatidosis of 94% (95% CI = 88.85-99.15%) and for fascioliasis of 96% (95% CI = 91.66-100.00%). Conclusions . Western blotting is effective in the simultaneous detection of antibodies in patients with human cysticercosis, hydatidosis, and fascioliasis, and it can be used as a diagnostic test to either rule out or confirm the presence of antibodies in endemic areas.
Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice
Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea
2013-01-01
Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661
Geometric phase effects in the ultracold H + H 2 reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kendrick, Brian Kent; Hazra, Jisha; Balakrishnan, N.
2016-10-27
The H 3 system has served as a prototype for geometric phase (GP) effects in bimolecular chemical reactions for over three decades. Despite a large number of theoretical and experimental efforts, no conclusive evidence of GP effects in the integral cross section or reaction rate has been presented until recently. Here we report a more detailed account of GP effects in the H + H 2(v = 4, j = 0) → H + H 2(v', j') (para-para) reaction rate coefficients for temperatures between 1 μK (8.6 × 10 –11 eV) and 100 K (8.6 × 10 –3 eV). Themore » GP effect is found to persist in both vibrationally resolved and total rate coefficients for collision energies up to about 10 K. The GP effect also appears in rotationally resolved differential cross sections leading to a very different oscillatory structure in both energy and scattering angle. It is shown to suppress a prominent shape resonance near 1 K and enhance a shape resonance near 8 K, providing new experimentally verifiable signatures of the GP effect in the fundamental hydrogen exchange reaction. As a result, the GP effect in the D + D 2 and T + T 2 reactions is also examined in the ultracold limit and its sensitivity to the potential energy surface is explored.« less
Kim, Sungwoo; Nishimoto, Satoru K; Bumgardner, Joel D; Haggard, Warren O; Gaber, M Waleed; Yang, Yunzhi
2010-05-01
We report here the development of a chitosan/beta-glycerophosphate(Ch/beta-GP) thermo-sensitive gel to deliver ellagic acid (EA) for cancer treatment. The properties of the Ch/beta-GP gels were characterized regarding chemical structure, surface morphology, and viscoelasticity. In vitro EA release rate from the EA loaded Ch/beta-GP gel and chitosan degradation rate were investigated. The anti-tumor effect of the EA loaded Ch/beta-GP gel on brain cancer cells (human U87 glioblastomas and rat C6 glioma cells) was evaluated by examining cell viability. Cell number and activity were monitored by the MTS assay. The Ch/beta-GP solution formed a heat-induced gel at body temperature, and the gelation temperature and time were affected by the final pH of the Ch/beta-GP solution. The lysozyme increased the EA release rate by 2.5 times higher than that in the absence of lysozyme. Dialyzed chitosan solution with final pH 6.3 greatly reduced the beta-GP needed for gelation, thereby significantly improving the biocompatibility of gel (p < 0.001). The chitosan gels containing 1% (w/v) of ellagic acid significantly reduced viability of U87 cells and C6 cells compared with the chitosan gels at 3 days incubation (p < 0.01, and p < 0.001, respectively). Copyright 2010 Elsevier Ltd. All rights reserved.
Distinct Stabilities of the Structurally Homologous Heptameric Co-Chaperonins GroES and gp31
NASA Astrophysics Data System (ADS)
Dyachenko, Andrey; Tamara, Sem; Heck, Albert J. R.
2018-05-01
The GroES heptamer is the molecular co-chaperonin that partners with the tetradecamer chaperonin GroEL, which assists in the folding of various nonnative polypeptide chains in Escherichia coli. Gp31 is a structural and functional analogue of GroES encoded by the bacteriophage T4, becoming highly expressed in T4-infected E. coli, taking over the role of GroES, favoring the folding of bacteriophage proteins. Despite being slightly larger, gp31 is quite homologous to GroES in terms of its tertiary and quaternary structure, as well as in its function and mode of interaction with the chaperonin GroEL. Here, we performed a side-by-side comparison of GroES and gp31 heptamer complexes by (ion mobility) tandem mass spectrometry. Surprisingly, we observed quite distinct fragmentation mechanisms for the GroES and gp31 heptamers, whereby GroES displays a unique and unusual bimodal charge distribution in its released monomers. Not only the gas-phase dissociation but also the gas-phase unfolding of GroES and gp31 were found to be very distinct. We rationalize these observations with the similar discrepancies we observed in the thermal unfolding characteristics and surface contacts within GroES and gp31 in the solution. From our data, we propose a model that explains the observed simultaneous dissociation pathways of GroES and the differences between GroES and gp31 gas-phase dissociation and unfolding. We conclude that, although GroES and gp31 exhibit high homology in tertiary and quaternary structure, they are quite distinct in their solution and gas-phase (un)folding characteristics and stability. [Figure not available: see fulltext.
