Sample records for surface architecture cell

  1. Regenerative Fuel Cell Power Systems for Lunar and Martian Surface Exploration

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Jakupca, Ian J.; Gilligan, Ryan P.; Bennett, William R.; Smith, Phillip J.; Fincannon, James

    2017-01-01

    This paper presents the preliminary results of a recent National Aeronautics and Space Administration (NASA) study funded under the Advanced Exploration Systems (AES) Modular Power Systems (AMPS) project. This study evaluated multiple surface locations on both the Moon and Mars, with the goal of establishing a common approach towards technology development and system design for surface power systems that use Regenerative Fuel Cell (RFC) energy storage methods. One RFC design may not be applicable to all surface locations; however, AMPS seeks to find a unified architecture, or series of architectures, that leverages a single development approach to answer the technology need for RFC systems. Early system trades were performed to select the most effective fuel cell and electrolyzer architectures based on current state-of-the-art technology, whereas later trades will establish a detailed system design to enable a near-term ground (non-flight) demonstration. This paper focuses on the initial trade studies, presents the selected fuel cell and electrolyzer architectures for follow-on system design studies, and suggests areas for further technology investment.

  2. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  3. A Cell-surface Phylome for African Trypanosomes

    PubMed Central

    Jackson, Andrew P.; Allison, Harriet C.; Barry, J. David; Field, Mark C.; Hertz-Fowler, Christiane; Berriman, Matthew

    2013-01-01

    The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome. PMID:23556014

  4. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are respectively regulated by the 3D morphology and the population of micro-colonies. Copyright © 2018 American Society for Microbiology.

  5. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments

    NASA Astrophysics Data System (ADS)

    Baker, Brendon M.; Trappmann, Britta; Wang, William Y.; Sakar, Mahmut S.; Kim, Iris L.; Shenoy, Vivek B.; Burdick, Jason A.; Chen, Christopher S.

    2015-12-01

    To investigate how cells sense stiffness in settings structurally similar to native extracellular matrices, we designed a synthetic fibrous material with tunable mechanics and user-defined architecture. In contrast to flat hydrogel surfaces, these fibrous materials recapitulated cell-matrix interactions observed with collagen matrices including stellate cell morphologies, cell-mediated realignment of fibres, and bulk contraction of the material. Increasing the stiffness of flat hydrogel surfaces induced mesenchymal stem cell spreading and proliferation; however, increasing fibre stiffness instead suppressed spreading and proliferation for certain network architectures. Lower fibre stiffness permitted active cellular forces to recruit nearby fibres, dynamically increasing ligand density at the cell surface and promoting the formation of focal adhesions and related signalling. These studies demonstrate a departure from the well-described relationship between material stiffness and spreading established with hydrogel surfaces, and introduce fibre recruitment as a previously undescribed mechanism by which cells probe and respond to mechanics in fibrillar matrices.

  6. Biofilm growth program and architecture revealed by single-cell live imaging

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Sabass, Benedikt; Stone, Howard; Wingreen, Ned; Bassler, Bonnie

    Biofilms are surface-associated bacterial communities. Little is known about biofilm structure at the level of individual cells. We image living, growing Vibrio cholerae biofilms from founder cells to ten thousand cells at single-cell resolution, and discover the forces underpinning the architectural evolution of the biofilm. Mutagenesis, matrix labeling, and simulations demonstrate that surface-adhesion-mediated compression causes V. cholerae biofilms to transition from a two-dimensional branched morphology to a dense, ordered three-dimensional cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture, and this growth pattern is controlled by a single gene. Competition analyses reveal the advantages of the dense growth mode in providing the biofilm with superior mechanical properties. We will further present continuum theory to model the three-dimensional growth of biofilms at the solid-liquid interface as well as solid-air interface.

  7. Prolymphocytic leukaemia: surface morphology in 21 cases as seen by scanning electron microscopy and comparison with B-type CLL and CLL in 'prolymphocytoid' transformation.

    PubMed

    Polliack, A; Leizerowitz, R; Berrebi, A; Gamliel, H; Galili, N; Gurfel, D; Catovsky, D

    1984-08-01

    The surface architecture of leukaemic cells obtained from 21 cases of proven prolymphocytic leukaemia (PLL) and eight cases of chronic lymphocytic leukaemia (CLL) with 'prolymphocytoid' transformation (PL-CLL) was compared with the cell surface morphology of leukaemic cells obtained from 46 cases of B-type CLL, using the scanning electron microscope (SEM). All cases were defined by cytochemistry, immunological markers and transmission electron microscopy prior to SEM examination. B-CLL cells showed the well-recognized spectrum of surface architecture described in earlier studies. The majority of cells had moderate numbers of short microvilli, although in a minority, cells with relatively smooth surfaces predominated. In seven of the eight cases of PL-CLL, cells were villous in nature and in this respect similar to CLL cells; however, more cells with dense microvilli were seen. The prolymphocytic cells were recognized by their larger size and in 18 of the 19 cases of B-derived PLL, villous cells predominated. Two cases of T-derived PLL showed variable cell surface morphology ranging from smooth to moderately villous. It appears that B-PLL cells are most frequently villous and display more surface microvilli than B-CLL cells. B-prolymphocytes display the surface features regarded as characteristic for neoplastic B-cells as seen in patients with B-type lymphoma and leukaemia.

  8. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation.

    PubMed

    Hendrikson, Wim J; Deegan, Anthony J; Yang, Ying; van Blitterswijk, Clemens A; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress-strain distributions throughout the scaffold depend on the scaffold's internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes.

  9. Influence of Additive Manufactured Scaffold Architecture on the Distribution of Surface Strains and Fluid Flow Shear Stresses and Expected Osteochondral Cell Differentiation

    PubMed Central

    Hendrikson, Wim J.; Deegan, Anthony J.; Yang, Ying; van Blitterswijk, Clemens A.; Verdonschot, Nico; Moroni, Lorenzo; Rouwkema, Jeroen

    2017-01-01

    Scaffolds for regenerative medicine applications should instruct cells with the appropriate signals, including biophysical stimuli such as stress and strain, to form the desired tissue. Apart from that, scaffolds, especially for load-bearing applications, should be capable of providing mechanical stability. Since both scaffold strength and stress–strain distributions throughout the scaffold depend on the scaffold’s internal architecture, it is important to understand how changes in architecture influence these parameters. In this study, four scaffold designs with different architectures were produced using additive manufacturing. The designs varied in fiber orientation, while fiber diameter, spacing, and layer height remained constant. Based on micro-CT (μCT) scans, finite element models (FEMs) were derived for finite element analysis (FEA) and computational fluid dynamics (CFD). FEA of scaffold compression was validated using μCT scan data of compressed scaffolds. Results of the FEA and CFD showed a significant impact of scaffold architecture on fluid shear stress and mechanical strain distribution. The average fluid shear stress ranged from 3.6 mPa for a 0/90 architecture to 6.8 mPa for a 0/90 offset architecture, and the surface shear strain from 0.0096 for a 0/90 offset architecture to 0.0214 for a 0/90 architecture. This subsequently resulted in variations of the predicted cell differentiation stimulus values on the scaffold surface. Fluid shear stress was mainly influenced by pore shape and size, while mechanical strain distribution depended mainly on the presence or absence of supportive columns in the scaffold architecture. Together, these results corroborate that scaffold architecture can be exploited to design scaffolds with regions that guide specific tissue development under compression and perfusion. In conjunction with optimization of stimulation regimes during bioreactor cultures, scaffold architecture optimization can be used to improve scaffold design for tissue engineering purposes. PMID:28239606

  10. Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction.

    PubMed

    Lizundia, Erlantz; Sáenz-Pérez, Míriam; Patrocinio, David; Aurrekoetxea, Iskander; dM Vivanco, Maria; Vilas, José Luis

    2017-06-01

    In this work we explore the effect of surface nanoarchitecture of polystyrene (PS) and polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer films on cell viability. PS and PS-b-PAA have been nanopatterned at temperatures of 110, 120 and 140°C using nanoporous aluminium oxide membranes (AAO) as a template. Surface architecture strongly depends on the infiltration temperature and the nature of the infiltrated polymer. High patterning temperatures yield hollow fibre shape architecture at the nanoscale level, which substantially modifies the surface hydrophobicity of the resulting materials. Up to date very scarce reports could be found in the literature dealing with the interaction of microstructured/nanostructured polymeric surfaces with cancer cells. Therefore, MCF-7 breast cancer cells have been selected as a model to conduct cell viability assays. The findings reveal that the fine-tuning of the surface nanoarchitecture contributes to the modification of its biocompatibility. Overall, this study highlights the potential of AAO membranes to obtain well-defined tailored morphologies at nanoscale level and its importance to develop novel soft functional surfaces to be used in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging

    PubMed Central

    Yan, Jing; Sharo, Andrew G.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2016-01-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA. Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  12. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci

    NASA Astrophysics Data System (ADS)

    Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel

    2015-05-01

    Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.

  13. Novel ferrocene-anchored ZnO nanoparticle/carbon nanotube assembly for glucose oxidase wiring: application to a glucose/air fuel cell.

    PubMed

    Haddad, Raoudha; Mattei, Jean-Gabriel; Thery, Jessica; Auger, Aurélien

    2015-06-28

    Glucose oxidase (GOx) is immobilized on ZnO nanoparticle-modified electrodes. The immobilized glucose oxidase shows efficient mediated electron transfer with ZnO nanoparticles to which the ferrocenyl moiety is π-stacked into a supramolecular architecture. The constructed ZnO-Fc/CNT modified electrode exhibits high ferrocene surface coverage, preventing any leakage of the π-stacked ferrocene from the newly described ZnO hybrid nanoparticles. The use of the new architecture of ZnO supported electron mediators to shuttle electrons from the redox centre of the enzyme to the surface of the working electrode can effectively bring about successful glucose oxidation. These modified electrodes evaluated as a highly efficient architecture provide a catalytic current for glucose oxidation and are integrated in a specially designed glucose/air fuel cell prototype using a conventional platinum-carbon (Pt/C) cathode at physiological pH (7.0). The obtained architecture leads to a peak power density of 53 μW cm(-2) at 300 mV for the Nafion® based biofuel cell under "air breathing" conditions at room temperature.

  14. Identification of a Supramolecular Functional Architecture of Streptococcus mutans Adhesin P1 on the Bacterial Cell Surface*

    PubMed Central

    Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine

    2015-01-01

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624

  15. Identification of a supramolecular functional architecture of Streptococcus mutans adhesin P1 on the bacterial cell surface.

    PubMed

    Heim, Kyle P; Sullan, Ruby May A; Crowley, Paula J; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F; Brady, L Jeannine

    2015-04-03

    P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Microengineering of cellular interactions.

    PubMed

    Folch, A; Toner, M

    2000-01-01

    Tissue function is modulated by an intricate architecture of cells and biomolecules on a micrometer scale. Until now, in vitro cellular interactions were mainly studied by random seeding over homogeneous substrates. Although this strategy has led to important discoveries, it is clearly a nonoptimal analog of the in vivo scenario. With the incorporation--and adaptation--of microfabrication technology into biology, it is now possible to design surfaces that reproduce some of the aspects of that architecture. This article reviews past research on the engineering of cell-substrate, cell-cell, and cell-medium interactions on the micrometer scale.

  17. Cell wall peptidoglycan architecture in Bacillus subtilis

    PubMed Central

    Hayhurst, Emma J.; Kailas, Lekshmi; Hobbs, Jamie K.; Foster, Simon J.

    2008-01-01

    The bacterial cell wall is essential for viability and shape determination. Cell wall structural dynamics allowing growth and division, while maintaining integrity is a basic problem governing the life of bacteria. The polymer peptidoglycan is the main structural component for most bacteria and is made up of glycan strands that are cross-linked by peptide side chains. Despite study and speculation over many years, peptidoglycan architecture has remained largely elusive. Here, we show that the model rod-shaped bacterium Bacillus subtilis has glycan strands up to 5 μm, longer than the cell itself and 50 times longer than previously proposed. Atomic force microscopy revealed the glycan strands to be part of a peptidoglycan architecture allowing cell growth and division. The inner surface of the cell wall has a regular macrostructure with ≈50 nm-wide peptidoglycan cables [average 53 ± 12 nm (n = 91)] running basically across the short axis of the cell. Cross striations with an average periodicity of 25 ± 9 nm (n = 96) along each cable are also present. The fundamental cabling architecture is also maintained during septal development as part of cell division. We propose a coiled-coil model for peptidoglycan architecture encompassing our data and recent evidence concerning the biosynthetic machinery for this essential polymer. PMID:18784364

  18. A scanning electron microscopic study of 34 cases of acute granulocytic, myelomonocytic, monoblastic and histiocytic leukemia.

    PubMed

    Polliack, A; McKenzie, S; Gee, T; Lampen, N; de Harven, E; Clarkson, B D

    1975-09-01

    This report describes the surface architecture of leukemic cells, as seen by scanning electron microscopy in 34 patients with acute nonlymphoblastic leukemia. Six patients with myeloblastic, 4 with promyelocytic, 10 with myelomonocytic, 8 with monocytic, 4 with histiocytic and 2 with undifferentiated leukemia were studied. Under the scanning electron microscope most leukemia histiocytes and monocytes appeared similar and were characterized by the presence of large, well developed broad-based ruffled membranes or prominent raised ridge-like profiles, resembling ithis respect normal monocytes. Most cells from patients with acute promyelocytic or myeloblastic leukemia exhibited narrower ridge-like profiles whereas some showed ruffles or microvilli. Patients with myelomonocytic leukemia showed mixed populations of cells with ridge-like profiles and ruffled membranes whereas cells from two patients with undifferentiated leukemia had smooth surfaces, similar to those encountered in cells from patients with acute lymphoblastic leukemia. It appears that nonlymphoblastic and lymphoblastic leukemia cells (particularly histiocytes and monocytes) can frequently be distinquished on the basis of their surface architecture. The surface features of leukemic histiocytes and monocytes are similar, suggesting that they may belong to the same cell series. The monocytes seem to have characteristic surface features recognizable with the scanning electron microscope and differ from most cells from patients with acute granulocytic leukemia. Although overlap of surface features and misidentification can occur, scanning electron microscopy is a useful adjunct to other modes of microscopy in the study and diagnosis of acute leukemia.

  19. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    PubMed

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Architectural ultrastructure of the human urinary transitional epithelium].

    PubMed

    Takayama, H; Konishi, T

    1984-07-01

    Human urinary bladder mucosa, confirmed to be normal by cystoscopic, histologic and bacteriologic examination, were obtained from four patients at prostatectomy and from two patients at an anti-VUR procedure. The luminal surface and the three dimensional architecture of the bladder mucosa were observed by scanning electron microscopy (SEM) after cryofracture of specimen and by transmission electron microscopy (TEM). The epithelium consists of superficial, intermediate and basal cells, and SEM and TEM showed that it was stratified. Intermediate cells reached the basal lamina by slender cytoplasmic processes but superficial cells were not directly in contact with the basal lamina. No pleomorphic or long microvilli were observed but short microvilli or granular protrusions were sparsely seen on the luminal surface of superficial cells. SEM of cryofractured surfaces revealed that cells from each cell layer were in contact with cellular junctions such as ridges, plicated projections and septum-like walls. Their junctions were more complicated with increasing depth of the cell layer. No pleomorphic or long microvilli were observed on any cell surface of the intermediate or basal cell layer. Under TEM, however, these junctional structures of ridges, plicated projections and septal walls appeared to be microvilli under TEM. Microvilli-like structures on TEM, therefore, have to be carefully distinguished from real microvilli. Careful observation is required when the presence of cells covered with microvilli is described as a sign of malignancy.

  1. Biomimetic surface patterning for long-term transmembrane access

    PubMed Central

    VanDersarl, Jules J.; Renaud, Philippe

    2016-01-01

    Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement. PMID:27577519

  2. Biomimetic surface patterning for long-term transmembrane access.

    PubMed

    VanDersarl, Jules J; Renaud, Philippe

    2016-08-31

    Here we present a planar patch clamp chip based on biomimetic cell membrane fusion. This architecture uses nanometer length-scale surface patterning to replicate the structure and function of membrane proteins, creating a gigaohm seal between the cell and a planar electrode array. The seal is generated passively during cell spreading, without the application of a vacuum to the cell surface. This interface can enable cell-attached and whole-cell recordings that are stable to 72 hours, and generates no visible damage to the cell. The electrodes can be very small (<5 μm) and closely packed, offering a high density platform for cellular measurement.

  3. Correction to: Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2018-03-21

    The article "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry", written by Natalia Davidenko, Carlos F. Schuster, Daniel V. Bax, Richard W. Farndale, Samir Hamaia, Serena M. Best and Ruth E. Cameron, was originally published Online First without open access. After publication in volume 27, issue 10, page 148 it was noticed that the copyright was wrong in the PDF version of the article. The copyright of the article should read as "© The Author(s) 2016". The Open Access license terms were also missing.

  4. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    PubMed

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  5. Cell behavior on surface modified polydimethylsiloxane (PDMS).

    PubMed

    Stanton, Morgan M; Rankenberg, Johanna M; Park, Byung-Wook; McGimpsey, W Grant; Malcuit, Christopher; Lambert, Christopher R

    2014-07-01

    Designing complex tissue culture systems requires cell alignment and directed extracellular matrix (ECM) and gene expression. Here, a micro-rough, polydimethylsiloxane (PDMS) surface, that also integrates a micro-pattern of 50 µm wide lines of fibronectin (FN) separated by 60 µm wide lines of bovine serum albumin (BSA), is developed. Human fibroblasts cultured on the rough, patterned substrate have aligned growth and a significant change in morphology when compared to cells on a flat, patterned surface. The rough PDMS topography significantly decreases cell area and induces the upregulation of several ECM related genes by two-fold when compared to cells cultured on flat PDMS. This study describes a simple surface engineering procedure for creating surface architecture for scaffolds to design and control the cell-surface interface. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. The Role of Cell Surface Architecture of Lactobacilli in Host-Microbe Interactions in the Gastrointestinal Tract

    PubMed Central

    Altermann, Eric; Anderson, Rachel C.; McNabb, Warren C.; Moughan, Paul J.; Roy, Nicole C.

    2013-01-01

    Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health. PMID:23576850

  8. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    PubMed

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hybrid Energy Cell with Hierarchical Nano/Micro-Architectured Polymer Film to Harvest Mechanical, Solar, and Wind Energies Individually/Simultaneously.

    PubMed

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lim, Joo Ho; Yu, Jae Su

    2016-11-09

    We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.

  10. Controlled lecithin release from a hierarchical architecture on blood-contacting surface to reduce hemolysis of stored red blood cells.

    PubMed

    Shi, Qiang; Fan, Qunfu; Ye, Wei; Hou, Jianwen; Wong, Shing-Chung; Xu, Xiaodong; Yin, Jinghua

    2014-06-25

    Hemolysis of red blood cells (RBCs) caused by implant devices in vivo and nonpolyvinyl chloride containers for RBC preservation in vitro has recently gained much attention. To develop blood-contacting biomaterials with long-term antihemolysis capability, we present a facile method to construct a hydrophilic, 3D hierarchical architecture on the surface of styrene-b-(ethylene-co-butylene)-b-styrene elastomer (SEBS) with poly(ethylene oxide) (PEO)/lecithin nano/microfibers. The strategy is based on electrospinning of PEO/lecithin fibers onto the surface of poly [poly(ethylene glycol) methyl ether methacrylate] [P(PEGMEMA)]-modified SEBS, which renders SEBS suitable for RBC storage in vitro. We demonstrate that the constructed 3D architecture is composed of hydrophilic micro- and nanofibers, which transforms to hydrogel networks immediately in blood; the controlled release of lecithin is achieved by gradual dissolution of PEO/lecithin hydrogels, and the interaction of lecithin with RBCs maintains the membrane flexibility and normal RBC shape. Thus, the blood-contacting surface reduces both mechanical and oxidative damage to RBC membranes, resulting in low hemolysis of preserved RBCs. This work not only paves new way to fabricate high hemocompatible biomaterials for RBC storage in vitro, but provides basic principles to design and develop antihemolysis biomaterials for implantation in vivo.

  11. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.

    2016-01-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  12. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    PubMed

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Surface topography of hairy cell leukemia cells compared to other leukemias as seen by scanning electron microscopy.

    PubMed

    Polliack, Aaron; Tadmor, Tamar

    2011-06-01

    This short review deals with the ultrastructural surface architecture of hairy cell leukemia (HCL) compared to other leukemic cells, as seen by scanning electron microscopy (SEM). The development of improved techniques for preparing blood cells for SEM in the 1970s readily enabled these features to be visualized more accurately. This review returns us to the earlier history of SEM, when the surface topography of normal and neoplastic cells was visualized and reported for the first time, in an era before the emergence and use of monoclonal antibodies and flow cytometry, now used routinely to define cells by their immunophenotype. Surface microvilli are characteristic for normal and leukemic lymphoid cells, myelo-monocytic cells lack microvilli and show surface ruffles, while leukemic plasma and myeloma cells and megakaryocytes display large surface blebs. HCL cell surfaces are complex and typically 'hybrid' in nature, displaying both lymphoid and monocytic features with florid ruffles of varying sizes interspersed with clumps of short microvilli cytoplasm. The surface features of other leukemic cells and photomicrographs of immuno-SEM labeling of cells employing antibodies and colloidal gold, reported more than 20 years ago, are shown.

  14. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    PubMed

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  15. A three dimensional scaffold with precise micro-architecture and surface micro-textures

    PubMed Central

    Mata, Alvaro; Kim, Eun Jung; Boehm, Cynthia A.; Fleischman, Aaron J.; Muschler, George F.; Roy, Shuvo

    2013-01-01

    A three-dimensional (3D) structure comprising precisely defined microarchitecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 μm-diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds. PMID:19524292

  16. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-09-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area.

  17. Simian virus 40 T-antigen-related cell surface antigen: serological demonstration on simian virus 40-transformed monolayer cells in situ.

    PubMed Central

    Deppert, W; Hanke, K; Henning, R

    1980-01-01

    Simian virus 40 (SV40)-transformed monolayer cells were analyzed in situ by indirect immunofluorescence microscopy for the postulated cell surface location of SV40 T-antigen-related molecules. With antisera prepared against purified, sodium dodecyl sulfate-denatured SV40 T-antigen, positive surface staining was obtained when the cells had been treated with formaldehyde before immunofluorescence analysis. In contrast, living SV40-transformed cells analyzed in monolayer were surface fluorescence negative. The fixation procedure developed in this study combined with a double staining immunofluorescence technique allowed the simultaneous analysis of the same cells for the expression of both SV40 T-antigen-related surface antigen and nuclear T-antigen. The localization of SV40 T-antigen-related surface antigen on the outer surface of the plasma membrane of formaldehyde-fixed SV40-transformed cells was demonstrated directly by the protein A-mediated binding of Staphylococcus aureus bacteria on formaldehyde-fixed SV40-transformed cells precoated with antiserum against sodium dodecyl sulfate-denatured T-antigen. Both cell surface staining and S. aureus binding were found to be highly specific for SV40 T-antigen-related binding sites. These results indicate that T-antigen-related molecules in a cryptic form are located on the surface of SV40-transformed monolayer cells and can be detected in situ after modification of the cell surface architecture. Images PMID:6255189

  18. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells

    NASA Astrophysics Data System (ADS)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-09-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.

  19. Aspergillus terreus accessory conidia are unique in surface architecture, cell wall composition and germination kinetics.

    PubMed

    Deak, Eszter; Wilson, Selwyn D; White, Elizabeth; Carr, Janice H; Balajee, S Arunmozhi

    2009-10-30

    Infection with Aspergillus terreus is more likely to result in invasive, disseminated disease when compared to other Aspergillus species; importantly this species appears to be less susceptible to the antifungal drug amphotericin B. Unique to this species is the ability to produce specialized structures denoted as accessory conidia (AC) directly on hyphae both in vitro and in vivo. With the hypothesis that production of AC by A. terreus may enhance virulence of this organism, we analyzed the phenotype, structure and metabolic potential of these conidia. Comparison of A. terreus phialidic conidia (conidia that arise from conidiophores, PC) and AC architecture by electron microscopy revealed distinct morphological differences between the two conidial forms; AC have a smoother, thicker outer cell surface with no apparent pigment-like layer. Further, AC germinated rapidly, had enhanced adherence to microspheres, and were metabolically more active compared to PC. Additionally, AC contained less cell membrane ergosterol, which correlated with decreased susceptibility to AMB as determined using a flow cytometry based analysis. Furthermore, AC exhibited surface patches of beta1-3 glucan, suggestive of attachment scarring. Collectively, the findings of this study suggest a possible role for AC in A. terreus pathogenesis.

  20. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.; Poston, David I.

    2011-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy. Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture Team, and International Architecture Working Group-Power Function Team.

  1. Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

    PubMed Central

    Chen, Hao; Biela, Sarah A; Kaufmann, Dieter

    2016-01-01

    The extracellular environment of vascular cells in vivo is complex in its chemical composition, physical properties, and architecture. Consequently, it has been a great challenge to study vascular cell responses in vitro, either to understand their interaction with their native environment or to investigate their interaction with artificial structures such as implant surfaces. New procedures and techniques from materials science to fabricate bio-scaffolds and surfaces have enabled novel studies of vascular cell responses under well-defined, controllable culture conditions. These advancements are paving the way for a deeper understanding of vascular cell biology and materials–cell interaction. Here, we review previous work focusing on the interaction of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) with materials having micro- and nanostructured surfaces. We summarize fabrication techniques for surface topographies, materials, geometries, biochemical functionalization, and mechanical properties of such materials. Furthermore, various studies on vascular cell behavior and their biological responses to micro- and nanostructured surfaces are reviewed. Emphasis is given to studies of cell morphology and motility, cell proliferation, the cytoskeleton and cell-matrix adhesions, and signal transduction pathways of vascular cells. We finalize with a short outlook on potential interesting future studies. PMID:28144512

  2. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell

    PubMed Central

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  3. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.

    PubMed

    Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2017-06-01

    The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mycobacterial biofilms: a greasy way to hold it together.

    PubMed

    Zambrano, María Mercedes; Kolter, Roberto

    2005-12-02

    Microorganisms growing on surfaces can form biofilms under certain conditions. In this issue of Cell, Ojha et al. (2005) investigate biofilm formation in mycobacteria. They identify new cell-wall components that are required for the formation of architecturally complex mature biofilms in these bacteria and the surprising involvement of a chaperone protein in this process.

  5. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.

    PubMed

    Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R

    2010-09-01

    The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Bacteria as Bio-Template for 3D Carbon Nanotube Architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozden, Sehmus; Macwan, Isaac G.; Owuor, Peter S.

    It is one of the most important needs to develop renewable, scalable and multifunctional methods for the fabrication of 3D carbon architectures. Even though a lot of methods have been developed to create porous and mechanically stable 3D scaffolds, the fabrication and control over the synthesis of such architectures still remain a challenge. Here, we used Magnetospirillum magneticum (AMB-1) bacteria as a bio-template to fabricate light-weight 3D solid structure of carbon nanotubes (CNTs) with interconnected porosity. The resulting porous scaffold showed good mechanical stability and large surface area because of the excellent pore interconnection and high porosity. Steered molecular dynamicsmore » simulations were used to quantify the interactions between nanotubes and AMB-1 via the cell surface protein MSP-1 and flagellin. Furthermore, the 3D CNTs-AMB1 nanocomposite scaffold is further demonstrated as a potential substrate for electrodes in supercapacitor applications.« less

  7. Bacteria as Bio-Template for 3D Carbon Nanotube Architectures

    DOE PAGES

    Ozden, Sehmus; Macwan, Isaac G.; Owuor, Peter S.; ...

    2017-08-29

    It is one of the most important needs to develop renewable, scalable and multifunctional methods for the fabrication of 3D carbon architectures. Even though a lot of methods have been developed to create porous and mechanically stable 3D scaffolds, the fabrication and control over the synthesis of such architectures still remain a challenge. Here, we used Magnetospirillum magneticum (AMB-1) bacteria as a bio-template to fabricate light-weight 3D solid structure of carbon nanotubes (CNTs) with interconnected porosity. The resulting porous scaffold showed good mechanical stability and large surface area because of the excellent pore interconnection and high porosity. Steered molecular dynamicsmore » simulations were used to quantify the interactions between nanotubes and AMB-1 via the cell surface protein MSP-1 and flagellin. Furthermore, the 3D CNTs-AMB1 nanocomposite scaffold is further demonstrated as a potential substrate for electrodes in supercapacitor applications.« less

  8. Optimization of material/device parameters of CdTe photovoltaic for solar cells applications

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Cadmium telluride (CdTe) has been recognized as a promising photovoltaic material for thin-film solar cell applications due to its near optimum bandgap of ~1.5 eV and high absorption coefficient. The energy gap is near optimum for a single-junction solar cell. The high absorption coefficient allows films as thin as 2.5 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 20% have been produced with poly-CdTe materials. This paper examines n/p heterostructure device architecture. The performance limitations related to doping concentrations, minority carrier lifetimes, absorber layer thickness, and surface recombination velocities at the back and front interfaces is assessed. Ultimately, the paper explores device architectures of poly- CdTe and crystalline CdTe to achieve performance comparable to gallium arsenide (GaAs).

  9. Single-unit-cell layer established Bi 2 WO 6 3D hierarchical architectures: Efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hongwei; Cao, Ranran; Yu, Shixin

    Single-layer catalysis sparks huge interests and gains widespread attention owing to its high activity. Simultaneously, three-dimensional (3D) hierarchical structure can afford large surface area and abundant reactive sites, contributing to high efficiency. Herein, we report an absorbing single-unit-cell layer established Bi2WO6 3D hierarchical architecture fabricated by a sodium dodecyl benzene sulfonate (SDBS)-assisted assembled strategy. The DBS- long chains can adsorb on the (Bi2O2)2+ layers and hence impede stacking of the layers, resulting in the single-unit-cell layer. We also uncovered that SDS with a shorter chain is less effective than SDBS. Due to the sufficient exposure of surface O atoms, single-unit-cellmore » layer 3D Bi2WO6 shows strong selectivity for adsorption on multiform organic dyes with different charges. Remarkably, the single-unit-cell layer 3D Bi2WO6 casts profoundly enhanced photodegradation activity and especially a superior photocatalytic H2 evolution rate, which is 14-fold increase in contrast to the bulk Bi2WO6. Systematic photoelectrochemical characterizations disclose that the substantially elevated carrier density and charge separation efficiency take responsibility for the strengthened photocatalytic performance. Additionally, the possibility of single-unit-cell layer 3D Bi2WO6 as dye-sensitized solar cells (DSSC) has also been attempted and it was manifested to be a promising dye-sensitized photoanode for oxygen evolution reaction (ORR). Our work not only furnish an insight into designing single-layer assembled 3D hierarchical architecture, but also offer a multi-functional material for environmental and energy applications.« less

  10. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility of ameliorating the CNS tissue reactivity toward biomaterials implants by varying biomaterial surface properties or incorporating scar-reductive factors derived from functional cells into implant constructs, therefore, provide guidance in the design of more integrative biomaterial-based implantable devices for CNS repair.

  11. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  12. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  13. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture.

    PubMed

    Levis, Hannah J; Massie, Isobel; Dziasko, Marc A; Kaasi, Andreas; Daniels, Julie T

    2013-11-01

    Limbal epithelial stem cells are responsible for the maintenance of the human corneal epithelium and these cells reside in a specialised stem cell niche. They are located at the base of limbal crypts, in a physically protected microenvironment in close proximity to a variety of neighbouring niche cells. Design and recreation of elements of various stem cell niches have allowed researchers to simplify aspects of these complex microenvironments for further study in vitro. We have developed a method to rapidly and reproducibly create bioengineered limbal crypts (BLCs) in a collagen construct using a simple one-step method. Liquid is removed from collagen hydrogels using hydrophilic porous absorbers (HPAs) that have custom moulded micro-ridges on the base. The resulting topography on the surface of the thin collagen constructs resembles the dimensions of the stromal crypts of the human limbus. Human limbal epithelial cells seeded onto the surface of the constructs populate these BLCs and form numerous layers with a high proportion of the cells lining the crypts expressing putative stem cell marker, p63α. The HPAs are produced using a moulding process that is flexible and can be adapted depending on the requirements of the end user. Creation of defined topographical features using this process could be applicable to numerous tissue-engineering applications where varied 3-dimensional niche architectures are required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Performance optimization of dye-sensitized solar cells by multilayer gradient scattering architecture of TiO2 microspheres.

    PubMed

    Li, Mingyue; Li, Meiya; Liu, Xiaolian; Bai, Lihua; Luoshan, Mengdai; Lei, Wen; Wang, Zhen; Zhu, Yongdan; Zhao, Xingzhong

    2017-01-20

    TiO 2 microspheres (TMSs) with unique hierarchical structure and unusual high specific surface area are synthesized and incorporated into a photoanode in various TMS multilayer gradient architectures to form novel photoanodes and dye-sensitized solar cells (DSSCs). Significant influences of these architectures on the photoelectric properties of DSSCs are obtained. The DSSC with the optimal TMS gradient-ascent architecture of M036 has the largest amounts of dye absorption, strongest light absorption, longest electron lifetime and lowest electron recombination, and thus exhibits the maximum short circuit current density (J sc ) of 16.49 mA cm -2 and photoelectric conversion efficiency (η) of 7.01%, notably higher than those of conventional DSSCs by 21% and 22%, respectively. These notable improvements in the properties of DSSCs can be attributed to the TMS gradient-ascent architecture of M036 which can most effectively increase dye absorption and localize incident light within the photoanode by the light scattering of TMSs, and thus utilize the incident light thoroughly. This study provides an optimized and universal configuration for the scattering microspheres incorporated in the hybrid photoanode, which can significantly improve the performance of DSSCs.

  15. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  16. Template mediated protein self-assembly as a valuable tool in regenerative therapy.

    PubMed

    Kundu, B; Eltohamy, M; Yadavalli, V K; Reis, R L; Kim, H W

    2018-04-11

    The assembly of natural proteinaceous biopolymers into macro-scale architectures is of great importance in synthetic biology, soft-material science and regenerative therapy. The self-assembly of protein tends to be limited due to anisotropic interactions among protein molecules, poor solubility and stability. Here, we introduce a unique platform to self-immobilize diverse proteins (fibrous and globular, positively and negatively charged, low and high molecular weight) using silicon surfaces with pendant -NH 2 groups via a facile one step diffusion limited aggregation (DLA) method. All the experimental proteins (type I collagen, bovine serum albumin and cytochrome C) self-assemble into seaweed-like branched dendritic architectures via classical DLA in the absence of any electrolytes. The notable differences in branching architectures are due to dissimilarities in protein colloidal sub-units, which is typical for each protein type, along with the heterogeneous distribution of surface -NH 2 groups. Fractal analysis of assembled structures is used to explain the underlying route of fractal deposition; which concludes how proteins with different functionality can yield similar assembly. Further, the nano-micro-structured surfaces can be used to provide functional topographical cues to study cellular responses, as demonstrated using rat bone marrow stem cells. The results indicate that the immobilization of proteins via DLA does not affect functionality, instead serving as topographical cues to guide cell morphology. This indicates a promising design strategy at the tissue-material interface and is anticipated to guide future surface modifications. A cost-effective standard templating strategy is therefore proposed for fundamental and applied particle aggregation studies, which can be used at multiple length scales for biomaterial design and surface reformation.

  17. Receptive fields and functional architecture in the retina

    PubMed Central

    Balasubramanian, Vijay; Sterling, Peter

    2009-01-01

    Functional architecture of the striate cortex is known mostly at the tissue level – how neurons of different function distribute across its depth and surface on a scale of millimetres. But explanations for its design – why it is just so – need to be addressed at the synaptic level, a much finer scale where the basic description is still lacking. Functional architecture of the retina is known from the scale of millimetres down to nanometres, so we have sought explanations for various aspects of its design. Here we review several aspects of the retina's functional architecture and find that all seem governed by a single principle: represent the most information for the least cost in space and energy. Specifically: (i) why are OFF ganglion cells more numerous than ON cells? Because natural scenes contain more negative than positive contrasts, and the retina matches its neural resources to represent them equally well; (ii) why do ganglion cells of a given type overlap their dendrites to achieve 3-fold coverage? Because this maximizes total information represented by the array – balancing signal-to-noise improvement against increased redundancy; (iii) why do ganglion cells form multiple arrays? Because this allows most information to be sent at lower rates, decreasing the space and energy costs for sending a given amount of information. This broad principle, operating at higher levels, probably contributes to the brain's immense computational efficiency. PMID:19525561

  18. Activation of Wnt Planar Cell Polarity (PCP) signaling promotes growth plate column formation in vitro.

    PubMed

    Randall, Rachel M; Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2012-12-01

    Disrupting the Wnt Planar Cell Polarity (PCP) signaling pathway in vivo results in loss of columnar growth plate architecture, but it is unknown whether activation of this pathway in vitro is sufficient to promote column formation. We hypothesized that activation of the Wnt PCP pathway in growth plate chondrocyte cell pellets would promote columnar organization in these cells that are normally oriented randomly in culture. Rat growth plate chondrocytes were transfected with plasmids encoding the Fzd7 cell-surface Wnt receptor, a Fzd7 deletion mutant lacking the Wnt-binding domain, or Wnt receptor-associated proteins Ror2 or Vangl2, and then cultured as three-dimensional cell pellets in the presence of recombinant Wnt5a or Wnt5b for 21 days. Cellular morphology was evaluated using histomorphometric measurements. Activation of Wnt PCP signaling components promoted the initiation of columnar morphogenesis in the chondrocyte pellet culture model, as measured by histomorphometric analysis of the column index (ANOVA p = 0.01). Activation of noncanonical Wnt signaling through overexpression of both the cell-surface Wnt receptor Fzd7 and receptor-associated protein Ror2 with addition of recombinant Wnt5a promotes the initiation of columnar architecture of growth plate chondrocytes in vitro, representing an important step toward growth plate regeneration. Copyright © 2012 Orthopaedic Research Society.

  19. Biofilm Matrix Proteins.

    PubMed

    Fong, Jiunn N C; Yildiz, Fitnat H

    2015-04-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.

  20. Microengineering neocartilage scaffolds.

    PubMed

    Petersen, Erik F; Spencer, Richard G S; McFarland, Eric W

    2002-06-30

    Advances in micropatterning methodologies have made it possible to create structures with precise architecture on the surface of cell culture substrata. We applied these techniques to fabricate microfeatures (15-65 microm wide; 40 microm deep) on the surface of a flexible, biocompatible polysaccharide gel. The micropatterned polymer gels were subsequently applied as scaffolds for chondrocyte culture and proved effective in maintaining key aspects of the chondrogenic phenotype. These were rounded cell morphology and a positive and statistically significant (p < 0.0001) immunofluorescence assay for the production of type II collagen throughout the maximum culture time of 10 days after cell seeding. Further, cells housed within individual surface features were observed to proliferate, while serial application of chondrocytes resulted in the formation of cellular aggregates. These methods represent a novel approach to the problem of engineering reparative cartilage in vitro. Copyright 2002 Wiley Periodicals, Inc.

  1. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.

    PubMed

    Lee, Calvin K; de Anda, Jaime; Baker, Amy E; Bennett, Rachel R; Luo, Yun; Lee, Ernest Y; Keefe, Joshua A; Helali, Joshua S; Ma, Jie; Zhao, Kun; Golestanian, Ramin; O'Toole, George A; Wong, Gerard C L

    2018-04-24

    Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.

  2. Solar Electric Power System Analyses for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Kohout, Lisa L.

    1999-01-01

    The electric power system is a crucial element of any architecture supporting human surface exploration of Mars. In this paper, we describe the conceptual design and detailed analysis of solar electric power system using photovoltaics and regenerative fuel cells to provide surface power on Mars. System performance, mass and deployed area predictions are discussed along with the myriad environmental factors and trade study results that helped to guide system design choices. Based on this work, we have developed a credible solar electric power option that satisfies the surface power requirements of a human Mars mission. The power system option described in this paper has a mass of approximately 10 metric tons, a approximately 5000-sq m deployable photovoltaic array using thin film solar cell technology.

  3. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering

    PubMed Central

    Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo

    2016-01-01

    Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response. PMID:28774112

  4. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering.

    PubMed

    Wang, Weiguang; Caetano, Guilherme; Ambler, William Stephen; Blaker, Jonny James; Frade, Marco Andrey; Mandal, Parthasarathi; Diver, Carl; Bártolo, Paulo

    2016-12-07

    Scaffolds are physical substrates for cell attachment, proliferation, and differentiation, ultimately leading to the regeneration of tissues. They must be designed according to specific biomechanical requirements, i.e., certain standards in terms of mechanical properties, surface characteristics, porosity, degradability, and biocompatibility. The optimal design of a scaffold for a specific tissue strongly depends on both materials and manufacturing processes, as well as surface treatment. Polymeric scaffolds reinforced with electro-active particles could play a key role in tissue engineering by modulating cell proliferation and differentiation. This paper investigates the use of an extrusion-based additive manufacturing system to produce poly( ε -caprolactone) (PCL)/pristine graphene scaffolds for bone tissue applications and the influence of chemical surface modification on their biological behaviour. Scaffolds with the same architecture but different concentrations of pristine graphene were evaluated from surface property and biological points of view. Results show that the addition of pristine graphene had a positive impact on cell viability and proliferation, and that surface modification leads to improved cell response.

  5. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.

    PubMed

    Tarawneh, Ahmad M; Wettergreen, Matthew; Liebschner, Michael A K

    2012-01-01

    Minimization schema in nature affects the material arrangements of most objects, independent of scale. The field of cellular solids has focused on the generalization of these natural architectures (bone, wood, coral, cork, honeycombs) for material improvement and elucidation into natural growth mechanisms. We applied this approach for the comparison of a set of complex three-dimensional (3D) architectures containing the same material volume but dissimilar architectural arrangements. Ball and stick representations of these architectures at varied material volumes were characterized according to geometric properties, such as beam length, beam diameter, surface area, space filling efficiency, and pore volume. Modulus, deformation properties, and stress distributions as contributed solely by architectural arrangements was revealed through finite element simulations. We demonstrated that while density is the greatest factor in controlling modulus, optimal material arrangement could result in equal modulus values even with volumetric discrepancies of up to 10%. We showed that at low porosities, loss of architectural complexity allows these architectures to be modeled as closed celled solids. At these lower porosities, the smaller pores do not greatly contribute to the overall modulus of the architectures and that a stress backbone is responsible for the modulus. Our results further indicated that when considering a deposition-based growth pattern, such as occurs in nature, surface area plays a large role in the resulting strength of these architectures, specifically for systems like bone. This completed study represents the first step towards the development of mathematical algorithms to describe the mechanical properties of regular and symmetric architectures used for tissue regenerative applications. The eventual goal is to create logical set of rules that can explain the structural properties of an architecture based solely upon its geometry. The information could then be used in an automatic fashion to generate patient-specific scaffolds for the treatment of tissue defects.

  6. A Summary of NASA Architecture Studies Utilizing Fission Surface Power Technology

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Poston, Dave

    2010-01-01

    Beginning with the Exploration Systems Architecture Study in 2005, NASA has conducted various mission architecture studies to evaluate implementation options for the U.S. Space Policy (formerly the Vision for Space Exploration). Several of the studies examined the use of Fission Surface Power (FSP) systems for human missions to the lunar and Martian surface. This paper summarizes the FSP concepts developed under four different NASA-sponsored architecture studies: Lunar Architecture Team, Mars Architecture Team, Lunar Surface Systems/Constellation Architecture team, and International Architecture Working Group-Power Function team. The results include a summary of FSP design characteristics, a compilation of mission-compatible FSP configuration options, and an FSP concept-of-operations that is consistent with the overall mission objectives.

  7. Manufacture of Solar Cells on the Moon

    NASA Technical Reports Server (NTRS)

    Freundich, Alex; Ignatiev, Alex; Horton, Charles; Duke, Mike; Curren, Peter; Sibille, Laurent

    2005-01-01

    In support of the space exploration initiative a new architecture for the production of solar cells on the lunar surface is devised. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin film (antireflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed. Finally, preliminary cost benefit ratio analysis for different in situ solar cell production scenarios (using exclusively in-situ planetary resources or hybrid) are discussed.

  8. Control of Architecture in Rhombic Dodecahedral Pt–Ni Nanoframe Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becknell, Nigel; Son, Yoonkook; Kim, Dohyung

    Platinum-based alloys are known to demonstrate advanced properties in electrochemical reactions that are relevant for proton exchange membrane fuel cells and electrolyzers. Further development of Pt alloy electrocatalysts relies on the design of architectures with highly active surfaces and optimized utilization of the expensive elpment, Pt. Here, we show that the three-dimensional Pt anisotropy of Pt-Ni rhombic dodecahedra can be tuned by controlling the ratio between Pt and Ni precursors such that either a completely hollow nanoframe or a new architecture, the excavated nanoframe, can be obtained. The excavated nanoframe showed similar to 10 times higher specific and similar tomore » 6 times higher mass activity for the oxygen reduction reaction than Pt/C, and twice the mass activity of the hollow nanoframe. The high activity is attributed to enhanced Ni content in the near-surface region and the extended two-dimensional sheet structure within the nanoframe that minimizes the number of buried Pt sites.« less

  9. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  10. S-layer and cytoplasmic membrane - exceptions from the typical archaeal cell wall with a focus on double membranes.