Zaze, A C S F; Dias, A P; Amaral, J G; Miyasaki, M L; Sassaki, K T; Delbem, A C B
2014-12-01
This study aimed to evaluate the effect of low-fluoride toothpastes with calcium glycerophosphate (CaGP) on enamel remineralization in situ. Volunteers (n=10) wore palatal devices holding four bovine enamel blocks. The treatments involved 5 experimental phases of 3 days each according to the following toothpastes: placebo, 500 ppm F (500 NaF), 500 ppm F with 0.25% CaGP (500 NaF CaGP), 500 ppm F with 0.25% CaGP (500 MFP CaGP) and 1100 ppm F (1100; positive control). After this experimental period, the fluoride, calcium, and phosphorus ion concentrations from enamel were determined. Surface and cross-sectional hardness were also performed. Data were analysed by 1-way ANOVA, Student-Newman-Keuls' test and by Pearson's correlation. The addition of 0.25% CaGP improved the remineralization potential of low-fluoride toothpastes and the NaF as source of fluoride yielded the best results (p<0.001) as evidenced by the hardness analysis. The 1100 ppm F toothpaste provided higher presence of fluoride in the enamel after remineralization (p<0.001). The addition of CaGP to the NaF and MFP toothpastes led to similar calcium concentration in the enamel as the observed with the positive control (p=0.054). Toothpastes with 500 ppm F (NaF or MFP) and CaGP showed similar remineralization potential than 1100 ppm F toothpaste. Toothpastes containing 500 ppm F associated to CaGP, with both fluoride source (NaF or MFP), showed a potential of remineralization similar to commercial toothpaste. Although there is a need for confirmation in the clinical setting, these results point to an alternative for improving the risk-benefit relationship between fluorosis and dental caries in small children. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoetzel, Isidro; Cheevers, William P.
2005-09-01
The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains ofmore » CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain {beta}-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding.« less
NASA Astrophysics Data System (ADS)
Meng, Zhongji; Song, Ruihua; Chen, Yue; Zhu, Yang; Tian, Yanhui; Li, Ding; Cui, Daxiang
2013-03-01
A method for quickly screening and identifying dominant B cell epitopes was developed using hepatitis B virus (HBV) surface antigen as a target. Eleven amino acid fragments from HBV surface antigen were synthesized by 9-fluorenylmethoxy carbonyl solid-phase peptide synthesis strategy, and then CdTe quantum dots were used to label the N-terminals of all peptides. After optimizing the factors for fluorescence polarization (FP) immunoassay, the antigenicities of synthetic peptides were determined by analyzing the recognition and combination of peptides and standard antibody samples. The results of FP assays confirmed that 10 of 11 synthetic peptides have distinct antigenicities. In order to screen dominant antigenic peptides, the FP assays were carried out to investigate the antibodies against the 10 synthetic peptides of HBV surface antigen respectively in 159 samples of anti-HBV surface antigen-positive antiserum. The results showed that 3 of the 10 antigenic peptides may be immunodominant because the antibodies against them existed more widely among the samples and their antibody titers were higher than those of other peptides. Using three dominant antigenic peptides, 293 serum samples were detected for HBV infection by FP assays; the results showed that the antibody-positive ratio was 51.9% and the sensitivity and specificity were 84.3% and 98.2%, respectively. In conclusion, a quantum dot-based FP assay is a very simple, rapid, and convenient method for determining immunodominant antigenic peptides and has great potential in applications such as epitope mapping, vaccine designing, or clinical disease diagnosis in the future.
Ultrastructural localization of human HL-A membrane antigens by use of hybrid antibodies
Neauport-Sautes, Catherine; Silvestre, Daniele; Niccolai, Marie-Gabrielle; Kourilsky, F. M.; Levy, J. P.