    PubMed

    Klingl, Andreas

    2014-01-01

    The common idea of typical cell wall architecture in archaea consists of a pseudo-crystalline proteinaceous surface layer (S-layer), situated upon the cytoplasmic membrane. This is true for the majority of described archaea, hitherto. Within the crenarchaea, the S-layer often represents the only cell wall component, but there are various exceptions from this wall architecture. Beside (glycosylated) S-layers in (hyper)thermophilic cren- and euryarchaea as well as halophilic archaea, one can find a great variety of other cell wall structures like proteoglycan-like S-layers (Halobacteria), glutaminylglycan (Natronococci), methanochondroitin (Methanosarcina) or double layered cell walls with pseudomurein (Methanothermus and Methanopyrus). The presence of an outermost cellular membrane in the crenarchaeal species Ignicoccus hospitalis already gave indications for an outer membrane similar to Gram-negative bacteria. Although there is just limited data concerning their biochemistry and ultrastructure, recent studies on the euryarchaeal methanogen Methanomassiliicoccus luminyensis, cells of the ARMAN group, and the SM1 euryarchaeon delivered further examples for this exceptional cell envelope type consisting of two membranes.

  11. Tensegrity: the architectural basis of cellular mechanotransduction

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    1997-01-01

    Physical forces of gravity, hemodynamic stresses, and movement play a critical role in tissue development. Yet, little is known about how cells convert these mechanical signals into a chemical response. This review attempts to place the potential molecular mediators of mechanotransduction (e.g. stretch-sensitive ion channels, signaling molecules, cytoskeleton, integrins) within the context of the structural complexity of living cells. The model presented relies on recent experimental findings, which suggests that cells use tensegrity architecture for their organization. Tensegrity predicts that cells are hard-wired to respond immediately to mechanical stresses transmitted over cell surface receptors that physically couple the cytoskeleton to extracellular matrix (e.g. integrins) or to other cells (cadherins, selectins, CAMs). Many signal transducing molecules that are activated by cell binding to growth factors and extracellular matrix associate with cytoskeletal scaffolds within focal adhesion complexes. Mechanical signals, therefore, may be integrated with other environmental signals and transduced into a biochemical response through force-dependent changes in scaffold geometry or molecular mechanics. Tensegrity also provides a mechanism to focus mechanical energy on molecular transducers and to orchestrate and tune the cellular response.

  12. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  13. Electrode architectures for efficient electronic and ionic transport pathways in high power lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Faulkner, Ankita Shah

    As the demand for clean energy sources increases, large investments have supported R&D programs aimed at developing high power lithium ion batteries for electric vehicles, military, grid storage and space applications. State of the art lithium ion technology cannot meet power demands for these applications due to high internal resistances in the cell. These resistances are mainly comprised of ionic and electronic resistance in the electrode and electrolyte. Recently, much attention has been focused on the use of nanoscale lithium ion active materials on the premise that these materials shorten the diffusion length of lithium ions and increase the surface area for electrochemical charge transfer. While, nanomaterials have allowed significant improvements in the power density of the cell, they are not a complete solution for commercial batteries. Due to their large surface area, they introduce new challenges such as a poor electrode packing densities, high electrolyte reactivity, and expensive synthesis procedures. Since greater than 70% of the cost of the electric vehicle is due to the cost of the battery, a cost-efficient battery design is most critical. To address the limitations of nanomaterials, efficient transport pathways must be engineered in the bulk electrode. As a part of nanomanufacturing research being conducted the Center for High-rate Nanomanufacturing at Northeastern University, the first aim of the proposed work is to develop electrode architectures that enhance electronic and ionic transport pathways in large and small area lithium ion electrodes. These architectures will utilize the unique electronic and mechanical properties of carbon nanotubes to create robust electrode scaffolding that improves electrochemical charge transfer. Using extensive physical and electrochemical characterization, the second aim is to investigate the effect of electrode parameters on electrochemical performance and evaluate the performance against standard commercial electrodes. These parameters include surface morphology, electrode composition, electrode density, and operating temperature. Finally, the third aim is to investigate commercial viability of the electrode architecture. This will be accomplished by developing pouch cell prototypes using a high-rate and low cost scale-up process. Through this work, we aim to realize a commercially viable high-power electrode technology.

  14. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    NASA Astrophysics Data System (ADS)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  15. Wiring Zinc in Three Dimensions Re-writes Battery Performance - Dendrite-Free Cycling

    DTIC Science & Technology

    2014-01-01

    surfaces throughout the electrode structure (Fig. 5D–I). The positive Zn@ZnO sponge exhibits a compact morphology uniformly distributed throughout (Fig...monolithic, three-dimensional (3D) aperiodic architecture. Utilization approaches 90% (728 mA h gZn 1) when the zinc “ sponge ” is used as the anode in...a primary (single-use) zinc–air cell. To probe rechargeability of the 3D Zn sponge , we cycled Zn–vs.–Zn symmetric cells and Ag–Zn full cells under

  16. Fabrication of Trabecular Bone-Templated Tissue-Engineered Constructs by 3D Inkjet Printing.

    PubMed

    Vanderburgh, Joseph P; Fernando, Shanik J; Merkel, Alyssa R; Sterling, Julie A; Guelcher, Scott A

    2017-11-01

    3D printing enables the creation of scaffolds with precisely controlled morphometric properties for multiple tissue types, including musculoskeletal tissues such as cartilage and bone. Computed tomography (CT) imaging has been combined with 3D printing to fabricate anatomically scaled patient-specific scaffolds for bone regeneration. However, anatomically scaled scaffolds typically lack sufficient resolution to recapitulate the <100 micrometer-scale trabecular architecture essential for investigating the cellular response to the morphometric properties of bone. In this study, it is hypothesized that the architecture of trabecular bone regulates osteoblast differentiation and mineralization. To test this hypothesis, human bone-templated 3D constructs are fabricated via a new micro-CT/3D inkjet printing process. It is shown that this process reproducibly fabricates bone-templated constructs that recapitulate the anatomic site-specific morphometric properties of trabecular bone. A significant correlation is observed between the structure model index (a morphometric parameter related to surface curvature) and the degree of mineralization of human mesenchymal stem cells, with more concave surfaces promoting more extensive osteoblast differentiation and mineralization compared to predominately convex surfaces. These findings highlight the significant effects of trabecular architecture on osteoblast function. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    PubMed Central

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today. PMID:27362493

  18. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    PubMed

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted in a slight increase in the expression of maturation markers (SLA-DRB1, CD86 and CD40) as well as cytokines (IL6, IL8, IL10 and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today.

  19. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans

    PubMed Central

    Ansari, Juliana M.; Abraham, Nabil M.; Massaro, Jenna; Murphy, Kelsey; Smith-Carpenter, Jillian; Fikrig, Erol

    2017-01-01

    Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth. PMID:28392782

  20. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex

    NASA Astrophysics Data System (ADS)

    Ohki, Kenichi; Chung, Sooyoung; Ch'ng, Yeang H.; Kara, Prakash; Reid, R. Clay

    2005-02-01

    Neurons in the cerebral cortex are organized into anatomical columns, with ensembles of cells arranged from the surface to the white matter. Within a column, neurons often share functional properties, such as selectivity for stimulus orientation; columns with distinct properties, such as different preferred orientations, tile the cortical surface in orderly patterns. This functional architecture was discovered with the relatively sparse sampling of microelectrode recordings. Optical imaging of membrane voltage or metabolic activity elucidated the overall geometry of functional maps, but is averaged over many cells (resolution >100µm). Consequently, the purity of functional domains and the precision of the borders between them could not be resolved. Here, we labelled thousands of neurons of the visual cortex with a calcium-sensitive indicator in vivo. We then imaged the activity of neuronal populations at single-cell resolution with two-photon microscopy up to a depth of 400µm. In rat primary visual cortex, neurons had robust orientation selectivity but there was no discernible local structure; neighbouring neurons often responded to different orientations. In area 18 of cat visual cortex, functional maps were organized at a fine scale. Neurons with opposite preferences for stimulus direction were segregated with extraordinary spatial precision in three dimensions, with columnar borders one to two cells wide. These results indicate that cortical maps can be built with single-cell precision.

  1. Specific biomolecule corona is associated with ring-shaped organization of silver nanoparticles in cells

    NASA Astrophysics Data System (ADS)

    Drescher, Daniela; Guttmann, Peter; Büchner, Tina; Werner, Stephan; Laube, Gregor; Hornemann, Andrea; Tarek, Basel; Schneider, Gerd; Kneipp, Janina

    2013-09-01

    We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona.We correlate the localization of silver nanoparticles inside cells with respect to the cellular architecture with the molecular information in the vicinity of the particle surface by combining nanoscale 3D cryo-soft X-ray tomography (cryo-SXT) with surface-enhanced Raman scattering (SERS). The interaction of the silver nanoparticle surface with small molecules and biopolymers was monitored by SERS in vitro over time in living cells. The spectra indicate a stable, time-independent surface composition of silver nanoparticles, despite the changing environment in the endosomal structure. Cryo-SXT reveals a characteristic ring-shaped organization of the silver nanoparticles in endosomes of different cell types. The ring-like structures inside the endosomes suggest a strong association among silver particles and with membrane structures. The comparison of the data with those obtained with gold nanoparticles suggests that the interactions between the nanoparticles and with the endosomal component are influenced by the molecular composition of the corona. Electronic supplementary information (ESI) available: Description of additional experiments. Explanation of transmitted intensity and linear absorption coefficient in a cryo-XRT experiment (Fig. S1 and S2). Additional X-ray data (Fig. S3 and Movie S1). Toxicity of silver nanoparticles (Fig. S4). X-ray microscopy and SERS experiments with gold nanoparticles (Fig. S5 and S6). Size, plasmonic properties, and stability of silver and gold nanoparticles (Fig. S7-S9). Distribution of the silver nanoparticles in the cells using SERS mapping (Fig. S10). Tentative band assignments (Table S1). See DOI: 10.1039/c3nr02129g

  2. Impact of physical confinement on nuclei geometry and cell division dynamics in 3D spheroids.

    PubMed

    Desmaison, Annaïck; Guillaume, Ludivine; Triclin, Sarah; Weiss, Pierre; Ducommun, Bernard; Lobjois, Valérie

    2018-06-08

    Multicellular tumour spheroids are used as a culture model to reproduce the 3D architecture, proliferation gradient and cell interactions of a tumour micro-domain. However, their 3D characterization at the cell scale remains challenging due to size and cell density issues. In this study, we developed a methodology based on 3D light sheet fluorescence microscopy (LSFM) image analysis and convex hull calculation that allows characterizing the 3D shape and orientation of cell nuclei relative to the spheroid surface. By using this technique and optically cleared spheroids, we found that in freely growing spheroids, nuclei display an elongated shape and are preferentially oriented parallel to the spheroid surface. This geometry is lost when spheroids are grown in conditions of physical confinement. Live 3D LSFM analysis of cell division revealed that confined growth also altered the preferential cell division axis orientation parallel to the spheroid surface and induced prometaphase delay. These results provide key information and parameters that help understanding the impact of physical confinement on cell proliferation within tumour micro-domains.

  3. Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation

    PubMed Central

    Werner, Maike; Blanquer, Sébastien B. G.; Haimi, Suvi P.; Korus, Gabriela; Dunlop, John W. C.; Duda, Georg N.; Grijpma, Dirk. W.

    2016-01-01

    Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well‐defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward‐lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin‐A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell‐instructive material parameter in the field of biomaterial‐guided tissue regeneration. PMID:28251054

  4. The extracellular microenvironment explains variations in passive drug transport across different airway epithelial cell types.

    PubMed

    Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A; Yu, Jing-Yu; Lim, Dong Hyun; Rosania, Gus R

    2013-08-01

    We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in the extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.

  5. The Extracellular Microenvironment Explains Variations in Passive Drug Transport across Different Airway Epithelial Cell Types

    PubMed Central

    Min, Kyoung Ah; Talattof, Arjang; Tsume, Yasuhiro; Stringer, Kathleen A.; Yu, Jing-yu; Lim, Dong Hyun; Rosania, Gus R.

    2013-01-01

    Purpose We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types. Methods Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types. Results Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells. Conclusion Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types. PMID:23708857

  6. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed Central

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-01-01

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth. PMID:28561754

  7. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-05-31

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.

  8. Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells.

    PubMed

    Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N

    2010-05-01

    The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.

  9. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  10. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  11. Tensegrity and mechanoregulation: from skeleton to cytoskeleton

    NASA Technical Reports Server (NTRS)

    Chen, C. S.; Ingber, D. E.

    1999-01-01

    OBJECTIVE: To elucidate how mechanical stresses that are applied to the whole organism are transmitted to individual cells and transduced into a biochemical response. DESIGN: In this article, we describe fundamental design principles that are used to stabilize the musculoskeletal system at many different size scales and show that these design features are embodied in one particular form of architecture that is known as tensegrity. RESULTS: Tensegrity structures are characterized by use of continuous tension and local compression; architecture, prestress (internal stress prior to application of external force), and triangulation play the most critical roles in terms of determining their mechanical stability. In living organisms, use of a hierarchy of tensegrity networks both optimizes structural efficiency and provides a mechanism to mechanically couple the parts with the whole: mechanical stresses applied at the macroscale result in structural rearrangements at the cell and molecular level. CONCLUSION: Due to use of tensegrity architecture, mechanical stress is concentrated and focused on signal transducing molecules that physically associate with cell surface molecules that anchor cells to extracellular matrix, such as integrins, and with load-bearing elements within the internal cytoskeleton and nucleus. Mechanochemical transduction may then proceed through local stress-dependent changes in molecular mechanics, thermodynamics, and kinetics within the cell. In this manner, the entire cellular response to stress may be orchestrated and tuned by altering the prestress in the cell, just as changing muscular tone can alter mechanical stability and structural coordination throughout the whole musculoskeletal system.

  12. Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces.

    PubMed

    Reis-Teixeira, Fernanda Barbosa Dos; Alves, Virgínia Farias; de Martinis, Elaine Cristina Pereira

    The pathogenic bacterium Listeria monocytogenes can persist in food processing plants for many years, even when appropriate hygienic measures are in place, with potential for contaminating ready-to-eat products and, its ability to form biofilms on abiotic surfaces certainly contributes for the environmental persistence. In this research, L. monocytogenes was grown in biofilms up 8 days attached to stainless steel and glass surfaces, contributing for advancing the knowledge on architecture of mature biofilms, since many literature studies carried out on this topic considered only early stages of cell adhesion. In this study, biofilm populations of two strains of L. monocytogenes (serotypes 1/2a and 4b) on stainless steel coupons and glass were examined using regular fluorescence microscopy, confocal laser scanning microscopy and classic culture method. The biofilms formed were not very dense and microscopic observations revealed uneven biofilm structures, with presence of exopolymeric matrix surrounding single cells, small aggregates and microcolonies, in a honeycomb-like arrangement. Moreover, planktonic population of L. monocytogenes (present in broth media covering the abiotic surface) remained stable throughout the incubation time, which indicates an efficient dispersal mechanism, since the culture medium was replaced daily. In conclusion, even if these strains of L. monocytogenes were not able to form thick multilayer biofilms, it was noticeable their high persistence on abiotic surfaces, reinforcing the need to focus on measures to avoid biofilm formation, instead of trying to eradicate mature biofilms. Copyright © 2017. Published by Elsevier Editora Ltda.

  13. The role of hydrodynamics in shaping the composition and architecture of epilithic biofilms in fluvial ecosystems.

    PubMed

    Risse-Buhl, Ute; Anlanger, Christine; Kalla, Katalin; Neu, Thomas R; Noss, Christian; Lorke, Andreas; Weitere, Markus

    2017-12-15

    Previous laboratory and on-site experiments have highlighted the importance of hydrodynamics in shaping biofilm composition and architecture. In how far responses to hydrodynamics can be found in natural flows under the complex interplay of environmental factors is still unknown. In this study we investigated the effect of near streambed turbulence in terms of turbulent kinetic energy (TKE) on the composition and architecture of biofilms matured in two mountainous streams differing in dissolved nutrient concentrations. Over both streams, TKE significantly explained 7% and 8% of the variability in biofilm composition and architecture, respectively. However, effects were more pronounced in the nutrient richer stream, where TKE significantly explained 12% and 3% of the variability in biofilm composition and architecture, respectively. While at lower nutrient concentrations seasonally varying factors such as stoichiometry of dissolved nutrients (N/P ratio) and light were more important and explained 41% and 6% of the variability in biofilm composition and architecture, respectively. Specific biofilm features such as elongated ripples and streamers, which were observed in response to the uniform and unidirectional flow in experimental settings, were not observed. Microbial biovolume and surface area covered by the biofilm canopy increased with TKE, while biofilm thickness and porosity where not affected or decreased. These findings indicate that under natural flows where near bed flow velocities and turbulence intensities fluctuate with time and space, biofilms became more compact. They spread uniformly on the mineral surface as a film of densely packed coccoid cells appearing like cobblestone pavement. The compact growth of biofilms seemed to be advantageous for resisting hydrodynamic shear forces in order to avoid displacement. Thus, near streambed turbulence can be considered as important factor shaping the composition and architecture of biofilms grown under natural flows. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Partially nanofibrous architecture of 3D tissue engineering scaffolds.

    PubMed

    Wei, Guobao; Ma, Peter X

    2009-11-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.

  15. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.

    PubMed

    Sankaran, Shrikrishnan; Kiren, Mustafa Can; Jonkheijm, Pascal

    2015-01-01

    Supramolecular assemblies, formed through noncovalent interactions, has become particularly attractive to develop dynamic and responsive architectures to address living systems at the nanoscale. Cucurbit[8]uril (CB[8]), a pumpkin shaped macrocylic host molecule, has been successfully used to construct various self-assembled architectures for biomedical applications since it can simultaneously bind two aromatic guest molecules within its cavity. Such architectures can also be designed to respond to external stimuli. Integrating living organisms as an active component into such supramolecular architectures would add a new dimension to the capabilities of such systems. To achieve this, we have incorporated supramolecular functionality at the bacterial surface by genetically modifying a transmembrane protein to display a CB[8]-binding motif as part of a cystine-stabilized miniprotein. We were able to confirm that this supramolecular motif on the bacterial surface specifically binds CB[8] and forms multiple intercellular ternary complexes leading to aggregation of the bacterial solution. We performed various aggregation experiments to understand how CB[8] interacts with this bacterial strain and also demonstrate that it can be chemically reversed using a competitor. To confirm that this strain can be incorporated with a CB[8] based architecture, we show that the bacterial cells were able to adhere to CB[8] self-assembled monolayers (SAMs) on gold and still retain considerable motility for several hours, indicating that the system can potentially be used to develop supramolecular bacterial biomotors. The bacterial strain also has the potential to be combined with other CB[8] based architectures like nanoparticles, vesicles and hydrogels.

  16. Smooth muscle architecture within cell-dense vascular tissues influences functional contractility.

    PubMed

    Win, Zaw; Vrla, Geoffrey D; Steucke, Kerianne E; Sevcik, Emily N; Hald, Eric S; Alford, Patrick W

    2014-12-01

    The role of vascular smooth muscle architecture in the function of healthy and dysfunctional vessels is poorly understood. We aimed at determining the relationship between vascular smooth muscle architecture and contractile output using engineered vascular tissues. We utilized microcontact printing and a microfluidic cell seeding technique to provide three different initial seeding conditions, with the aim of influencing the cellular architecture within the tissue. Cells seeded in each condition formed confluent and aligned tissues but within the tissues, the cellular architecture varied. Tissues with a more elongated cellular architecture had significantly elevated basal stress and produced more contractile stress in response to endothelin-1 stimulation. We also found a correlation between the contractile phenotype marker expression and the cellular architecture, contrary to our previous findings in non-confluent tissues. Taken with previous results, these data suggest that within cell-dense vascular tissues, smooth muscle contractility is strongly influenced by cell and tissue architectures.

  17. Attenuation of Streptococcus suis virulence by the alteration of bacterial surface architecture

    PubMed Central

    Feng, Youjun; Cao, Min; Shi, Jie; Zhang, Huimin; Hu, Dan; Zhu, Jing; Zhang, Xianyun; Geng, Meiling; Zheng, Feng; Pan, Xiuzhen; Li, Xianfu; Hu, Fuquan; Tang, Jiaqi; Wang, Changjun

    2012-01-01

    NeuB, a sialic acid synthase catalyzes the last committed step of the de novo biosynthetic pathway of sialic acid, a major element of bacterial surface structure. Here we report a functional NeuB homologue of Streptococcus suis, a zoonotic agent, and systematically address its molecular and immunological role in bacterial virulence. Disruption of neuB led to thinner capsules and more susceptibility to pH, and cps2B inactivation resulted in complete absence of capsular polysaccharides. These two mutants both exhibited increased adhesion and invasion to Hep-2 cells and improved sensibility to phagocytosis. Not only do they retain the capability of inducing the release of host pro-inflammatory cytokines, but also result in the faster secretion of IL-8. Easier cleaning up of the mutant strains in whole blood is consistent with virulence attenuation seen with experimental infections of both mice and SPF-piglets. Therefore we concluded that altered architecture of S. suis surface attenuates its virulence. PMID:23050094

  18. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network performance and security.

  19. Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion.

    PubMed

    Ganier, Olivier; Schnerch, Dominik; Nigg, Erich A

    2018-06-01

    Centrosome aberrations disrupt tissue architecture and may confer invasive properties to cancer cells. Here we show that structural centrosome aberrations, induced by overexpression of either Ninein-like protein (NLP) or CEP131/AZI1, sensitize polarized mammalian epithelia to basal cell extrusion. While unperturbed epithelia typically dispose of damaged cells through apical dissemination into luminal cavities, certain oncogenic mutations cause a switch in directionality towards basal cell extrusion, raising the potential for metastatic cell dissemination. Here we report that NLP-induced centrosome aberrations trigger the preferential extrusion of damaged cells towards the basal surface of epithelial monolayers. This switch in directionality from apical to basal dissemination coincides with a profound reorganization of the microtubule cytoskeleton, which in turn prevents the contractile ring repositioning that is required to support extrusion towards the apical surface. While the basal extrusion of cells harbouring NLP-induced centrosome aberrations requires exogenously induced cell damage, structural centrosome aberrations induced by excess CEP131 trigger the spontaneous dissemination of dying cells towards the basal surface from MDCK cysts. Thus, similar to oncogenic mutations, structural centrosome aberrations can favour basal extrusion of damaged cells from polarized epithelia. Assuming that additional mutations may promote cell survival, this process could sensitize epithelia to disseminate potentially metastatic cells. © 2018 The Authors.

  20. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S

    2017-06-01

    Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  2. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    PubMed

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  3. Turning the Moon into a Solar Photovoltaic Paradise

    NASA Technical Reports Server (NTRS)

    Freundlich, Alex; Alemu, Andenet; Williams, Lawrence; Nakamura, Takashi; Sibille, Laurent; Curren, Peter

    2006-01-01

    Lunar resource utilization has focused principally on the extraction of oxygen from the lunar regolith. A number of schemes have been proposed for oxygen extraction from Ilmenite and Anorthite. Serendipitously, these schemes have as their by-products (or more directly as their "waste products"), materials needed for the fabrication of thin film silicon solar cells. Thus lunar surface possesses both the elemental components needed for the fabrication of silicon solar cells and a vacuum environment that allows for vacuum deposition of thin film solar cells directly on the surface of the Moon without the need for vacuum chambers. In support of the US space exploration initiative a new architecture for the production of thin film solar cells on directly on the lunar surface is proposed. The paper discusses experimental data on the fabrication and properties of lunar glass substrates, evaporated lunar regolith thin films (anti-reflect coatings and insulators), and preliminary attempts in the fabrication of thin film (silicon/II-VI) photovoltaic materials on lunar regolith glass substrates. A conceptual design for a solar powered robotic rover capable of fabricating solar cells directly on the lunar surface is provided. Technical challenges in the development of such a facility and strategies to alleviate perceived difficulties are discussed.

  4. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  5. Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.

    PubMed

    Tao, Sarah L; Desai, Tejal A

    2005-12-05

    Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.

  6. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  7. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  8. Collagen Self-Assembly on Orthopedic Magnesium Biomaterials Surface and Subsequent Bone Cell Attachment

    PubMed Central

    Zhao, Nan; Zhu, Donghui

    2014-01-01

    Magnesium (Mg) biomaterials are a new generation of biodegradable materials and have promising potential for orthopedic applications. After implantation in bone tissues, these materials will directly interact with extracellular matrix (ECM) biomolecules and bone cells. Type I collagen, the major component of bone ECM, forms the architecture scaffold that provides physical support for bone cell attachment. However, it is still unknown how Mg substrate affects collagen assembly on top of it as well as subsequent cell attachment and growth. Here, we studied the effects of collagen monomer concentration, pH, assembly time, and surface roughness of two Mg materials (pure Mg and AZ31) on collagen fibril formation. Results showed that formation of fibrils would not initiate until the monomer concentration reached a certain level depending on the type of Mg material. The thickness of collagen fibril increased with the increase of assembly time. The structures of collagen fibrils formed on semi-rough surfaces of Mg materials have a high similarity to that of native bone collagen. Next, cell attachment and growth after collagen assembly were examined. Materials with rough surface showed higher collagen adsorption but compromised bone cell attachment. Interestingly, surface roughness and collagen structure did not affect cell growth on AZ31 for up to a week. Findings from this work provide some insightful information on Mg-tissue interaction at the interface and guidance for future surface modifications of Mg biomaterials. PMID:25303459

  9. Evolution of Zinc Oxide Nanostructures from Non-Equilibrium Deposition Conditions

    DTIC Science & Technology

    2016-07-11

    pressure and temperature in the chamber by a rough estimation using PV = nRT. The deposition area is the internal surface of the tubular chamber, D...J. Wang, L. Zhang, T.L. Andrew, M.S. Arnold, X.D. Wang “Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide...Andrew, M.S. Arnold, X.D. Wang "Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures" ACS

  10. Mars power system concept definition study. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Littman, Franklin D.

    1994-01-01

    A preliminary top level study was completed to define power system concepts applicable to Mars surface applications. This effort included definition of power system requirements and selection of power systems with the potential for high commonality. These power systems included dynamic isotope, Proton Exchange Membrane (PEM) regenerative fuel cell, sodium sulfur battery, photovoltaic, and reactor concepts. Design influencing factors were identified. Characterization studies were then done for each concept to determine system performance, size/volume, and mass. Operations studies were done to determine emplacement/deployment maintenance/servicing, and startup/shutdown requirements. Technology development roadmaps were written for each candidate power system (included in Volume 2). Example power system architectures were defined and compared on a mass basis. The dynamic isotope power system and nuclear reactor power system architectures had significantly lower total masses than the photovoltaic system architectures. Integrated development and deployment time phasing plans were completed for an example DIPS and reactor architecture option to determine the development strategies required to meet the mission scenario requirements.

  11. Mediating human stem cell behaviour via defined fibrous architectures by melt electrospinning writing.

    PubMed

    Eichholz, Kian F; Hoey, David A

    2018-05-29

    The architecture within which cells reside is key to mediating their specific functions within the body. In this study, we use melt electrospinning writing (MEW) to fabricate cell micro-environments with various fibrous architectures to study their effect on human stem cell behaviour. We designed, built and optimised a MEW apparatus and used it to fabricate four different platform designs of 10.4±2μm fibre diameter, with angles between fibres on adjacent layers of 90°, 45°, 10° and R (random). Mechanical characterisation was conducted via tensile testing, and human skeletal stem cells (hSSCs) were seeded to scaffolds to study the effect of architecture on cell morphology and mechanosensing (nuclear YAP). Cell morphology was significantly altered between groups, with cells on 90° scaffolds having a lower aspect ratio, greater spreading, greater cytoskeletal tension and nuclear YAP expression. Long term cell culture studies were then conducted to determine the differentiation potential of scaffolds in terms of alkaline phosphatase activity, collagen and mineral production. Across these studies, an increased cell spreading in 3-dimensions is seen with decreasing alignment of architecture correlated with enhanced osteogenesis. This study therefore highlights the critical role of fibrous architecture in regulating stem cell behaviour with implications for tissue engineering and disease progression. This is the first study which has investigated the effect of controlled fibrous architectures fabricated via melt electrospinning writing on cell behaviour and differentiation. After optimising the process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell morphology. Nuclear YAP expression was further investigated as a marker of cell shape, cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells. This is the first study to investigate the effect of controlled fibrous material architectures fabricated via melt electrospinning writing on cell shape, mechanosignalling and differentiation. After optimising the biofabrication process and characterising scaffolds via SEM and tensile testing, cells were seeded to fibrous scaffolds with various micro-architectures and studied in terms of cell shape. Nuclear YAP expression was further investigated as a marker of cytoskeletal tension and differentiation potential. In agreement with these early markers, long term cell culture studies revealed for the first time that a 90° fibrous architecture is optimal for the osteogenic differentiation of skeletal stem cells, by driving a spread morphology and nuclear translocation of YAP in 3 dimensions . Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Glial architecture of the ghost shark (Callorhinchus milii, Holocephali, Chondrichthyes) as revealed by different immunohistochemical markers.

    PubMed

    Ari, Csilla; Kálmán, Mihály

    2008-09-15

    This article presents the first study on the glial architecture of a representative species of Holocephali, Callorhinchus milii (ghost shark). Holocephali are a small subclass of Chondrichthyes, with only a few extant genera, and those are considered to have a brain organization more similar to squalomorph sharks than to galeomorph sharks, skates, and rays. Three different astroglial markers--glial fibrillary acidic protein, S-100 protein, and glutamine synthetase (GS)--were investigated by immunohistochemical methods, applying both diaminobenzidine (DAB) and fluorescent techniques. They revealed similar glial structures, although most of them were detected by immunohistochemical reaction against GS and visualized by DAB. The predominant elements were radial ependymoglia spanning the area between the ventricular and meningeal surfaces, as in squalomorph sharks. Other similar features were the light appearance of myelinated neural tracts devoid of immunoreactivity, and the glial architecture of the reticular formation of the brain stem, cerebellum, and tectum, the latter with recognizable layers. The immunoreactivity of the vascular walls was similar; however, it is believed that different cell types form the blood-brain barrier in chimeras and in elasmobranchs. Some glial structures, however, resembled those of skates, rays, and galeomorph sharks. In C. milii astrocyte-like elements were observed in the telencephalon, using GS and S-100, although typical astrocyte-rich regions were not found. In some areas, especially the telencephalon, not only endfeet but also cell bodies were observed to be attached to the meningeal surface, with processes extending into the brain substance.

  13. Well-differentiated papillary mesothelioma with invasion to the chest wall.

    PubMed

    Torii, Ikuko; Hashimoto, Masaki; Terada, Takayuki; Kondo, Nobuyuki; Fushimi, Hiroaki; Shimazu, Kohki; Takeda, Shin-Ichi; Takuwa, Teruhisa; Okumura, Yoshitomo; Sato, Ayuko; Yamamoto, Tadashi; Fukuoka, Kazuya; Tanaka, Fumihiro; Nishigami, Takashi; Nakano, Takashi; Hasegawa, Seiki; Tsujimura, Tohru

    2010-02-01

    Well-differentiated papillary mesothelioma (WDPM) is an uncommon tumor with a papillary architecture, bland cytologic features, a tendency toward superficial spread without invasion, and good prognosis with prolonged survival. WDPM occurs primarily in the peritoneum of women, but also rarely in the pleura. We here report a case of 48-year-old woman who developed WDPM in the pleura with no history of asbestos exposure. Tumors were multifocal and widespread with a velvety appearance on the surface of parietal and visceral pleurae resected by extrapleural pneumonectomy (EPP). Tumors showed papillary structures with fibrovascular cores and lined by epithelioid cells. Immunohistochemically, these epithelioid tumor cells were positive for epithelial membrane antigen (EMA), a marker of malignant mesothelioma, with more than 50% positive for p53. Tumor cells microinvaded into subpleural parenchyma of the lung and minimally spread to adipose tissues of the mediastinal lesion. In addition, tumor cells invaded into the chest wall with a trabecular or glandular architecture. Based on these findings, this case is pathologically considered as WDPM of the pleura with malignant potential. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  14. System architecture and operational analysis of medium displacement unmanned surface vehicle sea hunter as a surface warfare component of distributed lethality

    DTIC Science & Technology

    2017-06-01

    students in a war- gaming class , and working in tandem with a NPS distance...surface mode ability provides a threat suppression method against small craft attacks and boarding attempts. b. Vulnerability As a sea-going surface...Design Architecture With a proposed CONOPS established, the physical architecture can proceed to a more detailed design. For the purpose of

  15. Analysis of Water Surplus at the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Santiago-Maldonado, Edgardo; Bagdigian, Robert M.; George, Patrick J.; Plachta, David W.; Fincannon, Homer J.; Jefferies, Sharon A.; Keyes, Jennifer P.; Reeves, David M.; Shyface, Hilary R.

    2010-01-01

    This paper evaluates the benefits to the lunar architecture and outpost of having a surplus of water, or a surplus of energy in the form of hydrogen and oxygen, as it has been predicted by Constellation Program's Lunar Surface System analyses. Assumptions and a scenario are presented leading to the water surplus and the revolutionary surface element options for improving the lunar exploration architecture and mission objectives. For example, some of the elements that can benefit from a water surplus are: the power system energy storage can minimize the use of battery systems by replacing batteries with higher energy density fuel cell systems; battery packs on logistics pallets can also be minimized; mobility asset power system mass can be reduced enabling more consumables and extended roving duration and distance; small robotic vehicles (hoppers) can be used to increase the science exploration range by sending round-trip robotic missions to anywhere on the Moon using in-situ produced propellants.

  16. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The impact of detergents on the tissue decellularization process: A ToF-SIMS study.

    PubMed

    White, Lisa J; Taylor, Adam J; Faulk, Denver M; Keane, Timothy J; Saldin, Lindsey T; Reing, Janet E; Swinehart, Ilea T; Turner, Neill J; Ratner, Buddy D; Badylak, Stephen F

    2017-03-01

    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy. We report here on the use of a highly sensitive analytical technique, time of flight secondary ion mass spectroscopy (ToF-SIMS) to characterize detergent decellularized scaffolds. ToF-SIMS detected cellular remnants and residual detergent fragments; increased intensity of the detergent fragments correlated with adverse cell matrix interactions. This study demonstrates the importance of maintaining a balance between cell removal and detergent disruption of matrix architecture and matrix surface ligand landscape. This study also demonstrates the power of ToF-SIMS for the characterization of decellularized scaffolds and capability for assessment of decellularization efficacy. Future use of biologic scaffolds in clinical tissue reconstruction will benefit from the fundamental results described in this work. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype.

    PubMed

    Pawelec, K M; Wardale, R J; Best, S M; Cameron, R E

    2015-01-01

    Development of tissue engineering scaffolds relies on careful selection of pore architecture and chemistry of the cellular environment. Repair of skeletal soft tissue, such as tendon, is particularly challenging, since these tissues have a relatively poor healing response. When removed from their native environment, tendon cells (tenocytes) lose their characteristic morphology and the expression of phenotypic markers. To stimulate tendon cells to recreate a healthy extracellular matrix, both architectural cues and fibrin gels have been used in the past, however, their relative effects have not been studied systematically. Within this study, a combination of collagen scaffold architecture, axial and isotropic, and fibrin gel addition was assessed, using ovine tendon-derived cells to determine the optimal strategy for controlling the proliferation and protein expression. Scaffold architecture and fibrin gel addition influenced tendon cell behavior independently in vitro. Addition of fibrin gel within a scaffold doubled cell number and increased matrix production for all architectures studied. However, scaffold architecture dictated the type of matrix produced by cells, regardless of fibrin addition. Axial scaffolds, mimicking native tendon, promoted a mature matrix, with increased tenomodulin, a marker for mature tendon cells, and decreased scleraxis, an early transcription factor for connective tissue. This study demonstrated that both architectural cues and fibrin gel addition alter cell behavior and that the combination of these signals could improve clinical performance of current tissue engineering constructs.

  19. Correlation of lung surface area to apoptosis and proliferation in human emphysema.

    PubMed

    Imai, K; Mercer, B A; Schulman, L L; Sonett, J R; D'Armiento, J M

    2005-02-01

    Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alveolar cells in emphysematous lungs with convoluted nuclei characteristic of apoptosis. DNA fragmentation was detected using terminal deoxynucleotide transferase-mediated dUTP nick-end labelling (TUNEL) and gel electrophoresis. TUNEL revealed higher apoptosis in emphysematous than normal lungs. Markers of apoptosis, including active caspase-3, proteolytic fragment of poly (ADP-ribose) polymerase, Bax and Bad, were detected in emphysematous lungs. Linear regression showed that apoptosis was inversely correlated with surface area. Emphysematous lungs demonstrated lower surface areas and increased cell proliferation. There was no correlation between apoptosis and proliferation, suggesting that, although both events increase during emphysema, they are not in equilibrium, potentially contributing to reduced lung surface area. In summary, cell-based mechanisms associated with emphysematous parenchymal damage include increased apoptosis and cell proliferation. Apoptosis correlated with airspace enlargement, supporting epidemiological evidence of the progressive nature of emphysema. These data extend the understanding of cell dynamics and structural changes within the lung during emphysema pathogenesis.

  20. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2011-12-01

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132a

  1. Cells of the connective tissue differentiate and migrate into pollen sacs

    NASA Astrophysics Data System (ADS)

    Iqbal, M. C. M.; Wijesekara, Kolitha B.

    2002-01-01

    In angiosperms, archesporial cells in the anther primordium undergo meiosis to form haploid pollen, the sole occupants of anther sacs. Anther sacs are held together by a matrix of parenchyma cells, the connective tissue. Cells of the connective tissue are not known to differentiate. We report the differentiation of parenchyma cells in the connective tissue of two Gordonia species into pollen-like structures (described as pseudopollen), which migrate into the anther sacs before dehiscence. Pollen and pseudopollen were distinguishable by morphology and staining. Pollen were tricolpate to spherical while pseudopollen were less rigid and transparent with a ribbed surface. Both types were different in size, shape, staining and surface architecture. The ratio of the number of pseudopollen to pollen was 1:3. During ontogeny in the connective tissue, neither cell division nor tetrad formation was observed and hence pseudopollen were presumed to be diploid. Only normal pollen germinated on a germination medium. Fixed preparations in time seemed to indicate that pseudopollen migrate from the connective tissue into the anther sac.

  2. Cellular response of osteoblasts to low modulus Ti-24Nb-4Zr-8Sn alloy mesh structure.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-03-01

    Titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) are widely used for implants, which are characterized by high elastic modulus (∼110 GPa) with (α + β) structure and that may induce undesirable stress shielding effect and immune responses associated with the presence of toxic elements. In this regard, we have combined the attributes of a new alloy design and the concept of additive manufacturing to fabricate 3D scaffolds with an interconnected porous structure. The new alloy is a β-type Ti-24Nb-4Zr-8Sn (Ti2448) alloy with significantly reduced modulus. In the present study, we explore the biological response of electron beam melted low modulus Ti2448 alloy porous mesh structure through the elucidation of bioactivity and osteoblast functions. The cellular activity was explored in terms of cell-to-cell communication involving proliferation, spreading, synthesis of extracellular and intracellular proteins, differentiation, and mineralization. The formation of fine apatite-like crystals on the surface during immersion test in simulated body fluid confirmed the bioactivity of the scaffold surface, which provided the favorable osteogenic microenvironment for cell-material interaction. The combination of unique surface chemistry and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and a favorable osteogenic micro-environment for incorporation (on-growth and in-growth) of osteoblasts. The proliferation and differentiation of pre-osteoblasts and their ability to form a well mineralized bone-like extracellular matrix (ECM) by secreting bone markers (ALP, calcium, etc.) over the struts of the scaffold point toward the determining role of unique surface chemistry and 3D architecture of the Ti2448 alloy mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 859-870, 2017. © 2016 Wiley Periodicals, Inc.

  3. Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumb, Matthew P.; Naval Research Laboratory, Washington, DC 20375; Steiner, Myles A.

    The analytical drift-diffusion formalism is able to accurately simulate a wide range of solar cell architectures and was recently extended to include those with back surface reflectors. However, as solar cells approach the limits of material quality, photon recycling effects become increasingly important in predicting the behavior of these cells. In particular, the minority carrier diffusion length is significantly affected by the photon recycling, with consequences for the solar cell performance. In this paper, we outline an approach to account for photon recycling in the analytical Hovel model and compare analytical model predictions to GaAs-based experimental devices operating close tomore » the fundamental efficiency limit.« less

  4. A Molecular Smart Surface for Spatio-Temporal Studies of Cell Mobility

    PubMed Central

    Lee, Eun-ju; Luo, Wei; Chan, Eugene W. L.; Yousaf, Muhammad N.

    2015-01-01

    Active migration in both healthy and malignant cells requires the integration of information derived from soluble signaling molecules with positional information gained from interactions with the extracellular matrix and with other cells. How a cell responds and moves involves complex signaling cascades that guide the directional functions of the cytoskeleton as well as the synthesis and release of proteases that facilitate movement through tissues. The biochemical events of the signaling cascades occur in a spatially and temporally coordinated manner then dynamically shape the cytoskeleton in specific subcellular regions. Therefore, cell migration and invasion involve a precise but constantly changing subcellular nano-architecture. A multidisciplinary effort that combines new surface chemistry and cell biological tools is required to understand the reorganization of cytoskeleton triggered by complex signaling during migration. Here we generate a class of model substrates that modulate the dynamic environment for a variety of cell adhesion and migration experiments. In particular, we use these dynamic substrates to probe in real-time how the interplay between the population of cells, the initial pattern geometry, ligand density, ligand affinity and integrin composition affects cell migration and growth. Whole genome microarray analysis indicates that several classes of genes ranging from signal transduction to cytoskeletal reorganization are differentially regulated depending on the nature of the surface conditions. PMID:26030281

  5. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  6. Drosophila gene tao-1 encodes proteins with and without a Ste20 kinase domain that affect cytoskeletal architecture and cell migration differently

    PubMed Central

    Pflanz, Ralf; Voigt, Aaron; Yakulov, Toma; Jäckle, Herbert

    2015-01-01

    Tao-1, the single representative of the Sterile 20 kinase subfamily in Drosophila, is best known for destabilizing microtubules at the actin-rich cortex, regulating the cytoskeletal architecture of cells. More recently, Tao-1 was shown to act in the Salvador–Warts–Hippo pathway by phosphorylating Hippo, regulating cell growth as well as cell polarity. Here, we show that tao-1 encodes two proteins, one with the Sterile 20 kinase domain (Tao-L) and one without it (Tao-S), and that they act in an antagonistic manner. Tao-L expression causes lamellipodia-like cell protrusions, whereas Tao-S expression results in filopodia-like structures that make cells stick to the surface they attach to. Ectopic Tao-1 expression in the anterior region of Drosophila embryos results in pole cell formation as normally observed at the posterior end. Tao-S expression causes primordial germ cells (PGCs) to adhere to the inner wall of the gut primordia and prevents proper transepithelial migration to the gonads. Conversely, RNAi knockdowns of Tao-1 cause disordered migration of PGCs out of the gut epithelium, their dispersal within the embryo and cell death. The results reveal a novel function of Tao-1 in cell migration, which is based on antagonistic activities of two proteins encoded by a single gene. PMID:25589578

  7. Effect of fluoride and chlorhexidine digluconate mouthrinses on plaque biofilms.

    PubMed

    Rabe, Per; Twetman, Svante; Kinnby, Bertil; Svensäter, Gunnel; Davies, Julia R

    2015-01-01

    To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak(®) software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action.

  8. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  9. Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings - Simple design competes with complex cathode architecture

    NASA Astrophysics Data System (ADS)

    Jozwiuk, Anna; Sommer, Heino; Janek, Jürgen; Brezesinski, Torsten

    2015-11-01

    The lithium-sulfur system is one of the most promising next generation battery systems, as elemental sulfur is cheap, abundant and has a high theoretical specific capacity. Although much research is conducted on complex sulfur/carbon composites and architectures, it is difficult to compare the performance of the cathodes to one another. Factors, such as different electrolyte composition and cell components strongly affect the cyclability of the battery. Here, we show the importance of optimizing ;standard; conditions to allow for fair performance comparison of different carbon blacks. Our optimal electrolyte-to-sulfur ratio is 11 μL mgsulfur-1 and high concentrations of LiNO3 (>0.6 M) are needed because nitrate is consumed continuously during cycling. Utilizing these standard conditions, we tested the cycling behavior of four types of cathodes with individual carbon blacks having different specific surface areas, namely Printex-A, Super C65, Printex XE-2 and Ketjenblack EC-600JD. Both the specific capacity and polysulfide adsorption capability clearly correlate with the surface area of the carbon being used. High specific capacities (>1000 mAh gsulfur-1 at C/5) are achieved with high surface area carbons. We also demonstrate that a simple cathode using Ketjenblack EC-600JD as the conductive matrix material can well compete with those having complex architectures or additives.

  10. Characterization of the Porphyromonas gingivalis Type IX Secretion Trans-envelope PorKLMNP Core Complex*

    PubMed Central

    Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain

    2017-01-01

    The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754

  11. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.

    PubMed

    Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E

    2016-01-11

    Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.