1972-01-01
The localization of HL-A histocompatibility antigens at the surface of human lymphocytes in electron microscopy has been studied using hybrid antibodies to bind electron-dense particles (ferritin and plant viruses) to anti-HL-A antibody. A discontinuous distribution of the markers is observed at the cell surface, which is identical with that described for H-2 antigens on mouse lymphocytes with the same technique. Double labelling experiments suggest that the areas of the cell surface where HL-A antigens are detected contain also the heterologous lymphocyte antigens detected by an anti-thymocyte serum and that HL-A antigens are not renewed at a detectable level during the period of the labelling procedure in the areas of the cell surface which are not labelled primarily with ferritin-anti-IgG-anti-HL-A complexes. The interpretation of the discontinuous labelling of HL-A antigens with direct immunoferritin techniques is discussed. ImagesFIG. 2FIG. 3FIG. 4FIG. 5 PMID:5063188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, A.A.; Rodriguez, M.H.; Bush, C.E.
1988-06-01
Simian acquired immune deficiency syndrome (SAIDS) in rhesus macaques (Macaca mulatta) at the California Primate Research Center is caused by a type D retrovirus designated SAIDS retrovirus serotype 1 (SRV-1). This syndrome is characterized by profound immunosuppression and death associated with opportunistic infections. Neurologic signs and lesions have not been described as part of this syndrome. The distribution of SRV-1 in the salivary glands, lymph nodes, spleens, thymuses, and brains of eight virus-infected rhesus macaques was examined by immunohistochemistry. Electron microscopy, in situ RNA hybridization, and Southern blot hybridization were also performed on selected tissues to detect viral particles, RNA,more » and DNA, respectively. In seven of eight SRV-1-infected animals, the transmembrane envelope glycoprotein (gp20) of SRV-1 was present in three or more tissues, but never in the brain. In the remaining animal, no viral antigen was detected in any tissue. In this same group of animals, viral nucleic acid was detected in the lymph nodes of six of six animals by Southern blot hybridization, in the salivary glands of two of five animals by both Southern blot and in situ hybridizations, and, surprisingly, in the brains of three of three animals by Southern blot and of three of five animals by in situ hybridization, including the one animal in which viral gp20 was undetectable. None of these animals had neurologic signs or lesions. The detection of viral nucleic acid in the absence of viral antigen in the brain suggests latent SRV-1 infection of the central nervous system.« less
Markovic, Svetomir N; Suman, Vera J; Ingle, James N; Kaur, Judith S; Pitot, Henry C; Loprinzi, Charles L; Rao, Ravi D; Creagan, Edward T; Pittelkow, Mark R; Allred, Jakob B; Nevala, Wendy K; Celis, Esteban
2006-08-01
Therapeutic peptide vaccines for melanoma continue to only demonstrate anecdotal success. We set out to evaluate the impact of low-dose GM-CSF emulsified in Montanide ISA-51 on the immunogenicity of HLA-A2 restricted melanoma differentiation antigen peptide vaccines (MART-1, gp100 and tyrosinase) administered in separate subcutaneous injections. We conducted a randomized phase II clinical trial of HLA-A2+ patients with metastatic melanoma that were immunized every 3 weeks with one of the following vaccine preparations: (A) peptides + Montanide ISA-51; (B) peptides + Montanide ISA-51 + GM-CSF (10 microg); (C) peptides + Montanide ISA-51 + GM-CSF (50 microg). Immunization efficacy was determined by quantification of vaccine specific tetramer positive cytotoxic T cells in peripheral blood. Global assessment of immune competence was ascertained using DTH testing to common recall antigens as well as peripheral blood immunophenotyping. Twenty-five eligible patients were equally distributed across all 3 treatment groups. Only 9 patients demonstrated evidence of immunization. Most commonly, immune response was achieved to the gp100 peptide. The addition of low-dose GM-CSF did not impact immunization efficacy. DTH reactivity to Candida appeared predictive of successful immunization. Successful immunization with the peptide vaccines was associated with improved clinical outcomes. The addition of low dose GM-CSF to peptide vaccines did not enhance immunogenicity. Higher doses of GM-CSF may be needed to achieve this effect and this is a testable hypothesis. Likewise, better patient selection based on immunologic status (DTH reactivity) may be helpful to better understand the clinical impact of therapeutic cancer vaccines.
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-07-21
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Evolution of coreceptor utilization to escape CCR5 antagonist therapy.
Zhang, Jie; Gao, Xiang; Martin, John; Rosa, Bruce; Chen, Zheng; Mitreva, Makedonka; Henrich, Timothy; Kuritzkes, Daniel; Ratner, Lee
2016-07-01
The HIV-1 envelope interacts with coreceptors CCR5 and CXCR4 in a dynamic, multi-step process, its molecular details not clearly delineated. Use of CCR5 antagonists results in tropism shift and therapeutic failure. Here we describe a novel approach using full-length patient-derived gp160 quasispecies libraries cloned into HIV-1 molecular clones, their separation based on phenotypic tropism in vitro, and deep sequencing of the resultant variants for structure-function analyses. Analysis of functionally validated envelope sequences from patients who failed CCR5 antagonist therapy revealed determinants strongly associated with coreceptor specificity, especially at the gp120-gp41 and gp41-gp41 interaction surfaces that invite future research on the roles of subunit interaction and envelope trimer stability in coreceptor usage. This study identifies important structure-function relationships in HIV-1 envelope, and demonstrates proof of concept for a new integrated analysis method that facilitates laboratory discovery of resistant mutants to aid in development of other therapeutic agents. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Changjian; Guo, Hua
2017-09-01
The nonadiabatic tunneling-facilitated photodissociation of phenol is investigated using a reduced-dimensional quantum model on two ab initio-based coupled potential energy surfaces (PESs). Although dynamics occurs largely on the lower adiabat, the proximity to a conical intersection between the S1 and S2 states requires the inclusion of both the geometric phase (GP) and diagonal Born-Oppenheimer correction (DBOC). The lifetime of the lowest-lying vibronic state is computed using the diabatic and various adiabatic models. The GP and DBOC terms are found to be essential on one set of PESs, but have a small impact on the other.
Gohain, Neelakshi; Tolbert, William D; Acharya, Priyamvada; Yu, Lei; Liu, Tongyun; Zhao, Pingsen; Orlandi, Chiara; Visciano, Maria L; Kamin-Lewis, Roberta; Sajadi, Mohammad M; Martin, Loïc; Robinson, James E; Kwong, Peter D; DeVico, Anthony L; Ray, Krishanu; Lewis, George K; Pazgier, Marzena
2015-09-01
Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting--a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2017-01-01
An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID:28720710
Goto, Shinya; Tamura, Noriko; Ishida, Hideyuki
2004-07-21
We examined the lytic effects of anti-glycoprotein (GP) IIb/IIIa agents on platelet thrombi formed on the collagen surface under blood flow conditions. Anti-GP IIb/IIIa agents may influence platelet thrombi already formed. Blood samples were anticoagulated either by the specific antithrombin Argatroban (100 microM) or by unfractionated heparin (0.1 U/ml). After platelet thrombi were formed on a collagen surface following 6-min perfusion of whole blood obtained from eight adult donors containing fluorescinated platelets at a wall shear rate of 1,500 s(-1), additional blood samples from the same donors either containing or not containing anti-GP IIb/IIIa agents (abciximab, eptifibatide, or tirofiban) were perfused on these thrombi. The three-dimensional structures of the platelet thrombi were continuously observed by laser confocal microscopy equipped with a piezo-electric motor control unit and recorded. The platelet thrombi started to dissolve after perfusion of blood containing the anti-GP IIb/IIIa agents, whereas their growth resumed after subsequent perfusion of control blood. Only a single layer of platelets having heights of 3 +/- 1 microm, 3 +/- 2 microm, and 3 +/- 1 microm, respectively, could be seen after 6-min perfusion of blood containing abciximab, eptifibatide, and tirofiban, whereas the initial height of the platelet thrombi of 8 +/- 2 microm increased to 11 +/- 4 microm after subsequent perfusion of control blood (n = 8). The volume of the platelet thrombi, which was 3,352 +/- 1,045 microm(3) before starting the second perfusion, was reduced to 778 +/- 102 microm(3), 812 +/- 122 microm(3), and 856 +/- 144 microm(3) after 6-min perfusion of blood containing abciximab, eptifibatide, and tirofiban, respectively. We have shown in this study that anti-GP IIb/IIIa agents possess the ability to dissolve platelet thrombi.
Can low-fusing glass application affect the marginal misfit and bond strength of Y-TZP crowns?