  12. Morphology Analysis and Optimization: Crucial Factor Determining the Performance of Perovskite Solar Cells.

    PubMed

    Zeng, Wenjin; Liu, Xingming; Guo, Xiangru; Niu, Qiaoli; Yi, Jianpeng; Xia, Ruidong; Min, Yong

    2017-03-24

    This review presents an overall discussion on the morphology analysis and optimization for perovskite (PVSK) solar cells. Surface morphology and energy alignment have been proven to play a dominant role in determining the device performance. The effect of the key parameters such as solution condition and preparation atmosphere on the crystallization of PVSK, the characterization of surface morphology and interface distribution in the perovskite layer is discussed in detail. Furthermore, the analysis of interface energy level alignment by using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy is presented to reveals the correlation between morphology and charge generation and collection within the perovskite layer, and its influence on the device performance. The techniques including architecture modification, solvent annealing, etc. were reviewed as an efficient approach to improve the morphology of PVSK. It is expected that further progress will be achieved with more efforts devoted to the insight of the mechanism of surface engineering in the field of PVSK solar cells.

  13. Crystal Structure of Chitinase ChiW from Paenibacillus sp. str. FPU-7 Reveals a Novel Type of Bacterial Cell-Surface-Expressed Multi-Modular Enzyme Machinery

    PubMed Central

    Itoh, Takafumi; Hibi, Takao; Suzuki, Fumiko; Sugimoto, Ikumi; Fujiwara, Akihiro; Inaka, Koji; Tanaka, Hiroaki; Ohta, Kazunori; Fujii, Yutaka; Taketo, Akira; Kimoto, Hisashi

    2016-01-01

    The Gram-positive bacterium Paenibacillus sp. str. FPU-7 effectively hydrolyzes chitin by using a number of chitinases. A unique chitinase with two catalytic domains, ChiW, is expressed on the cell surface of this bacterium and has high activity towards various chitins, even crystalline chitin. Here, the crystal structure of ChiW at 2.1 Å resolution is presented and describes how the enzyme degrades chitin on the bacterial cell surface. The crystal structure revealed a unique multi-modular architecture composed of six domains to function efficiently on the cell surface: a right-handed β-helix domain (carbohydrate-binding module family 54, CBM-54), a Gly-Ser-rich loop, 1st immunoglobulin-like (Ig-like) fold domain, 1st β/α-barrel catalytic domain (glycoside hydrolase family 18, GH-18), 2nd Ig-like fold domain and 2nd β/α-barrel catalytic domain (GH-18). The structure of the CBM-54, flexibly linked to the catalytic region of ChiW, is described here for the first time. It is similar to those of carbohydrate lyases but displayed no detectable carbohydrate degradation activities. The CBM-54 of ChiW bound to cell wall polysaccharides, such as chin, chitosan, β-1,3-glucan, xylan and cellulose. The structural and biochemical data obtained here also indicated that the enzyme has deep and short active site clefts with endo-acting character. The affinity of CBM-54 towards cell wall polysaccharides and the degradation pattern of the catalytic domains may help to efficiently decompose the cell wall chitin through the contact surface. Furthermore, we clarify that other Gram-positive bacteria possess similar cell-surface-expressed multi-modular enzymes for cell wall polysaccharide degradation. PMID:27907169

  14. Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria.

    PubMed

    Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J

    2011-12-01

    Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.

  15. Dynamic morphology applied to human and animal leukemia cells.

    PubMed

    Haemmerli, G; Felix, H; Sträuli, P

    1979-08-01

    Dynamic morphology, which describes the shape and surface architecture of fixed cells in terms related to their behavior in the living state, is based on the concurrent use of two methods: scanning electron microscopy and microcinematography. This combination has both advantages and disadvantages. In this study on leukemic cells, we were able to draw the following conclusions about the usefulness of dynamic morphology. It confirms that white blood cells do not flatten on a glass substrate; they stay spherical and are either round or polarized. Round cells of similar size, whatever their origin, cannot be classified by dynamic morphology. Polarized cells can be classified as blasts, promyelocytes, myelocytes, granulocytes and lymphocytes, although polarized blast cells of different origins cannot be differentiated. Dynamic morphology cannot classify the same cell type as benign or malignant.

  16. Chromatic Titanium Photoanode for Dye-Sensitized Solar Cells under Rear Illumination.

    PubMed

    Huang, Chih-Hsiang; Chen, Yu-Wen; Chen, Chih-Ming

    2018-01-24

    Titanium (Ti) has high potential in many practical applications such as biomedicine, architecture, aviation, and energy. In this study, we demonstrate an innovative application of dye-sensitized solar cells (DSSCs) based on Ti photoanodes that can be integrated into the roof engineering of large-scale architectures. A chromatic Ti foil produced by anodizing oxidation (coloring) technology is an attractive roof material for large-scale architecture, showing a colorful appearance due to the formation of a reflective TiO 2 thin layer on both surfaces of Ti. The DSSC is fabricated on the backside of the chromatic Ti foil using the Ti foil as the working electrode, and this roof-DSSC hybrid configuration can be designed as an energy harvesting device for indoor artificial lighting. Our results show that the facet-textured TiO 2 layer on the chromatic Ti foil not only improves the optical reflectance for better light utilization but also effectively suppresses the charge recombination for better electron collection. The power conversion efficiency of the roof-DSSC hybrid system is improved by 30-40% with a main contribution from an improvement of short-circuit current density under standard 1 sun and dim-light (600-1000 lx) illumination.

  17. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  18. Plant cell wall architecture. Final report, 1 June 1994--30 October 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The authors have successfully finished the DOE-supported project entitled ``Plant cell wall architecture.`` During the funding period (June 1, 1994--October 30, 1996), they have published 6 research papers and 2 review articles. A brief description of these accomplishments is outlined as follows: (1) Improved and extended tissue printing techniques to reveal different surface and wall architectures, and to localized proteins and RNA. (2) Identification of an auxin- and cytokinin-regulated gene from Zinnia which is mainly expressed in cambium. (3) It was found that caffeoyl CoA 3-O-methyltransferase is involved in an alternative methylation pathway of lignin biosynthesis. (4) It was foundmore » that two different O-methyltransferases involved in lignification are differentially regulated in different lignifying tissues during development. They propose a scheme of monolignol biosynthesis combining both methylation pathways. (5) Identification of cysteine and serine proteases which are preferentially expressed during xylogenesis. This is the first report to identify an autolysis-associated cDNA in plants. (6) Characterization of two ribonuclease genes which are induced during xylogenesis and by wounding. (7) Isolation of cinnamic acid 4-hydroxylase gene and analysis of its expression patterns during lignification.« less

  19. A novel Sulfolobus virus with an exceptional capsid architecture.

    PubMed

    Wang, Haina; Guo, Zhenqian; Feng, Hongli; Chen, Yufei; Chen, Xiuqiang; Li, Zhimeng; Hernández-Ascencio, Walter; Dai, Xin; Zhang, Zhenfeng; Zheng, Xiaowei; Mora-López, Marielos; Fu, Yu; Zhang, Chuanlun; Zhu, Ping; Huang, Li

    2017-12-06

    A novel archaeal virus, denoted Sulfolobus ellipsoid virus 1 (SEV1), was isolated from an acidic hot spring in Costa Rica. The morphologically unique virion of SEV1 contains a protein capsid with 16 regularly spaced striations and an 11-nm-thick envelope. The capsid exhibits an unusual architecture in which the viral DNA, probably in the form of a nucleoprotein filament, wraps around the longitudinal axis of the virion in a plane to form a multilayered disk-like structure with a central hole, and 16 of these structures are stacked to generate a spool-like capsid. SEV1 harbors a linear double-stranded DNA genome of ∼23 kb, which encodes 38 predicted open reading frames (ORFs). Among the few ORFs with a putative function is a gene encoding a protein-primed DNA polymerase. Six-fold symmetrical virus-associated pyramids (VAPs) appear on the surface of the SEV1-infected cells, which are ruptured to allow the formation of a hexagonal opening and subsequent release of the progeny virus particles. Notably, the SEV1 virions acquire the lipid membrane in the cytoplasm of the host cell. The lipid composition of the viral envelope correlates with that of the cell membrane. These results suggest the use of a unique mechanism by SEV1 in membrane biogenesis. IMPORTANCE Investigation of archaeal viruses has greatly expanded our knowledge of the virosphere and its role in the evolution of life. Here we show that Sulfolobus ellipsoid virus 1 (SEV1), an archaeal virus isolated from a hot spring in Costa Rica, exhibits a novel viral shape and an unusual capsid architecture. The SEV1 DNA wraps multiple times in a plane around the longitudinal axis of the virion to form a disk-like structure, and 16 of these structures are stacked to generate a spool-like capsid. The virus acquires its envelope intracellularly and exits the host cell by creating a hexagonal hole on the host cell surface. These results shed significant light on the diversity of viral morphogenesis. Copyright © 2017 American Society for Microbiology.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scardino, A.J.; Zhang, H.; Cookson, D.J.

    Nano-engineered superhydrophobic surfaces have been investigated for potential fouling resistance properties. Integrating hydrophobic materials with nanoscale roughness generates surfaces with superhydrophobicity that have water contact angles ({theta}) >150{sup o} and concomitant low hysteresis (<10{sup o}). Three superhydrophobic coatings (SHCs) differing in their chemical composition and architecture were tested against major fouling species (Amphora sp., Ulva rigida, Polysiphonia sphaerocarpa, Bugula neritina, Amphibalanus amphitrite) in settlement assays. The SHC which had nanoscale roughness alone (SHC 3) deterred the settlement of all the tested fouling organisms, compared to selective settlement on the SHCs with nano- and micro-scale architectures. The presence of air incursionsmore » or nanobubbles at the interface of the SHCs when immersed was characterized using small angle X-ray scattering, a technique sensitive to local changes in electron density contrast resulting from partial or complete wetting of a rough interface. The coating with broad spectrum antifouling properties (SHC 3) had a noticeably larger amount of unwetted interface when immersed, likely due to the comparatively high work of adhesion (60.77 mJ m{sup -2} for SHC 3 compared to 5.78 mJ m-2 for the other two SHCs) required for creating solid/liquid interface from the solid/vapour interface. This is the first example of a non-toxic, fouling resistant surface against a broad spectrum of fouling organisms ranging from plant cells and non-motile spores, to complex invertebrate larvae with highly selective sensory mechanisms. The only physical property differentiating the immersed surfaces is the nano-architectured roughness which supports longer standing air incursions providing a novel non-toxic broad spectrum mechanism for the prevention of biofouling.« less

  1. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva

    PubMed Central

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-01-01

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis. The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis. The low icorr and high Rt in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis. PMID:28772615

  2. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva.

    PubMed

    Li, Lei; Li, Shunling; Qu, Qing; Zuo, Limei; He, Yue; Zhu, Baolin; Li, Cong

    2017-03-03

    Bacteria biofilm formation on metals is well-known, while biofilm architecture varies under different conditions. To date, few studies have determined the possible contribution to corrosion of titanium made by biofilm architecture. We investigated the interaction between the oral Streptococcus sanguis biofilm architecture and its influence on titanium corrosion in enriched artificial saliva using electrochemical methods and microscopic study. Patchy biofilms were observed on titanium surface after being immersed in solution containing S. sanguis . The thickness and size of the patchy biofilms increased with an increase of immersion time. The extensive pits were clearly observed by scanning electron microscopy, showing that adsorption of S. sanguis on titanium promoted the localized corrosion. The electrochemical results indicated that the corrosion rates were clearly accelerated in the presence of S. sanguis . The low i corr and high R t in the first 48 h indicated that a typical passive behavior still remained. Our study showed that the pitting corrosion of titanium was mainly attributed to the formation of a self-catalytic corrosion cell by the co-effect of patchy biofilm and organic acid secreted by S. sanguis .

  3. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  4. Live-cell imaging of ER-PM contact architecture by a novel TIRFM approach reveals extension of junctions in response to store-operated Ca2+-entry.

    PubMed

    Poteser, Michael; Leitinger, Gerd; Pritz, Elisabeth; Platzer, Dieter; Frischauf, Irene; Romanin, Christoph; Groschner, Klaus

    2016-10-19

    Nanometer-spaced appositions between endoplasmic reticulum and plasma membrane (ER-PM junctions) stabilized by membrane-joining protein complexes are critically involved in cellular Ca 2+ -handling and lipid trafficking. ER-PM junctional architecture and plasticity associated with inter-membrane communication are as yet barely understood. Here, we introduce a method to precisely characterize ER-PM junction morphology and dynamics with high temporal resolution and minimal disturbance of junctional intermembrane communication. We show that expression of soluble cytosolic fluorophores in combination with TIRFM enables to delineate ER and PM distance in the range of 10-150 nm. Live-cell imaging of sub-plasmalemmal structures in RBL-2H3 mast cells by this method, designated as fluorescence density mapping (FDM), revealed profound dynamics of ER-PM contact sites in response to store-depletion. We report the existence of a Ca 2+ -dependent process that expands the junctional ER to enlarge its contact surface with the PM, thereby promoting and stabilizing STIM1-Orai1 competent ER-PM junctions.

  5. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.

    PubMed

    Marinkovic, Milos; Block, Travis J; Rakian, Rubie; Li, Qihong; Wang, Exing; Reilly, Matthew A; Dean, David D; Chen, Xiao-Dong

    2016-01-01

    For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics. Published by Elsevier B.V.

  6. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    PubMed

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  7. Surface Physicochemical Properties at the Micro and Nano Length Scales: Role on Bacterial Adhesion and Xylella fastidiosa Biofilm Development

    PubMed Central

    Lorite, Gabriela S.; Janissen, Richard; Clerici, João H.; Rodrigues, Carolina M.; Tomaz, Juarez P.; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A.; Cotta, Mônica A.

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant. PMID:24073256

  8. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    NASA Astrophysics Data System (ADS)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  9. Multiplexed multi-scale imaging: novel roles for the scaffold protein IQGAP1 in epithelial cell development (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schweikhard, Volker

    2016-02-01

    The precise sub-cellular spatial localization of multi-protein complexes is increasingly recognized as a key mechanism governing the organization of mammalian cells. Consequently, there is a need for novel microscopy techniques capable of investigating such sub-cellular architectures in comprehensive detail. Here, we applied a novel multiplexed STORM super-resolution microscopy technique, in combination with high-throughput immunofluorescence microscopy and live-cell imaging, to investigate the roles of the scaffold protein IQGAP1 in epithelial cells. IQGAP1 is known to orchestrate a wide range of biological processes, including intracellular signaling, cytoskeletal regulation, cell-cell adhesion, and protein trafficking, by forming distinct complexes with a number of known interaction partners, and recruiting these complexes to specific subcellular locations. Our results demonstrate that, in addition to supporting epithelial adherens junctions by associating with specialized cortical actin structures, IQGAP1 plays a second role in which it controls the confinement of a unique, previously undocumented class of membranous compartments to the basal actin cortex. These largely immotile yet highly dynamic structures appear transiently as cells merge into clusters and establish of apical-basolateral (epithelial) polarity, and are identified as an intermediate compartment in the endocytic recycling pathways for cell junction complexes and cell surface receptors. Although these two functions of IQGAP1 occur in parallel and largely independently of each other, they both support the maturation and maintenance of polarized epithelial cell architectures.

  10. Cathode architectures for alkali metal / oxygen batteries

    DOEpatents

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  11. Functionalized C@TiO2 hollow spherical architecture for multifunctional applications.

    PubMed

    Chattopadhyay, Shreyasi; Mishra, Manish Kr; De, Goutam

    2016-03-28

    Hierarchical anatase titania (TiO2) with a hollow spherical architecture decorated with functionalized carbon dots (C(F)@THS) was synthesized by a solvothermal decomposition of titanium(IV) isopropoxide (TTIP) in the presence of a solution mixture containing thiourea and citric acid. Interestingly, the concomitant presence of thiourea and citric acid has been found to be essential to obtain such hierarchical hollow architecture because individual constituents produced non-hollow spheres when hydrothermally treated with TTIP. The co-existence of these two constituents also accelerates the growth of hollow spheres. BET surface area study of C(F)@THS revealed the existence of a slit like mesoporosity with a surface area value of 81 m(2) g(-1). Time dependent FESEM and TEM studies confirmed the formation of nanoflake like structures in the intermediate stages followed by the growth of a hollow spherical architecture. We proposed that these nanoflakes get accumulated on the bubble surface to form such hollow spherical morphology. The PL spectral study and Raman shift of the as prepared C(F)@THS confirmed the presence of functionalized graphitic C dots on the surface. A thorough XPS analysis was conducted to explore the nature and relative atomic concentration of the functional groups (-COOH, -CONH2, -NH2). This C(F)@THS sample showed very fast and selective dye (methylene blue and methyl violet) adsorption ability (even from a mixture of two different dye solutions) due to these δ-site containing functional groups on the surface. As C(F)@THS showed only two times reusability for adsorption, the dye adsorbed C(F)@THS was calcined at 450 °C in air to yield organic free anatase TiO2 hollow spheres (THS) with a retention of the original structure. THS was recycled as an efficient and a reusable photocatalyst (k = 9.36 × 10(-2) min(-1)) as well as a photoanode in dye sensitized solar cells (DSSCs) having Jsc value of 19.58 mA cm(-2) with overall efficiency of 6.48%.

  12. Reconfigurable firmware-defined radios synthesized from standard digital logic cells

    NASA Astrophysics Data System (ADS)

    Faisal, Muhammad; Park, Youngmin; Wentzloff, David D.

    2011-06-01

    This paper presents recent work on reconfigurable all-digital radio architectures. We leverage the flexibility and scalability of synthesized digital cells to construct reconfigurable radio architectures that consume significantly less power than a software defined radio implementing similar architectures. We present two prototypes of such architectures that can receive and demodulate FM and FRS band signals. Moreover, a radio architecture based on a reconfigurable alldigital phase-locked loop for coherent demodulation is presented.

  13. Laser-Sintered Constructs with Bio-inspired Porosity and Surface Micro/Nano-Roughness Enhance Mesenchymal Stem Cell Differentiation and Matrix Mineralization In Vitro.

    PubMed

    Cheng, Alice; Cohen, David J; Boyan, Barbara D; Schwartz, Zvi

    2016-12-01

    Direct metal laser sintering can produce porous Ti-6Al-4V orthopedic and dental implants. The process requires reduced resources and time and can provide greater structural control than machine manufacturing. Implants in bone are colonized by mesenchymal stem cells (MSCs), which can differentiate into osteoblasts and contribute to osseointegration. This study examined osteoblast differentiation and matrix mineralization of human MSCs cultured on laser-sintered Ti-6Al-4V constructs with varying porosity and at different time scales. 2D solid disks and low, medium and high porosity (LP, MP, and HP) 3D constructs based on a human trabecular bone template were laser sintered from Ti-6Al-4V powder and further processed to have micro- and nanoscale roughness. hMSCs exhibited greater osteoblastic differentiation and local factor production on all 3D porous constructs compared to 2D surfaces, which was sustained for 9 days without use of exogenous factors. hMSCs cultured for 8 weeks on MP constructs in osteogenic medium (OM), OM supplemented with BMP2 or collagen-coated MP constructs in OM exhibited bone-like extracellular matrix mineralization. Use of bio-inspired porosity for the 3D architecture of additively manufactured Ti-6Al-4V enhanced osteogenic differentiation of hMSCs beyond surface roughness alone. This study suggests that a 3D architecture may enhance the osseointegration of orthopedic and dental implants in vivo.

  14. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.

    PubMed

    Biswas, Rana; Timmons, Erik

    2013-09-09

    A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

  15. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  16. Nanoscale nuclear architecture for cancer diagnosis by spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Staton, Kevin D.; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2011-03-01

    Alterations in nuclear architecture are the hallmark diagnostic characteristic of cancer cells. In this work, we show that the nuclear architectural characteristics quantified by spatial-domain low-coherence quantitative phase microscopy (SL-QPM), is more sensitive for the identification of cancer cells than conventional cytopathology. We demonstrated the importance of nuclear architectural characteristics in both an animal model of intestinal carcinogenesis - APC/Min mouse model and human cytology specimens with colorectal cancer by identifying cancer from cytologically noncancerous appearing cells. The determination of nanoscale nuclear architecture using this simple and practical optical instrument is a significant advance towards cancer diagnosis.

  17. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    PubMed

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues. Copyright © 2015. Published by Elsevier B.V.

  18. Lunar Surface Architecture Utilization and Logistics Support Assessment

    NASA Astrophysics Data System (ADS)

    Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David

    2008-01-01

    Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.

  19. Lensless Tomographic Imaging of Near Surface Structures of Frozen Hydrated Malaria-Infected Human Erythrocytes by Coherent X-Ray Diffraction Microscopy.

    PubMed

    Frank, Viktoria; Chushkin, Yuriy; Fröhlich, Benjamin; Abuillan, Wasim; Rieger, Harden; Becker, Alexandra S; Yamamoto, Akihisa; Rossetti, Fernanda F; Kaufmann, Stefan; Lanzer, Michael; Zontone, Federico; Tanaka, Motomu

    2017-10-26

    Lensless, coherent X-ray diffraction microscopy has been drawing considerable attentions for tomographic imaging of whole human cells. In this study, we performed cryogenic coherent X-ray diffraction imaging of human erythrocytes with and without malaria infection. To shed light on structural features near the surface, "ghost cells" were prepared by the removal of cytoplasm. From two-dimensional images, we found that the surface of erythrocytes after 32 h of infection became much rougher compared to that of healthy, uninfected erythrocytes. The Gaussian roughness of an infected erythrocyte surface (69 nm) is about two times larger than that of an uninfected one (31 nm), reflecting the formation of protein knobs on infected erythrocyte surfaces. Three-dimensional tomography further enables to obtain images of the whole cells with no remarkable radiation damage, whose accuracy was estimated using phase retrieval transfer functions to be as good as 64 nm for uninfected and 80 nm for infected erythrocytes, respectively. Future improvements in phase retrieval algorithm, increase in degree of coherence, and higher flux in combination with complementary X-ray fluorescence are necessary to gain both structural and chemical details of mesoscopic architectures, such as cytoskeletons, membraneous structures, and protein complexes, in frozen hydrated human cells, especially under diseased states.

  20. All-trans retinoic acid results in irregular repair of septa and fails to inhibit proinflammatory macrophages.

    PubMed

    Seifart, C; Muyal, J P; Plagens, A; Yildirim, A Ö; Kohse, K; Grau, V; Sandu, S; Reinke, C; Tschernig, T; Vogelmeier, C; Fehrenbach, H

    2011-08-01

    All-trans retinoic acid (ATRA) is controversially discussed in emphysema therapy. We re-evaluated ATRA in the elastase model and hypothesised that beneficial effects should be reflected by increased alveolar surface area, elastin expression and downregulation of inflammatory mediators and matrix metalloproteinases (MMPs). Emphysema was induced by porcine pancreatic elastase versus saline in Sprague-Dawley rats. On days 26-37, rats received daily intraperitoneal injections with ATRA (500 μg · kg(-1) body weight) versus olive oil. Lungs were removed at day 38. Rat alveolar epithelial L2 cells were incubated with/without elastase followed by ATRA- or vehicle-treatment, respectively. ATRA only partially ameliorated structural defects. Alveolar walls exhibited irregular architecture: increased arithmetic mean thickness, reduction in surface coverage by alveolar epithelial cells type II. ATRA only partially restored reduced soluble elastin. It tended to increase the ratio of ED1(+):ED2(+) macrophages. Bronchoalveolar lavage (BAL) cells exhibited a proinflammatory state and high expression of interleukin-1β, cytokine-induced neutrophil chemoattractant-1, tumour necrosis factor-α, nuclear factor-κB, MMP-2, MMP-9, MMP-12, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 in emphysema, with ATRA exerting only few effects. MMP-7 was highly induced by ATRA in healthy but not in emphysematous lungs. ATRA reduced both MMP-2 and TIMP-1 activity in BAL fluid of emphysematous lungs. ATRA-therapy may bear the risk of unwanted side-effects on alveolar septal architecture in emphysematous lungs.

  1. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-04-14

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  2. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    PubMed

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  3. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  4. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    PubMed Central

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  5. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  6. Dendrimers as versatile platform in drug delivery applications.

    PubMed

    Svenson, Sonke

    2009-03-01

    About forty percent of newly developed drugs are rejected by the pharmaceutical industry and will never benefit a patient because of poor bioavailability due to low water solubility and/or cell membrane permeability. New delivery technologies could help to overcome this challenge. Nanostructures with uniform and well-defined particle size and shape are of eminent interest in biomedical applications because of their ability to cross cell membranes and to reduce the risk of premature clearance from the body. The high level of control over the dendritic architecture (size, branching density, surface functionality) makes dendrimers ideal carriers in these applications. Many commercial small molecule drugs with anticancer, anti-inflammatory, and antimicrobial activity have been successfully associated with dendrimers such as poly(amidoamine) (PAMAM), poly(propylene imine) (PPI or DAB) and poly(etherhydroxylamine) (PEHAM) dendrimers, either via physical interactions or through chemical bonding ('prodrug approach'). Targeted delivery is possible via targeting ligands conjugated to the dendrimer surface or via the enhanced permeability and retention (EPR) effect. The biocompatibility of dendrimers follows patterns known from other small particles. Cationic surfaces show cytotoxicity; however, derivatization with fatty acid or PEG chains, reducing the overall charge density and minimizing contact between cell surfaces and dendrimers, can reduce toxic effects.

  7. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  8. Proteopolymersomes: in vitro production of a membrane protein in polymersome membranes.

    PubMed

    Nallani, Madhavan; Andreasson-Ochsner, Mirjam; Tan, Cherng-Wen Darren; Sinner, Eva-Kathrin; Wisantoso, Yudi; Geifman-Shochat, Susana; Hunziker, Walter

    2011-12-01

    Polymersomes are stable self-assembled architectures which mimic cell membranes. For characterization, membrane proteins can be incorporated into such bio-mimetic membranes by reconstitution methods, leading to so-called proteopolymersomes. In this work, we demonstrate the direct incorporation of a membrane protein into polymersome membranes by a cell-free expression system. Firstly, we demonstrate pore formation in the preformed polymersome membrane using α-hemolysin. Secondly, we use claudin-2, a protein involved in cell-cell interactions, to demonstrate the in vitro expression of a membrane protein into these polymersomes. Surface plasmon resonance (Biacore) binding studies with the claudin-2 proteopolymersomes and claudin-2 specific antibodies are performed to show the presence of the in vitro expressed protein in polymersome membranes.

  9. Dynamics of F-actin prefigure the structure of butterfly wing scales.

    PubMed

    Dinwiddie, April; Null, Ryan; Pizzano, Maria; Chuong, Lisa; Leigh Krup, Alexis; Ee Tan, Hwei; Patel, Nipam H

    2014-08-15

    The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes

    PubMed Central

    Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.

    2012-01-01

    Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604

  11. High-surface-area architectures for improved charge transfer kinetics at the dark electrode in dye-sensitized solar cells.

    PubMed

    Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2014-06-11

    Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

  12. Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure.

    PubMed

    Kadkhodapour, J; Montazerian, H; Raeisi, S

    2014-10-01

    Rapid prototyping (RP) has been a promising technique for producing tissue engineering scaffolds which mimic the behavior of host tissue as properly as possible. Biodegradability, agreeable feasibility of cell growth, and migration parallel to mechanical properties, such as strength and energy absorption, have to be considered in design procedure. In order to study the effect of internal architecture on the plastic deformation and failure pattern, the architecture of triply periodic minimal surfaces which have been observed in nature were used. P and D surfaces at 30% and 60% of volume fractions were modeled with 3∗3∗ 3 unit cells and imported to Objet EDEN 260 3-D printer. Models were printed by VeroBlue FullCure 840 photopolymer resin. Mechanical compression test was performed to investigate the compressive behavior of scaffolds. Deformation procedure and stress-strain curves were simulated by FEA and exhibited good agreement with the experimental observation. Current approaches for predicting dominant deformation mode under compression containing Maxwell's criteria and scaling laws were also investigated to achieve an understanding of the relationships between deformation pattern and mechanical properties of porous structures. It was observed that effect of stress concentration in TPMS-based scaffolds resultant by heterogeneous mass distribution, particularly at lower volume fractions, led to a different behavior from that of typical cellular materials. As a result, although more parameters are considered for determining dominant deformation in scaling laws, two mentioned approaches could not exclusively be used to compare the mechanical response of cellular materials at the same volume fraction. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Exopolysaccharide matrix of developed Candida albicans biofilms after exposure to antifungal agents.

    PubMed

    da Silva, Wander José; Gonçalves, Letícia Machado; Seneviratne, Jayampath; Parahitiyawa, Nipuna; Samaranayake, Lakshman Perera; Del Bel Cury, Altair Antoninha

    2012-01-01

    This study aimed to evaluate the effects of fluconazole or nystatin exposure on developed Candida albicans biofilms regarding their exopolysaccharide matrix. The minimal inhibitory concentration (MIC) against fluconazole or nystatin was determined for C. albicans reference strain (ATCC 90028). Poly(methlymethacrylate) resin (PMMA) specimens were fabricated according to the manufacturer's instructions and had their surface roughness measured. Biofilms were developed on specimens surfaces for 48 h and after that were exposed during 24 h to fluconazole or nystatin prepared in a medium at MIC, 10 x MIC or 100 x MIC. Metabolic activity was evaluated using an XTT assay. Production of soluble and insoluble exopolysaccharide and intracellular polysaccharides was evaluated by the phenol-sulfuric method. Confocal laser scanning microscope was used to evaluate biofilm architecture and percentage of dead/live cells. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. The presence of fluconazole or nystatin at concentrations higher than MIC results in a great reduction of metabolic activity (p<0.001). At MIC or 10 x MIC, fluconazole showed high amounts of intracellular polysaccharides (p<0.05), but did not affect the exopolysaccharide matrix (p>0.05). The exposure to nystatin also did not alter the exopolysaccharide matrix at all the tested concentrations (p>0.05). Biofilm architecture was not affected by either of the antifungal agents (p>0.05). Nystatin promoted higher proportion of dead cells (p<0.05). It may be concluded that fluconazole and nystatin above the MIC concentration reduced the metabolic activity of C. albicans biofilms; however, they were not able to alter the exopolysaccharide matrix and biofilm architecture.

  14. Protein-inorganic hybrid nanoflowers as ultrasensitive electrochemical cytosensing interfaces for evaluation of cell surface sialic acid.

    PubMed

    Cao, Hongmei; Yang, Da-Peng; Ye, Daixin; Zhang, Xianxia; Fang, Xueen; Zhang, Song; Liu, Baohong; Kong, Jilie

    2015-06-15

    The identification of biocompatible nanomaterials with high conductivities as sensing interfaces is important in developing novel electrochemical cytosensors. We prepared a novel protein-inorganic nanomaterial-bovine serum albumin (BSA) incorporated Ag nanoflowers with three-dimensional porous architectures, using a simple biomimetic method. The BSA-incorporated Ag nanoflowers were modified on a glassy carbon electrode (GCE) surface and conjugated with a targeting lectin molecule, i.e., Sambucus nigra agglutinin (SNA), for sensing DLD-1 human colon cancer cells. The BSA-incorporated Ag nanoflowers were a suitable platform, and showed improved cell-immobilization capacity, and good biocompatibility, with retention of activity of the immobilized cells. These properties are attributed to the large surface area of the porous structure and the natural BSA layer acting as a biocompatible support. The attachment of DLD-1 cells to the GCE increased the electron-transfer resistance, with a good correlation with the logarithm of the concentration from 1.35×10(2) to 1.35×10(7) cells mL(-1), with a low detection limit of 40 cells mL(-1). Based on the affinity between SNA and sialic acid (SA), the UV-vis absorption spectrum of the one-step reaction between SA and acidic ninhydrin indicated that the average number of SA molecules on a single living DLD-1 cell surface was approximately 2.16×10(12). This proposed cytosensing strategy had good reproducibility, acceptable precision, and high specificity for SA-over-expressed cells, indicating that it has potential applications for the early monitoring of tumor cells and convenient evaluation of SA on living cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Synthesis and Functional Reconstitution of Light-Harvesting Complex II into Polymeric Membrane Architectures.

    PubMed

    Zapf, Thomas; Tan, Cherng-Wen Darren; Reinelt, Tobias; Huber, Christoph; Shaohua, Ding; Geifman-Shochat, Susana; Paulsen, Harald; Sinner, Eva-Kathrin

    2015-12-01

    One of most important processes in nature is the harvesting and dissipation of solar energy with the help of light-harvesting complex II (LHCII). This protein, along with its associated pigments, is the main solar-energy collector in higher plants. We aimed to generate stable, highly controllable, and sustainable polymer-based membrane systems containing LHCII-pigment complexes ready for light harvesting. LHCII was produced by cell-free protein synthesis based on wheat-germ extract, and the successful integration of LHCII and its pigments into different membrane architectures was monitored. The unidirectionality of LHCII insertion was investigated by protease digestion assays. Fluorescence measurements indicated chlorophyll integration in the presence of LHCII in spherical as well as planar bilayer architectures. Surface plasmon enhanced fluorescence spectroscopy (SPFS) was used to reveal energy transfer from chlorophyll b to chlorophyll a, which indicates native folding of the LHCII proteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Biophysics and Cell Biology of Lipid Droplets

    PubMed Central

    Thiam, A. Rachid; Farese, Robert V.; Walther, Tobias C.

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that are found in most cells, where they have fundamental and dynamic roles in metabolism. Recent investigations showed the importance of basic biophysical principles of emulsions for LD biology. At their essence, LDs are the dispersed phase of an oil-in-water emulsion in the aqueous cytosol of cells. They function prominently in storing oil-based reserves of metabolic energy and components of membrane lipids. Because of their unique architecture, with an interface between the dispersed oil phase and the aqueous cytosol, LDs require specialized mechanisms for their formation, growth, and shrinkage. Such mechanisms enable cells to use emulsified oil in a controlled manner (e.g., when demands for metabolic energy or membrane synthesis increase). Regulation of the composition of the phospholipid surfactants at the LD surface is crucial for LD growth and catabolism and also modifies protein targeting to LD surfaces. Here, we review new insights into the cell biology of LDs, with an emphasis on concepts of emulsion science and biophysics that apply to this organelle. PMID:24220094

  17. Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells

    PubMed Central

    Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando

    2012-01-01

    SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376

  18. A Dual Launch Robotic and Human Lunar Mission Architecture

    NASA Technical Reports Server (NTRS)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  19. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    PubMed

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  1. Local deformation behavior of surface porous polyether-ether-ketone.

    PubMed

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  3. Parallel, stochastic measurement of molecular surface area.

    PubMed

    Juba, Derek; Varshney, Amitabh

    2008-08-01

    Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.

  4. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization.

    PubMed

    Lee, S Seirin; Tashiro, S; Awazu, A; Kobayashi, R

    2017-01-01

    Specific features of nuclear architecture are important for the functional organization of the nucleus, and chromatin consists of two forms, heterochromatin and euchromatin. Conventional nuclear architecture is observed when heterochromatin is enriched at nuclear periphery, and it represents the primary structure in the majority of eukaryotic cells, including the rod cells of diurnal mammals. In contrast to this, inverted nuclear architecture is observed when the heterochromatin is distributed at the center of the nucleus, which occurs in the rod cells of nocturnal mammals. The inverted architecture found in the rod cells of the adult mouse is formed through the reorganization of conventional architecture during terminal differentiation. Although a previous experimental approach has demonstrated the relationship between these two nuclear architecture types at the molecular level, the mechanisms underlying long-range reorganization processes remain unknown. The details of nuclear structures and their spatial and temporal dynamics remain to be elucidated. Therefore, a comprehensive approach, using mathematical modeling, is required, in order to address these questions. Here, we propose a new mathematical approach to the understanding of nuclear architecture dynamics using the phase-field method. We successfully recreated the process of nuclear architecture reorganization, and showed that it is robustly induced by physical features, independent of a specific genotype. Our study demonstrates the potential of phase-field method application in the life science fields.

  5. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission.

    PubMed

    Do, Thao; Murphy, Gavin; Earl, Lesley A; Del Prete, Gregory Q; Grandinetti, Giovanna; Li, Guan-Han; Estes, Jacob D; Rao, Prashant; Trubey, Charles M; Thomas, James; Spector, Jeffrey; Bliss, Donald; Nath, Avindra; Lifson, Jeffrey D; Subramaniam, Sriram

    2014-09-01

    HIV transmission efficiency is greatly increased when viruses are transmitted at virological synapses formed between infected and uninfected cells. We have previously shown that virological synapses formed between HIV-pulsed mature dendritic cells (DCs) and uninfected T cells contain interdigitated membrane surfaces, with T cell filopodia extending toward virions sequestered deep inside invaginations formed on the DC membrane. To explore membrane structural changes relevant to HIV transmission across other types of intercellular conjugates, we used a combination of light and focused ion beam scanning electron microscopy (FIB-SEM) to determine the three-dimensional (3D) architectures of contact regions between HIV-1-infected CD4(+) T cells and either uninfected human CD4(+) T cells or human fetal astrocytes. We present evidence that in each case, membrane extensions that originate from the uninfected cells, either as membrane sheets or filopodial bridges, are present and may be involved in HIV transmission from infected to uninfected cells. We show that individual virions are distributed along the length of astrocyte filopodia, suggesting that virus transfer to the astrocytes is mediated, at least in part, by processes originating from the astrocyte itself. Mechanisms that selectively disrupt the polarization and formation of such membrane extensions could thus represent a possible target for reducing viral spread. Our findings lead to new insights into unique aspects of HIV transmission in the brain and at T cell-T cell synapses, which are thought to be a predominant mode of rapid HIV transmission early in the infection process. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Cross-cutting High Surface Area Graphene-based Frameworks with Controlled Pore Structure/Dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaillard, J.

    The goal of this project is to enhance the performance of graphene-based materials by manufacturing specific 3D architectures. The materials have global applications regarding fuel cell catalysts, gas adsorbents, supercapacitor/battery electrodes, ion (e.g., actinide) capture, gas separation, oil adsorption, and catalysis. This research focuses on hydrogen storage for hydrogen fuel cell vehicles with a potential transformational impact on hydrogen adsorbents that exhibit high gravimetric and volumetric density, a clean energy application sought by the Department of Energy. The development of an adsorbent material would enable broad commercial opportunities in hydrogen-fueled vehicles, promote new advanced nanomanufacturing scale-up, and open other opportunitiesmore » at Savannah River National Laboratory to utilize a high surface area material that is robust, chemically stable, and radiation resistant.« less

  7. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  8. Polyelectrolyte Multilayers in Tissue Engineering

    PubMed Central

    Detzel, Christopher J.; Larkin, Adam L.

    2011-01-01

    The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation. PMID:21210759

  9. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Rossi, Nicholas A A; Medvedev, Nadia; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-11-01

    Hyperbranched polyglycerol (HPG) and polyethylene glycol (PEG) polymers with similar hydrodynamic sizes in solution were grafted to red blood cells (RBCs) to investigate the impact of polymer architecture on the cell structure and function. The hydrodynamic sizes of polymers were calculated from the diffusion coefficients measured by pulsed field gradient NMR. The hydration of the HPG and PEG was determined by differential scanning calorimetry analyses. RBCs grafted with linear PEG had different properties compared to the compact HPG grafted RBCs. HPG grafted RBCs showed much higher electrophoretic mobility values than PEG grafted RBCs at similar grafting concentrations and hydrodynamic sizes indicating differences in the structure of the polymer exclusion layer on the cell surface. PEG grafting impacted the deformation properties of the membrane to a greater degree than HPG. The complement mediated lysis of the grafted RBCs was dependent on the type of polymer, grafting concentration and molecular size of grafted chains. At higher molecular weights and graft concentrations both HPG and PEG triggered complement activation. The magnitude of activation was higher with HPG possibly due to the presence of many hydroxyl groups per molecule. HPG grafted RBCs showed significantly higher levels of CD47 self-protein accessibility than PEG grafted RBCs at all grafting concentrations and molecular sizes. PEG grafted polymers provided, in general, a better shielding and protection to ABO and minor antigens from antibody recognition than HPG polymers, however, the compact HPGs provided greater protection of certain antigens on the RBC surface. Our data showed that HPG 20 kDa and HPG 60 kDa grafted RBCs exhibited properties that are more comparable to the native RBC than PEG 5 kDa and PEG 10 kDa grafted RBCs of comparable hydrodynamic sizes. The study shows that small compact polymers such as HPG 20 kDa have a greater potential in the generation of functional RBC for therapeutic delivery applications. The intermediate sized polymers (PEG or HPG) which showed greater antigen camouflage at lower grafting concentrations have significant potential in transfusion as universal red blood donor cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  11. Application of Tessellation in Architectural Geometry Design

    NASA Astrophysics Data System (ADS)

    Chang, Wei

    2018-06-01

    Tessellation plays a significant role in architectural geometry design, which is widely used both through history of architecture and in modern architectural design with the help of computer technology. Tessellation has been found since the birth of civilization. In terms of dimensions, there are two- dimensional tessellations and three-dimensional tessellations; in terms of symmetry, there are periodic tessellations and aperiodic tessellations. Besides, some special types of tessellations such as Voronoi Tessellation and Delaunay Triangles are also included. Both Geometry and Crystallography, the latter of which is the basic theory of three-dimensional tessellations, need to be studied. In history, tessellation was applied into skins or decorations in architecture. The development of Computer technology enables tessellation to be more powerful, as seen in surface control, surface display and structure design, etc. Therefore, research on the application of tessellation in architectural geometry design is of great necessity in architecture studies.

  12. Trophic interactions induce spatial self-organization of microbial consortia on rough surfaces.

    PubMed

    Wang, Gang; Or, Dani

    2014-10-24

    The spatial context of microbial interactions common in natural systems is largely absent in traditional pure culture-based microbiology. The understanding of how interdependent microbial communities assemble and coexist in limited spatial domains remains sketchy. A mechanistic model of cell-level interactions among multispecies microbial populations grown on hydrated rough surfaces facilitated systematic evaluation of how trophic dependencies shape spatial self-organization of microbial consortia in complex diffusion fields. The emerging patterns were persistent irrespective of initial conditions and resilient to spatial and temporal perturbations. Surprisingly, the hydration conditions conducive for self-assembly are extremely narrow and last only while microbial cells remain motile within thin aqueous films. The resulting self-organized microbial consortia patterns could represent optimal ecological templates for the architecture that underlie sessile microbial colonies on natural surfaces. Understanding microbial spatial self-organization offers new insights into mechanisms that sustain small-scale soil microbial diversity; and may guide the engineering of functional artificial microbial consortia.

  13. Mechanotransduction through Cytoskeleton

    NASA Technical Reports Server (NTRS)

    Ingber, Donald

    2002-01-01

    The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses, such as those due to gravity, through their cell surface adhesion receptors (e.g., integrins) and that they respond as a result of structural arrangements with their internal cytoskeleton (CSK) which are orchestrated through use of tensegrity architecture. In this project, we carried out studies to define the architectural and molecular basis of cellular mechanotransduction. Our major goal was to define the molecular pathway that mediates mechanical force transfer between integrins and the CSK and to determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation. The specific aims of this proposal were: 1. To define the molecular basis of mechanical coupling between integrins, vinculin, and the actin CSK; 2. To develop a computer simulation of how mechanical stresses alter CSK structure and test this model in living cells; 3. To determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response.

  14. Advancing colloidal quantum dot photovoltaic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Arinze, Ebuka S.; Palmquist, Nathan; Thon, Susanna M.

    2016-06-01

    Colloidal quantum dots (CQDs) are attractive materials for solar cells due to their low cost, ease of fabrication and spectral tunability. Progress in CQD photovoltaic technology over the past decade has resulted in power conversion efficiencies approaching 10%. In this review, we give an overview of this progress, and discuss limiting mechanisms and paths for future improvement in CQD solar cell technology.We briefly summarize nanoparticle synthesis and film processing methods and evaluate the optoelectronic properties of CQD films, including the crucial role that surface ligands play in materials performance. We give an overview of device architecture engineering in CQD solar cells. The compromise between carrier extraction and photon absorption in CQD photovoltaics is analyzed along with different strategies for overcoming this trade-off. We then focus on recent advances in absorption enhancement through innovative device design and the use of nanophotonics. Several light-trapping schemes, which have resulted in large increases in cell photocurrent, are described in detail. In particular, integrating plasmonic elements into CQD devices has emerged as a promising approach to enhance photon absorption through both near-field coupling and far-field scattering effects. We also discuss strategies for overcoming the single junction efficiency limits in CQD solar cells, including tandem architectures, multiple exciton generation and hybrid materials schemes. Finally, we offer a perspective on future directions for the field and the most promising paths for achieving higher device efficiencies.

  15. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    PubMed

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-08

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  16. Exopolysaccharide microchannels direct bacterial motility and organize multicellular behavior

    DOE PAGES

    Berleman, James E.; Zemla, Marcin; Remis, Jonathan P.; ...

    2016-05-06

    The myxobacteria are a family of soil bacteria that form biofilms of complex architecture, aligned multilayered swarms or fruiting body structures that are simple or branched aggregates containing myxospores. Here, we examined the structural role of matrix exopolysaccharide (EPS) in the organization of these surface-dwelling bacterial cells. Using time-lapse light and fluorescence microscopy, as well as transmission electron microscopy and focused ion beam/scanning electron microscopy (FIB/SEM) electron microscopy, we found that Myxococcus xanthus cell organization in biofilms is dependent on the formation of EPS microchannels. Cells are highly organized within the three-dimensional structure of EPS microchannels that are required formore » cell alignment and advancement on surfaces. Mutants lacking EPS showed a lack of cell orientation and poor colony migration. Purified, cell-free EPS retains a channel-like structure, and can complement EPS - mutant motility defects. In addition, EPS provides the cooperative structure for fruiting body formation in both the simple mounds of M. xanthus and the complex, tree-like structures of Chondromyces crocatus. We furthermore investigated the possibility that EPS impacts community structure as a shared resource facilitating cooperative migration among closely related isolates of M. xanthus.« less

  17. Dystroglycan loss disrupts polarity and beta-casein induction inmammary epithelial cells by perturbing laminin anchoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, M. Lynn; Oppizzi, Maria Luisa; Henry, Michael D.

    2006-02-17

    Precise contact between epithelial cells and their underlying basement membrane is critical to the maintenance of tissue architecture and function. To understand the role that the laminin receptor dystroglycan (DG) plays in these processes, we assayed cell responses to laminin-111 following conditional ablation of DG expression in cultured mammary epithelial cells (MECs). Strikingly, DG loss disrupted laminin-111-induced polarity and {beta}-casein production, and abolished laminin assembly at the step of laminin binding to the cell surface. DG re-expression restored these deficiencies. Investigations of mechanism revealed that DG cytoplasmic sequences were not necessary for laminin assembly and signaling, and only when themore » entire mucin domain of extracellular DG was deleted did laminin assembly not occur. These results demonstrate that DG is essential as a laminin-111 co-receptor in MECs that functions by mediating laminin anchoring to the cell surface, a process that allows laminin polymerization, tissue polarity, and {beta}-casein induction. The observed loss of laminin-111 assembly and signaling in DG-/-MECs provides insights into the signaling changes occurring in breast carcinomas and other cancers, where DG's laminin-binding function is frequently defective.« less

  18. Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy.

    PubMed

    Paul, Biplab C; El-Ganiny, Amira M; Abbas, Mariam; Kaminskyj, Susan G W; Dahms, Tanya E S

    2011-05-01

    The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.

  19. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  20. Exocyst-Dependent Membrane Addition Is Required for Anaphase Cell Elongation and Cytokinesis in Drosophila

    PubMed Central

    Giansanti, Maria Grazia; Vanderleest, Timothy E.; Jewett, Cayla E.; Sechi, Stefano; Frappaolo, Anna; Fabian, Lacramioara; Robinett, Carmen C.; Brill, Julie A.; Loerke, Dinah; Fuller, Margaret T.; Blankenship, J. Todd

    2015-01-01

    Mitotic and cytokinetic processes harness cell machinery to drive chromosomal segregation and the physical separation of dividing cells. Here, we investigate the functional requirements for exocyst complex function during cell division in vivo, and demonstrate a common mechanism that directs anaphase cell elongation and cleavage furrow progression during cell division. We show that onion rings (onr) and funnel cakes (fun) encode the Drosophila homologs of the Exo84 and Sec8 exocyst subunits, respectively. In onr and fun mutant cells, contractile ring proteins are recruited to the equatorial region of dividing spermatocytes. However, cytokinesis is disrupted early in furrow ingression, leading to cytokinesis failure. We use high temporal and spatial resolution confocal imaging with automated computational analysis to quantitatively compare wild-type versus onr and fun mutant cells. These results demonstrate that anaphase cell elongation is grossly disrupted in cells that are compromised in exocyst complex function. Additionally, we observe that the increase in cell surface area in wild type peaks a few minutes into cytokinesis, and that onr and fun mutant cells have a greatly reduced rate of surface area growth specifically during cell division. Analysis by transmission electron microscopy reveals a massive build-up of cytoplasmic astral membrane and loss of normal Golgi architecture in onr and fun spermatocytes, suggesting that exocyst complex is required for proper vesicular trafficking through these compartments. Moreover, recruitment of the small GTPase Rab11 and the PITP Giotto to the cleavage site depends on wild-type function of the exocyst subunits Exo84 and Sec8. Finally, we show that the exocyst subunit Sec5 coimmunoprecipitates with Rab11. Our results are consistent with the exocyst complex mediating an essential, coordinated increase in cell surface area that potentiates anaphase cell elongation and cleavage furrow ingression. PMID:26528720

  1. FS laser processing of bio-polymer thin films for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Nathala, Chandra S. R.; Kavatzikidou, P.; Ranella, A.; Szoszkiewicz, R.; Husinsky, W.; Fotakis, C.

    2016-09-01

    The use of ultra-short pulses for nanoengineering of biomaterials opens up possibilities for biological, medical and tissue engineering applications. Structuring the surface of a biomaterial into arrays with micro- and nanoscale features and architectures, defines new roadmaps to innovative engineering of materials. Thin films of novel collagen/elastin composite and gelatin were irradiated by Ti:sapphire fs laser in air at central wavelength 800 nm, with pulse durations in the range of 30 fs. The size and shape as well as morphological forms occurring in the resulted areas of interaction were analyzed as a function of irradiation fluence and number of pulses by atomic force microscopy (AFM). The fs interaction regime allows generation of well defined micro porous surface arrays. In this study we examined a novel composite consisting of collagen and elastin in order to create a biodegradable matrix to serve as a biomimetic surface for cell attachment. Confocal microscopy images of modified zones reveal formation of surface fringe patterns with orientation direction alongside the area of interaction. Outside the crater rim a wave-like topography pattern is observed. Structured, on a nanometer scale, surface array is employed for cell-culture experiments for testing cell's responses to substrate morphology. Mice fibroblasts migration was monitored after 3 days cultivation period using FESEM. We found that fibroblasts cells tend to migrate and adhere along the laser modified zones. The performed study proved that the immobilized collagen based biofilms suite as a template for successful fibroblasts cell guidance and orientation. Fs laser induced morphological modification of biomimetic materials exhibit direct control over fibroblasts behaviour due to induced change in their wettability state.

  2. Enhanced differentiation of dental pulp cells cultured on microtubular polymer scaffolds in vitro.

    PubMed

    Haeri, Morteza; Sagomonyants, Karen; Mina, Mina; Kuhn, Liisa T; Goldberg, A Jon

    2017-06-01

    Dental caries (tooth decay) is the most common chronic disease. Dental tissue engineering is a promising alternative approach to alleviate the shortcomings of the currently available restorative materials. Mimicking the natural extracellular matrix (ECM) could enhance the performance of tissue engineering scaffolds. In this study, we developed microtubular (~20 μm diameter) polymethyl methacrylate (PMMA) scaffolds resembling the tubular (~2.5 μm diameter) structure of dentin, the collagen-based mineralized tissue that forms the major portion of teeth, to study the effect of scaffold architecture on differentiation of mouse dental pulp cells in vitro . Flat (control), plasma-treated solid and microtubular PMMA scaffolds with densities of 240±15, 459±51 and 480±116 tubules/mm 2 were first characterized using scanning electron microscopy and contact angle measurements. Dental pulp cells were cultured on the surface of the scaffolds for up to 21 days and examined using various assays. Cell proliferation and mineralization were examined using Alamar Blue and Xylenol Orange (XO) staining assays, respectively. The differentiation of pulp cells into odontoblasts was examined by immunostaining for Nestin and by quantitative PCR analysis for dentin matrix protein 1 ( Dmp1 ), dentin sialophosphoprotein ( Dspp ) and osteocalcin ( Ocn ). Our results showed that the highest tubular density scaffolds significantly (p<0.05) enhanced differentiation of pulp cells into odontoblasts as compared to control flat scaffolds, as evidenced by increased expression of Nestin (5.4x). However, mineralization was suppressed on all surfaces, possibly due to low cell density. These results suggest that the microtubular architecture may be a desirable feature of scaffolds developed for clinical applications. Regenerative engineering of diseased or traumatized tooth structure could avoid the deficiencies of traditional dental restorative (filling) materials. Cells in the dental pulp have the potential to differentiate to dentin-producing odontoblast cells. Furthermore, cell-supporting scaffolds that mimic a natural extracellular matrix (ECM) are known to influence behavior of progenitor cells. Accordingly, we hypothesized that a dentin-like microtubular scaffold would enhance differentiation of dental pulp cells. The hypothesis was proven true and differentiation to odontoblasts increased with increasing density of the microtubules. However, mineralization was suppressed, possibly due to a low density of cells. The results demonstrate the potential benefits of a microtubular scaffold design to promote odontoblast cells for regeneration of dentin.

  3. Construction of Large-Volume Tissue Mimics with 3D Functional Vascular Networks

    PubMed Central

    Kang, Tae-Yun; Hong, Jung Min; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-01-01

    We used indirect stereolithography (SL) to form inner-layered fluidic networks in a porous scaffold by introducing a hydrogel barrier on the luminal surface, then seeded the networks separately with human umbilical vein endothelial cells and human lung fibroblasts to form a tissue mimic containing vascular networks. The artificial vascular networks provided channels for oxygen transport, thus reducing the hypoxic volume and preventing cell death. The endothelium of the vascular networks significantly retarded the occlusion of channels during whole-blood circulation. The tissue mimics have the potential to be used as an in vitro platform to examine the physiologic and pathologic phenomena through vascular architecture. PMID:27228079

  4. Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and Solanaceae1[C][W][OA

    PubMed Central

    Lee, Kieran J.D.; Dekkers, Bas J.W.; Steinbrecher, Tina; Walsh, Cherie T.; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J. Paul

    2012-01-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics. PMID:22961130

  5. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes.

    PubMed

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-04-10

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.

  6. Hornwort Stomata: Architecture and Fate Shared with 400-Million-Year-Old Fossil Plants without Leaves.

    PubMed

    Renzaglia, Karen S; Villarreal, Juan Carlos; Piatkowski, Bryan T; Lucas, Jessica R; Merced, Amelia

    2017-06-01

    As one of the earliest plant groups to evolve stomata, hornworts are key to understanding the origin and function of stomata. Hornwort stomata are large and scattered on sporangia that grow from their bases and release spores at their tips. We present data from development and immunocytochemistry that identify a role for hornwort stomata that is correlated with sporangial and spore maturation. We measured guard cells across the genera with stomata to assess developmental changes in size and to analyze any correlation with genome size. Stomata form at the base of the sporophyte in the green region, where they develop differential wall thickenings, form a pore, and die. Guard cells collapse inwardly, increase in surface area, and remain perched over a substomatal cavity and network of intercellular spaces that is initially fluid filled. Following pore formation, the sporophyte dries from the outside inwardly and continues to do so after guard cells die and collapse. Spore tetrads develop in spore mother cell walls within a mucilaginous matrix, both of which progressively dry before sporophyte dehiscence. A lack of correlation between guard cell size and DNA content, lack of arabinans in cell walls, and perpetually open pores are consistent with the inactivity of hornwort stomata. Stomata are expendable in hornworts, as they have been lost twice in derived taxa. Guard cells and epidermal cells of hornworts show striking similarities with the earliest plant fossils. Our findings identify an architecture and fate of stomata in hornworts that is ancient and common to plants without sporophytic leaves. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illner, Doris; Zinner, Roman; Handtke, Violet

    2010-06-10

    Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicatemore » that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.« less

  8. Defining the Architecture of the Core Machinery for the Assembly of Fe-S Clusters in Human Mitochondria.

    PubMed

    Gakh, Oleksandr; Ranatunga, Wasantha; Galeano, Belinda K; Smith, Douglas S; Thompson, James R; Isaya, Grazia

    2017-01-01

    Although Fe-S clusters may assemble spontaneously from elemental iron and sulfur in protein-free systems, the potential toxicity of free Fe 2+ , Fe 3+ , and S 2- ions in aerobic environments underscores the requirement for specialized proteins to oversee the safe assembly of Fe-S clusters in living cells. Prokaryotes first developed multiprotein systems for Fe-S cluster assembly, from which mitochondria later derived their own system and became the main Fe-S cluster suppliers for eukaryotic cells. Early studies in yeast and human mitochondria indicated that Fe-S cluster assembly in eukaryotes is centered around highly conserved Fe-S proteins (human ISCU) that serve as scaffolds upon which new Fe-S clusters are assembled from (i) elemental sulfur, provided by a pyridoxal phosphate-dependent cysteine desulfurase (human NFS1) and its stabilizing-binding partner (human ISD11), and (ii) elemental iron, provided by an iron-binding protein of the frataxin family (human FXN). Further studies revealed that all of these proteins could form stable complexes that could reach molecular masses of megadaltons. However, the protein-protein interaction surfaces, catalytic mechanisms, and overall architecture of these macromolecular machines remained undefined for quite some time. The delay was due to difficulties inherent in reconstituting these very large multiprotein complexes in vitro or isolating them from cells in sufficient quantities to enable biochemical and structural studies. Here, we describe approaches we developed to reconstitute the human Fe-S cluster assembly machinery in Escherichia coli and to define its remarkable architecture. © 2017 Elsevier Inc. All rights reserved.

  9. Effect of intermittent shear stress on corneal epithelial cells using an in vitro flow culture model.

    PubMed

    Hampel, Ulrike; Garreis, Fabian; Burgemeister, Fabian; Eßel, Nicole; Paulsen, Friedrich

    2018-04-27

    The aim of this study was to establish and to evaluate an in vitro model for culturing human telomerase-immortalized corneal epithelial (hTCEpi) cells under adjustable medium flow mimicking the movements of the tear film on the ocular surface. Using an IBIDI pump system, cells were cultured under unidirectional, continuous or oscillating, discontinuous medium flow. Cell surface and cytoskeletal architecture were investigated by scanning electron microscopy and immunofluorescence. Gene expression of e-cadherin, occludin, tight junction protein (TJP), desmoplakin, desmocollin and mucins was investigated by real-time PCR. Protein expression of desmoplakin, TJP, occludin and e-cadherin was analyzed by western blot and localization was detected by immunofluorescence. Rose bengal staining was used to assess mucin (MUC) barrier integrity. MUC1, -4 and -16 proteins were localized by immunofluorescence. Medium flow-induced shear stress dramatically changed cellular morphology of hTCEpi. Cells subjected to discontinuous shear stress displayed the typical flattened, polygonal cell shape of the superficial layer of stratified squamous epithelia. Cell surfaces showed less bulging under shear stress and less extracellular gaps. The mRNA expression of E-cadherin, occludin and TJP were increased under oscillatory medium flow. Desmoplakin and occludin protein were upregulated under oscillatory shear stress. Stress fiber formation was not aligned to flow direction. MUC1, -4, and -16 protein were localized under all culture conditions, a regulation on mRNA expression was not detectable. Rose Bengal uptake was diminished under unidirectional conditions. Our findings suggest that shear stress as it occurs at the ocular surface during blinking exerts marked effects on corneal epithelial cells, such as changes in cellular morphology and expression of cell junctions. The described model may be useful for in vitro investigations of ocular surface epithelia as it represents a much more physiologic reproduction of the in vivo situation than the commonly applied static culture conditions. Copyright © 2018. Published by Elsevier Inc.

  10. Modelling of internal architecture of kinesin nanomotor as a machine language.

    PubMed

    Khataee, H R; Ibrahim, M Y

    2012-09-01

    Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.

  11. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  12. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    PubMed

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  13. Problems Related to Parallelization of CFD Algorithms on GPU, Multi-GPU and Hybrid Architectures

    NASA Astrophysics Data System (ADS)

    Biazewicz, Marek; Kurowski, Krzysztof; Ludwiczak, Bogdan; Napieraia, Krystyna

    2010-09-01

    Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics, which uses numerical methods and algorithms to solve and analyze fluid flows. CFD is used in various domains, such as oil and gas reservoir uncertainty analysis, aerodynamic body shapes optimization (e.g. planes, cars, ships, sport helmets, skis), natural phenomena analysis, numerical simulation for weather forecasting or realistic visualizations. CFD problem is very complex and needs a lot of computational power to obtain the results in a reasonable time. We have implemented a parallel application for two-dimensional CFD simulation with a free surface approximation (MAC method) using new hardware architectures, in particular multi-GPU and hybrid computing environments. For this purpose we decided to use NVIDIA graphic cards with CUDA environment due to its simplicity of programming and good computations performance. We used finite difference discretization of Navier-Stokes equations, where fluid is propagated over an Eulerian Grid. In this model, the behavior of the fluid inside the cell depends only on the properties of local, surrounding cells, therefore it is well suited for the GPU-based architecture. In this paper we demonstrate how to use efficiently the computing power of GPUs for CFD. Additionally, we present some best practices to help users analyze and improve the performance of CFD applications executed on GPU. Finally, we discuss various challenges around the multi-GPU implementation on the example of matrix multiplication.

  14. Dynamic regulation of nuclear architecture and mechanics—a rheostatic role for the nucleus in tailoring cellular mechanosensitivity

    PubMed Central

    Lee, David A.

    2017-01-01

    ABSTRACT Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response. PMID:28152338

  15. Dynamic regulation of nuclear architecture and mechanics-a rheostatic role for the nucleus in tailoring cellular mechanosensitivity.

    PubMed

    Thorpe, Stephen D; Lee, David A

    2017-05-04

    Nuclear architecture, a function of both chromatin and nucleoskeleton structure, is known to change with stem cell differentiation and differs between various somatic cell types. These changes in nuclear architecture are associated with the regulation of gene expression and genome function in a cell-type specific manner. Biophysical stimuli are known effectors of differentiation and also elicit stimuli-specific changes in nuclear architecture. This occurs via the process of mechanotransduction whereby extracellular mechanical forces activate several well characterized signaling cascades of cytoplasmic origin, and potentially some recently elucidated signaling cascades originating in the nucleus. Recent work has demonstrated changes in nuclear mechanics both with pluripotency state in embryonic stem cells, and with differentiation progression in adult mesenchymal stem cells. This review explores the interplay between cytoplasmic and nuclear mechanosensitivity, highlighting a role for the nucleus as a rheostat in tuning the cellular mechano-response.

  16. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.

    PubMed

    Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C

    2015-07-01

    Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Assembly and remodeling of the fibrillar fibronectin extracellular matrix during gastrulation and neurulation in Xenopus laevis.

    PubMed

    Davidson, Lance A; Keller, Raymond; DeSimone, Douglas W

    2004-12-01

    Fibronectin, a major component of the extracellular matrix is critical for processes of cell traction and cell motility. Whole-mount confocal imaging of the three-dimensional architecture of the extracellular matrix is used to describe dynamic assembly and remodeling of fibronectin fibrils during gastrulation and neurulation in the early frog embryo. As previously reported, fibrils first appear under the prospective ectoderm. We describe here the first evidence for regulated assembly of fibrils along the somitic mesoderm/endoderm boundary as well as at the notochord/somitic mesoderm boundary and clearing of fibrils from the dorsal and ventral surfaces of the notochord that occurs over the course of a few hours. As gastrulation proceeds, fibrils are restored to the dorsal surface of the notochord, where the notochord contacts the prospective floor plate. As the neural folds form, fibrils are again remodeled as deep neural plate cells move medially. The process of neural tube closure leaves a region of the ectoderm overlying the neural crest transiently bare of fibrils. Fibrils are assembled surrounding the dorsal surface of the neural tube as the neural tube lumen is restored. Copyright (c) 2004 Wiley-Liss, Inc.

  18. Preclinical trial of a novel surface architecture for improved primary fixation of cementless orthopaedic implants.

    PubMed

    Harrison, Noel; Field, John R; Quondamatteo, Fabio; Curtin, William; McHugh, Peter E; Mc Donnell, Pat

    2014-09-01

    A new surface architecture for cementless orthopaedic implants (OsteoAnchor), which incorporates a multitude of tiny anchor features for enhancing primary fixation, was tested in an ovine hemi-arthroplasty pilot study. Test animals were implanted with a hip stem component incorporating the OsteoAnchor surface architecture produced using additive layer manufacturing and control animals were implanted with stems containing a standard plasma sprayed titanium coating. Intra-operative surgeon feedback indicated that superior primary fixation was achieved for the OsteoAnchor stems and rapid return to normal gait and load bearing was observed post-operation. Following a 16-week recovery time, histological evaluation of the excised femurs revealed in-growth of healthy bone into the porous structure of the OsteoAnchor stems. Bone in-growth was not achieved for the plasma sprayed stems. These results indicate the potential for the OsteoAnchor surface architecture to enhance both the initial stability and long term lifetime of cementless orthopaedic implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. NASA Human Spaceflight Architecture Team: Lunar Surface Exploration Strategies

    NASA Technical Reports Server (NTRS)

    Mueller, Rob P.

    2012-01-01

    NASA s agency wide Human Spaceflight Architecture Team (HAT) has been developing Design Reference Missions (DRMs) to support the ongoing effort to characterize NASA s future human exploration strategy. The DRM design effort includes specific articulations of transportation and surface elements, technologies and operations required to enable future human exploration of various destinations including the moon, Near Earth Asteroids (NEAs) and Mars as well as interim cis-lunar targets. In prior architecture studies, transportation concerns have dominated the analysis. As a result, an effort was made to study the human utilization strategy at each specific destination and the resultant impacts on the overall architecture design. In particular, this paper considers various lunar surface strategies as representative scenarios that could occur in a human lunar return, and demonstrates their alignment with the internationally developed Global Exploration Roadmap (GER).

  20. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    PubMed

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction.

    PubMed

    Shi, Handuo; Bratton, Benjamin P; Gitai, Zemer; Huang, Kerwyn Casey

    2018-03-08

    Cell shape matters across the kingdoms of life, and cells have the remarkable capacity to define and maintain specific shapes and sizes. But how are the shapes of micron-sized cells determined from the coordinated activities of nanometer-sized proteins? Here, we review general principles that have surfaced through the study of rod-shaped bacterial growth. Imaging approaches have revealed that polymers of the actin homolog MreB play a central role. MreB both senses and changes cell shape, thereby generating a self-organizing feedback system for shape maintenance. At the molecular level, structural and computational studies indicate that MreB filaments exhibit tunable mechanical properties that explain their preference for certain geometries and orientations along the cylindrical cell body. We illustrate the regulatory landscape of rod-shape formation and the connectivity between cell shape, cell growth, and other aspects of cell physiology. These discoveries provide a framework for future investigations into the architecture and construction of microbes. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Initial stem cell adhesion on porous silicon surface: molecular architecture of actin cytoskeleton and filopodial growth

    PubMed Central

    2014-01-01

    The way cells explore their surrounding extracellular matrix (ECM) during development and migration is mediated by lamellipodia at their leading edge, acting as an actual motor pulling the cell forward. Lamellipodia are the primary area within the cell of actin microfilaments (filopodia) formation. In this work, we report on the use of porous silicon (pSi) scaffolds to mimic the ECM of mesenchymal stem cells from the dental pulp (DPSC) and breast cancer (MCF-7) cells. Our atomic force microscopy (AFM), fluorescence microscopy, and scanning electron microscopy (SEM) results show that pSi promoted the appearance of lateral filopodia protruding from the DPSC cell body and not only in the lamellipodia area. The formation of elongated lateral actin filaments suggests that pores provided the necessary anchorage points for protrusion growth. Although MCF-7 cells displayed a lower presence of organized actin network on both pSi and nonporous silicon, pSi stimulated the formation of extended cell protrusions. PMID:25386101

  3. Experimental Investigation of Textile Composite Materials Using Moire Interferometry

    NASA Technical Reports Server (NTRS)

    Ifju, Peter G.

    1995-01-01

    The viability as an efficient aircraft material of advanced textile composites is currently being addressed in the NASA Advanced Composites Technology (ACT) Program. One of the expected milestones of the program is to develop standard test methods for these complex material systems. Current test methods for laminated composites may not be optimum for textile composites, since the architecture of the textile induces nonuniform deformation characteristics on the scale of the smallest repeating unit of the architecture. The smallest repeating unit, also called the unit cell, is often larger than the strain gages used for testing of tape composites. As a result, extending laminated composite test practices to textiles can often lead to pronounced scatter in material property measurements. It has been speculated that the fiber architectures produce significant surface strain nonuniformities, however, the magnitudes were not well understood. Moire interferometry, characterized by full-field information, high displacement sensitivity, and high spatial resolution, is well suited to document the surface strain on textile composites. Studies at the NASA Langley Research Center on a variety of textile architectures including 2-D braids and 3-D weaves, has evidenced the merits of using moire interferometry to guide in test method development for textile composites. Moire was used to support tensile testing by validating instrumentation practices and documenting damage mechanisms. It was used to validate shear test methods by mapping the full-field deformation of shear specimens. Moire was used to validate open hole tension experiments to determine the strain concentration and compare then to numeric predictions. It was used for through-the-thickness tensile strength test method development, to verify capabilities for testing of both 2-D and 3-D material systems. For all of these examples, moire interferometry provided vision so that test methods could be developed with less speculation and more documentation.

  4. Stratigraphic Architecture of Aeolian Dune Interactions

    NASA Astrophysics Data System (ADS)

    Brothers, S. C.; Kocurek, G.

    2015-12-01

    Dune interactions, which consist of collisions and detachments, are a known driver of changing dune morphology and provide the dynamics for field-scale patterning. Although interactions are ubiquitous in modern dune fields, the stratigraphic record of interactions has not been explored. This raises the possibility that an entire class of signature architectures of bounding surfaces and cross-strata has gone misidentified or unrecognized. A unique data set for the crescentic dunes of the White Sands Dune Field, New Mexico, allows for the coupling of dune interactions with their resultant stratigraphic architecture. Dune interactions are documented by a decadal time-series of aerial photos and LiDAR-derived digital elevation models. Plan-view cross-strata in interdune areas provide a record tying past dune positions and morphologies to the current dunes. Three-dimensional stratigraphic architecture is revealed by imaging of dune interiors with ground-penetrating radar. The architecture of a dune defect merging with a target dune downwind consists of lateral truncation of the target dune set by an interaction bounding surface. Defect cross-strata tangentially approach and downlap onto the surface. Downwind, the interaction surface curves, and defect and adjacent target dune sets merge into a continuous set. Predictable angular relationships reflect field-scale patterns of dune migration direction and approach angle of migrating defects. The discovery of interaction architectures emphasizes that although dunes appear as continuous forms on the surface, they consist of discrete segments, each with a distinct morphodynamic history. Bedform interactions result in the morphologic recombination of dune bodies, which is manifested stratigraphically within the sets of cross-strata.

  5. Cross-linking reveals laminin coiled-coil architecture

    PubMed Central

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  6. Outlines on nanotechnologies applied to bladder tissue engineering.

    PubMed

    Alberti, C

    2012-01-01

    Tissue engineering technologies are more and more expanding as consequence of recent developments in the field of biomaterial science and nanotechnology research. An important issue in designing scaffold materials is that of recreating the ECM (extra-cellular matrix) functional features - particularly ECM-derived complex molecule signalling - to mimic its capability of directing cell-growth and neotissue morphogenesis. In this way the nanotechnology may offer intriguing chances, biomaterial nanoscale-based scaffold geometry behaving as nanomechanotransducer complex interacting with different cell nanosize proteins, especially with those of cell surface mechanoreceptors. To fabricate 3D-scaffold complex architectures, endowed with controlled geometry and functional properties, bottom-up approaches, based on molecular self-assembling of small building polymer units, are used, sometimes functionalizing them by incorporation of bioactive peptide sequences such as RDG (arginine - glycine - aspartic acid, a cell-integrin binding domain of fibronectin), whereas the top-down approaches are useful to fabricate micro/nanoscale structures, such as a microvasculature within an existing complex bioarchitecture. Synthetic polymer-based nanofibers, produced by electrospinning process, may be used to create fibrous scaffolds that can facilitate, given their nanostructured geometry and surface roughness, cell adhesion and growth. Also bladder tissue engineering may benefit by nanotechnology advances to achieve a better reliability of the bladder engineered tissue. Particularly, bladder smooth muscle cell adhesion to nanostructured polymeric surfaces is significantly enhanced in comparison with that to conventional biomaterials. Moreover nanostructured surfaces of bladder engineered tissue show a decreased calcium stone production. In a bladder tumor animal model, the dispersion of carbon nanofibers in a polymeric scaffold-based tissue engineered replacement neobladder, appears to inhibit a carcinogenic relapse in bladder prosthetic material. Facing the future, a full success of bladder tissue engineering will mainly depend on the progress of both biomaterial nanotechnologies and stem cell biology research.

  7. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells

    PubMed Central

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611

  8. A Structurally Specialized Uniform Wall Layer is Essential for Constructing Wall Ingrowth Papillae in Transfer Cells.

    PubMed

    Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W

    2017-01-01

    Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.

  9. Understanding cellular architecture in cancer cells

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Tang, Chao

    2011-03-01

    Understanding the development of cancer is an important goal for today's science. The morphology of cellular organelles, such as the nucleus, the nucleoli and the mitochondria, which is referred to as cellular architecture or cytoarchitecture, is an important indicator of the state of the cell. In particular, there are striking difference between the cellular architecture of a healthy cell versus a cancer cell. In this work we present a dynamical model for the evolution of organelles morphology in cancer cells. Using a dynamical systems approach, we describe the evolution of a cell on its way to cancer as a trajectory in a multidimensional morphology state. The results provided by this work may increase our insight on the mechanism of tumorigenesis and help build new therapeutic strategies.

  10. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells

    PubMed Central

    Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.

    2015-01-01

    Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865

  11. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.

    PubMed

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2012-01-07

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.

  12. Lymphatic Malformation Architecture: Implications for Treatment With OK-432.

    PubMed

    Malic, Claudia C; Guilfoyle, Regan; Courtemanche, Rebecca J M; Arneja, Jugpal S; Heran, Manraj K S; Courtemanche, Douglas J

    2017-10-01

    Herein, the authors aim to describe their findings of novel architectural types of lymphatic malformations (LM) and explain the relationship between these architectures and OK-432 treatment outcomes. A retrospective review was conducted of all patients diagnosed with a LM treated with OK-432 at the Vascular Anomalies Clinic at BC Children's Hospital from December 2002 to January 2012. Twenty-seven patients were included in the study. Sixty percent of lesions were present by 2 years of age with the majority located in the head and neck (59%). The average number of sclerotherapy procedures was 1.4 per patient. Treatment under fluoroscopic guidance revealed 3 new LM architectures: open-cell microcystic, closed-cell microcystic, and lymphatic channel. Response to treatment was complete or good for 14/19 macrocystic and for 1/2 mixed lesions. Open-cell microcystic LMs gave a complete or good response for 3/3, which was attributed to OK-432 freely communicating between cysts. Closed-cell microcystic LM had localized cysts that did not allow OK-432 to freely communicate and were associated with partial responses, 2/2. The lymphatic channel had a partial response. There were 2 minor complications and 1 instance of recurrence. The identification of 3 new LM architectures expands the current accepted classification to include: open-cell microcystic, closed-cell microcystic, and lymphatic channels. The majority of complete responses to OK-432 were found with macrocystic lesions. Open-cell microcystic lesions respond better to OK-432 than closed-cell microcystic lesions, and lymphatic channels may respond to OK-432. These key architecture-response relationships have direct clinical implications for treatment with OK-432 sclerotherapy.

  13. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells

    PubMed Central

    Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.

    2016-01-01

    Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757

  14. Physical mechanism for flat-to-lenticular lens conversion in homogeneous liquid crystal cell with periodically undulated electrode.

    PubMed

    Na, Jun-Hee; Park, Seung Chul; Kim, Se-Um; Choi, Yoonseuk; Lee, Sin-Doo

    2012-01-16

    A convertible lenticular liquid crystal (LC) lens architecture is demonstrated using an index-matched planarization layer on a periodically undulated electrode for the homogeneous alignment of an LC. It is found that the in-plane component of the electric field by the undulated electrode plays a primary role in the flat-to-lens effect while the out-of-plane component contributes to the anchoring enhancement of the LC molecules in the surface layer. Our LC device having an index-matched planarization layer on the undulated electrode is capable of achieving the electrical tunability from the flat surface to the lenticular lens suitable for 2D/3D convertible displays.

  15. Monolithic Interconnected Modules (MIMs) for Thermophotovoltaic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-01-01

    Monolithic Interconnected Modules (MIM) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  16. Identification of Human Cutaneous Basal Cell Carcinoma Cancer Stem Cells.

    PubMed

    Morgan, Huw; Olivero, Carlotta; Patel, Girish K

    2018-04-20

    The cancer stem cell model states that a subset of tumor cells, called "cancer stem cells," can initiate and propagate tumor growth through self-renewal, high proliferative capacity, and their ability to recreate tumor heterogeneity. In basal cell carcinoma (BCC), we have shown that tumor cells that express the cell surface protein CD200 fulfill the cancer stem cell hypothesis. CD200+ CD45- BCC cells represent 0.05-3.96% of all BCC cells and reside in small clusters at the tumor periphery. Using a novel, reproducible in vivo xenograft growth assay, we determined that tumor-initiating cell (TIC) frequencies are approximately 1 per 1.5 million unsorted BCC cells. The CD200+ CD45- BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200+ CD45- cells, representing ~1500-fold enrichment. The methods used to identify and purify CD200+ CD45- BCC cells, as well as characterize gene expression, are described herein.

  17. Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors.

    PubMed

    Malachovská, Viera; Ribaut, Clotilde; Voisin, Valérie; Surin, Mathieu; Leclère, Philippe; Wattiez, Ruddy; Caucheteur, Christophe

    2015-06-16

    We report, for the first time, the use of a surface plasmon resonance (SPR) fiber-optic immunosensor for selective cellular detection through membrane protein targeting. The sensor architecture lies on gold-coated tilted fiber Bragg gratings (Au-coated TFBGs) photoimprinted in the fiber core via a laser technique. TFBGs operate in the near-infrared wavelength range at ∼1550 nm, yielding optical and SPR sensing characteristics that are advantageous for the analyses of cellular bindings and technical compatibility with relatively low-cost telecommunication-grade measurement devices. In this work, we take consider their numerous assets to figure out their ability to selectively detect intact epithelial cells as analytes in cell suspensions in the range of 2-5 × 10(6) cells mL(-1). For this, the probe was first thermally annealed to ensure a strong adhesion of the metallic coating to the fiber surface. Its surface was then functionalized with specific monoclonal antibodies via alkanethiol self-assembled monolayers (SAMs) against extracellular domain of epidermal growth factor receptors (EGFRs) and characterized by peak force tapping atomic force microscopy. A differential diagnosis has been demonstrated between two model systems. The developed immunosensors were able to monitor, in real time, the specific attachment of single intact cells in concentrations from 3 × 10(6) cells mL(-1). Such results confirm that the developed probe fits the lab-on-fiber technology and has the potential to be used as a disposable device for in situ and real-time clinical diagnosis.

  18. Controlling Material Reactivity Using Architecture

    DOE PAGES

    Sullivan, Kyle T.; Zhu, Cheng; Duoss, Eric B.; ...

    2015-12-16

    3D-printing methods are used to generate reactive material architectures. We observed several geometric parameters in order to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. Additionally, the architecture offers a route to control, at will, the energy release rate in reactive composite materials.

  19. Radiant exchange in partially specular architectural environments

    NASA Astrophysics Data System (ADS)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2003-10-01

    The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.

  20. Three Dimensional Neuronal Cell Cultures More Accurately Model Voltage Gated Calcium Channel Functionality in Freshly Dissected Nerve Tissue

    PubMed Central

    Kisaalita, William

    2012-01-01

    It has been demonstrated that neuronal cells cultured on traditional flat surfaces may exhibit exaggerated voltage gated calcium channel (VGCC) functionality. To gain a better understanding of this phenomenon, primary neuronal cells harvested from mice superior cervical ganglion (SCG) were cultured on two dimensional (2D) flat surfaces and in three dimensional (3D) synthetic poly-L-lactic acid (PLLA) and polystyrene (PS) polymer scaffolds. These 2D- and 3D-cultured cells were compared to cells in freshly dissected SCG tissues, with respect to intracellular calcium increase in response to high K+ depolarization. The calcium increases were identical for 3D-cultured and freshly dissected, but significantly higher for 2D-cultured cells. This finding established the physiological relevance of 3D-cultured cells. To shed light on the mechanism behind the exaggerated 2D-cultured cells’ functionality, transcriptase expression and related membrane protein distributions (caveolin-1) were obtained. Our results support the view that exaggerated VGCC functionality from 2D cultured SCG cells is possibly due to differences in membrane architecture, characterized by uniquely organized caveolar lipid rafts. The practical implication of use of 3D-cultured cells in preclinical drug discovery studies is that such platforms would be more effective in eliminating false positive hits and as such improve the overall yield from screening campaigns. PMID:23049767

  1. Real-Time Sensing of Enteropathogenic E. coli-Induced Effects on Epithelial Host Cell Height, Cell-Substrate Interactions, and Endocytic Processes by Infrared Surface Plasmon Spectroscopy

    PubMed Central

    Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932

  2. Course 6: Physics of Composite Cell Membrane and Actin Based Cytoskeleton

    NASA Astrophysics Data System (ADS)

    Sackmann, E.; Bausch, A. R.; Vonna, L.

    1 Architecture of composite cell membranes 1.1 The lipid/protein bilayer is a multicomponent smectic phase with mosaic like architecture 1.2 The spectrin/actin cytoskeleton as hyperelastic cell stabilizer 1.3 The actin cortex: Architecture and function 2 Physics of the actin based cytoskeleton 2.1 Actin is a living semiflexible polymer 2.2 Actin network as viscoelastic body 2.3 Correlation between macroscopic viscoelasticity and molecular 3 Heterogeneous actin gels in cells and biological function 3.1 Manipulation of actin gels 3.2 Control of organization and function of actin cortex by cell signalling 4 Micromechanics and microrheometry of cells 5 Activation of endothelial cells: On the possibility of formation of stress fibers as phase transition of actin-network triggered by cell signalling pathways 6 On cells as adaptive viscoplastic bodies 7 Controll of cellular protrusions controlled by actin/myosin cortex

  3. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.

    PubMed

    Watson, Gregory S; Green, David W; Cribb, Bronwen W; Brown, Christopher L; Meritt, Christopher R; Tobin, Mark J; Vongsvivut, Jitraporn; Sun, Mingxia; Liang, Ai-Ping; Watson, Jolanta A

    2017-07-19

    Nature has produced many intriguing and spectacular surfaces at the micro- and nanoscales. These small surface decorations act for a singular or, in most cases, a range of functions. The minute landscape found on the lotus leaf is one such example, displaying antiwetting behavior and low adhesion with foreign particulate matter. Indeed the lotus leaf has often been considered the "benchmark" for such properties. One could expect that there are animal counterparts of this self-drying and self-cleaning surface system. In this study, we show that the planthopper insect wing (Desudaba danae) exhibits a remarkable architectural similarity to the lotus leaf surface. Not only does the wing demonstrate a topographical likeness, but some surface properties are also expressed, such as nonwetting behavior and low adhering forces with contaminants. In addition, the insect-wing cuticle exhibits an antibacterial property in which Gram-negative bacteria (Porphyromonas gingivalis) are killed over many consecutive waves of attacks over 7 days. In contrast, eukaryote cell associations, upon contact with the insect membrane, lead to a formation of integrated cell sheets (e.g., among human stem cells (SHED-MSC) and human dermal fibroblasts (HDF)). The multifunctional features of the insect membrane provide a potential natural template for man-made applications in which specific control of liquid, solid, and biological contacts is desired and required. Moreover, the planthopper wing cuticle provides a "new" natural surface with which numerous interfacial properties can be explored for a range of comparative studies with both natural and man-made materials.

  4. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Geometric control of capillary architecture via cell-matrix mechanical interactions.

    PubMed

    Sun, Jian; Jamilpour, Nima; Wang, Fei-Yue; Wong, Pak Kin

    2014-03-01

    Capillary morphogenesis is a multistage, multicellular activity that plays a pivotal role in various developmental and pathological situations. In-depth understanding of the regulatory mechanism along with the capability of controlling the morphogenic process will have direct implications on tissue engineering and therapeutic angiogenesis. Extensive research has been devoted to elucidate the biochemical factors that regulate capillary morphogenesis. The roles of geometric confinement and cell-matrix mechanical interactions on the capillary architecture, nevertheless, remain largely unknown. Here, we show geometric control of endothelial network topology by creating physical confinements with microfabricated fences and wells. Decreasing the thickness of the matrix also results in comparable modulation of the network architecture, supporting the boundary effect is mediated mechanically. The regulatory role of cell-matrix mechanical interaction on the network topology is further supported by alternating the matrix stiffness by a cell-inert PEG-dextran hydrogel. Furthermore, reducing the cell traction force with a Rho-associated protein kinase inhibitor diminishes the boundary effect. Computational biomechanical analysis delineates the relationship between geometric confinement and cell-matrix mechanical interaction. Collectively, these results reveal a mechanoregulation scheme of endothelial cells to regulate the capillary network architecture via cell-matrix mechanical interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Mass transfer of therapeutics through natural human plaque biofilms: a model for therapeutic delivery to pathological bacterial biofilms.

    PubMed

    Robinson, Colin

    2011-09-01

    Bacterial biofilms in the mouth are prime mediators of the destruction of the dental and oral tissues. This brief review summarises recent work using a device for generating intact plaque in the mouth on natural enamel surfaces such that quantitative studies of mass transfer through natural plaque biofilms could be carried out in relation to plaque architecture. This data is discussed against the background of existing information. The device revealed complex plaque architecture with high a surface area to mass ratio decreasing from the exterior of the biofilm towards the tissue surface. Fluoride, a potent inhibitor of caries was concentrated in the outer regions of the biofilm. This implies some restriction of diffusion and possibly binding to the high surface area of the outer biofilm. Whilst all components examined conformed to this distribution pattern, some relatively uncharged materials penetrated the bacterial biomass whilst other, more highly charged materials tended to be restricted to the channels or biomass surface. Plaque architecture was robust but could be altered using detergent indicating that biomass architecture and chemistry could be manipulated as a possible means of facilitating mass transport of therapeutics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Pharmaceutical and biomedical potential of surface engineered dendrimers.

    PubMed

    Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar

    2007-01-01

    Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a consequence of ideal hyperbranched architecture and the biocompatible nature of engineered dendrimers, their utilization has been included in the scope of this review, which focuses on current surface alteration strategies of dendrimers for their potential use in drug delivery and explains the possible beneficial applications of these engineered dendrimers in the biomedical field.

  8. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.

    PubMed

    Ren, Shenqiang; Zhao, Ni; Crawford, Samuel C; Tambe, Michael; Bulović, Vladimir; Gradecak, Silvija

    2011-02-09

    We demonstrate an organic/inorganic solar cell architecture based on a blend of poly(3-hexylthiophene) (P3HT) and narrow bandgap GaAs nanowires. The measured increase of device photocurrent with increased nanowire loading is correlated with structural ordering within the active layer that enhances charge transport. Coating the GaAs nanowires with TiO(x) shells passivates nanowire surface states and further improves the photovoltaic performance. We find that the P3HT/nanowire cells yield power conversion efficiencies of 2.36% under white LED illumination for devices containing 50 wt % of TiO(x)-coated GaAs nanowires. Our results constitute important progress for the use of nanowires in large area solution processed hybrid photovoltaic cells and provide insight into the role of structural ordering in the device performance.

  9. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  10. Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.

    PubMed

    Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf

    2018-05-10

    Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.

  11. Use of polysialic acid in repair of the central nervous system

    PubMed Central

    El Maarouf, Abderrahman; Petridis, Athanasios K.; Rutishauser, Urs

    2006-01-01

    Polysialic acid (PSA), a large cell-surface carbohydrate that regulates cell interactions, is used during vertebrate development to promote precursor cell migration and axon path-finding. The induction of PSA expression in damaged adult CNS tissues could help them to rebuild by creating conditions permissive for architectural remodeling. This possibility has been explored in two contexts, the regeneration of axons and the recruitment of endogenous neural precursors to a lesion. Glial scars that form at CNS injury sites block axon regeneration. It has been found that transfection of scar astrocytes by a viral vector encoding polysialyltransferase leads to sustained expression of high levels of PSA. With this treatment, a substantial portion of severed corticospinal tract axon processes were able to grow through a spinal injury site. In the studies of precursor cell migration to a cortical lesion, it was found that induced PSA expression in a path extending from the subventricular zone to a lesion near the cortical surface increased recruitment of BrdU/nestin-positive cells along the path and into the injury site. These displaced precursors were able to differentiate in a regionally appropriate manner. These findings suggest that induced PSA expression can be used as a strategy for promoting tissue repair involving both replacement of cells and rebuilding of neural connections. PMID:17075041

  12. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

    PubMed

    Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann

    2017-09-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

  13. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB

    PubMed Central

    Heller, Danielle M.; Tavag, Mrinalini

    2017-01-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PMID:28931012

  14. Effect of Molecular Architecture on Polymer Melt Surface Dynamics

    NASA Astrophysics Data System (ADS)

    Foster, Mark

    The dynamics of the thermally stimulated surface height fluctuations in a polymer melt dictate wetting, adhesion, and tribology at that surface. These surface fluctuations can be profoundly altered by tethering of the chains. One type of tethering is the tethering of one part of a molecule to another part of the same molecule. This tethering is found in both long chain branched polymers and in macrocycles. We have studied the surface fluctuations with X-ray Photon Correlation Spectroscopy for melts of well-defined, anionically polymerized polystyrenes of various architectures, including linear, 6 arm star, pom-pom, comb and cyclic architectures. For linear chains, the variation of surface relaxation time with in-plane scattering vector can be fit using a hydrodynamic continuum theory (HCT) of thermally stimulated capillary waves that knows nothing of the chain architecture. Assuming the theory is applicable, apparent viscosities of the films may then be inferred from the XPCS data. For unentangled linear chains, the viscosity inferred from XPCS data in this manner is the same as that measured by conventional bulk rheometry. The HCT does a reasonable job of describing the variation of relaxation time with scattering vector for long branched chains also, but only if a viscosity much larger than that of the bulk is assumed. The discrepancy between the viscosity inferred from surface relaxation times using the HCT and that derived from conventional rheometry grows larger as the bulk Tg is approached and is different for each long chain branched architecture. However, for densely branched combs and cyclic chains different behaviors are found. Acknowledgement: Thanks to NSF (CBET 0730692) and the Advanced Photon Source, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, under Contract No. W-31-109-ENG-38.