Antunes, Monize Carelli Felipe; Miranda, Jean Soares; Carvalho, Ronaldo Luís Almeida de; Carvalho, Rodrigo Furtado de; Kimpara, Estevão Tomomitsu; Assunção E Souza, Rodrigo Othávio de; Leite, Fabíola Pessôa Pereira
2018-01-01
To evaluate the effect of different surface treatments on the marginal misfit and retentive strength between Y-TZP crowns and an epoxy resin. Forty (40) epoxy resin (G10) abutments (height: 5mm, conicity: 60, finish line: large chamfer) with equal dimensions were milled and included in polyurethane to simulate the periodontal ligament. Next, 40 Y-TZP crowns (thickness: 1mm) were milled (Cerec in Lab) and randomly divided into four groups (n=10) according to the surface treatment: GS(glaze spray), GP(glaze powder/liquid), P(zirconia primer) and RS(tribochemical silica coating). The conditioned surfaces were cemented with dual self-adhesive cement, light cured and submitted to thermomechanical cycling (2x106, 100N, 4Hz, 5°/55°C). Marginal misfit was analyzed by a stereomicroscope and SEM. Retentive strength test was performed (1mm/min) until crown debonding. Glaze layer thickness was also performed to GS and GP groups. Marginal misfit data were analyzed by Kruskal Wallis and Dunn tests; one-way ANOVA and Tukey (5%) analyzed the tensile strength data. The marginal misfit of the GS (48.6±19.9μm) and GP (65.4±42.5μm) were statistically lower than the RS (96±62.9μm) and P (156±113.3μm) (p=0.001). The retentive strength of the GP (470.5±104.1N) and GS (416.8±170.2N) were similar to the P (342.1±109.7N), but statistically higher than those of the RS (208.9±110N). The GS and GP glaze layer was 11.64μm and 9.73μm respectively. Thus, glaze application promoted lower marginal discrepancy and higher retentive strength values than conventional techniques.
Cohen, Gerson H; Silverton, Enid W; Padlan, Eduardo A; Dyda, Fred; Wibbenmeyer, Jamie A; Willson, Richard C; Davies, David R
2005-05-01
The structure of the complex between hen egg-white lysozyme and the Fab HyHEL-5 at 2.7 A resolution has previously been reported [Cohen et al. (1996), Acta Cryst. D52, 315-326]. With the availability of recombinant Fab, the X-ray structure of the complex has been re-evaluated at 1.7 A resolution. The refined structure has yielded a detailed picture of the Fab-lysozyme interface, showing the high complementarity of the protein surfaces as well as several water molecules within the interface that complete the good fit. The model of the full complex has improved significantly, yielding an R(work) of 19.5%. With this model, the structural results can be compared with the results of isothermal titration calorimetry. An attempt has been made to estimate the changes in bound waters that accompany complex formation and the difficulties inherent in using the crystal structures to provide the information necessary to make this calculation are discussed.
Imaging of blood antigen distribution on blood cells by thermal lens microscopy
NASA Astrophysics Data System (ADS)
Kimura, Hiroko; Sekiguchi, Kazuya; Nagao, Fumiko; Mukaida, Masahiro; Kitamori, Takehiko; Sawada, Tsuguo
2000-05-01
Blood group antigens on a cell were measured by a new microscopic method, i.e. thermal lens microscopy which involves spectrometry using a laser-induced thermal-lens effect. The blood group antigen was immunologically stained using antibody labeled with colloidal gold. Human leukocyte antigens (HLA) on lymphocytes and mononuclear leukocytes were observed by the thermal lens microscope, and Lewis blood group antigens on erythrocytes and polymorphonuclear leukocytes were also observed. The antigen distribution on each cell-surface was imaged using this technique. In spite of convex surface of living cells, colloidal gold was correctly quantified by adjusting the deviation of the focal point of the probe laser by the phase of the signal. In the measurement of leukocyte antigens, antigens of HLA-A, -B, -C loci on the lymphocytes were identified and quantitated by using a single cell. The image of HLA-A, -B, -C antigen distribution on a mononuclear leukocyte was obtained. In the measurement of erythrocyte antigens, a small quantity of Lewis antigens was detected on the cord erythrocytes. Localized small quantities of membrane antigens are better quantitated without extraction or cytolysis. Our thermal lens microscope is a powerful and highly sensitive analytical tool for detecting and quantitating localized antigens in single cells and/or cell-surface-associated molecules.