  15. Architectural protein subclasses shape 3-D organization of genomes during lineage commitment

    PubMed Central

    Phillips-Cremins, Jennifer E.; Sauria, Michael E. G.; Sanyal, Amartya; Gerasimova, Tatiana I.; Lajoie, Bryan R.; Bell, Joshua S. K.; Ong, Chin-Tong; Hookway, Tracy A.; Guo, Changying; Sun, Yuhua; Bland, Michael J.; Wagstaff, William; Dalton, Stephen; McDevitt, Todd C.; Sen, Ranjan; Dekker, Job; Taylor, James; Corces, Victor G.

    2013-01-01

    Summary Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in looping interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge shortrange enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales. PMID:23706625

  16. Kinetic Inductance Memory Cell and Architecture for Superconducting Computers

    NASA Astrophysics Data System (ADS)

    Chen, George J.

    Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.

  17. Initial evaluation of vascular ingrowth into superporous hydrogels.

    PubMed

    Keskar, Vandana; Gandhi, Milind; Gemeinhart, Ernest J; Gemeinhart, Richard A

    2009-08-01

    There is a need for new materials and architectures for tissue engineering and regenerative medicine. Based upon our recent results developing novel scaffold architecture, we hypothesized that this new architecture would foster vascularization, a particular need for tissue engineering. We report on the potential of superporous hydrogel (SPH) scaffolds for in vivo cellular infiltration and vascularization. Poly(ethylene glycol) diacrylate (PEGDA) SPH scaffolds were implanted in the dorsum of severe combined immunodeficient (SCID) mice and harvested after 4 weeks of in vivo implantation. The SPHs were visibly red and vascularized, as apparent when compared to the non-porous hydrogel controls, which were macroscopically avascular. Host cell infiltration was observed throughout the SPHs. Blood cells and vascular structures, confirmed through staining for CD34 and smooth muscle alpha-actin, were observed throughout the scaffolds. This novel soft material may be utilized for cell transplantation, tissue engineering and in combination with cell therapies. The neovasularization and limited fibrotic response suggest that the architecture may be conducive to cell survival and rapid vessel development.

  18. Interplay between efficiency and device architecture for small molecule organic solar cells.

    PubMed

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  19. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning.

    PubMed

    Sun, Xiuhua; Wang, Huaixin; Wang, Yuanyuan; Gui, Taijiang; Wang, Ke; Gao, Changlu

    2018-04-15

    Nonspecific binding or adsorption of biomolecules presents as a major obstacle to higher sensitivity, specificity and reproducibility in microarray technology. We report herein a method to fabricate antifouling microarray via photopolymerization of biomimetic betaine compounds. In brief, carboxybetaine methacrylate was polymerized as arrays for protein sensing, while sulfobetaine methacrylate was polymerized as background. With the abundant carboxyl groups on array surfaces and zwitterionic polymers on the entire surfaces, this microarray allows biomolecular immobilization and recognition with low nonspecific interactions due to its antifouling property. Therefore, low concentration of target molecules can be captured and detected by this microarray. It was proved that a concentration of 10ngmL -1 bovine serum albumin in the sample matrix of bovine serum can be detected by the microarray derivatized with anti-bovine serum albumin. Moreover, with proper hydrophilic-hydrophobic designs, this approach can be applied to fabricate surface-tension droplet arrays, which allows surface-directed cell adhesion and growth. These light controllable approaches constitute a clear improvement in the design of antifouling interfaces, which may lead to greater flexibility in the development of interfacial architectures and wider application in blood contact microdevices. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands

    PubMed Central

    Lavery, Danielle L; Nicholson, Anna M; Poulsom, Richard; Jeffery, Rosemary; Hussain, Alia; Gay, Laura J; Jankowski, Janusz A; Zeki, Sebastian S; Barr, Hugh; Harrison, Rebecca; Going, James; Kadirkamanathan, Sritharan; Davis, Peter; Underwood, Timothy; Novelli, Marco R; Rodriguez–Justo, Manuel; Shepherd, Neil; Jansen, Marnix; Wright, Nicholas A; McDonald, Stuart A C

    2014-01-01

    Objective Barrett's oesophagus shows appearances described as ‘intestinal metaplasia’, in structures called ‘crypts’ but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Methods Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Results Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Conclusions Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus. PMID:24550372

  1. The stem cell organisation, and the proliferative and gene expression profile of Barrett's epithelium, replicates pyloric-type gastric glands.

    PubMed

    Lavery, Danielle L; Nicholson, Anna M; Poulsom, Richard; Jeffery, Rosemary; Hussain, Alia; Gay, Laura J; Jankowski, Janusz A; Zeki, Sebastian S; Barr, Hugh; Harrison, Rebecca; Going, James; Kadirkamanathan, Sritharan; Davis, Peter; Underwood, Timothy; Novelli, Marco R; Rodriguez-Justo, Manuel; Shepherd, Neil; Jansen, Marnix; Wright, Nicholas A; McDonald, Stuart A C

    2014-12-01

    Barrett's oesophagus shows appearances described as 'intestinal metaplasia', in structures called 'crypts' but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release.

    PubMed

    Kyobula, Mary; Adedeji, Aremu; Alexander, Morgan R; Saleh, Ehab; Wildman, Ricky; Ashcroft, Ian; Gellert, Paul R; Roberts, Clive J

    2017-09-10

    A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet printing to produce drug loaded solid dosage forms is demonstrated using a naturally derived FDA approved material (beeswax) as the drug carrier and fenofibrate as the drug. Tablets with bespoke geometries (honeycomb architecture) were fabricated. The honeycomb architecture was modified by control of the honeycomb cell size, and hence surface area to enable control of drug release profiles without the need to alter the formulation. Analysis of the formed tablets showed the drug to be evenly distributed within the beeswax at the bulk scale with evidence of some localization at the micron scale. An analytical model utilizing a Fickian description of diffusion was developed to allow the prediction of drug release. A comparison of experimental and predicted drug release data revealed that in addition to surface area, other factors such as the cell diameter in the case of the honeycomb geometry and material wettability must be considered in practical dosage form design. This information when combined with the range of achievable geometries could allow the bespoke production of optimized personalised medicines for a variety of delivery vehicles in addition to tablets, such as medical devices for example. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The Architectural Organization of Human Stem Cell Cycle Regulatory Machinery

    PubMed Central

    Stein, Gary S.; Stein, Janet L.; Wijnen, Andre van J; Lian, Jane B.; Montecino, Martin; Medina, Ricardo; Kapinas, Kristie; Ghule, Prachi; Grandy, Rodrigo; Zaidi, Sayyed K.; Becker, Klaus A.

    2013-01-01

    Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective. PMID:22394165

  4. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture.

    PubMed

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-08-22

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.

  5. [Cellular architecture of papillary and nonpapillary transitional cell carcinoma].

    PubMed

    Moriyama, M

    1989-07-01

    To characterize the cellular architecture of papillary and nonpapillary transitional cell carcinoma. 2 normal ureters, 6 papillary bladder cancers and 5 nonpapillary bladder cancers were subjected to light and electron microscopic study as well as three dimensional reconstruction by 0.5 microns thick serial sections. Normal urothelium consisted of three cell layers of the basal, intermediate and superficial cells, each of which was morphologically characterized in terms of cell shape and development of cell organelles. Over 90% of the epithelial cells were proved to be connected to the uniform basement membrane directly or with long, fine cytoplasmic processes, forming hemidesmosomes at the junctional portion. Papillary tumors had, as a rule, the same cellular architecture as that of normal epithelium in terms of the regularity of cellular polarity, arrangement and differentiation, and the connection to the basement membrane. But, in G2 tumors, the connection between the intermediate and superficial cells and the basement membrane failed to be confirmed in 7 to 44% of the cells, suggesting the heterogeneity of the tumors. In contrast, nonpapillary tumors showed a high irregularity of the cellular architecture in both lesions of stromal and intra-epithelial invasion. The development of the basement membrane was indefinite, often showing thinning or disruption where occasional cytoplasmic protrusion of the tumor cells into the lamina propria was found. Nearly all of the intermediate and superficial cells in the intraepithelial lesions proved not to communicate with the basement membrane. The present results indicate distinct differences of cellular architecture between the papillary and nonpapillary urothelial tumors, which may reflect not only the growth pattern but also the biological behaviour of the individual tumors.

  6. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers

    PubMed Central

    Gattás-Asfura, Kerim M.; Stabler, Cherie L.

    2013-01-01

    The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764

  7. Multiple mechanisms underlie defective recognition of melanoma cells cultured in three-dimensional architectures by antigen-specific cytotoxic T lymphocytes

    PubMed Central

    Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A

    2007-01-01

    Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088

  8. Template-Free Synthesis of Functional 3D BN architecture for removal of dyes from water

    PubMed Central

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-01-01

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m2 g−1, and the total pore volume is about 1.17 cm3 g−1. The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment. PMID:24663292

  9. Template-free synthesis of functional 3D BN architecture for removal of dyes from water.

    PubMed

    Liu, Dan; Lei, Weiwei; Qin, Si; Chen, Ying

    2014-03-25

    Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m(2) g(-1), and the total pore volume is about 1.17 cm(3) g(-1). The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

  10. Interactions between Membranes and "Metaphilic" Polypeptide Architectures with Diverse Side-Chain Populations.

    PubMed

    Lee, Michelle W; Han, Ming; Bossa, Guilherme Volpe; Snell, Carly; Song, Ziyuan; Tang, Haoyu; Yin, Lichen; Cheng, Jianjun; May, Sylvio; Luijten, Erik; Wong, Gerard C L

    2017-03-28

    At physiological conditions, most proteins or peptides can fold into relatively stable structures that present on their molecular surfaces specific chemical patterns partially smeared out by thermal fluctuations. These nanoscopically defined patterns of charge, hydrogen bonding, and/or hydrophobicity, along with their elasticity and shape stability (folded proteins have Young's moduli of ∼1 × 10 8 Pa), largely determine and limit the interactions of these molecules, such as molecular recognition and allosteric regulation. In this work, we show that the membrane-permeating activity of antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) can be significantly enhanced using prototypical peptides with "molten" surfaces: metaphilic peptides with quasi-liquid surfaces and adaptable shapes. These metaphilic peptides have a bottlebrush-like architecture consisting of a rigid helical core decorated with mobile side chains that are terminated by cationic or hydrophobic groups. Computer simulations show that these flexible side chains can undergo significant rearrangement in response to different environments, giving rise to adaptable surface chemistry of the peptide. This quality makes it possible to control their hydrophobicity over a broad range while maintaining water solubility, unlike many AMPs and CPPs. Thus, we are able to show how the activity of these peptides is amplified by hydrophobicity and cationic charge, and rationalize these results using a quantitative mean-field theory. Computer simulations show that the shape-changing properties of the peptides and the resultant adaptive presentation of chemistry play a key enabling role in their interactions with membranes.

  11. Biofilm three-dimensional architecture influences in situ pH distribution pattern on the human enamel surface

    PubMed Central

    Xiao, Jin; Hara, Anderson T; Kim, Dongyeop; Zero, Domenick T; Koo, Hyun; Hwang, Geelsu

    2017-01-01

    To investigate how the biofilm three-dimensional (3D) architecture influences in situ pH distribution patterns on the enamel surface. Biofilms were formed on human tooth enamel in the presence of 1% sucrose or 0.5% glucose plus 0.5% fructose. At specific time points, biofilms were exposed to a neutral pH buffer to mimic the buffering of saliva and subsequently pulsed with 1% glucose to induce re-acidification. Simultaneous 3D pH mapping and architecture of intact biofilms was performed using two-photon confocal microscopy. The enamel surface and mineral content characteristics were examined successively via optical profilometry and microradiography analyses. Sucrose-mediated biofilm formation created spatial heterogeneities manifested by complex networks of bacterial clusters (microcolonies). Acidic regions (pH<5.5) were found only in the interior of microcolonies, which impedes rapid neutralization (taking more than 120 min for neutralization). Glucose exposure rapidly re-created the acidic niches, indicating formation of diffusion barriers associated with microcolonies structure. Enamel demineralization (white spots), rougher surface, deeper lesion and more mineral loss appeared to be associated with the localization of these bacterial clusters at the biofilm-enamel interface. Similar 3D architecture was observed in plaque-biofilms formed in vivo in the presence of sucrose. The formation of complex 3D architectures creates spatially heterogeneous acidic microenvironments in close proximity of enamel surface, which might correlate with the localized pattern of the onset of carious lesions (white spot like) on teeth. PMID:28452377

  12. A U.S. perspective on the human exploration and expansion on the planet Mars

    NASA Technical Reports Server (NTRS)

    Roberts, Barney B.; Connolly, John F.

    1992-01-01

    A NASA perspective on the human exploration of Mars is presented which is based on the fundamental background available from the many previous studies. A hypothetical architecture of the Mars surface system is described which represents the complete spectrum of envisioned activities. Using the Strategic Implementation Architecture it is possible to construct a thoughtful roadmap which would enable a logical and flexible evolution of missions. Based on that architecture a suite of Martian surface elements is proposed to provide increasing levels of capability to the maturing infrastructure.

  13. Towards an ideal polymer scaffold for tendon/ligament tissue engineering

    NASA Astrophysics Data System (ADS)

    Sahoo, Sambit; Ouyang, Hong Wei; Goh, James Cho-Hong; Tay, Tong-Earn; Toh, Siew Lok

    2005-04-01

    Tissue engineering holds promise in treating injured tendons and ligaments by replacing the injured tissues with "engineered tissues" with identical mechanical and functional characteristics. A biocompatible, biodegradable, porous scaffold with optimized architecture, sufficient surface area for cell attachment, growth and proliferation, faborable mechanical properties, and suitable degradation rate is a pre-requisite to achieve success with this aproach. Knitted poly(lactide-co-glycolide) (PLGA) scaffolds comprising of microfibers of 25 micron diameter were coated with PLGA nanofibers on their surfaces by electrospinning technique. A cell suspension of pig bone marrow stromal cells (BMSC) was seeded on the scaffolds by pipetting, and the cell-scaffold constructs were cultured in a CO2 incubator, at 37°C for 1-2 weeks. The "engineered tissues" were then assessed for cell attachment and proliferation, tissue formation, and mechanical properties. Nanofibers, of diameter 300-900 nm, were spread randomly over the knitted scaffold. The reduction in pore-size from about 1 mm (in the knitted scaffold) to a few micrometers (in the nano-microscaffold) allowed cell seeding by direct pipetting, and eliminated the need of a cell-delivery system like fibrin gel. BMSCs were seen to attach and proliferate well on the nano-microscaffold, producing abundant extracellular matrix. Mechanical testing revealed that the cell-seeded nano-microscaffolds possessed slightly higher values of failure load, elastic-region stiffness and toe-region stiffness, than the unseeded scaffolds. The combination of superior mechanical strength and integrity of knitted microfibers, with the large surface area and improved hydrophilicity of the electrospun nanofibers facilitated cell attachment and new tissue formation. This holds promise in tissue engineering of tendon/ligament.

  14. Nanofluidic fuel cell

    NASA Astrophysics Data System (ADS)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  15. Novel Architectures for Achieving Direct Electron Transfer in Enzymatic Biofuel Cells

    NASA Astrophysics Data System (ADS)

    Blaik, Rita A.

    Enzymatic biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving direct electron transfer with high enzyme concentrations in a simple system. In this dissertation, methods of constructing electrodes consisting of enzymes attached to nanoparticle-enhanced substrates that serve as high surface area templates are evaluated. In the first method described, glucose oxidase is covalently attached to gold nanoparticles that are assembled onto genetically engineered M13 bacteriophage. The resulting anodes achieve a high peak current per area and a significant improvement in enzyme surface coverage. In the second system, fructose dehydrogenase, a membrane-bound enzyme that has the natural ability to achieve direct electron transfer, is immobilized into a matrix consisting of binders and carbon nanotubes to extend the lifetime of the anode. For the cathode, bilirubin oxidase is immobilized in a carbon nanotube and sol-gel matrix to achieve direct electron transfer. Finally, a full fuel cell consisting of both an anode and cathode is constructed and evaluated with each system described.

  16. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    PubMed

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  17. Classification of self-assembling protein nanoparticle architectures for applications in vaccine design

    NASA Astrophysics Data System (ADS)

    Indelicato, G.; Burkhard, P.; Twarock, R.

    2017-04-01

    We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.

  18. Thermal Instability Induced Oriented 2D Pores for Enhanced Sodium Storage.

    PubMed

    Kong, Lingjun; Xie, Chen-Chao; Gu, Haichen; Wang, Chao-Peng; Zhou, Xianlong; Liu, Jian; Zhou, Zhen; Li, Zhao-Yang; Zhu, Jian; Bu, Xian-He

    2018-04-19

    Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VO x /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VO x /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Examination of Multi-Core Architectures

    DTIC Science & Technology

    2010-11-01

    NOVEMBER 2010 2. REPORT TYPE Interim Technical Report 3. DATES COVERED (From - To) February 2010 – July 2010 4 . TITLE AND SUBTITLE EXAMINATION OF...STATEMENT 1 2.0 BACKGROUND 1 3.0 ARCHITECTURE CHARACTERISTICS 3 3.1 NVIDIA Tesla 3 3.2 TILE64 4 ...1 Tesla Architecture 3 2 TILE64 Architecture 4 3 Single Tile Architecture 4 4 STI Cell Broadband Engine

  20. 3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    NASA Astrophysics Data System (ADS)

    Scaffaro, Roberto; Lo Re, Giada; Rigogliuso, Salvatrice; Ghersi, Giulio

    2012-08-01

    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability.

  1. Controlling Material Reactivity Using Architecture.

    PubMed

    Sullivan, Kyle T; Zhu, Cheng; Duoss, Eric B; Gash, Alexander E; Kolesky, David B; Kuntz, Joshua D; Lewis, Jennifer A; Spadaccini, Christopher M

    2016-03-09

    3D-printing methods are used to generate reactive material architectures. Several geometric parameters are observed to influence the resultant flame propagation velocity, indicating that the architecture can be utilized to control reactivity. Two different architectures, channels and hurdles, are generated, and thin films of thermite are deposited onto the surface. The architecture offers an additional route to control, at will, the energy release rate in reactive composite materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Open System Architecture design for planet surface systems

    NASA Technical Reports Server (NTRS)

    Petri, D. A.; Pieniazek, L. A.; Toups, L. D.

    1992-01-01

    The Open System Architecture is an approach to meeting the needs for flexibility and evolution of the U.S. Space Exploration Initiative program of the manned exploration of the solar system and its permanent settlement. This paper investigates the issues that future activities of the planet exploration program must confront, defines the basic concepts that provide the basis for establishing an Open System Architecture, identifies the appropriate features of such an architecture, and discusses examples of Open System Architectures.

  3. The solid-state signaling pathway from extracellular matrix to nuclear matrix: The critical role of three-dimensional architecture for functional differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lelievre, S.; Bissell, M.J.

    Breast cells are useful experimental subjects for cell biologists because the mammary gland is one of the few tissues that undergoes dramatic changes in form and function after adulthood. Recently, the study in our laboratory of a human breast tumor progression series has allowed for the analysis of changes in cellular architecture (including nuclear architecture) when phenotypically normal cells become tumorigenic. This research aims to participate in the battle against breast cancer by helping to understand tumor progression and to identify new therapeutic markers for cancer treatment. This article explores the advantages and challenges of using high resolution X-ray computedmore » microtomography for the study of 3-dimensional organization of breast tissue architecture.« less

  4. Synthesis, structure investigation and biological evaluation of 2-thiophene N(4)-phenylthiosemicarbazone and its three metal derivatives

    NASA Astrophysics Data System (ADS)

    Wang, Zilang; Wu, Yuanyuan; Fu, Yan; Li, Mingxue; Tai, Yanxue; Li, Yanke

    2015-11-01

    A 2-thiophene N(4)-phenylthiosemicarbazone (HL) ligand and its three metal derivatives [CuL2 ] (1), [NiL2] (2) and [PdL2] (3) are synthesized and characterized by elemental analysis, IR spectra, mass spectra as well as the single-crystal X-ray diffraction. Compounds 1-3 have the identical architectures in which the Schiff bases L- ions act as the bibasic chelating ligands with thiolate S and imine N atoms as the donor sites. Cytotoxic studies carried out in vitro against human liver hepatocellular carcinoma HepG2 cells and human normal hepatocyte QSG7701 cells show that 1 can be able to inhibit cell proliferation growth. Compound 1 promotes a dose-dependent apoptosis in HepG2 cells. The potential structure-activity relationships among HL and 1-3 are further investigated by Hirshfeld surface combining fingerprint plots.

  5. Control of cell fate by the formation of an architecturally complex bacterial community.

    PubMed

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-04-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

  6. Control of cell fate by the formation of an architecturally complex bacterial community

    PubMed Central

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-01-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells. PMID:18381896

  7. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E.

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  8. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy.

    PubMed

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-07-15

    The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network of membranes and mitochondria encompassing the infranuclear region of the cell. This network is juxtaposed to a population of small vesicles, which represents a potential new source of neurotransmitter vesicles for replenishment of the synapses. Structural linkages between organelles that underlie this organisation were identified by high-resolution imaging. Taken together, these results describe a cell-encompassing network of membranes and mitochondria present in IHCs that support efficient coding and transmission of auditory signals. Such techniques also have the potential for clarifying functionally specialised cytoarchitecture of other cell types. © 2015. Published by The Company of Biologists Ltd.

  9. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  10. Perisinusoidal cell hypertrophy in a patient with acquired immunodeficiency syndrome.

    PubMed

    Kossaifi, T; Dupon, M; Le Bail, B; Lacut, Y; Balabaud, C; Bioulac-Sage, P

    1990-08-01

    A 33-year-old heterosexual white man underwent a liver biopsy for determination of mild elevation of aminotransferase levels (aspartate aminotransferase, two times; alanine aminotransferase, three times). The patient had acquired immunodeficiency syndrome (stage IVC2) with tuberculosis of the lymph nodes. Antibody to hepatitis B surface antigen and antibody to hepatitis B core antigen were positive. Syphillis tests were positive. Liver architecture was normal; sinusoids were dilated with perisinusoidal, centrilobular, and portal fibrosis. On a 1-micron-thick section and under electron microscopy, perisinusoidal cells appeared to be massively loaded with lipids, while endothelial cells contained numerous dense bodies. Some hepatocytes presented evidence of cell damage. Sinusoids were infiltrated by an increased number of lymphocytes and macrophages. This patient who had recently been treated for tuberculosis was not taking extra vitamin A. He had no disease so far reported as being associated with perisinusoidal cell hypertrophy. This case and others are evidence that acquired immunodeficiency syndrome represents another cause of perisinusoidal cell hypertrophy in which there is no documented hypervitaminosis A.

  11. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

    NASA Astrophysics Data System (ADS)

    Tomasi, Andrea; Paviet-Salomon, Bertrand; Jeangros, Quentin; Haschke, Jan; Christmann, Gabriel; Barraud, Loris; Descoeudres, Antoine; Seif, Johannes Peter; Nicolay, Sylvain; Despeisse, Matthieu; de Wolf, Stefaan; Ballif, Christophe

    2017-04-01

    For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

  12. Cell Surface Mechanochemistry and the Determinants of Bleb Formation, Healing, and Travel Velocity

    PubMed Central

    Manakova, Kathryn; Yan, Huaming; Lowengrub, John; Allard, Jun

    2016-01-01

    Blebs are pressure-driven cell protrusions implicated in cellular functions such as cell division, apoptosis, and cell motility, including motility of protease-inhibited cancer cells. Because of their mechanical nature, blebs inform us about general cell-surface mechanics, including membrane dynamics, pressure propagation throughout the cytoplasm, and the architecture and dynamics of the actin cortex. Mathematical models including detailed fluid dynamics have previously been used to understand bleb expansion. Here, we develop mathematical models in two and three dimensions on longer timescales that recapitulate the full bleb life cycle, including both expansion and healing by cortex reformation, in terms of experimentally accessible biophysical parameters such as myosin contractility, osmotic pressure, and turnover of actin and ezrin. The model provides conditions under which blebbing occurs, and naturally gives rise to traveling blebs. The model predicts conditions under which blebs travel or remain stationary, as well as the bleb traveling velocity, a quantity that has remained elusive in previous models. As previous studies have used blebs as reporters of membrane tension and pressure dynamics within the cell, we have used our system to investigate various pressure equilibration models and dynamic, nonuniform membrane tension to account for the shape of a traveling bleb. We also find that traveling blebs tend to expand in all directions unless otherwise constrained. One possible constraint could be provided by spatial heterogeneity in, for example, adhesion density. PMID:27074688

  13. A technique system for the measurement, reconstruction and character extraction of rice plant architecture

    PubMed Central

    Li, Xumeng; Wang, Xiaohui; Wei, Hailin; Zhu, Xinguang; Peng, Yulin; Li, Ming; Li, Tao; Huang, Huang

    2017-01-01

    This study developed a technique system for the measurement, reconstruction, and trait extraction of rice canopy architectures, which have challenged functional–structural plant modeling for decades and have become the foundation of the design of ideo-plant architectures. The system uses the location-separation-measurement method (LSMM) for the collection of data on the canopy architecture and the analytic geometry method for the reconstruction and visualization of the three-dimensional (3D) digital architecture of the rice plant. It also uses the virtual clipping method for extracting the key traits of the canopy architecture such as the leaf area, inclination, and azimuth distribution in spatial coordinates. To establish the technique system, we developed (i) simple tools to measure the spatial position of the stem axis and azimuth of the leaf midrib and to capture images of tillers and leaves; (ii) computer software programs for extracting data on stem diameter, leaf nodes, and leaf midrib curves from the tiller images and data on leaf length, width, and shape from the leaf images; (iii) a database of digital architectures that stores the measured data and facilitates the reconstruction of the 3D visual architecture and the extraction of architectural traits; and (iv) computation algorithms for virtual clipping to stratify the rice canopy, to extend the stratified surface from the horizontal plane to a general curved surface (including a cylindrical surface), and to implement in silico. Each component of the technique system was quantitatively validated and visually compared to images, and the sensitivity of the virtual clipping algorithms was analyzed. This technique is inexpensive and accurate and provides high throughput for the measurement, reconstruction, and trait extraction of rice canopy architectures. The technique provides a more practical method of data collection to serve functional–structural plant models of rice and for the optimization of rice canopy types. Moreover, the technique can be easily adapted for other cereal crops such as wheat, which has numerous stems and leaves sheltering each other. PMID:28558045

  14. Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins

    NASA Astrophysics Data System (ADS)

    Pownall, Henry J.; Homan, Reynold; Massey, John B.

    1987-01-01

    Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.

  15. NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.

    PubMed

    Parry, Aled J; Hoare, Matthew; Bihary, Dóra; Hänsel-Hertsch, Robert; Smith, Stephen; Tomimatsu, Kosuke; Mannion, Elizabeth; Smith, Amy; D'Santos, Paula; Russell, I Alasdair; Balasubramanian, Shankar; Kimura, Hiroshi; Samarajiwa, Shamith A; Narita, Masashi

    2018-05-09

    Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.

  16. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture.

    PubMed

    Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook

    2013-01-01

    Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.

  17. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.

    PubMed

    Shao, Yue; Mann, Jennifer M; Chen, Weiqiang; Fu, Jianping

    2014-03-01

    Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first experimental evidence showing cell shape-dependent EC mechanotransduction via cytoskeleton (CSK) contractile forces in response to uniaxial stretch. Combining experiments and theoretical modeling from first principles, we showed that it was the global architecture of the F-actin CSK that instructed the cell shape-dependent EC mechanotransductive process. Furthermore, a cell shape-dependent nature was relayed in EC mechanotransduction via dynamic focal adhesion (FA) assembly. Our results suggested a novel mechanotransductive process in ECs wherein the global architecture of the F-actin CSK, governed by cell shape, controls mechanotransduction via CSK contractile forces and force-dependent FA assembly under uniaxial stretch.

  18. In vitro study of 3D PLGA/n-HAp/β-TCP composite scaffolds with etched oxygen plasma surface modification in bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Roh, Hee-Sang; Jung, Sang-Chul; Kook, Min-Suk; Kim, Byung-Hoon

    2016-12-01

    Three-dimensional (3D) scaffolds have many advantageous properties for bone tissue engineering application, due to its controllable properties such as pore size, structural shape and interconnectivity. In this study, effects on oxygen plasma surface modification and adding of nano-hydroxyapatite (n-HAp) and β-tricalcium phosphate (β-TCP) on the 3D PLGA/n-HAp/β-TCP scaffolds for improving preosteoblast cell (MC3T3-E1) adhesion, proliferation and differentiation were investigated. The 3D PLGA/n-HAp/β-TCP scaffolds were fabricated by 3D Bio-Extruder equipment. The 3D scaffolds were prepared with 0°/90° architecture and pore size of approximately 300 μm. In addition 3D scaffolds surface were etched by oxygen plasma to enhance the hydrophilic property and surface roughness. After oxygen plasma treatment, the surface chemistry and morphology were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. And also hydrophilic property was measured by contact angle. The MC3T3-E1 cell proliferation and differentiation were investigated by MTT assay and ALP activity. In present work, the 3D PLGA/HAp/beta-TCP composite scaffold with suitable structure for the growth of osteoblast cells was successfully fabricated by 3D rapid prototyping technique. The surface hydrophilicity and roughness of 3D scaffold increased by oxygen plasma treatment had a positive effect on cell adhesion, proliferation, and differentiation. Furthermore, the differentiation of MC3T3-E1 cell was significantly enhanced by adding of n-HAp and β-TCP on 3D PLGA scaffold. As a result, combination of bioceramics and oxygen plasma treatment showed a synergistic effect on biocompatibility of 3D scaffolds. This result confirms that this technique was useful tool for improving the biocompatibility in bone tissue engineering application.

  19. Optimizing non-radiative energy transfer in hybrid colloidal-nanocrystal/silicon structures by controlled nanopillar architectures for future photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Seitz, O.; Caillard, L.; Nguyen, H. M.; Chiles, C.; Chabal, Y. J.; Malko, A. V.

    2012-01-01

    To optimize colloidal nanocrystals/Si hybrid structures, nanopillars are prepared and organized via microparticle patterning and Si etching. A monolayer of CdSe nanocrystals is then grafted on the passivated oxide-free nanopillar surfaces, functionalized with carboxy-alkyl chain linkers. This process results to a negligible number of non-radiative surface state defects with a tightly controlled separation between the nanocrystals and Si. Steady-state and time-resolved photoluminescence measurements confirm the close-packing nanocrystal arrangement and the dominance of non-radiative energy transfer from nanocrystals to Si. We suggest that radially doped p-n junction devices based on energy transfer offer a viable approach for thin film photovoltaic devices.

  20. Reliability analysis of multicellular system architectures for low-cost satellites

    NASA Astrophysics Data System (ADS)

    Erlank, A. O.; Bridges, C. P.

    2018-06-01

    Multicellular system architectures are proposed as a solution to the problem of low reliability currently seen amongst small, low cost satellites. In a multicellular architecture, a set of independent k-out-of-n systems mimic the cells of a biological organism. In order to be beneficial, a multicellular architecture must provide more reliability per unit of overhead than traditional forms of redundancy. The overheads include power consumption, volume and mass. This paper describes the derivation of an analytical model for predicting a multicellular system's lifetime. The performance of such architectures is compared against that of several common forms of redundancy and proven to be beneficial under certain circumstances. In addition, the problem of peripheral interfaces and cross-strapping is investigated using a purpose-developed, multicellular simulation environment. Finally, two case studies are presented based on a prototype cell implementation, which demonstrate the feasibility of the proposed architecture.

  1. Olfactomedin-1 Has a V-shaped Disulfide-linked Tetrameric Structure*

    PubMed Central

    Pronker, Matti F.; Bos, Trusanne G. A. A.; Sharp, Thomas H.; Thies-Weesie, Dominique M. E.; Janssen, Bert J. C.

    2015-01-01

    Olfactomedin-1 (Olfm1; also known as noelin and pancortin) is a member of the olfactomedin domain-containing superfamily and a highly expressed neuronal glycoprotein important for nervous system development. It binds a number of secreted proteins and cell surface-bound receptors to induce cell signaling processes. Using a combined approach of x-ray crystallography, solution scattering, analytical ultracentrifugation, and electron microscopy we determined that full-length Olfm1 forms disulfide-linked tetramers with a distinctive V-shaped architecture. The base of the “V” is formed by two disulfide-linked dimeric N-terminal domains. Each of the two V legs consists of a parallel dimeric disulfide-linked coiled coil with a C-terminal β-propeller dimer at the tips. This agrees with our crystal structure of a C-terminal coiled-coil segment and β-propeller combination (Olfm1coil-Olf) that reveals a disulfide-linked dimeric arrangement with the β-propeller top faces in an outward exposed orientation. Similar to its family member myocilin, Olfm1 is stabilized by calcium. The dimer-of-dimers architecture suggests a role for Olfm1 in clustering receptors to regulate signaling and sheds light on the conformation of several other olfactomedin domain family members. PMID:25903135

  2. Identifying the architecture of a supracellular actomyosin network that induces tissue folding

    NASA Astrophysics Data System (ADS)

    Yevick, Hannah; Stoop, Norbert; Dunkel, Jorn; Martin, Adam

    During embryonic development, the establishment of correct tissue form ensures proper tissue function. Yet, how the thousands of cells within a tissue coordinate force production to sculpt tissue shape is poorly understood. One important tissue shape change is tissue folding where a cell sheet bends to form a closed tube. Drosophila (fruit fly) embryos undergo such a folding event, called ventral furrow formation. The ventral furrow is associated with a supracellular network of actin and myosin, where actin-myosin fibers assemble and connect between cells. It is not known how this tissue-wide network grows and connects over time, how reproducible it is between embryos, and what determines its architecture. Here, we used topological feature analysis to quantitatively and dynamically map the connections and architecture of this supracellular network across hundreds of cells in the folding tissue. We identified the importance of the cell unit in setting up the tissue-scale architecture of the network. Our mathematical framework allows us to explore stereotypic properties of the myosin network such that we can investigate the reproducibility of mechanical connections for a morphogenetic process. NIH F32.

  3. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.

    PubMed

    Mota, Carlos; Wang, Shen-Yu; Puppi, Dario; Gazzarri, Matteo; Migone, Chiara; Chiellini, Federica; Chen, Guo-Qiang; Chiellini, Emo

    2017-01-01

    A wide range of poly(hydroxyalkanoate)s (PHAs), a class of biodegradable polyesters produced by various bacteria grown under unbalanced conditions, have been proposed for the fabrication of tissue-engineering scaffolds. In this study, the manufacture of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (or PHBHHx) scaffolds, by means of an additive manufacturing technique based on a computer-controlled wet-spinning system, was investigated. By optimizing the processing parameters, three-dimensional scaffolds with different internal architectures were fabricated, based on a layer-by-layer approach. The resulting scaffolds were characterized by scanning electron microscopy, which showed good control over the fibre alignment and a fully interconnected porous network, with porosity in the range 79-88%, fibre diameter 47-76 µm and pore size 123-789 µm. Moreover, the resulting fibres presented an internal porosity connected to the external fibre surface as a consequence of the phase-inversion process governing the solidification of the polymer solution. Scaffold compressive modulus and yield stress and strain could be varied in a certain range by changing the architectural parameters. Cell-culture experiments employing the MC3T3-E1 murine pre-osteoblast cell line showed good cell proliferation after 21 days of culture. The PHBHHx scaffolds demonstrated promising results in terms of cell differentiation towards an osteoblast phenotype. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Quantitative Analysis of Three-Dimensional Human Mammary Epithelial Tissue Architecture Reveals a Role for Tenascin-C in Regulating c-Met Function

    PubMed Central

    Taraseviciute, Agne; Vincent, Benjamin T.; Schedin, Pepper; Jones, Peter Lloyd

    2010-01-01

    Remodeling of the stromal extracellular matrix and elevated expression of specific proto-oncogenes within the adjacent epithelium represent cardinal features of breast cancer, yet how these events become integrated is not fully understood. To address this question, we focused on tenascin-C (TN-C), a stromal extracellular matrix glycoprotein whose expression increases with disease severity. Initially, nonmalignant human mammary epithelial cells (MCF-10A) were cultured within a reconstituted basement membrane (BM) where they formed three-dimensional (3-D) polarized, growth-attenuated, multicellular acini, enveloped by a continuous endogenous BM. In the presence of TN-C, however, acini failed to generate a normal BM, and net epithelial cell proliferation increased. To quantify how TN-C alters 3-D tissue architecture and function, we developed a computational image analysis algorithm, which showed that although TN-C disrupted acinar surface structure, it had no effect on their volume. Thus, TN-C promoted epithelial cell proliferation leading to luminal filling, a process that we hypothesized involved c-met, a proto-oncogene amplified in breast tumors that promotes intraluminal filling. Indeed, TN-C increased epithelial c-met expression and promoted luminal filling, whereas blockade of c-met function reversed this phenotype, resulting in normal BM deposition, proper lumen formation, and decreased cell proliferation. Collectively, these studies, combining a novel quantitative image analysis tool with 3-D organotypic cultures, demonstrate that stromal changes associated with breast cancer can control proto-oncogene function. PMID:20042668

  5. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    PubMed

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  6. EAST WEST NORTH ELEVATIONS OF MULTICURIE CELL ARCHITECTURAL DETAILS REMOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST WEST NORTH ELEVATIONS OF MULTICURIE CELL ARCHITECTURAL DETAILS REMOTE ANALYTICAL FACILITY (CPP-627). INL DRAWING NUMBER 200-00627-00-706-050245. ALTERNATE ID NUMBER AED-D-245. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. Macromolecular scaffolding: the relationship between nanoscale architecture and function in multichromophoric arrays for organic electronics.

    PubMed

    Palermo, Vincenzo; Schwartz, Erik; Finlayson, Chris E; Liscio, Andrea; Otten, Matthijs B J; Trapani, Sara; Müllen, Klaus; Beljonne, David; Friend, Richard H; Nolte, Roeland J M; Rowan, Alan E; Samorì, Paolo

    2010-02-23

    The optimization of the electronic properties of molecular materials based on optically or electrically active organic building blocks requires a fine-tuning of their self-assembly properties at surfaces. Such a fine-tuning can be obtained on a scale up to 10 nm by mastering principles of supramolecular chemistry, i.e., by using suitably designed molecules interacting via pre-programmed noncovalent forces. The control and fine-tuning on a greater length scale is more difficult and challenging. This Research News highlights recent results we obtained on a new class of macromolecules that possess a very rigid backbone and side chains that point away from this backbone. Each side chain contains an organic semiconducting moiety, whose position and electronic interaction with neighboring moieties are dictated by the central macromolecular scaffold. A combined experimental and theoretical approach has made it possible to unravel the physical and chemical properties of this system across multiple length scales. The (opto)electronic properties of the new functional architectures have been explored by constructing prototypes of field-effect transistors and solar cells, thereby providing direct insight into the relationship between architecture and function.

  8. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs.

    PubMed

    Tan, Naiwen; Liu, Xiangwei; Cai, Yanhui; Zhang, Sijia; Jian, Bo; Zhou, Yuchao; Xu, Xiaoru; Ren, Shuai; Wei, Hongbo; Song, Yingliang

    2017-01-01

    High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone-implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs.

  9. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction

    PubMed Central

    Schröder, Andreas

    2018-01-01

    The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597

  10. Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors.

    PubMed

    Ivanov, Ivaylo I; Schelonka, Robert L; Zhuang, Yingxin; Gartland, G Larry; Zemlin, Michael; Schroeder, Harry W

    2005-06-15

    To gain insight into the mechanisms that regulate the development of the H chain CDR3 (CDR-H3), we used the scheme of Hardy to sort mouse bone marrow B lineage cells into progenitor, immature, and mature B cell fractions, and then performed sequence analysis on V(H)7183-containing Cmu transcripts. The essential architecture of the CDR-H3 repertoire observed in the mature B cell fraction F was already established in the early pre-B cell fraction C. These architectural features include V(H) gene segment use preference, D(H) family usage, J(H) rank order, predicted structures of the CDR-H3 base and loop, and the amino acid composition and average hydrophobicity of the CDR-H3 loop. With development, the repertoire was focused by eliminating outliers to what appears to be a preferred repertoire in terms of length, amino acid composition, and average hydrophobicity. Unlike humans, the average length of CDR-H3 increased during development. The majority of this increase came from enhanced preservation of J(H) sequence. This was associated with an increase in the prevalence of tyrosine. With an accompanying increase in glycine, a shift in hydrophobicity was observed in the CDR-H3 loop from near neutral in fraction C (-0.08 +/- 0.03) to mild hydrophilic in fraction F (-0.17 +/- 0.02). Fundamental constraints on the sequence and structure of CDR-H3 are thus established before surface IgM expression.

  11. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    PubMed

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  12. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency

    PubMed Central

    Kim, Young Eun; Kim, Yu-na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon

    2015-01-01

    Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. PMID:25972078

  13. Emerging Technologies for Assembly of Microscale Hydrogels

    PubMed Central

    Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan

    2013-01-01

    Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717

  14. The impact of detergents on the tissue decellularization process: a ToF-SIMS study

    PubMed Central

    White, Lisa J; Taylor, Adam J; Faulk, Denver M; Keane, Tim J; Saldin, Lindsey T; Reing, Janet E; Swinehart, Ilea T; Turner, Neill J; Ratner, Buddy D

    2017-01-01

    Biologic scaffolds are derived from mammalian tissues, which must be decellularized to remove cellular antigens that would otherwise incite an adverse immune response. Although widely used clinically, the optimum balance between cell removal and the disruption of matrix architecture and surface ligand landscape remains a considerable challenge. Here we describe the use of time of flight secondary ion mass spectroscopy (ToF-SIMS) to provide sensitive, molecular specific, localized analysis of detergent decellularized biologic scaffolds. We detected residual detergent fragments, specifically from Triton X-100, sodium deoxycholate and sodium dodecyl sulphate (SDS) in decellularized scaffolds; increased SDS concentrations from 0.1% to 1.0% increased both the intensity of SDS fragments and adverse cell outcomes. We also identified cellular remnants, by detecting phosphate and phosphocholine ions in PAA and CHAPS decellularized scaffolds. The present study demonstrates ToF-SIMS is not only a powerful tool for characterization of biologic scaffold surface molecular functionality, but also enables sensitive assessment of decellularization efficacy. PMID:27993639

  15. Gold-Coated M13 Bacteriophage as a Template for Glucose Oxidase Biofuel Cells with Direct Electron Transfer.

    PubMed

    Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce

    2016-01-26

    Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.

  16. Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes

    NASA Astrophysics Data System (ADS)

    Mangang, M.; Seifert, H. J.; Pfleging, W.

    2016-02-01

    Lithium iron phosphate is a promising cathode material for lithium-ion batteries, despite its low electrical conductivity and lithium-ion diffusion kinetic. To overcome the reduced rate performance, three dimensional (3D) architectures were generated in composite cathode layers. By using ultrashort laser radiation with pulse durations in the femtosecond regime the ablation depth per pulse is three times higher compared to nanosecond laser pulses. Due to the 3D structuring, the surface area of the active material which is in direct contact with liquid electrolyte, i.e. the active surface, is increased. As a result the capacity retention and the cycle stability were significantly improved, especially for high charging/discharging currents. Furthermore, a 3D structure leads to higher currents during cyclic voltammetry. Thus, the lithium-ion diffusion kinetic in the cell was improved. In addition, using ultrashort laser pulses results in a high aspect ratio and further improvement of the cell kinetic was achieved.

  17. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    PubMed

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.

  18. Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation

    PubMed Central

    Navabi, Nazanin; McGuckin, Michael A.; Lindén, Sara K.

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface. PMID:23869232

  19. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical properties of scaffolds, 3D printed scaffolds have shortcomings such as limited mimicking of the nanoscale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nanoscale roughness and chemical composition of a 3D printed scaffold surface. The results indicated that using CAP surface modification could achieve a positive change of roughness and surface chemistry. Results showed that both hydrophilicity and nanoscale roughness changes to these scaffolds after CAP treatment played an important role in enhancing bone cell and mesenchymal stem cell attachment and functions. More importantly, this technique could be used for many 3D printed polymer-based biomaterials to improve their properties for numerous applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    PubMed

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    PubMed

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

  2. New developments in 3D liquid crystal elastomers scaffolds for tissue engineering: from physical template to responsive substrate

    NASA Astrophysics Data System (ADS)

    Prévôt, Marianne E.; Bergquist, Leah E.; Sharma, Anshul; Mori, Taizo; Gao, Yungxiang; Bera, Tanmay; Zhu, Chenhui; Leslie, Michelle T.; Cukelj, Richard; Korley, LaShanda T. J.; Freeman, Ernest J.; McDonough, Jennifer A.; Clements, Robert J.; Hegmann, Elda

    2017-08-01

    We report here on cell growth and proliferation within a 3D architecture created using smectic liquid crystal elastomers (LCEs) leading to a responsive scaffold for tissue engineering. The investigated LCE scaffolds exhibit biocompatibility, controlled degradability, with mechanical properties and morphologies that can match development of the extracellular matrix. Moreover, the synthetic pathway and scaffold design offer a versatility of processing, allowing modifications of the surface such as adjusting the hydrophilic/hydrophobic balance and the mobility of the LC moieties to enhance the biomaterial performance. First, we succeeded in generating LCEs whose mechanical properties mimic muscle tissue. In films, our LCEs showed cell adhesion, proliferation, and alignment. We also achieved creating 3D LCE structures using either metallic template or microsphere scaffolds. Finally, we recorded a four times higher cell proliferation capability in comparison to conventional porous films and, most importantly, anisotropic cell growth that highlights the tremendous effect of liquid crystal moieties within LCEs on the cell environment.

  3. High-speed AFM for scanning the architecture of living cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Deng, Zhifeng; Chen, Daixie; Ao, Zhuo; Sun, Quanmei; Feng, Jiantao; Yin, Bohua; Han, Li; Han, Dong

    2013-08-01

    We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples.We address the modelling of tip-cell membrane interactions under high speed atomic force microscopy. Using a home-made device with a scanning area of 100 × 100 μm2, in situ imaging of living cells is successfully performed under loading rates from 1 to 50 Hz, intending to enable detailed descriptions of physiological processes in living samples. Electronic supplementary information (ESI) available: Movie of the real-time change of inner surface within fresh blood vessel. The movie was captured at a speed of 30 Hz in the range of 80 μm × 80 μm. See DOI: 10.1039/c3nr01464a

  4. Highly Durable Supportless Pt Hollow Spheres Designed for Enhanced Oxygen Transport in Cathode Catalyst Layers of Proton Exchange Membrane Fuel Cells.

    PubMed

    Dogan, Didem C; Cho, Seonghun; Hwang, Sun-Mi; Kim, Young-Min; Guim, Hwanuk; Yang, Tae-Hyun; Park, Seok-Hee; Park, Gu-Gon; Yim, Sung-Dae

    2016-10-10

    Supportless Pt catalysts have several advantages over conventional carbon-supported Pt catalysts in that they are not susceptible to carbon corrosion. However, the need for high Pt loadings in membrane electrode assemblies (MEAs) to achieve state-of-the-art fuel cell performance has limited their application in proton exchange membrane fuel cells. Herein, we report a new approach to the design of a supportless Pt catalyst in terms of catalyst layer architecture, which is crucial for fuel cell performance as it affects water management and oxygen transport in the catalyst layers. Large Pt hollow spheres (PtHSs) 100 nm in size were designed and prepared using a carbon template method. Despite their large size, the unique structure of the PtHSs, which are composed of a thin-layered shell of Pt nanoparticles (ca. 7 nm thick), exhibited a high surface area comparable to that of commercial Pt black (PtB). The PtHS structure also exhibited twice the durability of PtB after 2000 potential cycles (0-1.3 V, 50 mV/s). A MEA fabricated with PtHSs showed significant improvement in fuel cell performance compared to PtB-based MEAs at high current densities (>800 mA/cm 2 ). This was mainly due to the 2.7 times lower mass transport resistance in the PtHS-based catalyst layers compared to that in PtB, owing to the formation of macropores between the PtHSs and high porosity (90%) in the PtHS catalyst layers. The present study demonstrates a successful example of catalyst design in terms of catalyst layer architecture, which may be applied to a real fuel cell system.

  5. Real-time Visualization of Tissue Dynamics during Embryonic Development and Malignant Transformation

    NASA Astrophysics Data System (ADS)

    Yamada, Kenneth

    Tissues undergo dramatic changes in organization during embryonic development, as well as during cancer progression and invasion. Recent advances in microscopy now allow us to visualize and track directly the dynamic movements of tissues, their constituent cells, and cellular substructures. This behavior can now be visualized not only in regular tissue culture on flat surfaces (`2D' environments), but also in a variety of 3D environments that may provide physiological cues relevant to understanding dynamics within living organisms. Acquisition of imaging data using various microscopy modalities will provide rich opportunities for determining the roles of physical factors and for computational modeling of complex processes in living tissues. Direct visualization of real-time motility is providing insight into biology spanning multiple spatio-temporal scales. Many cells in our body are known to be in contact with connective tissue and other forms of extracellular matrix. They do so through microscopic cellular adhesions that bind to matrix proteins. In particular, fluorescence microscopy has revealed that cells dynamically probe and bend the matrix at the sites of cell adhesions, and that 3D matrix architecture, stiffness, and elasticity can each regulate migration of the cells. Conversely, cells remodel their local matrix as organs form or tumors invade. Cancer cells can invade tissues using microscopic protrusions that degrade the surrounding matrix; in this case, the local matrix protein concentration is more important for inducing the micro-invasive protrusions than stiffness. On the length scales of tissues, transiently high rates of individual cell movement appear to help establish organ architecture. In fact, isolated cells can self-organize to form tissue structures. In all of these cases, in-depth real-time visualization will ultimately provide the extensive data needed for computer modeling and for testing hypotheses in which physical forces interact closely with cell signaling to form organs or promote tumor invasion.

  6. The organization of human epidermis: functional epidermal units and phi proportionality.

    PubMed

    Hoath, Steven B; Leahy, D G

    2003-12-01

    The concept that mammalian epidermis is structurally organized into functional epidermal units has been proposed on the basis of stratum corneum (SC) architecture, proliferation kinetics, melanocyte:keratinocyte ratios (1:36), and, more recently, Langerhans cell: epidermal cell ratios (1:53). This article examines the concept of functional epidermal units in human skin in which the maintenance of phi (1.618034) proportionality provides a central organizing principle. The following empirical measurements were used: 75,346 nucleated epidermal cells per mm2, 1394 Langerhans cells per mm2, 1999 melanocytes per mm2, 16 (SC) layers, 900-microm2 corneocyte surface area, 17,778 corneocytes per mm2, 14-d (SC) turnover time, and 93,124 per mm2 total epidermal cells. Given these empirical data: (1) the number of corneocytes is a mean proportional between the sum of the Langerhans cell + melanocyte populations and the number of epidermal cells, 3393/17,778-17,778/93,124; (2) the ratio of nucleated epidermal cells over corneocytes is phi proportional, 75,346/17,778 approximately phi3; (3) assuming similar 14-d turnover times for the (SC) and Malpighian epidermis, the number of corneocytes results from subtraction of a cellular fraction equal to approximately 2/phi2 x the number of living cells, 75,436 - (2/phi2 x 75,346) approximately 17,778; and (4) if total epidermal turnover time equals (SC) turnover time x the ratio of living/dead cells, then compartmental turnover times are unequal (14 d for (SC) to 45.3 d for nucleated epidermis approximately 1/2phi) and cellular replacement rates are 52.9 corneocytes/69.3 keratinocytes per mm2 per h approximately 2/phi2. These empirically derived equivalences provide logicomathematical support for the presence of functional epidermal units in human skin. Validation of a phi proportional unit architecture in human epidermis will be important for tissue engineering of skin and the design of instruments for skin measurement.

  7. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  8. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  9. Platelet lysate embedded scaffolds for skin regeneration.

    PubMed

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  10. Chronic administration of Glucagon-like peptide-1 receptor agonists improves trabecular bone mass and architecture in ovariectomised mice.

    PubMed

    Pereira, M; Jeyabalan, J; Jørgensen, C S; Hopkinson, M; Al-Jazzar, A; Roux, J P; Chavassieux, P; Orriss, I R; Cleasby, M E; Chenu, C

    2015-12-01

    Some anti-diabetic therapies can have adverse effects on bone health and increase fracture risk. In this study, we tested the skeletal effects of chronic administration of two Glucagon-like peptide-1 receptor agonists (GLP-1RA), increasingly used for type 2 diabetes treatment, in a model of osteoporosis associated bone loss and examined the expression and activation of GLP-1R in bone cells. Mice were ovariectomised (OVX) to induce bone loss and four weeks later they were treated with Liraglutide (LIR) 0.3mg/kg/day, Exenatide (Ex-4) 10 μg/kg/day or saline for four weeks. Mice were injected with calcein and alizarin red prior to euthanasia, to label bone-mineralising surfaces. Tibial micro-architecture was determined by micro-CT and bone formation and resorption parameters measured by histomorphometric analysis. Serum was collected to measure calcitonin and sclerostin levels, inhibitors of bone resorption and formation, respectively. GLP-1R mRNA and protein expression were evaluated in the bone, bone marrow and bone cells using RT-PCR and immunohistochemistry. Primary osteoclasts and osteoblasts were cultured to evaluate the effect of GLP-1RA on bone resorption and formation in vitro. GLP-1RA significantly increased trabecular bone mass, connectivity and structure parameters but had no effect on cortical bone. There was no effect of GLP-1RA on bone formation in vivo but an increase in osteoclast number and osteoclast surfaces was observed with Ex-4. GLP-1R was expressed in bone marrow cells, primary osteoclasts and osteoblasts and in late osteocytic cell line. Both Ex-4 and LIR stimulated osteoclastic differentiation in vitro but slightly reduced the area resorbed per osteoclast. They had no effect on bone nodule formation in vitro. Serum calcitonin levels were increased and sclerostin levels decreased by Ex-4 but not by LIR. Thus, GLP-1RA can have beneficial effects on bone and the expression of GLP-1R in bone cells may imply that these effects are exerted directly on the tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Architecture of the Interface between the Perovskite and Hole-Transport Layers in Perovskite Solar Cells.

    PubMed

    Moriya, Masahiro; Hirotani, Daisuke; Ohta, Tsuyoshi; Ogomi, Yuhei; Shen, Qing; Ripolles, Teresa S; Yoshino, Kenji; Toyoda, Taro; Minemoto, Takashi; Hayase, Shuzi

    2016-09-22

    The interface between the perovskite (PVK, CH 3 NH 3 PbI 3 ) and hole-transport layers in perovskite solar cells is discussed. The device architecture studied is as follows: F-doped tin oxide (FTO)-coated glass/compact TiO 2 /mesoporous TiO 2 /PVK/2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-MeOTAD)/Au. After a thin layer of 4,4,4-trifluorobutylammonium iodide (TFBA) was inserted at the interface between PVK and Spiro-MeOTAD, the photovoltaic efficiency increased from 11.6-14.5 % to 15.1-17.6 %. TFBA (10 ppm) was added in the PVK solution before coating. Owing to the low surface tension of TFBA, TFBA rose to the surface of the PVK layer spontaneously during spin-coating to make a thin organic layer. The PVK grain boundaries also seemed to be passivated with the addition of TFBA. However, large differences in Urbach energies and valence band energy level were not observed for the PVK layer with and without the addition of TFBA. The charge recombination time constant between the PVK and the Spiro-MeOTAD became slower (from 8.4 to 280 μsec) after 10 ppm of TFBA was added in the PVK. The experimental results using TFBA conclude that insertion of a very thin layer at the interface between PVK and Spiro-MeOTAD is effective for suppressing charge recombination and increasing photovoltaic performances. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation.

    PubMed

    An, Gary

    2008-05-27

    One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.

  13. Distribution of alginate and cellulose and regulatory role of calcium in the cell wall of the brown alga Ectocarpus siliculosus (Ectocarpales, Phaeophyceae).

    PubMed

    Terauchi, Makoto; Nagasato, Chikako; Inoue, Akira; Ito, Toshiaki; Motomura, Taizo

    2016-08-01

    This work investigated a correlation between the three-dimensional architecture and compound-components of the brown algal cell wall. Calcium greatly contributes to the cell wall integrity. Brown algae have a unique cell wall consisting of alginate, cellulose, and sulfated polysaccharides. However, the relationship between the architecture and the composition of the cell wall is poorly understood. Here, we investigated the architecture of the cell wall and the effect of extracellular calcium in the sporophyte and gametophyte of the model brown alga, Ectocarpus siliculosus (Dillwyn) Lyngbye, using transmission electron microscopy, histochemical, and immunohistochemical studies. The lateral cell wall of vegetative cells of the sporophyte thalli had multilayered architecture containing electron-dense and negatively stained fibrils. Electron tomographic analysis showed that the amount of the electron-dense fibrils and the junctions was different between inner and outer layers, and between the perpendicular and tangential directions of the cell wall. By immersing the gametophyte thalli in the low-calcium (one-eighth of the normal concentration) artificial seawater medium, the fibrous layers of the lateral cell wall of vegetative cells became swollen. Destruction of cell wall integrity was also induced by the addition of sorbitol. The results demonstrated that electron-dense fibrils were composed of alginate-calcium fibrous gels, and electron negatively stained fibrils were crystalline cellulose microfibrils. It was concluded that the spatial arrangement of electron-dense fibrils was different between the layers and between the directions of the cell wall, and calcium was necessary for maintaining the fibrous layers in the cell wall. This study provides insights into the design principle of the brown algal cell wall.

  14. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage

    PubMed Central

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-01-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm2 and length-specific capacitance up to 23.9 mF/cm, — one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources. PMID:26601246

  15. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

    PubMed

    Xue, Yuhua; Ding, Yong; Niu, Jianbing; Xia, Zhenhai; Roy, Ajit; Chen, Hao; Qu, Jia; Wang, Zhong Lin; Dai, Liming

    2015-09-01

    One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources.

  16. Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting Nanocrystals

    NASA Astrophysics Data System (ADS)

    Merritt, Travis R.

    The techniques of optoperforation, spectral characterization of alloy disorder, and metal-enhanced uorescence were applied to previously unconsidered or disregarded systems in order to demonstrate that such applications are both feasible and consequential. These applications were the subject of three disparate works and, as such, are independently discussed. Despite being ostensibly restricted to mammalian cells, optoperforation was demonstrated in intact plant cells by means of successful femtosecond-laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into cells of vital Arabidopsis seedling stems. By monitoring the rate of dye uptake, and the reaction of both CFP-expressing vacuoles and nanocellulose substrates, the intensity and exposure time of the perforating laser were adjusted to values that both preserved cell vitality and permitted the laser-assisted uptake of the uorophore. By using these calibrated laser parameters, dye was injected and later observed in targeted cells after 72 hours, all without deleteriously affecting the vital functions of those cells. In the context of alloy disorder, photoluminescence of excitonic transitions in two InAsxP1--x alloys were studied through temperature and magnetic field strength dependencies, as well as compositionally-dependent time-resolved behavior. The spectral shape, behavior of the linewidths at high magnetic fields, and the divergence of the peak positions from band gap behavior at low temperatures indicated that alloy disorder exists in the x=0.40 composition while showing no considerable presence in the x=0.13 composition. The time-resolved photoluminescence spectrum for both compositions feature a fast and slow decay, with the slow decay lifetime in x=0.40 being longer than that of x=0.13, which may be due to carrier migration between localized exciton states in x=0.40. In order to achieve broadband metal-enhanced uorescence in upconverting NaYF4:Yb,Er nanocrystals, two nanocomposite architectures were proposed that retrofit metallic nanoshells to these lanthanide-doped nanocrystals. The typical monometallic construction was rejected in favor of architectures featuring Au-Ag bimetallic concentric surfaces, a decision supported by the considerable overlap of the calculated plasmon modes of the metallic structures with the emission and absorption spectrum of the nanocrystals. Furthermore, precursors of these nanocomposites were synthesized and photoluminescence measurements were carried out, ultimately verifying that these precursors produce the requisite upconversion emissions.

  17. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    PubMed Central

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  18. Mars Surface Tunnel Element Concept

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Mary, Natalie; Howe, A. Scott; Jeffries, Sharon

    2016-01-01

    How Mars surface crews get into their ascent vehicle has profound implications for Mars surface architecture. To meet planetary protection protocols, the architecture has get Intravehicular Activity (IVA)-suited crew into a Mars Ascent Vehicle (MAV) without having to step outside into the Mars environment. Pushing EVA suit don/doff and EVA operations to an element that remains on the surface also helps to minimize MAV cabin volume, which in turn can reduce MAV cabin mass. Because the MAV will require at least seven kilograms of propellant to ascend each kilogram of cabin mass, minimal MAV mass is desired. For architectures involving more than one surface element-such as an ascent vehicle and a pressurized rover or surface habitat-a retractable tunnel is an attractive solution. Beyond addressing the immediate MAV access issue, a reusable tunnel may be useful for other surface applications once its primary mission is complete. A National Aeronautics and Space Administration (NASA) team is studying the optimal balance between surface tunnel functionality, mass, and stowed volume as part of the Evolvable Mars Campaign (EMC). The "Minimum Functional Tunnel" is a conceptual design that performs a single function. Having established this baseline configuration, the next step is to trade design options, evaluate other applications, and explore alternative solutions.

  19. Three-dimensional facies architecture of the Salem Limestone (middle Mississippian), Eastern Margin of Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadeem, A.; Keith, B.D.; Thompson, T.A.

    Mapping of sedimentary surfaces in the Middle Mississippian Salem Limestone exposed on sawed quarry walls in south-central Indiana has revealed a hierarchy of depositional units representative of the extremely dynamic hydrographic regime of the upper shoreface zone. The depositional units on the scale of microform and mesoform are represented by the microfacies and the facies respectively. Based on their hierarchy, genetically related depositional units and associated bounding surfaces were grouped together to construct four architectural packages (APs) of the scale of mesoforms. AP-I is dominantly an echinoderm- and bryozoan-rich grainstone and consists of bedforms ranging from small ripples bounded bymore » first-order surfaces to two- and three- dimensional megaripples bounded by the second-order surfaces. It formed as part of a giant ramp (asymmetric wavefield) within the intrashoal channel setting. AP-II, also a skeletal grainstone, is a complex of giant sandwaves that moved into the area under the infulence of a storm and partly filled the basal channel form of AP-I. Large avalanche foresets with tangential toesets prevail. AP-III is a dark-gray spatially discontinuous skeletal grainstone to packstone that laterally grades into a skeletal packstone to wackestone. It locally developed overhangs, rips-ups, and hardground on its upper surface. AP-IV is a skeletal and oolitic grainstone formed of tabular two-dimensional megaripples (planar cross-beds) and three-dimensional oscillatory megaripples (trough cross-beds). These architectural packages based on the bedform architecture and micro-and mesoscale compositional changes can be used to characterize micro-, meso, and macroscale heterogeneities. Models of facies architecture from this and similar outcrop studies can be applied to the subsurface Salem reservoirs in the Illinois Basin using cores.« less

  20. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    NASA Astrophysics Data System (ADS)

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-02-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties.

  1. Self-organizing actin patterns shape membrane architecture but not cell mechanics

    PubMed Central

    Fritzsche, M.; Li, D.; Colin-York, H.; Chang, V. T.; Moeendarbary, E.; Felce, J. H.; Sezgin, E.; Charras, G.; Betzig, E.; Eggeling, C.

    2017-01-01

    Cell-free studies have demonstrated how collective action of actin-associated proteins can organize actin filaments into dynamic patterns, such as vortices, asters and stars. Using complementary microscopic techniques, we here show evidence of such self-organization of the actin cortex in living HeLa cells. During cell adhesion, an active multistage process naturally leads to pattern transitions from actin vortices over stars into asters. This process is primarily driven by Arp2/3 complex nucleation, but not by myosin motors, which is in contrast to what has been theoretically predicted and observed in vitro. Concomitant measurements of mechanics and plasma membrane fluidity demonstrate that changes in actin patterning alter membrane architecture but occur functionally independent of macroscopic cortex elasticity. Consequently, tuning the activity of the Arp2/3 complex to alter filament assembly may thus be a mechanism allowing cells to adjust their membrane architecture without affecting their macroscopic mechanical properties. PMID:28194011

  2. The origin of cellular life.

    PubMed

    Ingber, D E

    2000-12-01

    This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.

  3. The origin of cellular life

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.

    2000-01-01

    This essay presents a scenario of the origin of life that is based on analysis of biological architecture and mechanical design at the microstructural level. My thesis is that the same architectural and energetic constraints that shape cells today also guided the evolution of the first cells and that the molecular scaffolds that support solid-phase biochemistry in modern cells represent living microfossils of past life forms. This concept emerged from the discovery that cells mechanically stabilize themselves using tensegrity architecture and that these same building rules guide hierarchical self-assembly at all size scales (Sci. Amer 278:48-57;1998). When combined with other fundamental design principles (e.g., energy minimization, topological constraints, structural hierarchies, autocatalytic sets, solid-state biochemistry), tensegrity provides a physical basis to explain how atomic and molecular elements progressively self-assembled to create hierarchical structures with increasingly complex functions, including living cells that can self-reproduce.

  4. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics

    PubMed Central

    Hammond, Edward; Khurana, Ashwani; Shridhar, Viji; Dredge, Keith

    2014-01-01

    Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer. PMID:25105093

  5. Biomolecular strategies for cell surface engineering

    NASA Astrophysics Data System (ADS)

    Wilson, John Tanner

    Islet transplantation has emerged as a promising cell-based therapy for the treatment of diabetes, but its clinical efficacy remains limited by deleterious host responses that underlie islet destruction. In this dissertation, we describe the assembly of ultrathin conformal coatings that confer molecular-level control over the composition and biophysicochemical properties of the islet surface with implications for improving islet engraftment. Significantly, this work provides novel biomolecular strategies for cell surface engineering with broad biomedical and biotechnological applications in cell-based therapeutics and beyond. Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses towards transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. Towards this end, we endeavored to generate nanothin films of diverse architecture with tunable properties on the extracellular surface of individual pancreatic islets through a process of layer-by-layer (LbL) self assembly. We first describe the formation of poly(ethylene glycol) (PEG)-rich conformal coatings on islets via LbL self assembly of poly(L-lysine)-g-PEG(biotin) and streptavidin. Multilayer thin films conformed to the geometrically and chemically heterogeneous islet surface, and could be assembled without loss of islet viability or function. Significantly, coated islets performed comparably to untreated controls in a murine model of allogenic intraportal islet transplantation, and, to our knowledge, this is the first study to report in vivo survival and function of nanoencapsulated cells or cell aggregates. Based on these findings, we next postulated that structurally similar PLL-g-PEG copolymers comprised of shorter PEG grafts might be used to initiate and propagate the assembly of polyelectrolyte multilayer (PEM) films on pancreatic islets, while simultaneously preserving islet viability. Through control of PLL backbone molecular weight, PEG chain length, and grafting ratio, PLL-g-PEG copolymers were rendered cytocompatible and used to initiate and propagate the growth of cell surface-supported PEM films. Planar characterization of this novel class of PEM films indicated that film thickness and composition may be tailored through appropriate control of layer number and copolymer properties. Furthermore, these investigations have helped establish a conceptual framework for the rational design of cell surface-supported thin films, with the objective of translating the diverse biomedical and biotechnological applications of PEM films to cellular interfaces. Important to the development of effective conformal islet coatings is an inherent strategy through which to incorporate bioactive molecules for directing desired biochemical or cellular responses. Towards this end, PLL-g-PEG copolymers functionalized with biotin, azide, and hydrazide moieties were synthesized and used, either alone or in combination, to capture streptavidin-, triphenylphosphine-, and aldehyde-labeled probes, respectively, on the islet surface. Additionally, PEM films assembled using alginate chemically modified to contain aldehyde groups could be used to introduce hydrazide-functionalized molecules to the islet surface. Hence, modified film constituents may be used as modular elements for controlling the chemical composition cell and tissue surfaces. Finally, we report a strategy for tethering thrombomodulin (TM) to the islet surface. Through site-specific, C-terminal biotinylation of TM and optimization of cell surface biotinylation, TM could be integrated with the islet surface. Re-engineering of islet surfaces with TM resulted in an increased catalytic capacity of islets to generate the powerful anti-inflammatory agent, activated protein C (APC), thereby providing a facile strategy for increasing the local concentration of APC at the site of transplantation.

  6. Advances in Mechanical Architectures of Large Precision Space Apertures

    NASA Astrophysics Data System (ADS)

    Datashvili, Leri; Maghaldadze, Nikoloz; Endler, Stephan; Pauw, Julian; He, Peng; Baier, Horst; Ihle, Alexander; Santiago Prowlad, Julian

    2014-06-01

    Recent advances in development of mechanical architectures of large deployable reflectors (LDRs) through the projects of the European Space Agency are addressed in this paper. Two different directions of LDR architectures are being investigated and developed at LSS and LLB. These are LDRs with knitted metal mesh and with flexible shell-membrane reflecting surfaces. The first direction is matured and required advancing of the novel architecture of the supporting structure that provides deployment and final shape accuracy of the metal mesh is underway. The second direction is rather new and its current development stage is focused on investigations of dimensional stability of the flexible shell-membrane reflecting surface. In both directions 5 m diameter functional models will be built to demonstrate achieved performances, which shall prepare the basis for further improvement of their technology readiness levels.

  7. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  8. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the developmentmore » of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.« less

  9. Neural networks with fuzzy Petri nets for modeling a machining process

    NASA Astrophysics Data System (ADS)

    Hanna, Moheb M.

    1998-03-01

    The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.

  10. Integrated Circuit-Based Biofabrication with Common Biomaterials for Probing Cellular Biomechanics.

    PubMed

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Cheng, Chao-Min

    2016-02-01

    Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    NASA Astrophysics Data System (ADS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-03-01

    A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  12. Communication among Oral Bacteria

    PubMed Central

    Kolenbrander, Paul E.; Andersen, Roxanna N.; Blehert, David S.; Egland, Paul G.; Foster, Jamie S.; Palmer, Robert J.

    2002-01-01

    Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities. PMID:12209001

  13. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.

    PubMed

    Guillaume, O; Geven, M A; Sprecher, C M; Stadelmann, V A; Grijpma, D W; Tang, T T; Qin, L; Lai, Y; Alini, M; de Bruijn, J D; Yuan, H; Richards, R G; Eglin, D

    2017-05-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis. This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite architecture provides significant opportunities to develop functional biomaterials for bone repair and tissue engineering. Copyright © 2017. Published by Elsevier Ltd.

  14. Colonic aberrant crypts may originate from impaired fissioning: relevance to increased risk of neoplasia.

    PubMed

    Kristt, D; Bryan, K; Gal, R

    1999-12-01

    Colonic aberrant crypt foci (ACF) can be identified on the unembedded mucosal surface as clusters of abnormal crypts with enlarged, surface opening. Because dysplasia is frequent, and may be a precursor of carcinoma, epithelial changes have been well studied. However, the basis for the distinctive changes in crypt architecture remain unclear. We hypothesized that some of the architectural alterations of aberrant crypts may reflect impaired fissioning during normal crypt duplication cycles. Fissioning begins at the crypt base. Using morphometric and immunocytochemical approaches, we examined 55 human ACF, both dysplastic and nondysplastic, for their architectural features. Non-ACF mucosa was compared. Microscopically, all lesions contained crypts that were attached, paired, dilated, and angulated. In 3 dimensions, these features related to multiple, individual complexes of connected crypts, referred to as connected crypt structures (CCSs). CCSs terminated in enlarged surface openings (2 to 5 x normal) which are morphometrically equivalent to the macroscopic aberrant crypts (P > .1). These openings trap marker dye. Support for an origin of CCSs in impaired basal fissioning is 3-fold. Crypt profiles in ACF are twice as frequent in basal mucosa as superficially (P < .001); in normal mucosa, the ratio is 1. In a CCS with vertically connected, co-planar crypts, the upper parent crypt diameter was the sum of diameters of inferiorly attached daughter crypts (P > .1). Proliferating cell marker, Ki-67, is not expressed at attachment points. In non-ACF mucosa, isolated CCSs consistently occur at foci of mechanical crypt distortion such as mucosal folds. We conclude that a CCS is a fundamental component of ACF of all histotypes. Impairment of normal crypt fissioning is probably a major factor in the histogenesis of CCSs, which often occurs in settings of mechanical distortion of the mucosa. The pathological significance of this process may be in the formation of enlarged crypt openings. The latter could trap dietary carcinogens as they trap dye, and thereby predispose the CCS to dysplasia.

  15. A Survey of Some Approaches to Distributed Data Base & Distributed File System Architecture.

    DTIC Science & Technology

    1980-01-01

    BUS POD A DD A 12 12 A = A Cell D = D Cell Figure 7-1: MUFFIN logical architecture - 45 - MUFI January 1980 ".-.Bus Interface V Conventional Processor...and Applied Mathematics (14), * December, 1966. [Kimbleton 791 Kimbleton, Stephen; Wang, Pearl; and Fong, Elizabeth. XNDM: An Experimental Network

  16. Bio-mimetic hollow scaffolds for long bone replacement

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Deyhle, Hans; Fierz, Fabienne C.; Irsen, Stephan H.; Yoon, Jin Y.; Mushkolaj, Shpend; Boss, Oliver; Vorndran, Elke; Gburek, Uwe; Degistirici, Özer; Thie, Michael; Leukers, Barbara; Beckmann, Felix; Witte, Frank

    2009-08-01

    The tissue engineering focuses on synthesis or regeneration of tissues and organs. The hierarchical structure of nearly all porous scaffolds on the macro, micro- and nanometer scales resembles that of engineering foams dedicated for technical applications, but differ from the complex architecture of long bone. A major obstacle of scaffold architecture in tissue regeneration is the limited cell infiltration as the result of the engineering approaches. The biological cells seeded on the three-dimensional constructs are finally only located on the scaffold's periphery. This paper reports on the successful realization of calcium phosphate scaffolds with an anatomical architecture similar to long bones. Two base materials, namely nano-porous spray-dried hydroxyapatite hollow spheres and tri-calcium phosphate powder, were used to manufacture cylindrically shaped, 3D-printed scaffolds with micro-passages and one central macro-canal following the general architecture of long bones. The macro-canal is built for the surgical placement of nerves or larger blood vessels. The micro-passages allow for cell migration and capillary formation through the entire scaffold. Finally, the nanoporosity is essential for the molecule transport crucial for signaling, any cell nutrition and waste removal.

  17. Biomimetic collagen I and IV double layer Langmuir-Schaefer films as microenvironment for human pluripotent stem cell derived retinal pigment epithelial cells.

    PubMed

    Sorkio, Anni E; Vuorimaa-Laukkanen, Elina P; Hakola, Hanna M; Liang, Huamin; Ujula, Tiina A; Valle-Delgado, Juan José; Österberg, Monika; Yliperttula, Marjo L; Skottman, Heli

    2015-05-01

    The environmental cues received by the cells from synthetic substrates in vitro are very different from those they receive in vivo. In this study, we applied the Langmuir-Schaefer (LS) deposition, a variant of Langmuir-Blodgett technique, to fabricate a biomimetic microenvironment mimicking the structure and organization of native Bruch's membrane for the production of the functional human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells. Surface pressure-area isotherms were measured simultaneously with Brewster angle microscopy to investigate the self-assembly of human collagens type I and IV on air-subphase interface. Furthermore, the structure of the prepared collagen LS films was characterized with scanning electron microscopy, atomic force microscopy, surface plasmon resonance measurements and immunofluorescent staining. The integrity of hESC-RPE on double layer LS films was investigated by measuring transepithelial resistance and permeability of small molecular weight substance. Maturation and functionality of hESC-RPE cells on double layer collagen LS films was further assessed by RPE-specific gene and protein expression, growth factor secretion, and phagocytic activity. Here, we demonstrated that the prepared collagen LS films have layered structure with oriented fibers corresponding to architecture of the uppermost layers of Bruch's membrane and result in increased barrier properties and functionality of hESC-RPE cells as compared to the commonly used dip-coated controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code? Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. 10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation.

    PubMed

    Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H

    2016-07-13

    Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

  20. Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation.

    PubMed

    Kouzel, Nadzeya; Oldewurtel, Enno R; Maier, Berenike

    2015-07-01

    Extracellular DNA is an important structural component of many bacterial biofilms. It is unknown, however, to which extent external DNA is used to transfer genes by means of transformation. Here, we quantified the acquisition of multidrug resistance and visualized its spread under selective and nonselective conditions in biofilms formed by Neisseria gonorrhoeae. The density and architecture of the biofilms were controlled by microstructuring the substratum for bacterial adhesion. Horizontal transfer of antibiotic resistance genes between cocultured strains, each carrying a single resistance, occurred efficiently in early biofilms. The efficiency of gene transfer was higher in early biofilms than between planktonic cells. It was strongly reduced after 24 h and independent of biofilm density. Pilin antigenic variation caused a high fraction of nonpiliated bacteria but was not responsible for the reduced gene transfer at later stages. When selective pressure was applied to dense biofilms using antibiotics at their MIC, the double-resistant bacteria did not show a significant growth advantage. In loosely connected biofilms, the spreading of double-resistant clones was prominent. We conclude that multidrug resistance readily develops in early gonococcal biofilms through horizontal gene transfer. However, selection and spreading of the multiresistant clones are heavily suppressed in dense biofilms. Biofilms are considered ideal reaction chambers for horizontal gene transfer and development of multidrug resistances. The rate at which genes are exchanged within biofilms is unknown. Here, we quantified the acquisition of double-drug resistance by gene transfer between gonococci with single resistances. At early biofilm stages, the transfer efficiency was higher than for planktonic cells but then decreased with biofilm age. The surface topography affected the architecture of the biofilm. While the efficiency of gene transfer was independent of the architecture, spreading of double-resistant bacteria under selective conditions was strongly enhanced in loose biofilms. We propose that while biofilms help generating multiresistant strains, selection takes place mostly after dispersal from the biofilm. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. The functional response of bioactive titania-modified three-dimensional Ti-6Al-4V mesh structure toward providing a favorable pathway for intercellular communication and osteoincorporation.

    PubMed

    Nune, K C; Misra, R D K; Li, S J; Hao, Y L; Zhang, W

    2016-10-01

    The objective of the study is to fundamentally elucidate the biological response of 3D printed mesh structures subjected to plasma electrolytic oxidation process through the study of osteoblast functions. The cellular activity of plasma electrolytic-oxidized mesh structure was explored in terms of cell-to-cell communication involving proliferation, synthesis of extracellular and intracellular proteins, and mineralization. Upon plasma electrolytic oxidation of the mesh structure, a thin layer of bioactive titania with pore size 1-3 µm was nucleated on the surface. The combination of microporous bioactive titania and interconnected porous architecture provided the desired pathway for supply of nutrients and oxygen to cells and tissue and a favorable osteogenic microenvironment for tissue on-growth and in-growth, in relation to the unmodified mesh structure. The formation of a confluent layer as envisaged via electron microscopy and quantitative assessment of the expression level of proteins (actin, vinculin, and fibronectin) point toward the determining role of surface-modified mesh structure in modulating osteoblasts functions. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2488-2501, 2016. © 2016 Wiley Periodicals, Inc.

  2. Ferritin nanocages: A biological platform for drug delivery, imaging and theranostics in cancer.

    PubMed

    Truffi, Marta; Fiandra, Luisa; Sorrentino, Luca; Monieri, Matteo; Corsi, Fabio; Mazzucchelli, Serena

    2016-05-01

    Nowadays cancer represents a prominent challenge in clinics. Main achievements in cancer management would be the development of highly accurate and specific diagnostic tools for early detection of cancer onset, and the generation of smart drug delivery systems for targeted chemotherapy release in cancer cells. In this context, protein-based nanocages hold a tremendous potential as devices for theranostics purposes. In particular, ferritin has emerged as an excellent and promising protein-based nanocage thanks to its unique architecture, surface properties and high biocompatibility. By exploiting natural recognition of the Transferrin Receptor 1, which is overexpressed on tumor cells, ferritin nanocages may ensure a proper drug delivery and release. Moreover, researchers have applied surface functionalities on ferritin cages for further providing active tumor targeting. Encapsulation strategies of non metal-containing drugs within ferritin cages have been explored and successfully performed with encouraging results. Various preclinical studies have demonstrated that nanoformulation within ferritin nanocages significantly improved targeted therapy and accurate imaging of cancer cells. Aims of this review are to describe structure and functions of ferritin nanocages, and to provide an overview about the nanotechnological approaches implemented for applying them to cancer diagnosis and treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biofilm Formation on Reverse Osmosis Membranes Is Initiated and Dominated by Sphingomonas spp.▿ †

    PubMed Central

    Bereschenko, L. A.; Stams, A. J. M.; Euverink, G. J. W.; van Loosdrecht, M. C. M.

    2010-01-01

    The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces. PMID:20190090

  4. Considerations Regarding the Development of an Environmental Control and Life Support System for Lunar Surface Applications

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.

    2008-01-01

    NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.

  5. The Evolution of Mission Architectures for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  6. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  7. DPSC colonization of functionalized 3D textiles.

    PubMed

    Ortiz, Marine; Rosales-Ibáñez, Raúl; Pozos-Guillén, Amaury; De Bien, Charlotte; Toye, Dominique; Flores, Héctor; Grandfils, Christian

    2017-05-01

    Fiber scaffolds are attractive materials for mimicking, within a 3D in vitro system, any living environment in which animal cells can adhere and proliferate. In three dimensions, cells have the ability to communicate and organize into complex architectures similar to those found in their natural environments. The aim of this study was to evaluate, in terms of cell reactivity, a new in vitro cell model: dental pulp stem cells (DPSCs) in a 3D polymeric textile. Scaffolds were knitted from polyglycolic acid (PGA) or polydioxanone (PDO) fibers differing in surface roughness. To promote cell adhesion, these hydrophobic fabrics were also functionalized with either chitosan or the peptide arginine-glycine-aspartic acid (RGD). Cell behavior was examined 1, 10, and 21 days post-seeding with a LIVE/DEAD ® Kit. Confocal laser scanning microscopy (CLSM) highlighted the biocompatibility of these materials (cell survival rate: 94% to 100%). Fiber roughness was found to influence cell adhesion and viability significantly and favorably. A clear benefit of polymeric textile functionalization with chitosan or RGD was demonstrated in terms of cell adhesion and viability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 785-794, 2017. © 2016 Wiley Periodicals, Inc.

  8. Structural and functional probing of PorZ, an essential bacterial surface component of the type-IX secretion system of human oral-microbiomic Porphyromonas gingivalis.

    PubMed Central

    Lasica, Anna M.; Goulas, Theodoros; Mizgalska, Danuta; Zhou, Xiaoyan; de Diego, Iñaki; Ksiazek, Mirosław; Madej, Mariusz; Guo, Yonghua; Guevara, Tibisay; Nowak, Magdalena; Potempa, Barbara; Goel, Apoorv; Sztukowska, Maryta; Prabhakar, Apurva T.; Bzowska, Monika; Widziolek, Magdalena; Thøgersen, Ida B.; Enghild, Jan J.; Simonian, Mary; Kulczyk, Arkadiusz W.; Nguyen, Ky-Anh; Potempa, Jan; Gomis-Rüth, F. Xavier

    2016-01-01

    Porphyromonas gingivalis is a member of the human oral microbiome abundant in dysbiosis and implicated in the pathogenesis of periodontal (gum) disease. It employs a newly described type-IX secretion system (T9SS) for secretion of virulence factors. Cargo proteins destined for secretion through T9SS carry a recognition signal in the conserved C-terminal domain (CTD), which is removed by sortase PorU during translocation. Here, we identified a novel component of T9SS, PorZ, which is essential for surface exposure of PorU and posttranslational modification of T9SS cargo proteins. These include maturation of enzyme precursors, CTD removal and attachment of anionic lipopolysaccharide for anchorage in the outer membrane. The crystal structure of PorZ revealed two β-propeller domains and a C-terminal β-sandwich domain, which conforms to the canonical CTD architecture. We further documented that PorZ is itself transported to the cell surface via T9SS as a full-length protein with its CTD intact, independently of the presence or activity of PorU. Taken together, our results shed light on the architecture and possible function of a novel component of the T9SS. Knowledge of how T9SS operates will contribute to our understanding of protein secretion as part of host-microbiome interactions by dysbiotic members of the human oral cavity. PMID:27883039

  9. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    NASA Technical Reports Server (NTRS)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies Higher operating frequencies enable greater bandwidth and thus higher data transfer rates. The first phase of the effort involves the development of GaAs solar cell MIMs (Monolithically Integrated Module) with a single patch antenna on the opposite side of the substrate. Subsequent work will involve the integration of MIMs and antennas on the same side of the substrate. Results from the phase one efforts will be presented.

  10. Morpho-histological and ultra architectural changes during early development of endangered golden mahseer Tor putitora.

    PubMed

    Sarma, D; Das, R; Akhtar, M S; Ciji, A; Sharma, N K; Singh, A K

    2016-10-01

    Ultrastructural and histological changes in the embryonic and larval surface during ontogenesis of the endangered golden mahseer Tor putitora is studied here for the first time. Embryonic development was completed 91-92 h after fertilization at an ambient temperature of 23° ± 1° C (mean ± s.d.). The gastrula stage was characterized by presence of the Kupffer's vesicle, notochord, ectoderm and endoderm cells. Primordial germ cells were clearly identifiable from c. 55 h post-fertilization at the organogenesis stage. Mean total length of newly hatched larvae was 7·0 ± 0·5 mm. Scanning electron microscopy of newly hatched larvae demonstrated vitelline arteries, microridged epithelial cells and mucous gland openings over much of the body surface. Eye, oral cavity, pharyngeal arches, heart, intestinal loop, prosencephalon, cephalic vesicle and nasal epithelium were clearly distinguished in 3 day old hatched individuals. In 6 day old individuals, caudal-fin rays and internal organs were evident. The dorsal fin became prominent at this stage and larvae began swimming at the surface. The reserved yolk material was totally absorbed 8-11 days after hatching and larvae began feeding exogenously. Tor putitora exhibited a longer early developmental period than other cyprinids reared at similar temperatures. © 2016 The Fisheries Society of the British Isles.

  11. Trends in tissue engineering research.

    PubMed

    Hacker, Michael C; Mikos, Antonios G

    2006-08-01

    For more than a decade, Tissue Engineering has been devoted to the reporting and discussion of scientific advances in the interdisciplinary field of tissue engineering. In this study, 779 original articles published in the journal since its inception were analyzed and classified according to different attributes, such as focus of research and tissue of interest, to reveal trends in tissue engineering research. In addition, the use of different biomaterials, scaffold architectures, surface and bulk modification agents, cells, differentiation factors, gene delivery vectors, and animal models was examined. The results of this survey show interesting trends over time and by continental origin.

  12. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.

    PubMed

    Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni

    2015-01-07

    In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.

  13. Architecture, Design, and System; Performance Assessment and Development Methodology for Computer-Based Systems. Volume 1. Methodology Description, Discussion, and Assessment,

    DTIC Science & Technology

    1983-12-30

    AD-Ri46 57? ARCHITECTURE DESIGN AND SYSTEM; PERFORMANCE ASSESSMENT i/i AND DEVELOPMENT ME..(U) NAVAL SURFACE WEAPONS CENTER SILYER SPRING MD J...AD-A 146 577 NSIWC TR 83-324 ARCHITECTURE , DESIGN , AND SYSTEM; PERFORMANCE ASSESSMENT AND DEVELOPMENT METHODOLOGY...REPORT NUMBER 12. GOVT ACCESSION NO.3. RECIPIENT’S CATALOG NUMBER NSWC TR 83-324 10- 1 1 51’ 4. ?ITLE (and subtitle) ARCHITECTURE , DESIGN , AND SYSTEM; S

  14. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants.

    PubMed

    Rieger, Elisabeth; Dupret-Bories, Agnès; Salou, Laetitia; Metz-Boutigue, Marie-Helene; Layrolle, Pierre; Debry, Christian; Lavalle, Philippe; Vrana, Nihal Engin

    2015-06-07

    Porous titanium implants are widely employed in the orthopaedics field to ensure good bone fixation. Recently, the use of porous titanium implants has also been investigated in artificial larynx development in a clinical setting. Such uses necessitate a better understanding of the interaction of soft tissues with porous titanium structures. Moreover, surface treatments of titanium have been generally evaluated in planar structures, while the porous titanium implants have complex 3 dimensional (3D) architectures. In this study, the determining factors for soft tissue integration of 3D porous titanium implants were investigated as a function of surface treatments via quantification of the interaction of serum proteins and cells with single titanium microbeads (300-500 μm in diameter). Samples were either acid etched or nanostructured by anodization. When the samples are used in 3D configuration (porous titanium discs of 2 mm thickness) in vivo (in subcutis of rats for 2 weeks), a better integration was observed for both anodized and acid etched samples compared to the non-treated implants. If the implants were also pre-treated with rat serum before implantation, the integration was further facilitated. In order to understand the underlying reasons for this effect, human fibroblast cell culture tests under several conditions (directly on beads, beads in suspension, beads encapsulated in gelatin hydrogels) were conducted to mimic the different interactions of cells with Ti implants in vivo. Physical characterization showed that surface treatments increased hydrophilicity, protein adsorption and roughness. Surface treatments also resulted in improved adsorption of serum albumin which in turn facilitated the adsorption of other proteins such as apolipoprotein as quantified by protein sequencing. The cellular response to the beads showed considerable difference with respect to the cell culture configuration. When the titanium microbeads were entrapped in cell-laden gelatin hydrogels, significantly more cells migrated towards the acid etched beads. In conclusion, the nanoscale surface treatment of 3D porous titanium structures can modulate in vivo integration by the accumulative effect of the surface treatment on several physical factors such as protein adsorption, surface hydrophilicity and surface roughness. The improved protein adsorption capacity of the treated implants can be further exploited by a pre-treatment with autologous serum to render the implant surface more bioactive. Titanium microbeads are a good model system to observe these effects in a 3D microenvironment and provide a better representation of cellular responses in 3D.

  15. An Air-Liquid Interface Culture System for 3D Organoid Culture of Diverse Primary Gastrointestinal Tissues.

    PubMed

    Li, Xingnan; Ootani, Akifumi; Kuo, Calvin

    2016-01-01

    Conventional in vitro analysis of gastrointestinal epithelium usually relies on two-dimensional (2D) culture of epithelial cell lines as monolayer on impermeable surfaces. However, the lack of context of differentiation and tissue architecture in 2D culture can hinder the faithful recapitulation of the phenotypic and morphological characteristics of native epithelium. Here, we describe a robust long-term three-dimensional (3D) culture methodology for gastrointestinal culture, which incorporates both epithelial and mesenchymal/stromal components into a collagen-based air-liquid interface 3D culture system. This system allows vigorously expansion of primary gastrointestinal epithelium for over 60 days as organoids with both proliferation and multilineage differentiation, indicating successful long-term intestinal culture within a microenvironment accurately recapitulating the stem cell niche.

  16. Imaging Cell Wall Architecture in Single Zinnia elegans Tracheary Elements1[OA

    PubMed Central

    Lacayo, Catherine I.; Malkin, Alexander J.; Holman, Hoi-Ying N.; Chen, Liang; Ding, Shi-You; Hwang, Mona S.; Thelen, Michael P.

    2010-01-01

    The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production. PMID:20592039

  17. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    PubMed

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  18. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants.

    PubMed

    Zhang, Z; Jones, D; Yue, S; Lee, P D; Jones, J R; Sutcliffe, C J; Jones, E

    2013-10-01

    Porous titanium implants are a common choice for bone augmentation. Implants for spinal fusion and repair of non-union fractures must encourage blood flow after implantation so that there is sufficient cell migration, nutrient and growth factor transport to stimulate bone ingrowth. Additive manufacturing techniques allow a large number of pore network designs. This study investigates how the design factors offered by selective laser melting technique can be used to alter the implant architecture on multiple length scales to control and even tailor the flow. Permeability is a convenient parameter that characterises flow, correlating to structure openness (interconnectivity and pore window size), tortuosity and hence flow shear rates. Using experimentally validated computational simulations, we demonstrate how additive manufacturing can be used to tailor implant properties by controlling surface roughness at a microstructual level (microns), and by altering the strut ordering and density at a mesoscopic level (millimetre). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Robust artificial intelligence tool for automatic start-up of the supplementary medium feeding in recombinant E. coli cultivations.

    PubMed

    Horta, Antônio Carlos Luperni; da Silva, Adilson José; Sargo, Cíntia Regina; Gonçalves, Viviane Maimoni; Zangirolami, Teresa Cristina; Giordano, Roberto de Campos

    2011-09-01

    One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI) system, based on a neural network committee (NNC), which identifies the end of the batch phase. The AI system was successfully used during high cell density cultivations of recombinant Escherichia coli. The AI algorithm was validated for different systems, expressing three antigens to be used in human and animal vaccines: fragments of surface proteins of Streptococcus pneumoniae (PspA), clades 1 and 3, and of Erysipelothrix rhusiopathiae (SpaA). Standard feed-forward neural networks (NNs), with a single hidden layer, were the basis for the NNC. The NN architecture with best performance had the following inputs: stirrer speed, inlet air, and oxygen flow rates, carbon dioxide evolution rate, and CO2 molar fraction in the exhaust gas.

  20. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    PubMed

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  1. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    PubMed Central

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response. PMID:20696917

  2. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid

    PubMed Central

    Wang, Lixin; Zhou, Qiang

    2016-01-01

    To investigate the hydrophobicity of slippery zones, static contact angle measurement and microstructure observation of slippery surfaces from two Nepenthes species and a hybrid were conducted. Marginally different static contact angles were observed, as the smallest (133.83°) and greatest (143.63°) values were recorded for the N. alata and N. miranda respectively, and the median value (140.40°) was presented for the N. khasiana. The slippery zones under investigation exhibited rather similar surface morphologies, but different structural dimensions. These findings probably suggest that the geometrical dimensions of surface architecture exert primary effects on differences in the hydrophobicity of the slippery zone. Based on the Wenzel and Cassie-Baxter equations, models were proposed to analyze the manner in which geometrical dimensions affect the hydrophobicity of the slippery surfaces. The results of our analysis demonstrated that the different structural dimensions of lunate cells and wax platelets make the slippery zones present different real area of the rough surface and thereby generate somewhat distinguishable hydrophobicity. The results support a supplementary interpretation of surface hydrophobicity in plant leaves, and provide a theoretical foundation for developing bioinspired materials with hydrophobic properties and self-cleaning abilities. PMID:26813707

  3. Expression of full-length HER2 protein in Sf9 insect cells and its presentation on the surface of budded virus-like particles.

    PubMed

    Nika, Lisa; Wallner, Jakob; Palmberger, Dieter; Koczka, Krisztina; Vorauer-Uhl, Karola; Grabherr, Reingard

    2017-08-01

    Biomarkers of cancer are often glycosylated membrane receptor proteins present on the cellular surface. In order to develop new antibodies for cancer diagnostics or treatment, it is a main pre-requisite that these target proteins are available in a native conformation. However, membrane receptor proteins are notoriously difficult to produce due to their hydrophobic nature and complex architecture. Here, we used the baculovirus-insect cell expression system to produce budded virus-like particles (VLPs) as the scaffold for the presentation of complex membrane proteins. Since the human epidermal growth factor receptor 2 (HER2) is known to be overexpressed in a number of cancers it was chosen as model for a tumor antigen. VLPs displaying full-length HER2 on the surface were produced in Spodoptera frugiperda 9 (Sf9) insect cells and purified by sucrose gradient ultracentrifugation. The number of secreted particles was quantified by nanoparticle tracking analysis. To confirm the presence of HER2 protein on the surface, VLPs were labeled with gold-conjugated antibodies and analyzed by transmission electron microscopy. Functionality of displayed HER2 was investigated by ELISA and a newly established biolayer interferometry based technique. Detection was accomplished using the specific monoclonal antibody Herceptin and filamentous phages displaying a single-chain variable fragment of an anti-HER2 antibody. Significant stronger binding of Herceptin and anti-HER2 phages to HER2-displaying VLPs as compared to control VLPs was demonstrated. Thus, we suggest that Sf9 insect cells are highly feasible for the fast and easy production of various budded VLPs that serve as a platform for full-length membrane receptor presentation. Copyright © 2017. Published by Elsevier Inc.

  4. Branched hybrid vessel: in vitro loaded hydrodynamic forces influence the tissue architecture.

    PubMed

    Kobashi, T; Matsuda, T

    2000-01-01

    This study was conducted to investigate how a continuous load of hydrodynamic stresses influences the tissue architecture of a branched hybrid vessel in vitro. Tubular hybrid medial tissue of small (3 mm) and large (6 mm) diameters, prepared by thermal gelation of a cold mixed solution of bovine smooth muscle cells (SMCs) and type I collagen in glass molds, was assembled into a branched hybrid medial tissue by end-to-side anastomosis. After a 2-week culture period, bovine endothelial cells (ECs) were seeded onto the luminal surface. The branched hybrid vessel was connected to a mock circulatory loop system and tested for two modes of flow: 1) low flow rate for 24 h, 2) high flow rate for 24 or 72 h. After exposure to a low flow rate for 24 h, cobblestone appearance of the ECs was dominant. After exposure to a high flow rate, EC alignment in the direction of flow was observed in the branch region, except at the region of predicted flow separation where ECs retained their polygonal configuration. Elongation of SMCs with no preferential orientation was observed in the case of vessels exposed to a high flow rate for 24 h, and circumferential orientation was prominent in those exposed to a high flow rate for 72 h. On the other hand, collagen fibrils exhibited no preferential orientation in either case. After injection of Evans blue-albumin conjugate into the circulating medium, the luminal surface of the hybrid vessel exposed to a high flow rate for 24 h was examined by confocal laser scanning microscopy. The fluorescence intensity was low at the high shear zone in the branch region, while at the flow separation region it was very high, indicating the increased albumin permeability at the latter region. These findings reflect region-specific tissue architecture in the branch region, in response to the local flow pattern, and may provide an in vitro atherosclerosis model as well as a fundamental basis for the development of functional branched hybrid grafts.

  5. Microchannel contacting of crystalline silicon solar cells

    DOE PAGES

    Bullock, James; Ota, Hiroki; Wang, Hanchen; ...

    2017-08-22

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  6. Microchannel contacting of crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, James; Ota, Hiroki; Wang, Hanchen

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  7. Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery.

    PubMed

    Ding, Mingming; Zeng, Xin; He, Xueling; Li, Jiehua; Tan, Hong; Fu, Qiang

    2014-08-11

    A cell internalizable and intracellularly degradable micellar system, assembled from multiblock polyurethanes bearing cell-penetrating gemini quaternary ammonium pendent groups in the side chain and redox-responsive disulfide linkages throughout the backbone, was developed for potential magnetic resonance imaging (MRI) and drug delivery. The nanocarrier is featured as a typical "cleavable core-internalizable shell-protective corona" architecture, which exhibits small size, positive surface charge, high loading capacity, and reduction-triggered destabilization. Furthermore, it can rapidly enter tumor cells and release its cargo in response to an intracellular level of glutathione, resulting in enhanced drug efficacy in vitro. The magnetic micelles loaded with superparamagnetic iron oxide (SPIO) nanoparticles demonstrate excellent MRI contrast enhancement, with T2 relaxivity found to be affected by the morphology of SPIO-clustering inside the micelle core. The multifunctional carrier with good cytocompatibility and nontoxic degradation products can serve as a promising theranostic candidate for efficient intracellular delivery of anticancer drugs and real-time monitoring of therapeutic effect.

  8. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet.

    PubMed

    Rogers, Gareth J; Hodgkin, Matthew N; Squires, Paul E

    2007-01-01

    The efficient secretion of insulin from beta-cells requires extensive intra-islet communication. The cell surface adhesion protein epithelial (E)-cadherin (ECAD) establishes and maintains epithelial tissues such as the islets of Langerhans. In this study, the role of ECAD in regulating insulin secretion from pseudoislets was investigated. The effect of an immuno-neutralising ECAD on gross morphology, cytosolic calcium signalling, direct cell-to-cell communication and insulin secretion was assessed by fura-2 microfluorimetry, Lucifer Yellow dye injection and insulin ELISA in an insulin-secreting model system. Antibody blockade of ECAD reduces glucose-evoked changes in [Ca(2+)](i) and insulin secretion. Neutralisation of ECAD causes a breakdown in the glucose-stimulated synchronicity of calcium oscillations between discrete regions within the pseudoislet, and the transfer of dye from an individual cell within a cell cluster is attenuated in the absence of ECAD ligation, demonstrating that gap junction communication is disrupted. The functional consequence of neutralising ECAD is a significant reduction in insulin secretion. Cell adhesion via ECAD has distinct roles in the regulation of intercellular communication between beta-cells within islets, with potential repercussions for insulin secretion.

  9. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  10. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  11. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact

    NASA Astrophysics Data System (ADS)

    Fan, Lin; Wang, Fengyou; Liang, Junhui; Yao, Xin; Fang, Jia; Zhang, Dekun; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-01-01

    A rising candidate for upgrading the performance of an established narrow-bandgap solar technology without adding much cost is to construct the tandem solar cells from a crystalline silicon bottom cell and a high open-circuit voltage top cell. Here, we present a four-terminal tandem solar cell architecture consisting of a self-filtered planar architecture perovskite top cell and a silicon heterojunction bottom cell. A transparent ultrathin gold electrode has been used in perovskite solar cells to achieve a semi-transparent device. The transparent ultrathin gold contact could provide a better electrical conductivity and optical reflectance-scattering to maintain the performance of the top cell compared with the traditional metal oxide contact. The four-terminal tandem solar cell yields an efficiency of 14.8%, with contributions of the top (8.98%) and the bottom cell (5.82%), respectively. We also point out that in terms of optical losses, the intermediate contact of self-filtered tandem architecture is the uppermost problem, which has been addressed in this communication, and the results show that reducing the parasitic light absorption and improving the long wavelength range transmittance without scarifying the electrical properties of the intermediate hole contact layer are the key issues towards further improving the efficiency of this architecture device. Project supported by the International Cooperation Projects of the Ministry of Science and Technology (No. 2014DFE60170), the National Natural Science Foundation of China (Nos. 61474065, 61674084), the Tianjin Research Key Program of Application Foundation and Advanced Technology (No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province (No. BE2014147-3), and the 111 Project (No. B16027).

  12. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  13. Crew systems and architectural considerations for first lunar surface return missions

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Ximenes, S.

    1992-08-01

    The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.

  14. Kinetically controlled fabrication of single-crystalline TiO 2 nanobrush architectures with high energy {001} facets

    DOE PAGES

    Fan, Lisha; Gao, Xiang; Lee, Dongkyu; ...

    2017-03-01

    Here, this study demonstrates that precise control of nonequilibrium growth conditions during pulsed laser deposition (PLD) can be exploited to produce single-crystalline anatase TiO 2 nanobrush architectures with large surface areas terminated with high energy {001} facets. The data indicate that the key to nanobrush formation is controlling the atomic surface transport processes to balance defect aggregation and surface-smoothing processes. High-resolution scanning transmission electron microscopy data reveal that defect-mediated aggregation is the key to TiO 2 nanobrush formation. The large concentration of defects present at the intersection of domain boundaries promotes aggregation of PLD growth species, resulting in the growthmore » of the single-crystalline nanobrush architecture. This study proposes a model for the relationship between defect creation and growth mode in nonequilibrium environments, which enables application of this growth method to novel nanostructure design in a broad range of materials.« less

  15. Effect of promoter architecture on the cell-to-cell variability in gene expression.

    PubMed

    Sanchez, Alvaro; Garcia, Hernan G; Jones, Daniel; Phillips, Rob; Kondev, Jané

    2011-03-01

    According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.

  16. Effect of Promoter Architecture on the Cell-to-Cell Variability in Gene Expression

    PubMed Central

    Sanchez, Alvaro; Garcia, Hernan G.; Jones, Daniel; Phillips, Rob; Kondev, Jané

    2011-01-01

    According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well. PMID:21390269

  17. Optical Multi-Gas Monitor Technology Demonstration on the International Space Station

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Johnson, Michael D.; Mudgett, Paul D.

    2014-01-01

    The International Space Station (ISS) employs a suite of portable and permanently located gas monitors to insure crew health and safety. These sensors are tasked with functions ranging from fixed mass spectrometer based major constituents analysis to portable electrochemical sensor based combustion product monitoring. An all optical multigas sensor is being developed that can provide the specificity of a mass spectrometer with the portability of an electrochemical cell. The technology, developed under the Small Business Innovation Research program, allows for an architecture that is rugged, compact and low power. A four gas version called the Multi-Gas Monitor was launched to ISS in November 2013 aboard Soyuz and activated in February 2014. The portable instrument is comprised of a major constituents analyzer (water vapor, carbon dioxide, oxygen) and high dynamic range real-time ammonia sensor. All species are sensed inside the same enhanced path length optical cell with a separate vertical cavity surface emitting laser (VCSEL) targeted at each species. The prototype is controlled digitally with a field-programmable gate array/microcontroller architecture. The optical and electronic approaches are designed for scalability and future versions could add three important acid gases and carbon monoxide combustion product gases to the four species already sensed. Results obtained to date from the technology demonstration on ISS are presented and discussed.

  18. Scaffold Architecture Controls Insulinoma Clustering, Viability, and Insulin Production

    PubMed Central

    Blackstone, Britani N.; Palmer, Andre F.; Rilo, Horacio R.

    2014-01-01

    Recently, in vitro diagnostic tools have shifted focus toward personalized medicine by incorporating patient cells into traditional test beds. These cell-based platforms commonly utilize two-dimensional substrates that lack the ability to support three-dimensional cell structures seen in vivo. As monolayer cell cultures have previously been shown to function differently than cells in vivo, the results of such in vitro tests may not accurately reflect cell response in vivo. It is therefore of interest to determine the relationships between substrate architecture, cell structure, and cell function in 3D cell-based platforms. To investigate the effect of substrate architecture on insulinoma organization and function, insulinomas were seeded onto 2D gelatin substrates and 3D fibrous gelatin scaffolds with three distinct fiber diameters and fiber densities. Cell viability and clustering was assessed at culture days 3, 5, and 7 with baseline insulin secretion and glucose-stimulated insulin production measured at day 7. Small, closely spaced gelatin fibers promoted the formation of large, rounded insulinoma clusters, whereas monolayer organization and large fibers prevented cell clustering and reduced glucose-stimulated insulin production. Taken together, these data show that scaffold properties can be used to control the organization and function of insulin-producing cells and may be useful as a 3D test bed for diabetes drug development. PMID:24410263

  19. Architecture effects on multivalent interactions by polypeptide-based multivalent ligands

    NASA Astrophysics Data System (ADS)

    Liu, Shuang

    Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.

  20. ToF-SIMS analysis of poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) ultrathin adlayers.

    PubMed

    Pidhatika, Bidhari; Chen, Yin; Coullerez, Geraldine; Al-Bataineh, Sameer; Textor, Marcus

    2014-02-01

    Understanding of the interfacial chemistry of ultrathin polymeric adlayers is fundamentally important in the context of establishing quantitative design rules for the fabrication of nonfouling surfaces in various applications such as biomaterials and medical devices. In this study, seven poly(L-lysine)-graft-poly(2-methyl-2-oxazoline) (PLL-PMOXA) copolymers with grafting density (number of PMOXA chains per lysine residue) 0.09, 0.14, 0.19, 0.33, 0.43, 0.56, and 0.77, respectively, were synthesized and characterized by means of nuclear magnetic resonance spectroscopy (NMR). The copolymers were then adsorbed on Nb2O5 surfaces. Optical waveguide lightmode spectroscopy method was used to monitor the surface adsorption in situ of these copolymers and provide information on adlayer masses that were then converted into PLL and PMOXA surface densities. To investigate the relationship between copolymer bulk architecture (as shown by NMR data) and surface coverage as well as surface architecture, time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis was performed. Furthermore, ToF-SIMS method combined with principal component analysis (PCA) was used to verify the protein resistant properties of PLL-PMOXA adlayers, by thorough characterization before and after adlayer exposure to human serum. ToF-SIMS analysis revealed that the chemical composition as well as the architecture of the different PLL-PMOXA adlayers indeed reflects the copolymer bulk composition. ToF-SIMS results also indicated a heterogeneous surface coverage of PLL-PMOXA adlayers with high grafting densities higher than 0.33. In the case of protein resistant surface, PCA results showed clear differences between protein resistant and nonprotein-resistant surfaces. Therefore, ToF-SIMS results combined with PCA confirmed that the PLL-PMOXA adlayer with brush architecture resists protein adsorption. However, low increases of some amino acid signals in ToF-SIMS spectra were detected after the adlayer has been exposed to human serum.

  1. Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-01-01

    Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the analytical solutions obtained for several other types of porous biomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Impact of Environmental Conditions on the Form and Function of Candida albicans Biofilms

    PubMed Central

    Daniels, Karla J.; Park, Yang-Nim; Srikantha, Thyagarajan; Pujol, Claude

    2013-01-01

    Candida albicans, like other pathogens, can form complex biofilms on a variety of substrates. However, as the number of studies of gene regulation, architecture, and pathogenic traits of C. albicans biofilms has increased, so have differences in results. This suggests that depending upon the conditions employed, biofilms may vary widely, thus hampering attempts at a uniform description. Gene expression studies suggest that this may be the case. To explore this hypothesis further, we compared the architectures and traits of biofilms formed in RPMI 1640 and Spider media at 37°C in air. Biofilms formed by a/α cells in the two media differed to various degrees in cellular architecture, matrix deposition, penetrability by leukocytes, fluconazole susceptibility, and the facilitation of mating. Similar comparisons of a/a cells in the two media, however, were made difficult given that in air, although a/a cells form traditional biofilms in RPMI medium, they form polylayers composed primarily of yeast cells in Spider medium. These polylayers lack an upper hyphal/matrix region, are readily penetrated by leukocytes, are highly fluconazole susceptible, and do not facilitate mating. If, however, air is replaced with 20% CO2, a/a cells make a biofilm in Spider medium similar architecturally to that of a/α cells, which facilitates mating. A second, more cursory comparison is made between the disparate cellular architectures of a/a biofilms formed in air in RPMI and Lee's media. The results demonstrate that C. albicans forms very different types of biofilms depending upon the composition of the medium, level of CO2 in the atmosphere, and configuration of the MTL locus. PMID:23954841

  3. IR-drop analysis for validating power grids and standard cell architectures in sub-10nm node designs

    NASA Astrophysics Data System (ADS)

    Ban, Yongchan; Wang, Chenchen; Zeng, Jia; Kye, Jongwook

    2017-03-01

    Since chip performance and power are highly dependent on the operating voltage, the robust power distribution network (PDN) is of utmost importance in designs to provide with the reliable voltage without voltage (IR)-drop. However, rapid increase of parasitic resistance and capacitance (RC) in interconnects makes IR-drop much worse with technology scaling. This paper shows various IR-drop analyses in sub 10nm designs. The major objectives are to validate standard cell architectures, where different sizes of power/ground and metal tracks are validated, and to validate PDN architecture, where types of power hook-up approaches are evaluated with IR-drop calculation. To estimate IR-drops in 10nm and below technologies, we first prepare physically routed designs given standard cell libraries, where we use open RISC RTL, synthesize the CPU, and apply placement & routing with process-design kits (PDK). Then, static and dynamic IR-drop flows are set up with commercial tools. Using the IR-drop flow, we compare standard cell architectures, and analysis impacts on performance, power, and area (PPA) with the previous technology-node designs. With this IR-drop flow, we can optimize the best PDN structure against IR-drops as well as types of standard cell library.

  4. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications

    NASA Astrophysics Data System (ADS)

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-09-01

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions. Electronic supplementary information (ESI) available: Synthetic schemes, TEM, SEM, XRD, FTIR, UV-DRS spectra, TPR, and catalytic data. See DOI: 10.1039/c4nr02692f

  5. Carnegie Mellon University Space Architecture

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A traditional architecture studio focusing on a "post-pioneering" settlement (a first step research station with an emphasis on material, resources, closed-loop systems, as well as programmatic network and spatial considerations) for the surface of Mars or for Earth-Mars transit.

  6. Architecture engineering toward highly active palladium integrated titanium dioxide yolk-double-shell nanoreactor for catalytic applications.

    PubMed

    Liu, Baocang; Wang, Qin; Yu, Shengli; Jing, Peng; Liu, Lixia; Xu, Guangran; Zhang, Jun

    2014-10-21

    Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk-double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd(2+) ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk-shell structures, the obtained yolk-double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd-TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk-double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki-Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions.

  7. Prostate cancer characterization by optical contrast enhanced photoacoustics

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Qin, Ming; Mukundan, Ananya; Siddiqui, Javed; Takada, Marilia; Vilar-Saavedra, Paulo; Tomlins, Scott A.; Kopelman, Raoul; Wang, Xueding

    2016-03-01

    During the past decades, prostate cancer (PCa), with an annual incident rate much higher than any other cancer, is the most commonly diagnosed cancer in American men. PCa has a relatively low progression rate yet the survival percentage decreases dramatically once the cancer has metastasized. Identifying aggressive from indolent PCa to prevent metastasis and death is critical to improving outcomes for patients with PCa. Standard procedure for assessing the aggressiveness of PCa involves the removal of tumor tissues by transrectal (TR) ultrasound (US) guided needle biopsy. The microscopic architecture of the biopsied tissue is visualized by histological or immunohistochemical staining procedures. The heterogeneity of the microscopic architecture is characterized by a Gleason score, a quantitative description of the aggressiveness of PCa. Due to the inability to identify the cancer cells, most noninvasive imaging modalities can only provide diagnosis of PCa at limited accuracy. This study investigates the feasibility of identifying PCa tumors and characterizing the aggressiveness of PCa by photoacoustic imaging assisted by cancer targeting polyacrylamide (PAA) nanoparticles (NPs). PAA is a biocompatible material used in clinics for the past 20 years. PAA NPs can protect capsulated optical contrast agents from interference by enzymes and enable prolonged systematic circulation in the living biological environment. The cancer targeting mechanism is achieved by conjugating the NPs to F3 peptides, which trace nucleolin overexpressed on the surface of cancer cells. Preliminary studies have shown that the NPs are capable of staining the PCa cells in vivo.

  8. Uruguay Roselli 1938 and Rosellichnus, N. Ichnogenus: Two ichnogenera for clusters of fossil bee cells

    USGS Publications Warehouse

    Genise, Jorge F.; Bown, Thomas M.

    1996-01-01

    The systematics of the fossil bee nest ichnogenus Uruguay from the Uruguayan Cretaceous or lower Tertiary is reviewed and two new ichnospecies of a new ichnogenus, Rosellichnus, are proposed for fossil bee nests from the Miocene of the United Arab Emirates and Patagonian Argentina. Uruguay contains U. auroranormae(the ich‐notype) and U. rivasi, which differs from the type ichnospecies in having clustered cells arranged in three rows, with one central and two marginal rows of subparallel cells. No bee nest architecture known to us unequivocally fits with any ichnospecies described herein. Uruguay was constructed in the subsoil and may be of halictid origin; however, its large cell size, thick cell walls, and the presence of a vestibular cell do not fit the architecture of nests of extant halictids. Rosellichnus arabicus lacks the complete cavity surrounding the cell cluster that is typical in nests of Old World halictids, but it may, nonetheless, still be of halictid origin. R. pa‐tagonicus has an architecture more similar to nests of anthophorine bees than to those of Neotropical Halictidae. Therefore, the ichnogenus Rosellichnus may include both halictid and anthophorine constructions. Although the smooth inner cell walls, spiral cell caps, and clustering of cells indicate that both Uruguay and Rosellichnus are trace fossils of bee origin, it is likely that both represent nest architectures that are no longer employed by extant bees, or those that are as yet unknown. The paleoenvironments of both the Argentine and Emirates species of Rosellichnus indicate that the trace‐makers of this ichnogenus constructed their nests in open ground sandy soils.

  9. State-of-the-art Architectures and Technologies of High-Efficiency Solar Cells Based on III-V Heterostructures for Space and Terrestrial Applications

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Andreev, V. M.; Shvarts, M. Z.; Pchelyakov, O. P.

    2018-03-01

    Multi-junction solar cells based on III-V compounds are the most efficient converters of solar energy to electricity and are widely used in space solar arrays and terrestrial photovoltaic modules with sunlight concentrators. All modern high-efficiency III-V solar cells are based on the long-developed triple-junction III-V GaInP/GaInAs/Ge heterostructure and have an almost limiting efficiency for a given architecture — 30 and 41.6% for space and terrestrial concentrated radiations, respectively. Currently, an increase in efficiency is achieved by converting from the 3-junction to the more efficient 4-, 5-, and even 6-junction III-V architectures: growth technologies and methods of post-growth treatment of structures have been developed, new materials with optimal bandgaps have been designed, and crystallographic parameters have been improved. In this review, we consider recent achievements and prospects for the main directions of research and improvement of architectures, technologies, and materials used in laboratories to develop solar cells with the best conversion efficiency: 35.8% for space, 38.8% for terrestrial, and 46.1% for concentrated sunlight. It is supposed that by 2020, the efficiency will approach 40% for direct space radiation and 50% for concentrated terrestrial solar radiation. This review considers the architecture and technologies of solar cells with record-breaking efficiency for terrestrial and space applications. It should be noted that in terrestrial power plants, the use of III-V SCs is economically advantageous in systems with sunlight concentrators.

  10. The informational architecture of the cell.

    PubMed

    Walker, Sara Imari; Kim, Hyunju; Davies, Paul C W

    2016-03-13

    We compare the informational architecture of biological and random networks to identify informational features that may distinguish biological networks from random. The study presented here focuses on the Boolean network model for regulation of the cell cycle of the fission yeast Schizosaccharomyces pombe. We compare calculated values of local and global information measures for the fission yeast cell cycle to the same measures as applied to two different classes of random networks: Erdös-Rényi and scale-free. We report patterns in local information processing and storage that do indeed distinguish biological from random, associated with control nodes that regulate the function of the fission yeast cell-cycle network. Conversely, we find that integrated information, which serves as a global measure of 'emergent' information processing, does not differ from random for the case presented. We discuss implications for our understanding of the informational architecture of the fission yeast cell-cycle network in particular, and more generally for illuminating any distinctive physics that may be operative in life. © 2016 The Author(s).

  11. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  12. Architecture and Concept of Operations for a Warfighter’s Internet. Volume 2: Appendices

    DTIC Science & Technology

    1998-01-28

    National Technical Information Service , where it will be available to the general public, including foreign nationals. This technical report has been...SUPPORT INTEGRATED SERVICES IN A MOBILE CELLULAR SYSTEM ARCHITECTURE (FOR ARCHITECTURE OPT. 2) B-1 1. Introduction B-l 2. Warfighter’s...Internet Architecture and Concept of Operation B-2 3. Subnet Provider Interface (SNPI) B-5 4. Integrated Services Cell Multiplexing (ISCM) B-9 5. Mobile

  13. Evaluating science return in space exploration initiative architectures

    NASA Technical Reports Server (NTRS)

    Budden, Nancy Ann; Spudis, Paul D.

    1993-01-01

    Science is an important aspect of the Space Exploration Initiative, a program to explore the Moon and Mars with people and machines. Different SEI mission architectures are evaluated on the basis of three variables: access (to the planet's surface), capability (including number of crew, equipment, and supporting infrastructure), and time (being the total number of man-hours available for scientific activities). This technique allows us to estimate the scientific return to be expected from different architectures and from different implementations of the same architecture. Our methodology allows us to maximize the scientific return from the initiative by illuminating the different emphases and returns that result from the alternative architectural decisions.

  14. Experimental investigation of active rib stitch knitted architecture for flow control applications

    NASA Astrophysics Data System (ADS)

    Abel, Julianna M.; Mane, Poorna; Pascoe, Benjamin; Luntz, Jonathan; Brei, Diann

    2010-04-01

    Actively manipulating flow characteristics around the wing can enhance the high-lift capability and reduce drag; thereby, increasing fuel economy, improving maneuverability and operation over diverse flight conditions which enables longer, more varied missions. Active knits, a novel class of cellular structural smart material actuator architectures created by continuous, interlocked loops of stranded active material, produce distributed actuation that can actively manipulate the local surface of the aircraft wing to improve flow characteristics. Rib stitch active knits actuate normal to the surface, producing span-wise discrete periodic arrays that can withstand aerodynamic forces while supplying the necessary displacement for flow control. This paper presents a preliminary experimental investigation of the pressuredisplacement actuation performance capabilities of a rib stitch active knit based upon shape memory alloy (SMA) wire. SMA rib stitch prototypes in both individual form and in stacked and nestled architectures were experimentally tested for their quasi-static load-displacement characteristics, verifying the parallel and series relationships of the architectural configurations. The various configurations tested demonstrated the potential of active knits to generate the required level of distributed surface displacements while under aerodynamic level loads for various forms of flow control.

  15. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  16. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    PubMed Central

    Khosroabadi, Akram A.; Gangopadhyay, Palash; Hernandez, Steven; Kim, Kyungjo; Peyghambarian, Nasser; Norwood, Robert A.

    2015-01-01

    We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material. PMID:28793489

  17. Engineering the Surface/Interface Structures of Titanium Dioxide Micro and Nano Architectures towards Environmental and Electrochemical Applications

    PubMed Central

    Wang, Xiaoliang; Zhao, Yanyan; Mølhave, Kristian

    2017-01-01

    Titanium dioxide (TiO2) materials have been intensively studied in the past years because of many varied applications. This mini review article focuses on TiO2 micro and nano architectures with the prevalent crystal structures (anatase, rutile, brookite, and TiO2(B)), and summarizes the major advances in the surface and interface engineering and applications in environmental and electrochemical applications. We analyze the advantages of surface/interface engineered TiO2 micro and nano structures, and present the principles and growth mechanisms of TiO2 nanostructures via different strategies, with an emphasis on rational control of the surface and interface structures. We further discuss the applications of TiO2 micro and nano architectures in photocatalysis, lithium/sodium ion batteries, and Li–S batteries. Throughout the discussion, the relationship between the device performance and the surface/interface structures of TiO2 micro and nano structures will be highlighted. Then, we discuss the phase transitions of TiO2 nanostructures and possible strategies of improving the phase stability. The review concludes with a perspective on the current challenges and future research directions. PMID:29120393

  18. Quantitative Analysis of Filament Branch Orientation in Listeria Actin Comet Tails.

    PubMed

    Jasnin, Marion; Crevenna, Alvaro H

    2016-02-23

    Several bacterial and viral pathogens hijack the host actin cytoskeleton machinery to facilitate spread and infection. In particular, Listeria uses Arp2/3-mediated actin filament nucleation at the bacterial surface to generate a branched network that will help propel the bacteria. However, the mechanism of force generation remains elusive due to the lack of high-resolution three-dimensional structural data on the spatial organization of the actin mother and daughter (i.e., branch) filaments within this network. Here, we have explored the three-dimensional structure of Listeria actin tails in Xenopus laevis egg extracts using cryo-electron tomography. We found that the architecture of Listeria actin tails is shared between those formed in cells and in cell extracts. Both contained nanoscopic bundles along the plane of the substrate, where the bacterium lies, and upright filaments (also called Z filaments), both oriented tangentially to the bacterial cell wall. Here, we were able to identify actin filament intersections, which likely correspond to branches, within the tails. A quantitative analysis of putative Arp2/3-mediated branches in the actin network showed that mother filaments lie on the plane of the substrate, whereas daughter filaments have random deviations out of this plane. Moreover, the analysis revealed that branches are randomly oriented with respect to the bacterial surface. Therefore, the actin filament network does not push directly toward the surface but rather accumulates, building up stress around the Listeria surface. Our results favor a mechanism of force generation for Listeria movement where the stress is released into propulsive motion. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Enhancement of healing in osteochondral defects by collagen sponge implants.

    PubMed

    Speer, D P; Chvapil, M; Volz, R G; Holmes, M D

    1979-10-01

    Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.

  20. Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes

    PubMed Central

    Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena

    2013-01-01

    The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190

  1. Aging and differentiation in yeast populations: elders with different properties and functions.

    PubMed

    Palková, Zdena; Wilkinson, Derek; Váchová, Libuše

    2014-02-01

    Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Three-dimensional Architecture of Hair-bundle Linkages Revealed by Electron-microscopic Tomography

    PubMed Central

    Auer, Manfred; Koster, Abrahram J.; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng

    2008-01-01

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of basal links, kinociliary links, and tip links. We observed significant differences in the appearances and dimensions of these three structures and found two distinct populations of tip links suggestive of the involvement of different proteins, splice variants, or protein–protein interactions. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface. PMID:18421501

  3. Pathology of carcinoma in situ of the urinary bladder and related lesions.

    PubMed

    Farrow, G M

    1992-01-01

    In the United States, nearly all cases of bladder cancer are of the transitional cell type, and epidemiological evidence indicates that among these, approximately 80% present initially as more or less well-differentiated, superficial papillary neoplasms with a tendency for multifocal or diffuse involvement of the urothelial surface and/or recurrent tumor episodes, but with limited potential for invasive growth or a lethal outcome. Bladder tumors with lethal potential generally begin as poorly differentiated, sessile growths that are usually invasive at first diagnosis. Carcinoma in situ is a change that must be elicited among intact surface cells before progressive proliferation results in a tumor mass. Evidence for such an association is both temporal and spatial. Since most transitional cell carcinomas begin as well-differentiated tumors, i.e., resembling normal urothelium, recognition of early neoplastic alteration before a papillary structure forms is unlikely and most of the evidence is spatial based upon urothelial changes adjacent to papillary tumors. The morphologic definition of carcinoma in situ is arbitrary and generally defined as a total replacement of the urothelial surface by cells which bear morphologic features of carcinoma, but which lack architectural alteration other than an increase in the number of cell layers, i.e., a flat lesion. The Union Internationále Contra Cancer/American Joint Committee on Cancer (UICC/AJCC) staging scheme for bladder cancer distinguishes non-invasive papillary growths as Ta and carcinoma in situ as Tis. Because detection of carcinoma in situ, either by cytology or biopsy, depends upon recognizable malignant morphologic characteristics, studies of the lesion tend to be limited to the higher grade or more anaplastic examples.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells.

    PubMed

    Rider, David A; Tucker, Ryan T; Worfolk, Brian J; Krause, Kathleen M; Lalany, Abeed; Brett, Michael J; Buriak, Jillian M; Harris, Kenneth D

    2011-02-25

    Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO(2) nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C(61)-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO(2) caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO(2) nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded.

  5. Advanced Sulfur-Silicon Full Cell Architecture for Lithium Ion Batteries.

    PubMed

    Ye, Rachel; Bell, Jeffrey; Patino, Daisy; Ahmed, Kazi; Ozkan, Mihri; Ozkan, Cengiz S

    2017-12-08

    Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.

  6. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications.

    PubMed

    Gao, Chunxia; Rahaman, Mohamed N; Gao, Qiang; Teramoto, Akira; Abe, Koji

    2013-07-01

    The development of inorganic-organic hybrid scaffolds with controllable degradation and bioactive properties is receiving considerable interest for bone and tissue regeneration. The objective of this study was to create hybrid scaffolds of gelatin and bioactive glass (BG) with a controlled, three-dimensional (3D) architecture by a combined sol-gel and robotic deposition (robocasting) method and evaluate their mechanical response, bioactivity, and response to cells in vitro. Inks for robotic deposition of the scaffolds were prepared by dissolving gelatin in a sol-gel precursor solution of the bioactive glass (70SiO2 -25CaO-5P2 O5 ; mol%) and aging the solution to form a gel with the requisite viscosity. After drying and crosslinking, the gelatin-BG scaffolds, with a grid-like architecture (filament diameter ∼350 µm; pore width ∼550 µm), showed an elasto-plastic response, with a compressive strength of 5.1 ± 0.6 MPa, in the range of values for human trabecular bone (2-12 MPa). When immersed in phosphate-buffered saline, the crosslinked scaffolds rapidly absorbed water (∼440% of its dry weight after 2 h) and showed an elastic response at deformations up to ∼60%. Immersion of the scaffolds in a simulated body fluid resulted in the formation of a hydroxyapatite-like surface layer within 5 days, indicating their bioactivity in vitro. The scaffolds supported the proliferation, alkaline phosphatase activity, and mineralization of osteogenic MC3T3-E1 cells in vitro, showing their biocompatibility. Altogether, the results indicate that these gelatin-BG hybrid scaffolds with a controlled, 3D architecture of inter-connected pores have potential for use as implants for bone regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  7. Effects of synthetic cohesin-containing scaffold protein architecture on binding dockerin-enzyme fusions on the surface of Lactococcus lactis.

    PubMed

    Wieczorek, Andrew S; Martin, Vincent J J

    2012-12-15

    The microbial synthesis of fuels, commodity chemicals, and bioactive compounds necessitates the assemblage of multiple enzyme activities to carry out sequential chemical reactions, often via substrate channeling by means of multi-domain or multi-enzyme complexes. Engineering the controlled incorporation of enzymes in recombinant protein complexes is therefore of interest. The cellulosome of Clostridium thermocellum is an extracellular enzyme complex that efficiently hydrolyzes crystalline cellulose. Enzymes interact with protein scaffolds via type 1 dockerin/cohesin interactions, while scaffolds in turn bind surface anchor proteins by means of type 2 dockerin/cohesin interactions, which demonstrate a different binding specificity than their type 1 counterparts. Recombinant chimeric scaffold proteins containing cohesins of different specificity allow binding of multiple enzymes to specific sites within an engineered complex. We report the successful display of engineered chimeric scaffold proteins containing both type 1 and type 2 cohesins on the surface of Lactococcus lactis cells. The chimeric scaffold proteins were able to form complexes with the Escherichia coli β-glucuronidase fused to either type 1 or type 2 dockerin, and differences in binding efficiencies were correlated with scaffold architecture. We used E. coli β-galactosidase, also fused to type 1 or type 2 dockerins, to demonstrate the targeted incorporation of two enzymes into the complexes. The simultaneous binding of enzyme pairs each containing a different dockerin resulted in bi-enzymatic complexes tethered to the cell surface. The sequential binding of the two enzymes yielded insights into parameters affecting assembly of the complex such as protein size and position within the scaffold. The spatial organization of enzymes into complexes is an important strategy for increasing the efficiency of biochemical pathways. In this study, chimeric protein scaffolds consisting of type 1 and type 2 cohesins anchored on the surface of L. lactis allowed for the controlled positioning of dockerin-fused reporter enzymes onto the scaffolds. By binding single enzymes or enzyme pairs to the scaffolds, our data also suggest that the size and relative positions of enzymes can affect the catalytic profiles of the resulting complexes. These insights will be of great value as we engineer more advanced scaffold-guided protein complexes to optimize biochemical pathways.

  8. Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors

    NASA Astrophysics Data System (ADS)

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2016-05-01

    This paper concerns the development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss the suitability of the method for Xeon Phi architecture and present our experience in the porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting without code modification gives performance on Xeon Phi close to that of an 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step optimization techniques, such as improving data locality, enhancing parallelization efficiency and vectorization leading to an overall 4.2 × speedup on CPU and 7.5 × on Xeon Phi compared to the baseline version. The optimized version achieves 16.9 ns per particle update on an Intel Xeon E5-2660 CPU and 9.3 ns per particle update on an Intel Xeon Phi 5110P. For a real problem of laser ion acceleration in targets with surface grating, where a large number of macroparticles per cell is required, the speedup of Xeon Phi compared to CPU is 1.6 ×.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  10. Study of Huizhou architecture component point cloud in surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin

    2017-06-01

    Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.

  11. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  12. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  13. Packaging of electro-microfluidic devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  14. Bioinspired decision architectures containing host and microbiome processing units.

    PubMed

    Heyde, K C; Gallagher, P W; Ruder, W C

    2016-09-27

    Biomimetic robots have been used to explore and explain natural phenomena ranging from the coordination of ants to the locomotion of lizards. Here, we developed a series of decision architectures inspired by the information exchange between a host organism and its microbiome. We first modeled the biochemical exchanges of a population of synthetically engineered E. coli. We then built a physical, differential drive robot that contained an integrated, onboard computer vision system. A relay was established between the simulated population of cells and the robot's microcontroller. By placing the robot within a target-containing a two-dimensional arena, we explored how different aspects of the simulated cells and the robot's microcontroller could be integrated to form hybrid decision architectures. We found that distinct decision architectures allow for us to develop models of computation with specific strengths such as runtime efficiency or minimal memory allocation. Taken together, our hybrid decision architectures provide a new strategy for developing bioinspired control systems that integrate both living and nonliving components.

  15. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    NASA Astrophysics Data System (ADS)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.

  16. Energy Storage Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.

    2011-01-01

    NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.

  17. The influence of direct laser metal sintering implants on the early stages of osseointegration in diabetic mini-pigs

    PubMed Central

    Tan, Naiwen; Liu, Xiangwei; Cai, Yanhui; Zhang, Sijia; Jian, Bo; Zhou, Yuchao; Xu, Xiaoru; Ren, Shuai; Wei, Hongbo; Song, Yingliang

    2017-01-01

    Background High failure rates of oral implants have been reported in diabetic patients due to the disruption of osseointegration. The aim of this study was to investigate whether direct laser metal sintering (DLMS) could improve osseointegration in diabetic animal models. Methods Surface characterizations were carried out on two types of implants. Cell morphology and the osteogenic-related gene expression of MG63 cells were observed under conditions of DLMS and microarc oxidation (MAO). A diabetes model in mini-pigs was established by intravenous injection of streptozotocin (150 mg/kg), and a total of 36 implants were inserted into the mandibular region. Micro-computed tomography (micro-CT) and histologic evaluations were performed 3 and 6 months after implantation. Results The Ra (the average of the absolute height of all points) of MAO surface was 2.3±0.3 µm while the DLMS surface showed the Ra of 27.4±1.1 µm. The cells on DLMS implants spread out more podia than those on MAO implants through cell morphology analysis. Osteogenic-related gene expression was also dramatically increased in the DLMS group. Obvious improvement was observed in the micro-CT and Van Gieson staining analyses of DLMS implants compared with MAO at 3 months, although this difference disappeared by 6 months. DLMS implants showed a higher bone–implant contact percentage (33.2%±11.2%) at 3 months compared with MAO group (18.9%±7.3%) while similar results were showed at 6 months between DLMS group (42.8%±10.1%) and MAO group (38.3%±10.8%). Conclusion The three-dimensional environment of implant surfaces with highly porous and fully interconnected channel and pore architectures can improve cell spreading and accelerate the progress of osseointegration in diabetic mini-pigs. PMID:28814861

  18. Rolled-up Functionalized Nanomembranes as Three-Dimensional Cavities for Single Cell Studies

    PubMed Central

    2014-01-01

    We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function. PMID:24598026

  19. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract.

    PubMed

    Bitar, Khalil N; Zakhem, Elie

    2013-10-01

    The gastrointestinal (GI) tract is a complex system characterized by multiple cell types with a determined architectural arrangement. Tissue engineering of the GI tract aims to reinstate the architecture and function of all structural layers. The key point for successful tissue regeneration includes the use of cells/biomaterials that elucidate minimal immune response after implantation. Different biomaterial choices and cell sources have been proposed to engineer the GI tract. This review summarizes the recent advances in bioengineering the GI tract with emphasis on cell sources and scaffolding biomaterials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

    PubMed Central

    Curry, Nathan; Ghézali, Grégory; Kaminski Schierle, Gabriele S.; Rouach, Nathalie; Kaminski, Clemens F.

    2017-01-01

    The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis. PMID:28469559

  1. An Architecture Design Project: "Building" Understanding

    ERIC Educational Resources Information Center

    Bush, Sarah B.; Albanese, Judith; Karp, Karen S.; Karp, Matthew

    2017-01-01

    Middle school students need relevant, meaningful contexts to apply emerging mathematical ideas. In this project, through the context of an architecture investigation, seventh-grade students engaged in mathematics involving area, surface area, volume, ratios and proportional thinking, number sense, and technology integration. Students, working in…

  2. The influence of architecture on the elasticity and strength of Si(3)N(4)/BN fibrous-monolithic ceramic laminates

    NASA Astrophysics Data System (ADS)

    King, Bruce H.

    Fibrous-monolithic ceramics are a class of material with many similarities to layered ceramic composites. Like layered composites, fibrous monoliths depend on a weak interphase to promote crack deflection and energy absorption, avoiding catastrophic failure. However, in a fibrous monolith, the interphase surrounds fiber-like "cells" of the strong phase, forming a continuous, 2-dimensional honeycomb network. In the most simple architecture, all cells are aligned unidirectionally. More complex architectures are easily produced by varying the orientation of successive layers relative to each other. The Young's modulus of the unidirectional architecture is predicted accurately along principal axes using a "brick" model, while the modulus at angles between 0sp° and 90sp° is predicted using laminate theory. Laminate theory may also be used to accurately predict the Young's modulus of multidirectional architectures such as a cross-ply 0sp°/90sp° and a quasi-isotropic 0sp°/{±}45sp°/90sp°. Unidirectional fibrous monolithic ceramics are linear elastic in flexure until the first major failure event. The flexural strength of the unidirectional architecture tested at orientations between 0sp° and 90sp° is observed to fall into three distinct regions. Between 0sp° and 10sp° the strength is a constant 450 MPa, but between 10sp° and 45sp°, it gradually drops to 80 MPa. Above 45sp° the strength remains essentially constant. Between 0sp° and 30sp°, the strength is accurately predicted using the Maximum Stress theory. Above 30sp°, the strength is predicted using the Tsai-Hill model. The multidirectional architectures exhibit nonlinearity in flexural loading prior to the peak stress. Cyclic loading experiments indicate that this nonlinearity is a result-of microcracking in the boron nitride cell boundaries of the off-axis layers. The cross-ply architecture exhibits a strength of 334 ± 35 MPa, while the quasi-isotropic has a strength of 255 ± 22 MPa. The models developed to describe the unidirectional architecture may be extended to predict upper and lower bounds on the strength of multidirectional architectures.

  3. Surface, Bulk, and Interface: Rational Design of Hematite Architecture toward Efficient Photo-Electrochemical Water Splitting.

    PubMed

    Li, Chengcheng; Luo, Zhibin; Wang, Tuo; Gong, Jinlong

    2018-05-11

    Collecting and storing solar energy to hydrogen fuel through a photo-electrochemical (PEC) cell provides a clean and renewable pathway for future energy demands. Having earth-abundance, low biotoxicity, robustness, and an ideal n-type band position, hematite (α-Fe 2 O 3 ), the most common natural form of iron oxide, has occupied the research hotspot for decades. Here, a close look into recent progress of hematite photoanodes for PEC water splitting is provided. Effective approaches are introduced, such as cocatalysts loading and surface passivation layer deposition, to improve the hematite surface reaction in thermodynamics and kinetics. Second, typical methods for enhancing light absorption and accelerating charge transport in hematite bulk are reviewed, concentrating upon doping and nanostructuring. Third, the back contact between hematite and substrate, which affects interface states and electron transfer, is deliberated. In addition, perspectives on the key challenges and future prospects for the development of hematite photoelectrodes for PEC water splitting are given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Solid Oxide Fuel Cell APU Feasibility Study for a Long Range Commercial Aircraft Using UTC ITAPS Approach. Volume 1; Aircraft Propulsion and Subsystems Integration Evaluation

    NASA Technical Reports Server (NTRS)

    Srinivasan, Hari; Yamanis, Jean; Welch, Rick; Tulyani, Sonia; Hardin, Larry

    2006-01-01

    The objective of this contract effort was to define the functionality and evaluate the propulsion and power system benefits derived from a Solid Oxide Fuel Cell (SOFC) based Auxiliary Power Unit (APU) for a future long range commercial aircraft, and to define the technology gaps to enable such a system. The study employed technologies commensurate with Entry into Service (EIS) in 2015. United Technologies Corporation (UTC) Integrated Total Aircraft Power System (ITAPS) methodologies were used to evaluate system concepts to a conceptual level of fidelity. The technology benefits were captured as reductions of the mission fuel burn and emissions. The baseline aircraft considered was the Boeing 777-200ER airframe with more electric subsystems, Ultra Efficient Engine Technology (UEET) engines, and an advanced APU with ceramics for increased efficiency. In addition to the baseline architecture, four architectures using an SOFC system to replace the conventional APU were investigated. The mission fuel burn savings for Architecture-A, which has minimal system integration, is 0.16 percent. Architecture-B and Architecture-C employ greater system integration and obtain fuel burn benefits of 0.44 and 0.70 percent, respectively. Architecture-D represents the highest level of integration and obtains a benefit of 0.77 percent.

  5. A microfluidic fuel cell with flow-through porous electrodes.

    PubMed

    Kjeang, Erik; Michel, Raphaelle; Harrington, David A; Djilali, Ned; Sinton, David

    2008-03-26

    A microfluidic fuel cell architecture incorporating flow-through porous electrodes is demonstrated. The design is based on cross-flow of aqueous vanadium redox species through the electrodes into an orthogonally arranged co-laminar exit channel, where the waste solutions provide ionic charge transfer in a membraneless configuration. This flow-through architecture enables improved utilization of the three-dimensional active area inside the porous electrodes and provides enhanced rates of convective/diffusive transport without increasing the parasitic loss required to drive the flow. Prototype fuel cells are fabricated by rapid prototyping with total material cost estimated at 2 USD/unit. Improved performance as compared to previous microfluidic fuel cells is demonstrated, including power densities at room temperature up to 131 mW cm-2. In addition, high overall energy conversion efficiency is obtained through a combination of relatively high levels of fuel utilization and cell voltage. When operated at 1 microL min-1 flow rate, the fuel cell produced 20 mW cm-2 at 0.8 V combined with an active fuel utilization of 94%. Finally, we demonstrate in situ fuel and oxidant regeneration by running the flow-through architecture fuel cell in reverse.

  6. PEGylated graphene oxide-mediated quercetin-modified collagen hybrid scaffold for enhancement of MSCs differentiation potential and diabetic wound healing.

    PubMed

    Chu, Jing; Shi, Panpan; Yan, Wenxia; Fu, Jinping; Yang, Zhi; He, Chengmin; Deng, Xiaoyuan; Liu, Hanping

    2018-05-24

    Nanoscale delivery based on polyethylene glycol (PEG)ylated graphene oxide (GO-PEG) merits attention for biomedical applications owing to its functional surface modification, superior solubility/biocompatibility and controllable drug release capability. However, impaired skin regeneration in applications of these fascinating nanomaterials in diabetes is still limited, and critical issues need to be addressed regarding insufficient collagen hyperplasia and inadequate blood supply. Therefore, a high-performance tissue engineering scaffold with biocompatible and biodegradable properties is essential for diabetic wound healing. Natural and artificial acellular dermal matrix (ADM) scaffolds with spatially organized collagen fibers can provide a suitable architecture and environment for cell attachment and proliferation. Here, a novel collagen-nanomaterial-drug hybrid scaffold was constructed from GO-PEG-mediated quercetin (GO-PEG/Que)-modified ADM (ADM-GO-PEG/Que). The resulting unique and versatile hybrid scaffold exhibited multiple advantages, including the following: a biocompatible, cell-adhesive surface for accelerating mesenchymal stem cell (MSC) attachment and proliferation; superior stability and adjustability of the conduction potential of quercetin for inducing the differentiation of MSCs into adipocytes and osteoblasts; and a biodegradable nanofiber interface for promoting collagen deposition and angiogenesis in diabetic wound repair. This study provides new prospects for the design of innovative GO-PEG-based collagen hybrid scaffolds for application in efficient therapeutic drug delivery, stem cell-based therapies, tissue engineering and regenerative medicine.

  7. Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection

    PubMed Central

    Nett, Jeniel E.; Brooks, Erin G.; Cabezas-Olcoz, Jonathan; Sanchez, Hiram; Zarnowski, Robert; Marchillo, Karen

    2014-01-01

    Indwelling urinary catheters are commonly used in the management of hospitalized patients. Candida can adhere to the device surface and propagate as a biofilm. These Candida biofilm communities differ from free-floating Candida, exhibiting high tolerance to antifungal therapy. The significance of catheter-associated candiduria is often unclear, and treatment may be problematic considering the biofilm drug-resistant phenotype. Here we describe a rodent model for the study of urinary catheter-associated Candida albicans biofilm infection that mimics this common process in patients. In the setting of a functioning, indwelling urinary catheter in a rat, Candida proliferated as a biofilm on the device surface. Characteristic biofilm architecture was observed, including adherent, filamentous cells embedded in an extracellular matrix. Similar to what occurs in human patients, animals with this infection developed candiduria and pyuria. Infection progressed to cystitis, and a biofilmlike covering was observed over the bladder surface. Furthermore, large numbers of C. albicans cells were dispersed into the urine from either the catheter or bladder wall biofilm over the infection period. We successfully utilized the model to test the efficacy of antifungals, analyze transcriptional patterns, and examine the phenotype of a genetic mutant. The model should be useful for future investigations involving the pathogenesis, diagnosis, therapy, prevention, and drug resistance of Candida biofilms in the urinary tract. PMID:25183731

  8. Chemokines and their receptors: insights from molecular modeling and crystallography.

    PubMed

    Kufareva, Irina

    2016-10-01

    Chemokines are small secreted proteins that direct cell migration in development, immunity, inflammation, and cancer. They do so by binding and activating specific G protein coupled receptors on the surface of migrating cells. Despite the importance of receptor:chemokine interactions, their structural basis remained unclear for a long time. In 2015, the first atomic resolution insights were obtained with the publication of X-ray structures for two distantly related receptors bound to chemokines. In conjunction with experiment-guided molecular modeling, the structures suggest a conserved receptor:chemokine complex architecture, while highlighting the diverse details and functional roles of individual interaction epitopes. Novel findings promote the development and detailed structural interpretation of the canonical two-site hypothesis of receptor:chemokine recognition, and suggest new avenues for pharmacological modulation of chemokine receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Pathological features of olfactory neuroblastoma in an axolotl (Ambystoma mexicanum).

    PubMed

    Shioda, Chieko; Uchida, Kazuyuki; Nakayama, Hiroyuki

    2011-08-01

    A one-year-old, female Mexican axolotl (Ambystoma mexicanum) had a rough-surfaced, polypoid, pink tumor mass of approximately 10 mm in diameter in the oral cavity. Histologically, the tumor extended from the ethmoturbinate region and into the oral cavity and had replaced some of the maxillary bone tissue. The tumor mass was composed of a lobular architecture of small round-shaped tumor cells with occasional Flexner-Wintersteiner-like rosette formation. There were no metastatic lesions in the other organs. Immunohistochemically, the tumor cells were partly positive for several neural markers (class III beta-tubulin, S-100 protein, and doublecortin) and intensely positive for an epithelial marker (cytokeratin AE1/AE3). These results suggest that the present tumor originated from neuroectodermal tissue. Considering the location and histological and immunohistochemical features of the tumor, a diagnosis of olfactory neuroblastoma was made.

  10. Structure of the Repulsive Guidance Molecule (RGM)—Neogenin Signaling Hub

    PubMed Central

    Bell, Christian H.; Bishop, Benjamin; Tang, Chenxiang; Gilbert, Robert J.C.; Aricescu, A. Radu; Pasterkamp, R. Jeroen; Siebold, Christian

    2016-01-01

    Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon). The RGMB structure reveals a previously unknown protein fold and a functionally important autocatalytic cleavage mechanism and provides a framework to explain numerous disease-linked mutations in RGMs. In the complex, two RGMB ectodomains conformationally stabilize the juxtamembrane regions of two NEO1 receptors in a pH-dependent manner. We demonstrate that all RGM-NEO1 complexes share this architecture, which therefore represents the core of multiple signaling pathways. PMID:23744777

  11. A new seamless, smooth, interior, absorptive finishing system

    NASA Astrophysics Data System (ADS)

    D'Antonio, Peter

    2003-04-01

    Architects and acousticians have sought a field-applied, absorptive finishing system that resembles a smooth plaster or painted drywall surface, since the dawn of architectural acoustics. Some success has been achieved using sprayed cellulose or cementitious materials, but surface smoothness has been a challenge. A new approach utilizing a thin microporous layer of mineral particles applied over a mineral wool panel will be described. This material can be applied to almost any shape surface, internally pigmented to match almost any color and renovated. It is currently finding application in many architectural applications, including museums. A recent installation in the New Pinakothek Museum in Munich will be illustrated.

  12. In Vitro Assessment of Early Bacterial Activity on Micro/Nanostructured Ti6Al4V Surfaces.

    PubMed

    Valdez-Salas, Benjamin; Beltrán-Partida, Ernesto; Castillo-Uribe, Sandra; Curiel-Álvarez, Mario; Zlatev, Roumen; Stoytcheva, Margarita; Montero-Alpírez, Gisela; Vargas-Osuna, Lidia

    2017-05-18

    It is imperative to understand and systematically compare the initial interactions between bacteria genre and surface properties. Thus, we fabricated a flat, anodized with 80 nm TiO₂ nanotubes (NTs), and a rough Ti6Al4V surface. The materials were characterized using field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We cultured in vitro Staphylococcus epidermidis ( S. epidermidis ) and Pseudomonas aeruginosa ( P. aeruginosa ) to evaluate the bacterial-surface behavior by FE-SEM and viability calculation. In addition, the initial effects of human osteoblasts were tested on the materials. Gram-negative bacteria showed promoted adherence and viability over the flat and rough surface, while NTs displayed opposite activity with altered morphology. Gram-positive bacteria illustrated similar cellular architecture over the surfaces but with promoted surface adhesion bonds on the flat alloy. Rough surfaces supported S. epidermidis viability, whilst NTs exhibited lower vitality. NTs advocated promoted better osteoblast organization with enhanced vitality. Gram-positive bacteria suggested preferred adhesion capability over flat and carbon-rich surfaces. Gram-negative bacteria were strongly disturbed by NTs but largely stimulated by flat and rough materials. Our work proposed that the chemical profile of the material surface and the bacterial cell wall characteristics might play an important role in the bacteria-surface interactions.

  13. Approach for Mitigating Pressure Garment Design Risks in a Mobile Lunar Surface Systems Architecture

    NASA Technical Reports Server (NTRS)

    Aitchison, Lindsay

    2009-01-01

    The stated goals of the 2004 Vision for Space Exploration focus on establishing a human presence throughout the solar system beginning with the establishment of a permanent human presence on the Moon. However, the precise objectives to be accomplished on the lunar surface and the optimal system architecture to achieve those objectives have been a topic of much debate since the inception of the Constellation Program. There are two basic styles of system architectures being traded at the Programmatic level: a traditional large outpost that would focus on techniques for survival off our home planet and a greater depth of exploration within one area, or a mobile approach- akin to a series of nomadic camps- that would allow greater breadth of exploration opportunities. The traditional outpost philosophy is well within the understood pressure garment design space with respect to developing interfaces and operational life cycle models. The mobile outpost, however, combines many unknowns with respect to pressure garment performance and reliability that could dramatically affect the cost and schedule risks associated with the Constellation space suit system. This paper provides an overview of the concepts being traded for a mobile architecture from the operations and hardware implementation perspective, describes the primary risks to the Constellation pressure garment associated with each of the concepts, and summarizes the approach necessary to quantify the pressure garment design risks to enable the Constellation Program to make informed decisions when deciding on an overall lunar surface systems architecture.

  14. Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures.

    PubMed

    Kim, Yohan; Kang, Kyojin; Yoon, Sangtae; Kim, Ji Sook; Park, Su A; Kim, Wan Doo; Lee, Seung Bum; Ryu, Ki-Young; Jeong, Jaemin; Choi, Dongho

    2018-01-02

    Isolated primary hepatocytes from the liver are very similar to in vivo native liver hepatocytes, but they have the disadvantage of a limited lifespan in 2D culture. Although a sandwich culture and 3D organoids with mesenchymal stem cells (MSCs) as an attractive assistant cell source to extend lifespan can be used, it cannot fully reproduce the in vivo architecture. Moreover, long-term 3D culture leads to cell death because of hypoxic stress. Therefore, to overcome the drawback of 2D and 3D organoids, we try to use a 3D printing technique using alginate hydrogels with primary hepatocytes and MSCs. The viability of isolated hepatocytes was more than 90%, and the cells remained alive for 7 days without morphological changes in the 3D hepatic architecture with MSCs. Compared to a 2D system, the expression level of functional hepatic genes and proteins was higher for up to 7 days in the 3D hepatic architecture. These results suggest that both the 3D bio-printing technique and paracrine molecules secreted by MSCs supported long-term culture of hepatocytes without morphological changes. Thus, this technique allows for widespread expansion of cells while forming multicellular aggregates, may be applied to drug screening and could be an efficient method for developing an artificial liver.

  15. Module Architecture for in Situ Space Laboratories

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  16. Structure of bacterial lipopolysaccharides.

    PubMed

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  17. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering.

    PubMed

    Wang, Yongjie; Lu, Kunyuan; Han, Lu; Liu, Zeke; Shi, Guozheng; Fang, Honghua; Chen, Si; Wu, Tian; Yang, Fan; Gu, Mengfan; Zhou, Sijie; Ling, Xufeng; Tang, Xun; Zheng, Jiawei; Loi, Maria Antonietta; Ma, Wanli

    2018-04-01

    Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc 2  · 3H 2 O as the lead sources. QD solar cells based on PbAc-PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO-PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bacillus subtilis MreB paralogues have different filament architectures and lead to shape remodelling of a heterologous cell system.

    PubMed

    Soufo, Hervé Joël Defeu; Graumann, Peter L

    2010-12-01

    Like many bacteria, Bacillus subtilis cells contain three actin-like MreB proteins. We show that the three paralogues, MreB, Mbl and MreBH, have different filament architectures in a heterologous cell system, and form straight filaments, helices or ring structures, different from the regular helical arrangement in B. subtilis cells. However, when coexpressed, they colocalize into a single filamentous helical structure, showing that the paralogues influence each other's filament architecture. Ring-like MreBH structures can be converted into MreB-like helical filaments by a single point mutation affecting subunit contacts, showing that MreB paralogues feature flexible filament arrangements. Time-lapse and FRAP experiments show that filaments can extend as well as shrink at both ends, and also show internal rearrangement, suggesting that filaments consist of overlapping bundles of shorter filaments that continuously turn over. Upon induction in Escherichia coli cells, B. subtilis MreB (BsMreB) filaments push the cells into strikingly altered cell morphology, showing that MreB filaments can change cell shape. E. coli cells with a weakened cell wall were ruptured upon induction of BsMreB filaments, suggesting that the bacterial actin orthologue may exert force against the cell membrane and envelope, and thus possibly plays an additional mechanical role in bacteria. © 2010 Blackwell Publishing Ltd.

  19. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  20. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    PubMed

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.

  1. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less

  2. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces

    DOE PAGES

    Abhyankar, Vinay V.; Wu, Meiye; Koh, Chung -Yan; ...

    2016-05-26

    Microfluidic barrier tissue models have emerged as advanced in vitro tools to explore interactions with external stimuli such as drug candidates, pathogens, or toxins. However, the procedures required to establish and maintain these systems can be challenging to implement for end users, particularly those without significant in-house engineering expertise. Here we present a module-based approach that provides an easy-to-use workflow to establish, maintain, and analyze microscale tissue constructs. Our approach begins with a removable culture insert that is magnetically coupled, decoupled, and transferred between standalone, prefabricated microfluidic modules for simplified cell seeding, culture, and downstream analysis. The modular approach allowsmore » several options for perfusion including standard syringe pumps or integration with a self-contained gravity-fed module for simple cell maintenance. As proof of concept, we establish a culture of primary human microvascular endothelial cells (HMVEC) and report combined surface protein imaging and gene expression after controlled apical stimulation with the bacterial endotoxin lipopolysaccharide (LPS). We also demonstrate the feasibility of incorporating hydrated biomaterial interfaces into the microfluidic architecture by integrating an ultra-thin (< 1 μm), self-assembled hyaluronic acid/peptide amphiphile culture membrane with brain-specific Young’s modulus (~ 1kPa). To highlight the importance of including biomimetic interfaces into microscale models we report multi-tiered readouts from primary rat cortical cells cultured on the self-assembled membrane and compare a panel of mRNA targets with primary brain tissue signatures. As a result, we anticipate that the modular approach and simplified operational workflows presented here will enable a wide range of research groups to incorporate microfluidic barrier tissue models into their work.« less

  3. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    PubMed

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture between the ESCC and normal epithelial tissues. However, there were no differences observed between the young and old patients. © 2015 International Society for Diseases of the Esophagus.

  4. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  5. Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters.

    PubMed

    Cave, John W; Xia, Li; Caudy, Michael

    2011-01-01

    In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.

  6. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    PubMed

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  7. Modelling potential/current distribution in microbial electrochemical systems shows how the optimal bioanode architecture depends on electrolyte conductivity.

    PubMed

    Lacroix, Rémy; Da Silva, Serge; Gaig, Monica Viaplana; Rousseau, Raphael; Délia, Marie-Line; Bergel, Alain

    2014-11-07

    The theoretical bases for modelling the distribution of the electrostatic potential in microbial electrochemical systems are described. The secondary potential distribution (i.e. without mass transport limitation of the substrate) is shown to be sufficient to validly address microbial electrolysis cells (MECs). MECs are modelled with two different ionic conductivities of the solution (1 and 5.3 S m(-1)) and two bioanode kinetics (jmax = 5.8 or 34 A m(-2)). A conventional reactor configuration, with the anode and the cathode face to face, is compared with a configuration where the bioanode perpendicular to the cathode implements the electrochemical reaction on its two sides. The low solution conductivity is shown to have a crucial impact, which cancels out the advantages obtained by setting the bioanode perpendicular to the cathode. For the same reason, when the surface area of the anode is increased by multiplying the number of plates, care must be taken not to create too dense anode architecture. Actually, the advantages of increasing the surface area by multiplying the number of plates can be lost through worsening of the electrochemical conditions in the multi-layered anode, because of the increase of the electrostatic potential of the solution inside the anode structure. The model gives the first theoretical bases for scaling up MECs in a rather simple but rigorous way.

  8. A method to evaluate utility for architectural comparisons for a campaign to explore the surface of Mars

    NASA Astrophysics Data System (ADS)

    Ward, Eric D.; Webb, Ryan R.; deWeck, Olivier L.

    2016-11-01

    There is a general consensus that Mars is the next high priority destination for human space exploration. There has been no lack of analysis and recommendations for human missions to Mars, including, for example, the NASA Design Reference Architectures and the Mars Direct proposal. These studies and others usually employ the traditional approach of selecting a baseline mission architecture and running individual trade studies. However, this can cause blind spots, as not all combinations are explored. An alternative approach is to holistically analyze the entire architectural trade-space such that all of the possible system interactions are identified and measured. In such a framework, an optimal design is sought by minimizing cost for maximal value. While cost is relatively easy to model for manned spaceflight, value is more difficult to define. In our efforts to develop a surface base architecture for the MIT Mars 2040 project, we explored several methods for quantifying value, including technology development benefits, challenge, and various metrics for measuring scientific return. We developed a science multi-score method that combines astrobiology and geologic research goals, which is weighted by the crew-member hours that can be used for scientific research rather than other activities.

  9. Dissecting the herpesvirus architecture by targeted proteolysis.

    PubMed

    Daniel, Gina R; Pegg, Caitlin E; Smith, Gregory A

    2018-06-13

    Herpesvirus particles have a complex architecture consisting of an icosahedral capsid that is surrounded by a lipid envelope. Connecting these two components is a layer of tegument that consists of varying amounts of twenty or more proteins. The arrangement of proteins within the tegument cannot easily be assessed and instead is inferred from tegument interactions identified in reductionist models. To better understand the tegument architecture, we have developed an approach to probe capsid-tegument interactions of extracellular viral particles by encoding tobacco etch virus (TEV) protease sites in viral structural proteins, along with distinct fluorescent tags in capsid and tegument components. In this study, TEV sites were engineered within the pUL36 large tegument protein: a critical structural element that is anchored directly on the capsid surface. Purified pseudorabies virus extracellular particles were permeabilized and TEV protease was added to selectively cleave the exposed pUL36 backbone. Interactions with the capsid were assessed in situ by monitoring the fate of the fluorescent signals following cleavage. Although several regions of pUL36 are proposed to bind capsids, pUL36 was found stably anchored to the capsid exclusively at its carboxyl terminus. Two additional tegument proteins, pUL37 and pUS3, were tethered to the capsid via pUL36 whereas the pUL16, pUL47, pUL48, and pUL49 tegument proteins were not stably bound to the capsid. IMPORTANCE: Neuroinvasive alphaherpesviruses produce diseases of clinical and economic significance in humans and veterinary animals, but are predominantly associated with less serious recurrent disease. Like all viruses, herpesviruses assemble a metastable particle that selectively dismantles during initial infection. This process is made more complex by the presence of a tegument layer that resides between the capsid surface and envelope. Components of the tegument are essential for particle assembly and also serve as critical effectors that promote infection upon entry into cells. How this dynamic network of protein interactions is arranged within virions is largely unknown. We present a molecular approach to dissect the tegument and with it, begin to tease apart the protein interactions that underlie this complex layer of the virion architecture. Copyright © 2018 American Society for Microbiology.

  10. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta formation (lower jurassic), Southwest Colorado

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.

    1988-03-01

    Three well-exposed outcrops in the Kayenta Formation (Lower Jurassic), near Dove Creek in southwestern Colorado, were studied using lateral profiles, in order to test recent regarding architectural-element analysis and the classification and interpretation of internal bounding surfaces. Examination of bounding surfaces within and between elements in the Kayenta outcrops raises problems in applying the three-fold classification of Allen (1983). Enlarging this classification to a six-fold hierarchy permits the discrimination of surfaces intermediate between Allen's second- and third-order types, corresponding to the upper bounding surfaces of macroforms, and internal erosional "reactivation" surfaces within the macroforms. Examples of the first five types of surface occur in the Kayenta outcrops at Dove Creek. The new classifications is offered as a general solution to the problem of description of complex, three-dimensional fluvial sandstone bodies. The Kayenta Formation at Dove Creek consists of a multistorey sandstone body, including the deposits of lateral- and downstream-accreted macroforms. The storeys show no internal cyclicity, neither within individual elements nor through the overall vertical thickness of the formation. Low paleocurrent variance indicates low sinuosity flow, whereas macroform geometry and orientation suggest low to moderate sinuosity. The many internal minor erosion surfaces draped with mud and followed by intraclast breccias imply frequent rapid stage fluctuation, consistent with variable (seasonal? monsonal? ephemmeral?) flow. The results suggest a fluvial architecture similar to that of the South Saskatchewan River, through with a three-dimensional geometry unlike that interpreted from surface studies of that river.

  11. Biomimetic engineering of a generic cell-on-membrane architecture by microfluidic engraving for on-chip bioassays.

    PubMed

    Lee, Sang-Wook; Noh, Ji-Yoon; Park, Seung Chul; Chung, Jin-Ho; Lee, Byoungho; Lee, Sin-Doo

    2012-05-22

    We develop a biomimetic cell-on-membrane architecture in close-volume format which allows the interfacial biocompatibility and the reagent delivery capability for on-chip bioassays. The key concept lies in the microfluidic engraving of lipid membranes together with biological cells on a supported substrate with topographic patterns. The simultaneous engraving process of a different class of fluids is promoted by the front propagation of an air-water interface inside a flow-cell. This highly parallel, microfluidic cell-on-membrane approach opens a door to the natural biocompatibility in mimicking cellular stimuli-response behavior essential for diverse on-chip bioassays that can be precisely controlled in the spatial and temporal manner.

  12. Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Uttam, Shikhar; Staton, Kevin; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2010-11-01

    Definitive diagnosis of malignancy is often challenging due to limited availability of human cell or tissue samples and morphological similarity with certain benign conditions. Our recently developed novel technology-spatial-domain low-coherence quantitative phase microscopy (SL-QPM)-overcomes the technical difficulties and enables us to obtain quantitative information about cell nuclear architectural characteristics with nanoscale sensitivity. We explore its ability to improve the identification of malignancy, especially in cytopathologically non-cancerous-appearing cells. We perform proof-of-concept experiments with an animal model of colorectal carcinogenesis-APCMin mouse model and human cytology specimens of colorectal cancer. We show the ability of in situ nanoscale nuclear architectural characteristics in identifying cancerous cells, especially in those labeled as ``indeterminate or normal'' by expert cytopathologists. Our approach is based on the quantitative analysis of the cell nucleus on the original cytology slides without additional processing, which can be readily applied in a conventional clinical setting. Our simple and practical optical microscopy technique may lead to the development of novel methods for early detection of cancer.

  13. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    PubMed Central

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-01-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode. PMID:26538366

  14. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells.

    PubMed

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-05

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  15. Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Chen, Xu; He, Daping; Wu, Hui; Zhao, Xiaofeng; Zhang, Jian; Cheng, Kun; Wu, Peng; Mu, Shichun

    2015-11-01

    For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm2 at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

  16. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOEpatents

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  17. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.

    PubMed

    Paul, Anirban; Crow, Megan; Raudales, Ricardo; He, Miao; Gillis, Jesse; Huang, Z Josh

    2017-10-19

    Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Self-organization of neural tissue architectures from pluripotent stem cells.

    PubMed

    Karus, Michael; Blaess, Sandra; Brüstle, Oliver

    2014-08-15

    Despite being a subject of intensive research, the mechanisms underlying the formation of neural tissue architectures during development of the central nervous system remain largely enigmatic. So far, studies into neural pattern formation have been restricted mainly to animal experiments. With the advent of pluripotent stem cells it has become possible to explore early steps of nervous system development in vitro. These studies have unraveled a remarkable propensity of primitive neural cells to self-organize into primitive patterns such as neural tube-like rosettes in vitro. Data from more advanced 3D culture systems indicate that this intrinsic propensity for self-organization can even extend to the formation of complex architectures such as a multilayered cortical neuroepithelium or an entire optic cup. These novel experimental paradigms not only demonstrate the enormous self-organization capacity of neural stem cells, they also provide exciting prospects for studying the earliest steps of human neural tissue development and the pathogenesis of brain malformations in reductionist in vitro paradigms. © 2014 Wiley Periodicals, Inc.

  19. Extracellular chloride signals collagen IV network assembly during basement membrane formation

    PubMed Central

    Cummings, Christopher F.; Pedchenko, Vadim; Brown, Kyle L.; Colon, Selene; Rafi, Mohamed; Jones-Paris, Celestial; Pokydeshava, Elena; Liu, Min; Pastor-Pareja, Jose C.; Stothers, Cody; Ero-Tolliver, Isi A.; McCall, A. Scott; Vanacore, Roberto; Bhave, Gautam; Santoro, Samuel; Blackwell, Timothy S.; Zent, Roy; Pozzi, Ambra

    2016-01-01

    Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl− ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl− in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl− and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains. PMID:27216258

  20. Low power test architecture for dynamic read destructive fault detection in SRAM

    NASA Astrophysics Data System (ADS)

    Takher, Vikram Singh; Choudhary, Rahul Raj

    2018-06-01

    Dynamic Read Destructive Fault (dRDF) is the outcome of resistive open defects in the core cells of static random-access memories (SRAMs). The sensitisation of dRDF involves either performing multiple read operations or creation of number of read equivalent stress (RES), on the core cell under test. Though the creation of RES is preferred over the performing multiple read operation on the core cell, cell dissipates more power during RES than during the read or write operation. This paper focuses on the reduction in power dissipation by optimisation of number of RESs, which are required to sensitise the dRDF during test mode of operation of SRAM. The novel pre-charge architecture has been proposed in order to reduce the power dissipation by limiting the number of RESs to an optimised number of two. The proposed low power architecture is simulated and analysed which shows reduction in power dissipation by reducing the number of RESs up to 18.18%.

  1. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    PubMed

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission. © 2014 The Authors. Cellular Microbiology published by John Wiley & Sons Ltd.

  2. N-Isopropylacrylamide-co-glycidylmethacrylate as a Thermoresponsive Substrate for Corneal Endothelial Cell Sheet Engineering

    PubMed Central

    Madathil, Bernadette K.; Anil Kumar, Pallickaveedu RajanAsari; Kumary, Thrikkovil Variyath

    2014-01-01

    Endothelial keratoplasty is a recent shift in the surgical treatment of corneal endothelial dystrophies, where the dysfunctional endothelium is replaced whilst retaining the unaffected corneal layers. To overcome the limitation of donor corneal shortage, alternative use of tissue engineered constructs is being researched. Tissue constructs with intact extracellular matrix are generated using stimuli responsive polymers. In this study we evaluated the feasibility of using the thermoresponsive poly(N-isopropylacrylamide-co-glycidylmethacrylate) polymer as a culture surface to harvest viable corneal endothelial cell sheets. Incubation below the lower critical solution temperature of the polymer allowed the detachment of the intact endothelial cell sheet. Phase contrast and scanning electron microscopy revealed the intact architecture, cobble stone morphology, and cell-to-cell contact in the retrieved cell sheet. Strong extracellular matrix deposition was also observed. The RT-PCR analysis confirmed functionally active endothelial cells in the cell sheet as evidenced by the positive expression of aquaporin 1, collagen IV, Na+-K+ ATPase, and FLK-1. Na+-K+ ATPase protein expression was also visualized by immunofluorescence staining. These results suggest that the in-house developed thermoresponsive culture dish is a suitable substrate for the generation of intact corneal endothelial cell sheet towards transplantation for endothelial keratoplasty. PMID:25003113

  3. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors.

    PubMed

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-05

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  4. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    PubMed Central

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport. PMID:24576342

  5. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  6. Simulation studies of DNA at the nanoscale: Interactions with proteins, polycations, and surfaces

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.

    Understanding the nanoscale interactions of DNA, a multifunctional biopolymer with sequence-dependent properties, with other biological and synthetic substrates and molecules is essential to advancing these technologies. This doctoral thesis research is aimed at understanding the thermodynamics and molecular-level structure when DNA interacts with proteins, polycations, and functionalized surfaces. First, we investigate the ability of a DNA damage recognition protein (HMGB1a) to bind to anti-cancer drug-induced DNA damage, seeking to explain how HMGB1a differentiates between the drugs in vivo. Using atomistic molecular dynamics simulations, we show that the structure of the drug-DNA molecule exhibits drug- and base sequence-dependence that explains some of the experimentally observed differential recognition of the drugs in various sequence contexts. Then, we show how steric hindrance from the drug decreases the deformability of the drug-DNA molecule, which decreases recognition by the protein, a concept that can be applied to rational drug design. Second, we study how polycation architecture and chemistry affect polycation-DNA binding so as to design optimal polycations for high efficiency gene (DNA) delivery. Using a multiscale computational approach involving atomistic and coarse-grained simulations, we examine how rearranging polylysine from a linear to a grafted architecture, and several aspects of the grafted architecture, affect polycation-DNA binding and the structure of polycation-DNA complexes. Next, going beyond lysine we examine how oligopeptide chemistry and sequence in the grafted architecture affects polycation-DNA binding and find that strategic placement of hydrophobic peptides might be used to tailor binding strength. Third, we study the adsorption and conformations of single-stranded DNA (an amphiphilic biopolymer) on model hydrophilic and hydrophobic surfaces. Short ssDNA oligomers adsorb to both surfaces with similar strength, with the strength of adsorption to the hydrophobic surface depending on the composition of the DNA strands, i.e. purine or pyrimidine bases. Additionally, DNA-surface and DNA-water interactions near the surfaces govern the adsorption. For longer ssDNA oligomers, the effects of surface chemistry and temperature on ssDNA conformations are rather small, but either the hydrophilic surface or increased temperature favor slightly more compact conformations due to energetic and entropic effects, respectively.

  7. A three-dimensional architecture of vertically aligned multilayer graphene facilitates heat dissipation across joint solid surfaces

    NASA Astrophysics Data System (ADS)

    Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.

    2012-02-01

    Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.

  8. General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Krummacher, B. C.; Mathai, M. K.; Choong, V.; Choulis, S. A.; So, F.; Winnacker, A.

    2006-09-01

    The external light output of organic light emitting diodes (OLEDs) can be increased by modifying the light emitting surface. The apparent light extraction enhancement is given by the ratio between the efficiency of the unmodified device and the efficiency of the modified device. This apparent light extraction enhancement is dependent on the OLED architecture itself and is not the correct value to judge the effectiveness of a technique to enhance light outcoupling due to substrate surface modification. We propose a general method to evaluate substrate surface modification techniques for light extraction enhancement of OLEDs independent from the device architecture. This method is experimentally demonstrated using green electrophosphorescent OLEDs with different device architectures. The substrate surface of these OLEDs was modified by applying a prismatic film to increase light outcoupling from the device stack. It was demonstrated that the conventionally measured apparent light extraction enhancement by means of the prismatic film does not reflect the actual performance of the light outcoupling technique. Rather, by comparing the light extracted out of the prismatic film to that generated in the OLED layers and coupled into the substrate (before the substrate/air interface), a more accurate evaluation of light outcoupling enhancement can be achieved. Furthermore we show that substrate surface modification can change the output spectrum of a broad band emitting OLED.

  9. Core Levels, Band Alignments, and Valence-Band States in CuSbS 2 for Solar Cell Applications

    DOE PAGES

    Whittles, Thomas J.; Veal, Tim D.; Savory, Christopher N.; ...

    2017-11-10

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuInxGa (1-x)Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from themore » antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.« less

  10. Core Levels, Band Alignments, and Valence-Band States in CuSbS2 for Solar Cell Applications.

    PubMed

    Whittles, Thomas J; Veal, Tim D; Savory, Christopher N; Welch, Adam W; de Souza Lucas, Francisco Willian; Gibbon, James T; Birkett, Max; Potter, Richard J; Scanlon, David O; Zakutayev, Andriy; Dhanak, Vinod R

    2017-12-06

    The earth-abundant material CuSbS 2 (CAS) has shown good optical properties as a photovoltaic solar absorber material, but has seen relatively poor solar cell performance. To investigate the reason for this anomaly, the core levels of the constituent elements, surface contaminants, ionization potential, and valence-band spectra are studied by X-ray photoemission spectroscopy. The ionization potential and electron affinity for this material (4.98 and 3.43 eV) are lower than those for other common absorbers, including CuIn x Ga (1-x) Se 2 (CIGS). Experimentally corroborated density functional theory (DFT) calculations show that the valence band maximum is raised by the lone pair electrons from the antimony cations contributing additional states when compared with indium or gallium cations in CIGS. The resulting conduction band misalignment with CdS is a reason for the poor performance of cells incorporating a CAS/CdS heterojunction, supporting the idea that using a cell design analogous to CIGS is unhelpful. These findings underline the critical importance of considering the electronic structure when selecting cell architectures that optimize open-circuit voltages and cell efficiencies.

  11. Multidimensional Anodized Titanium Foam Photoelectrode for Efficient Utilization of Photons in Mesoscopic Solar Cells.

    PubMed

    Kang, Jin Soo; Choi, Hyelim; Kim, Jin; Park, Hyeji; Kim, Jae-Yup; Choi, Jung-Woo; Yu, Seung-Ho; Lee, Kyung Jae; Kang, Yun Sik; Park, Sun Ha; Cho, Yong-Hun; Yum, Jun-Ho; Dunand, David C; Choe, Heeman; Sung, Yung-Eun

    2017-09-01

    Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm -2 is achieved in the conventional N719 dye-I 3 - /I - redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongguo; Lv, Haifeng; Kang, Yijin

    2016-04-06

    In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less

  13. Targeted Cellular Drug Delivery using Tailored Dendritic Nanostructures

    NASA Astrophysics Data System (ADS)

    Kannan, Rangaramanujam; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary

    2002-03-01

    Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorble, ‘peripheral’ functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug and gene delivery. The large number of end groups can also be tailored to create special affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, in-vitro drug loading, in-vitro drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Polyamidoamine and Polyol dendrimers, with different generations and end-groups are studied, with drugs such as Ibuprofen and Methotrexate. Our results indicate that a large number of drug molecules can be encapsulated/attached to the dendrimers, depending on the end groups. The drug-encapsulated dendrimer is able to enter the cells rapidly and deliver the drug. Targeting strategies being explored

  14. Fabrication and characterization of La2Zr2O7 films on different buffer architectures for YBa2Cu3O7-δ coated conductors by RF magnetron sputtering.

    PubMed

    Xu, Da; Liu, Linfei; Xiao, Guina; Li, Yijie

    2013-02-27

    La2Zr2O7 (LZO) films were grown on different buffer architectures by radio frequency magnetron sputtering for the large-scale application of YBa2Cu3O7-x (YBCO)-coated conductors. The three different buffer architectures were cerium oxide (CeO2), yttria-stabilized zirconia (YSZ)/CeO2, and CeO2/YSZ/CeO2. The microstructure and surface morphology of the LZO film were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy, and atomic force microscopy. The LZO films prepared on the CeO2, YSZ/CeO2, and CeO2/YSZ/CeO2 buffer architectures were preferentially c-axis-oriented and highly textured. The in-plane texture of LZO film on CeO2 single-buffer architecture was ∆ φ = 5.5° and the out-of-plane texture was ∆ ω = 3.4°. All the LZO films had very smooth surfaces, but LZO films grown on YSZ/CeO2 and CeO2/YSZ/CeO2 buffer architectures had cracks. The highly textured LZO film grown on CeO2-seed buffered NiW tape was suitable for the epitaxial growth of YBCO film with high currents.

  15. A model of tumor architecture and spatial interactions with tumor microenvironment in breast carcinoma

    NASA Astrophysics Data System (ADS)

    Ben Cheikh, Bassem; Bor-Angelier, Catherine; Racoceanu, Daniel

    2017-03-01

    Breast carcinomas are cancers that arise from the epithelial cells of the breast, which are the cells that line the lobules and the lactiferous ducts. Breast carcinoma is the most common type of breast cancer and can be divided into different subtypes based on architectural features and growth patterns, recognized during a histopathological examination. Tumor microenvironment (TME) is the cellular environment in which tumor cells develop. Being composed of various cell types having different biological roles, TME is recognized as playing an important role in the progression of the disease. The architectural heterogeneity in breast carcinomas and the spatial interactions with TME are, to date, not well understood. Developing a spatial model of tumor architecture and spatial interactions with TME can advance our understanding of tumor heterogeneity. Furthermore, generating histological synthetic datasets can contribute to validating, and comparing analytical methods that are used in digital pathology. In this work, we propose a modeling method that applies to different breast carcinoma subtypes and TME spatial distributions based on mathematical morphology. The model is based on a few morphological parameters that give access to a large spectrum of breast tumor architectures and are able to differentiate in-situ ductal carcinomas (DCIS) and histological subtypes of invasive carcinomas such as ductal (IDC) and lobular carcinoma (ILC). In addition, a part of the parameters of the model controls the spatial distribution of TME relative to the tumor. The validation of the model has been performed by comparing morphological features between real and simulated images.

  16. Oral Biofilm Architecture on Natural Teeth

    PubMed Central

    Zijnge, Vincent; van Leeuwen, M. Barbara M.; Degener, John E.; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; M. Harmsen, Hermie J.

    2010-01-01

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species. PMID:20195365

  17. Parallel architecture for rapid image generation and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerheim, R.J.

    1987-01-01

    A multiprocessor architecture inspired by the Disney multiplane camera is proposed. For many applications, this approach produces a natural mapping of processors to objects in a scene. Such a mapping promotes parallelism and reduces the hidden-surface work with minimal interprocessor communication and low-overhead cost. Existing graphics architectures store the final picture as a monolithic entity. The architecture here stores each object's image separately. It assembles the final composite picture from component images only when the video display needs to be refreshed. This organization simplifies the work required to animate moving objects that occlude other objects. In addition, the architecture hasmore » multiple processors that generate the component images in parallel. This further shortens the time needed to create a composite picture. In addition to generating images for animation, the architecture has the ability to decompose images.« less

  18. How the shapes of seeds can influence pathology.

    PubMed

    Melki, Ronald

    2018-01-01

    It is widely accepted that the loss of function of different cellular proteins following their aggregation into highly stable aggregates or the gain of pathologic function of the resulting macromolecular assemblies or both processes are tightly associated to distinct debilitating neurodegenerative diseases such as Alzheimer's, Parkinson's, Creutzfeldt-Jacob, Amyotrophic Lateral Sclerosis and Huntington's diseases. How the aggregation of one given protein leads to distinct diseases is unclear. Here, a structural-molecular explanation based on the ability of proteins such as α-synuclein or tau to form assemblies that differ by their intrinsic architecture, stability, seeding capacity, and surfaces is proposed to account for distinct synucleinopathies and tauopathies. The shape and surfaces of the seeds is proposed to define at the same time their seeding capacity, interactome and tropism for defined neuronal cells within the central nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

Top